UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERÍA DE PROCESOS ESCUELA PROFESIONAL DE INGENIERÍA QUÍMICA

TESIS

EVALUACIÓN DEL EFECTO DE LA FOTÓLISIS EN PROCESOS

DE DEGRADACIÓN DE SOLUCIONES SINTÉTICAS DEL

COLORANTE NEGRO REACTIVO 5

PRESENTADO POR:

Br. SADY LUZ ALVAREZ HUISA Br. BALVINO PALOMINO CCOÑAS

PARA OPTAR AL TÍTULO PROFESIONAL DE INGENIERO QUÍMICO

ASESOR:

DR. ANTONIO RAMIRO JESÚS BUENO LAZO

CUSCO – PERÚ 2024

INFORME DE ORIGINALIDAD

(Aprobado por Resolución Nro.CU-303-2020-UNSAAC)

El que suscribe, Asesor del trabajo de investigación/tesis titulada: EVALUACIÓN PEL EFECTO DE LA FOTÓLISIS EN PROCESOS DE DEGRADACIÓN DE SOLUCIONES SINTÉRICAS DEL COLORANTE NEGRO REACTIVO 5
presentado por: <u>SADY 202 Alvarez HUISA</u> con DNI Nro.: <u>75130581</u> presentado por: <u>BALVENO</u> <u>PALOMENO</u> <u>CONAS</u> con DNI Nro.: <u>31044682</u> para optar el título profesional/grado académico de <u>ZNGENEERO</u> <u>QUIMECO</u>
Informo que el trabajo de investigación ha sido sometido a revisión por

Evaluación y acciones del reporte de coincidencia para trabajos de investigación conducentes a grado académico o título profesional, tesis

Porcentaje	Evaluación y Acciones	Marque con una (X)
Del 1 al 10%	No se considera plagio.	X
Del 11 al 30 %	Devolver al usuario para las correcciones.	
Mayor a 31%	El responsable de la revisión del documento emite un informe al inmediato jerárquico, quien a su vez eleva el informe a la autoridad académica para que tome las acciones correspondientes. Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.	

Por tanto, en mi condición de asesor, firmo el presente informe en señal de conformidad y **adjunto** la primera página del reporte del Sistema Antiplagio.

Cusco, 25 de NOVIEMBRE de 20.24

5 Firma

Post firma. ANTONIO RATILO JESÚS BUENO LAZO

ORCID del Asesor 0000 -0002 - 6415 - 3028

Se adjunta:

- 1. Reporte generado por el Sistema Antiplagio.
- Enlace del Reporte Generado por el Sistema Antiplagio: oid: <u>27259: 40 8806889</u>

Álvarez Huisa, Sady Luz Palomino Ccoñas, Balvino EVALUACIÓN DEL EFECTO DE LA FOTÓLISIS EN PROCESOS DE DEGRADACIÓN DE SOLUCIONES SINTÉTICAS DEL COLORA

🏐 - Universidad Nacional San Antonio Abad del Cusco

Detalles del documento

Identificador de la entrega trn:oid:::27259:408806889

Fecha de entrega 23 nov 2024, 9:27 p.m. GMT-5

Fecha de descarga 23 nov 2024, 9:37 p.m. GMT-5

Nombre de archivo EVALUACIÓN DEL EFECTO DE LA FOTÓLISIS EN PROCESOS DE DEGRADACIÓN DE SOLUCIONES SIN....pdf

Tamaño de archivo

936.4 KB

89 Páginas

17,345 Palabras

97,937 Caracteres

Página 1 of 92 - Portada

Identificador de la entrega trn:oid:::27259:408806889

2% Similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Texto citado
- Coincidencias menores (menos de 20 palabras)

Exclusiones

• N.º de coincidencias excluidas

Fuentes principales

- 2% ④ Fuentes de Internet
- 0% 🔳 Publicaciones
- 0% 📃 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alertas de integridad para revisión

No se han detectado manipulaciones de texto sospechosas.

Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirlo de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo, recomendamos que preste atención y la revise.

Dedicatorias

A Dios Todopoderoso, quien ha sido mi luz, guía y fuerza a lo largo de este viaje académico. A Él le entrego el fruto de mis esfuerzos.

A mis padres Mario y Ascencia por su amor incondicional, apoyo constante y sacrificios para hacer posible mi educación.

A mi hijo F.A, quien llena mi vida de luz y alegría interminable. Este logro también tuyo. En memoria de mi hermana, quien, aunque ya no está físicamente, continúa siendo una inspiración para mí.

A esa persona especial en mi vida, cuya compañía y paciencia me mantuvieron firme durante este proceso retador pero lleno de recompensas.

Br. Sady Luz Alvarez Huisa

A Dios por ser el inspirador, forjador de mi camino y darme la fuerza para continuar en este proceso para obtener uno de mis anhelos más deseados.

A mis padres Palomino Orosco A. y Ccoñas Rincón J. por ser quienes me enseñaron a luchar y ser una mejor persona día a día, para conseguir mis sueños y por estar conmigo en los momentos felices y difíciles.

A mi tía Fidelia y mi abuela Inés que siempre me apoyaron incondicionalmente en este trayecto de mi vida.

Br. Balvino Palomino Ccoñas

Agradecimientos

En el presente trabajo de tesis primeramente nos gustaría agradecer a Dios por ser nuestro amparo, fortaleza, guía y bendiciones para llegar hasta donde hemos llegado, para seguir adelante.

A nuestros familiares que siempre nos han apoyado demostrando su cariño, alegría y amistad incondicional, siempre aconsejándonos para continuar siempre adelante en nuestra vida personal y profesional.

Agradecemos de forma especial a nuestro asesor de tesis Dr. Antonio Ramiro Jesús Bueno Lazo, por su asesoría y dedicación, quien, con sus conocimientos, experiencia, paciencia y motivación llegamos a concluir y desarrollar la tesis con éxito.

Agradecemos al Mgt. Washington Julio Lechuga Canal por sus valiosas observaciones y recomendaciones, cuya mentoría y guía fueron fundamentales para el desarrollo de esta investigación.

Nuestro más profundo agradecimiento a todos los docentes de la Escuela Profesional de Ingeniería Química, cuya enseñanza y experiencia práctica han sido esenciales para nuestro crecimiento profesional. Su guía ha sido invaluable durante todo este proceso.

Son muchas las personas que han formado parte de nuestra vida profesional, compañeros de la carrera a las que nos encantaría agradecerles su amistad, consejos, apoyo, ánimo y compañía en cada momento.

Br. Sady Luz Alvarez Huisa Br. Balvino Palomino Ccoñas

Presentación

Sr. Decano y Docentes de la Facultad de Ingeniería de Procesos de la Universidad

Nacional de San Antonio Abad del Cusco.

Señores miembros del Jurado.

Según el Estatuto Universitario y el Reglamento de Grados y Títulos vigente de la Facultad de Ingeniería de Procesos y con el anhelo de optar al título profesional de Ingeniero Químico, se dispone el presente trabajo de investigación intitulado:

"EVALUACIÓN DEL EFECTO DE LA FOTÓLISIS EN PROCESOS DE DEGRADACIÓN DE SOLUCIONES SINTÉTICAS DEL COLORANTE NEGRO REACTIVO 5"

Expresamos nuestro más sincero agradecimiento a todos los docentes de la Escuela Profesional de Ingeniería Química por los conocimientos brindados durante nuestra formación académica.

Atentamente.

Br. Sady Luz Alvarez Huisa Br. Balvino Palomino Ccoñas

Dedicatorias	ii
Agradecimientos	iii
Presentación	iv
Índice	v
Lista de figuras	ix
Lista de tablas	X
Resumen	xi
Capítulo I	1
1. Generalidades	1
1.1. Introducción	1
1.2. Planteamiento del problema	2
1.3. Formulación del problema	3
1.3.1. Problema general	3
1.3.2. Problemas específicos	4
1.4. Formulación de objetivos	4
1.4.1. Objetivo general	4
1.4.2. Objetivos específicos	4
1.5. Justificación de la investigación	4
1.5.1. Justificación científica	4
1.5.2. Justificación económica	5
1.5.3. Justificación social	5
Capítulo II	6

Índice

2.	Revisión bibliográfica
	2.1. Antecedentes de la investigación
	2.2. Colorantes
	2.2.1. Colorantes azoicos10
	2.2.2. Negro reactivo 5
	2.2.3. Propiedades físicas y químicas12
	2.3. Aguas residuales textiles
	2.4. Procesos de oxidación avanzada14
	2.4.1. Ventajas
	2.4.2. Desventajas17
	2.5. Fotólisis (UV-C/H ₂ O ₂)17
	2.5.1. Ventajas
	2.5.2. Parámetros operacionales para la fotólisis19
	2.5.3. Degradación del NR5 por radicales hidroxilos21
	2.6. Cinética y análisis de datos de velocidad22
	2.7. Hipótesis
	2.7.1. Hipótesis general
	2.7.2. Hipótesis especificas
	2.8. Variables e indicadores
	2.8.1. Identificación de variables24
	2.8.2. Parámetros
	2.8.3. Operacionalización de variables24

Cap	oítulo III		26
3.	Metodo	ología	26
	3.1.	Alcance del estudio	26
	3.1.1	1. Tipo de investigación	26
	3.1.2	2. Nivel y alcance de la investigación	26
	3.2.	Muestra	26
	3.3.	Materiales, reactivos, equipos e instrumentos	27
	3.4.	Longitud de onda máxima	28
	3.5.	Curva de calibración del NR5	28
	3.6.	Diseño experimental	28
	3.7.	Instalación del foto-reactor batch isotérmico	29
	3.8.	Evaluación del porcentaje de degradación del colorante NR5	31
Cap	oítulo IV		32
4.	Resulta	ados y discusión	32
	4.1.	Resultados del barrido espectral	32
	4.2.	Curva de calibración	33
	4.3.	Módulo del sistema de foto reactor	35
	4.4.	Análisis del diseño de barrido	36
	4.4.	1. Efecto de la relación UV-C/H ₂ O ₂ en la degradación de soluciones sint	téticas
	del colo	orante NR5	38
	4.4.2	2. Efecto del pH en la degradación de soluciones sintéticas del colorante N	IR539

4.4.3. Evaluar el efecto de la concentración de H ₂ O ₂ en la degradación de soluciones
sintéticas del colorante NR541
4.4.4. Cinética de degradación del colorante NR543
4.4.5. Modelo matemático del proceso de degradación del NR5 mediante
fotolisis/H ₂ O ₂ 49
Conclusiones
Recomendaciones
Bibliografía
Apéndice
Apéndice I: Modelo matemático cúbico69
Apéndice II: Análisis de residuales del modelo cubico71
Apéndice III: Fotografías del proceso de fotólisis UV-C/H ₂ O ₂ 72
Anexos74
Anexo 1: Certificado de análisis del colorante negro reactivo 5
Anexo 2: Certificado de análisis del peróxido de hidrógeno al 30 %75
Anexo 3. Certificado de análisis del hidróxido de sodio76
Anexo 4: Certificado de análisis del ácido clorhídrico76

Lista de figuras

Figura 1 Clasificación de los colorantes1	1
Figura 2 Estructura molecular negro reactivo 51	2
Figura 3 Clasificación de los procesos de oxidación avanzada1	5
Figura 4 Vía del mecanismo de degradación del colorante NR52	2
Figura 5 Diagrama del módulo del foto-reactor batch2	9
Figura 6 Diagrama de bloques del proceso UV-C/H ₂ O ₂	1
Figura 7 Longitud de onda del colorante NR53	2
Figura 8 Curva de calibración del colorante NR53	5
Figura 9 Foto-reactor batch	6
Figura 10 Relación de UV-C/H ₂ O ₂ 3	9
Figura 11 Efecto del pH en la degradación de NR54	0
Figura 12 Efecto del H ₂ O ₂ 4	-2
Figura 13 Efecto de la concentración de H ₂ O ₂ en la degradación del NR54	-2
Figura 14 Curva cinética del NR5 para pH 4 y 1350 ppm H ₂ O ₂ 4	6
Figura 15 Curva cinética experimental y proyectada del NR5 con 1350 ppm H ₂ O ₂ 4	-8
Figura 16 Curva de porcentaje de degradación experimental y proyectada del NR5 con 135	0
ppm H ₂ O ₂ 4	.9
Figura 17 Residuales del modelo matemático cubico5	0
Figura 18 Superficie de respuesta para el proceso de fotolisis/H ₂ O ₂ 5	2
Figura 19 Contornos de superficie para el proceso de fotolisis/H ₂ O ₂	3

Lista de tablas

Tabla 1 Propiedades fisicoquímicas del NR5	13
Tabla 2 Concentración de efluentes textiles en diferentes países	14
Tabla 3 Operacionalización de variables	25
Tabla 4 Lista de materiales	27
Tabla 5 Lista de reactivos	27
Tabla 6 Lista de equipos	27
Tabla 7 Lista de instrumentos	
Tabla 8 Diseño experimental y condiciones de operación	29
Tabla 9 Resultados de la curva de calibración del colorante NR5	34
Tabla 10 Resultados del proceso de degradación del NR5 para 32 W de UV-C	
Tabla 11 Estadísticos de la regresión NR5	44
Tabla 12 Análisis de varianza	44
Tabla 13 Coeficiente del modelo	45
Tabla 14 Cinética del NR5 para pH 4 y 1350 ppm H2O2	45
Tabla 15 Constantes de velocidad del diseño experimental	47
Tabla 16 Modelos matemáticos	49

Resumen

El presente trabajo de investigación tuvo, como objetivo evaluar el efecto de la fotólisis en el proceso de degradación de soluciones sintéticas del colorante negro reactivo 5 (NR5). Los experimentos se realizaron en un reactor batch isotérmico de capacidad de 2L, utilizando una lámpara UV-C de 32W. Se trabajo con una concentración inicial de 100 ppm de colorante NR5 para todas las pruebas experimentales, la agitación a 700 rpm, temperatura 25 ± 2 °C y se variaron parámetros como la concentración de H₂O₂ desde 300 hasta 3000 ppm, pH (4, 7 y 10); asimismo, todas las reacciones de degradación se llevaron en un tiempo de 60 min. Los resultados mostraron una alta tasa de degradación del colorante NR5 a pH 4 con un 95.66% y una relación UV-C/H₂O₂ de 0.0237 y pH 7 con un 94.58% de degradación y una relación UV-C/H₂O₂ de 0.0356. La influencia del pH fue significativa, lográndose un mayor porcentaje de degradación en 60 min a pH 4 y 7, mientras que a pH 10 se obtuvo 90.08%. La mejor tasa de degradación del NR5 fue más rápida a pH 4 y 7 a concentraciones de 900 y 1050 ppm H₂O₂ respectivamente. Por último, se determinó que el modelo cinético de la degradación de soluciones sintéticas del NR5 es de primer orden.

Palabras clave: fotólisis, degradación, NR5, UV-C, H2O2, NR5 y orden de reacción

Capítulo I

1. Generalidades

1.1. Introducción

La producción mundial de colorantes supera las 7×10^5 toneladas anuales, de las cuales más del 70% se utiliza en la industria cosmética, alimentaria, papelera y textil, y más del 16% se pierde en el proceso (Abdoul et al., 2023). Los colorantes azoicos se caracterizan generalmente por su doble enlace nitrógeno-nitrógeno (-N=N-), son el grupo más grande de colorantes sintéticos que tienen uno o más grupos azo en la estructura principal del compuesto, por lo que se pueden encontrar en colorantes sintéticos junto con estructuras de anillos aromáticos y representan más del 50% de la producción mundial anual (Chavan, 2011).

El agua dulce es esencial para la existencia de la vida en la tierra, pero a medida que crece la población y cambia el estilo de vida de las personas, la cantidad de aguas residuales y otros contaminantes que se vierten en los cuerpos de agua aumenta rápidamente y la calidad del agua se deteriora. Según la Organización Mundial de la Salud (OMS) desde el 14 de junio 2019 al 2025, 785 millones de personas carecen de servicios básicos de agua potable y casi la mitad de la población mundial vive en zonas con escasez de agua (Rizvi et al., 2022).

Las aguas residuales de la industria textil constituyen un problema medioambiental importante, ya que representa una considerable amenaza para la salud humana y para todas las formas de vida. Los tintes no solo representan una amenaza para la vida humana, sino que también se sabe que desarrollan teratogenicidad, genotoxicidad y carcinogenicidad en animales marinos, además se observa fitotoxicidad en plantas cuando se riegan o cultivan con agua enriquecida con efluentes de colorantes (Şener et al., 2017).

Se estima que alrededor de 10 a 15 % de colorantes usados se pierde durante el teñido de fibras textiles, por lo que la descarga de los efluentes tiene un efecto negativo en los seres vivos, la presencia de colorantes azoicos en el agua perturba y reduce la solubilidad del oxígeno

y la penetración de la luz, afectando así la actividad fotosintética de las plantas (Baena-Baldiris et al., 2020). Estos colorantes tienen efectos adversos debido a su estructura química, que es de naturaleza persistente y originan diversas reacciones adversas como angioedema, congestión nasal, picazón en la piel, urticaria, carcinogenicidad hepática y tumores en ratas. Además, estos tintes alteran la composición de los ecosistemas acuáticos y afectan la supervivencia de los organismos acuáticos (N. A. Khan et al., 2022). La descarga de colorantes sin un tratamiento adecuado puede afectar la flora y la fauna acuática como resultado del bloqueo de la penetración de la luz solar en el agua receptora. Por lo tanto, las aguas residuales de la industria textil deben de tratarse antes de ser liberados al medio ambiente. El tratamiento de las aguas residuales es necesario para un medio ambiente sostenible (Ikram et al., 2021).

Los procesos de oxidación avanzada (POAs) son una tecnología prometedora para el tratamiento de aguas residuales textiles contaminadas con colorantes azoicos y otros compuestos orgánicos persistentes mediante reacciones de oxidación con un potente radical hidroxilo no selectivo (OH⁻). Estos procesos pueden mejorar significativamente la calidad de las aguas residuales y reducir el impacto negativo de la industria textil en el medio ambiente (Urbina et al., 2023).

1.2. Planteamiento del problema

El continuo crecimiento de la población e industrialización ha provocado el deterioro de muchos ecosistemas naturales, como ríos y océanos, principalmente por el vertido de aguas residuales industriales y urbanas sin previo tratamiento (López, 2016). En particular, las aguas residuales originadas en la industria textil contienen varios contaminantes, incluidos altos niveles de materia orgánica y problemas de color debido a la presencia de tintes y materiales tensoactivos. Los colorantes azoicos, que son difíciles de degradar mediante tratamientos convencionales, se caracterizan por la presencia del enlace nitrógeno-nitrógeno (-N=N), lo que los hace muy deficientes en electrones (Hewamadduma & Weerasinghe, 2020). La industria

textil, además de ser uno de los mayores consumidores de agua, utilizando de 30 a 150 L/kg de materiales textiles acabados (Uribe et al., 2020), es también una de las principales fuentes de contaminación debido a los efluentes cargados de colorantes azoicos, los cuales constituyen el grupo más grande y utilizado de colorantes sintéticos en la industria. Estos efluentes han demostrado actividades tóxicas, mutagénicas y cancerígenas debido a la presencia de uno o más enlaces azo. Además, los tintes textiles no se adhieren completamente a las telas y son liberados como efluentes al medio ambiente acuático, lo que tiene consecuencias negativas significativas para el medio ambiente y la salud humana, contaminando los hábitats acuáticos y presentando un potencial tóxico para los organismos acuáticos, que pueden entrar en la cadena alimentaria (Al-Tohamy et al., 2022). Aunque se están utilizando varios métodos biológicos y químicos para la degradación de estos efluentes, el verdadero desafío radica en encontrar un método que sea efectivo, rápido y rentable (Hewamadduma & Weerasinghe, 2020). En la actualidad, las regulaciones ambientales, junto con la escasez y el creciente costo de los recursos hídricos, han impulsado la búsqueda de alternativas para la degradación de estos colorantes, entre las cuales destacan los procesos de oxidación avanzada. Estas tecnologías, que incluyen tanto procesos catalíticos como no catalíticos, utilizan la elevada capacidad oxidante del radical hidroxilo para oxidar compuestos tóxicos en subproductos no dañinos (Rodríguez et al., 2020). En este contexto, el presente trabajo tiene por objetivo investigar la degradación del colorante azoico negro reactivo 5 (NR5) mediante procesos de oxidación avanzada (UV-C/H₂O₂).

1.3. Formulación del problema

1.3.1. Problema general

¿Cuál es el efecto de la fotólisis en el proceso de degradación de soluciones sintéticas del colorante negro reactivo 5?

1.3.2. Problemas específicos

- ¿Cuál es el efecto de la relación UV-C/H₂O₂ y la degradación de soluciones sintéticas del colorante negro reactivo 5?
- ¿Cuál es el efecto del pH en la degradación de soluciones sintéticas del colorante negro reactivo 5?
- ¿Cuál es el efecto de la concentración de H₂O₂ en la degradación de soluciones sintéticas de negro reactivo 5?

1.4. Formulación de objetivos

1.4.1. Objetivo general

Evaluar el efecto de la fotólisis en el proceso de degradación de soluciones sintéticas del colorante negro reactivo 5.

1.4.2. Objetivos específicos

- Evaluar el efecto de la relación UV-C/H₂O₂ y la degradación de soluciones sintéticas del colorante negro reactivo 5.
- Evaluar el efecto del pH en la degradación de soluciones sintéticas del colorante negro reactivo 5.
- Evaluar el efecto de la concentración de H₂O₂ en la degradación de soluciones sintéticas de negro reactivo 5.

1.5. Justificación de la investigación

1.5.1. Justificación científica

La evaluación del efecto de la fotólisis en la degradación de soluciones sintéticas del colorante NR5 es de gran relevancia científica debido a la necesidad de comprender los mecanismos de descomposición de contaminantes orgánicos persistentes en aguas residuales. La fotólisis, como proceso de oxidación avanzada (POAs) está reconocido como un tratamiento adecuado para este tipo de aguas, por que utiliza oxidantes que producen radicales hidroxilos

para oxidar compuestos tóxicos y convertirlos en subproductos no nocivos (Hewamadduma & Weerasinghe, 2020). Este estudio en particular se enfoca en un colorante azoico, conocido por su resistencia a la biodegradación y su impacto ambiental negativo, lo que hace que su eliminación eficiente sea un desafío y una prioridad en la investigación ambiental.

1.5.2. Justificación económica

La puesta en marcha de un proceso de fotólisis para la degradación de colorantes sintéticos como el NR5 puede resultar significativos ahorros económicos a largo plazo como reducción de costos asociados con tratamientos convencionales; asimismo, disminuir los costos operativos asociados con el manejo y disposición de residuos. Además, el incremento en la eficiencia de los procesos de tratamiento puede aumentar la capacidad de las plantas de tratamiento, permitiendo una mayor producción sin necesidad de inversiones significativas en infraestructura adicional.

1.5.3. Justificación social

Como es conocido actualmente el agua es un bien preciado y limitado; por ende, uno de los problemas más importantes es la protección y conservación del agua como recurso natural, por lo que se debe realizar un apropiado uso, teniendo en cuenta que las normativas relacionadas con el agua son cada vez más estrictas. Por lo tanto, la eliminación efectiva de aguas residuales con contenido de colorantes sintéticos como el NR5 es crucial para mejorar la calidad del agua en comunidades afectadas por la contaminación industrial. Debida a esta situación es necesaria la aplicación de nuevos procesos de tratamientos con el objetivo de encontrar procesos con resultados más eficientes y eco amigables.

Capítulo II

2. Revisión bibliográfica

2.1. Antecedentes de la investigación

Hewamadduma & T. (2021), el objetivo que se plantearon los investigadores fue evaluar la efectividad del proceso de oxidación avanzada para la degradación del colorante textil negro reactivo 5. Los experimentos se llevaron a cabo en un foto-reactor con un volumen de trabajo de 840 ml con las siguientes condiciones de operación: lámpara de mercurio de baja presión (535 nm), concentración del colorante NR5 50, 100, 150, 200, 250, 300, 350, 400, 450 y 500 ppm, pH de la solución 10 - 11, cantidad de agente oxidante H_2O_2 10 y 20 ml y alimentación al reactor de 5.2 ml/min. Para 100 ppm de NR5, con 10 ml de H_2O_2 obtuvieron una degradación del 99.87 % en 30 min de reacción y con 20 ml de H_2O_2 un 99.97 % de degradación del NR5 en medio ácido y que la temperatura de la solución incrementa de 22 a 41 °C.

Da Silva et al. (2021), el objetivo que se plantearon los investigadores fue degradar el colorante NR5 por el proceso UV-C/H₂O₂. Las pruebas se realizaron en un foto-reactor de flujo continuo con los siguientes parámetros de operación: lámpara de Hg germicida UV-C de 30 W, concentración inicial de NR5 25, 50 y 100 ppm, concentración de H₂O₂ 2.45 y 24.5 ppm, flujo volumétrico constante de 1.5×10^{-5} m³.s⁻¹. Los investigadores lograron el mejor resultado con la dosis de 24.5 ppm de agente oxidante, para 25 ppm de NR5 obtuvieron un 98.8 % de degradación en 30 min de reacción, para 50 ppm de NR5 un 92.5 % de degradación en 30 min de reacción. En conclusión, los investigadores reportaron que la degradación del NR5 es mejor a pH 4 con dosis de H₂O₂ de 24.5 ppm.

Xu & Xu (2013), el objetivo que se plantearon los investigadores fue degradar un efluente simulado del colorante NR5 por UV-C/H₂O₂. Los experimentos se realizaron en un reactor batch para una concentración inicial de 17 ppm del colorante NR5, variando las siguientes condiciones de operación: dosis de H₂O₂ (30 %), pH 4 y 7, utilizaron una lámpara UV-C de 10 W. Los investigadores obtuvieron el siguiente resultado: degradación del 94 % del colorante NR5 en un lapso de 50 min de reacción por el proceso UV/H₂O₂, dosificación de H₂O₂ de 300 ppm y el valor más favorable de pH fue de 4 para 17 ppm de NR5, también observaron que la remoción del NR5 disminuyó al incrementar la concentración inicial del colorante NR5.

Neamtu et al. (2002), tuvieron como objetivo degradar los colorantes azoicos reactivos (Reactivo rojo 120, Reactivo negro 5, Reactivo amarillo 84) en solución acuosa por oxidación UV-C/H₂O₂. El procedimiento experimental se llevó a cabo en un foto-reactor agitado bajo las siguientes condiciones de operación: concentración inicial de los colorantes azoicos de 100 mg/L, temperatura de 25 °C, lámpara de mercurio de baja presión Heraeus UV de 15 W y para determinar la concentración de H₂O₂ más favorable trabajaron con dosificaciones de 0, 34, 170, 833, 1666 y 3332 ppm. Los investigadores reportan que para lograr una degradación superior al 99.6 % del NR5 la dosis más adecuada de H₂O₂ fue de 833 ppm en 60 min de reacción. Así mismo, reportan un modelo cinético de pseudo primer orden. En conclusión, los autores indican que el proceso UV-C/H₂O₂ puede ser un método de pretratamiento adecuado para la degradación y desintoxicación de los efluentes procedentes de la industria textil, una vez que se establecen las condiciones operativas más favorables.

Georgiou et al. (2002a), su objetivo principal planteado por los investigadores fue degradación de colorantes azo reactivos por radiación ultravioleta en presencia de peróxido de hidrógeno (UV/H₂O₂). Los experimentos se desarrollaron en un foto-reactor de inmersión con camisa de agua en modo discontinuo, con 4 L de solución de colorante con las siguientes

condiciones de trabajo: lámpara UV 120 W, temperatura 25 ± 5 °C, concentración inicial del colorante NR5 100 ppm, flujo volumétrico constante de 250 ml/min y dosis de H₂O₂ entre 500 a 2000 ppm. Lograron la eliminación completa del colorante NR5 en los primeros 20 a 30 min de irradiación y casi todos los anillos aromáticos y el 80 % del carbono orgánico total en un lapso de 2 horas de irradiación con dosificación de 500 a 2000 ppm de H₂O₂. También reportan que 500 ppm de H₂O₂ fue suficiente para la degradación del colorante NR5 en menos de 1 hora de reacción. En conclusión, los investigadores indican que el proceso UV/H₂O₂ demostró ser eficiente en la degradación y mineralización de los colorantes azo reactivos.

Ince et al. (1997), su objetivo principal fue degradar el colorante NR5 por el proceso UV/H₂O₂. La parte experimental realizaron en un reactor recirculante Rayox® Modelo CU01-1 de 36 L compuesto por un tanque de almacenamiento, un foto-reactor cilíndrico (6.5 L) que alberga una lámpara de Hg de media presión de 1 kW separada de la solución por una camisa de cuarzo, una bomba de recirculación, un mezclador estático en línea y un panel de control electrónico con los siguientes parámetros de operación: concentración inicial del NR5 40 – 60 ppm, flujo volumétrico constante de 110 L/min, H₂O₂ 770 ppm. Logrando la decoloración del colorante NR5 a los 30 min de reacción y el 44 % de la mineralización del carbono orgánico total, también observaron las disminuciones del pH de 5.26 a 3.27.

Copete et al. (2018), en su investigación para degradar el colorante NR5 mediante fotocatálisis heterogénea (TiO₂/UV-C) realizaron en un foto-reactor de aluminio equipado con cinco lámparas de 30 W con las siguientes condiciones de operación cantidad de TiO₂ (0.1, 0.175 y 0.25 g/L), NR5 (50, 75 y 100 ppm) y el pH (3, 7 y 11) por un lapso de 14 horas de reacción fotocatalítica. Obtuvieron un 98.44% de degradación de colorante NR5 después de 10 horas de reacción con las siguientes condiciones de reacción fotocatalítica (0.25 g/L de TiO₂, 50 ppm de NR5, y pH 7), la degradación completa alcanzó en 14 horas de reacción con las siguientes condiciones de operación (0.175 g/L de TiO₂, 50 ppm de NR5, y pH 3). Los autores hallaron las condiciones apropiadas del proceso de fotocatálisis heterogénea (TiO₂/UV-C), alcanzando una degradación del 99.51% del colorante NR5 en 10 horas de reacción fotocatalítica con las siguientes condiciones de operación (0.5 g/L de TiO₂, 50 ppm del colorante NR5 y pH de 3).

Laohaprapanon et al. (2015), realizaron una investigación de la degradación del colorante NR5. La parte experimental desarrollaron en un foto-reactor de membrana de capacidad de 1 L, con las siguientes condiciones de operación: concentración inicial del colorante NR5 25 – 150 ppm, (catalizador: 0.5 – 1.5 g/L TiO₂ y ZnO), dos lámparas UV-C de Hg de baja presión (15 W, λ = 365 nm), agitación de la solución a 500 rpm, aireación a 1.5 L/min, pH inicial de la solución 3 – 11. Lograron el 99.8 % de degradación del colorante NR5 con 1.25 g/L ZnO, pH 7 y 58.1 % de degradación en las mismas condiciones mencionadas en un periodo de 60 min de reacción fotocatalítica. Los investigadores concluyeron que el ZnO fue un mejor catalizador para la degradación del colorante NR5 en comparación con el catalizador TiO₂, también indicaron que la tasa de degradación del colorante NR5 se mostró más rápida en una concentración inicial baja.

2.2. Colorantes

Son compuestos orgánicos solubles en medio alcalino, neutro y ácido que brinda color a una sustancia incolora o a un sustrato. Las moléculas están conformadas por tres grupos funcionales (Martínez, 2020):

a. Cromóforos

Son los responsables del color, es un grupo insaturado que absorbe la luz y la refleja en un ángulo específico para dar el matiz, p. ej., azo, azoxi, ceto, nitro, nitroso, etileno, quinoideo, carbonilo, carbimido, etc (Chakraborty, 2014). b. Auxocromos

Son los responsables de la afinidad y fijación por la fibra e inclusive intensifican el color de los grupos cromóforos, el auxocromo en las moléculas cromogénicas pueden intensificar el color del colorante y grupos ácidos como SO₃ y COOH se añaden con frecuencia en las estructuras del colorante para mejorar su solubilidad (Piaskowski et al., 2018).

c. Solubilizador

Les confiere afinidad a diferentes solventes y está dado por la presencia de iones como -SO₃⁻Na⁺, -NH₃⁺Cl⁻, -SO₂-NH₂⁺, -O⁺Na⁺ (Garzón, 2009).

2.2.1. Colorantes azoicos

Los colorantes azo son el grupo más grande de colorantes sintéticos y representan más del 50% de la producción mundial anual y poseen uno o más grupos azo (-N=N-) o cromóforo, que están unidos a grupos fenilo, anillos naftilo, que generalmente están sustituidos por ciertos grupos funcionales, triazinaamina, cloro, hidroxilo, etc. (Kumari et al., 2023). Por lo general, los colorantes azoicos absorben en el rango visible (350-650 nm) del espectro y son los colorantes más usados en las industrias alimentaria, textil, cosmética, tintas, cuero y farmacéutica. En general, todos los colorantes azoicos son solubles en agua y pueden ser sintéticos o naturales. La mayor cantidad de colorantes azoicos se utilizan en la industria textil, pero no todo el colorante se adsorbe en la superficie de la tela. Aproximadamente del 10% al 15% del colorante permanece en la solución y genera aguas residuales coloreadas que pueden liberarse en cuerpos de agua sin un tratamiento adecuado. Por lo tanto, los vertidos regulares de efluentes industriales con residuos de colorantes azoicos representan una amenaza para la salud humana y la vida acuática, ya que algunos colorantes azoicos o sus metabolitos (por ejemplo, arilaminas) son altamente tóxicos y carcinogénicos (Ray et al., 2020).

En la figura 1 se muestra la clasificación de los colorantes con las propiedades correspondientes, los tipos químicos y algunos de los impactos de toxicidad.

Figura 1

Clasificación de los colorantes

Fuente: Yazdani (2018)

2.2.2. Negro reactivo 5

El negro reactivo 5 (NR5) es un colorante diazoico tetrasulfonado, soluble en agua y de naturaleza ácida con fórmula química $C_{26}H_{21}N_5Na_4O_{19}S_6$ y peso molecular 991.82 g/mol. Es un colorante azo reactivo sintético que se usa ampliamente en las industrias textiles para teñir telas, algodón, lana, nailon, fibras celulósicas y otras industrias (Malik & Patel, 2023).

En la figura 2 se muestra la estructura molecular del colorante NR5.

Figura 2

Estructura molecular negro reactivo 5

Fuente: Trung et al. (2023)

El colorante azo NR5 posee propiedades químicas estables y una fuerte toxicidad biológica. Es un colorante peligroso que tiene impacto negativo sobre los ecosistemas naturales y la salud humana, la presencia de este colorante en el medio acuático afecta negativamente a las plantas y animales acuáticos al obstruir la penetración de la luz solar y reducir la concentración de oxígeno disuelto en el cuerpo de agua. Asimismo, debido a su no biodegradabilidad, este colorante se ha convertido en uno de los desafíos ambientales más críticos y una gran preocupación (Harfaoui et al., 2022).

2.2.3. Propiedades físicas y químicas

En la tabla 1, se presenta todas las propiedades fisicoquímicas del NR5.

Tabla 1

ámetro	Valor
pecto	Forma: polvo
	Color: marrón oscuro
)r	Inodoro
nsidad	1.21 g/cm ³ a 20 °C
ubilidad en agua	550 g/l a 20 °C
nperatura de auto-inflamación	>180 °C
te: Sigma-Aldrich (2019)	

Propiedades fisicoquímicas del NR5

2.3. Aguas residuales textiles

Uno de los principales productores de aguas residuales en la actualidad es la industria textil. Estas aguas residuales son peligrosas para los ecosistemas cuando se descargan directamente en las corrientes de agua sin el tratamiento adecuado, debido a que poseen un elevado pH, alta concentración de sólidos en suspensión, cloruros, nitratos, metales como manganeso, sodio, plomo, cobre, cromo, hierro, hidróxido de sodio, almidón, ácido, alto valor de DBO, DQO y alta cantidad de químicos y auxiliares (Halepoto et al., 2022).

Según Bhandari y Ranade (2014) hay ciertos contaminantes orgánicos, principalmente en las aguas residuales de tintes/pigmentos/textiles, que se consideran compuestos refractarios, difíciles de eliminar/degradar mediante el uso de métodos convencionales de tratamiento químico/biológico.

En la tabla 2 se muestra las concentraciones de los efluentes textiles en diferentes países del mundo.

Tabla 2

Concentración (ppm)	Autores
10 - 50	(Laing, 1991)
10 - 200	(Lade et al., 2015)
500	(The Parliamentary Office of Science and
	Technology, 2014)
1000	(López-Rodríguez et al., 2021)
1000	(Avad at al. 2024)
1000	(Ayeu et al., 2024)
	Concentración (ppm) 10 – 50 10 – 200 500 1000 1000

Concentración de efluentes textiles en diferentes países

2.4. Procesos de oxidación avanzada

Los Procesos de Oxidación Avanzada (POAs o AOPs por sus siglas en inglés) son tecnologías oxidativas basados en la generación de radicales intermedios, tales como: radicales hidroxilos (•OH), hidroperoxilo, superóxido altamente reactivos, que se han aplicado en el tratamiento de aguas residuales para degradación parcial o completa de una amplia gama de compuestos orgánicos (Mishra et al., 2023), compuestos orgánicos antropogénicos, compuestos recalcitrantes, biorecalcitrantes y sustancias químicas orgánicas bioactivas en compuestos biodegradables junto con el potencial de desinfección, decoloración y desodorización (Hajalifard et al., 2023). Los POAs son técnicas efectivas que ofrece una alternativa de atenuación práctica y eficiente para la mineralización de diferentes contaminantes de cuerpos de agua como tintes, metales pesados, micro y nanoplásticos, copolímero de polipropileno (PPCP) y microcistina se eliminan del agua de manera efectiva utilizando numerosos POAs (Shaida et al., 2023).

De tal manera los POAs hacen uso de agentes oxidantes para oxidar los contaminantes tanto orgánicos e inorgánicos. El radical sulfato (SO4⁻) y el radical hidroxilo (•OH) son los radicales oxidantes más fuertes que se utilizan para eliminar los contaminantes orgánicos e

inorgánicos del agua; son métodos químicos ecológicos que reducen los contaminantes orgánicos e inorgánicos a productos inocuos que no transfieren los contaminantes de una fase a otra ni pueden producir cantidades masivas de lodos (Bhambri et al., 2023). Cabe señalar que los POAs son los pilares de la ciencia de la remediación ambiental en la actualidad, e involucran metodologías de tratamiento de aguas residuales como Fenton, ozonización, sonólisis, fotolisis UV-C, fotocatálisis, fotocatálisis UV-C y oxidación con aire húmedo (Palit & Hussain, 2021).

En la figura 3 se muestra la clasificación de los POAs.

Figura 3

Clasificación de los procesos de oxidación avanzada

Fuente: Ścieżyńska et al. (2022).

Investigaciones recientes afirman que los POAs son una tecnología prometedora a las tecnologías convencionales de tratamiento de agua, para eliminar contaminantes orgánicos emergentes del agua, basada en la generación in situ de especies de oxígeno altamente reactivas (ROS) tales como radical (•OH), radical sulfato, oxígeno singlete, radical superóxido que son

capaces de oxidar una amplia gama de contaminantes presentes en varias industrias, en especial los radicales (•OH) son oxidantes potentes, no selectivos y muy eficaces y reaccionan eficazmente con la mayoría de los compuestos orgánicos en CO₂, H₂O y ácidos minerales (Zhong et al., 2023). Por lo tanto, los POAs se consideran tecnologías apropiadas para la remediación de aguas residuales cuando no son biodegradables o incluyen compuestos orgánicos tóxicos (Sadeghfar et al., 2021).

A continuación, se detallan las ventajas y desventajas de los POAs.

2.4.1. Ventajas

Las principales ventajas de los POAs son (Arifin et al., 2023; Bes et al., 2018; Bhambri et al., 2023; Brienza & Katsoyiannis, 2017; Kaswan & Kaur, 2023; Korpe et al., 2022; Kumar & Shah, 2021; Li et al., 2023; Pham et al., 2020; Saravanan et al., 2022; Wang & Xu, 2012):

- Transformación de compuestos orgánicos en compuestos inorgánicos estables más simples, como, dióxido de carbono (CO₂), agua (H₂O), iones y sales, con poca o ninguna producción de lodos, lo que elimina la necesidad de otra etapa de tratamiento.
- Son útiles en el pretratamiento para convertir contaminantes recalcitrantes para que puedan ser tratados biológicamente o como postratamiento antes de su descarga al medio ambiente.
- Se forman especies reactivas y genera una degradación eficiente de los contaminantes peligrosos.
- Alta eficacia de oxidación y la ausencia de contaminantes secundarios.
- No es selectivo.
- Los agentes oxidantes que se emplean se degradan en el proceso en compuestos inofensivos.
- Se pueden eliminar compuestos refractarios.
- Se pueden eliminar compuestos en concentraciones de partes por billón (ppb), etc.

- Velocidades de reacción rápidas.
- Producen subproductos mínimos aguas abajo del sistema de tratamiento, lo que elimina la necesidad de otra etapa de tratamiento.
- Los POAs son útiles en el pretratamiento para convertir contaminantes recalcitrantes para que puedan ser tratados biológicamente o como postratamiento antes de su vertido al medio ambiente.

2.4.2. Desventajas

Las principales desventajas de los POAs son (Bethi et al., 2022; Kumar & Shah, 2021; Lapchuk et al., 2023):

- En el proceso Fenton, generalmente se logran en condiciones ácidas, lo que resulta en un consumo de grandes cantidades de ácido y base.
- Es un proceso relativamente de alto costo debido al empleo de productos químicos costosos y al aumento del consumo de energía.
- El uso exclusivo de los POAs para tratar un volumen considerable de aguas residuales no es económicamente factible.

2.5. Fotólisis (UV-C/H₂O₂)

La fotólisis (también denominada fotodisociación o fotodescomposición) es una reacción química en la que los fotones descomponen un compuesto orgánico o inorgánico y es la interacción de uno o más fotones con un compuesto objetivo (Speight, 2018) y es un proceso químico en el que ciertos tipos de radiación catalizan reacciones de descomposición, el proceso tiene lugar en la zona de radiación ultravioleta de 210 – 230 nm y se basa en la generación de radicales libres, la eficacia de este proceso depende de la absorbancia de los reactivos en el rango de longitud de onda de la fuente radiactiva en la que se puede promover el acoplamiento de transición al estado excitado. Por lo tanto, se necesita longitudes de onda inferiores a 200 nm para maximizar la absorción de fotones y promover la mineralización de la materia

orgánica. La degradación de los colorantes azoicos por fotólisis es un proceso que consiste en romper los enlaces azoicos de los colorantes mediante la absorción de radiación ultravioleta (UV) (Fernández et al., 2006).

Según Asem et al. (2023) la fotólisis es el proceso de absorber y transformar la luz radiante mediante moléculas de reacción (o sensibilizadores) y luego activarla para transformarla en diversas formas químicas. La fotólisis es un proceso químico mediante el cual se rompen enlaces químicos como resultado de la transferencia de energía luminosa. La tasa de eliminación por el proceso de fotólisis depende de diferentes factores como la reactividad del compuesto, la intensidad de la radiación, etc.

El proceso de la fotólisis se divide en tres etapas (Speight, 2017):

- La adsorción de luz que excita los electrones en el compuesto orgánico o inorgánico,
- Los procesos fotoquímicos primarios que transforman o desexcitan el compuesto orgánico o inorgánico excitado, y
- Las reacciones térmicas secundarias que transforman los intermedios producidos en el paso anterior.

En el proceso de fotolisis se presentan las siguientes reacciones (Pandis et al., 2022):

$H_2O_2 + hv \rightarrow 2^{\bullet}OH$	
$0\mathrm{H}^{\bullet} + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{HO}_2^{\bullet} + \mathrm{H}_2\mathrm{O}$	(2)
$\mathrm{HO}_{2}^{\bullet} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{OH}^{\bullet} + \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}$	(3)
$\mathrm{HO}_{2}^{\bullet} + \mathrm{OH}^{\bullet} \longrightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}$	(4)

2.5.1. Ventajas

Las principales ventajas del proceso UV-C/H₂O₂ son las siguientes (Bes et al., 2018; S. Khan et al., 2019):

- El agente oxidante es económico y su almacenamiento no requiere acondicionamiento.
- La solubilidad del H₂O₂ es infinita en el agua por ende no hay problemas de transferencia de masa.
- La radiación UV-C funciona como desinfectante y ayuda en la fotolisis del H₂O₂ transformándolo en especies altamente reactivas.
- Es eficaz en la inactivación de microorganismos patógenos.
- Es un proceso de destrucción que oxida los componentes orgánicos y/o inorgánicos.

2.5.2. Parámetros operacionales para la fotólisis

Los principales parámetros operacionales que afectan la eficiencia del proceso de fotólisis son: longitud de onda de radiación, la elección del agente oxidante, pH, el tiempo de reacción y la concentración de contaminantes. Algunos de estos parámetros se especifican a continuación (Anisuzzaman et al., 2022; Bhapkar et al., 2023):

2.5.2.1. Longitud de onda de radiación

La longitud de onda de la radiación UV-C usada para la fotólisis es un parámetro crítico del proceso, la mayoría de los estudios realizados han utilizado radiación en el rango de 254 – 365 nm de longitud de onda para degradar colorantes azoicos (Ollis et al., 1991), en el caso de la fotodegradación, se explicó que la tasa de degradación también se correlaciona con la intensidad de la luz UV-C (Gupta et al., 2011).

2.5.2.2. Oxidante

La selección del oxidante adecuado es esencial. Los oxidantes frecuentes incluyen peróxido de hidrógeno, ozono, persulfato, peroximonosulfato, dióxido de cloro, etc. Cada oxidante posee diferentes propiedades y reactividad, por lo que es importante seleccionar el oxidante apropiado de acuerdo con los contaminantes a tratar y las condiciones del proceso (Churata, 2017).

Según Bali et al. (2004) y Navarro et al. (2019) la eficiencia de la degradación depende de la concentración de H₂O₂. Sin embargo, aunque la eficiencia aumenta al incrementar la concentración de H₂O₂, esta mejora solo hasta un punto en que el exceso de H₂O₂ comienza a inhibir la degradación del colorante. Esto se debe a que el exceso de H₂O₂ reacciona con los radicales OH•, reduciendo la cantidad de estos radicales disponibles para reaccionar con los compuestos orgánicos. Por lo tanto, después de cierta concentración de H₂O₂, no se observa un aumento significativo en la eficiencia de degradación, y aumentos adicionales en la concentración de H₂O₂ incluso pueden disminuir la eficiencia de degradación de colorantes disminuye, ya que concentraciones muy altas de H₂O₂ provocan la autoinactivación de radicales hidroxilos y la formación de radicales hidroperoxilo menos reactivos. (Navarro et al., 2019).

2.5.2.3. Concentración del colorante

La concentración inicial del colorante es otro parámetro operacional significativo en la degradación de colorantes azoicos por fotólisis. Generalmente, se demanda una mayor potencia de radiación UV-C para degradar concentraciones altas de colorantes azoicos; cuanto mayor es la concentración del colorante la fotodegradación o tasa de eliminación es lenta. Por lo tanto, la concentración del colorante es directamente proporcional a la concentración de colorante presente en la solución a tratar (Anisuzzaman et al., 2022).

2.5.2.4. Potencial de hidrogeniones (pH)

La fotodegradación de una solución puede verse influenciada significativamente por el pH de la solución y los investigadores reportan una mejor degradación en medio ácido y neutro (Bhapkar et al., 2023).

2.5.2.5. Tiempo

El tiempo de exposición también es un parámetro operacional significativo y la eficiencia de fotodegradación de los colorantes incrementa con un mayor tiempo de exposición, por otro lado, se necesita mayor tiempo de exposición para degradar colorantes a concentraciones más altas, soluciones complejas o muestras reales (Kohara et al., 2000).

2.5.3. Degradación del NR5 por radicales hidroxilos

En la figura 4 se muestra el mecanismo de degradación del colorante NR5 por los radicales hidroxilos (OH⁻), el NR5 se descompone en compuestos intermedios como ácidos alifáticos + carboxílicos y finalmente a CO₂ y H₂O (Zaidi et al., 2020).

Figura 4

Vía del mecanismo de degradación del colorante NR5

Fuente: Stambolova et al. (2012)

2.6. Cinética y análisis de datos de velocidad

El estudio cinético se refiere al análisis, investigación de la velocidad y los mecanismos de las reacciones químicas. Este estudio es fundamental para comprender cómo ocurren y se desarrollan las transformaciones químicas a lo largo del tiempo, cuya finalidad es determinar las incógnitas que presentan los procesos químicos, como, por qué algunas reacciones son
rápidas y otras son más lentas, qué factores influyen en su velocidad y cuáles son los productos finales (Donaldson & Wren, 2015).

Según Xu & Xu (2003) y Bali et al. (2004) la degradación del colorante NR5 sigue una cinética de primer orden y el cálculo de la constante de velocidad de reacción se realizó según (Fogler, 2022, p. 321; Schmidt, 1998, p. 43).

$$\frac{\mathrm{d}C_{\mathrm{A}}}{\mathrm{d}t} = -\mathrm{k}C_{\mathrm{A0}} \tag{5}$$

$$\ln(C_A) = \ln(C_{A0}) - kt$$
 (6)

$$\ln\left(\frac{C_{\rm A}}{C_{\rm A0}}\right) = -kt \tag{7}$$

donde:

k: constante de velocidad de reacción (min⁻¹)

CA: concentración en el tiempo (ppm)

CA0: concentración inicial (ppm)

t: tiempo (min)

2.7. Hipótesis

2.7.1. Hipótesis general

La fotólisis es efectiva en el proceso de degradación de soluciones sintéticas del colorante negro reactivo 5.

2.7.2. Hipótesis especificas

- La relación UV-C/H₂O₂ tiene efecto en la degradación de soluciones sintéticas del colorante negro reactivo 5.
- El pH influye en la degradación de soluciones sintéticas del colorante negro reactivo 5.
- La concentración de H₂O₂ tiene efecto significativo en la degradación de soluciones sintéticas de negro reactivo 5.

 La degradación de soluciones sintéticas de negro reactivo 5 sigue un modelo cinético de primer orden.

2.8. Variables e indicadores

2.8.1. Identificación de variables

Variables independientes

- pH
- Concentración de H₂O₂

Variable dependiente

- Porcentaje de degradación del colorante NR5

2.8.2. Parámetros

Peso del colorante NR5	: 60 mg
Agitación	: 700 rpm
Lámpara UV-C	: 32 W
Tiempo de reacción	: 60 min

2.8.3. Operacionalización de variables

En la tabla 3, se muestra la operacionalización de las variables independientes y la variable dependiente.

Tabla 3

Tipo	o Variables		Definición	Definición operacional	Indicador
			conceptual		
		pН	Medida de la acidez o	Ajuste del pH de la	unidad de
			alcalinidad de una	solución del colorante	pН
			solución en una	antes de la fotólisis (ácido,	
intes	S		escala de 0 a 14.	neutro, alcalino).	
ndie	olisi	Concentración	Cantidad de peróxido	Cantidad de H ₂ O ₂	ppm
depe	Fot	de H ₂ O ₂	de hidrógeno en la	agregada a la solución	
In			solución, expresada	antes de la fotólisis	
			en molaridad.	(diferentes	
				concentraciones).	
		Porcentaje de	Proporción del	Porcentaje de	Porcentaje
ante	ión	degradación	colorante NR5	disminución en la	(%)
andie	adac	del colorante	degradado mediante	concentración del	
Jepe	Degr	NR5	fotólisis.	colorante tras el proceso	
Ι	Ι			de fotólisis.	

Operacionalización de variables

Capítulo III

3. Metodología

El trabajo de investigación se realizó en la Facultad de Ingeniería de Procesos, en el laboratorio de Hidrocarburos de la Escuela Profesional de Ingeniería Química de la Universidad Nacional de San Antonio Abad del Cusco.

La presente investigación se divide en tres partes, preparación de la muestra, instalación del foto-reactor batch isotérmico y recolección y análisis de los datos experimentales. Para el proceso de fotolisis UV-C/H₂O₂ se manipuló dos variables independientes (pH y H₂O₂).

3.1. Alcance del estudio

3.1.1. Tipo de investigación

Según Hernández et al. (2014) la investigación según el tipo de datos es cuantitativa por que la evaluación del proceso de fotólisis UV-C/H₂O₂ implica la medición y análisis numérico, correlacional porque evalúa el efecto de las variables independientes (pH y H₂O₂) en la variable dependiente (degradación del NR5) y experimental porque se manipularon las variables independientes (pH y concentración de H₂O₂) para analizar los efectos que la manipulación tiene sobre la variable dependiente (porcentaje de degradación del NR5).

3.1.2. Nivel y alcance de la investigación

El nivel de esta investigación es explicativo, pues tiene como objetivo analizar las interacciones entre las variables independientes del proceso de fotólisis/UV-C y cómo estas influyen en el porcentaje de degradación del colorante NR5. Su alcance es aplicado, ya que los resultados obtenidos podrían ser útiles para mejorar las tecnologías de tratamiento de aguas residuales en la industria textil (Sánchez & Reyes, 2015).

3.2. Muestra

En el presente trabajo de investigación para las pruebas experimentales se usó una solución sintética de 100 ppm del colorante NR5 preparado en agua destilada.

3.3. Materiales, reactivos, equipos e instrumentos

En las tablas 4 al 7 se muestran la lista de materiales, reactivos, equipos e instrumentos

utilizados en el presente trabajo de investigación.

Tabla 4

Lista de materiales

Materiales	Marca
Barra magnética	Hanna HI731319
Espátula	ALUTECS
Fiolas 25 mL y 250 mL	Germany LMS y Pyrex
Probetas 100 mL	Germany LMS
Luna de reloj	Pyrex
Pipetas graduadas 1 mL, 2 mL y 5 mL	Hirschmann
Vasos precipitados 500 mL	Pyrex

Tabla 5

Lista de reactivos

Reactivos	Marca
Agua destilada	Alkofarma
Peróxido de hidrógeno (H2O2), 30%	Millipore
Negro reactivo 5, 50%	Sigma – Aldrich
Hidróxido de sodio (NaOH), 99.7%	Millipore
Ácido Clorhídrico (HCl), 33%	Millipore

Tabla 6

Lista de equipos

Equipos	Marca	Modelo	
Lámpara UV-C 32W	OPALUX	OP – UV4A32 – NG	
Agitador magnético	SCHOTT	M6-CAT	
Pipeteador automático	DUAB Levo Plus	3M PE FOAM	

Tabla 7

Instrumentos	Marca	Modelo
Espectrofotómetro	Thermo ELECTRON CORPORATION	GENESYS 10uv
Termómetro	BOECO Germany	TP101
pH metro	METROHM	913 pH Meter
Balanza analítica	OHAUS	PRSeries

Lista de instrumentos

3.4. Longitud de onda máxima

Con el objetivo de determinar la longitud de onda del colorante NR5 se preparó una solución patrón de 100 ppm en 300 mL de agua destilada, luego se procedió a realizar diluciones a concentraciones de 10, 20, 30 y 40 ppm de NR5, con el fin de realizar el barrido espectral entre los 350 nm a 650 nm en el espectrofotómetro, para determinar la longitud de onda máxima.

3.5. Curva de calibración del NR5

La curva de calibración se realizó con diferentes diluciones de concentración de 3 a 150 ppm de NR5 a partir de una solución patrón de 150 ppm, teniéndose las diferentes diluciones se procedió a la lectura de la absorbancia a la longitud de onda obtenida en el barrido espectral.

3.6. Diseño experimental

En el presente trabajo de investigación del proceso de degradación del NR5 mediante fotólisis (UV-C/H₂O₂) se tiene las siguientes variables:

- Variables independientes : pH y H₂O₂
- Variable dependiente : % degradación del NR5

Se trabajó con las siguientes condiciones de operación: concentración de 100 ppm de NR5, temperatura 25±2°C, lámpara UV-C 32 watts, velocidad de agitación 700 rpm y tiempo de reacción 60 minutos. Asimismo, la tabla 8 muestra las condiciones experimentales del proceso de fotólisis (UV-C/H₂O₂).

Tabla 8

				H ₂ O ₂ (ppm)			
pH	300	600	900	1050	1350	1800	3000
4	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-

Diseño experimental y condiciones de operación

Los valores de las condiciones de operación y variables independientes (pH y H_2O_2) fueron adaptados de (Da Silva et al., 2021; Georgiou et al., 2002a; Hewamadduma & Weerasinghe, 2020; Neamtu et al., 2002).

3.7. Instalación del foto-reactor batch isotérmico

En la figura 5 se observa el diagrama de instalación del foto-reactor utilizado en el presente trabajo de investigación, consta de un reactor batch el cual fue instalado dentro de la caja refractaria de vidrio y estuvo expuesta a una fuente de radiación UV-C.

Figura 5

Diagrama del módulo del foto-reactor batch

Para el procedimiento experimental se tomó como base la propuesta metodológica de los investigadores (Bali et al., 2004; Da Silva et al., 2021; Georgiou et al., 2002b;

Hewamadduma & Weerasinghe, 2020; Neamtu et al., 2002; Saggioro et al., 2011) y cuenta con las siguientes etapas.

- Se preparó el efluente textil sintético del colorante NR5 con una concentración de 100 ppm en 300 ml agua destilada.
- Se ajustó el pH de la solución con NaOH y HCl según corresponda.
- Se agitó la solución durante un lapso de 10 min a 700 rpm.
- Se agregó el efluente textil simulado en el reactor batch.
- Se acondicionó la solución de NR5 a una temperatura de 25 ± 2 °C de operación según el diseño experimental.
- Se agregó el agente oxidante (H₂O₂), según el diseño experimental.
- Iniciada la reacción de la degradación del colorante NR5 se tomaron alícuotas de 1 mL aproximadamente en intervalos de 10 min.
- Se realizaron las lecturas de las alícuotas en el espectrofotómetro.
- Se registraron los datos obtenidos en el espectrofotómetro.

En la figura 6 se muestra el procedimiento experimental.

Diagrama de bloques del proceso UV-C/H₂O₂

3.8. Evaluación del porcentaje de degradación del colorante NR5

Espectrofotometría UV – Visible

A las alícuotas extraídas se dio lectura haciendo uso del espectrofotómetro a la longitud de onda máxima establecida con el barrido espectral. Con la ecuación 8 se determinó el porcentaje de degradación del colorante NR5 (Khatun et al., 2023).

% Degradacion colorante NR5 =
$$\left(\frac{C_i - C_f}{C_i}\right) \times 100$$
 (8)

En la ecuación 8, C_i es la concentración inicial del colorante NR5 en ppm y C_f es la concentración final del colorante NR5.

Capítulo IV

4. Resultados y discusión

4.1. Resultados del barrido espectral

Con el fin de determinar la longitud de onda máxima del colorante NR5, se preparó una solución madre de 100 ppm de NR5 con agua destilada. A partir de esta solución, se prepararon cuatro soluciones diluidas con concentraciones de 10, 20, 30 y 40 ppm, a las mismas que se dieron lectura en el espectrofotómetro UV-Vis, se utilizó la metodología de barrido ya que se variaron longitudes de onda de 350 a 650 nm en rangos de 100 en 100 hasta encontrar el pico más alto en la figura proporcionada por el espectrofotómetro.

En la figura 7 se observa la longitud de onda máxima del colorante NR5.

Figura 7

Como se observa en la figura 7 la longitud de onda máxima determinada es 598 nm, a esta longitud de onda se trabajó todas las pruebas experimentales. Este mismo resultado obtuvieron los investigadores (Arslan, 2023; Kaur et al., 2023; Senol-Arslan et al., 2023), lo cual se confirma que el valor obtenido de la longitud de onda es adecuado.

4.2. Curva de calibración

Para la construcción de la curva de calibración del colorante NR5, se prepararon soluciones diluidas en un rango de 3 a 150 ppm a partir de una solución patrón de 150 ppm de NR5, utilizando un espectrofotómetro UV-Vis para medir la absorbancia en la longitud de onda de 598 nm. Los datos obtenidos se utilizaron para generar la curva de calibración, la cual establece la relación entre la concentración del colorante y su absorbancia, facilitando así la cuantificación precisa del NR5 en futuras muestras. A continuación, en la tabla 9 se muestran los datos para la elaboración de la curva de calibración.

Tabla 9

N°	C _{NR5} (ppm)	Absorbancia
1	3	0.185
2	6	0.371
3	10	0.625
4	15	0.906
5	20	1.226
6	25	1.530
7	30	1.830
8	35	2.129
9	40	2.437
10	45	2.756
11	50	3.060
12	60	3.690
13	70	4.295
14	80	4.960
15	90	5.545
16	100	6.165
17	110	6.681
18	120	7.521
19	130	7.797
20	140	8.496
21	150	9.160

Resultados de la curva de calibración del colorante NR5

Nota. Donde: C_{NR5} (ppm) es la concentración del colorante negro reactivo 5 en partes por millón.

En la figura 8 se muestra la gráfica obtenida de la curva de calibración del colorante

NR5.

Curva de calibración del colorante NR5

Para calcular la concentración del colorante NR5, se utilizó la ecuación presentada en la figura 8, basándose en la medición de la absorbancia obtenida mediante un espectrofotómetro UV a una longitud de onda de 598 nm.

$$y = 0.0612 \cdot x \tag{9}$$

donde:

x: concentración del colorante NR5 (ppm)

y: absorbancia del colorante NR5

4.3. Módulo del sistema de foto reactor

El sistema foto-reactor utilizado en este trabajo de investigación está compuesto por una caja refractaria de vidrio, que en su interior contiene un reactor batch con una capacidad de 2 litros; una lámpara de 32 watts que actúa como fuente de radiación UV-C y un agitador magnético que funcionó durante todo el tiempo de reacción con el fin de homogenizar la muestra con el oxidante, garantizando así un buen contacto entre la solución y la luz, evitando que esté en suspensión y generando una mayor cantidad de iones hidroxilo. Asimismo, a la izquierda se observa un equipo de baño isotérmico con el fin de controlar la temperatura de dicha solución (25±2 °C). Este controlador se encuentra en la parte superior de la caja refractaria. Este sistema está diseñado para realizar experimentos bajo condiciones controladas, lo que permitirá evaluar la degradación del colorante NR5 mediante el proceso de fotolisis UV-C/H2O2. A continuación, se muestra el módulo instalado del foto-reactor:

Figura 9

Foto-reactor batch

Nota. donde: ⁽¹⁾reactor batch isotérmico, ⁽²⁾agitador magnético, ⁽³⁾lámpara UV.C, ⁽⁴⁾caja refractaria, ⁽⁵⁾termómetro digital y ⁽⁶⁾baño isotérmico.

4.4. Análisis del diseño de barrido

La tabla 10 muestra los resultados obtenidos del diseño de barrido del proceso de degradación del NR5 mediante fotólisis (UV-C/H₂O₂) para un tiempo de 60 min de reacción y 32 W de luz UV-C.

Tabla 10

N°	pН	H_2O_2 (ppm)	UV-C/H ₂ O ₂ (W/ppm)	$%D_{NR5}$
1	4	300	0.1067	86.851
2	4	600	0.0533	93.197
3	4	900	0.0356	94.419
4	4	1050	0.0305	95.419
5	4	1350	0.0237	95.661
6	4	1800	0.0178	92.205
7	4	3000	0.0107	80.297
8	7	300	0.1067	87.206
9	7	600	0.0533	92.819
10	7	900	0.0356	94.581
11	7	1050	0.0305	94.290
12	7	1350	0.0237	93.874
13	7	1800	0.0178	90.787
14	7	3000	0.0107	87.082
15	10	300	0.1067	83.984
16	10	600	0.0533	91.575
17	10	900	0.0356	92.205
18	10	1050	0.0305	92.819
19	10	1350	0.0237	91.102
20	10	1800	0.0178	91.780
21	10	3000	0.0107	87.082

Resultados del proceso de degradación del NR5 para 32 W de UV-C

La tabla 10 muestra que el experimento N° 5 alcanzó el mayor porcentaje de degradación del colorante NR5, con un valor del 95.661%, al evaluar la influencia de los dos factores: pH y concentración de H_2O_2 .

4.4.1. Efecto de la relación UV-C/H₂O₂ en la degradación de soluciones sintéticas del colorante NR5

A partir de la tabla 10, se ha seleccionado el mayor valor del porcentaje de degradación para cada pH. Los resultados son los siguientes: Para un pH de 4, se obtuvo una relación UV-C/H₂O₂ de 0.0237 W/ppm con un 95.661% de degradación del NR5; para un pH de 7, se encontró una relación UV-C/H₂O₂ de 0.0356 W/ppm con un 94.581% de degradación del NR5 y para un pH de 10, la relación UV-C/H₂O₂ fue de 0.0305 W/ppm, logrando un 92.819% de degradación del NR5. Este mismo resultado reportan Xu & Xu (2013) que realizaron pruebas experimentales con una concentración de 17 ppm de NR5, variando valores de pH de 2, 3, 4, 7, 11 y 12, lograron los siguientes porcentajes de degradación del colorante NR5 94%, 96%, 97%, 94%, 70% y 35% respectivamente, en un lapso de 50 min de reacción por el proceso UV/H₂O₂ con 300 ppm H₂O₂ y una lámpara UV-C de 10W; a partir de estos datos se tiene una relación de UV-C/H₂O₂ calculada de 0.033 W/ppm. Bali et al. (2004) realizaron pruebas experimentales para la degradación del NR5, con una lámpara de 16 W, 850 ppm de H₂O₂ y 100 ppm de NR5; a partir de estos datos se tiene una relación de UV-C/H₂O₂ calculada de 0.018 W/ppm, logrando una degradación del 99% en 60 min de reacción; mientras que, en el presente trabajo se obtuvo, para una relación de 0.0178 W/ppm una degradación de 91.78 % en 60 min de reacción.

Asimismo, se puede observar que para un pH 4 y 7 no hay mayor diferencia en el porcentaje de degradación del NR5; sin embargo, se tiene una variación en el porcentaje de degradación para pH 10 con respecto a pH 4 y 7. Por consiguiente, evaluando el porcentaje de degradación es recomendable trabajar a condiciones de pH ácido y neutro (pH 4 y 7).

La figura 10 muestra los valores del porcentaje de degradación del NR5 en función a la relación UV-C/H₂O₂, la cual se construyó a partir de la tabla 10.

Relación de UV-C/H₂O₂

98 96 94 % Degradación NR5 8 8 6 6 8 pH 4 pH 7 pH 10 82 80 78 0 0.02 0.04 0.06 0.08 0.1 0.12 UV-C/H₂O₂ (W/ppm)

Del mismo modo, en la figura 10 se puede apreciar que entre los valores de 0.0274 a 0.0510 de UV-C/H₂O₂, se presentan los valores más altos de porcentaje de degradación, esto independientemente del pH de trabajo.

4.4.2. Efecto del pH en la degradación de soluciones sintéticas del colorante NR5

A continuación, en la figura 11 se muestra el análisis del efecto del pH en la degradación del NR5, la misma que se construyó a partir de la tabla 10.

Efecto del pH en la degradación de NR5

La figura 11 muestra que, en todos los tiempos de reacción (20, 30, 40 y 60 minutos), el pH 4 favorece la mayor degradación del colorante NR5 en comparación con los pH 7 y 10. A medida que aumenta el tiempo de reacción, el porcentaje de degradación también incrementa, alcanzando el 95.66% a los 60 minutos a pH 4, mientras que a pH 7 y 10 las degradaciones son menores, con un máximo de 94.58% y 92.82%, respectivamente. Asimismo, en la figura 11 se observa las siguientes diferencias entre pH 4 y 10: 5.59%, 5.60%, 4.82% y 2.84% en la degradación del colorante NR5 para 20, 30, 40 y 60 minutos de reacción, lo cual indica que existe una variación significativa; por lo cual, se tiene que a pH 4 se obtiene mejores porcentajes de degradación del colorante NR5, esto se puede explicar por el hecho de que el H_2O_2 se disocia más fácilmente en radicales hidroxilos a pH ácido que a pH alcalino, generando más radicales hidroxilos que atacan al colorante (Bielski & Cabelli, 1995; Zepp et al., 1992).

Estos resultados obtenidos son consistentes con los reportados por otros autores que han evaluado el proceso de degradación de colorantes mediante fotólisis UV-C/H₂O₂. Por ejemplo, Da Silva et al. (2021) encontraron que la degradación del NR5 es mejor a pH 3 y 4, con una concentración de 24.5 ppm de H₂O₂ para 25 ppm de NR5. Xu & Xu (2013) realizaron pruebas experimentales a diferentes valores de pH (2, 3, 4, 7, 11 y 12) y lograron los siguientes porcentajes de degradación: 94%, 96%, 97%, 94%, 70% y 35% del colorante NR5 en 50 min de reacción utilizando el proceso UV/H₂O₂, empleando 300 ppm de H₂O₂, reportaron que el pH 4 es más favorable para una concentración de 17 ppm de NR5; además, observaron que en condiciones alcalinas (pH 11 y 12), la tasa de degradación del NR5 disminuyó en un 27% y 62%, respectivamente.

Resultados similares respecto al pH de otros investigadores se tiene a: Hewamadduma & T. (2021) lograron un mayor porcentaje de degradación del colorante NR5 en medio ácido. Siboni et al. (2011) estudiaron el efecto del pH (3, 5, 7, 9 y 11) en la degradación del colorante NR5, con una concentración inicial de 100 ppm. No observaron una variación significativa en la tasa de degradación del NR5 para pH 3, 5 y 7. Sin embargo, para pH 3 la tasa de eliminación de NR5 fue 4.3 veces mayor que a pH 11. Panja et al. (2016) obtuvieron el 90% de degradación a pH 4.2, 94% degradación del colorante NR5 a pH 6.4, y 75% de degradación a un pH 8.4 en un lapso de 60 min de reacción, la mayor degradación se logró para un pH de 6.4.

4.4.3. Evaluar el efecto de la concentración de H₂O₂ en la degradación de soluciones sintéticas del colorante NR5

La tabla 10 muestra los resultados del efecto de la concentración de H_2O_2 en la degradación del NR5, se llevó a cabo un barrido para valores de pH de 4, 7 y 10 con variaciones de H_2O_2 de 300 a 3000 ppm.

A continuación, se muestran las figuras 12 y 13 para una mejor interpretación del efecto de la concentración del H_2O_2 , la cual se elaboraron a partir de la tabla 10.

Efecto del H₂O₂

En la figura 12 se observa que los mayores porcentajes de degradación del colorante NR5 se obtuvieron para concentraciones de 1350, 900 y 1050 ppm de H₂O₂, logrando una degradación del 95.661%, 94.581% y 92.819%, respectivamente, en un lapso de 60 minutos de reacción, independientemente del pH.

Figura 13

Efecto de la concentración de H₂O₂ en la degradación del NR5

La figura 13 ha sido realizada tomando el promedio de los resultados de los porcentajes de degradación para cada concentración de los diferentes pH, obteniéndose como resultado que lo más conveniente es trabajar con concentraciones entre 900 ppm a 1350 ppm de H_2O_2 independientemente del pH. Por otro lado, se observa a medida que se incrementa la concentración de H_2O_2 de 300 ppm a 900 ppm se incrementa el porcentaje de degradación del NR5; pero, para concentraciones superiores a 1350 ppm de H_2O_2 el porcentaje de degradación disminuye.

Resultados similares reportaron: Bali et al. (2004) realizaron pruebas experimentales para la degradación del NR5 utilizando una lámpara de 16 W, pH 7, 100 ppm de NR5 y concentraciones de H₂O₂ (34.0, 170.1, 340.1, 850.4, 1700.7, 3401.5 ppm), y obtuvieron que la concentración de H₂O₂ más adecuada es 850.4 ppm y pH 7, ya que concentraciones superiores a 850.4 ppm de H₂O₂ el porcentaje de degradación del NR5 tiende a disminuir y Xu & Xu (2013) que realizaron pruebas en un reactor batch con una lámpara de 10 W; las condiciones experimentales fueron: concentración de 17 ppm de NR5, valores de pH de 2, 3, 4, 7, 11 y 12; concentración de H₂O₂ de 45, 105, 150, 300, 450 y 750 ppm, como resultado obtuvieron que las mejores condiciones de trabajo para un mayor porcentaje de degradación del NR5 fue con 300 ppm de H₂O₂ para pH 4.

4.4.4. Cinética de degradación del colorante NR5

Planteamiento de hipótesis para la verificación del modelo cinético

H_o: El modelo cinético de primer orden no es adecuado para describir la cinética de degradación del colorante NR5

H₁: El modelo cinético de primer orden es adecuado para describir la cinética de degradación del colorante NR5

Nivel de significancia: 0.05

Decisión

Rechazar H₀ si el valor F calculado es menor que el valor F tabla o si el valor p es mayor o igual a 0.05.

Aceptar H_1 si el valor F calculado es mayor que el valor F tabla o si el valor p es menor o igual a 0.05.

En las tablas 11, 12 y 13 se muestran los resultados estadísticos de la regresión, ANOVA y el cálculo del coeficiente, los mismos que fueron calculados a partir de la tabla 14.

Tabla 11

Estadísticos de la regresión NR5

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0.999
Coeficiente de determinación R ²	0.999
R ² ajustado	0.832
Error típico	0.063
Observaciones	7

Tabla 12

Análisis de varianza

	al	Suma de	Cuadrados	F	F_t	Valor n
	gı	cuadrados	medios	Гc		valor-p
Regresión	1	23.658	23.658	5954.947	5.987	6.92E-09
Residuos	6	0.024	0.004			
Total	7	23.682				

Nota. donde: gl: grados de libertad, Fc: F calculado y Ft: F tabla

Al realizar el respectivo ANOVA, se obtiene el estadístico Fisher calculado (5954.947), que es mucho mayor a F tabla (5.987) y una probabilidad de 6.92E-09, que es muchísimo menor que el nivel de significancia (0.05) lo que indica que en el modelo propuesto tiene una alta relación entre variables; en este contexto se acepta la H_1 .

Tabla 13

Coeficiente del modelo

	Coeficiente	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
β_1	-0.051	0.001	-77.168	3.19E-10	-0.053	-0.049

En la tabla 13 se presenta la prueba de significancia del coeficiente, donde se observa un valor de probabilidad de 3.19E-10, el cual es inferior al nivel de significancia establecido (5%). Por lo tanto, se concluye que el coeficiente es estadísticamente significativo.

La constante de velocidad de reacción se calculó utilizando la ecuación (7).

La tabla 14 muestra los resultados del cálculo de la concentración calculada o simulada, constante de velocidad de reacción y el coeficiente de determinación para las condiciones de: pH 4 y 1350 ppm H₂O₂.

Tabla 14

C _{NR5exp}	$\ln\left(\frac{C_{\rm NR5}}{C_{\rm NR50}}\right)$	C _{NR5calc}	Error	k	R ²
100.000	0.000	100.000	0.000	0.051	0.999
55.397	-0.591	60.057	4.660		
35.747	-1.029	36.068	0.321		
23.470	-1.449	21.661	1.809		
13.915	-1.972	13.009	0.906		
7.906	-2.538	7.813	0.093		
4.339	-3.138	4.692	0.353		
	C _{NR5exp} 100.000 55.397 35.747 23.470 13.915 7.906 4.339	C_{NR5exp} $ln\left(\frac{C_{NR5}}{C_{NR50}}\right)$ 100.0000.00055.397-0.59135.747-1.02923.470-1.44913.915-1.9727.906-2.5384.339-3.138	C_{NR5exp} $ln\left(\frac{C_{NR5}}{C_{NR50}}\right)$ $C_{NR5calc}$ 100.0000.000100.00055.397-0.59160.05735.747-1.02936.06823.470-1.44921.66113.915-1.97213.0097.906-2.5387.8134.339-3.1384.692	C_{NR5exp} $ln\left(\frac{C_{NR5}}{C_{NR50}}\right)$ $C_{NR5calc}$ Error100.0000.000100.0000.00055.397-0.59160.0574.66035.747-1.02936.0680.32123.470-1.44921.6611.80913.915-1.97213.0090.9067.906-2.5387.8130.0934.339-3.1384.6920.353	C _{NR5exp} ln (C _{NR5} /C _{NR50}) C _{NR5calc} Error k 100.000 0.000 100.000 0.000 0.051 55.397 -0.591 60.057 4.660 . 35.747 -1.029 36.068 0.321 . 23.470 -1.449 21.661 1.809 . 13.915 -1.972 13.009 0.906 . 7.906 -2.538 7.813 0.093 . 4.339 -3.138 4.692 0.353 .

Cinética del NR5 para pH 4 y 1350 ppm H₂O₂

Nota. t (min): tiempo en min, C_{NR5exp}: concentración experimental del colorante NR5 en ppm, C_{NR5calc}:

concentración calculada del colorante NR5 en ppm, Error: concentración NR5 y k: constante de velocidad de reacción en min⁻¹.

La tabla 14 muestra el error entre las concentraciones experimentales y calculadas del colorante NR5 a lo largo del tiempo de reacción. El valor atípico (4.66) se presenta a los 10 minutos, lo que sugiere que el modelo cinético tiene menor precisión en las etapas iniciales de la reacción. Sin embargo, conforme avanza el tiempo, el error disminuye considerablemente, indicando una mejora en la precisión del modelo hacia los últimos minutos.

La figura 14 muestra la curva cinética de los datos experimentales y calculado.

Figura 14

Curva cinética del NR5 para pH 4 y 1350 ppm H₂O₂

Los datos experimentales de la degradación del NR5 se ajustan a un modelo cinético de primer orden, con una constante de velocidad de reacción de 0.051 min⁻¹. De manera similar, los investigadores (Da Silva et al., 2021) reportaron que obtuvieron un modelo cinético de primer orden. Asimismo, (Xu & Xu, 2013) determinaron una constante de velocidad de reacción de 0.06527 min⁻¹ similar a lo obtenido en esta investigación.

En la tabla 15 se presentan los resultados de los cálculos de los valores de las constantes de velocidad para el diseño experimental con 100 ppm de NR5, 300-3000 ppm de H_2O_2 y 32W

de UV-C. Los valores de k se calcularon de manera similar a como se determinaron los estadísticos en las tablas 11, 12 y 13.

N°	pH	H ₂ O ₂ (ppm)	k (min ⁻¹)
1	4	300	0.0344
2	4	600	0.0449
3	4	900	0.0475
4	4	1050	0.0506
5	4	1350	0.0510
6	4	1800	0.0425
7	4	3000	0.0274
8	7	300	0.0349
9	7	600	0.0439
10	7	900	0.0479
11	7	1050	0.0467
12	7	1350	0.0455
13	7	1800	0.0394
14	7	3000	0.0388
15	10	300	0.0318
16	10	600	0.0412
17	10	900	0.0417
18	10	1050	0.0430
19	10	1350	0.0398
20	10	1800	0.0403
21	10	3000	0.0333

Tabla 15Constantes de velocidad del diseño experimental

Para comprobar el modelo cinético seleccionado se ha analizado para pH 4 con 1350 ppm H₂O₂ hasta obtener 99.9% de degradación del NR5 en un lapso de 140 min de reacción.

En la figura 15 y 16 se muestran los resultados del porcentaje de degradación del NR5 experimental y proyectada para pH 4 y 1350 ppm H₂O₂ de acuerdo con modelo cinético del primer orden determinado en el ajuste.

Figura 15

Curva cinética experimental y proyectada del NR5 con 1350 ppm H₂O₂

La figura 15 muestra la cinética de degradación experimental del NR5, en la cual, en un lapso de 140 minutos, se logra reducir la concentración del NR5 hasta 0.079 ppm. Sin embargo, en la cinética de degradación proyectada, se estima que la concentración del NR5 se reduce hasta 0.01 ppm en un periodo de 180 minutos de reacción.

La figura 17 muestra el porcentaje de degradación experimental del NR5, donde en un lapso de 140 minutos se alcanza una degradación del 99.92%. No obstante, según la proyección de degradación, se estima que el NR5 podría degradarse hasta un 99.99% en un periodo de 180 minutos de reacción.

4.4.5. Modelo matemático del proceso de degradación del NR5 mediante fotolisis/H₂O₂

El modelo matemático del proceso de degradación del colorante negro reactivo 5 mediante fotólisis/H₂O₂ se determinó en función de las variables de estudio. A continuación, la tabla 16 muestra las estadísticas de tres modelos de regresión aplicados y el ajuste realizado a los modelos matemáticos para el porcentaje de degradación del NR5.

Tabla 16

Estadísticas de la regresión	Lineal	Cuadrático	Cúbico
Coeficiente de determinación R ²	0.136	0.804	0.951
R ² ajustado	0.040	0.739	0.836
F calculado	1.412	12.320	29.396
F tabla	3.555	2.901	2.796
Valor-p	0.269	0.00007	0.000002

Modelos matemáticos

La tabla 16 muestra las estadísticas de tres modelos de regresión: lineal, cuadrático y cúbico. El coeficiente de determinación R^2 revela que el modelo lineal solo explica el 13.6% de la dispersión en los datos, mientras que el cuadrático y cúbico capturan el 80.4% y 95.1%, respectivamente, reflejando un mejor ajuste a medida que aumenta la complejidad del modelo. El R^2 ajustado sigue esta tendencia: 4% para el lineal, 73.9% para el cuadrático y 83.6% para el cúbico. Los valores de F calculado y F tabla confirman estos hallazgos: el modelo lineal no es estadísticamente significativo (F calculado 1.412 < F tabla 3.555, valor-p 0.269), mientras que los modelos cuadrático y cúbico son significativos (F calculado 12.320 > F tabla 2.901, valor-p 0.00007 para el cuadrático y F calculado 29.396 > F tabla 2.796, valor-p 0.000002 para el cúbico). En resumen, el modelo matemático cúbico es el más adecuado en términos de ajuste y significancia estadística.

Residuales

En la figura 17 se muestran los residuales del modelo cúbico. Estos residuales son aleatorios y no siguen ninguna tendencia. El cálculo de los residuales se muestra en el Apéndice II.

Figura 17

Residuales del modelo matemático cúbico

En la figura 18 se muestran los residuales del modelo cúbico muestra datos aleatorios sin un patrón discernible. Esto sugiere que el modelo propuesto se ajusta adecuadamente a los datos y no presenta indicios de sesgo sistemático. Por lo tanto, el modelo matemático propuesto es aceptable.

El modelo matemático que describe mejor el proceso de fotólisis UV-C/H₂O₂ para el rango evaluado (pH 4 a 10 y concentración de H_2O_2 de 300 a 3000 ppm) es el siguiente. El cálculo de los estadísticos de este modelo se muestra en el Apéndice I:

$$\%D_{NR5} = 78.66 + 0.036H_2O_2 + 0.001pH^2 - 2.3 \cdot 10^{-5}H_2O_2^2 + 0.0001pH \cdot H_2O_2$$
$$- 0.001pH^3 + 3.5 \cdot 10^{-9}H_2O_2^3 - 6 \cdot 10^{-5}pH^2H_2O_2 + 3.8 \cdot 10^{-7}pH$$
$$\cdot H_2O_2^2$$

En el modelo matemático del porcentaje de degradación del NR5: el termino lineal de H_2O_2 , cuadrático pH², interacción (pH · H_2O_2), cubico de $H_2O_2^3$ y la interacción (pH · $H_2O_2^2$) es directamente proporcional al porcentaje de degradación del NR5. Sin embargo, el termino cuadrático de $H_2O_2^2$, termino cubico de pH³ y la interacción pH²H₂O₂ es inversamente proporcional a la degradación del NR5.

Superficie de respuesta

La figura 18 representa la superficie de respuesta, la cual ilustra cómo varía el porcentaje de degradación del NR5 en respuesta a cambios en las variables estudiadas (pH y H₂O₂).

En la figura 18 se observa que en la región de color rojo oscuro es donde se obtiene un mayor porcentaje de degradación del NR5 entre 95.661 y 94.581%, bajo condiciones de pH entre 4 y 7 y con dosis de peróxido de hidrógeno (H₂O₂) de 1350 y 900 ppm. Adicionalmente, se observa que, en la región de color azul, con concentraciones mayores a 2500 ppm de H₂O₂ y pH superiores a 7, el porcentaje de degradación del colorante NR5 disminuye.

En la figura 19 se muestra los contornos de superficie para el proceso de fotólisis.

En la figura 19 se observan regiones con diferentes colores lo que ayuda a interpretar la influencia de la concentración de H_2O_2 y pH en la degradación del NR5; la región de color rojo oscuro representa la zona de mayor porcentaje de degradación del NR5 con una dosificación de H_2O_2 entre 900 a 1350 ppm y a un pH entre 4 a 7; por otro lado, a partir de 2000 a 3000 ppm y pH de 7 a 10 disminuye el porcentaje de degradación del NR5, finalmente para tener una mejor degradación de NR5 se recomienda las siguientes condiciones de operación de pH 4 y dosis de H_2O_2 de 1350 ppm.

Conclusiones

- Se ha logrado degradar soluciones sintéticas del colorante negro reactivo 5 por el proceso de fotólisis UV- C/H₂O₂ a partir de una concentración inicial de 100 ppm de NR5, a 25±2°C, a 700 rpm, 32 W y en 60 minutos de reacción.
- Se determinó que las mejores relaciones de UV- C/H₂O₂ son: 0.0237 W/ppm para pH
 4 con un 95.661% de degradación, 0.0356 W/ppm para pH 7 con un 94.581% de degradación y 0.0305 W/ppm para pH 10 con 92.819% de degradación.
- El efecto del pH en la degradación de soluciones sintéticas del colorante negro reactivo
 5 es significativo y se obtuvo la mejor tasa de degradación de negro reactivo 5 a pH 4,
 por lo que es conveniente trabajar en medio ácido.
- Se obtuvo la mejor tasa de degradación del colorante negro reactivo 5 a concentraciones de 900, 1050 y 1350 ppm H₂O₂ para pH 4.
- La degradación del colorante negro reactivo 5 sigue un modelo cinético de primer orden independientemente del pH y la concentración de H₂O₂.

Recomendaciones

- Probar el método con aguas residuales industriales de NR5 para evaluar la eficiencia del proceso de fotólisis UV- C/H₂O₂.
- 2. Trabajar en un reactor de flujo continuo para ser extrapolado a planta piloto.
- 3. Trabajar a pH contante durante el proceso de degradación del NR5.
- Evaluar el efecto de la velocidad de agitación en la degradación de la solución del NR5 en la reacción de fotólisis.
- 5. Realizar experiencias con fuentes luminosas de diferentes potencias.

Bibliografía

- Abdoul, H. J., Yi, M., Prieto, M., Yue, H., Ellis, G. J., Clark, J. H., Budarin, V. L., & Shuttleworth, P. S. (2023). Efficient adsorption of bulky reactive dyes from water using sustainably-derived mesoporous carbons. *Environmental Research*, 221, 115254. https://doi.org/10.1016/j.envres.2023.115254
- Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. *Ecotoxicology and Environmental Safety*, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
- Anisuzzaman, S. M., Joseph, C. G., Pang, C. K., Affandi, N. A., Maruja, S. N., & Vijayan, V. (2022). Current Trends in the Utilization of Photolysis and Photocatalysis Treatment
 Processes for the Remediation of Dye Wastewater: A Short Review. *ChemEngineering*, 6(4), 58. https://doi.org/10.3390/chemengineering6040058
- Arifin, M. N., Jusoh, R., Abdullah, H., Ainirazali, N., & Setiabudi, H. D. (2023). Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkylphenolic compounds. *Environmental Research*, 229. https://doi.org/10.1016/j.envres.2023.115936
- Arslan, D. Ş. (2023). Bioremoval of Remazol black 5 dye by Allium scorodoprasum L. biomass; biosorption isotherms, kinetic and thermodynamic studies. *Journal of Institute* of Science and Technology, 39(2), 223–234.
- Asem, D., Kumari, M., Singh, L. R., & Bhushan, M. (2023). Pesticides: Pollution, risks, and abatement measures. In *Emerging Aquatic Contaminants: One Health Framework for Risk Assessment and Remediation in the Post COVID-19 Anthropocene* (pp. 307–326). Elsevier. https://doi.org/10.1016/B978-0-323-96002-1.00014-6

Ayed, L., Torjmèn, S., Ladhari, N., & Chaieb, K. (2024). Biodecolorization of Azo Dye Reactive Red 220 in Real Textile Wastewater by Active Consortium: Process
Optimization Using Mixture Design Model and Toxicity Assessment. *Journal of Environmental Pollution and Management*, 6(1).

Baena-Baldiris, D., Montes-Robledo, A., & Baldiris-Avila, R. (2020). Franconibacter sp.,
1MS: A new strain in decolorization and degradation of azo dyes ponceau S red and
methyl orange. ACS Omega, 5(43), 28146–28157.
https://doi.org/10.1021/acsomega.0c03786

- Bali, U., Çatalkaya, E., & Şengül, F. (2004). Photodegradation of Reactive Black 5, Direct
 Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. *Journal of Hazardous Materials*, *114*(1–3), 159–166.
 https://doi.org/10.1016/j.jhazmat.2004.08.013
- Bes, S., M., A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales.
 https://www.cyted.org/es/biblioteca/manual-tecnico-sobre-procesos-de-oxidacionavanzada-aplicados-al-tratamiento-de-aguas
- Bethi, B., Radhika, G. B., & Sonawane, S. H. (2022). Fundamentals of advanced oxidation processes (AOPs) for wastewater treatment: Challenges and opportunities. In *Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies* (pp. 209–220). Elsevier. https://doi.org/10.1016/B978-0-323-90627-2.00022-8
- Bhambri, A., Singh, P., Karn, S. K., & Dey, A. (2023). Agriculture pesticide and their remediation. In *Development in Wastewater Treatment Research and Processes:*Advances in Industrial Wastewater Treatment Technologies: Removal of Contaminants and Recovery of Resources (pp. 145–162). Elsevier. https://doi.org/10.1016/B978-0-323-95684-0.00010-5

- Bhandari, V. M., & Ranade, V. V. (2014). Advanced Physico-chemical Methods of Treatment for Industrial Wastewaters. In *Industrial Wastewater Treatment, Recycling* and Reuse (pp. 81–140). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-099968-5.00002-7
- Bhapkar, A. R., Geetha, M., Jaspal, D., Gheisari, K., Laad, M., Cabibihan, J. J., Sadasivuni,
 K. K., & Bhame, S. (2023). Aluminium doped ZnO nanostructures for efficient
 photodegradation of indigo carmine and azo carmine G in solar irradiation. *Applied Nanoscience*, 13(8), 5777–5793. https://doi.org/10.1007/s13204-023-02824-3
- Brienza, M., & Katsoyiannis, I. A. (2017). Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. *Sustainability* (*Switzerland*), 9(9). https://doi.org/10.3390/su9091604
- Chakraborty, J. N. (2014). Colouring materials. In *Fundamentals and Practices in Colouration of Textiles* (pp. 12–21). Woodhead Publishing India. https://doi.org/10.1016/B978-93-80308-46-3.50002-9
- Chavan, R. B. (2011). Environmentally friendly dyes. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes (Vol. 1, pp. 515–561). Woodhead Publishing. https://doi.org/10.1533/9780857093974.2.515
- Churata, L. M. (2017). Degradación del colorante azoico textil naranja II por el método de Fotocatálisis Heterogénea [Universidad Nacional de San Agustin de Arequipa]. In Universidad Nacional de San Agustín de Arequipa. http://repositorio.unsa.edu.pe/handle/UNSA/5785
- Copete, L. S., Pérez, M. S., Castrillón, M., Londoño, G. A. C., García, G. T., & Martínez, A. L. M. (2018). Decolorization of Reactive Black 5 Dye by Heterogeneous Photocatalysis with TiO2/UV. *Revista Colombiana de Química*, 47(2), 36–44. https://doi.org/10.15446/rev.colomb.quim.v47n2.67922
- Da Silva, A. M., Dos Santos, T. N., Dos Santos, R., Pessoa, T. S., Dos Anjos, L. C. A., Sobrinho, N. A. da S., & Sales, P. B. da P. (2021). Low-cost flow photoreactor for degradation of reactive black 5 dye by uv/h2o2, fenton and photo-fenton processes: A performance comparison. *Revista Ambiente e Agua*, *16*(3). https://doi.org/10.4136/ambiagua.2687
- Donaldson, D. J., & Wren, S. N. (2015). Chemistry of the Atmosphere | Laboratory Kinetics. In *Encyclopedia of Atmospheric Sciences* (Second Edition, pp. 356–362). Academic Press. https://doi.org/10.1016/B978-0-12-382225-3.00475-8
- Fernández, A. R., Letón, P., Rosal, R., Dorado, M., Villar, S., & Sanz, J. M. (2006). Tratamientos Avanzados de Aguas Residuales Industriales.
- Fogler, H. S. (2022). Elements of Chemical Reaction Engineering (Sixth Edition). Pearson.
- Garzón, R. C. (2009). Cinética de degradación de colorantes textiles de diferentes clases químicas por hongos y bacterias inmovilizados sobre fibra de agave tequilana Webber var azul [Pontificia Universidad Javeriana]. http://hdl.handle.net/10554/8222
- Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002a). Degradation of azoreactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. *Dyes and Pigments*, 52(2), 69–78. https://doi.org/10.1016/S0143-7208(01)00078-X
- Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002b). Degradation of azoreactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. *Dyes and Pigments*, 52(2), 69–78. https://doi.org/10.1016/S0143-7208(01)00078-X
- Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. *Materials Science and Engineering: C*, *31*(5), 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006

- Hajalifard, Z., Mousazadeh, M., Khademi, S., Khademi, N., Jamadi, M. H., & Sillanpää, M. (2023). The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. *Npj Clean Water*, 6(1), 1–25. https://doi.org/10.1038/s41545-023-00239-9
- Halepoto, H., Gong, T., & Memon, H. (2022). Current status and research trends of textile wastewater treatments—A bibliometric-based study. *Frontiers in Environmental Science*, 10, 2263. https://doi.org/10.3389/fenvs.2022.1042256
- Harfaoui, S. EL, Driouich, A., Mohssine, A., Belouafa, S., Zmirli, Z., Mountacer, H., Digua, K., & Chaair, H. (2022). Modelization and optimization of the treatment of the reactive black-5 dye from industry effluents using experimental design methodology. *Scientific African*, *16*, e01229. https://doi.org/10.1016/j.sciaf.2022.e01229
- Hernández, R., Fernández, C., & Baptista, M. del P. (2014). *Metodología de la investigación* (Sexta edición). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.
- Hewamadduma, A. D., & T., W. (2021). Treatment Of Textile Effluent Containing Reactive Black 5 Dye Using Advanced Oxidation. *International Journal of Scientific Research* and Engineering Development, 4(12). http://www.ijsred.com/volume4/issue1/ijsredv4i1P5.html
- Hewamadduma, A. D., & Weerasinghe, T. K. (2020). Treatment of Textile Effluent
 Containing Reactive Black 5 Dye Using Advanced Oxidation. *Global Scientific Journals*, 8(12). www.globalscientificjournal.com

Ikram, M., Zahoor, M., & El-Saber Batiha, G. (2021). Biodegradation and decolorization of textile dyes by bacterial strains: A biological approach for wastewater treatment. *Zeitschrift Fur Physikalische Chemie*, 235(10), 1381–1393. https://doi.org/10.1515/zpch-2020-1708

- Ince, N. H., Stefan, M. I., & Bolton, J. R. (1997). UV/H2O2 Degradation and Toxicity Reduction of Textile Azo Dyes: Remazol Black-B, a Case Study. *Journal of Advanced Oxidation Technologies*, 2(3), 442–448. https://doi.org/10.1515/jaots-1997-0312
- Kaswan, V., & Kaur, H. (2023). A comparative study of advanced oxidation processes for wastewater treatment. *Water Practice and Technology*. https://doi.org/10.2166/wpt.2023.061
- Kaur, J., Mudgal, G., Negi, A., Tamang, J., Singh, S., Singh, G. B., Bose K, J. C., Debnath,
 S., Wadaan, M. A., Farooq Khan, M., Ruokolainen, J., & Kesari, K. K. (2023). Reactive
 Black-5, Congo Red and Methyl Orange: Chemical Degradation of Azo-Dyes by
 Agrobacterium. *Water*, 15(9), 1664. https://doi.org/10.3390/W15091664/S1
- Khan, N. A., Saeed, K., Khan, I., Gul, T., Sadiq, M., Uddin, A., & Zekker, I. (2022). Efficient photodegradation of orange II dye by nickel oxide nanoparticles and nanoclay supported nickel oxide nanocomposite. *Applied Water Science*, *12*(6), 1–10. https://doi.org/10.1007/s13201-022-01647-x
- Khan, S., Sayed, M., Sohail, M., Shah, L. A., & Raja, M. A. (2019). Advanced Oxidation and Reduction Processes. In *Advances in Water Purification Techniques: Meeting the Needs* of Developed and Developing Countries (pp. 135–164). Elsevier. https://doi.org/10.1016/B978-0-12-814790-0.00006-5
- Khatun, M., Mitra, P., & Mukherjee, S. (2023). Effect of band gap and particle size on photocatalytic degradation of NiSnO3 nanopowder for some conventional organic dyes. *Hybrid Advances*, *4*, 100079. https://doi.org/10.1016/j.hybadv.2023.100079
- Kohara, N., Sano, C., Ikuno, H., Magoshi, Y., Becker, M. A., Yatagai, M., & Saito, M.
 (2000). Degradation and Color Fading of Cotton Fabrics Dyed with Natural Dyes and Mordants. ACS Symposium Series, 74–85. https://doi.org/10.1021/bk-2001-0779.ch006

- Korpe, S. A., Landge, V., Hakke, V. S., Rao, P. V., Sonawane, S. H., & Sonawane, S. S. (2022). Advanced oxidation processes for tannery industry wastewater treatment. In *Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies* (pp. 253–276). Elsevier. https://doi.org/10.1016/B978-0-323-90627-2.00002-2
- Kumar, V., & Shah, M. P. (2021). Advanced oxidation processes for complex wastewater treatment. In *Advanced Oxidation Processes for Effluent Treatment Plants* (pp. 1–31). Elsevier. https://doi.org/10.1016/B978-0-12-821011-6.00001-3
- Kumari, S. C., Dhand, V., & Anuradha, K. (2023). A review on azo dye degradation by exopolysaccharide-mediated green synthesis of stabilized silver nanoparticles. In *Environmental Applications of Microbial Nanotechnology: Emerging Trends in Environmental Remediation* (pp. 381–391). Elsevier. https://doi.org/10.1016/B978-0-323-91744-5.00005-9
- Lade, H., Kadam, A., Paul, D., & Govindwar, S. (2015). Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. *EXCLI Journal*, 14, 158. https://doi.org/10.17179%2Fexcli2014-642
- Laing, I. G. (1991). The impact of effluent regulations on the dyeing industry. *Review of Progress in Coloration and Related Topics*, 21(1), 56–71. https://doi.org/10.1111/j.1478-4408.1991.tb00081.x
- Laohaprapanon, S., Matahum, J., Tayo, L., & You, S. J. (2015). Photodegradation of Reactive Black 5 in a ZnO/UV slurry membrane reactor. *Journal of the Taiwan Institute* of Chemical Engineers, 49, 136–141. https://doi.org/10.1016/j.jtice.2014.11.017
- Lapchuk, I., Shyichuk, A., & Tatarchuk, T. (2023). Application of hybrid advanced oxidation and adsorption processes for pharmaceutical wastewater treatment. In *The Treatment of Pharmaceutical Wastewater* (pp. 247–275). Elsevier. https://doi.org/10.1016/B978-0-323-99160-5.00008-4

- Li, M., Song, J., Han, W., Yeung, K. L., Zhou, S., & Mo, C.-H. (2023). Iron-organic frameworks as effective fenton-like catalysts for peroxymonosulfate decomposition in advanced oxidation processes. *Npj Clean Water*, 6(1), 1–10. https://doi.org/10.1038/s41545-023-00251-z
- López, C. (2016). Procesos físicos-químicos de oxidaciones avanzadas (H2O2/UV; Fe2+/H2O2/UV; TiO2/H2O2/UV) y la mejora con un sistema de coagulaciónfloculación previo, en el tratamiento de aguas residuales para la eliminación de colorantes [Universidad de Granada]. In *Repositorio Ugranada*. http://hdl.handle.net/10481/43510
- López-Rodríguez, D., Micó-Vicent, B., Bonet-Aracil, Á., & Bou-Belda, E. (2021). Recuperación y reutilización de colorantes textiles. *AITEX Review*, 67, 20–21. http://hdl.handle.net/10251/188454
- Malik, S., & Patel, U. D. (2023). Catalytic activation of peroxymonosulphate with manganese and cobalt coated micro sand particles for the treatment of Floor-wash containing Reactive Black 5 (RB5) dye. *Materials Today: Proceedings*, 77, 1–7. https://doi.org/10.1016/j.matpr.2022.08.212
- Martínez, L. A. (2020). Fotodegradación de colorantes textiles mediante luz solar y catalizadores de aluminio, silicio y zeolitas [Universidad Autónoma de Puebla]. In *Exploraciones, intercambios y relaciones entre el diseño y la tecnología*. https://hdl.handle.net/20.500.12371/12719
- Mishra, R., Pandey, S., & Fosso-Kankeu, E. (2023). Role of Heterogeneous Catalysts for Advanced Oxidation Process in Wastewater Treatment. In *Photoreactors in Advanced Oxidation Processes* (pp. 37–69). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781394167289.ch2

- Navarro, P., Pellicer, J. A., & Gómez-López, V. M. (2019). Degradation of azo dye by an UV/H2O2 advanced oxidation process using an amalgam lamp. *Water and Environment Journal*, *33*(3), 476–483. https://doi.org/10.1111/wej.12418
- Neamtu, M., Siminiceanu, I., Yediler, A., & Kettrup, A. (2002). Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. *Dyes and Pigments*, 53(2), 93–99. https://doi.org/10.1016/S0143-7208(02)00012-8
- Ollis, D. F., Pelizzetti, E., & Serpone, N. (1991). Photo-catalyzed Destruction of Water Contaminants. *Environmental Science & Technology*, 1522–1529. https://doi.org/10.1021/es00021a00
- Palit, S., & Hussain, C. M. (2021). Advanced oxidation processes as nonconventional environmental engineering techniques for water treatment and groundwater remediation.
 In *Handbook of Advanced Approaches Towards Pollution Prevention and Control* (Vol. 1, pp. 33–44). Elsevier. https://doi.org/10.1016/B978-0-12-822121-1.00002-3
- Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G.,
 Zorpas, A. A., & Argirusis, C. (2022). Key Points of Advanced Oxidation Processes
 (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A
 Mini Review. *ChemEngineering 2022, Vol. 6, Page 8, 6*(1), 8.
 https://doi.org/10.3390/chemengineering6010008
- Panja, J., Sarkar, S., Raybarman, U., & Bhattacharjee, S. (2016). Removal of Reactive Black
 5 Dye from Aqueous Solution using Photo Catalysis. *IJIRST-International Journal for Innovative Research in Science & Technology*/, 2(10).
- Pham, T. H., Bui, H. M., & Bui, T. X. (2020). Advanced oxidation processes for the removal of pesticides. In *Current Developments in Biotechnology and Bioengineering* (pp. 309–330). Elsevier. https://doi.org/10.1016/B978-0-12-819594-9.00013-9

Piaskowski, K., Świderska-Dąbrowska, R., & Zarzycki, P. K. (2018). Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. *Journal of AOAC INTERNATIONAL*, 101(5), 1371–1384. https://doi.org/10.5740/jaoacint.18-0051

- Ray, S. S., Gusain, R., & Kumar, N. (2020). Classification of water contaminants. In *Carbon Nanomaterial-Based Adsorbents for Water Purification* (pp. 11–36). Elsevier. https://doi.org/10.1016/B978-0-12-821959-1.00002-7
- Rizvi, M., Tiwari, N., Mishra, A., & Gupta, R. (2022). Kinetic and Computational Study of Degradation of Two Azo Dyes, Metanil Yellow and Orange II, by Iron Oxide Nanoparticles Synthesized Using Hylocereus undatus. *ACS Omega*, 7(36), 31667–31681. https://doi.org/10.1021/acsomega.2c00966
- Rodríguez, M., Barrera, C. E., Costillas, S., Lacasa, E., Sáez, C., Cañizares, P., Rodrigo, M.
 A., Montero, I., Molina, M., Roa, G., Barrera, H., Prato, D., Vásquez, R., Vedrenne, M.,
 Mendoza, A., Hurtado, L., Natividad, R., Solís, D. A., Escobar, L., ... Roa, G. (2020).
 Procesos de Oxidación avanzada en el tratamiento de agua. In *Procesos de oxidación avanzada en el tratamiento de agua* (Primera edición). Universidad Autónoma del
 Estado de México.
- Sadeghfar, F., Ghaedi, M., & Zalipour, Z. (2021). Advanced oxidation. *Interface Science and Technology*, *32*, 225–324. https://doi.org/10.1016/B978-0-12-818806-4.00001-2
- Saggioro, E. M., Oliveira, A. S., Pavesi, T., Maia, C. G., Ferreira, L. F. V., & Moreira, J. C. (2011). Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes. *Molecules*, *16*(12), 10370. https://doi.org/10.3390%2Fmolecules161210370
- Sánchez, H., & Reyes, C. (2015). *Metodología y Diseños en la Investigación Científica* (Quinta edición). Business Support Anneth SRL.

Saravanan, A., Deivayanai, V. C., Kumar, P. S., Rangasamy, G., Hemavathy, R. V., Harshana, T., Gayathri, N., & Alagumalai, K. (2022). A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. *Chemosphere*, 308, 136524.

https://doi.org/10.1016/j.chemosphere.2022.136524

Schmidt, L. D. (1998). The Engineering of Chemical Reactions. Oxford University Press, Inc.

- Ścieżyńska, D., Bury, D., Marcinowski, P., Bogacki, J., Jakubczak, M., & Jastrzębska, A.
 (2022). Two-Dimensional Nanostructures in the World of Advanced Oxidation
 Processes. *Catalysts*, *12*(4), 358. https://doi.org/10.3390/catal12040358
- Şener, N., Bayrakdar, A., Kart, H. H., & Şener, İ. (2017). A combined experimental and DFT investigation of disazo dye having pyrazole skeleton. *Journal of Molecular Structure*, *1129*, 222–230. https://doi.org/10.1016/j.molstruc.2016.09.082
- Senol-Arslan, D., Gul, A., Dizge, N., Ocakoglu, K., & Uzal, N. (2023). The different impacts of g-C3N4 nanosheets on PVDF and PSF ultrafiltration membranes for Remazol black 5 dye rejection. *Journal of Applied Polymer Science*, *140*(41), e54514. https://doi.org/10.1002/app.54514
- Shaida, M. A., Verma, S., Talukdar, S., Kumar, N., Salim Mahtab, M., Naushad, M., & Haq Farooqi, I. (2023). Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. *Journal of Molecular Liquids*, 374, 121259. https://doi.org/10.1016/j.molliq.2023.121259
- Siboni, M. S., Samarghandi, M., Yang, J. K., & Lee, S. M. (2011). Photocatalytic removal of reactive black-5 dye from aqueous solution by UV irradiation in aqueous TiO2:
 Equilibrium and kinetics study. *Journal of Advanced Oxidation Technologies*, *14*(2), 302–307. https://doi.org/10.1515/jaots-2011-0216

- Sigma-Aldrich. (2019). The life science business of Merck operates as MilliporeSigma in the US and Canada. www.sigmaaldrich.com
- Speight, J. G. (2017). Chemical Transformations in the Environment. In *Environmental Organic Chemistry for Engineers* (pp. 305–353). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-804492-6.00007-1
- Speight, J. G. (2018). Redox Transformations. In *Reaction Mechanisms in Environmental Engineering* (pp. 231–267). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-804422-3.00007-9
- Stambolova, I., Shipochka, M., Blaskov, V., Loukanov, A., & Vassilev, S. (2012). Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye. *Journal of Photochemistry and Photobiology B: Biology*, 117, 19–26. https://doi.org/10.1016/j.jphotobiol.2012.08.006
- The Parliamentary Office of Science and Technology. (2014). *The Environmental, Health and Economic Impacts of Textile Azo Dyes.*
- Trung, L. G., Nguyen, M. K., Hang Nguyen, T. D., Tran, V. A., Gwag, J. S., & Tran, N. T. (2023). Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies. *RSC Advances*, *13*(9), 5908–5924. https://doi.org/10.1039/D2RA08312D
- Urbina, N. A., Rivera, C., González, D. Á., Barajas, A. F., & Machuca, F. (2023).
 Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. *Toxics*, *11*(4), 366.
 https://doi.org/10.3390/toxics11040366
- Uribe, C. L., Caballero, M. J., Cárdenas, P. O., & Hermoza, E. G. (2020). Reúso en procesos de blanqueo textil de los efluentes provenientes de tinturas con colorantes reactivos

negros decolorados mediante el método de fenton. *Revista de La Sociedad Química Del Perú*, *86*(3), 300–314. https://doi.org/10.37761/rsqp.v86i3.302

Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. *Critical Reviews in Environmental Science and Technology*, 42(3), 251–325.

https://doi.org/10.1080/10643389.2010.507698

- Xu, H., & Xu, A. (2013). Degradation kinetics of reactive black 5 wastewater by UV/H 2O2.
 Journal of Advanced Oxidation Technologies, *16*(2), 214–223.
 https://doi.org/10.1515/jaots-2013-0201
- Yazdani, M. R. (2018). Engineered adsorptive materials for water remediation -Development, characterization, and application [Aalto University]. http://urn.fi/URN:ISBN:978-952-60-7920-2
- Zaidi, S. Z. J., Luan, Y., Harito, C., Utari, L., Yuliarto, B., & Walsh, F. C. (2020). Synthesis and application of gas diffusion cathodes in an advanced type of undivided electrochemical cell. *Scientific Reports*, 10(1), 1–11. https://doi.org/10.1038/s41598-020-74199-2
- Zhong, X., Wu, W., Jie, H., & Jiang, F. (2023). La 2 CoO 4+δ perovskite-mediated peroxymonosulfate activation for the efficient degradation of bisphenol A. *RSC Advances*, 13(5), 3193–3203. https://doi.org/10.1039/D2RA07640C

Apéndice

Apéndice I: Modelo matemático cúbico

<i>x</i> ₁	<i>x</i> ₂	x_{1}^{2}	x_{2}^{2}	$x_1 x_2$	x_{1}^{3}	x_{2}^{3}	$x_{1}^{2}x_{2}$	$x_1 x_2^2$	У	ŷ
4	300	16	90000	1200	64	27000000	4800	360000	86.851	87.345
4	600	16	360000	2400	64	216000000	9600	1440000	93.197	92.695
4	900	16	810000	3600	64	729000000	14400	3240000	94.419	95.217
4	1050	16	1102500	4200	64	1157625000	16800	4410000	95.419	95.593
4	1350	16	1822500	5400	64	2460375000	21600	7290000	95.661	94.926
4	1800	16	3240000	7200	64	5832000000	28800	12960000	92.205	91.430
4	3000	16	9000000	12000	64	2.7E+10	48000	36000000	80.297	80.844
7	300	49	90000	2100	343	27000000	14700	630000	87.206	86.696
7	600	49	360000	4200	343	216000000	29400	2520000	92.819	91.884
7	900	49	810000	6300	343	729000000	44100	5670000	94.581	94.448
7	1050	49	1102500	7350	343	1157625000	51450	7717500	94.290	94.922
7	1350	49	1822500	9450	343	2460375000	66150	12757500	93.874	94.602
7	1800	49	3240000	12600	343	5832000000	88200	22680000	90.787	92.010
7	3000	49	9000000	21000	343	2.7E+10	147000	63000000	87.082	86.077
10	300	100	90000	3000	1000	27000000	30000	900000	83.984	85.307
10	600	100	360000	6000	1000	216000000	60000	3600000	91.575	90.007
10	900	100	810000	9000	1000	729000000	90000	8100000	92.205	92.287
10	1050	100	1102500	10500	1000	1157625000	105000	11025000	92.819	92.694
10	1350	100	1822500	13500	1000	2460375000	135000	18225000	91.102	92.397
10	1800	100	3240000	18000	1000	5832000000	180000	32400000	91.780	90.220
10	3000	100	9000000	30000	1000	2.7E+10	300000	90000000	87.082	87.636

Nota. donde: x₁: pH, x₂: peróxido de hidrógeno en ppm, y: porcentaje de degradación del colorante NR5 y

 \hat{y} : porcentaje de degradación del colorante NR5 simulado o calculado

A continuación, se muestra los estadísticos calculados:

Estadísticas de la regresión					
Coeficiente de correlación múltiple	0.975				
Coeficiente de determinación R ²	0.951				
R ² ajustado	0.836				
Error típico	1.149				
Observaciones	21				

Análisis de varianza

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	9	310.304	34.478	29.396	0.000
Residuos	12	15.834	1.320		
Total	21	326.138			

	Cooficientes	Error	Estadístico	Drobabilidad	Inferior	Superior
	Coencientes	típico	t	Probabilidad	95%	95%
β_0	78.6622	2.75637	28.5383	2.1E-12	72.6566	84.6679
β_1	0	0	65535	#¡NUM!	0	0
β_2	0.036	0.0062	5.77392	#¡NUM!	0.02228	0.04929
β_3	0.0011	0.13339	0.00855	0.99332	-0.2895	0.29177
eta_4	-2E-05	3.3E-06	-7.1641	1.1E-05	-3E-05	-2E-05
β_5	0.00014	0.00111	0.13014	0.89861	-0.0023	0.00257
β_6	-0.0012	0.0113	-0.1018	0.92057	-0.0258	0.02347
β_7	3.5E-09	6.5E-10	5.36976	0.00017	2.1E-09	4.9E-09
β_8	-6E-05	7.1E-05	-0.851	0.41141	-0.0002	9.4E-05
β_9	3.8E-07	1.4E-07	2.61559	0.02257	6.3E-08	6.9E-07

N°	Residuales	2.0
1	-0.495	
2	0.502	
3	-0.797	
4	-0.173	
5	0.736	
6	0.775	
7	-0.547	-1.0 -
8	0.510	-15
9	0.935	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10	0.133	Observaciones
11	-0.631	La gráfica de residuales del modelo cúbico muestra datos
12	-0.728	aleatorios sin un patrón discernible. Esto sugiere que el
13	-1.223	
14	1.004	modelo propuesto se ajusta adecuadamente a los datos y
15	-1.322	no presenta indicios de sesgo sistemático. Por lo tanto, el
16	1.568	modelo matemático propuesto es aceptable.
17	-0.082	
18	0.124	
19	-1.295	
20	1.560	
21	-0.554	

Apéndice II: Análisis de residuales del modelo cubico

Apéndice III: Fotografías del proceso de fotólisis UV-C/H2O2

Fotografía 1

Solución de 100 ppm de NR5

Fotografía 2

Instalación del fotoreactor batch en la caja refractaria

Fotografía 3

Adición de H₂O₂ a la solución de NR5

Fotografía 4

Alícuotas extraídas del proceso de fotólisis UV-C/H2O2

Anexos

Anexo 1: Certificado de análisis del colorante negro reactivo 5

SIGMA-ALDRICH°

sigma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Reactive Black 5 - Dye content ≥50 %

Product Number: CAS Number: MDL: Formula:

Formula Weight:

TEST

306452 17095-24-8 MFCD00013464 C26H21N5Na4O19S6 991.82 g/mol

Specification

Appearance (Form)	Pow der
Infrared Spectrum	Conforms to Structure
Carbon	15.7 - 47.2 %
Nitrogen	3.5 - 10.6 %
Wavelength	307 - 313 nm
0.01 g/l, H2O	
Extinction Coefficient	<u>></u> 16400
Wavelength	389 - 393 nm
Extinction Coefficient	<u>></u> 7300
Wavelength	593 - 597 nm
Extinction Coefficient	<u>></u> 23000
Specification: PRD.1.ZQ5.10000056554	

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Anexo 2: Certificado de análisis del peróxido de hidrógeno al 30 %

Specification

1.07210.1000 Hydrogen peroxide 30% (Perhydrol TM) (stabilized for higher storage temp.) for analysis EMSURE® ISO

	Specification	
Assay (manganometric)	≥ 30.0	%
Color	≤ 10	Hazen
Free acid (as sulfuric acid)	≤ 30	ppm
Chloride (CI)	≤ 0.5	ppm
Nitrate (NO ₃)	≤ 2	ppm
Phosphate (PO ₄)	≤ 2	ppm
Sulfate (SO ₄)	≤ 2	ppm
Heavy metals (as Pb)	≤ 1	ppm
Total nitrogen (N)	≤ 4	ppm
Cd (Cadmium)	≤ 0.02	ppm
Co (Cobalt)	≤ 0.02	ppm
Cu (Copper)	≤ 0.02	ppm
Fe (Iron)	≤ 0.1	ppm
Ni (Nickel)	≤ 0.02	ppm
Pb (Lead)	≤ 0.02	ppm
Zn (Zinc)	≤ 0.05	ppm
Non volatile matter	≤ 50	ppm
ISO-Reagent		

Dr. Nina Hegmann Responsible laboratory manager quality control

This document has been produced electronically and is valid without a signature.

Page 1 of 1

Anexo 3. Certificado de análisis del hidróxido de sodio

Specification

1.06462.1000 Sodium hydroxide pellets EMPLURA®

	Specification		
Assay (acidimetric,NaOH)	≥ 97.0	%	
Carbonate (as Na₂CO₃)	≤ 1.0	%	
Chloride (CI)	≤ 0.012	%	
Sulfate (SO₄)	≤ 0.010	%	
leavy metals (as Pb)	≤ 0.002	%	
Al (Aluminium)	≤ 0.002	%	
e (Iron)	≤ 0.002	%	

Dr. Dimitrij Ryvlin Responsible laboratory manager quality control

This document has been produced electronically and is valid without a signature.

Merck KGaA Corporation with General Partners Frankfurter Straße 250 64293 Darmstadt, Germany The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

Page 1 of 1

SALSA Version 1109257/00000000000// Date: 30.08.2021

Anexo 4: Certificado de análisis del ácido clorhídrico

Specification

1.00318.0250 Hydrochloric acid 30% Suprapur®

	Specification		
Assay (acidimetric)	≥ 30.0	%	
Colour	≤ 10	Hazen	
Bromide (Br)	≤ 10	mag	
Free chlorine (CI)	≤ 300	ppb	
Phosphate (PO4)	≤ 10	ppb	
Sulphate (SO4)	≤ 300	ppb	
Sulfite (SO3)	≤ 500	ppb	
Ag (Silver)	≤ 1.0	ppb	
Al (Aluminium)	≤ 1.0	ppb	
As (Arsenic)	≤ 1.0	ppb	
Au (Gold)	≤ 1.0	ррь	
Ba (Barium)	≤ 1.0	ррь	
Be (Beryllium)	≤ 1.0	ррЬ	
Bi (Bismuth)	≤ 1.0	ррЬ	
Ca (Calcium)	≤ 5.0	ррЬ	
Cd (Cadmium)	≤ 0.5	ррЬ	
Co (Cobalt)	≤ 1.0	ррЬ	
Cr (Chromium)	≤ 1.0	ррЬ	
Cu (Copper)	≤ 1.0	ppb	
Fe (Iron)	≤ 5.0	ppb	
Ga (Gallium)	≤ 0.5	ppb	
Ge (Germanium)	≤ 10.0	ppb	
Hg (Mercury)	≤ 2.0	ppb	
In (Indium)	≤ 0.5	ppb	
K (Potassium)	≤ 10.0	ppb	
Li (Lithium)	≤ 0.5	ppb	
Mg (Magnesium)	≤ 2.0	ppb	
Mn (Manganese)	≤ 0.5	ppb	
Mo (Molybdenum)	≤ 0.5	ppb	
NH₄ (Ammonium)	≤ 500	ppb	
Na (Sodium)	≤ 10.0	ppb	
Ni (Nickel)	≤ 1.0	ppb	
Pb (Lead)	≤ 0.5	ppb	
Pt (Platinum)	≤ 0.5	ррь	
Sb (Antimony)	≤ 0.5	ррь	
Sn (Tin)	≤ 1.0	ppb	
Sr (Strontium)	≤ 0.5	ppb	
Ti (Titanium)	≤ 1.0	ppb	
TI (Thallium)	≤ 0.5	ppb	
V (Vanadium)	≤ 1.0	ppb	
Zn (Zinc)	≤ 1.0	ppb	

Merck KGaA Corporation with General Partners Frankfurter Straße 250 64293 Darmstadt, Germany The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

Page 1 of 2

Specification

1.00318.0250 Hydrochloric acid 30% Suprapur®

Zr (Zirconium)	≤ 0.5	ppb	
Residue on ignition (as sulphate)	≤ 2	ppm	

Actual analysis values are subject to unavoidable systematic variations in this concentration range

Dr. Reiner Vogt Responsible laboratory manager quality control

This document has been produced electronically and is valid without a signature.

Merck KGaA Corporation with General Partners Frankfurter Straße 250 64293 Darmstadt, Germany

SALSA Version 498739 /00000000000// Date: 13.10.2016

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

Page 2 of 2