UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA DE PROCESOS ESCUELA PROFESIONAL DE INGENIERÍA PETROQUÍMICA

TESIS

DEGRADACIÓN FOTOCATALÍTICA DE ACEITE LUBRICANTE PRESENTE EN AGUA, HACIENDO USO DE TiO2 Y LUZ ULTRAVIOLETA

PRESENTADO POR:

Br. MAURICIO JULIO VELAZCO CARDENAS Br. JUNIOR ANTONY DELGADO SERRANO

PARA OPTAR AL TÍTULO PROFESIONAL DE INGENIERO PETROQUÍMICO

ASESOR: Dr. ANTONIO RAMIRO JESÚS BUENO LAZO

CUSCO –PERÚ

2023

INFORME DE ORIGINALIDAD

(Aprobado por Resolución Nro.CU-303-2020-UNSAAC)

El que suscribe, Asesor del trabajo de investigación/tesis titulada:.... EN DE ACEITE LUBRICAN FOTOCATAL A Y AGUA HACIENDO USO DE TIC MAURICIO JULIO VELAZCO CARDENAS con DNI Nro.: presentado por: ANTONY DELGADO SERRANO con DNI Nro .: ... presentado por: JUNIOR para optar el título profesional/grado académico de ... INGENIERO Informo que el trabajo de investigación ha sido sometido a revisión por veces, mediante el

Software Antiplagio, conforme al Art. 6° del **Reglamento para Uso de Sistema Antiplagio de la UNSAAC** y de la evaluación de originalidad se tiene un porcentaje de%.

Evaluación y acciones del reporte de coincidencia para trabajos de investigación conducentes a grado académico o título profesional, tesis

Porcentaje	Evaluación y Acciones	Marque con una (X)	
Del 1 al 10%	No se considera plagio.	X	
Del 11 al 30 %	Devolver al usuario para las correcciones.		
Mayor a 31%	El responsable de la revisión del documento emite un informe al inmediato jerárquico, quien a su vez eleva el informe a la autoridad académica para que tome las acciones correspondientes. Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.		

Por tanto, en mi condición de asesor, firmo el presente informe en señal de conformidad y **adjunto** la primera página del reporte del Sistema Antiplagio.

Cusco 29 de Diciembre de 20.2.3

Dr. Antonio Ramiro Jesús Bueno La

CIP. 46442 Post firma.....

Nro. de DN

ORCID del Asesor. 0000 - 000

Se adjunta:

- 1. Reporte generado por el Sistema Antiplagio.
- 2. Enlace del Reporte Generado por el Sistema Antiplagio: <u>oid</u> : 27259: 300962280

NOMBRE DEL TRABAJO

Degradación fotocatalítica de aceite lubri cante presente en agua, haciendo uso de TiO2 y luz ultravio

AUTOR

4.8MB

Mauricio Velazco Junior Delgado

RECUENTO DE CARACTERES

110718 Characters

TAMAÑO DEL ARCHIVO

FECHA DEL INFORME

RECUENTO DE PALABRAS

19812 Words

RECUENTO DE PÁGINAS

95 Pages

FECHA DE ENTREGA

Dec 29, 2023 11:10 PM GMT-5

• 1% de similitud general

Esta entrega no coincidió con ningún contenido comparado.

- 1% Base de datos de Internet
- Base de datos de Crossref
- 1% Base de datos de trabajos entregados

• Excluir del Reporte de Similitud

- Material bibliográfico
- Coincidencia baja (menos de 20 palabras)

• 0% Base de datos de publicaciones

Dec 29, 2023 11:12 PM GMT-5

- Base de datos de contenido publicado de Crossr
- Material citado
- Bloques de texto excluidos manualmente

Dedicatoria I

Dedico este trabajo a mis padres que ayudaron a que se pueda realizar este proyecto de investigación sin contratiempos. Asimismo, a todos mis profesores en la etapa universitaria que hicieron de mí un excelente estudiante y profesional, fruto de esfuerzo y dedicación. Lo dedico también, al Ing. Harry Zuñiga, gerente de la empresa Consorcio Mantenimiento gasoductos del Peru (CMgP) por sus consejos y aliento durante este proceso. De igual manera lo dedico a todos los que estuvieron indirectamente involucrados con sus recomendaciones en la realización del proyecto, a los que estuvieron inmersos en los trámites administrativos que hicieron que éste tome un camino regular sin complicaciones.

Atte. Mauricio Velazco

Dedicatoria II

A mis amados padres, Antonio y Mercedes, les dedico mi tesis con el más profundo agradecimiento. Su amor incondicional, apoyo constante y sacrificio han sido el motor que impulsó mi camino hacia este logro. Vuestra fe en mí y vuestros valores arraigados en mi ser son la inspiración detrás de cada página escrita. Vuestra guía y sabiduría me han llevado a alcanzar mis sueños. Sin ustedes, nada de esto habría sido posible. Gracias por ser mis pilares, mis modelos a seguir y mis más grandes motivadores. Con amor eterno, vuestro hijo.

Atte. Junior Delgado

"En especial, dedicamos esta investigación a nuestro asesor Antonio Bueno, quien de manera desinteresada nos apoyó con la realización de este Proyecto de Tesis, siendo un guía en cada paso que se llegaba a realizar antes y durante de la ejecución del proyecto."

Agradecimientos

Agradecemos a todos nuestros docentes, en especial al Ing. Julio Lechuga y la Dra. Amanda Maldonado, que siempre de manera oportuna se ha encontrado disponibles para resolver todas nuestras dudas y consultas. Así también, agradecemos a nuestra alma mater la Universidad Nacional de San Antonio Abad del Cusco (UNSAAC) por habernos acogido en sus aulas y brindado muchas experiencias tanto en el ámbito profesional como personal.

Finalmente, damos un agradecimiento a la empresa Consorcio Mantenimiento de Gasoductos del Perú (CMgP), que en todo el proyecto de investigación nos mantuvo alertas y nos ha brindado una estabilidad tanto emocional como económica y ha sido un apoyo para el desarrollo de este proyecto.

Resumen

En el presente estudio se llevó a cabo un proceso de fotocatálisis con el objetivo de degradar aceite lubricante contenido en agua destilada, simulando la contaminación de aguas con hidrocarburos. Los parámetros del proceso considerados incluyeron la concentración inicial de la muestra (compuesta por agua destilada y aceite lubricante comercial en una proporción volumétrica de 1000 a 1), una temperatura de reacción de 20°C y una velocidad de agitación de 300 RPM. Las variables independientes fueron la intensidad de la luz ultravioleta y la concentración del catalizador TiO₂. Mientras que las variables dependientes analizadas fueron la Demanda Química de Oxígeno (DQO) eliminada y los Hidrocarburos Totales de Petróleo (HTP) eliminados. El proceso fotocatalítico se desarrolló en un reactor batch contenido dentro de una cámara de fotocatálisis con un revestimiento interno de espejos. Como fotocatalizador, se empleó dióxido de titanio (TiO₂) soportado en metacrilato de polimetilo. Las muestras se sometieron a dos niveles de intensidad de luz ultravioleta (24.6 y 49.2 mW/cm²) y dos concentraciones de catalizador TiO₂ (1g/L y 2g/L) durante un período de 4 horas en todos los experimentos. Los resultados mostraron una eliminación del aceite lubricante del 78.33% para la DQO y un 92% para los HTP.

El análisis de los resultados indicó que la variación de la potencia de luz UV no tuvo una influencia significativa en la eliminación del aceite lubricante tanto para la DQO como los HTP; sin embargo, se observó que un aumento de la concentración del catalizador TiO₂ estuvo directamente relacionada con una mayor eliminación del aceite lubricante tanto para la DQO como para los HTP. Además, se realizó una comparación de los resultados con los Estándares de Calidad del Agua (ECA) y los Límites Máximos Permisibles (LMP) para efluentes del subsector hidrocarburos; donde se puede indicar que estos resultados se encontraron dentro de ambas normativas peruanas.

Palabras clave: fotocatálisis, dióxido de titanio, luz ultravioleta, aceite lubricante.

Abstract

In the present study, a photocatalysis process was carried out with the aim of degrading lubricating oil in distilled water, simulating water contamination with hydrocarbons. The considered process parameters included the initial concentration of the sample (composed of distilled water and commercial lubricating oil in a volumetric ratio of 1000 to 1), a reaction temperature of 20°C, and an agitation speed of 300 RPM. The independent variables were the intensity of ultraviolet light and the concentration of the TiO2 catalyst. The dependent variables analyzed were the Chemical Oxygen Demand (COD) removed and the Total Petroleum Hydrocarbons (TPH) removed. The photocatalytic process was conducted in a batch reactor placed inside a photocatalysis chamber with an internal coating of mirrors. Titanium dioxide (TiO2) supported on polymethyl methacrylate was employed as the photocatalyst. Samples were subjected to two levels of ultraviolet light intensity (24.6 and 49.2 mW/cm2) and two concentrations of TiO2 catalyst (1g/L and 2g/L) for a period of 4 hours in all experiments. The results showed a removal of lubricating oil of 78.33% for COD and 92% for TPH.

The analysis of the results indicated that the variation in UV light power did not have a significant influence on the removal of lubricating oil for both COD and TPH. However, it was observed that an increase in the concentration of the TiO2 catalyst was directly related to a higher removal of lubricating oil for both COD and TPH. Additionally, a comparison of the results was made with Water Quality Standards (WQS) and Maximum Permissible Limits (MPL) for effluents from the hydrocarbon subsector. It can be noted that these results were within both Peruvian regulations.

Keywords: photocatalysis, titanium dioxide, ultraviolet light, lubricating oil.

Introducción

En la actualidad, la comunidad científica viene dedicando esfuerzos significativos al desarrollo de fuentes de energía limpia como una estrategia para abordar la descontaminación del agua, la purificación del aire, la gestión de desechos peligrosos y las tecnologías de autolimpieza. Esto se debe a la creciente contaminación ambiental y al uso predominante de combustibles fósiles como fuente principal de energía (Nevárez y otros, 2017). Principalmente, la contaminación del agua ha sido un problema latente durante muchos años y que aún se mantiene en la actualidad; se conoce que las aguas contaminadas por hidrocarburos producen un cambio radical en las características organolépticas del agua lo cual induce al rechazo de los consumidores; asimismo la ingesta de este recurso contaminado representa un riesgo para la salud humana. De igual manera, el ecosistema se ve afectado, esto debido al impacto de estos contaminantes sobre sus diferentes componentes como la flora y fauna (Prieto & Martínez, 1999).

La contaminación del agua por hidrocarburos puede darse de diferentes maneras, como el propio factor humano, la fuga de hidrocarburos en tuberías, derrames accidentales, entre otros. Actualmente se han estudiado y aplicado diversos métodos para tratar aguas contaminadas con hidrocarburos, un tratamiento comúnmente aplicado y conocido es la regeneración del agua en plantas de tratamiento, donde mediante destilación se recuperan los hidrocarburos contaminantes (Fundación Ambiente & Medio, 2019); asimismo, un método menos conocido es el uso de microalgas para la biorremediación de aguas contaminadas con hidrocarburos, donde se cultivan microalgas que consumen y degradan las moléculas pesadas presentes en este tipo de contaminante y como residuos emiten una biomasa que llega a ser un alimento para ciertas especies de peces (Ferrera y otros, 2006); por otro lado, se ha estudiado el uso de bacterias pseudonomas para el tratamiento de aguas contaminadas con petróleo, las cuales eliminan las moléculas pesadas del petróleo convirtiéndolas en sustancias inocuas para el ambiente (Mell, 2021). Consecuentemente, se pueden llegar a mencionar muchos otros métodos para el tratamiento de aguas contaminadas, en este contexto, la fotocatálisis se presenta como una alternativa ambientalmente amigable y sostenible que podría resolver el problema de la contaminación del agua con hidrocarburos.

El primer artículo relacionado con el proceso fotocatalítico fue presentado en 1968 por dos científicos japoneses, los profesores Honda y Fujishima de la Universidad de Tokio. En dicho trabajo, se caracterizó el efecto de la irradiación de luz con una longitud de onda menor a 415 nm sobre el dióxido de titanio (TiO₂) (Nanoair Solutions, 2020). Los autores concluyeron que la irradiación de luz ultravioleta (UV) sobre TiO₂ desencadena reacciones en la superficie del material, generando especies reactivas como electrones (e-) y huecos (h+). Estas especies tienen la capacidad de catalizar reacciones de oxidación y reducción en su entorno circundante (Fujishima & Honda, 1972).

Desde la publicación de este artículo en 1972, la investigación relacionada con la fotocatálisis ha experimentado un crecimiento exponencial. Para el año 2016, se habían publicado más de cinco mil artículos relacionados con este tema. La elección predominante de TiO₂ como fotocatalizador se debe a su alta actividad fotocatalítica y sus propiedades favorables, como su considerada no toxicidad, resistencia a la corrosión y biocompatibilidad (Nevárez y otros, 2017).

En resumen, la fotocatálisis se presenta como una alternativa a los procesos tradicionales de oxidación para la degradación de contaminantes. Este enfoque ofrece ventajas como la eficiencia en la degradación de contaminantes en un solo proceso, la disponibilidad de un catalizador económico e inofensivo, la posibilidad de reutilización y su capacidad de ser incorporado en estructuras inertes como catalizadores soportados. Realizar investigaciones adicionales en este método proporcionará datos sólidos que respaldarán futuras investigaciones a gran escala en el mismo campo de aplicación (Gullien, 2014).

Tabla de co	ontenido
-------------	----------

Resumen		4
Introduce	ción	6
Lista de l	Figuras	10
Lista de 7	Гablas	11
CAPÍTU	LO I: Generalidades	
1.1. Plan	teamiento del Problema	
1.1.1.	Justificación e importancia	13
1.1.2.	Objetivo general.	14
1.1.3.	Objetivos específicos	14
CAPÍTU	LO II: Marco teórico	15
2.1. Ante	cedentes	15
2.2. Base	s Teóricas	17
2.2.1.	Aceite Lubricante.	17
2.2.2.	Dióxido de Titanio.	
2.2.3.	Luz Ultravioleta	24
2.2.4.	Fotocatálisis	27
2.2.5.	Demanda Química de Oxígeno (DQO).	
2.2.6.	Hidrocarburos Totales de Petróleo	
CAPÍTU	LO III: Materiales y métodos	
3.1. Tipo	y Diseño de Investigación	
3.2. Mue	stra	
3.3. Mate	eriales	
3.4. Equi	pos	
3.5. Instr	umentos	

3.6. Reac	tivos3	5
3.7. Proc	edimientos	6
3.7.1.	Selección del soporte de catalizador	6
3.7.2.	Preparación de la muestra	8
3.7.3.	Determinación de la cantidad de contaminante presente en la muestra4	0
3.7.4.	Proceso de fotocatálisis4	0
3.7.5.	Matriz de Operacionalización de Variables	0
3.7.6.	Diseño experimental	1
3.7.7.	Cinética del proceso	3
CAPÍTU	LO IV: Resultados y discusión5	5
4.1. Selec	cción del soporte para el catalizador5	5
4.2. Dete	rminación de la cantidad de contaminante presente en la muestra5	7
4.3. Proc	eso de Fotocatálisis	8
4.4. Dete	rminación de parámetros6	2
4.5. Ciné	tica del proceso6	3
4.6. Disc	usiones complementarias6	7
4.6.1.	Análisis general proceso (decantación + fotocatálisis)6	7
4.6.2.	Estándares de Calidad del Agua (ECA) y Límites Máximos Permisible (LMP)6	9
CONCLU	JSIONES7	'1
RECOM	ENDACIONES	'3
REFERE	NCIAS BILBLIOGRÁFICAS7	'4
VALORI	ZACIÓN7	8
MATRIZ	DE CONSISTENCIA	'9
ANEXOS	5	0

Lista de Figuras

Figura 1 Aceite Shell HELIX HX7 con grado SAE 10W-30	21
Figura 2: Estructuras cristalinas existentes del TiO2	23
Figura 3: Espectro electromagnético y escala expandida de radiación ultravioleta	25
Figura 4: Esquema del proceso de fotocatálisis	28
Figura 5: Catalizador soportado TiO2 en resina epóxica	37
Figura 6: Soporte de catalizador en acrílico dental	
Figura 7: Preparación de muestra inicial	39
Figura 8: Decantación de la muestra	39
Figura 9 Esquema de reactor batch	41
Figura 10 Caja de con recubrimiento interno de espejos y sistema de refrigeración	41
Figura 11:: Curva de degradación de DQO vs Tiempo para potencias de luz de 32 y	150 W43
Figura 12: Curva del crecimiento de temperatura de reacción vs el tiempo	44
Figura 13: Parámetros de reacción de fotocatálisis	48
Figura 14: Configuración y acomodamiento del reactor con dos lámparas UV	52
Figura 15: Visualización del proceso de fotocatálisis	52
Figura 16: Experiencia con 2g/L de catalizador TiO2	53
Figura 17: Soporte de TiO ₂ en resina epóxica	55
Figura 18 Catalizador TiO2 soportado en acrílico dental	56
Figura 19: Efectos principales de la reacción fotocatalítica	60
Figura 20: Porcentaje de degradación para distintas intensidades de luz UV	44
Figura 21: Porcentaje de degradación para distintas concentraciones de catalizador	<i>TiO</i> ₂ 45
Figura 22: Variación de la DQO en función del tiempo	66
Figura 23 Modelo cinético linealizado en un modelo de primer orden	54
Figura 27: Remoción (física y química) del aceite y la DQO en función del tiempo	67
Figura 28: Remoción (física y química) del aceite y HTP en función del tiempo	68
Figura 29:Comparación de la DQO para límites ECA	69
Figura 30: Comparación de HTP para LMP Subsector Hidrocarburos	70

Lista de Tablas

Tabla 1: Composición media de los hidrocarburos que conforman las bases del aceite.	17
Tabla 2: Clasificación de aceites lubricantes.	18
Tabla 3: SAE-Grado de viscosidad del aceite.	19
Tabla 4: Propiedades físicas y químicas del aceite lubricante Shell HELIX HX7 SAE 10W-3	3020
Tabla 5: Otras consideraciones importantes del aceite Shell HELIX HX7 SAE 10W-30.	22
Tabla 6: Recolector de datos: DQO y HTP presente en la muestra.	40
Tabla 7 : Resultados de pruebas preliminares con intensidades de 24.6 y 66.8 mW/cm^2 .	42
Tabla 8: Temperaturas dentro del reactor.	43
Tabla 9: Matriz de Operacionalización de variables.	50
Tabla 10: Diseño experimental.	51
Tabla 11: Instrumento recolector de datos	51
Tabla 12: DQO y HTP presente en la muestra.	57
Tabla 13: Resultados cromatográficos del aceite lubricante utilizado30.	58
Tabla 14: Resultados para las 4 pruebas de fotocatálisis	58
Tabla 15: Análisis del efecto de las variables independientes.	59
Tabla 16: Parámetros óptimos de reacción fotocatalítica.	62
Tabla 17: Cálculos para la cinética de reacción en la Prueba 1	64
Tabla 18: Cálculos para la cinética de reacción en la Prueba 2	64
Tabla 19: Cálculos para la cinética de reacción en la Prueba 3	64
Tabla 20 Cálculos para la cinética de reacción en la Prueba 4.	65

CAPÍTULO I: Generalidades

1.1.Planteamiento del Problema

La industria de los hidrocarburos, la cual incluye los procesos de exploración, perforación, producción, refinación, almacenamiento, transporte y la comercialización llegan a producir graves daños ambientales tales como la deforestación, cambios de paisaje y la contaminación de recursos como el agua, aire y suelos (incluyendo la biota asociada a ellos); específicamente para el recurso agua, esta industria ha generado gran cantidad de aguas servidas e industriales en todos los procesos antes mencionados (Galván y otros, 2007). Asimismo, dentro de los propios procesos de la industria, se conoce que existe una contaminación del agua debido a los constantes derrames que ocurren principalmente durante la producción, transporte y comercialización; generándose pérdidas de hidrocarburo al ambiente que deterioran la calidad de este recurso hídrico. Un tipo de deterioro bastante conocido se da cuando los aceites lubricantes (derivados del petróleo) entran en contacto con el agua, que llegan a originar una película en la superficie, disminuyendo la concentración de oxígeno disuelto en el agua, lo que a su vez afecta la capacidad de los organismos acuáticos para la respiración. Además, ciertos componentes de los aceites lubricantes pueden volverse tóxicos para la vida acuática y perturbar la cadena alimentaria, con posibles consecuencias negativas a largo plazo para el ecosistema provocando la mortalidad de peces, aves marinas, mamíferos marinos y otros organismos acuáticos (Londoño, 2021).

Para el ser humano, la exposición a sustancias químicas tóxicas contenidas en los hidrocarburos puede tener efectos perjudiciales en la salud humana, como problemas respiratorios y dermatológicos, así como consecuencias a largo plazo, como el desarrollo de enfermedades como el cáncer. La contaminación de hidrocarburos en las costas puede afectar negativamente a las industrias pesqueras y turísticas, lo que conlleva graves consecuencias económicas para las comunidades locales. Además, la limpieza de los derrames de hidrocarburos se presenta como una tarea costosa y desafiante, siendo en muchos casos difícil la eliminación completa de los contaminantes del entorno ambiental (Cavazos, 2014).

Así entonces, se llevó a cabo una recopilación de incidentes reales de derrames de hidrocarburos en entornos acuáticos con el fin de observar la magnitud de este tipo de contaminación que se ha hecho presente a lo largo del tiempo.

- En 1960, la embarcación "El Sinclair Petrolore" liberó más de 66,500 toneladas de petróleo en las costas de Brasil, lo que constituyó un desastre ambiental que resultó en la pérdida de miles de especies marinas (Markleen, 2010).
- En 2010, se produjo un derrame de 250,000 litros de aceite lubricante de un buque cisterna en el río Napo, Ecuador, afectando a miles de peces y fauna silvestre (Castillo, 2010).
- En 2010, la plataforma Deepwater Horizon experimentó una explosión que resultó en la liberación al mar de 779,000 toneladas de crudo, impactando las costas de Cuba, Florida, Luisiana y Misisipi (Markleen, 2010).
- En mayo de 2023, en Moquegua, Perú, tuvo lugar un derrame de petróleo debido al accidente de una cisterna boliviana en el canal de agua de Pasto Grande, lo que dejó a la población sin acceso a agua potable durante la operación de limpieza y purificación del agua (Cooperacción, 2023).
- En enero de 2022, en el mar de Ventanilla, Callao, se produjo un desastre ocasionado por la refinería La Pampilla de la empresa Repsol, durante el proceso de carga de crudo en un barco tanquero, resultando en el vertido de más de 11,900 barriles de petróleo que afectaron las playas desde Ventanilla hasta Chancay (Cooperacción, 2023).

Estos ejemplos ilustran algunos de los numerosos derrames de hidrocarburos que ocurren anualmente. Los derrames de aceite lubricante ejercen un impacto devastador en el ambiente, la fauna y las comunidades locales. Es imperativo tomar medidas preventivas para evitar estos incidentes y actuar de manera eficiente en caso de que ocurran.

1.1.1. Justificación e importancia.

El proceso de fotocatálisis se presenta como una alternativa para solucionar el problema de derrames de hidrocarburos que contaminan el agua, buscando degradar las moléculas pesadas de los derivados del petróleo como el aceite lubricante, reduciendo de esta manera la contaminación que se ha generado por el propio derrame.

El estudio de la fotocatálisis a escala de laboratorio llega a ampliar el conocimiento de esta metodología, optimizando parámetros de reacción y mejorando la concentración del catalizador; lo que eventualmente llevaría a que este proceso se aplique a gran escala de manera industrial y lograr así una alternativa diferente a las metodologías actuales con las que se viene trabajando para descontaminar aguas contaminadas con hidrocarburos.

En el ámbito ambiental el estudio de la fotocatálisis ofrece una solución efectiva para eliminar los hidrocarburos tóxicos presentes en el agua, contribuyendo a la restauración y preservación de los cuerpos de agua y la biodiversidad asociada. Asimismo, el estudio de esta metodología es una herramienta valiosa para cumplir con las normativas emitidas por el estado peruano e instituciones relacionadas, evitando de esta manera sanciones legales y financieras para las industrias y comunidades que liberan efluentes de hidrocarburos al agua. Por otro lado, este proceso que tiene como objetivo degradar hidrocarburos presentes en agua contribuirá a eliminar las moléculas que generan problemas cancerígenos a los seres humanos.

Finalmente, en un ámbito financiero, la fotocatálisis puede ser una alternativa eficiente y rentable en comparación con otros métodos de tratamiento de aguas contaminadas con hidrocarburos; ya que este proceso tiene la capacidad de funcionar con fuentes de luz naturales como la luz solar y el catalizador que comúnmente se usa para este proceso es barato, de fácil recuperación y altamente eficiente.

1.1.2. Objetivo general.

• Determinar los parámetros de operación en el método de la fotocatálisis para degradar aceite lubricante presente en agua, haciendo uso de TiO₂ y luz UV.

1.1.3. Objetivos específicos.

- Definir un soporte adecuado para el catalizador TiO₂.
- Determinar la cantidad de contaminante que contiene la muestra decantada.
- Determinar la influencia de la intensidad de luz UV y la concentración de catalizador TiO₂ en la degradación del aceite lubricante.
- Plantear un modelo cinético de la reacción fotocatalítica.

CAPÍTULO II: Marco teórico

2.1.Antecedentes

- En la tesis titulada "Heterogeneous photocatalysis and Electrophotocatalysis on • nanostructured titanium dioxide for water and wastewater treatment: process assessment, modeling, and optimization", se abordó el problema fundamental relacionado con la falta de desarrollo de soluciones tecnológicas competitivas para el tratamiento de aguas residuales. Los objetivos planteados incluyeron la evaluación, modelado y optimización de los procesos de fotocatálisis y electrofotocatálisis utilizando nanoestructuras de dióxido de titanio. La metodología empleada se basó en la utilización de suspensiones de nanopartículas de TiO₂ y TiO₂ nanotubular autoordenado para llevar a cabo el proceso de fotocatálisis. El resultado principal de este estudio confirmó de manera efectiva la validez de varias configuraciones de reactores propuestas por el modelo. Además, el modelo proporcionó pautas valiosas para el diseño de un reactor optimizado.En resumen, se concluyó que el modelo propuesto logra degradar eficazmente el contaminante en un promedio de hasta un 80%. Además, se observó una reducción en el consumo energético al realizar el proceso de electrofotocatálisis en comparación con el proceso de fotocatálisis (Turola, 2014).
- El artículo titulado " Parameters affecting the photocatalytic degradation of dyes using TiO₂-based photocatalysts " se enfocó en abordar la problemática relacionada con el tratamiento de aguas residuales provenientes de diversas industrias, fábricas y laboratorios. El objetivo principal del estudio fue analizar de manera sistemática los efectos de los parámetros operativos en el proceso de degradación fotocatalítica de tintes textiles utilizando fotocatalizadores basados en TiO₂. Para llevar a cabo este análisis, se empleó la metodología de degradación heterogénea con catalizador soportado mediante el método de Sol-gel.Los resultados obtenidos indicaron que cada parámetro evaluado tiene un impacto individual en el proceso de degradación. Además, se observó que algunos colorantes reactivos muestran una mayor eficacia de degradación a pH elevados, mientras que otros alcanzan su máxima eficiencia a pH más bajos. Por lo tanto, en el contexto de la degradación fotocatalítica de colorantes en aguas residuales, es esencial llevar a cabo la reacción a un pH específico para cada tipo de colorante. Adicionalmente, se identificó que factores como los agentes oxidantes utilizados, la temperatura a la que

se someten los catalizadores durante la calcinación, el contenido de dopantes en los fotocatalizadores y la carga del catalizador ejercen una influencia significativa en el proceso de degradación. En conclusión, se determinó que la utilización de un catalizador soportado mediante la técnica de Sol-gel proporciona ventajas significativas en comparación con el uso de un catalizador suspendido en la solución inicial, (AKpan, 2009).

- En el artículo titulado "Photocatalytic degradation of hydrocarbons present in water, using Fe (III) modified TiO₂", se aborda como cuestión principal la alta contaminación de numerosas fuentes de agua en Colombia debido a actividades industriales, incluyendo la extracción de petróleo. El objetivo principal del estudio es investigar la degradación fotocatalítica de hidrocarburos totales en mezclas sintéticas de agua y en muestras recopiladas del flujo de entrada de un skimmer, que es agua de producción.Para llevar a cabo este proyecto, se empleó la metodología de fotocatálisis heterogénea utilizando TiO₂ modificado con óxido de hierro (III) para sensibilizar el TiO₂. Los resultados obtenidos indicaron tasas de degradación del 91.2% y 98% en muestras de campo y mezclas sintéticas, respectivamente, en un lapso de 4 horas. Como resultado de este estudio, se concluyó que esta técnica podría ser una alternativa efectiva a los métodos convencionales de tratamiento de aguas contaminadas con hidrocarburos (Velosa, 2018).
- En la investigación titulada "Degradación fotocatalítica del fenol" se abordó el problema de la presencia de contaminantes fenólicos en sistemas acuáticos. El objetivo principal de este estudio consistió en analizar el proceso de descomposición del fenol mediante la fotodegradación utilizando TiO₂ como catalizador, irradiado con luz UV y en presencia de peróxido de hidrógeno (H₂O₂). Los resultados indicaron que un aumento en la concentración del catalizador, la cantidad de H₂O₂ y un pH elevado condujo a un incremento significativo en el porcentaje de degradación del fenol. Una de las conclusiones clave del estudio fue que el TiO₂, además de ser un eficaz fotocatalizador, se caracteriza por ser una opción económica y de fácil reutilización. Por lo tanto, se sugiere que la fotodegradación podría ser una estrategia recomendable para el tratamiento de compuestos fenólicos en el agua, (Akbal & Onar, 2003).
- En el contexto de la investigación titulada "Tratamiento de aguas contaminadas con aceite de motores mediante fotocatálisis heterogénea" llevada a cabo en Huancayo, Perú,

se identificó como un problema actual la descarga de aguas contaminadas en el sistema de alcantarillado, donde los niveles de Demanda Química de Oxígeno (DQO) superan los límites establecidos por la normativa. El objetivo principal de esta investigación fue evaluar la eficacia del tratamiento de estas aguas contaminadas, que contenían aceite de motores, utilizando la técnica de fotocatálisis heterogénea. Se realizaron pruebas con concentraciones de 3 y 5 mL/L de aceite lubricante en agua durante un período de 4 horas utilizando la radiación solar como fuente de energía. Los resultados obtenidos variaron en función de las condiciones climáticas. En un día nublado, se logró una degradación promedio de DQO del 43,44% y 62,41% para las concentraciones de aceite lubricante de 3 mL/L y 5 mL/L, respectivamente. En contraste, en un día soleado, se obtuvo una degradación promedio del 81,36% y 76,58% para las mismas concentraciones. Como conclusión, se determinó que se logra una mayor eficiencia de degradación cuando se utiliza una relación de 3 mL de aceite lubricante por litro de agua como concentración y un tiempo de reacción de 4 horas en condiciones de luz solar directa (Salas, 2018).

2.2. Bases Teóricas

2.2.1. Aceite Lubricante.

De manera general, se puede llegar a mencionar que un aceite lubricante es un derivado del proceso de refinación del petróleo, que a su vez está compuesta por una variada gama de hidrocarburos con el fin de reducir la fricción de las partes rodantes, así como proteger contra la corrosión y de igual manera la limpieza de piezas que lo requieran. Estos aceites lubricantes pueden llegar a estar compuestos por una cantidad de hidrocarburos de un 75% hasta un 85% de la composición total del producto (Cortés Mesa & Nielsen Avella, 2019).

Lo descrito anteriormente es comparado con la composición media de los hidrocarburos (Tabla 1) que debe contener un aceite para ser considerado como tal.

Tabla 1

Composición media de los hidrocarburos que conforman las bases del aceite.

Tipo de sustancia	Hidrocarburo	Composición
Parafinas	Alcanos	45-76%
Naftenos	Ciclo alcanos	13-45%
Aromáticos	Aromáticos	10-30%

Nota. Extraído de (Cortés Mesa & Nielsen Avella, 2019).

En general, el trabajo de los aceites lubricantes automotrices es evitar que las piezas metálicas entren en contacto para que así no ocurra fricción y se evite el desgaste dentro del motor o las piezas que funcionan en dicho momento. Así también, un aceite lubricante disipa el calor generado por la fricción y lo transfiere fuera del ciclo de la combustión (Quiminet, 2022).

Clasificación de aceites lubricantes

En la Tabla 2 se observan las diferentes organizaciones que llegan a clasificar los aceites lubricantes, siendo entre las más destacadas las clasificaciones SAE, API y ASTM.

Tabla 2

Organización	Clasificación		
Society of Automotive Engineers	SAE		
American Petroleum Institute	API		
American Society for Testing Materials	ASTM		

Clasificación de aceites lubricantes.

Nota. Extraído de (Quiminet, 2022)

Aceite lubricante SAE

El índice SAE, de manera reducida muestra la viscosidad del aceite, lo cual no tiene que ver con la calidad del aceite, contenido de aditivos, funcionamiento o aplicación para condiciones de servicio especializado. Esta clasificación indica que entre más bajo sea el grado de viscosidad para invierno (0W, 5W, 10W, 15W, etc.) el aceite es más fluido en bajas temperaturas, esto resulta en la facilidad de lubricación al momento del arranque cuando el motor del vehículo se encuentra a bajas temperaturas (Quiminet, 2022).

A continuación, se menciona un ejemplo para un mejor entendimiento del tema: un aceite SAE acompañado del sufijo 10W 30 indica la viscosidad del aceite medida a -18°C y a 100°C, en ese orden; lo que trata de indicar esta nomenclatura es que el aceite se comporta en frío como un SAE 10 y en caliente como un SAE 50 y es por eso que, si la temperatura ambiente es fría, el aceite SAE debe tener el primer número lo más bajo posible y para obtener una buena protección en caliente, es recomendable que el aceite SAE tenga el segundo número elevado (Quiminet, 2022). Finalmente, la Tabla 3 muestra la relación del valor SAE con la viscosidad cinemática a 100°C.

Tabla 3

Grado SAE	Viscosidad cinemática en cSt a 100°C
0W	3.8
5W	3.8
10W	4.1
15W	5.6
20W	6.8
25W	9.3
30W	9.3 - 12.5
40W	12.5 - 16.3
50W	16.3 - 21.9
60W	21.9 - 26.1

SAE-Grado de viscosidad del aceite.

Nota. Extraído de (Quiminet, 2022)

Propiedades físicas y químicas del aceite lubricante SAE 10W-30

La Tabla 4 enseña tanto propiedades físicas como químicas del aceite lubricante Shell HELIX HX7 grado SAE 10W-30 (Figura 1) producto usado como contaminante en este proyecto. Las propiedades más resaltantes indicadas por el fabricante Shell indican que este aceite tiene una densidad relativa de 0.861 a 15.6°C, la cual se encuentra por debajo de la densidad del agua; por lo tanto, una mezcla de estos dos componentes sería propenso a tener aceite sobrenadante en la superficie (por diferencia de densidades).

Tabla 4

Propiedad	Método	U.M	Resultado	
Aspecto	-	-	Líquido	
Color	-	-	Ámbar	
Olor	-	-	Hidrocarburo ligero	
рН	-	-	No aplicable	
Temperatura de		°C	-42	
escurrimiento	ASTM D97	Ĵ		
Punto inicial de ebullición	Estimado	°C	>280	
Punto de inflamación	ASTM D92	°C	230	
Presión de vapor (20°C)	Estimado	Pa	<0.5	
Densidad	ASTM D4052	Kg/m ³	854.7	
Solubilidad en agua	-	-	Despreciable	
Coeficiente de reparto n-				
octanol/agua (log Pow)	-	-	>0	
Viscosidad cinemática			(0.4)	
(40°C)	ASTM D445	mm ⁻ /S	69.46	
Viscosidad cinemática		2/2	10.40	
(100°C)	ASTM D445	mm ² /s	10.49	

Propiedades físicas y químicas del aceite lubricante Shell HELIX HX7 SAE 10W-30.

Nota. Información extraída de la Ficha de Datos de Seguridad Shell HELIX HX7 SAE 10W-30.

Por otro lado, el fabricante Shell indica que este aceite tiene un grado de solubilidad Insignificante, lo cual da a entender que puede llegar a solubilizarse con el agua, aunque en proporciones mínimas. Al no contar con un valor específico del grado de solubilidad de este aceite con el agua, se requiere el uso de fuentes alternas para la definición de la misma.

De acuerdo al Sistema de Gestión de Aceites Industriales Usados en España (SIGAUS), el vertido de un litro de aceite industrial usado puede contaminar un millón de litros de agua. Si fuera en el mar, el agua tardaría entre 10 y 15 años en librarse totalmente de los efectos dañinos de un aceite usado arrojado en sus aguas (SIGAUS, 2018). Asimismo, la Agencia de Protección Ambiental de los Estados Unidos (EPA por sus siglas en inglés) coincide que, un solo litro de aceite de motor usado puede contaminar un millón de litros de agua (EPA, 2023).

De esta manera, se obtienen las siguientes correlaciones:

- 1L de aceite de motor usado contamina 1000000L de agua.
- 1000mL de aceite de motor usado contaminan 1000000L de agua.
- 1mL de aceite de motor usado contamina 1000L de agua.

En la Figura 1 se visualiza el tipo de aceite lubricante utilizado en esta investigación.

Figura 1

Aceite Shell HELIX HX7 con grado SAE 10W-30

Asimismo, la Tabla 5 muestra otras características a tomar en cuenta respecto al aceite Shell HELIX HX7 SAE 10W30. Entre las más importantes, se destaca la reactividad del aceite, el cual indica que este producto reacciona con agentes oxidantes fuertes, tales como el superóxido (O_2^-) y además se menciona que este aceite es químicamente estable (Primax S.A., 2020).

Por otro lado, referente a los daños fisiológicos en el ser humano, se encuentra que este aceite tiene una toxicidad baja (oral, inhalación y cutánea); sin embargo, el contacto con este producto puede irritar la piel y producir acné, asimismo, el contacto con la vista podría resultar levemente irritante. Finalmente, se mencionan como métodos de eliminación del aceite la recuperación o el reciclaje de ser posible y, de manera complementaria se menciona que este producto no debe ser enviado a drenajes o cursos de agua y, en general, no debe permitirse que esta sustancia contamine el suelo o agua (Primax S.A., 2020).

Tabla 5

Consideración	Resultado
Reactividad	Reacciona con agentes oxidantes fuertes.
Estabilidad química	Estable
Métodos de eliminación	Recuperar o reciclar si es posible.
	Es responsabilidad del productor de residuos determinar la
	toxicidad y las propiedades físicas del material producido para
	determinar la clasificación de residuos apropiada y los métodos
	de eliminación de conformidad con los reglamentos en vigor.
	No eliminar enviando al medio ambiente, drenajes o cursos de
	agua. No deberá permitirse que el producto residual contamine
	el suelo o el agua subterránea, o eliminarse en el medio
	ambiente.
Toxicidad	Toxicidad baja
Irritación	Levemente irritante para la piel. El contacto prolongado o
	repetido en una piel no adecuadamente limpia puede obstruir los
	poros de la piel provocando disfunciones como acné producido
	por salpicaduras de aceite o foliculitis.
	Levemente irritante para la vista.

Otras consideraciones importantes del aceite Shell HELIX HX7 SAE 10W-30.

Nota. Información extraída de la Ficha de Datos de Seguridad Shell HELIX HX7 SAE 10W-30.

2.2.2. Dióxido de Titanio.

El semiconductor dióxido de titanio (TiO₂) llega a ser un fotocatalizador económico y no tóxico; también, posee propiedades estables de absorción de luz y carga (Weng Shin y otros, 2019). Existen 3 polimorfos comunes de TiO₂ (Figura 2) los cuales son las estructuras cristalinas de anatasa, rutilo y brookita (S, ZA, AT, & SB, 2015). Se indica que un catalizador de TiO₂ que contenga una mezcla de anatasa y rutilo tiene un mayor rendimiento fotocatalítico en comparación con la anatasa pura y el rutilo (Weng Shin y otros, 2019).

Figura 2

*Estructuras cristalinas existentes del TiO*₂.

Nota. A la izquierda, estructura del Rutilo; en el centro, estructura de la Brookita y a la derecha, estructura de la Anatasa. Extraído de (S, ZA, AT, & SB, 2015).

Las uniones de fase en TiO₂ permiten el transporte de portadores de carga de un polimorfo a otro y reducen el efecto de recombinación de huecos de electrones. Por otro lado, se indica que el TiO₂ tiene una energía de brecha de banda ancha de 3.0 a 3.2 eV y solo puede llegar a excitarse con luz ultravioleta con una longitud de onda inferior a 387nm (Weng Shin y otros, 2019).

Lo mencionado en el párrafo precedente también tiene concordancia con lo mencionado por UG Akpan y BH Hameedy en 2009, lo cual se cita a continuación:

"Aunque el TiO₂ tiene la desventaja de no ser activado por la luz visible, sino por la luz ultravioleta (UV), tiene la ventaja sobre los demás porque es química y biológicamente inerte, fotocatalíticamente estable, relativamente fácil de producir y usar, capaz de catalizar reacciones de forma eficiente, barata y sin riesgos para el medio ambiente ni para los seres humanos".

Así también, el TiO₂ es un fotocatalizador que ofrece fotocatálisis heterogénea en presencia de semiconductores que pueden descomponer sustancias acuosas generando hidroxilo (OH⁻) y superóxido (O₂⁻) radicales, esto bajo radiación UV (Mohammad Alizadeh , Behnoush, & Hossein, 2014). El TiO₂ es un semiconductor y funciona por la excitación de un electrón de la banda de valencia. Esta excitación se da por fotones de longitud de onda de 365nm o inferiores. El fenómeno es un efecto fotoeléctrico, donde la cantidad de electrones excitados, es decir, que saltan de la banda de valencia a la banda de conducción depende de la intensidad o cantidad de fotones que sean absorbidos por el semiconductor (Valencia Sánchez , Reinosa Osorio, & Aríaz Ramírez, 2012).

Catalizador soportado

Estudios relacionados a la fotocatálisis mencionan el uso de un catalizador soportado como una opción al momento de realizar procesos de fotocatálisis, si bien es cierto que un catalizador soportado reduce el rendimiento del sistema, a comparación de si el catalizador estuviera suspendido, también, un catalizador soportado puede eliminar la necesidad de recuperar el catalizador, reduciendo en gran medida el coste global (Blanco Gálvez, y otros, 2001).

Velosa (2018) estudió la aplicación del proceso de fotocatálisis para degradar hidrocarburos presentes en agua, en el cual para realizar la degradación fotocatalítica usó TiO₂ modificado con Fe₂O₃ y este fue soportado en placas de polimetilmetacrilato, llegando a obtener porcentajes de degradación que varían desde 75% al 99%; con lo cual se puede indicar que un sistema de catalizador soportador razonablemente eficiente debe tener una actividad fotocatalítica adecuada (comparable a sistemas en los que el catalizador se encuentra suspendido), una baja pérdida de carga, larga duración y coste razonable (Blanco Gálvez, y otros, 2001).

Finalmente, en referencia al uso de soportes para el catalizador TiO₂, se cita lo siguiente:

"Los soportes ensayados hasta ahora incluyen fibra de vidrio, fibras metálicas, mallas de acero, aluminio y distintos tipos de plásticos y cerámicas como alúmina, carburo de silicio, etc. en las más variadas formas. Algunos ejemplos de técnicas viables utilizadas para soportar el catalizador son impregnaciones mediante disolventes, deposiciones mediante sustancias precursoras, técnicas sol-gel, etc" (Blanco Gálvez, y otros, 2001).

2.2.3. Luz Ultravioleta.

La radiación o luz ultravioleta forma parte del espectro electromagnético y esta se encuentra entre los rayos X y la luz visible (Figura 3), asimismo, se definen cuatro regiones de este espectro UV-vacío entre 100 y 200nm, UVC entre 200 y 280nm, UVB entre 280 y 315nm, y UVA entre 315 y 400nm (Wright & Cairns, 1998).

Figura 3

			Espectro	Electromag	gnético		
Rayos Cósmicos	Rayos Gama	Rayos X	Ultra Violeta	Luz Visible	Infrarojo	Micro Ondas	Ondas Radiales
		1	100	400			
		Escala J	Expandic	la de Radiac	ion Ultraviol	eta	
		Locala	Expanded			otu	
Rayos X	UV al vacío)	UVC	UVB	UVA	Luz Visib	le
1	00		200 254	280	315	400	800

Espectro electromagnético y escala expandida de radiación ultravioleta.

Nota. Extraído de (Wright & Cairns, 1998)

Una fuente natural de luz ultravioleta es el sol, el cual emite luz UVA, UVB y UVC; sin embargo, la absorción de radiación de longitud de onda corta por la capa de ozono de la tierra hace que ingrese solamente el 5% de UVB y cantidades insignificantes de luz UVC; mientras que la luz UVA ingresa sin complicaciones (Wright & Cairns, 1998). Asimismo, los rayos UVA y UVC son los más utilizados con fines medioambientales, mientras que los rayos UVB, son utilizados con fines medicinales (Garces, 2018).

Las lámparas UV se utilizan como fuente de luz en un gran porcentaje de estudios sobre fotocatálisis, donde se incluyen estudios detallados de la degradación de una amplia gama de contaminantes, la caracterización de nuevos catalizadores, incluido el TiO₂ y sus variantes, además de la investigación de aspectos fundamentales de la fotocatálisis. Estas lámparas proporcionan luz dentro de un rango de 400 nm de longitudes continuas, lo cual es necesario para la activación del catalizador (Gulliem, 2014). En general, una típica lámpara de luz UV consiste en un tubo herméticamente cerrado de sílica vitreosa o cuarzo (estos como transmisores de luz UV), con electrodos a ambos extremos. Este tubo usualmente contiene una pequeña cantidad de mercurio y un gas noble como el argón (este gas ayuda para el arranque de la lámpara, extender la vida del electrodo y reducir las pérdidas térmicas). Para la generación de luz UV una descarga de gas es producida por un voltaje elevado a través de los electrodos. La luz UV es emitida desde la lámpara cuando el vapor de mercurio exitado por la descarga retorna a un nivel menor de energía (Wright & Cairns, 1998).

Intensidad de luz UV

La intensidad de luz ultravioleta (UV) se refiere a la cantidad de radiación electromagnética en el rango de longitudes de onda ultravioleta que llega a una superficie o área específica en un determinado período de tiempo. La luz ultravioleta es una forma de radiación electromagnética que está fuera del espectro visible, con longitudes de onda más cortas que la luz visible, generalmente en el rango de 100 nanómetros (nm) a 400 nm. Esta radiación puede ser producida por el sol o por fuentes artificiales, como lámparas UV (Weng Shin y otros, 2019).

La intensidad de la luz UV se mide típicamente en unidades como vatios por metro cuadrado (W/m²) o milivatios por centímetro cuadrado (mW/cm²), y cuantifica la cantidad de energía radiante en forma de luz UV que incide sobre una superficie en un punto dado (Weng Shin y otros, 2019).

Potencia de luz UV

La potencia de luz ultravioleta (UV) se refiere a la cantidad de energía radiante emitida en forma de luz ultravioleta. La luz ultravioleta es una forma de radiación electromagnética que tiene longitudes de onda más cortas que la luz visible, lo que significa que es invisible para el ojo humano. Se encuentra en el espectro electromagnético entre la luz visible y los rayos X (Hugh D. & Roger A., 2012).

La potencia de la luz UV se mide generalmente en vatios (W) o en unidades relacionadas, como milivatios (mW), dependiendo de la aplicación y la intensidad de la luz (Hugh D. & Roger A., 2012).

La potencia de la luz y la intensidad de la luz se relacionan de la siguiente manera:

- Potencia de luz (P): La potencia de luz se refiere a la cantidad total de energía radiante emitida por una fuente de luz en todas las direcciones y en todas las longitudes de onda dentro del espectro electromagnético. Se mide típicamente en vatios (W).
- Intensidad de luz (I): La intensidad de la luz se refiere a la cantidad de energía radiante emitida por una fuente de luz en una dirección específica y en un área determinada. Se mide en vatios por metro cuadrado (W/m²) o unidades similares.

La relación entre la potencia de luz (P) y la intensidad de luz (I) se puede expresar mediante la ecuación 1:

$$I = P/A \tag{1}$$

Donde:

- I es la intensidad de luz en vatios por metro cuadrado (W/m²).
- **P** es la potencia de luz en vatios (W).
- A es el área sobre la cual se distribuye la potencia de luz en metros cuadrados (m²).

Esta fórmula muestra que la intensidad de luz es inversamente proporcional al área sobre la cual se distribuye la potencia de luz. En otras palabras, si se mantiene constante la potencia de luz y se reduce el área sobre la cual se distribuye, la intensidad de luz incrementará y viceversa. Esto significa que una fuente de luz puede tener una alta potencia total, pero si se dispersa sobre un área grande, la intensidad en un punto específico puede ser baja. Por otro lado, si la misma potencia de luz se concentra en un área más pequeña, la intensidad será mayor en ese punto (Hugh D. & Roger A., 2012).

2.2.4. Fotocatálisis.

La fotocatálisis es una tecnología de oxidación avanzada que consiste en utilizar un semiconductor, comúnmente dióxido de titanio (TiO₂), para fotocatalizar reacciones químicas de sustancias orgánicas e inorgánicas y obtener sustancias de menor toxicidad como el dióxido de carbono (Martinez, 2006).

A través del proceso, la radiación incidente excita un electrón de la banda de valencia a la banda de conducción, generando un par electrón-hueco, que al acercarse a la superficie del semiconductor puede generar reacciones de oxidación-reducción con las especies adsorbidas. (Giraldo, 2012). Para que ocurra la fotoactivación del TiO₂ es necesario que la superficie sea golpeada por fotones de energía igual o mayor que la energía de activación la cual se encuentra entre 3.0 y 3.2 eV (radiación inferior a 390 nm). Cuando los fotones llegan a ser absorbidos por la superficie del TiO₂ los electrones son promovidos de la banda de valencia a la banda de conducción (a esto se le llama separación de pares electrón-hueco) ; algunos pares electrón-hueco llegan a recombinarse inmediatamente mientras que los huecos fotogenerados residuales y los electrones promovidos restantes dan inicio a las vías reductoras y oxidativas (Turola, 2014).

Los electrones promovidos reaccionan principalmente con los iones hidroxilo y las moléculas de oxígeno lo cual produce radicales hidroxilo e iones superóxido. Estas dos especies

producidas en conjunto con los huecos fotogenerados tienen una alta reactividad, escasa selectividad y corta vida útil promoviendo de esta manera reacciones redox que conducen a la descomposición de contaminantes, generalmente hasta una mineralización completa (Turola, 2014). En la Figura 4 se observa todo el proceso descrito anteriormente.

Figura 4

Esquema del proceso de fotocatálisis.

Nota. A: Irradiación superficial, B: Separación de pares electrón-hueco, C: Recombinación de pares electrón-hueco, D y E: Vías reductoras y oxidativas, F: reacción redox para la recomposición de contaminates. Tomado de (Turola, 2014).

Este tipo de reacciones son activadas por la absorción de un fotón con suficiente energía, el objetivo es tener una reacción entre los electrones activados con un oxidante para producir un producto reducido, así mismo una reacción entre los huecos generados con un reductor para producir un producto oxidado. (AKpan, 2009) De acuerdo a lo expuesto por Turola (2014), las reacciones principales en la superficie del semiconductor TiO_2 se expresan desde la ecuación 2 hasta la 9.

$$TiO_2 + hv(UV) -> TiO_2(e_{CB-} + h_{\nu B+})$$
 (2)

$$TiO_2(h_{\nu B+}) + H_2O \to TiO_2 + H^+ + OH^-$$
(3)

$$TiO_2(h_{\nu B+}) + OH^- > TiO_2 + OH^-$$
 (4)

$$TiO_2(e_{cB-}) + O_2 -> TiO_2 + O_2$$
 (5)

$$0_{2-} + H^+ \rightarrow H 0_2. \tag{6}$$

$$D_{ye} + OH^{-} > productos de aegradación.$$

$$(7)$$

$$D_{ye} + h_{vB+} \rightarrow productos \ de \ oxidación \tag{8}$$

 $D_{ye} + e_{cB-} -> productos de reducción$

Dónde: h_v es la energía de fotón requerida para excitar el electrón del semiconductor desde la región de la banda de valencia vB a la región de la banda de conducción cB (AKpan, 2009).

La reacción fotocatalítica es endotérmica mientras sucede la generación de electronoes promovidos y huecos, ya que los electrones de la banda de valencia requieren energía para saltar a la banda de conducción, sin embargo, la recombinación de los pares electrón-hueco (expresada mediante la ecuación 10), es un mecanismo que genera calor y, por lo tanto, también se considera el proceso de fotocatálisis como una reacción exotérmica.

$$h_{VB}^+ + e_{CB}^- > \text{calor} \tag{10}$$

Para realizar el proceso de fotocatálisis se debe tomar en cuenta el tipo de fotocatalizador, tipo de soporte de catalizador, intensidad de luz UV, velocidad de agitación, sustancia a degradar y el tiempo de reacción. La fotocatálisis con luz ultravioleta y dióxido de titanio es un proceso que implica el uso de un catalizador sólido (en este caso, dióxido de titanio) para acelerar la descomposición de contaminantes orgánicos mediante la exposición a la luz ultravioleta (De Lasa, Parekh, & Maldonado , 2005).

De acuerdo a lo mencionado por De Lasa y Maldonado (2005), la metodología de este proceso incluye los siguientes pasos:

 Preparación del catalizador: El dióxido de titanio se puede preparar mediante diferentes métodos, como la hidrólisis de tetraisopropóxido de titanio o la síntesis hidrotérmica. Una vez preparado, se debe secar y calcinar a una temperatura adecuada.

(9)

- Preparación de la solución de contaminante: Se disuelve el contaminante orgánico en agua para crear una solución con una concentración deseada.
- Preparación de la suspensión catalizadora: Se agrega el catalizador al agua que contiene el contaminante orgánico para crear una suspensión.
- Exposición a la luz ultravioleta: La suspensión se expone a la luz ultravioleta, que activa el dióxido de titanio y acelera la descomposición del contaminante orgánico. El tiempo de exposición dependerá de la concentración del contaminante y la intensidad de la luz.
- Análisis de los resultados: Se analiza la cantidad de contaminante orgánico que se ha descompuesto mediante técnicas analíticas como la cromatografía de gases o la espectroscopia UV-Vis.

Es importante destacar que la eficacia de este proceso depende de varios factores, como la concentración y el tipo de contaminante orgánico, el tipo de dióxido de titanio utilizado, la intensidad de la luz y el tiempo de exposición. Por lo tanto, se requiere una optimización cuidadosa de estos parámetros para maximizar la eficiencia de la fotocatálisis (De Lasa, Parekh, & Maldonado , 2005).

2.2.5. Demanda Química de Oxígeno (DQO).

La cantidad de oxígeno obtenida de los oxidantes químicos necesarios para oxidar completamente las sustancias dispersas o suspendidas en el agua se conoce como Demanda Química de Oxígeno (DQO) (Janeiro, 2021). Asimismo la DQO se emplea como una forma de medir la concentración de materia orgánica.

El método de la DQO se usa a menudo para medir los contaminantes en aguas naturales y residuales para evaluar la fuerza de desechos tales como aguas residuales municipales e industriales. El método DQO se usa también en centrales eléctricas, industria química, industria papelera, lavanderías y estudios medioambientales. En las plantas potabilizadoras de agua, los valores de DQO deberán ser inferiores a 10 mg/L al final del ciclo de tratamiento (Melean, 2011).

De acuerdo al Decreto Supremo N° 002-2008-MINAM (anexo 3), el límite del valor de DQO para aguas que pueden ser potabilizadas con tratamiento avanzado es de 30 mg/L. Así mismo para riego de vegetales y bebidas de animales es de 40 mg/L, también se puede observar que según el Decreto Supremo N° 003-2010-MINAM (anexo 2), el límite para los efluentes de PTAR para vertidos a cuerpos de agua es de 200mg/L.

2.2.6. Hidrocarburos Totales de Petróleo.

La medida de Hidrocarburos Totales de Petróleo (HTP) en agua es un indicador de la cantidad de compuestos orgánicos que se encuentran disueltos o en suspensión en el agua y que provienen de fuentes de hidrocarburos como el petróleo. Los HTP son compuestos que pueden tener efectos nocivos sobre la vida acuática y también pueden ser perjudiciales para la salud humana si se ingieren en grandes cantidades. Por lo tanto, medir la cantidad de HTP en el agua es importante para asegurar que el agua sea segura para el consumo humano y para el medio ambiente. Los límites aceptables de HTP en agua varían según el uso que se le vaya a dar al agua. Por ejemplo, los límites permitidos en agua potable son mucho más bajos que en agua para riego o para uso industrial (Kuppusamy & Maddela, 2020).

La medición de Hidrocarburos Totales de Petróleo (HTP) en agua se realiza mediante un análisis químico del agua para determinar la cantidad de compuestos orgánicos que provienen de fuentes de hidrocarburos como el petróleo. Existen diferentes métodos para la medición de HTP en agua, pero los más comunes son las mencionadas por (Moreira & Guevara, 2011).

- Espectrofotometría UV/VIS: Este método se basa en la capacidad de los compuestos orgánicos presentes en el agua para absorber la luz en una determinada longitud de onda. Los compuestos orgánicos que provienen del petróleo, incluyendo los HTP, tienen una absorción característica en el rango de longitud de onda de 200 a 350 nm, por lo que la medida de la absorción de la luz en este rango puede usarse para cuantificar la concentración de HTP en el agua.
- Extracción por solventes y gravimetría: Este método implica la extracción de los compuestos orgánicos del agua mediante un solvente, como el hexano o el éter de petróleo, y la posterior evaporación del solvente para obtener los compuestos orgánicos en su forma pura. La cantidad de HTP se determina mediante la pesada de los compuestos orgánicos después de la evaporación.
- Cromatografía de gases: Este método implica la separación de los compuestos orgánicos presentes en el agua mediante cromatografía de gases y la identificación y cuantificación de los diferentes componentes mediante la comparación de los tiempos de retención y los espectros de masas de los compuestos.

Cada método tiene sus ventajas y desventajas, y la elección del método depende de factores como el tipo de muestra de agua, la concentración esperada de HTP, el costo y la

disponibilidad de los equipos y reactivos necesarios. En cualquier caso, la medición de HTP en agua es importante para asegurar la seguridad y la calidad del agua para su uso. (Moreira & Guevara, 2011).

CAPÍTULO III: Materiales y métodos

La investigación se realizó en el Laboratorio de Hidrocarburos de la Facultad de Ingeniería de Procesos de la Universidad Nacional de San Antonio Abad del Cusco.

3.1. Tipo y Diseño de Investigación

Tipo de investigación

La investigación es de tipo aplicada ya que se pretende utilizar el proceso de fotocatálisis para solucionar el problema de contaminación del agua por derrames con hidrocarburos, en este caso aceite lubricante comercial. (Hernández-Sampieri & Torres, 2018).

Diseño de investigación

El diseño general de la investigación es experimental, ya que, este diseño estudia la manipulación intencional de la intensidad de luz UV y la concentración de catalizador TiO₂ como variables independientes para analizar sus efectos en la Demanda Química de Oxígeno eliminada e Hidrocarburos Totales de Petróleo eliminados como variables dependientes. La manipulación de variables se enfoca tomando en cuenta metodologías de laboratorio establecidas. (Hernández-Sampieri & Torres, 2018).

Alcance de investigación

Al realizar la pregunta: "¿Cuál es la influencia de la intensidad de luz UV y la concentración de catalizador TiO₂ en la degradación del aceite lubricante?" se realiza una relación causa-efecto de variables las cuales buscan observar el efecto en la degradación del contaminante en función de la DQO y los HTP; debido a esto, el alcance de la investigación es explicativa (Hernández-Sampieri & Torres, 2018).

Enfoque de Investigación

Al recolectar datos de los experimentos propuestos y realizar el análisis de estos datos haciendo uso de recursos numéricos y estadísticos para responder las preguntas de la investigación, el estudio realizado se considera como cuantitativo (Hernández-Sampieri & Torres, 2018).

3.2. Muestra

La muestra estuvo constituida por agua contaminada con aceite lubricante sometida previamente a un proceso de decantación, simulando contaminación de agua con hidrocarburos.

3.3. Materiales

- 02 peras de decantación de 250mL.
- 01 pera de decantación de 500mL.
- 03 soportes universales.
- 01 luna de reloj.
- 02 vaso de precipitados de 500mL.
- 01 vaso de precipitados de 1L.
- 01 pipeta de 5mL.
- 01 pipeteador.
- 01 gotero.
- 26 botellas de polietileno de 100mL (muestreo).
- 04 botellas de vidrio boca ancha de 1L (muestreo).
- 02 pliegos de papel filtro.
- 01 pliego de papel tisue.
- 02 rollo de papel toalla.
- 01 cuchara/espátula de laboratorio.
- 01 kg de hielo.
- Lentes de protección UV.
- Guantes quirúrgicos.
- Malla polisombra verde (10cm x 15cm).

3.4.Equipos

- 01 Cámara de fotocatálisis 95cm x 30cm x 40cm con revestimiento interno de espejos, espesor de 3mm.
- 01 Reactor 40cm x 10cm x 15cm de vidrio en forma de prisma rectangular, espesor de 6 mm.
- 01 Bomba peristáltica MXBAOHENG modelo BT600M. Bomba peristáltica de flujo variable 0,007> 2280 ml / min, Rango velocidad: de 0,1 a 600 rpm, Rango ml.: de 0,015 a 2.880 ml /m, Dimensiones: 254x184x0145 mm, Peso : 4,64 Kg.
- 02 lámparas de luz UVC de 32W OPALUX modelo OP-UV4A32-01, Medidas: 21X15.5X42cm, Fuente de alimentación de entrada: 220-240V 50/60Hz, Potencia de 32 W.
- 02 agitadores magnéticos CAT M-6, Platillo: Ceran® o Acero inoxidable, Platillo: 135x135 mm, Velocidad: 80 – 1600 rpm, Potencia: 600W, Agitación de volúmenes: Hasta 10 Lt. (H2O), Temperatura: 40°C – 400°C, Voltaje: AC 220-240 voltios (50/60Hz.)
- 01 Estereomicroscopio Meiji Techno modelo EMZ-13TR Serie 411249., Cuerpo: Binocular (EMZ-5) o trinocular (EMZ-5TR) giratorio 360°, Relación de Zoom: 6.5:1, Rango de Zoom: 0,7x - 4,5x, Control de zoom: Montura doble, graduada, bilateral, Magnificación: 7x - 45x (oculares 10x), Campo de visión: 32 mm - 5,1 mm.

3.5.Instrumentos

- 01 Balanza analítica modelo PB303, de precisión, peso máximo admitido 310g, peso mínimo min 0.02g.
- 02 Termómetros digital versión comercial WOREN TP-101, Rango de temperatura: -50 a 300°C, Resolución: 0.1 °C, Medición: °C/°F, Dimensiones: 240×23×23mm, Peso: 50g.

3.6.Reactivos

- 01 litro de aceite lubricante SAE 10W30.
- 06 galones de agua destilada.
- 06 gramos de catalizador TiO₂ en polvo grado anatasa marca DASHINOU DXN RT30.
- 8 onzas de metacrilato de polimetilo versión comercial VITALLOY acrílico de curado rápido (polímero).
- 15 ml de metacrilato de metilo versión comercial VITALLOY líquido de curado rápido (monómero).
- 12mL de poliepóxido versión comercial APU resina epoxi (componente A).
- 12mL de amina alifática versión comercial APU catalizador endurecedor (componente B).

3.7. Procedimientos

3.7.1. Selección del soporte de catalizador.

En el contexto de la selección del sustrato óptimo para la inmovilización del catalizador TiO₂, se llevaron a cabo ensayos utilizando dos materiales diferentes: metacrilato de polimetilo y poliepóxido.

Preparación del soporte de TiO2 en poliepóxido

La preparación del soporte de catalizador en poliepóxido se llevó a cabo siguiendo el siguiente procedimiento:

- Se tomaron 2 gramos de catalizador TiO₂ y se dividieron en fracciones de 0.5 gramos cada una.
- Se midieron 6 mililitros del componente A y se subdividieron en fracciones de 1.5 mililitros.
- Se midieron 6 mililitros del componente B y se subdividieron en fracciones de 1.5 mililitros.
- Los fragmentos subdivididos de TiO₂ se mezclaron completamente con los componentes A y B en una placa de Petri o similar.
- 5) La mezcla resultante se dejó secar durante un período mínimo de 12 horas.
- 6) Se llevó a cabo la trituración de la estructura resultante previamente preparada, en unidades más pequeñas con el propósito de prevenir su deposición en el reactor.

Es importante destacar que esta metodología se extrajo del procedimiento utilizado por Aguilar y Chicche (2022). En la Figura 5 se representa el proceso de secado del catalizador TiO₂ contenido en una matriz de poliepóxido.

Figura 5 *Catalizador TiO*₂ *soportado en poliepóxido.*

Preparación del soporte de TiO₂ en metacrilato de polimetilo

El proceso de preparación del soporte de catalizador en metacrilato de polimetilo se llevó a cabo siguiendo los siguientes pasos:

- 1) Se procedió a pesar 0.05 gramos de catalizador TiO₂.
- 2) Luego, se pesaron 0.5 gramos de metacrilato de polimetilo.
- 3) Además, se pesaron 0.5 gramos de metacrilato de metilo.
- 4) Se realizó una mezcla completa de TiO_2 con el monómero y polímero.
- 5) La mezcla resultante se dejó secar durante un período mínimo de 1 hora.
- 6) Este procedimiento se replicó en 40 ocasiones para obtener un total de 2 gramos de catalizador soportado, distribuidos en 40 esferas de metacrilato de polimetilo, cada una conteniendo 0.05 gramos de TiO₂.

La elección del metacrilato de polimetilo como material de soporte se basó en la recomendación de Blanco Gálvez y otros (2001). Además, se optó por dar forma esférica con el objetivo de maximizar la superficie de contacto con los reactivos. La Figura 6 ilustra el proceso de pesaje del catalizador y la formación de las esferas.

Soporte de catalizador en metacrilato de polimetilo.

Nota. En el lado izquierdo se lleva a cabo la medición de la masa del catalizador TiO₂, mientras que en el lado derecho se procede con la amalgamación del catalizador con el monómero y polímero, dando lugar a la formación de una estructura esférica.

3.7.2. Preparación de la muestra

La muestra se preparó de la siguiente manera:

- Utilizando una pipeta, se añadieron 2 mL de aceite lubricante a 2 L de agua destilada contenida en un vaso de precipitados (ver Figura 7).
- Se mezcló vigorosamente el agua y el aceite lubricante mediante agitación hasta que las dos fases ya no fueran fácilmente distinguibles.
- Se tomó una cantidad alícuota para realizar análisis de DQO y HTP antes de llevar a cabo la decantación.
- La mezcla se transfirió a una pera de decantación y se dejó reposar durante 10 minutos (ver Figura 8).
- 5) Posteriormente, se procedió a decantar la mezcla, dejando que el aceite sobrenadante quedara en la pera de decantación. El agua, que constituía la fase inferior, fue la muestra.

Figura 7

Preparación de la MUESTRA.

Nota. En el lado izquierdo se representa la cuantificación de 2 mililitros de aceite lubricante, mientras que en el lado derecho se aprecian los 2 mililitros de aceite lubricante que se encuentran en suspensión en agua destilada antes de llevar a cabo una agitación vigorosa.

Figura 8

Decantación de la MUESTRA.

Nota. A la izquierda se visualiza la mezcla aceite-agua dentro de una pera de decantación. A la derecha se observa la presencia de aceite sobrenadante en la mezcla aceite-agua, el cual se separó mediante el proceso de decantación.

3.7.3. Determinación de la cantidad de contaminante presente en la muestra.

Para determinar la concentración de contaminantes en la muestra, se utilizaron los siguientes parámetros analíticos:

- Demanda Química de Oxígeno (DQO).
- Hidrocarburos Totales de Petróleo (HTP).

Los análisis se realizaron en el laboratorio SLAB PERÚ. Para la DQO se aplicó el método "SMEWW-APHA-AWWA-WEF Part 5220 D, 24th Ed. 2022 Chemical Oxygen Demand (COD). Closed Reflux, Colorimetric Method" y para el análisis de los HTP se aplicó el método "EPA Method 8015 C., Rev. 3 2007".

En la Tabla 6 se presenta el instrumento de recolección de datos para registrar los valores iniciales de la DQO y los HTP, los cuales fueron proporcionados por el laboratorio SLAB PERÚ.

Tabla 6

Instrumento recolector de datos: DQO y HTP presentes en la muestra.

Prueba	Parámetro	Decantación	Resultados	Porcentaje de remoción
Pre decantación	DQO	0 min		-
Post decantación	DQO	10 min		
Pre decantación	HTP (C8-C40)	0 min		-
Post decantación	HTP (C8-C40)	10 min		

3.7.4. Proceso de fotocatálisis.

Montaje del reactor

La reacción de fotocatálisis se llevó a cabo en un reactor batch con sistema reflectante de forma prismática rectangular de vidrio con dimensiones de 40 cm x 10 cm x 15 cm (ver Figura 9). La fuente de luz UV consistió en una o dos lámparas con una potencia de 32W cada una. En el interior del reactor, se emplearon dos agitadores magnéticos para mantener una mezcla homogénea de los reactantes y evitar la sedimentación del catalizador. La entrada de la bomba peristáltica se conectó a un extremo del reactor, mientras que en el otro extremo se colocó la manguera de salida para garantizar la recirculación de los reactantes. Además, se sumergió el cuerpo de la manguera en un recipiente con hielo para controlar la temperatura de la reacción de manera precisa.

Esquema del reactor.

Nota. En el lado izquierdo, se encuentra el reactor de tipo batch que contiene la mezcla inicial, así como las esferas de catalizador soportado y los dispositivos magnéticos de agitación. En el lado derecho, se encuentran las especificaciones dimensionales del propio reactor.

Figura 10

Montaje del sistema reflectante y sistema de refrigeranción.

Nota. En el lado izquierdo, se muestra la configuración que comprende el sistema reflectante montada sobre dos agitadores magnéticos. Mientras que, en el lado derecho, se muestra el sistema de enfriamiento que es controlado mediante una bomba peristáltica.

Pruebas preliminares

En el proceso de búsqueda y definición de parámetros y las mejores condiciones de reacción, se llevaron a cabo pruebas preliminares. Se trabajaron con las siguientes condiciones de reacción para estas pruebas: la concentración del aceite lubricante contenido en agua fue de 2ml/L, se utilizaron dos lámparas de luz UV, una de 32W y otra de 150W de potencia de luz UV, también se mantuvieron constantes la concentración de catalizador TiO₂ en 1.8g/L y la velocidad de agitación a 300 RPM en todos los ensayos. Cada prueba se repitió tres veces.

En término de intensidad de luz UV, cada experiencia consideró lo siguiente:

- 32W de potencia en un área superficial 0.13m² generan una intensidad de 24.6mW/cm².
- 150W de potencia en un área superficial 0.22m² generan una intensidad de 66.8mW/cm².
 Para la toma de datos, se sacaron alícuotas en intervalos de 30 minutos para analizar la

DQO. Estas alícuotas fueron enviadas al laboratorio Louis Pasteur para el análisis de este indicador.

La Tabla 7 enseña los resultados de las pruebas preliminares. Los cuales muestran que al trabajar con una mayor intensidad de luz UV no se consiguió mejorar la degradación del aceite lubricante, ya que para una intensidad de 24.6mW/cm² se logró una degradación de contaminante del 90.1% para 5 horas de reacción, mientras que para una intensidad de luz UV de 66.8mW/cm² solamente se logró alcanzar un 80.3%. Estos resultados son graficados en la Figura 11.

Tabla 7

Resultados de pruebas preliminares con intensidades de 24.6 y 66.8 mW/cm².

Tiempo	Promedio	24.6mW/cm ²	Promedio	66.8mW/cm ²
	24.6mW/cm ²	Degradación	66.8mW/cm ²	Degradación
min	DQO mgO ₂ /L	%	DQO mgO ₂ /L	%
0	116.80		116.80	
30	35.27	69.8%	90.69	22.4%
60	37.37	68.0%	26.90	77.0%
90	26.07	77.7%	23.73	79.7%
120	53.87	53.9%	42.14	63.9%
150	47.40	59.4%	52.73	54.9%
180	22.53	80.7%	42.17	63.9%
210	16.53	85.8%	42.10	64.0%
240	13.47	88.5%	25.60	78.1%
270	12.53	89.3%	24.18	79.3%
300	11.60	90.1%	23.00	80.3%

DQO vs Tiempo para intensidades de luz de 24.6 y 66.8 m W/cm^2 .

De manera complementaria, se realizó la toma de datos del incremento de temperatura en el reactor (Tabla 8), estos resultados son graficados en la Figura 12.

Tabla 8

ura (°C)

Temperaturas dentro del reactor.

Curva del crecimiento de temperatura de reacción vs el tiempo.

En la figura 13 se puede observar el porcentaje de degradación para distintas intensidades de luz UV la cual fue estudiada por Weng Shin en 2019, resultados que fueron comparados en el capítulo 4.

Figura 13

Porcentaje de degradación para distintas intensidades de luz UV.

Nota. Extraído de (Qing'e Wang y otros, 2020).

En la figura 14 se puede observar el porcentaje de remoción frente a diferentes dosis de TiO2, la cual fue estudiada por Vargas Solla en 2016, resultados que fueron comparados en el capítulo 4.

Figura 14

Porcentaje de degradación para distintas concentraciones de catalizador TiO₂.

Nota. Extraído de (Vargas Solla, 2016).

Parámetros y variables

Parámetros del proceso

Los parámetros del proceso de fotocatálisis, tales como la concentración inicial de la muestra, la temperatura de reacción, la intensidad de agitación y el tiempo de reacción, fueron determinados a partir de investigaciones previas y estudios relacionados con la fotocatálisis. En los puntos siguientes se proporcionan detalles sobre las fuentes utilizadas y los valores específicos de los parámetros establecidos para el presente estudio.

• Concentración inicial de la muestra

Diversos autores que llevaron a cabo investigaciones sobre degradación fotocatalítica, como (Vargas Solla, 2016) y (Velosa, 2018), optaron por utilizar una concentración inicial de 1 mililitro (mL) de aceite por cada 1 litro (L) de agua. Esta elección se hizo con el propósito de emular un derrame de gran magnitud, dado que tan solo 1 mL de aceite es suficiente para saturar o contaminar 1000 L de agua. En consecuencia, para facilitar la comparación de resultados con la literatura existente, se adoptó este valor de concentración inicial previamente investigado.

• Temperatura de reacción.

La investigación de Blanco Galvez y otros (2001) concluyó que la variación de la temperatura no ejerce un impacto significativo en las velocidades de reacción fotocatalíticas. Sin embargo, en ciertos experimentos fotocatalíticos enfocados en la degradación de contaminantes distintos al aceite lubricante, se ha identificado a la temperatura como un parámetro que generalmente se debe controlar dentro del rango de 20°C a 30°C, según indican los hallazgos de Weng Shin y otros (2019).

Asimismo, de las pruebas preliminares en la Figura 12 se puede concluir que a partir de las 4 horas de reacción la temperatura llega a mantener una curva constante, variando mínimamente. Mientras que, por otro lado, la curva más grande de aumento de temperatura se da entre los 0 a 60 minutos de reacción.

El incremento de la temperatura guarda relación con lo mencionado por Bahnemann y otros (1991), donde se indica que la energía del fotón no se almacena en los productos finales, llegando a la conclusión que se viene desarrollando una reacción exotérmica y solo cinéticamente atrasada. De igual manera, también se puede visualizar que los valores de temperatura se han encontrado entre unos 20°C a 55°C, lo cual favorece el proceso de reacción, esto ya que, conforme con lo mencionado por Vargas (2016), una menor temperatura favorece la adsorción, ya que es una reacción exotérmica, mientras que, para temperaturas más altas, las cuales se encuentran sobre los 100°C, la adsorción se inhibe, lo cual llega a convertirse en una limitante para la reacción. De acuerdo con la autora, el proceso de fotocatálisis debe encontrarse entre los 20°C y 80°C para obtener resultados óptimos.

Por lo tanto, con el propósito de eliminar la temperatura como una variable influyente en la reacción, se optó por mantenerla constante alrededor de los 20°C mediante la utilización de un sistema de enfriamiento.

• Agitación

Diversos investigadores han postulado que una agitación intensa y continua de los reactivos en el interior del reactor conduce a una mejor dispersión del catalizador y previene la formación de suspensiones y depósitos en dicho reactor. Además, se ha sugerido que la incorporación de un agitador en un reactor de tipo batch tiene un impacto positivo en el proceso de reacción, ya que favorece las actividades de oxidación al aumentar la captura de oxígeno en la solución (Weng Shin y otros, 2019). En diversos experimentos fotocatalíticos, se ha observado una mejora significativa en la velocidad de reacción cuando la velocidad de agitación se mantiene por encima de 300 RPM (Turola, 2014).

Por otro lado, considerando lo observado en las pruebas preliminares, una agitación constante de 300 RPM fue suficiente para que el catalizador soportado en poliepóxido no se asiente en la base del reactor, logrando de esta manera un mayor contacto del área superficial del catalizador con el agua contaminada.

Por lo tanto, se ha decidido mantener una velocidad de agitación constante de 300 RPM en todos los experimentos llevados a cabo.

• Tiempo de reacción

Varios estudios que han implementado el proceso de fotocatálisis indican que la reacción se inicia inmediatamente después de que el semiconductor es expuesto a la radiación de fotones de luz ultravioleta (UV). Además, estos estudios señalan que la mayor parte de la degradación de los contaminantes ocurre en los primeros 90 minutos del proceso. Para lograr tasas de degradación significativamente altas, se recomienda llevar a cabo la fotocatálisis durante un período de reacción de al menos 3 horas, o incluso más (Weng Shin y otros, 2019).

Así también, analizando las pruebas preliminares en la Figura 11 se llega a concluir que no existe una variación significativa del porcentaje de degradación del contaminante entre la cuarta y quinta hora de reacción, observando que en este intervalo de tiempo se logró reducir el valor de la DQO de 13.47 a 11.60 mgO₂/L para una intensidad de luz de 24.6mW/cm²; mientras que para una intensidad de luz de 66.8mW/cm² se redujo la DQO de 25.60 a 23.00 mgO₂/L. Considerando que ambas variaciones no son significativas en comparación con lo obtenido en las primeras cuatro horas de reacción, el trabajar con un tiempo de reacción superior a cuatro horas no sería recomendable, ya que solo se incurriría en un gasto energético y de tiempo y no se llegaría a obtener una disminución del contaminante significativa.

Por lo tanto, en el contexto de esta investigación, se tomó la decisión de llevar a cabo todas las ejecuciones experimentales durante un período de 4 horas, lo cual representa una extensión de 1 hora más de lo recomendado por Weng Shin y otros (2019). Esta elección se basó principalmente en los resultados de las pruebas preliminares. La Figura 15 ilustra el diseño del reactor y resalta los valores de los parámetros seleccionados.

Figura 15

Parámetros de reacción de fotocatálisis.

Variables independientes

• Concentración de catalizador

En el contexto de reacciones fotocatalíticas utilizando fotocatalizadores basados en dióxido de titanio (TiO₂), se ha establecido que la concentración óptima de catalizador varía según el tipo de luz utilizada. Para reacciones que utilizan luz visible, la concentración de catalizador debe estar en el rango de 1.00 a 3.00 gramos por litro (g/L), mientras que para reacciones que hacen uso de luz ultravioleta (UV), el rango adecuado es de 0.25 a 2.00 g/L (Weng Shin y otros, 2019).

Con el propósito de determinar la relación entre la degradación del aceite lubricante y la cantidad de catalizador en estas condiciones, se llevaron a cabo experimentos variando la concentración del catalizador en el rango de 1.00 a 2.00 g/L.

• Intensidad de luz UV

El proceso fotocatalítico requiere la presencia de luz ultravioleta (UV) de baja frecuencia para generar huecos y electrones excitados en la superficie del catalizador, lo que impulsa la reacción de degradación. Para lograr una eficiente degradación, la intensidad de la luz UV debe estar en el rango de 25mW/cm2 o superior (Weng Shin y otros, 2019).

Considerando la ecuación 1 del capítulo 2.3.2 y un área superficial de contacto de 0.13m2, se pueden calcular las intensidades de luz UV para diferentes potencias de lámparas, obteniendo los siguientes resultados:

- Para una potencia de lámpara UV de 32W, se alcanza una intensidad de luz de 24.6mW/cm2.
- Para una potencia de lámpara UV de 64W, se logra una intensidad de luz de 49.2mW/cm2.

Dado que ambos valores de intensidad se encuentran dentro del rango recomendado por los autores, se decidió variar la potencia de la lámpara UV entre 32W y 64W para llevar a cabo un estudio sobre el efecto de esta variable en el proceso de fotocatálisis.

Variables dependientes

• Demanda Química de Oxígeno (DQO) eliminada.

La fotocatálisis es un proceso que busca principalmente la degradación de contaminantes presentes en el agua, ya sea para purificar efluentes líquidos o para su posterior utilización. En este contexto, el parámetro más utilizado para determinar la contaminación del agua antes y después del proceso es la Demanda Química de Oxígeno (DQO). Este valor está estrechamente relacionado con la concentración de contaminantes presentes en el agua, y niveles elevados de DQO indican que el agua no es adecuada para el consumo humano (Janeiro, 2021).

• Hidrocarburos Totales de Petróleo (HTP) eliminados.

En el contexto de la aplicación de la fotocatálisis para la degradación de aceite lubricante, un subproducto del petróleo, es esencial medir el valor de los HTP antes y después del proceso. Este valor proporciona una medida precisa de la cantidad total de miligramos de hidrocarburos petrolíferos que han sido degradados exitosamente mediante la fotocatálisis (Kuppusamy & Maddela, 2020).

3.7.5. Matriz de Operacionalización de Variables.

Tabla 9

Matriz de Operacionalización de variables.

TIPO DE VARIABLE	VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	UNIDADES
INDEPENDIENTES	Concentración de catalizador (cat)	Proporción de moléculas de TiO ₂ catalizador en la muestra de agua contaminada que participa en la activación de la reacción fotocatalítica.	Cantidad de catalizador presente en la solución de reacción, medida en términos de moles por litro o en gramos por litro.	g/L
	Intensidad de luz UV	Es la cantidad de radiación UVC generada sobre un determinado área para lograr la excitación del catalizador TiO ₂ .	Resulta de la división de la cantidad de Watts suministrado por la lámpara UVC con el área de contacto de la luz.	mW/cm ²
DEPENDIENTES	Demanda Química de Oxígeno (DQO) eliminada.	Cuantifica la cantidad total de compuestos orgánicos y otras sustancias reducibles presentes en una muestra acuosa, que pueden ser oxidados mediante reacciones químicas utilizando un agente oxidante fuerte.	Es la cantidad de lubricante degradado por el proceso de fotocatálisis en mgO ₂ /L.	%
	Hidrocarburos Totales de Petróleo (HTP) eliminados.	Es un indicador de la cantidad de compuestos orgánicos que se encuentran disueltos en el agua y que provienen de fuentes de hidrocarburos como el petróleo.	Es la cantidad de lubricante degradado por el proceso de fotocatálisis en mg/L.	%

3.7.6. Diseño experimental.

La Tabla 10 proporciona una descripción detallada del diseño experimental empleado en la presente investigación, en la cual se especifica el número de ensayos efectuados y la cantidad de repeticiones realizadas para cada uno de ellos. Cada uno de los ensayos realizados varía en términos de la intensidad de radiación ultravioleta (UV) y la concentración del catalizador TiO₂. En su conjunto, se llevaron a cabo un total de cuatro experimentos de reacción fotocatalítica: 2 niveles y 2 variables $2^2 = 4$.

Tabla 10

Prueba	Intensidad de luz UV (mW/cm ²)	Concentración cat. TiO ₂ (g/L)	Repeticiones
PRUEBA 1	24.6	1	1
PRUEBA 2	24.6	2	1
PRUEBA 3	49.2	1	1
PRUEBA 4	49.2	2	1
Total	-	-	4

Diseño experimental.

La Tabla 11 muestra el instrumento recolector de datos para las cuatro pruebas ejecutadas, donde se incluyen los resultados de la DQO y los HTP, así como el respectivo porcentaje de degradación de estos indicadores para la cuarta hora de reacción.

Tabla 11

Instrumento recolector de datos.

Dwysha	Tiempo de	DQO	HTP	%DQO	%HTP
TTUEDa	reacción (h)	(mgO ₂ /L)	(mg/L)	degradado	degradado
Muestra	0				
$1gTiO_2-24.6\ mW/cm2$	4				
$1gTiO_2-49.2\ mW/cm2$	4		-		-
$2gTiO_2-24.6\ mW/cm2$	4		-		-
$2gTiO_2-49.2\ mW/cm2$	4				

La Figura 16 enseña la configuración de las dos lámparas de 32 W dentro de la caja de espejos y la Figura 17 muestra ambas lámparas encendidas durante el proceso de fotocatálisis.

Figura 16

Configuración y acomodamiento del reactor con dos lámparas UV.

Figura 17

Visualización del proceso de fotocatálisis.

Nota. Se visualizan ambas lámparas encendidas, los agitadores magnéticos en movimiento y la manguera del sistema de refrigeración.

En la Figura 18 se visualizan cuarenta esferas de catalizador soportado haciendo un total de 2g. Si bien es cierto que se observa las esferas juntas en el centro del reactor, la agitación con los agitadores magnéticos aseguró que las esferas se distribuyan de manera uniforme en la mezcla.

Experiencia con 2g/L de catalizador TiO₂.

Nota. Se observan 40 esferas de catalizador soportado en metacrilato de polimetilo.

3.7.7. Cinética del proceso.

El diseño cinético propuesto para obtener la cinética del proceso fue basado en la ecuación de Langmuir-Hinshenlwood (ecuación 10), ecuación mayormente utilizada para describir la cinética de un proceso fotocatalítico:

$$\left(\frac{dC}{dt}\right)_{inicial} = -\frac{kKC}{(1+KC)} \tag{10}$$

Donde:

dC/dt: Derivada de la concentración respecto al tiempo.

C: Concentración.

k: Constante de velocidad de reacción

K: Constante de adsorción

Conforme con lo mencionado por (Blanco Gálvez, y otros, 2001), texto en el cual también se puede encontrar descrita la ecuación de Langmuir-Hinshenlwood, la ecuación 10 modela un mecanismo de reacción en el que participa un pre-equilibrio de adsorción y una reacción lenta.

La cinética de los resultados obtenidos fue determinada utilizando las pruebas de análisis de la DQO.

En la figura 19 se puede observar el modelo cinético linealizado de primer orden para una reacción de fotocatálisis a partir de la regresión lineal de la ecución de Langmuir-Hinshenlwood.

Modelo cinético linealizado en un modelo de primer orden.

Nota. Extraído de (Shahrezaei y otros, 2012).

CAPÍTULO IV: Resultados y discusión

4.1. Selección del soporte para el catalizador

De los dos materiales propuestos para el soporte del catalizador TiO₂ se obtuvieron resultados con significativas diferencias tanto para el poliepóxido y el metacrilato de polimetilo; optando hacer uso de este último como soporte para el catalizador. Las razones de esta decisión fueron estudiadas en los siguientes apartados:

Soporte de TiO2 en poliepóxido

Si bien es cierto que el poliepóxido es un soporte barato, de fácil manipulación y accesible; las pruebas preliminares con este tipo de soporte mostraron que este material no trabajó de manera apropiada bajo las condiciones establecidas, no fue estable, sufrió variación en sus propiedades mecánicas por trabajar en medio acuoso y ser irradiado por luz UV, los cuales que influyeron en la degradación del soporte. En la Figura 20 se visualiza la contaminación de la mezcla y las paredes del reactor debido a la perdida de las propiedades mecánicas del solido rígido convirtiéndose en un sólido blando que perdió su forma y al ser un polímero terminó adhiriéndose a las paredes del reactor.

En vista de lo sucedido se decidió no continuar con el uso del poliepóxido para soportar el catalizador TiO₂.

Figura 20

Soporte de TiO₂ en poliepóxido.

Soporte de TiO2 en metacrilato de polimetilo

El metacrilato de polimetilo, a diferencia del poliepóxido, no perdió sus propiedades mecánicas durante el proceso de fotocatálisis. De igual manera, se observó que este material es muy maleable y consistente, además de tener un proceso de preparación relativamente simple. Un punto importante a resaltar es que el metacrilato de polimetilo tiene la capacidad de mantener adherido a su superficie externa partículas pequeñas (en este caso el catalizador TiO₂ en polvo), lo cual resultó ventajoso al momento de querer ampliar el área superficial de contacto del material con los reactivos. La Figura 21 muestra, visto desde un estereomicroscopio, la adhesión de las partículas de catalizador en la superficie externa de la esfera de metacrilato de polimetilo.

Figura 21

Catalizador TiO₂ soportado en metacrilato de polimetilo.

Nota. A la izquierda se visualiza una esfera de metacrilato de polimetilo sin catalizador. A la derecha, se observa el resultado de añadir el catalizador al metacrilato de polimetilo; se visualiza que el catalizador se encuentra adherido en la superficie externa de la esfera.

De las pruebas preliminares se observa que el catalizador soportado en poliepóxido llegó a generar contaminación a la mezcla de aceite y agua, ya que se visualizan picos de crecimiento en las curvas de degradación, lo cual en primera instancia indicaría que se ha generado nueva materia contaminante (lo cual es improbable); la explicación más lógica sería que mientras sucedía la reacción en medio acuoso y la radiación UV afectaba al proceso de fotocatálisis, el poliepóxido vino desprendiendo partículas de contaminante lo cual tuvo como efecto el incremento del valor de la DQO, entonces, mientras esto sucedía el mismo proceso de fotocatálisis vino degradando este nuevo contaminante en la mezcla y, como este evento fue sucediendo durante toda la reacción es por ello que se observan diversos picos en las curvas; sin embargo, el uso del poliepóxido podría considerarse para estudios de fotocatálisis con periodos cortos de tiempo de reacción, tal como mostraron los resultados de Chicche y Aguilar (2022),

donde haciendo uso de catalizador TiO_2 soportado en poliepóxido lograron una remoción del 86.97% de colorante anilina contenido en agua para 2 horas de reacción y una temperatura promedio de 27°C.

La selección del soporte adecuado para el catalizador TiO₂ arrojó resultados a favor del uso del metacrilato de polimetilo, ya que este material demostró ser más confiable y una buena resistencia al medio acuoso y la radiación UV.

4.2. Determinación de la cantidad de contaminante presente en la muestra

En la Tabla 12 se muestran los resultados de DQO y HTP previa y post decantación, así también se añade una columna con el porcentaje de remoción del contaminante.

Tabla 12

Prueba	Parámetro	Decantación	Resultados	Porcentaje de remoción
Pre decantación	DQO	0 min	87.23 mgO ₂ /L	-
Post decantación	DQO	10 min	46.14 mgO ₂ /L	47.10%
Pre decantación	HTP (C8-C40)	0 min	827.20 mg/L	-
Post decantación	HTP (C8-C40)	10 min	159.46 mg/L	80.72%

DQO y HTP presentes en la muestra.

Cabe mencionar que la prueba de HTP analiza solamente el 60% de la composición de la del aceite lubricante, los hidrocarburos entre C8 y C40, mientras que la DQO analiza el 100% de los contaminantes presentes en la mezcla, debido a esto se observa una diferencia entre ambos porcentajes de remoción.

Los compuestos orgánicos Cyclopentasiloxane, decamethyl-, Cyclohexasiloxane, dodecamethyl- (C₁₂H₃₆O₆Si₆) y Morphinan que representan un 40.4% del aceite lubricante no fueron reconocidos por el análisis de HTP.

La Tabla 13 representa los resultados cromatográficos para el aceite lubricante utilizado.

Tabla 13

Compuestos orgánicos	Fórmula química	Pto. Ebullición °C	Contenido relativo %
Cyclopentasiloxane,	$C_{10}H_{30}O_5Si_5$	210	4.3
decamethyl			
Cyclohexasiloxane,	$C_{12}H_{36}O_6Si_6$	245	30.3
dodecamethyl			
Tetradecane	$C_{14}H_{30}$	253.6	6.3
Hexadecane	$C_{16}H_{34}$	286.9	9.5
Heptadecane	$C_{17}H_{36}$	302	11.6
Eicosane	$C_{20}H_{42}$	343	5.7
Morphinan	$C_{23}H_{35}NO_3Si_2$	350	5.8
Others Hydrocarbons	C ₂₁ - C ₄₀	>350	26.5

Resultados cromatográficos del aceite lubricante utilizado.

Nota. Resultados obtenidos en el cromatógrafo de gases de la UNSAAC.

La aplicación de un método de separación físico, como lo es la decantación, ha mostrado resultados favorables en lo que respecta a la reducción de los valores de DQO y HTP iniciales presentes en la mezcla. Se observa un porcentaje de remoción de contaminante del 47.1% para la DQO y un 80.72% para los HTP.

4.3. Proceso de Fotocatálisis

En la Tabla 14 se presentan los resultados del proceso de degradación fotocatalítica para las cuatro horas de reacción en todas las pruebas.

Tabla 14

	Concentración	Intensidad	Resultados	Resultados	DQO	HTP
Prueba	de catalizador	de luz UV	DQO	HTP	degradado	degradado
	(gTiO ₂ /L)	(mW/cm ²)	(mgO ₂ /L)	(mg/L)	(%)	(%)
1	1	24.6	21.32	20.73	53.8	87
2	1	49.2	19.76	-	57.2	-
3	2	24.6	10.00	-	78.3	-
4	2	49.2	10.00	12.76	78.3	92

Resultados de las 4 pruebas de degradación fotocatalítica.

De la Tabla 14 se observa que todas las pruebas obtuvieron un porcentaje de degradación de al menos un 50%; sin embargo, se observa que las pruebas que tuvieron la menor concentración de catalizador (1g/L) alcanzaron porcentajes de degradación significativamente menores en comparación a las pruebas que trabajaron con la mayor concentración de catalizador (2g/L). Con los resultados de la Tabla 14 se llegó a calcular el efecto de cada variable sobre el porcentaje de degradación, estos valores se muestran en la Tabla 15.

Tabla 15

Promedio	Concentración de catalizador TiO ₂	Intensidad de luz UV	Descripción
+	78.3%	67.8%	Promedio de degradación
			para valores altos
	55 50%	66 1%	Promedio de degradación
-	55.570	00.170	para valores bajos
	22.8%	1.7%	Efecto Δ

Análisis del efecto de las variables independientes.

De la Tabla 15 se observa que al incrementar la cantidad de catalizador TiO₂ de 1 a 2 g/L el porcentaje de degradación fotocatalítica aumenta en promedio un 22.8%, mientras que, el aumento de la intensidad de luz UV de 24.6 a 49.2 mW/cm² incrementa el porcentaje de degradación en promedio un 1.7%. Asimismo, la Figura 22 muestra gráficamente los efectos de cada variable independiente sobre el incremento del porcentaje de degradación fotocatalítica. Asimismo, con el objetivo de corroborar los resultados de la DQO, el análisis de los HTP también muestra que para concentraciones bajas de catalizador e intensidad de luz UV el porcentaje de degradación disminuye, mientras que al hacer uso de la mayor concentración de catalizador el porcentaje de degradación alcanza un 92%.

Efectos principales de la reacción fotocatalítica.

De esta manera, se indica que el incremento de la intensidad de luz UV en un proceso fotocatalítico no es una variable influyente, mientras que el incremento de la concentración de catalizador TiO₂ sí se considera influyente en este proceso.

Influencia de la intensidad de luz UV

Blanco Galvez y otros (2001) estudiaron la purificación de aguas mediante fotocatálisis heterogénea, encontrando que el aumento de intensidad de luz UV en el proceso fotocatalítico tuvo un bajo impacto en la degradación del contaminante, de igual manera, trabajaron con intensidades de luz elevadas e indicaron que estas condiciones de trabajo empezaron a limitar la reacción, derivando en un desaprovechamiento de fotones disponibles en la reacción hasta llegar a un punto en el que el sustrato no pudo generar más pares electrón hueco (aun cuando se aumente la intensidad de luz). Este comportamiento fue observado en los resultados de la presente investigación, donde la variación de la intensidad de luz de 24.6 a 49.2 mW/cm² no significó un aumento del porcentaje de degradación considerable y, asimismo, en las pruebas preliminares se observó que el uso de una intensidad de luz elevada (66.8 mW/cm²) disminuyó la degradación del contaminante. Conclusiones similares fueron obtenidas por Qing'e Wang y otros (2020), donde realizaron la comparación del porcentaje de degradación para diferentes intensidades de luz.

Por otro lado, Weng Shin y otros (2019) hallaron que la intensidad de luz UV debería oscilar entre los 25 mW/cm² (o superior) para obtener resultados satisfactorios de degradación de contaminante; este resultado coincide ampliamente con lo trabajado en laboratorio, ya que haciendo uso de una lámpara de 32W de potencia de luz y habiendo calculado un área superficial de contacto de 0.13m² se llegó a obtener una intensidad de luz UV de 24.6 mW/cm², la cual se encuentra muy cercano al valor establecido por el autor.

De esta manera, se indicaría como conclusiones de este análisis que incrementar la intensidad de luz UV a valores relativamente altos disminuye (y puede llegar a anular) la velocidad de reacción y, por otro lado, la variación de la intensidad de luz UV no sería significante respecto a la degradación del contaminante, solamente sería necesario asegurar que la intensidad de luz UV se encuentre en un valor cercano a 25mW/cm²; esto último dejaría abierta la posibilidad de optimizar el área de contacto superficial para poder llegar a utilizar intensidades de luz menores y así evitar un consumo energético innecesario. Finalmente, conforme a los comportamientos observados, el análisis en conjunto muestra que la variación de la intensidad de luz UV en el proceso de fotocatálisis tiene un impacto solamente en los primeros minutos de reacción mientras que en el resto del tiempo las curvas no llegan tener diferencias significativas, llegando incluso a estabilizarse en un solo valor constante.

Influencia de la concentración del catalizador

La disminución del valor de la DQO al aumentar la concentración del catalizador fue visualizada en distintos artículos y trabajos de investigación. Mohammad Alizadeh y otros (2014), realizaron la comparación del impacto de la concentración de catalizador, valor del pH de la muestra y utilización del H₂O₂ para degradar hidrocarburos aromáticos, donde concluyeron que la variación de la concentración del catalizador es la variable más influyente y que debe ser considerada como principal en cualquier estudio de fotocatálisis. Los resultados de esta investigación fueron similares; donde se observa que el porcentaje de degradación haciendo uso de 2g/L de catalizador superó al porcentaje de degradación con 1g/L de catalizador, resultado similar a lo obtenido por Yunus y otros (2017) que encontraron que al triplicar la concentración del catalizador de 1 a 3 g/L, en un proceso de fotocatálisis para degradar fenol, el porcentaje de degradación llega a alcanzar valores cercanos al 99%. Resultados análogos fueron obtenidos por Rajamanickam y otros (2016) y por Vargas Solla (2016) en sus investigaciones (resultados se muestran en la Figura 14).

Akpan y Hameed (2009) presentan una lista de contaminantes y el rango de peso del catalizador ideal para cada uno, por ejemplo, para los tintes verde rápido y azul ácido encontraron que se logra una alta degradación con una carga de catalizador TiO₂ que puede variar desde 0.5 a 4 g/L, mientras que para el tinte Naranja G se requirió de 5 a 15 g/L. Estas concentraciones de catalizador difieren a los trabajados en esta investigación, esto debido a que la composición molecular de los tintes es muy diferente a la composición de los aceites. Por el contrario, Weng Shin y otros (2019) indicaron que para degradar fenoles las concentraciones de TiO₂ varían entre 0.1 y 1 g/L, muy por debajo cuando el tratamiento es con tintes y aceites. De esta manera se indica que el rango de concentración de catalizador se encuentra en función del tipo de molécula que se desea degradar.

Por consiguiente, la variable más influyente en esta investigación es la concentración de catalizador esto ya que se demostró que existe una relación positiva entre la cantidad de catalizador y el porcentaje de degradación tal como presentan Weng Shin (2019) en sus resultados.

4.4. Determinación de parámetros

Realizando un análisis de las cuatro experiencias se determinó que con 2g/L de catalizador TiO₂ y 49.2 mW/cm² de intensidad de luz se logra una mejor degradación, sin embargo, ya que se determinó que la intensidad de luz UV no es una variable influyente en el proceso fotocatalítico sería recomendable trabajar con solamente una intensidad de luz de 24.6 mW/cm².

La Tabla 16 presenta los parámetros de reacción que asegurarían un porcentaje de degradación considerable, esto basado en la experimentación realizada.

Tabla 16

Concentración de
catalizador (g/L)Potencia de luz
UV (W)Intensidad de luz UV
(mW/cm²)Parámetros23224.6

Parámetros para lograr una mayor degradación fotocatalítica.

4.5. Cinética del proceso

La cinética del proceso catalítico se basó en la ecuación de Langmuir-Hinshenlwood, (Ecuación 10), sin embargo, para efectos de calcular las constantes de velocidad se requirió linealizar dicha ecuación.

$$\frac{dC}{dt_{inicial}} = -\frac{kKC}{(1+KC)} \tag{10}$$

De esta manera, tal como se observa en la Figura 22, los primeros 30 minutos de reacción fueron bastante críticos, llevándose en este tiempo el mayor porcentaje de degradación del aceite lubricante; luego, se observó que el proceso fotocatalítico continuó llevándose a cabo (aunque no de manera acelerada como en los primeros 30 minutos) hasta las 2 horas de reacción. Finalmente, se visualizó que durante las 2 últimas horas de reacción las curvas de degradación no variaron considerablemente, lo cual indicaría que el proceso llegó a un punto muerto y las reacciones fotocatalíticas son prácticamente nulas. Dicho esto, para obtener ecuaciones de velocidad que se ajusten a los resultados obtenidos en cada experiencia, fue necesario encontrar la cinética de reacción.

Las Tablas 17, 18, 19 y 20 muestran los resultados de los cálculos para la cinética, que en base del comportamiento de la DQO se ajusta a un modelo de segundo orden. En todas las tablas se hallaron los valores de k (constante cinética) mediante una estimación lineal con los datos de concentración y tiempo de cada reacción, asimismo se incluye el intercepto de esta estimación y el valor de la correlación R². En la parte inferior de cada tabla se escriben las ecuaciones que describen el comportamiento de cada reacción.

Tabla 17

Tiempo	С	k	D 2
(horas)	(mgO ₂ /L)	(mgO ₂ /Lh)	N
0.0	46.14		
0.5	37.66		
1.0	32.37	4.67	0.99
1.5	27.81		
2.0	23.87		
3.0	21.94		
4.0	21.32		

Cálculos para la cinética de reacción en la Prueba 1. (1 g TiO₂ 24.6 mW/cm²)

$C_{DQO} = 2.33t^2 - 15.247t + 45.44 \text{ mgO}_2/\text{L}$	(12)
$d(C_{DQO}) / d(t) = 4.67t - 15.247$	(13)
$t_{muerto} = 15.247/4.676 = 3.26 h$	

Tabla 18

Cálculos para la cinética de reacción en la Prueba 2. (1 g TiO₂ 49.2 mW/cm²)

Tiempo	CREAL	k	D ²
(horas)	(mgO ₂ /L)	(mgO ₂ /Lh)	K
0.00	46.14		
0.50	26.51		
1.00	23.15	1.80	0.94
1.50	21.47		
2.00	20.85		
3.00	20.21		
4.00	19.76		

 $C_{DQO} = 0.902t^2 - 3.28t + 16.66 \text{ mgO}_2/L$ (14) d(C_{DQO}) / d(t) = 1.80t - 5.726 (15)

 $t_{muerto} = 5.726/1.80 = 3.17 h$

Tabla 19

	Tiempo	Creal	k	D ²
	(horas)	(mgO ₂ /L)	(mgO ₂ /Lh)	K-
_	0.00	46.14		
	0.50	15.51		
	1.00	12.91	0.79	0.90
	1.50	12.81		
	2.00	12.33		
	3.00	10.00		
	4.00	10.00		

Cálculos para la cinética de reacción en la Prueba 3. (2 g TiO₂ 24.6 mW/cm²)

$C_{DQO} = 0.436t^2 - 3.29t + 16.063 \text{ mgO}_2/\text{L}$	(16)
$d(C_{DQO}) / d(t) = 0.79t - 3.281$	(17)
$t_{muerto} = 3.281/0.79 = 4.13 h$	

Tabla 20

Cálculos para la cinética de reacción en la Prueba 4. (2 g TiO₂ 49.2 mW/cm²)

Tiempo	Creal	k	D ²
(horas)	(mgO ₂ /L)	(mgO ₂ /Lh)	ĸ
0.00	46.14		
0.50	14.26		
1.00	13.20	0.873	0.92
1.50	13.15		
2.00	10.46		
3.00	10.00		
4.00	10.00		

 $C_{DQO} = 0.397t^2 - 3.281t + 16.668 \text{ mgO}_2/L$ (18) $d(C_{DQO}) / d(t) = 0.873t - 3.29$ (19) $t_{muerto} = 3.29 / 0.87 = 3.77 \text{ h}$

Variación de la DQO en función del tiempo.

Las ecuaciones 13, 15, 17 y 19 presentan la cinética para cada experimento, estas ecuaciones dan a entender que posterior a las 2 horas de reacción el valor de la DQO disminuye de manera insignificante para cada hora, indicando que el proceso de fotocatálisis sigue ocurriendo, pero en mucha menor medida.

De las tablas 17, 18, 19 y 20 se observa que las pruebas que hicieron uso de 1g/L y 2 g/L de catalizador mostraron un mejor ajuste a las ecuaciones cinéticas, ya que obtuvieron valores de R² superiores al 0.9.

Mustafá y otros (2024) realizaron la degradación de aceite de aguas residuales aplicando el proceso de fotocatálisis heterogénea durante un periodo de dos horas, el modelo cinético que mejor se ajustó a sus resultados fue uno de primer orden (aunque también mencionan que un modelo de segundo fue funcional); resultados similares fueron obtenidos en la presente investigación ya que se determinó que durante las primeras dos horas de reacción un modelo cinético de segundo orden resultó ideal. El mismo modelo cinético de primer orden fue obtenido por Shahrezaei y otros (2012) donde degradaron aguas de una refinería de petróleo durante un periodo de dos horas aplicando fotocatálisis. Los resultados son mostrados en la Figura 23.

4.6.Discusiones complementarias

4.6.1. Análisis general proceso (decantación + fotocatálisis).

El proceso ejecutado consta de dos pasos, enfocando la atención en la fotocatálisis, el primero viene a ser el método de separación física conocida como la decantación y el segundo, la reacción de fotocatálisis, un método de degradación química, la reacción de fotocatálisis. Ambos métodos fueron aplicados con el objetivo de separar y degradar el aceite lubricante presente en agua.

La Figura 24 muestra la variación de la DQO en función del tiempo, asimismo se incluye en un mismo gráfico tanto el proceso físico como el proceso químico; de igual manera, compara los resultados (post-análisis del laboratorio) para los 4 experimentos realizados, observando de esta manera las 4 curvas de tendencia y los valores finales de la DQO en el tiempo de 4 horas de reacción fotocatalítica.

Figura 24

Remoción (física y química) del aceite y la DQO en función del tiempo.

[1]: 1g TiO₂,32W
[2]: 1g TiO₂,64W
[3]: 2g TiO₂,32W
[4]: 2g TiO₂,64W

Una de las observaciones más resaltantes de la Figura 27, es la caída del valor de la DQO a los primeros 30 minutos de reacción para las 4 curvas y por lo tanto, una de las primeras conclusiones indicaría que en los primeros 30 minutos de reacción fotocatalítica el proceso alcanzaría su apogeo en cuanto al porcentaje de degradación y conforme avanza el tiempo, la DQO llega ocasionalmente a estabilizarce en una curva con carácter decreciente próximo al cero.

La Figura 25 muestra, de manera clara, la caída de la cantidad de hidrocarburos totales de petróleo presentes en la muestra inicial, llegando a visualizarse que la decantación fue el proceso con mayor remoción en comparación con la fotocatálisis ya que ambos fluidos son inmiscibles. Por otro lado, se indica que el porcentaje de remoción de aceite llega a un 97.49%, reduciéndose la cantidad inicial de HTP desde 827.2 mg/L hasta un mínimo de 12.76 mg/L pasadas las 4 horas de reacción.

Figura 25

[2]: 1g TiO₂, 32W

Asimismo, se indica que pasadas las 4 horas de reacción aún se observa en el vaso de precipitado, utilizado para el muestreo, una cantidad mínima de contaminante (probablemente moléculas más pesadas). Si bien es cierto que en el Anexo 5 muestra la composición de las moléculas principales de la muestra de aceite lubricante (Shell HELIX HX7 - SAE 10W-30) así como su porcentaje de contenido relativo, no se tiene una confirmación de que no existan moléculas más pesadas dentro de la muestra, dejando de esta manera un porcentaje del 26.5% de otras moléculas que no fueron detectadas en el cromatógrafo de gases del laboratorio de la UNSAAC; de igual manera, cabe resaltar que dicho equipo tiene un rango de funcionamiento entre 40°C y 350°C, así que cualquier compuesto orgánico que se encuentre fuera del rango será considerado dentro de la sección "Others".

4.6.2. Estándares de Calidad del Agua (ECA) y Límites Máximos Permisible (LMP).

De manera complementaria se realiza un análisis de los valores de DQO con los estándares de la ECA para aguas en el Perú, ver Figura 26.

Figura 26

Comparación de la DQO para límites ECA.

A1: 10 mgO2/L

A2: 20 mgO2/L

A3: 30 mgO2/L

Riego: 40mgO2/L

B2 (Recreacional): 50 mgO2/L

Se observa en todas las experiencias que, solamente aplicando la decantación, se llega a superar el límite B2, indicando que este tipo de aguas pueden ser destinadas para fines recreativos. El experimento con 1g y 24.6 mW/cm², pasadas las 4 horas de reacción, llega a encontrarse dentro del tipo de agua A3, aguas que pueden ser potabilizadas con tratamiento avanzado. Consecuentemente, el experimento con 1g y 49.2 mW/cm² llega a encontrarse en el tipo de agua A2, por un pequeño margen de diferencia, estas aguas pueden ser potabilizadas por un tratamiento convencional.

Finalmente, ambas experiencias que utilizaron 2g de catalizador TiO_2 llegaron a encontrar una DQO final que se ubica dentro de la categoría A1, aguas que pueden ser potabilizadas con desinfección. Si bien es cierto que todas las experiencias muestran una reducción en el valor de la DQO, no todos los resultados se encuentran dentro del mismo límite de la ECA.

Figura 27

Similar al análisis realizado para DQO, la Figura 27 enseña los valores de HTP en mg/L, comparados con el LMP de efluentes líquidos para el sector hidrocarburos (Anexo 1). Se observa para condiciones de 1g y 24.6 mW/cm² que el valor obtenido se encuentra ligeramente por encima del LMP; por otro lado, el experimento que trabajó con 2g de catalizador TiO₂ y 44.2 mW/cm² de intensidad de luz UV alcanzó a estar por debajo del LMP.
CONCLUSIONES

- De la aplicación del método de la fotocatálisis para degradar aceite lubricante presente en agua se verificó la eficacia de este proceso. Los resultados revelaron que este proceso puede llegar a porcentajes de eliminación de contaminantes superiores al 78%, lo que sugiere que la fotocatálisis es una herramienta en la purificación del agua y la gestión de la contaminación ambiental.
- La elección del metacrilato de polimetilo como soporte del catalizador TiO₂ se ha revelado como una decisión acertada en esta investigación. Sus notables propiedades físicas, su facilidad de manipulación y su excelente desempeño en la reacción de fotocatálisis respaldan la eficacia de esta combinación. Estos resultados respaldan la importancia y el potencial de esta técnica en aplicaciones futuras de fotocatálisis, destacando la viabilidad del metacrilato de polimetilo como un soporte prometedor para la incorporación de catalizadores en procesos de eliminación de contaminantes.
- Se determinó la cantidad de contaminante presente en la muestra, obteniendo un valor de 46.14 mgO₂/L para la DQO y 159.46 mg/L para los HTP, los cuales fueron un punto de partida para la determinación de la degradación del aceite lubricante presente en agua.
- Se determinó que el incremento de la intensidad de luz UV para el proceso fotocatalítico no tuvo un efecto significativo en el porcentaje de degradación del contaminante; mientras que el incremento de la concentración del catalizador TiO₂ sí tuvo un efecto significativo en el porcentaje de degradación del contaminante.
- Los resultados de esta investigación revelan que los parámetros de reacción que obtuvieron el mayor porcentaje de degradación de aceite lubricante presente en agua consistieron en una concentración de catalizador TiO₂ de 2g/L, una intensidad de luz UV de 49.2 mW/cm² y un tiempo de reacción de 240 minutos. Estas condiciones permitieron alcanzar un porcentaje de degradación del 78.33%, evaluado en términos de la DQO y 92% evaluado en términos de HTP.
- Los resultados de las cuatro experimentaciones mostraron que el modelo cinético que mejor se ajustó a los datos a partir del comportamiento de la DQO exhibió un modelo de segundo orden. Durante las dos primeras horas, se observó una mayor degradación de contaminante, mientras que, en las dos últimas horas la degradación fue mínima.

- El agua tratada con fotocatálisis llega a encontrarse dentro de los LMP para efluentes de PTAR en el parámetro analítico de DQO y dentro los LMP de efluentes líquidos del subsector hidrocarburos en los parámetros analíticos de DQO y HTP.
- El proceso de fotocatálisis aplicado al tratamiento del agua contaminada con aceite lubricante demuestra resultados prometedores en términos de calidad y seguridad. Aunque el agua tratada con fotocatálisis no cumple completamente con los estándares de calidad del agua (ECA), es importante destacar que esta tecnología puede ser adecuada para su uso en la irrigación y suministro de agua para animales, donde sí se ajusta a los estándares establecidos.

RECOMENDACIONES

- Para próximos experimentos de aplicación de proceso de fotocatálisis, se recomienda tomar la intensidad de luz UV como una constante.
- Se sugiere evitar el contacto directo con la luz emitida por la lámpara de luz UV, ya que este tipo de luz de baja longitud de onda puede ocasionar daños a la piel.
- Se recomienda usar soportes para el catalizador TiO₂, ya que, al usar el catalizador en su forma comercial de partículas de polvo blanco, se genera un paso adicional que es la recuperación del catalizador. Un catalizador soportado evita que se tenga que recuperar el catalizador y aumenta el área superficial de contacto con la mezcla. Para un mejor tratamiento del catalizador TiO₂, se sugiere usar soportes que tengan una alta tolerancia a los cambios en el ambiente.
- Se recomienda realizar estudios fotocatalíticos para degradar hidrocarburos tomando como nuevas variables el valor del pH y la adición de H₂O₂ a la reacción. Distintos autores los cuales aplicaron la fotocatálisis para degradar otro tipo de contaminantes como tintes, aguas residuales, etc; han considerado estas dos nuevas variables y algunos concluyeron que tienen un alto efecto en el porcentaje de degradación y sería de gran interés estudiar el efecto de estas variables para degradar hidrocarburos.

REFERENCIAS BILBLIOGRÁFICAS

Aguilar, E., & Chicche, R. (2022). Inmovilización de dióxido de titanio en matrices poliméricas para el tratamiento fotocatalitico heterogeneo. Cusco.

Akbal, F., & Onar, N. (2003). Photocatalytic degadation of phenol. *Kluwer Academic Publishers*.

- Akpan, & Hameed. (2009). Parameters affecting the photocatalytics degradation of dyes using TiO2-based photocatalysts: A review. *Journal of Hazardous Materiales*.
- AKpan, U. (2009). Parámetros que afectan la degradación fotocatalitica de colorantes usando fotocatalizadores basados en TiO2. *Diario de materiales peligrosos*, 2.
- Al-Abed. (2018). The use of Nano-TiO2 in yhe Treatment of Oily Wastewater. *Journal of Environmental Science and technology*.
- Al-Khafaji. (2020). Photocatalytic Treatment of Water Contaminated with Hydrocarbons. *Water Research*.
- Asenjo y otros. (2013). Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. *Carbon Volume 55*, 62-69.

Bahneman. (1991). Mecanismo de fotocatálisis heterogénea. Puebla.

- Blanco Gálvez, J., Malato Rodríguez, S., Estrada Gasca, C. A., Bandala, E. R., Gelover, S., & Leal, T. (2001). *Purificación de aguas por fotocatálisis heterogénea*. La Plata: Estado del Arte.
- Castillo, V. (1 de Noviembre de 2010). *Bio diversidad LA*. Obtenido de Bio diversidad LA: https://www.biodiversidadla.org/Noticias/Ecuador_nuevos_derrames_en_Sacha
- Cavazos. (2014). Afectaciones y consecuencias de los derrames de hidrocarburos en suelos agrícolas de Acatzingo, Puebla, México. Puebla: Scielo.
- Centro Nacional de Salud Ambiental. (28 de Junio de 2021). Obtenido de https://www.cdc.gov/spanish/nceh/especiales/radiacionuv/index.html#print
- Cooperacción. (2023). *Cooperacción*. Obtenido de Cooperacción: https://cooperaccion.org.pe/moquegua-derrame-de-petroleo-afecta-abastecimiento-deagua-potable/
- Cortés Mesa, A., & Nielsen Avella, M. (2019). *Aprovechamiento de aceite lubricante automotriz usado*. Bogotá.
- De Lasa, H., Parekh, V., & Maldonado , M. (2005). Photocatalytic Reaction Engineering.

- EPA. (12 de Julio de 2023). *EPA en español*. Obtenido de Agencia de Protección Ambiental de los Estados Unidos: https://espanol.epa.gov/
- Ferrera y otros. (2006). Procesos de biorremediación de suelo y agua. *Revista Latinoamericana de Microbiología*, 179-187.
- Feryal, A., & Nur, O. (2002). Photocatalytic degradation of phenol. Turkía.
- Fundación Ambiente & Medio (Dirección). (2019). Planta tratamiento hidrocarburos [Película].
- Galván y otros. (2007). Los macroprocesos de la industria petrolera y sus consecuencias ambientales. Puerto Ordaz: Universidad, Ciencia y Tecnología.
- Garces, L. (2018). FeCl3 y TiO2 interaction with H2O2 in the liquid waste treatment from the textile industry using artificial Light trough factorial model. Hawai: Atlantic International University.
- Giraldo, M. G. (2012). *La fotocatálisis como alternativa para el tratamiento de aguas residuales*. Santamaría Arango.
- Gulliem, S. (2014). Aplicación De la Fotocatálisis Solar para Tratamiento de Aguas Residuales Industriales de la Foia de Castilla. Valencia: Universidad Politécnica de Valencia.
- Gullien, S. (2014). Aplicación De la Fotocatálisis Solar para Tratamiento de Aguas Residuales Industriales de la Foia de Castilla. Valencia.
- Gupta. (2014). Treatment of Oily Wastewater. Handbook of Environmental Engineering.
- Hashimoto, K. (2005). Fotocatalisis con TiO2: una descripción histórica y perspectivas futuras. *Revista Japonesa de física aplicada*, 8269- 8265.
- Hugh D., Y., & Roger A., F. (2012). Física Universitaria. Pearson Educación.
- IARC. (2023). International Agency for Research on Cancer. Obtenido de IARC 1965-2023 All Rights Reserved: https://www.iarc.who.int/
- Janeiro, M. (2021). Determinación de Demanda Química de Oxígeno (DQO). *Revista cubana de química*, 26-41.
- Kuppusamy, S., & Maddela, N. (2020). *Total Petroleum Hydrocarbons Environmental Fate, Toxicity, and Remediation.* Cham.
- Londoño, M. (2021). Estandarización de métodos fisicoquímicos para el análisis de calidad de aguas crudas y residuales–DBO5, DQO. *Revista científica de química*, 50-67.

- Macas, R. (2020). Regeneración de aceites lubricantes usados que cumplan la norma NTE-INEM
 2030 en Ecuador, empleando el método de extracción con butanol y el método ácidoarcilla. *Revista de investigaciones en energía, medio ambiente y tecnología*.
- Markleen. (2010). *Markleen*. Obtenido de Markleen: https://markleen.com/es/respuestasderrames/grandes-desastres-de-derrames-en-el-mar/
- Martinez, M. G. (2006). Fotodegradación de hidrocarburos aromáticos policíclicos en combustibles fósiles, catalizada con TiO2. Catálisis Aplicada Ambiental.
- Melean, P. (2011). Estudio de la degradación de m-dresol, ácido ftálico y 2,4-diclorofenol mediante fotocatálisis heterogénea, Sintesis y Caracterización de fotocatalizadores basados en TiO2. Canarias.
- Mell (Dirección). (2021). Aplicación de pseudomonas para tratamiento de aguas contaminadas con petróleo y metales pesados [Película].
- Mendoza, E. (2015). Reciclaje de aceites usados para transmisión de potencia en las industrias y talleres de servicio de la ciudad de Milagro. *Revista de ciencia y tecnología*, 160-165.
- Mohammad Alizadeh, F., Behnoush, A., & Hossein, V. (2014). Degradación de hidrocarburos aromáticos de petroleo usando TiO2 película de nanopolvo. *Tecnología ambiental*.
- Moreira, S., & Guevara, P. (2011). Análisis de Hidrocarburos de Petroleo en Agua mediante Cromatografía de Gases. Sangolquí.
- Noblecilla, L. (2022). ¿Qué impactos ambientales ha causado el derrame de petróleo? Piura: Universidad de Piura.
- Prieto, V., & Martínez, A. (1999). La contaminación de las aguas por hidrocarburos: un enfoque para abordar su estudio. La Habana: Rev Cubana Hig Epidemiol.
- Primax S.A., C. (2020). FICHA DE DATOS DE SEGURIDAD. Helix HX7 SN 10W-30, 15.
- Protección Civil. (2010). *DERRAME DE HIDROCARBUROS*. Venezuela: Ministerio del Poder Popular para Relaciones.
- Qing'e Wang y otros. (2020). Laboratory experiment on the nano-TiO2. De Gruyter, 6-7.
- Quiminet. (2022). ¿Qué son los aceites lubricantes? *Quiminet: información y negocios segundo a segundo*.
- Rajamanickam y otros. (2016). Photocatalytic degradation of an organic pollutant by zinc oxide solar process. *Arab J Chem*.

- S, B., ZA, M. H., AT, Y., & SB, A. H. (2015). Progress on mesoporous titannium dioxide: synthesis, modification and applications. India.
- Salas, J. (2018). Tratamiento de aguas contaminadas con aceite de motores por fotocatá lisis heterogénea. Huancayo.
- Shahrezaei y otros. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Kermanshah: Powder Technology.
- SIGAUS. (2018). *SIGAUS*. Obtenido de Sistema de Gestión de Aceites Industriales Usados en España: https://www.sigaus.es/sabias-que
- Slocovich Pardo, I. M. (18 de Agosto de 2009). Contaminación en Cusco ciudad es muy alta. *El correo*.
- Turola, A. (2014). Fotocatálisis heterogénea y electrofotocatálisis sobro titanio nanoestructurado para el tratamiento de aguas residuales. Milán.
- Ungría Castillo, A. (2016). Regeneración de aguas depuradas mediante fotocatálisis heterogénea con dióxido de titanio: Análisis de variables influyentes. Zaragosza.
- Valencia Sánchez , H., Reinosa Osorio, P., & Aríaz Ramírez, V. (2012). Degradación de resorcinol por fotocatálisis heterogénea usando TiO2 y H2O2. Pereira: Scientia et Technica Año XVII.
- Vargas Solla, M. (2016). Oxidación Fotocatalítica de Derrames de Aceite en Agua con TiO2/UV. Bogotá.
- Velosa, P. C. (2018). Photocatalytic degradation of hydrocarbons present in water using Fe (III) modified TiO2. *ECOPETROL*, 3.
- Weng Shin y otros. (2019). An overview of photocatalytic degradation. Alemania: GmbH.
- Wright, H., & Cairns, W. (1998). Desinfección de agua por medio de luz ultravioleta. Ontario: Trojan Technologies Inc.
- Yunus y otros. (2017). Effect of catalyst loading on photocatalyc degradation of phenol by using N, S codoped TiO2. *Materials Science and Engineering*.
- Zhang. (2019). Photocatalytic Removal of Hydrocarbons from Wastewater. *Journal of Hazardous Materials*.

Ítem	Descripción	Cant.	U.M.	PU (Soles)	Subtotal (Soles)
1	Aceite SAE 10W30	1	UND	40	40
2	Agua Destilada	6	GLN	13	78
3	Análisis de muestras DQO	26	SER	30	780
4	Análisis de muestras HTP	4	SER	330	1320
5	Caja de Reacción de Espejos (95cmx30cmx40cm)	1	UND	68	68
6	Reactor 40x10cmx15cmm	1	UND	40	40
7	Malla Polisombra verde 10cmx15cm	1	UND	7	7
8	Catalizador TiO ₂ en Polvo	10	g	1	10
9	Cuchara/Espátula	1	UND	14	14
10	Imán Agitador Magnético	2	UND	18.5	37
11	Lámpara UV 32W	2	UND	145	290
12	Papel Filtro	2	UND	3.5	7
13	Papel Toalla	2	UND	3.5	7
14	Hielo	1	KG	6	6
15	Guantes quirúrgicos	10	PAR	1	10
16	Lentes de protección UV	2	UND	13	26
17	Resina acrílica (monómero +polímero)	2	UND	5	10
18	Pipeta 5 mL	3	UND	7	21
					S/ 2,791.00

VALORIZACIÓN

MATRIZ DE CONSISTENCIA

OBJETIVO GENERAL	VARIABLES INDEPENDIENTES	METODOLOGIA
Determinar los parámetros de operación en	Concentración de catalizador	
el método de la fotocatálisis para degradar		
aceite lubricante presente en agua, haciendo	Intensidad de luz UV	Tipo de investigación
uso de TiO2 y luz UV.		
OBJETIVOS ESPECIFICOS	VARIABLES DEPENDIENTES	AI LICADA
Definir un soporte adecuado para el	Demanda Química de Oxígeno	Diseño de investigación
catalizador TiO ₂ .	eliminada (DQO)	EXPERIMENTAL
Determinar la cantidad de contaminante que	Hidrocarburos Totales de Petróleo	Alcance de investigación
contiene la muestra decantada.	eliminados (HTP)	CAUSA-EFECTO
		EXPLICATIVA
Determinar la influencia de la intensidad de		
$Iuz \cup V y$ la concentración de catalizador		Enfoque de investigación
$11O_2$ en la degradación del aceite lubricante.		CUANTITATIVO
Dianteau un madala sinética de la magaién		
Fiantear un modelo cinetico de la reacción		
totocatalitica.		

ANEXOS

Anexo 1: Límites Máximos Permisibles (LMP) de efluentes líquidos para las actividades del subsector hidrocarburos.

Parámetro Regulado	LÍMITES MÁXIMOS PERMISIBLES (mg/l) (Concentraciones en Cualquier momento)
Hidrocarburos Totales de Petróleo (TPH)	20
Cloruro	500 (a ríos, lagos y embalses) 2000 (estuarios)
Cromo Hexavalente	0,1
Cromo Total	0,5
Mercurio	0,02
Cadmio	0,1
Arsénico	0,2
Fenoles para efluentes de refinerías FCC	0,5
Sulfuros para efluentes de refinerías FCC	1,0
Demanda Bioquímica de Oxígeno (DBO)	50
Demanda Química de Oxígeno (DQO)	250
Cloro residual	0,2
Nitrógeno amoniacal	40
Coliformes totales (NMP/100 mL)	< 1000
Coliformes Fecales NMP/100 mL)	< 400
Fósforo	2,0
Bario	5,0
pН	6,0 - 9,0
Aceites y grasas	20
Plomo	0,1
Incremento de Temperatura ª	<3°C

Fuente: DECRETO SUPREMO Nº 037-2008-PMC

Anexo 2: Límites Máximos Permisibles para los efluentes de PTAR.

PARÁMETRO	UNIDAD	LMP DE EFLUENTES PARA VERTIDOS A CUERPOS DE AGUAS
Aceites y grasas	mg/L	20
Coliformes Termotolerantes	NMP/100 mL	10,000
Demanda Bioquímica de Oxígeno	mg/L	100
Demanda Química de <mark>Oxígeno</mark>	mg/L	200
pН	unidad	6.5-8.5
Sólidos Totales en Suspensión	mL/L	150
Temperatura	°C	<35

Fuente: DECRETO SUPREMO Nº 003-2010-MINAM

Anexo 3: Estándares	nacionales	de calidad	ambiental	para agua.
---------------------	------------	------------	-----------	------------

		Aguas super	ficiales destinadas a la producció	in de agua potable	Aguas superficial	es destinadas para ación
		A1	A2	A3	81	82
PARÀMETRO	UNIDAD	Aguas que pueden ser potabilizadas con desinfección	Aguas que pueden ser potabilizadas con tratamiento convencional	Aguas que pueden ser potabilizadas con tratamiento avanzado	Contacto Primario	Contacto Secundario
1		VALOR	VALOR	VALOR	VALOR	VALOR
FÍSICOS Y QUÍMICOS						
Aceites y grasas (MEH)	mg/L	Ť	1,00	1,00	Ausencia de película visible	"
Cianuro Libre	mg/L	0,005	0,022	0,022	0,022	0,022
Cianuro Wad	mg/L	0,08	0,08	0,08	0,08	
Cloruros	mg/L	250	250	250		
Color	Color verdadero escala Pt/Co	15	100	200	sin cambio normal	sin cambio normal
Conductividad	us/cm ^{ist}	1 500	1 600	*		
D.B.O.	mg/L	3	5	10	5	10
D.Q.O.	mg/L	10	20	30	30	50
Dureza	mg/L	500				**
Detergentes (SAAM)	mg/L	0,5	0,5	na	0,5	Ausencia de espuma persistente
Fenoles	mg/L	0,003	0,01	0,1		
Fluoruros	mg/L	1				
Fósforo Total	mg/L P	0,1	0,15	0,15	**	**
Materiales Flotantes	S	Ausencia de material flotante			Ausencia de material flotante	Ausencia de material flotante
Nitratos	mg/L N	10	10	10	10	
Nitritos	mg/L N	1	1	1	1(5)	
Nitrógeno amoniacal	mg/L N	1,5	2	3,7		
Olar		Aceptable	54	**	Aceptable	**
Oxigeno Disuelto	mg/L	>= 6	»=5	>=4	>= 5	>=4
pH	Unidad de pH	6,5 - 8,5	5,5-9,0	5,5 - 9,0	6-9 (2,5)	
Sólidos Disueltos Totales	mg/L	1 000	1 000	1 500		
Sulfatos	mg/L	250			0.05	
Sulfuros	mg/L	0,00	100		0,05	
lurbledad	UNIW	3	100	7	100	
INORGANICOS	T	0.0	0.1	0.0	1 0.7	
Aluminio	mg/L	0,000	0,000	0,2	0,2	
Antimotio	mg/L	0,006	600,0	0,000	0,000	
Rano	mg/L	0,01	0,01	1	0,01	
Benlin	mall	0.004	0.04	0.04	0.04	
Boro	ma/L	0.5	0.5	0.75	0.5	
Cadmio	ma/L	0.003	0.003	0.01	0.01	**
Cobre	mg/L	2	2	2	2	
Cromo Total	mg/L	0,05	0,05	0,05	0,05	**
Cromo VI	mg/L	0,05	0,05	0,05	0,05	**
Hierro	mg/L	0,3	1	1	0,3	**
Manganeso	mg/L	0,1	0,4	0,5	0,1	
Mercuno	mg/L	0,001	0,002	0,002	0,001	**
Niquel	mg/L	0,02	0,025	0,025	0,02	п
Plata	mg/L	0,01	0,05	0,05	0,01	D,05
Plomo	mg/L	0,01	0,05	0,05	0,01	
Selenio	mg/L	0,01	0,05	0,05	0,01	
Uranio	mg/L	0,02	0,02	0,02	0,02	0,02
Vanadio	mg/L	0,1	0,1	0,1	0,1	0,1
	mg/L	3	5	2	1 3	
ORGANICOS						
I. COMPUESTOS ORGANICOS VOLAT	ILES	1000				_
Hidrocarburos totales de petróleo, HTTP	mg/L	0,05	0,2	0,2		

Fuente: DECRETO SUPREMO Nº 002-2008-MINAM

PARAMETROS PARA RIEGO DE	VEGETALES DE TALLO BA	JO Y TALLO ALTO
PARAMETROS	UNIDAD	VALOR
Fisicoquímicos		
Bicarbonatos	mg/L	370
Calcio	mg/L	200
Carbonatos	mg/L	5
Cloruros	mg/L	100-700
Conductividad	(uS/cm)	<2 000
Demanda Bioquímica de Oxígeno	mg/L	15
Demanda Química de Oxígeno	mg/L	40
Fluoruros	mg/L	1
Fosfatos - P	mg/L	1
Nitratos (NO3-N)	mg/L	10
Nitritos (NO2-N)	mg/L	0,06
Oxígeno Disuelto	mg/L	>=4
pH	Unidad de pH	6,5 - 8,5
Sodio	mg/L	200
Sulfatos	rng/L	300
Sulfuros	mg/L	0,05

Anexo 4: Parámetros para riego de vegetales de tallo bajo y tallo alto.

Fuente: DECRETO SUPREMO Nº 002-2008-MINAM

Anexo 5: Resultados del análisis cromatográficos del aceite lubricante.

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CIENCIAS LABORATORIO DE CROMATOGRAFIA Y ESPECTROMETRÍA – Pabellón de Control de Calidad AV. De la Cultura 733 CUSCO–PERÚ Contacto 973868855

RESULTADOS

Cusco, 20 de Octubre del 2022

Solicitante	: Mauricio Julio Velazco Cardenas
Tipo de Análisis	: Perfil de Compuestos volatiles
Método	: Cromatografía Gases
Muestra	: Aceite lubricante
Cantidad	:4

Se ha detectado los siguientes compuestos en la muestra M1, en las muestras 2, 3 y 4 no se ha detectado ningun componente

M1

Pico	TR	Compuestos orgánicos volátiles (VOC) Librería Nist 11	CAS	Qual	Contenido Relativo%
1	8.81	Cyclopentasiloxane, decamethyl-	000541-02-6	83	4.3
2	11.59	Cyclohexasiloxane, dodecamethyl-	000540-97-6	91	30.3
3	12.80	Tetradecane	000629-59-4	92	6.3
4	14.21	Heptadecane	000629-78-7	91	11.6
5	15.53	Hexadecane	000544-76-3	91	9.5
6	16.79	Eicosane	000112-95-8	74	5.7
7	18.23	Morphinan, 7,8-didehydro-4,5- epoxy-17-methyl-3,6- bis[(trimethylsilyl)oxy]-, (5.alpha.,6.alpha.)-	055449-66-6	89	5.8

Qual = Porcentaje de coincidencia con la base de datos Nist 11

CAS = Numero para identificar la molécula

TR = Tiempo de Retención, tiempo al cual son detectados (ver cromatograma)

= Componente generado por la columna no corresponde a la muestra

Nota: Los resultados expresa en contenido relativo de compuestos orgánicos volátiles, se reporta solo la coincidencia del mas del 70% (Qual) con la base de datos espectrales de National Institute of Standards and Technology versión 11 (NIST v11)

..... Quipico. Jorge Choquenaira Pari Analista del Laboratorio de Cromatografia y Espectrometria – UNSAAC. CQP - 914 Sco -

Anexo 6: Propiedades Físicas y Químicas del aceite lubricante

9.	PROPIEDADES FÍSICAS Y QU	IMI	CAS	
	Aspecto	÷	Líquido a temperatura ambiente.	
	Color	ŝ	ámbar	
	Olor	:	Hidrocarburo ligero	
	Umbral olfativo	:	Datos no disponibles	
	pH	1	No aplicable	
	Temperature de escurrimiento	1	-42 °C / -44 °FMétodo: ASTM D97	
	Punto inicial de ebullición e intervalo de ebullición	-	> 280 °C / 536 °FValor(es) estimado(s)	
	Punto de inflamación	÷	230 °C / 446 °F Método: ASTM D92 (COC)	
	Tasa de evaporación	1	Datos no disponibles	
	Inflamabilidad (sólido, gas)	1	Datos no disponibles	

Fuente: (Primax S.A., 2020)

Helix HX7 SN 10W-30

Versión 1.8	Fecha de revisión 04/21/2020 Fecha de impresión 04/22/2020			
Límite superior de explosividad	: Valor típico 10 %(V)			
Límites inferior de explosividad	: Valor típico 1 %(V)			
Presión de vapor	: < 0.5 Pa (20 °C / 68 °F) Valor(es) estimado(s)			
Densidad relativa del vapor	: > 1Valor(es) estimado(s)			
Densidad relativa	: 0.8547 (15 °C / 59 °F)			
Densidad	: 854.7 kg/m3 (15.0 °C / 59.0 °F) Método: ASTM D4052			
Solubilidad(es)				
Solubilidad en agua	: despreciable			
Solubilidad en otros disolventes	: Datos no disponibles			
Coeficiente de reparto n- octanol/agua	: log Pow: > 6(basado en la informac similares)	ión de productos		
Temperatura de auto- inflamación	: > 320 °C / 608 °F			
Temperatura de descomposición	: Datos no disponibles			
Viscosidad				
Viscosidad, dinámica	: Datos no disponibles			
Viscosidad, cinemática	: 69.46 mm2/s (40.0 °C / 104.0 °F) Método: ASTM D445			
	10.49 mm2/s (100 °C / 212 °F) Método: ASTM D445			
Propiedades explosivas	: No clasificado			
Propiedades comburentes	: Datos no disponibles			
Conductibilidad	: Este material no debería acumular o	estática.		

Fuente: (Primax S.A., 2020)

Anexo 7: Ficha Técnica del TiO₂ grado Anatasa

FICHAS DE INFORMACIÓN TÉCNICA

TITANIO DIOXIDO

Sinónimos:	Titanio bióxido. Blanco de titanio. Cl Pigmento blanco 6. Cl 77891. E-171.					
INCI:	Titanium dioxide.					
Formula Molecular:	TiO ₂					
Peso Molecular:	79,87					
Datos Fisico-Químicos:	Polvo blanco o casi blanco. Prácticamente insoluble en agua. No se disuelve en ácidos minerales diluidos, pero se disuelve en caliente en acido sulfúrico concentrado. Punto de fusión: 1855 °C. Puede existir en 3 formas alotrópicas: rutilo, anatasa, y brookita.					
Propiedades y usos:	Es un antipruriginoso, absorbente, y protector de uso tópico. Se usa en el tratamiento de dermatitis exhudativas y dermatitis de pañal en forma de polvos, lociones, pastas, cremas, y pomadas. Refleja la luz visible y ultravioleta, y por ello se usa también como filtro solar en ungüentos y lociones. Se emplea en cosmética en cremas de manos por ser protector frente a sustancias hidrosolubles, en preparados labiales al actuar como filtro de pantalla solar, y en polvos faciales, lápices labiales, y lacas de uñas como agente opacificante. También se usa vomo coadyuvante tecnológico en la fabricación de cápsulas y comprimidos, como pigmento, agente opacificante, y agente de recubrimiento. Es un excipiente no irritante, no sensibilizante, y no tóxico.					
Dosificación:	Vía tópica, al 1 – 30 %.					
Incompatibilidades:	Famotidina, recubrimientos de alcohol polivinílico, grasas insaturadas.					
Observaciones:	Es fotosensible. Es conveniente usar el polvo micronizado para mejorar el aspecto final de las fórmulas y para evitar la aparición de grumos.					
Conservación:	En envases bien cerrados. PROTEGER DE LA LUZ.					
Ejemplos de formulación:	Fotoprotector físico para piel acneica Titanio dióxido 5 % Ext. aloe vera 2 % Aceite de árbol del te 5 % Cremigel Acofar c.s.p. 100 g					

FICHAS DE INFORMACIÓN TÉCNICA

Pastas de dióxido de titanio

Titanio dióxido	25 g
Talco	25 g
Glicerina	20 g
Agua purificada	20 g

Modus operandi:

Pulverizar finamente el talco y el titanio dióxido. Añadir la mezcla de glicerina y agua, y trabajar en el mortero hasta que quede una pasta fina.

Titanio dióxido	20 %	6
Cloro-p m-cresol	0,1 9	6
Hierro (III) óxido	2 9	%
Caolín	10 9	%
Cinc óxido	25 9	%
Glicerina	15 9	%
Agua purificada c.s.p.	100	g

Bibliografía:

- Martindale, Guía completa de consulta farmacoterapéutica, 1ª ed. (2003).

- The Merck Index, 13ª ed. (2001).

- Formulación magistral de medicamentos, COF de Vizkaia, 5ª ed. (2004).

- Monografías Farmacéuticas, C.O.F. de Alicante (1998).
- Formulario Magistral del C.O.F. de Murcia (1997).
- Formulario médico farmacéutico, PharmaBooks, 2010.
- Handbook of Pharmaceutical Excipients, 6th ed., 2009.

Anexo 8: Ficha Técnica del Poliepóxido

Ficha de datos de seguridad del 29/5/2015, Revisión 1

SECCIÓN 1: Identificación de la sustancia o la mezcla y de la sociedad o la empresa 1.1. Identificador del producto Identificación del preparado: Nombre comercial: RESINA EPOXY Código comercial: R47 1.2. Usos pertinentes identificados de la sustancia o de la mezcla y usos desaconsejados Resina para encolar e impregnar Uso exclusivo para profesionales 1.3. Datos del proveedor de la ficha de datos de seguridad Proveedor: Industria Chimica Reggiana I.C.R. Spa Via Gasparini, 7 42124 REGGIO EMILIA Italia Tel. 0522/517803 Fax 0522/514384 Persona competente responsable de la ficha de datos de seguridad: sdsre@icrsprint.it 1.4. Teléfono de emergencia Industria Chimica Reggiana - Tel. +39-0522-514803 SECCIÓN 2: Identificación de los peligros 2.1. Clasificación de la sustancia o de la mezcla Criterios de las Directivas 67/548/CE, 99/45/CE siguientes actualizaciones: Propiedades / Símbolos: Mutagénico categoría 3 N Peligroso para el medio ambiente Frases R: R36/38 Irrita los ojos y la piel. R43 Posibilidad de sensibilización en contacto con la piel. R51/53 Tóxico para los organismos acúaticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático R68 Posibilidad de efectos irreversibles. Criterios Reglamentación CE 1272/2008 (Clasificación, Etiquetado y Empacado): ATENCIÓN, Skin Iriti, 2, Provoca irritación cutánea.
 ATENCIÓN, Skin Iriti, 2, Provoca irritación cutánea.
 ATENCIÓN, Skin Sens. 1, Puede provocar una reacción alérgica en la piel.
 ATENCIÓN, Muta. 2, Se sospecha que provoca defectos genéticos.
 Aquatic Chronic 2, Tóxico para los organismos acuáticos, con efectos nocivos duraderos,
Efectos físico-químicos nocivos para la salud humana y para el medio ambiente: Ningún otro riesgo 2.2. Elementos de la etiqueta 2.2. Ere... Símbolos: Xn Nocivo N Peligroso para el medio ambiente Frases R: R36/38 Irrita los ojos y la piel. R43 Posibilidad de sensibilización en contacto con la piel. R51/53 Tóxico para los organismos acúaticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático R68 Posibilidad de efectos irreversibles. Frases S: S23 No respirar los vapores S26 En caso de contacto con los ojos, lávense inmediata y abundantemente con agua y acúdase a un médico. S36/37 Úsense indumentaria y guantes de protección adecuados. S60 Elimínense el producto y su recipiente como residuos peligrosos S61 Evítese su liberación al medio ambiente. Recábense instrucciones específicas de la ficha de datos de seguridad Contiene: producto de reacción: bisfenol-A-epiclorhidrina; resinas epoxi (peso molecular medio <= 700) Neodecanoato di 2,3-epossipropile Disposiciones especiales: Contiene componentes expoxídicos. Véase la información facilitada por el fabricante Símbolos ATENCIÓN Indicaciones de Peligro: R47/1/ES ICR spa Página nº. 1 de 7 Via M. Gasparini, 7 42100 REGGIO EMILIA ITALY +39 0522517803

SECCIÓN 9: Propiedades físicas y químicas	
9.1. Información sobre propiedades físicas y	químicas básicas
Aspecto y color:	Líquido transparente paglierino
Olor:	Típico de disolvente
Umbral de olor:	N.D.
pH:	N.D.
Punto de fusión/congelamiento:	N.D.
Punto de ebullición inicial e intervalo	de ebullición: N.D.
Inflamabilidad sólidos/gases:	N.D.
Límite superior/inferior de inflamabili	dad o explosión: N.D.
Densidad de los vanores:	ND
Punto de ignición (flash point fn):	110°C
Velocidad de evaporación:	ND
Presión de vanor:	ND
Densidad relativa:	1 13 n/cm ³
Hidrosolubilidad:	Insoluble
Solubilidad en aceite:	ND
Temperatura de autoencendido:	ND
Temperatura de decemposición:	N.D.
Viscosidad:	400 600
Propiedades evelosives:	ND
Propiedades explosivas:	N.D.
Propiedades comburentes.	N.D.
SECCIÓN 10: Estabilidad y reactividad	
TU.1. Reactividad	
Estable en condiciones normales	
10.2. Estabilidad química	
Estable en condiciones normales.	
10.3. Posibilidad de reacciones peligrosas	
Puede inflamarse en contacto con a	gentes oxidantes fuertes.
10.4. Condiciones que deben evitarse	
Estable en condiciones normales.	
10.5. Materiales incompatibles	
Ninguna en particular.	
10.6. Productos de descomposición peligros	OS
Ninguno.	
SECCIÓN 11: Información toxicológica	
11.1. Información sobre los efectos toxicolóo	licos
Informaciones toxicológicas relativas a la me	ezcla:
N.A.	
Informaciones toxicológicas relativas a las p	rincipales sustancias presentes en la mezcla:
producto de reacción: bisfenol-A-epi	clorhidrina; resinas epoxi (peso molecular medio <= 700) - CAS: 25068-38-6
a) toxicidad aguda:	
Test: LD50 - Via: Oral - Espe	ecies: Rata > 2000 mg/kg
Test: LD50 - Via: Piel - Espe	cies: Rata > 1200 mg/kg
 d) sensibilización respiratoria o cutár 	nea:
Test: Sensibilización de la pi	iel - Vía: Piel - Especies: GUINEA PIG Positivo
Neodecanoato di 2.3-epossipropile -	CAS: 26761-45-5
a) toxicidad aguda:	
Test: LD50 - Via: Oral - Espe	ecies: Rata = 9600 mg/kg
 e) mutagenicidad en células germina 	ales:
Test: Mutagénesis - Especie	s: Salmonella Typhimurium Positivo
Las resinas enovídicas que contiene este pr	oducto son sólo débilmente irritantes. Sin embargo, todas las reginas anovídicas
nueden causar sensibilización de la piel que	varia de individuo a individuo
En una persona la dermatitie aléraica podría	no manifestarse inicialmente y anarecer sólo después de varios días o comanas da
contactos fracuentas y prolongados	no mannesiarse inicialmente y aparecer solo después de varios días o semañas de
Por este motivo, aunque los reginos con cólo	débilmente irritantes, se debe evitar quidedecomente el contacto con la sial. Llas
For este motivo, aunque las resinas son solo	succionaria de material aucha concerte el contacto con la plei. Una
Vez sensibilizada, incluso la exposición a per	quensimas cantidades de material puede causar localmente edema y entema.
Mutagenico categoria 3	and the second Declaments (52/2010/CE and as indiana abo's data
Si no se específica de otra forma, los datos r	equendos por el rregiamento 453/2010/CE que se indican abajo deben
considerarse N.A.:	

R47 / 1 / ES Página nº. 4 de 7

ICR spa Via M. Gasparini, 7 42100 REGGIO EMILIA ITALY +39 0522517803

Anexo 9: Ficha Técnica del Metacrilato de Polimetilo

* ...

METACRILATO (PMMA)

El metacrilato (polimetilmetacrilato) es un termoplástico tipo éster amorfo, transparente e incoloro de gran dureza. Posee una alta resistencia a la tracción e impacto y una excelente claridad. Resiste bien a la intemperie, siendo el material plástico más resistente en estas condiciones (incluyendo sol, lluvia, niebla salina y polución). No amarillea ni presenta fisuras frente a la acción de los rayos UV.

acterísticas técnicas	
Mecánicas	
Alargamiento a rotura	Entre 2,5 - 5%
Dureza Rockwell	En escala M: 92
Módulo de tracción	2400 - 3300 N/mm ²
Resistencia a impacto Izod	Entre 16 y 32 J*m ⁻¹
Térmicas	
Coeficiente expansión térmica lineal	Entre 70*10 ⁶ y 77*10 ⁶ K ⁻¹
Temperatura de trabajo	Desde -40ºC a 50-90ºC dependiendo de s
remperatara de trabajo	el trabajo es continuo o no.
Físicas	
Densidad	1,2 gcm ⁻³
Absorción de agua	< 0,2 %
Resistencia UV	Excelente. No amarillea ni se fisura.
Químicas	
Resistencia a compuestos quím	icos:
Ácidos minerales/orgánicos	Resistente
Ácido acético	No resistente
Ácido sulfúrico bicromático	No resistente
Acetato de etilo	No resistente
Aguarrás/alcohol	Medianamente resistente
Benzol/butanol/cetonas	No resistente
Cloruros	Resistente
Detergentes	Medianamente resistente
Ésteres	Medianamente resistente
Etanol	No resistente
Gasolina / Glicerina	Resistente
Halógenos	No resistente
Hidrocarburos alifáticos	Resistente
Hidrocarburos aromáticos	No resistente
Lubricantes/aceites (vegetales o mineralés)	Resistente
Tank to the set	Madianamanta resistante
Siliconas	Medianamente resistente

0107/50/22 100 EOS

Página 1 de 2

EICHA TÉCNICA METACRILATO (PMMA)

Co-extrusión PMMA-PVC

La coextrusión es un método de fabricación basado en la extrusión de materiales combinados con el fin de obtener un producto final con propiedades mejoradas.

Emac* fabrica Novocanto* Metacrilato mediante coextrusión de PVC y PMMA. El resultado es un perfil de PVC recubierto de PMMA. Entre las propiedades del PVC destacan: alta rigidez, resistencia a la deformación y al impacto, reducida permeabilidad y alta seguridad de funcionamiento. Dichas propiedades se complementan con las del PMMA que posee una alta resistencia a la intemperie y rayos UV, gran solidez de color, facilidad de limpieza y acabado brillante.

Novocanto[®] Metacrilato es un perfil idóneo para su colocación en piscinas debido a sus magníficas propiedades y su geometría suavemente redondeada.

Aplicaciones

El metacrilato es un material de múltiple aplicación debido a sus grandes ventajas. En general, es utilizado en productos que requieren una gran durabilidad, gran estabilidad del color o que deben resistir a la intemperie. Algunos ejemplos de utilización son:

- Construcción: mamparas, cubiertas transparentes, claraboyas, lucernarios, vitrinas etc.
- Decoración: mesas, lámparas, apliques y mobiliario en general. Tiradores, regalos, cristaleras etc.
- Luminotecnia: Anuncios luminosos, señales de tráfico, columnas luminosas etc.
- Medicina: Incubadoras, mesas de operación, recipientes especiales etc.
- Óptica: Gafas, lentes, filtros solares y fotográficos.
- Emac: Novocanto® Metacrilato, perfil ideal para exteriores y piscinas.

Limpieza y mantenimiento

La lana de acero, productos abrasivos o decapantes no están recomendados, pues podrían causar daños superficiales. Limpie el material con agua y jabón y asegúrese de emplear un paño suave que no contenga restos de partículas que puedan rayar el material

Algunos alcoholes (metanol, etanol y butanol) y solventes orgánicos (disolventes, cetonas) son perjudiciales para el material por lo que no están recomendados.

Enlaces de interés

- Guía de buenas prácticas para diseñadores de productos fabricados con materiales plásticos. AIMPLAS. ISBN: 978-84-612-9594-4
 D.L.: V-665-2009
- www.wikipedia.org
- www.plasticosferplast.com

Información Técnica

Puede ampliar información sobre las características técnicas de los productos de Emac® descargando su ficha técnica en www.emac.es. Si tiene alguna consulta no dude en contactar con nuestro Departamento Técnico en otecnica@emac.es.

En www.emac.es puede descargar el Manual Técnico de perfiles donde encontrará información sobre todas las gamas de producto: características, aplicaciones, consejos de limpieza y mantenimiento, normativas y ordenanzas que les afectan y otra información de interés.

Emac Complementos S.L. (Spain) info@emac.es // EMAC AMERICA LLC (FL,USA) sales@emac.es www.emac.es Los dotos facilitados son meramente informativos y han sido obtenidos por nuestro proveedor o por Emac[®]. En ningún coso constituyen garantía juridica en cuanto a propiedades y/o funcionalidad de la oplicación del material

Página 2 de 2

Anexo 10: Resultados emitidos por el laboratorio SLAB PERU.

KATHERINE CORAL PERALTA CIP Nº 276377

Jefe de Laboratorio

Sin la aprobación del laboratorio Sistema de Servicios y Análisis Químicos S.AC. no se debe reproducir el informe de ensayo parcial, excepto cuando se reproduce en su totalidad.

- - Los resultados de los ensayos se aplican a la muestra cómo se recibió y no se deben usar como una declaración de conformidad con una especificación o normas de productos de la entidad que lo produce.
 - El laboratorio no es responsable de la información que ha sido identificada como suministrada por el cliente.
- El muestreo está fuera del alcance de acreditación.
- -Los resultados se relacionan solamente con los ítems sometidos a ensayo.

V01

2023-04-27 Calle 22 Urb. VIPOL NARANJAL MZ E LT 07, SAN MARTÍN DE PORRES LIMA-PERÚ. Cel: 949494763 Página 1 de 4 www.slabperu.com - contacto@slabperu.com

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2023-0350

4. RESULTADOS

4.1. DESCRIPCIÓN DE MUESTRA:

Código de Laboratorio	Descripción de muestras
S-0852	PRUEBA 1.1 (c)
S-0853	PRUEBA 1.2 (c)
S-0854	PRUEBA 1.3 (c)
S-0855	PRUEBA 1.4 (c)
S-0856	PRUEBA 1.5
S-0857	PRUEBA 1.6 (c)
S-0858	PREUBA 2.1 (4)
S-0859	PREUBA 2.2 kg
S-0860	PREUBA 2.3 (c)
S-0861	PREUBA 2.4 K
S-0862	PREUBA 2.5 K
S-0863	PREUBA 2.6
S-0864	PRUEBA 3.1 KM
S-0865	PRUEBA 3.2 (c)
S-0866	PRUEBA 3.3 K
S-0867	PRUEBA 3.4 (c)
S-0868	PRUEBA 3.5 K
S-0869	PRUEBA 3.6 ICI
S-0870	PRUEBA 4.1 (c) OT OT OLOGICAL CERTISIANO E UN VESSE 10.0
S-0871	PRUEBA 4.2 4
S-0872	PRUEBA 4.3 (4)
S-0873	PRUEBA 4.4 (c)
S-0874	PRUEBA 4.5 ICI
S-0875	PRUEBA 4.6 (c)
S-0876	DQO prev 1 ml.1 L (a)
S-0877	DQO post decantación (c)
S-0878	2G, 64W (c)
S-0879	1G, 32W (c)
S-0880	HTP prev 1ml:1L (a)
S-0881	HTP post -1m-1L (c)

Sin la aprobación del laboratorio Sistema de Servicios y Análisis Químicos S.AC. no se debe reproducir el informe de ensayo parcial, excepto cuando se reproduce en su totalidad.

- Los resultados de los ensayos se aplican a la muestra cómo se recibió y no se deben usar como una declaración de
- conformidad con una especificación o normas de productos de la entidad que lo produce. El laboratorio no es responsable de la información que ha sido identificada como suministrada por el cliente.
- El muestreo está fuera del alcance de acreditación.
- -
- Los resultados se relacionan solamente con los ítems sometidos a ensayo.

V01 V01 2023-04-27
Calle 22 Urb. VIPOL NARANJAL MZ E LT 07, SAN MARTÍN DE PORRES LIMA-PERÚ. Cel: 949494763 Página 2 de 4 www.slabperu.com - contacto@slabperu.com

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2023-0350

4.2. RESULTADOS DE ANÁLISIS DE DEMANDA QUÍMICA DE OXÍGENO

Codigo de Laboratorio	Parámetro	Unidad	LC	Resultados
S-0852	Demanda Química de Oxígeno	mg /L O ₂	10.00	37.66
S-0853	Demanda Química de Oxígeno	mg/L O ₂	10.00	32.37
S-0854	Demanda Química de Oxígeno	mg/LO2	10.00	27.81
S-0855	Demanda Química de Oxígeno	mg/LO2	10.00	23.87
S-0856	Demanda Química de Oxígeno	mg/LO2	10.00	21.94
S-0857	Demanda Química de Oxígeno	mg /L O2	10.00	21.32
S-0858	Demanda Química de Oxígeno	mg /L O ₂	10.00	26.51
S-0859	Demanda Química de Oxígeno	mg/LO2	10.00	23.15
S-0860	Demanda Química de Oxígeno	mg /L O ₂	10.00	21.47
S-0861	Demanda Química de Oxígeno	mg /L O ₂	10.00	20.85
S-0862	Demanda Química de Oxígeno	mg/LO2	10.00	20.21
S-0863	Demanda Química de Oxigeno	mg /L Oz	10.00	19.76
S-0864	Demanda Química de Oxígeno	mg /L Oz	10.00	15.51
S-0865	Demanda Química de Oxígeno	mg /L O ₂	10.00	12.91
S-0866	Demanda Química de Oxígeno	mg /L O ₂	10.00	12.81
S-0867	Demanda Química de Oxigeno	mg/L O ₂	10.00	12.33
S-0868	Demanda Química de Oxígeno	mg /L O ₂	10.00	<10.00
S-0869	Demanda Química de Oxigeno	mg /L O ₂	10.00	<10.00
S-0870	Demanda Química de Oxígeno	mg /L O ₂	10.00	14.26
S-0871	Demanda Química de Oxígeno	mg /L O ₂	10.00	13.20
S-0872	Demanda Química de Oxígeno	mg /L O ₂	10.00	13.15
S-0873	Demanda Química de Oxígeno	mg /L O ₂	10.00	10.46
S-0874	Demanda Química de Oxígeno	mg /L O ₂	10.00	<10.00
S-0875	Demanda Química de Oxígeno	mg /L O ₂	10.00	<10.00
S-0876	Demanda Química de Oxígeno	mg /L O ₂	10.00	87.23
S-0877	Demanda Química de Oxígeno	ma /L O ₂	10.00	46.14

Tabla Nº1: RESULTADOS OBTENIDOS

LC: Limite de cliantificación

Sin la aprobación del laboratorio Sistema de Servicios y Análisis Químicos S.AC. no se debe reproducir el informe de ensayo parcial, excepto cuando se reproduce en su totalidad.

Los resultados de los ensayos se aplican a la muestra cómo se recibió y no se deben usar como una declaración de conformidad con una especificación o normas de productos de la entidad que lo produce.

El laboratorio no es responsable de la información que ha sido identificada como suministrada por el cliente.

El muestreo está fuera del alcance de acreditación. -

- Los resultados se relacionan solamente con los items sometidos a ensayo.

V01 2023-04-27 Calle 22 Urb. VIPOL NARANJAL MZ E LT 07, SAN MARTÍN DE PORRES LIMA-PERÚ. Cel: 949494763 Página 3 de 4 www.slabperu.com – contacto@slabperu.com

V01

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2023-0350

4.3. RESULTADOS DE ANÁLISIS DE HIDROCARBUROS TOTALES DE PETRÓLEO

Código de Laboratorio	Parámetro	Unidad	LC	Resultados
S-0878	Hidrocarburos Totales de Petróleo (C8-C40)	mg/L	0.01	12.76
S-0879	Hidrocarburos Totales de Petróleo (C8-C40)	mg/L	0.01	20.73
S-0880	Hidrocarburos Totales de Petróleo (C8-C40)	mg/L	0.01	827.20
S-0881	Hidrocarburos Totales de Petróleo (C8-C40)	mg/L	0.01	159.46

Tabla N°2: RESULTADOS OBTENIDOS

LC: Limité de quantificación

10 Información suministrada por el cliente.

FIN DE DOCUMENTO

Sin la aprobación del laboratorio Sistema de Servicios y Análisis Químicos S.AC. no se debe reproducir el informe de ensayo parcial, excepto cuando se reproduce en su totalidad.

- Los resultados de los ensayos se aplican a la muestra cómo se recibió y no se deben usar como una declaración de conformidad con una especificación o normas de productos de la entidad que lo produce.
- El laboratorio no es responsable de la información que ha sido identificada como suministrada por el cliente.
- El muestreo está fuera del alcance de acreditación. -
- Los resultados se relacionan solamente con los ítems sometidos a ensayo. _

VU1 Calle 22 Urb. VIPOL NARANJAL MZ E LT 07, SAN MARTÍN DE PORRES LIMA-PERÚ. Cel: 949494763 Página 4 de 4 www.slabperu.com - contacto@slabperu.com