dc.contributor.advisor | Medrano Valencia, Ivan Cesar | |
dc.contributor.author | Bustamante Flores, Erick Andrew | |
dc.date.accessioned | 2025-01-24T21:18:35Z | |
dc.date.available | 2025-01-24T21:18:35Z | |
dc.date.issued | 2024 | |
dc.identifier.other | 253T20241909 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12918/10279 | |
dc.description.abstract | Este estudio presenta un modelo de visión computacional basado en transferencia de aprendizaje para la clasificación automatizada de las especies de moscas de la fruta Anastrepha fraterculus y Ceratitis capitata, cuya identificación manual, actualmente realizada por expertos del Servicio Nacional de Sanidad Agraria del Perú (SENASA), enfrenta limitaciones de tiempo y consistencia. La plaga de la familia Tephritidae genera graves daños en la producción frutícola de la provincia de La Convención, motivando la necesidad de soluciones que optimicen la gestión y clasificación de estas especies. SENASA ha implementado una red de trampas para capturar muestras, que luego son clasificadas en laboratorios especializados, aunque esta labor resulta compleja debido a la fatiga de los especialistas y a la variabilidad morfológica de las especies. Para abordar estos desafíos, este proyecto implementó un modelo de aprendizaje profundo, entrenado con imágenes capturadas con un teléfono celular a través del ocular de un estereomicroscopio en un entorno controlado. Las imágenes fueron segmentadas y preprocesadas para resaltar características morfológicas relevantes, empleando los modelos preentrenados VGG16, VGG19 e Inception-v3. Los resultados mostraron que Inception-v3 alcanzó el mayor F1-score (100.00%), superando a VGG16 (92.00%) y a VGG19 (87.00%). Su confiabilidad fue verificada utilizando imágenes de entornos no controlados, incluidas imágenes de internet, además de la técnica Grad-CAM, que confirmó su capacidad para capturar características clave de las especies. Estos hallazgos sugieren que Inception-v3 es un método efectivo y aplicable en sistemas de monitoreo automatizados, con potencial para mejorar la precisión y eficiencia en la clasificación de A. fraterculus | es_PE |
dc.format | application/pdf | en_US |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Nacional de San Antonio Abad del Cusco | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mosca de la fruta | es_PE |
dc.subject | Vision computacional | es_PE |
dc.subject | Transferencia | es_PE |
dc.subject | Aprendizaje | es_PE |
dc.subject | Grad-CAM | es_PE |
dc.title | Identificación y clasificación de la mosca de la fruta de las especies Anastrepha fraterculus y Ceratitis capitata en imágenes utilizando un modelo de visión computacional basado en transferencia de aprendizaje | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | |
thesis.degree.name | Ingeniero Informático y de Sistemas | |
thesis.degree.grantor | Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica | |
thesis.degree.discipline | Ingeniería Informática y de Sistemas | |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.02.02 | |
renati.author.dni | 75434094 | |
renati.advisor.orcid | https://orcid.org/0000-0003-0623-090X | |
renati.advisor.dni | 23881501 | |
renati.type | http://purl.org/pe-repo/renati/type#tesis | |
renati.level | http://purl.org/pe-repo/renati/nivel#tituloProfesional | |
renati.discipline | 612296 | |
renati.juror | Candia Oviedo, Dennis Ivan | |
renati.juror | Pacheco Vasquez, Esther Cristina | |
renati.juror | Zamalloa Paro, Willian | |
renati.juror | Villalba Villalba, Tany | |
dc.publisher.country | PE | |