UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

"DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA TURBOMÁQUINAS HIDRÁULICAS, PARA POTENCIAS DE GENERACIÓN DE ENERGÍA DE HASTA 6 kW"

TESIS PRESENTADA POR: Bach. Gustin Camacho, Riguel

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO MECÁNICO

ASESOR:

Dr. Catacora Acevedo, Edgar Alfredo

FINANCIADO POR CONCYTEC

CUSCO – PERÚ 2022

PRESENTACIÓN

Señor.

Decano de la Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica.

Señores docentes miembros del jurado.

En cumplimiento con las disposiciones del Reglamento de Grados y Títulos vigentes regidas en nuestra casa de estudios, para optar al título de Ingeniero Mecánico, doy a conocer el trabajo de investigación intitulado:

"DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA TURBOMÁQUINAS HIDRÁULICAS, PARA POTENCIAS DE GENERACIÓN DE ENERGÍA DE HASTA 6 kW".

El presente trabajo de Investigación de Desarrollo Tecnológico, es realizado de acuerdo al Plan Operativo del Proyecto de Investigación denominado: "ESTUDIO DEL COMPORTAMIENTO DE UNA BOMBA CENTRÍFUGA DE 7.5 kW DE POTENCIA, OPERANDO COMO TURBINA PARA GENERACIÓN DE ENERGÍA, MEDIANTE EL USO DE BANCO DE PRUEBAS", bajo el marco del Programa Yachayninchis Wiñarinanpaq financiado con fondos Canon, convocado por el Vicerrectorado de Investigación en el año 2017, dentro del cual la UNSAAC firma convenio con el Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) para la selección, supervisión y seguimiento de dichos proyectos por intermedio del Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT), que forma parte del Sistema Nacional de Ciencia, Tecnológia e Innovación Tecnológica (SINACYT).

Bach. Riguel Gustin Camacho.

RESUMEN

El desarrollo de la presente tesis de investigación tecnológica, está enfocado principalmente al diseño hidráulico, estructural y construcción de un banco de pruebas para ensayar turbomáquinas hidráulicas en laboratorio, el cual presenta una bomba centrífuga funcionando como turbina (BFT), y una turbina Michell-Banki, como equipos de generación no convencional y convencional respectivamente.

Ambas turbinas presentan condiciones de operación similares pensados en la evaluación y comparación de potencia generada y eficiencia. Estos equipos son accionados de manera independiente por medio de una bomba centrífuga de simulación de recurso hidráulico que entrega hasta 6 kW de potencia hidráulica dentro de un rango de operación. El diseño conceptual del banco de pruebas se realiza de acuerdo a la directriz VDI 2221 y VDI 2225, cuyo proceso permite obtener y evaluar conceptos solución, proyectos preliminares y consecuentemente el proyecto definitivo a desarrollar. A partir de este diseño conceptual, se pasa a analizar hidráulicamente el banco de pruebas compuesto por turbomáquinas, tuberías, accesorios y válvulas, que son definidos de acuerdo a manuales y normas relacionados.

Asimismo, el diseño estructural y volumetría del banco de pruebas se analizan mediante recomendaciones de manuales y análisis de esfuerzos para garantizar la rigidez estructural durante la operación. Se realiza también el diseño de cimentación por medio del análisis vibracional. Las dimensiones del banco de pruebas son de aproximadamente 3.22 m de largo por 2.85 m de ancho, con una altura máxima de 2.5 m.

El CFD y la simulación estructural mediante software también se aplican en la presente tesis, como herramientas de respaldo para comparar resultados hallados en el sistema hidráulico y analizar componentes estructurales complejos, siendo usados los programas Ansys 19 y Solidworks 2018.

PALABRAS CLAVE

Banco de pruebas, diseño, turbomáquinas, sistema hidráulico, estructura, simulación.

ABSTRACT

The development of this technological research thesis is mainly focused on the hydraulic and structural design and construction of a test bench to test hydraulic turbomachines in the laboratory, which presents a centrifugal pump operating as a turbine (BFT), and a Michell- Banki, as unconventional and conventional generation equipment respectively. Both turbines present similar operating conditions thought in the evaluation and comparison of generated power and efficiency. These equipments are driven independently by means of a centrifugal pump simulating hydraulic resource up to 6 kW of hydraulic power within an operating range.

The concept design of the test bench is developed according to the directive VDI 2221 and VDI 2225, whose process allows obtaining and evaluating solution concepts, preliminary projects and consequently the final project to be developed. From this conceptual design, the test bench is hydraulically analyzed composed of turbomachines, pipes, accessories and valves, which are defined according to manuals and related standards.

Likewise, the structural design and volumetry of the test bench is analyzed through manual recommendations and stress analysis to guarantee structural rigidity during operation. The foundation design is also carried out through the vibrational analysis. The dimensions of the test bench are approximately 3.22 m long by 2.85 m wide, with a maximum height of 2.5 m.

CFD and structural simulation through software are also applied in this thesis, as support tools to compare results found in the hydraulic system and analyze complex structural components, using the Ansys 19 and Solidworks 2018 programs.

KEYWORDS

Test bench, design, turbomachines, hydraulic system, structure, simulation.

INTRODUCCIÓN

El trabajo de investigación tecnológica planteado para la presente tesis se desarrolla bajo el punto de vista de la Ingeniería Mecánica, abarcando aspectos de diseño conceptual, diseño hidráulico, diseño mecánico, análisis computacional, metrado y presupuestos.

En el capítulo I, titulado Aspectos Generales, se plantea el problema a resolver, se definen los objetivos, la hipótesis, las variables, justificación, alcances y limitaciones de la presente tesis.

En el capítulo II, titulado Marco Teórico, se describe los conceptos teóricos referidos al análisis hidráulico, diseño mecánico, cimentación y uso de software de simulación, necesarios en el desarrollo de los siguientes capítulos.

En el capítulo III, titulado Diseño Conceptual, se describe mediante la directriz VDI 2221 y VDI 2225, el procedimiento de obtención y evaluación de los conceptos solución, proyectos preliminares, evaluación técnica-económica y finalmente el proyecto definitivo con sus respectivas restricciones para el banco de pruebas.

En el capítulo IV, titulado Diseño Hidráulico, se define las condiciones de operación, volumetría para el banco de pruebas, se diseñan los vertederos para medir caudal, se calculan las pérdidas primarias, secundarias y, finalmente se seleccionan las turbomáquinas.

En el capítulo V, titulado Diseño Mecánico, se analizan y seleccionan las planchas para el reservorio rectangular, los perfiles de refuerzo, soporte de tuberías y vigas para turbomáquinas y equipos. También se analizan las uniones empernadas y por soldadura, y finalmente el diseño del bloque de cimentación para la bomba centrífuga.

En el capítulo VI, titulado Simulación Computacional, se corrobora mediante simulaciones mediante el software ANSYS 19 Fluent para obtener las pérdidas en tuberías, Solidworks 2018 para obtener esfuerzos del banco de pruebas, y finalmente simulaciones en ANSYS 19 Modal para obtener los modos de vibración del bloque de cimentación y componentes estructurales del banco de pruebas.

En el capítulo VII, titulado Especificaciones Técnicas, se describen detalles técnicos de materiales, tuberías, accesorios, turbomáquinas y equipos del banco de pruebas.

En el capítulo VIII, titulado Costos y Presupuestos, se realiza un metrado de todos los elementos del banco de pruebas, descritos en costos directos y de operación.

La tesis concluye con las conclusiones, recomendaciones, apéndices, anexos y planos.

CONTENIDO

PRESENTACIÓN	II
RESUMEN	III
ABSTRACT	IV
INTRODUCCIÓN	V
CONTENIDO	VI
ÍNDICE DE TABLAS	XVII
ÍNDICE DE FIGURAS	XX
GLOSARIO DE TÉRMINOS	XXIV
NOMENCLATURA Y SÍMBOLOS	XXVI
LISTA DE SIGLAS	XXIX
CAPÍTULO I	1
1. ASPECTOS GENERALES	1
1.1 Ámbito geográfico	1
1.1.1 Localización	1
1.1.2 Condiciones meteorológicas	1
1.2 Planteamiento del problema	1
1.3 Problema general	
1.4 Objetivos	
1.4.1 Objetivo general	
1.4.2 Objetivos específicos	
1.5 Justificación del estudio	4
1.6 Hipótesis general	4
1.7 Variables de diseño	4
1.7.1 Variable independiente de diseño	4
1.7.2 Variable dependiente de diseño	4
1.8 Alcances y limitaciones	4
1.8.1 Alcances	4
1.8.2 Limitaciones	5
1.9 Metodología	5
1.10 Matriz de consistencia y operacionalización de variables	6
1.11 Estado del arte	6
1.11.1 Bancos de pruebas para bombas funcionando como turbinas (BF convencionales	^c T) y turbinas 6
CAPITULO II	10
2 MARCO TEÓRICO	

	2.1 Metodología de diseño en ingeniería	. 10
	2.1.1 Directriz VDI 2221	. 10
	2.2 Implementación de banco de pruebas	. 11
	2.2.1 Banco de pruebas para turbomáquinas hidráulicas	. 11
	2.2.2 Reservorio de agua en banco de pruebas	. 12
	2.3 Teoría de turbomáquinas hidráulicas	. 12
	2.3.1 Clasificación de turbomáquinas	. 13
	2.3.2 Bomba hidráulica	. 13
	2.3.3 Turbina hidráulica	. 13
	2.3.4 Bomba funcionando como turbina	. 13
	2.3.5 Selección de una BFT	. 14
	2.4 Teoría de mecánica de fluidos	. 14
	2.4.1 Propiedades del fluido	. 14
	2.4.2 Fuerzas sobre un fluido	. 15
	2.4.3 Teorema de Bernoulli	. 15
	2.4.4 Número de Reynolds	. 15
	2.5 Teoría sobre vertederos	. 16
	2.5.1 Vertedero de pared delgada	. 16
	2.6 Esfuerzos, pérdidas y fuerzas en tuberías	. 16
	2.6.1 Esfuerzos en tuberías	. 16
	2.6.2 Pérdidas en tuberías	. 17
	2.6.2.1 Pérdidas primarias	. 17
	2.6.2.2 Pérdidas secundarias	. 17
	2.6.3 Fuerzas cambio de dirección de tuberías	. 17
	2.7 Teoría sobre planchas, vigas y transmisión de potencia	. 18
	2.7.1 Esfuerzo general	. 18
	2.7.2 Planchas metálicas	. 18
	2.7.3 Vigas	. 18
	2.7.4 Transmisión de potencia por fajas en V	. 19
	2.8 Teoría de cimentación de máquinas y vibraciones	. 19
	2.8.1 Cimentación de máquinas	. 19
	2.8.2 Sistema amortiguado de un grado de libertad	. 20
	2.8.3 Modos de vibración	. 21
	2.9 Teoría de simulación computacional	. 21
	2.9.1 Análisis de elementos finitos	. 21
	2.9.2 Dinámica de fluidos computacional (CFD)	. 22
С	APÍTULO III	. 24

3	DISEÑO CONCEPTUAL	24
	3.1 Introducción	24
	3.2 Comprensión de la solicitud	24
	3.2.1 Estado de la tecnología	24
	3.2.2 Elaboración de lista de exigencias	25
	3.3 Concepción de la solución	25
	3.3.1 Abstracción y obtención de caja negra	25
	3.3.2 Obtención de estructura de funciones	26
	3.3.3 Elaboración de matriz morfológica	27
	3.3.4 Desarrollo de conceptos de solución	28
	3.3.5 Evaluación técnico económica de los conceptos de solución	29
	3.4 Elaboración del proyecto	30
	3.4.1 Desarrollo de proyectos preliminares	30
	3.4.2 Evaluación técnico económica de los proyectos preliminares	32
	3.4.3 Diagrama de Proyecto Preliminar Óptimo	33
	3.4.4 Obtención de proyecto definitivo	34
	3.4.4.1 Restricciones técnicas	34
	3.4.4.2 Restricciones económicas	36
	3.4.4.3 Restricciones ergonómicas	36
С	APÍTULO IV	37
4	DISEÑO HIDRÁULICO	37
	4.1 Introducción	37
	4.2 Parámetros y criterios de diseño hidráulico	37
	4.2.1 Parámetros del sistema hidráulico	37
	4.2.2 Criterios de diseño para el sistema hidráulico	37
	4.3 Descripción del sistema hidráulico	37
	4.3.1 Funcionamiento del sistema hidráulico	37
	4.3.2 Modos de operación	38
	4.3.3 Construcción del modelo matemático conceptual del sistema fluídico	38
	4.3.3.1 Diagrama unifilar isométrico general (DUIG)	38
	4.3.4 Componentes del sistema hidráulico	38
	4.4 Determinación de condiciones de operación	40
	4.4.1 Rango de trabajo para turbinas hidráulicas	40
	4.4.2 Obtención de caudal de operación para equipos de generación (Q)	41
	4.4.3 Restricción de velocidad lineal en tubería (v)	41
	4.4.4 Obtención de diámetro teórico de tubería (Ø)	42
	4.4.5 Obtención de diámetro estándar de tubería (Ø)	42

4.4.6 Recálculo de velocidad en tubería (v)	43
4.5 Diseño de volumetría de reservorio en banco de pruebas	43
4.5.1 Delimitación de funciones de reservorio rectangular	43
4.5.2 Generación de compartimentos en reservorio rectangular	43
4.5.3 Solicitud de volumen de succión (V)	44
4.5.4 Obtención de dimensiones de reservorio rectangular	44
4.5.5 Obtención de dimensiones de compartimentos internos	45
4.5.6 Comprobación de volumen de succión (V)	46
4.6 Diseño de vertederos medidores de caudal	46
4.6.1 Dimensionamiento del vertedero rectangular	46
4.6.2 Dimensionamiento del vertedero trapezoidal	47
4.7 Determinación de pérdidas teóricas en tuberías	49
4.7.1 Obtención de pérdidas primarias en línea de descarga principal (Hrp)	49
4.7.1.1 Cálculo de velocidad de fluido en tubo DN 100 (v)	50
4.7.1.2 Cálculo de pérdida en niples DN 100 (Hrp)	50
4.7.1.3 Cálculo de pérdida en tubos y niples DN 125 (Hrp)	51
4.7.2 Obtención de pérdidas secundarias en línea de descarga principal (Hrs)	51
4.7.2.1 Cálculo de pérdida en ampliación de tubería DN 65 a DN 100	52
4.7.2.2 Cálculo de pérdida en válvula antirretorno de DN 100	53
4.7.2.3 Cálculo de pérdida en válvula mariposa DN 100	54
4.7.2.4 Cálculo de pérdida en tee DN 100	55
4.7.2.5 Cálculo de pérdida en ampliación de tubería DN 100 a DN 125	55
4.7.2.6 Pérdida en codo de DN 125	56
4.7.2.7 Cálculo de pérdida en tee DN 125	57
4.7.2.8 Cálculo de pérdida en reducción de tubería DN 125 a DN 100	58
4.7.3 Sumatoria de pérdidas hasta diferenciación de componentes	58
4.7.4 Obtención de pérdidas en tramos diferenciados	59
4.7.4.1 Cálculo de pérdidas en niples DN 125	59
4.7.4.2 Cálculo de pérdida en válvula mariposa DN 125	60
4.7.4.3 Cálculo de pérdida en reducción de tubería DN 100 a DN 80	60
4.7.5 Obtención de pérdidas acumuladas totales (Hr)	61
4.8 Determinación de condiciones de bombeo	61
4.8.1 Obtención de presión de bombeo (p)	61
4.8.2 Obtención de caudal de bombeo (Q)	62
4.8.3 Obtención de potencia de bombeo (P)	62
4.9 Determinación de condiciones de BFT	63
4.9.1 Altura de selección para BFT (Hb)	63

4.9.2 Caudal de selección para BFT (Qb)	
4.9.3 Obtención de condiciones de selección para BFT	
4.10 Determinación de condiciones de turbina convencional	
4.11 Balance de potencias	
4.11.1 Flujo de potencias de bomba centrífuga monobloque	
4.11.2 Flujo de potencias de turbina hidráulica	
4.12 condiciones de operación alternativas	
4.12.1 Operación simultánea de turbinas con potencia de diseñ	o base 67
4.12.2 Operación simultánea de turbinas con potencia hipotétic	ca 69
CAPÍTULO V	
5 DISEÑO MECÁNICO	
5.1 Introducción	
5.2 Parámetros y criterios de diseño mecánico	
5.2.1 Parámetros de diseño mecánico	
5.2.2 Criterios de diseño mecánico	
5.3 Análisis de reservorio rectangular y elementos relacionados	
5.3.1 Funciones del reservorio rectangular	
5.3.2 Selección de material para planchas y elementos estructu	rales 73
5.3.3 Requerimiento de elementos de refuerzo	
5.3.4 Obtención de espesor de plancha para reservorio rectangu	lar y compartimentos
5341 Cálculo de espesor de plancha a partir de reservorio r	rectangular(t) = 74
5.3.4.2 Cálculo de espesor de plancha a partir de compartime	ectangular (t)
5 3 4 3 Selección de plancha comercial	75 75
5 3 5 Determinación de vigas base del reservorio rectangular	75
5 3 5 1 Cálculo de espaciamiento entre vigas base (IB)	75
5 3 5 2 Cálculo de módulo de sección requerido para viga ba	se 76
5.3.5.3 Selección de perfil para vigas base	
5.3.6 Obtención de perfil para refuerzos de reservorio rectangu	ılar
5.3.6.1 Cálculo de módulo de sección en atiesador vertical a	partir de reservorio
(Z)	
5.3.6.2 Cálculo de momento de inercia en perfil de marco su reservorio (I)	perior a partir de
5.3.6.3 Cálculo de módulo de sección en atiesador vertical a compartimento lateral (Z)	partir de
5.3.6.4 Cálculo de momento de inercia en marco superior a p compartimento (I)	artir de
5.3.6.5 Selección de perfil para atiesadores	

5.3.7 Ubicación de soportes para tubería	79
5.4 Análisis de esfuerzos en reservorio rectangular	80
5.4.1 Obtención de máxima presión en reservorio (p)	80
5.4.2 Obtención de esfuerzos a partir de reservorio rectangular	81
5.4.2.1 Cálculo de momento de inercia en plancha de acero (I)	81
5.4.2.2 Cálculo de esfuerzo de membrana en lado corto a (Sm)	81
5.4.2.3 Cálculo de esfuerzo de flexión normal en lado corto a (SbN)	82
5.4.2.4 Cálculo de esfuerzo de flexión cortante en lado corto a (SbQ)	82
5.4.2.5 Cálculo de esfuerzo de membrana en lado largo L (Sm)	83
5.4.2.6 Cálculo de esfuerzo de flexión normal en lado largo L (SbM)	83
5.4.2.7 Determinación de esfuerzo total para lado corto y largo (S)	83
5.5 Análisis de vigas paralelas para grupos generadores	84
5.5.1 Determinación de cargas sobre vigas para grupo generador no conver	ncional
	84
5.5.1.1 Sumatoria de masa de equipos y marcos base	85
5.5.1.2 Sumatoria de masa de tuberías conectadas a BFT	85
5.5.1.3 Cálculo de carga dinámica del agua a la entrada de BFT	86
5.5.1.4 Cálculo de momento de fuerza en equipos	87
5.5.1.5 Total de cargas sobre vigas paralelas	87
5.5.2 Obtención de máximo momento en viga	88
5.5.2.1 Elaboración de diagrama de cuerpo libre	88
5.5.2.2 Cálculo de reacciones en apoyos	88
5.5.2.3 Elaboración de diagrama de fuerza cortante y momento flector	89
5.5.3 Obtención de perfil requerido para vigas paralelas	89
5.5.3.1 Cálculo de módulo de sección de perfil requerido	89
5.5.3.2 Selección de perfil comercial para vigas paralelas	89
5.5.3.3 Cálculo de módulo de sección de perfil seleccionado	90
5.5.4 Análisis de pernos para vigas paralelas	91
5.5.4.1 Cálculo de fuerza por cortante en cada perno	91
5.5.4.2 Cálculo de fuerza por tensión en cada perno	91
5.5.4.3 Cálculo de carga equivalente	92
5.5.4.4 Selección de perno	92
5.6 Diseño de trasmisión de potencias por fajas en V	93
5.6.1 Transmisión de fajas en V para BFT	93
5.6.1.1 Determinación de potencia de diseño en transmisión	93
5.6.1.2 Definición de relación de transmisión y sección de faja en V	94
5.6.1.3 Selección de diámetros de paso de las poleas	94

5.6.1.4 Obtención de faja estándar y distancia entre centros	94
5.6.1.5 Obtención de potencia y número de fajas	96
5.6.2 Transmisión de fajas en V para turbina Michell Banki	96
5.6.2.1 Determinación de potencia de diseño en transmisión	97
5.6.2.2 Definición de relación de transmisión y sección de faja en V	97
5.6.2.3 Selección de diámetros de paso de las poleas	97
5.6.2.4 Obtención de faja estándar y distancia entre centros	97
5.6.2.5 Obtención de potencia y número de fajas	98
5.7 Análisis de tuberías, bridas y válvulas	98
5.7.1 Obtención de presión de operación en tubería	98
5.7.2 Obtención de fuerzas hidrodinámica por cambio de dirección en tuberías	99
5.7.2.1 Cálculo de fuerza hidrodinámica sobre un codo (F)	99
5.7.2.2 Fuerza resultante (Fr)	99
5.7.3 Selección de material para tuberías	100
5.7.4 Cálculo de espesor de tubería (t)	100
5.7.5 Cálculo de esfuerzos en tuberías	101
5.7.5.1 Esfuerzo tangencial en tubo	101
5.7.5.2 Esfuerzo longitudinal en tubo	102
5.8 Análisis de soldadura en tuberías	102
5.8.1 Obtención de cargas y cordón para soldadura a tope	102
5.8.1.1 Cálculo de longitud de soldadura (lw)	102
5.8.1.2 Cálculo de carga por corte directo (fw1)	103
5.8.1.3 Cálculo de carga por tracción directa (fw2)	103
5.8.1.4 Cálculo de módulo de sección de tubo DN 125 (Z)	104
5.8.1.5 Cálculo de carga de corte debido a flexión (fw3)	104
5.8.1.6 Cálculo de carga resultante	105
5.8.1.7 Cálculo de esfuerzo permisible en soldadura	105
5.8.1.8 Cálculo de tamaño de cordón de soldadura	106
5.9 Análisis de cimentación para bomba centrífuga monobloque	106
5.9.1 Determinación de características de máquina, soporte y cimentación	107
5.9.2 Determinación de cargas estáticas	108
5.9.2.1 Cálculo de carga muerta de bomba centrífuga monobloque	108
5.9.2.2 Cálculo de carga de operación	108
5.9.2.3 Cálculo de carga de tuberías	109
5.9.2.4 Sumatoria de cargas estáticas	110
5.9.3 Obtención de masa y dimensiones del bloque de cimentación	110
5.9.3.1 Cálculo de masa del bloque de cimentación	110

5.9.3.2 Cálculo de dimensiones del bloque de cimentación	110
5.9.4 Obtención de características del suelo en laboratorio	. 111
5.9.5 Determinación de modelo matemático	. 111
5.9.5.1 Cálculo de masa equivalente (m)	. 111
5.9.6 Obtención de coeficientes de rigidez y amortiguamiento vertical	. 112
5.9.6.1 Cálculo de frecuencia de excitación o de operación (ωo)	. 112
5.9.6.2 Cálculo de radio equivalente para vibración vertical (R)	. 112
5.9.6.3 Cálculo del coeficiente de rigidez vertical (kv):	. 112
5.9.6.4 Cálculo del coeficiente de amortiguamiento vertical (cv):	113
5.9.7 Obtención de coeficientes de rigidez y amortiguamiento vertical adiciona bloque enterrado	1 por . 113
5.9.7.1 Cálculo de frecuencia no dimensional (ao)	113
5.9.7.2 Cálculo de coeficiente de rigidez vertical por bloque enterrado (kev)	. 114
5.9.7.3 Cálculo de coeficiente de amortiguamiento vertical por bloque enterra (cev)	ido 114
5.9.8 Obtención de coeficientes de rigidez y amortiguamiento equivalentes	. 115
5.9.9 Obtención de frecuencia natural no amortiguada y amortiguada	115
5.9.9.1 Cálculo de frecuencia natural no amortiguada (ωn)	115
5.9.9.2 Cálculo de amortiguamiento crítico (ccr)	115
5.9.9.3 Cálculo de relación de amortiguamiento (ξ)	115
5.9.9.4 Cálculo de frecuencia natural amortiguada (ωd)	116
5.9.10 Obtención de amplitud y transmisibilidad	116
5.9.10.1 Cálculo de relación de frecuencias (r)	116
5.9.10.2 Cálculo de amplitud (A')	116
5.9.10.3 Cálculo de transmisibilidad (Tr)	. 117
5.9.10.4 Cálculo de fuerza transmitida a la base	118
CAPÍTULO VI	. 119
6 SIMULACIÓN COMPUTACIONAL	. 119
6.1 Introducción	. 119
6.2 Objetivos del análisis por software	119
6.3 Simulación CFD por Ansys 19 Fluent del sistema hidráulico	. 119
6.3.1 Obtención de pérdidas en tubo recto DN 100	120
6.3.2 Obtención de pérdidas en tubo recto DN 125	120
6.3.3 Obtención de pérdidas en ampliación DN 65 a 100	121
6.3.4 Obtención de pérdidas en tee DN 100	122
6.3.5 Obtención de pérdidas en ampliación DN 100 a 125	122
6.3.6 Obtención de pérdidas en codo DN 125	123
6.3.7 Obtención de pérdidas en tee DN 125	124

6.3.8 Obtención de pérdidas en reducción DN 125 a 100 12	5
6.3.9 Obtención de pérdidas en válvula anti retorno DN 100 12	5
6.3.10 Obtención de pérdidas en válvula mariposa DN 100 12	6
6.3.11 Obtención de pérdidas en válvula mariposa DN 125 12	7
6.3.12 Comparación de resultados hidráulicos12	8
6.4 Simulación FEA por Solidworks 2018 de la estructura del banco de pruebas 12	8
6.4.1 Obtención de esfuerzos en planchas laterales de reservorio rectangular 12	8
6.4.2 Comparación de resultados de esfuerzos12	9
6.4.3 Obtención de esfuerzos y deformación en plancha base de reservori rectangular	0 0
6.4.4 Obtención de esfuerzos y deformaciones en soportes de tubería 13	0
6.5 Simulación por Ansys 19 Modal para bloque de cimentación y estructura de banc de pruebas	0 1
6.5.1 Obtención de modo de vibración en bloque de cimentación para 1 GDL 13	1
6.5.2 Análisis de resultados modales para bloque de cimentación 13	2
6.5.3 Obtención de modos de vibración en reservorio y estructura 13	2
CAPÍTULO VII	4
7 ESPECIFICACIONES TÉCNICAS	4
7.1 Introducción	4
7.2 Especificaciones técnicas de materiales	4
7.2.1 Especificaciones técnicas de planchas y angulares	4
7.2.2 Especificaciones técnicas de vigas base	5
7.2.3 Especificaciones técnicas de vigas paralelas de grupos de generación 13	5
7.2.4 Especificaciones técnicas de bloque de cimentación y marco base de bomb centrífuga monobloque	a 6
7.2.5 Especificaciones técnicas de marcos base de equipos de generación 13	7
7.2.6 Especificaciones técnicas de tubos y accesorios	8
7.2.7 Especificaciones técnicas de transmisión de potencia de BFT y guardas d seguridad	e 8
7.2.8 Especificaciones técnicas de turbomáquinas y equipos generadores	9
7.2.9 Especificaciones técnicas componentes de tuberías14	0
7.3 Especificaciones técnicas de fabricación y montaje14	1
7.3.1 Especificaciones técnicas de unión por soldadura y otras 14	1
7.3.2 Especificaciones técnicas de vaciado de cimentación y montaje d turbomáquinas y equipos14	e 3
7.3.3 Especificaciones técnicas de montaje de segmentos de tubería y válvulas. 14	3
CAPÍTULO VIII	5
8 COSTOS Y PRESUPUESTOS	5

8.1 Introducción	145
8.2 Costos directos y de operación del banco de pruebas	145
8.2.1 Costos directos de construcción del banco de pruebas	145
8.2.1.1 Resumen de costos directos	145
8.2.1.2 Costos de materiales para la construcción del banco de pruebas	146
8.2.2 Costo de operación	149
8.3 Costo de funcionamiento anual	150
8.3.1 Costo de kW instalado	150
8.3.2 Servicio de capital inmovilizado	150
8.3.3 Costo directo y costo de operación anualizado	151
CONCLUSIONES	152
RECOMENDACIONES	154
BIBLIOGRAFÍA	155
APÉNDICES	159
Apéndice 01: Matriz de consistencia	159
Apéndice 02: Operacionalización de variables	160
Apéndice 03: Registro de construcción y ensamble	161
Apéndice 04: Hojas de cálculo dinámicas para pérdidas en tuberías	164
Apéndice 05: Cartilla de mantenimiento de banco de pruebas	165
Apéndice 06: Guía de operación de banco de pruebas	166
Apéndice 07: Relación de prácticas de laboratorio posibles de realizar en el de pruebas	banco 167
Apéndice 08: Lista de planos	168
ANEXOS	169
Anexo 01: Temperaturas máxima y mínima, ciudad del Cusco	169
Anexo 02: Dimensiones de tubos de acero	170
Anexo 03: Propiedades específicas del agua	172
Anexo 04: Diagrama de Moody para tubos de acero	173
Anexo 05: Dimensiones de reducciones en tubería	174
Anexo 06: Dimensiones de tees en tubería	175
Anexo 07: Dimensiones de codos en tubería	176
Anexo 08: Dimensiones de bridas en tubería	177
Anexo 09: Detalles y curvas características de bomba centrífuga monobloque 65-160B	Pentax 178
Anexo 10: Detalles y curvas características de bomba centrífuga de eje libre 80-200A	Pentax 180
Anexo 11: Características de motor de inducción Weg W22 132S	182
Anexo 12: Características de generador síncrono Stamford trifásico PI044D.	183

Anexo 13: Características comerciales de válvula de pie con canastilla 184
Anexo 14: Características comerciales de válvula mariposa wafer 185
Anexo 15: Características comerciales de válvula anti retorno o retención 186
Anexo 16: Características comerciales de unión flexible o de presión (Dresser) 187
Anexo 17: Esfuerzos permisibles de materiales para tuberías, planchas, vigas y pernos
Anexo 18: Módulo de elasticidad y relación de Poisson de materiales 190
Anexo 19: Profundidad de rosca para tuberías 191
Anexo 20: Características técnicas de angulares de acero 192
Anexo 21: Características técnicas de perfiles en H, ala ancha 193
Anexo 22: Características comerciales de planchas de acero 194
Anexo 23: Características comerciales de perfiles en C 195
Anexo 24: Características comerciales de fajas de V 196
Anexo 25: Características comerciales manómetros analógicos 197
Anexo 26: Especificaciones de soldadura 198
Anexo 27: Especificaciones de selección bridas y empaques 199
Anexo 28: Especificaciones de montaje de válvulas y bridas 200
Anexo 29: Especificaciones de norma ACI para cimentación de máquinas 201

ÍNDICE DE TABLAS

Tabla 1.1: Condiciones meteorológicas para la ciudad del Cusco	1
Tabla 3.1: Lista de exigencias	. 25
Tabla 3.2: Evaluación técnica y económica de conceptos de solución	. 30
Tabla 3.3: Evaluación técnica de proyectos preliminares	. 32
Tabla 3.4: Evaluación económica de proyectos preliminares	. 33
Tabla 3.5: Rangos de valor técnico y valor económico	. 33
Tabla 4.1: Rango de valores de potencia y altura	. 40
Tabla 4.2: Caudales de operación	. 41
Tabla 4.3: Rango de velocidades en tuberías	. 41
Tabla 4.4: Relaciones de dimensiones en reservorio	. 45
Tabla 4.5: Volúmenes de agua	. 46
Tabla 4.6: Caudales en vertedero rectangular	. 47
Tabla 4.7: Caudales en vertedero trapezoidal	. 48
Tabla 4.8: Pérdidas primarias línea de descarga	. 49
Tabla 4.9: Pérdidas secundarias línea de descarga	. 52
Tabla 4.10: Coeficientes de rugosidad para tuberías	. 53
Tabla 4.11: Sumatoria de pérdidas línea de descarga	. 58
Tabla 4.12: Pérdidas en líneas independientes de tubería	. 59
Tabla 4.13: Pérdidas totales en tuberías	. 61
Tabla 4.14: Pérdidas en línea de descarga hasta tee bifurcadora con caudal 0.037 m ³ /s	s 68
Tabla 4.15: Pérdidas hacia cada equipo generador con caudal 0.019 m ³ /s	. 68
Tabla 4.16: Sumatoria de pérdidas para operación simultánea con potencia base	. 69
Tabla 4.17: Pérdidas en línea de descarga hasta tee bifurcadora con caudal 0.074 m ³ /s	s 70
Tabla 4.18: Pérdidas hacia cada equipo generador con caudal 0.037 m ³ /s	. 70
Tabla 4.19: Sumatoria de pérdidas para operación simultánea con potencia hipotética	71
Tabla 5.1: Materiales para recipientes a presión	. 73
Tabla 5.2: Coeficientes para reservorio rectangular	. 74
Tabla 5.3: Estimado de cargas sobre vigas base	. 76
Tabla 5.4: Esfuerzos totales en planchas de reservorio	. 84
Tabla 5.5: Cargas de grupo generador no convencional	. 85
Tabla 5.6: Cargas de tuberías en BFT	. 85
Tabla 5.7: Fuerzas sobre vigas en paralelo	. 88
Tabla 5.8: Momentos sobre vigas paralelas	. 88

Tabla 5.9: Área de pernos	93
Tabla 5.10: Factor de servicio para transmisión fajas en V	93
Tabla 5.11: Diámetros estándar, rango y mínimos de poleas	94
Tabla 5.12: Longitud estándar y factor de longitud	95
Tabla 5.13: Potencia por faja B	96
Tabla 5.14: Factor por ángulo de contacto	96
Tabla 5.15: Materiales usados en tuberías	. 100
Tabla 5.16: Coeficiente de temperatura "y"	. 101
Tabla 5.17: Propiedades de cordón de soldadura tratado como línea	. 104
Tabla 5.18: Propiedades de metal de aporte de soldadura	. 106
Tabla 5.19: Espesor de soldadura según material base	. 106
Tabla 5.20: Detalles de máquina, soporte y cimentación	. 107
Tabla 5.21: Cargas de bomba centrífuga monobloque	. 108
Tabla 5.22: Cargas de tuberías de bomba centrífuga	. 109
Tabla 5.23: Sumatoria de cargas estáticas	. 110
Tabla 5.24: Dimensiones de bloque de cimentación	. 110
Tabla 5.25: Características del suelo	. 111
Tabla 5.26: Sumatoria de masa equivalente	. 111
Tabla 5.27: Parámetros de suelo	. 114
Tabla 5.28: Coeficientes K y C equivalentes	. 115
Tabla 6.1: Datos generales para las simulaciones CFD	. 119
Tabla 6.2: Condiciones y resultados de simulación para tubo DN 100	. 120
Tabla 6.3: Condiciones y resultados de simulación para tubo DN 125	. 121
Tabla 6.4: Condiciones y resultados de simulación para ampliación DN 65 a 100	. 121
Tabla 6.5: Condiciones y resultados de simulación en tee DN 100	. 122
Tabla 6.6: Condiciones y resultados de simulación en ampliación DN 100 a 125	. 123
Tabla 6.7: Condiciones y resultados de simulación en codo DN 125	. 123
Tabla 6.8: Condiciones y resultados de simulación en tee DN 125	. 124
Tabla 6.9: Condiciones y resultados de simulación en reducción DN 125 a 100	. 125
Tabla 6.10: Condiciones y resultados de simulación en válvula anti retorno DN 100	. 126
Tabla 6.11: Condiciones y resultados de simulación en válvula mariposa DN 100	. 127
Tabla 6.12: Condiciones y resultados de simulación en válvula mariposa DN 125	. 127
Tabla 6.13: Comparación y resultados de simulaciones realizadas	. 128
Tabla 6.14: Condiciones y resultados de simulación en planchas laterales	. 128

Tabla 6.15: Comparación y resultados de simulaciones realizadas 129
Tabla 6.16: Condiciones y resultados de simulación en plancha base 130
Tabla 6.17: Condiciones y resultados de simulación en soportes de tubería 130
Tabla 6.18: Condiciones y resultados de modos de vibración en bloque de cimentación
Tabla 6.19: Comparación y resultados de simulaciones
Tabla 6.20: Condiciones y resultados de modos de vibración en reservorio y estructura
Tabla 7.1: Especificaciones de reservorio rectangular 134
Tabla 7.2: Especificaciones de vigas base
Tabla 7.3: Especificaciones de vigas paralelas
Tabla 7.4: Especificaciones de cimentación y marco base
Tabla 7.5: Especificaciones técnicas de marcos base
Tabla 7.6: Especificaciones de tubos y accesorios 138
Tabla 7.7: Especificaciones de transmisión de potencia BFT y guardas de seguridad 138
Tabla 7.8: Especificaciones de bomba centrífuga monobloque y marco base 139
Tabla 7.9: Especificaciones técnicas de componentes de tuberías 140
Tabla 7.10: Especificaciones técnicas de soldadura 14
Tabla 7.11: Vaciado de cimentación y montaje de turbomáquinas y equipos 142
Tabla 7.12: Montaje de tuberías 143
Tabla 8.1: Costos totales
Tabla 8.2: Costos de reservorio y estructura
Tabla 8.3: Costos de válvulas 148
Tabla 8.4: Costos de equipos 149
Tabla 8.5: Costo de mano de obra 149
Tabla 8.6: Costo de operación
Tabla 8.7: Costo de funcionamiento de banco de pruebas 150

ÍNDICE DE FIGURAS

Figura 1.1: Laboratorio de máquinas hidráulicas, EPIM, UNSAAC	1
Figura 1.2. Distribución de costos de grandes (a) y micro (b) centrales hidroeléctricas	s 2
Figura 1.3: Proceso de investigación cuantitativa	6
Figura 1.4: Módulo BFT. UTFSM, Valparaiso, Chile	6
Figura 1.5: Módulo para BFT y turbina convencional. UCSM, Arequipa	7
Figura 1.6: Módulo BFT. UNA, Puno	7
Figura 1.7: Módulo BFT. UFI, Itajubá, Brasil	8
Figura 1.8: Módulo BFT. U. de Kathmandu, Nepal	8
Figura 1.9: Módulo BFT. UAC, Valdivia, Chile	9
Figura 1.10: Banco de pruebas para turbina Michell-Banki. PUCP, Lima	9
Figura 1.11: Ensamble total del banco de pruebas. UNSAAC	9
Figura 2.1: Método del diseño por la directriz VDI 2221 y sus fases	. 11
Figura 2.2: Recipiente rectangular sometido a presión hidrostática	. 12
Figura 2.3: Clasificación de las máquinas de fluido	. 12
Figura 2.4: Dirección de flujo para bomba y turbina hidráulica	. 13
Figura 2.5: Coeficientes de selección de BFT	. 14
Figura 2.6: Esfuerzos membranales y flexionales en planchas	. 18
Figura 2.7: Flexión en vigas	. 19
Figura 2.8: Faja en V y templado de fajas	. 19
Figura 2.9: Cimentación tipo bloque	. 19
Figura 2.10: Sistema amortiguado de cimentación con excitación vertical	. 20
Figura 2.11: Proceso de elementos finitos	. 22
Figura 2.12: Ecuación de transporte de Reynolds utilizada en CFD	. 22
Figura 2.13: Región de fluido en tuberías	. 23
Figura 3.1: Fases del diseño por VDI 2221	. 24
Figura 3.2: Rango de aplicación de BFT y turbinas convencionales	. 24
Figura 3.3: Abstracción caja negra	. 26
Figura 3.4: Estructura de funciones	. 26
Figura 3.5: Matriz morfológica	. 27
Figura 3.6: Conceptos de solución 1 y 2	. 28
Figura 3.7: Conceptos de solución 3 y 4	. 29
Figura 3.8: Proyecto preliminar 1	. 30
Figura 3.9: Proyecto preliminar 2	. 31

Figura 3.10: Proyecto preliminar 3	32
Figura 3.11: Diagrama de evaluación proyectos preliminares	33
Figura 3.12: Borrador del proyecto definitivo	34
Figura 4.1: Componentes de banco de pruebas	39
Figura 4.2: Diagrama caudal-altura para tipos de BFT	40
Figura 4.3: Compartimentos de reservorio	43
Figura 4.4: Generación de tres compartimentos internos en reservorio	45
Figura 4.5: Dimensiones de vertedero rectangular	46
Figura 4.6: Funcionamiento de vertedero rectangular	47
Figura 4.7 Dimensiones de vertedero trapezoidal	48
Figura 4.8 Funcionamiento de vertedero trapezoidal	48
Figura 4.9 Componentes y accesorios en tubería	49
Figura 4.10: Ampliación en tubería	52
Figura 4.11: Coeficientes para válvula antirretorno	54
Figura 4.12: Coeficientes para válvula mariposa	54
Figura 4.13: Flujo divergente en tee	55
Figura 4.14: Coeficientes para tee en divergencia	55
Figura 4.15: Coeficientes para codos en 90°	56
Figura 4.16: Flujo convergente en tee	57
Figura 4.17: Coeficientes para tee en convergencia	57
Figura 4.18: Reducción gradual en tubería	58
Figura 4.19 Tramos de tubería hacia cada turbina	59
Figura 4.20: Diferencia de altura entre bomba centrífuga y turbinas	62
Figura 4.21: Caudales y altura de operación para equipo de bombeo	63
Figura 4.22: Coeficiente de altura BFT	63
Figura 4.23: Coeficiente de caudal BFT	64
Figura 4.24: Caudales y altura de operación para BFT	65
Figura 4.25: Diagrama Q-H para turbinas	65
Figura 4.26: Cadena energética	66
Figura 4.27: Flujo de potencia de bomba centrífuga monobloque	66
Figura 4.28: Flujo de potencia de turbina hidráulica	67
Figura 5.1: Recipiente rectangular con atiesadores y distribución de fuerzas	74
Figura 5.2: Plancha comercial ASTM A36	75
Figura 5.3: Vigas base para reservorio	76

Figura 5.4: Fuerza aplicada sobre viga H	77
Figura 5.5: Posición final de vigas base	77
Figura 5.6: Angulares de refuerzo en reservorio	79
Figura 5.7: Soportes de tubería	80
Figura 5.8: Corte de planta para reservorio con atiesadores	81
Figura 5.9: Grupos generadores no convencional y convencional	
Figura 5.10: Reducción de entrada a BFT	86
Figura 5.11: DCL de vigas	88
Figura 5.12: Diagrama de fuerza cortante y momento flector	89
Figura 5.13: Perfil en C	90
Figura 5.14: Ubicación de agujeros para pernos en vigas paralelas	
Figura 5.15: Fuerza actuante sobre pernos	
Figura 5.16: Sección de faja en V	
Figura 5.17: Fuerzas en cambio de dirección de tubería	99
Figura 5.18: Fuerzas sobre codo	102
Figura 5.19: Carga por corte directo	103
Figura 5.20: Carga por tracción directa	104
Figura 5.21: Carga por flexión	105
Figura 5.22: Cimentación tipo bloque para bomba centrífuga mono bloque	107
Figura 5.23: Distancias de bomba centrífuga respecto a reservorio	107
Figura 5.24: Momento fuerzas y espaciamiento de apoyos de bomba centrífug	a 108
Figura 5.25: Succión y descarga de bomba centrífuga	110
Figura 5.26: Sistema real y sistema equivalente	111
Figura 5.27: Representación de radio equivalente para base rectangular	112
Figura 5.28: Bloque de cimentación enterrado	113
Figura 5.29: Cuadros de severidad por amplitud de vibración	117
Figura 5.30: Transmisibilidad vs. relación de frecuencias	118
Figura 6.1: Pérdida de presión en tubo DN 100	120
Figura 6.2: Pérdida de presión en tubo DN 125	120
Figura 6.3: Pérdida de presión en ampliación DN 65 a DN 100	121
Figura 6.4: Pérdida de presión en tee DN 100	122
Figura 6.5: Pérdida de presión en ampliación DN 100 a DN 125	123
Figura 6.6: Pérdida de presión en codo DN 125	123
Figura 6.7: Pérdida de presión en tee DN 125	124

Figura 6.8: Pérdida de presión en reducción DN 125 a DN 100 125
Figura 6.9: Pérdida de presión en válvula anti retorno DN 100 126
Figura 6.10: Pérdida de presión en válvula mariposa DN 100 126
Figura 6.11: Pérdida de presión en válvula mariposa DN 125 127
Figura 6.12: Esfuerzos normal y cortante en planchas laterales largas 129
Figura 6.13: Esfuerzo normal y cortante en planchas laterales cortas 129
Figura 6.14: Esfuerzos y deformaciones en plancha base 130
Figura 6.15: Esfuerzos y deformaciones en soportes de tuberías 131
Figura 6.16: Modo de vibración del bloque de cimentación 131
Figura 6.17: 1°, 2°, 3° y 4° modo de vibración en reservorio y estructura 133
Figura 7.1: Planchas y angulares de reservorio 134
Figura 7.2: Vigas base de reservorio rectangular
Figura 7.3: Vigas paralelas de grupos de generación 136
Figura 7.4: Bloque de cimentación y marco base de bomba centrífuga monobloque 136
Figura 7.5: Marcos base de equipos de generación 137
Figura 7.6: Tubos y accesorios
Figura 7.7: Transmisión de potencia y guardas de seguridad 139
Figura 7.8: Turbomáquinas y equipos generadores 140
Figura 7.9: Componentes de tubería141
Figura 7.10: Componentes de tubería
Figura 7.11 Vaciado de cimentación y montaje de equipos 143
Figura 7.12 Montaje de tuberías 144
Figura 8.1 Costo de funcionamiento anual 151

GLOSARIO DE TÉRMINOS

Acero: Aleación de hierro con no más de 2% de peso de carbón.

Abstracción de la caja negra: Permite formular la estructura de funciones, abarcando la mayor cantidad de soluciones posibles.

Aguas abajo: Indica en la misma dirección de la corriente.

Aguas arriba: Indica en dirección contraria a la corriente.

Amortiguamiento: Disminución progresiva en el tiempo de la intensidad de un fenómeno periódico.

Anclaje: Restricción rígida que provee una fijación total sin desplazamiento traslacional ni rotacional.

Atiesador: Elemento estructural de refuerzo para el reservorio conformado por perfiles de acero.

Ansys: Software que ayuda a encontrar soluciones a problemas de ingeniería a través de la teoría de los elementos finitos para estructuras y de los volúmenes finitos para fluidos. **Bisel:** Corte oblicuo en el borde de una superficie.

Cavitación: Fenómeno que se produce cuando la presión en algún punto o zona de la corriente de un líquido desciende por debajo de un valor mínimo admisible, formándose burbujas que luego colapsan cuando se recupera la presión.

Cimentación: Colocación de los cimientos de una estructura o máquina al piso.

Clase: Clasificación de tuberías basado en la máxima presión permisible de trabajo, dado en psi.

Compartimento: Parte en que está dividido un espacio mediante paredes u otra separación.

Concepto solución: Reunión de piezas o sistemas que conjuntamente ejecutan la función o efecto deseado.

Densidad o peso específico: Relación existente entre una masa y el volumen que ocupa en unas condiciones de referencia de presión y temperatura dadas.

Diseño: Actividad creadora donde se piensa y desarrolla completamente un producto.

Eje neutro: Es la superficie o línea de una pieza alargada o placa, deformada por flexión, que separa la zona comprimida de la zona traccionada.

Energía: En física, se define como la capacidad para realizar un trabajo.

Equipos de generación: Referido a la BFT y la turbina Michell-Banki.

Estructura de funciones: Despliegue de las funciones parciales de la máquina a diseñar que contribuyen a la función principal.

Frecuencia: Es el número de ciclos por unidad de tiempo.

Lista de exigencias: Al inicio de un diseño se tiene una descripción de una situación problemática, exigencias o requerimientos, debidamente clasificadas y cuantificadas.

Matriz morfológica: Esquema que ordena las alternativas o los portadores de funciones para cada función parcial.

Micro generación: Tiene como límite una potencia de 50 kW.

Modo de vibración: Es un patrón o forma característica en el que vibrará un sistema mecánico.

Montaje: La unión o ensamble de dos componentes por pernos, soldadura, sellado o roscado en su posición de diseño especificada.

Niple: Pedazo de tubo menor a 0.3 m.

Pico-generación: Tiene como límite una potencia de 5 kW.

Potencia: Es el trabajo que realiza una máquina por unidad de tiempo.

Proyectos preliminares: Alternativas del proyecto en base a las características y criterios escogidos plasmado en bosquejos.

Proyecto definitivo: Afinamiento del proyecto preliminar escogido con una completa descripción de la estructura del diseño.

Ratio: Relación cuantificada entre dos magnitudes que refleja su proporción.

Reservorio: Recipiente o estanque para contener agua.

Soldadura: Fusión localizada de material producida por calentamiento a temperaturas adecuadas o por presión.

Solidworks: Software CAD para modelado mecánico en 2D, 3D y simulación.

Soporte de tubería: Elemento estructural que transfiere las cargas a la que están expuestas las tuberías.

Transmisibilidad: Grado de transmisión de fuerzas a la base o medio.

Tubería: Refiere a toda la red de tubos, accesorios, bridas, válvulas y otros componentes que forman el sistema de vías para conducir fluidos.

Tubo: Objeto hueco de sección redonda u otra con periferia continua.

Volumetría: Técnica que se ocupa de la determinación y medida de volúmenes.

Wafer: Característica de válvula de cuerpo corto en relación al diámetro de tubería diseñado para instalarse entre bridas mediante pernos de largo determinado.

NOMENCLATURA Y SÍMBOLOS

Símbolo	Denominación	Unidad
α:	Ángulo de apertura vertedero trapezoidal	0
A:	Área de sección	m^2
A':	Amplitud	m
a:	Ancho de reservorio	mm
ao:	Frecuencia no dimensional	-
B:	Ancho de canal de vertedero	mm
b:	Ancho	m
β:	Ángulo de fuerza resultante para tee/codo tubería	0
β':	Coeficiente de relación H'/l	-
C:	Lado de un cubo de caras iguales	m
Cq:	Coeficiente de vertedero hidráulico	-
c:	Distancia de eje neutro a borde	m
cv:	Amortiguamiento vertical	N-s/m
ceq:	Amortiguamiento equivalente	N-s/m
cev:	Amortiguamiento enterrado vertical	N-s/m
d':	Distancia entre apoyos	m
γ:	Coeficiente de relación a/l	-
ρ:	Densidad	kg/m ³
Ø:	Diámetro de tubería	m
Øext:	Diámetro externo	m
Øint:	Diámetro interno	m
E:	Módulo de elasticidad	MPa
e:	Eficiencia de unión de soldadura	%
ξ:	Relación de amortiguamiento	%
F:	Fuerza	Ν
Fr:	Fuerza resultante en cambio de dirección tubería	Ν
F(x,y):	Fuerza en plano x'/y' en cambio de dirección tubería	Ν
Fo:	Fuerza dinámica	Ν
f:	Velocidad de rotación	rpm
fT:	Factor de fricción en turbulencia	-
G:	Gravedad específica	-
g:	Gravedad	m/s^2

H:	Altura o caída	m
Н':	Alto de reservorio	m
Hb:	Altura de selección BFT	m
Ht:	Altura de operación BFT	m
h:	Altura de vertedero	mm
հ ։	Ratio de altura BFT	-
Hr:	Pérdidas totales	m
Hrp:	Pérdida por rozamiento o primaria	m
Hrs:	Pérdida por accesorio o secundaria	m
I:	Momento de inercia	mm^4
Kev:	Impedancia vertical enterrada	-
kv:	Rigidez vertical	N/m
keq:	Rigidez equivalente	N/m
kev:	Rigidez vertical enterrada	N/m
θ:	Ángulo de divergencia/convergencia en ampliaciones/	reducciones de
tubería		0
λ:	Coeficiente de pérdidas primarias o por fricción	-
L:	Largo de reservorio	m
L':	Longitud de niple o tubería	m
l:	Distancia entre atiesadores verticales reservorio	m
l':	Largo de bloque de cimentación	m
IB:	Distancia entre vigas base	m
lw:	Longitud de soldadura	m
M:	Momento	N-m
m:	Masa	kg
η:	Eficiencia	%
ղԵ։	Eficiencia en modo bomba	%
ηt:	Eficiencia en modo turbina	%
n:	Viscosidad dinámica	Pa/s
P:	Potencia	kW
p:	Presión	Pa
ρ:	Densidad	kg/m ³
Q:	Caudal	m ³ /s
Qb:	Caudal de selección BFT	m^3/s

Qt:	Caudal de operación BFT	m^3/s
q:	Ratio de caudal BFT	-
σ:	Esfuerzo normal	Pa
σt:	Esfuerzo tangencial o circunferencial	Pa
σι:	Esfuerzo longitudinal	Pa
R:	Radio equivalente de bloque de cimentación	m
Re:	Número de Reynolds	-
r:	Relación de frecuencias	%
S:	Esfuerzo máximo permisible	MPa
Sb:	Esfuerzo de flexión	MPa
Sm:	Esfuerzo de membrana	MPa
Tr:	Transmisibilidad	%
t:	Espesor	mm
τ:	Esfuerzo cortante	Pa
μ:	Factor de fricción	-
v:	Velocidad	m/s
V:	Volumen	m3
w:	Ancho de bloque de cimentación	m
wn:	Frecuencia natural	rad/s
ω0:	Frecuencia de excitación	rad/s
ζ:	Coeficiente de pérdidas secundarias o por accesorio	-
x',y',z'	Coordenadas del sistema cartesiano	-
Y:	Diferencia de alturas	m
y:	Coeficiente de temperatura en tuberías	-
Z:	Módulo de sección	mm ³
zc:	Distancia al fondo desde base de vertedero	m

LISTA DE SIGLAS

AACE: American Association of Cost Engineering (Asociación Americana de Ingeniería de Costos).

ACI: American Concrete Institute (Instituto Americano del Concreto).

AISC: American Institute of Steel Construction (Instituto Americano de Construcción en Acero).

ANSI: American National Standards Institute (Instituto Americano Nacional de Estándares).

ASTM: American Society for Testing and Materials (Sociedad Americana para Materiales y Pruebas).

ASME: American Society of Mechanical Engineering (Sociedad Americana de Ingenieros Mecánicos).

BFT: Bomba funcionando como turbina.

CAD: Computer Aided Design (Diseño Asistido por Computadora).

CFD: Computacional Fluid Dinamics (Dinámica de Fluidos Computacional).

DN: Diameter Nominal (diámetro nominal del sistema métrico, dado en milímetros).

FEA: Finite Element Analysis (Análisis por elementos finitos)

GDL: Grado de libertad

ISO: International Organization for Standardization (Organización internacional para estandarización)

MINEM: Ministerio de Energía y Minas

msnm: metros sobre el nivel del mar.

NPS: Nominal Pipe Size (diámetro nominal en tuberías, dado en pulgadas).

PAT: Pump used as Turbine (Bomba funcionando como turbina).

PN: Pression Nominal (presión nominal en tuberías, dado en bar).

SCH: Schedule (Cédula). Valor aproximado que define el espesor estándar en tuberías de acero.

SMAW: Shielded Metal Arc Welding (Soldadura por arco con electrodo metálico revestido).

STD: Standard.

VDI: Verein Deutscher Ingenieure (Asociacion Alemana de Ingenieros).

CAPÍTULO I

1. ASPECTOS GENERALES

1.1 ÁMBITO GEOGRÁFICO

1.1.1 Localización

La presente tesis de investigación tecnológica se desarrolla en el laboratorio de máquinas hidráulicas de la Escuela Profesional de Ingeniería Mecánica, FIEEIM, UNSAAC, distrito, provincia y departamento del Cusco.

Figura 1.1: Laboratorio de máquinas hidráulicas, EPIM, UNSAAC. Fuente: (Google Maps, 2019)

1.1.2 Condiciones meteorológicas

Para la ciudad del Cusco se tiene:

Denominación	Valor	Observación
Temperatura máxima anual	21.7 °C	Promedio de Anexo 01
Temperatura mínima anual:	-1,6 °C	Promedio de Anexo 01
Temperatura media anual:	12.34 °C	Promedio de Anexo 01
Altitud UNSAAC:	3350 msnm	(Google Maps, 2019)
Presión atmosférica promedio anual:	511.434 mm Hg	(UNSAAC, 2016)
Humedad relativa media anual:	41.74 %	(UNSAAC, 2016)

1.2 PLANTEAMIENTO DEL PROBLEMA

El uso sostenido del agua y energía representa uno de los mayores retos para la mayoría de países. La energía limpia toma importancia al considerar limitaciones ambientales relacionadas a problemas con gases de efecto invernadero y calentamiento global. Para esto, están presentes algunas formas de energía renovable como la solar, eólica, hidráulica y biomasa, que no siempre son económicamente convenientes frente a energías convencionales. Entonces, diseñar sistemas de bajo costo y mayor eficiencia es un tema

de gran importancia para ingenieros e investigadores. (Carravetta, Derakhshan Houreh, & Ramos, 2018, p. 3)

Respecto al aprovechamiento de energía hidroeléctrica, cabe señalar que, para nuestra región, "las cuencas de los ríos Vilcanota y Urubamba tienen sumados un potencial hidroeléctrico teórico de casi 12 GW, con potencial específico de 3 MW/km y 1.85 MW/km respectivamente. Además, existen 28 proyectos con 137 alternativas que van desde el rio Salca hasta el Pongo de Mainique". (MINEM, 1979, p. 108)

Por otro lado, a nivel de pico y micro centrales hidroeléctricas, "el costo de las turbinas tradicionales y equipo mecánico comúnmente usados, representa un mayor porcentaje en términos de costo total de inversión frente a centrales hidroeléctricas de mayor tamaño. Esto a pesar de que la micro generación es una solución eficiente de electrificación y desarrollo para comunidades rurales para países en vías de desarrollo". (Patel & Jain, 2014, p. 843)

Figura 1.2. Distribución de costos de grandes (a) y micro (b) centrales hidroeléctricas Fuente: (Patel & Jain, 2014, pág. 843)

Ante este inconveniente, se tienen algunas alternativas rentables de generación hidroeléctrica no convencional como el uso de bombas centrífugas comerciales funcionando en forma inversa como turbinas (BFT), tomando en cuenta que dicha tecnología y su funcionamiento tiene menos trayectoria y estudios realizados frente a las turbinas convencionales.

Sin embargo, "se tienen algunas ventajas de una BFT como son su bajo costo, menor complejidad, producción en serie, amplio rango de caudal y altura, corto tiempo de entrega, fácil instalación y disponibilidad de piezas". (Patel & Jain, 2014, p. 841)

"Las BFT son usadas en micro generación de energía en el rango de 5 a 500 kW. Su aplicación va desde el movimiento directo de maquinaria en pequeña industria, recuperación de energía en redes de agua, centrales reversibles, irrigación, plantas de tratamiento y otros procesos industriales, hasta la generación de electricidad para estaciones aisladas o conectadas a la red". (Chapallaz, Eichenberg, & Fischer, 1992, p. 4)

Por lo mencionado, toma relevancia el analizar una BFT que puede realizarse en una plataforma de ensayos para turbomáquinas hidráulicas que permita manipular parámetros dentro de un rango de operación.

El análisis de esta tecnología no convencional puede requerir también la comparación con equipos convencionales de similares características, en términos de eficiencia y potencia generada, lo cual puede evaluarse en un banco de pruebas, que además incorpora las condiciones ambientales del lugar donde se lleva a cabo los ensayos.

Por otro lado, la realización de un banco de pruebas para turbomáquinas hidráulicas agrupa la aplicación de algunas ramas de la Ingeniería Mecánica como el diseño mecánico, dinámica de fluidos, turbomáquinas, esfuerzos, vibraciones y simulación computacional.

Frente al problema descrito, la presente tesis desarrolla el diseño más adecuado de un banco de ensayos que sea construido y puesto en operación en el laboratorio de máquinas hidráulicas de nuestra escuela profesional.

1.3 PROBLEMA GENERAL

¿Cómo desarrollar un banco de pruebas para grupos de generación hidroeléctrica, usando una bomba funcionando como turbina frente a una turbina tradicional para potencias en micro generación?

1.4 OBJETIVOS

1.4.1 Objetivo general

Diseñar y construir un banco de pruebas para turbomáquinas hidráulicas de potencias de generación de energía de hasta 6 kW.

1.4.2 Objetivos específicos

• Objetivos técnicos de ingeniería:

a) Aplicar una metodología para la obtención del diseño conceptual del banco de pruebas.

b) Realizar el diseño hidráulico en base a la potencia prevista del banco de pruebas mediante la mecánica de fluidos.

c) Realizar el diseño mecánico en base a la potencia prevista del banco de pruebas mediante la resistencia de materiales.

d) Obtener un bloque de cimentación en base a la teoría de vibraciones.

e) Corroborar por software de simulación el comportamiento hidráulico y mecánico de los principales componentes del banco de pruebas.

• Objetivo económico:

f) Realizar un metrado del banco de pruebas en base a una limitación presupuestal.

1.5 JUSTIFICACIÓN DEL ESTUDIO

El presente estudio se justifica por las siguientes razones:

- El análisis experimental mediante un banco de pruebas puede ensayar turbomáquinas hidráulicas simulando diferentes condiciones de caudal y altura hidráulica, añadida con las condiciones atmosféricas del lugar para evaluar sus prestaciones reales de funcionamiento.
- El comportamiento de una bomba centrífuga funcionando como turbina (BFT) no está muy bien definido por lo que requiere ensayos experimentales para obtener curvas de desempeño, plantear alternativas de mejora y posterior evaluación técnica-económica.
- Un banco de pruebas como el planteado permite la comparación operacional de un grupo generador no-convencional frente a uno convencional de similares características.
- El desarrollo de un banco de pruebas para turbomáquinas hidráulicas posibilita la aplicación de varios campos en la ingeniería mecánica.

1.6 HIPÓTESIS GENERAL

El diseño y construcción de un banco de pruebas para turbomáquinas de hasta 6 kW de potencia hidráulica permite ensayar y comparar grupos generadores del tipo convencional y no convencional.

1.7 VARIABLES DE DISEÑO

1.7.1 Variable independiente de diseño

• Potencia (kW)

1.7.2 Variable dependiente de diseño

• Diseño y construcción de un banco de pruebas

1.8 ALCANCES Y LIMITACIONES

1.8.1 Alcances

- Se realiza el diseño conceptual, diseño hidráulico y diseño mecánico del banco de pruebas para albergar a dos grupos de generación hidroeléctrica.
- Se realiza la selección de turbomáquinas, accesorios y componentes del sistema hidráulico y estructural del banco de pruebas.
- Se realiza la construcción y ensamble del sistema hidráulico y estructural del banco de pruebas.

- Se corrobora el comportamiento hidráulico y mecánico del banco de pruebas mediante el CFD y software de simulación (Ansys 19 y Solidworks 2018).
- Se describen ensayos a nivel operativo como banco de pruebas.

1.8.2 Limitaciones

- Se plantea como límite de diseño que el banco de pruebas pueda trabajar con equipos de una potencia hidráulica hasta 6 kW como máximo.
- El sistema eléctrico de generación, la ingeniería de control y automatización del banco de pruebas no es desarrollada en el presente trabajo, porque es materia de otro trabajo de investigación.
- Los grupos de generación de energía forman parte de un suministro y equipamiento contratado por lo que no son desarrollados en el presente trabajo.
- Los ensayos experimentales de comportamiento y comparación de equipos son materia de otros trabajos de investigación.
- No se efectúa una evaluación o análisis económico de rentabilidad por ser un proyecto de servicio educativo.

1.9 METODOLOGÍA

• Enfoque de Investigación:

Utiliza el método cuantitativo, porque utiliza parámetros numéricos a partir del diseño conceptual.

• Alcance:

Es descriptivo porque describe el proceso de diseño y construcción del banco de pruebas.

• Diseño:

Es no experimental porque no manipula la variable independiente y transeccional porque analizan datos en un momento único.

• Muestra:

Es no probabilística porque tiene un procedimiento orientado por las características del presente trabajo.

El proceso de la investigación cuantitativa se ve en la siguiente figura:

Figura 1.3: Proceso de investigación cuantitativa

Fuente: (Hernández Sampieri, 2014, p. 5)

1.10 MATRIZ DE CONSISTENCIA Y OPERACIONALIZACIÓN DE VARIABLES

Se encuentra descritas en los Apéndices 01 y 02.

1.11 ESTADO DEL ARTE

Algunos antecedentes sobre bancos de pruebas para turbomáquinas hidráulicas se enfocan en ensayar independientemente grupos de generación convencional o no convencional por separado. A continuación, se describen bancos de pruebas para ambos casos:

1.11.1 Bancos de pruebas para bombas funcionando como turbinas (BFT) y turbinas convencionales

Para ensayar este tipo de tecnología se tiene como referencia los siguientes trabajos, que guardan cierta similitud geométrica, estructural y operacional a la presente tesis:

• Tesis de pregrado: Implementación de banco de pruebas para ensayos mono y trifásico de grupo bomba-turbina (Mella Mora, 2017)

Figura 1.4: Módulo BFT. UTFSM, Valparaiso, Chile Fuente: (Mella Mora, 2017, p. 64)

Este módulo cuenta con un sistema de tuberías soldadas de acero y uniones bridadas que descarga hacia dos grupos de generación BFTs monofásico y trifásico respectivamente. Se presenta condiciones de operación de 887 l/min y 4.4 Bar.

• Tesis de pregrado: Generación de energía eléctrica con una bomba funcionando como turbina y un generador de inducción. (Neyra & Amado, 2011)

Para esta tesis también se considera un reservorio rectangular abierto, sobre el cual se disponen una BFT y una turbina Michel-Banki.

La bomba centrífuga principal de simulación se encuentra a nivel del suelo y tiene unas condiciones de operación máximas de 35 m de altura y 18 l/s de caudal.

Las uniones de tuberías hacia los equipos son bridadas y hacia accesorios son roscadas y soldadas.

Figura 1.5: Módulo para BFT y turbina convencional. UCSM, Arequipa Fuente: (Nevra & Amado, 2011)

 Tesis de pregrado: Diseño y construcción de un módulo de laboratorio para el análisis de los parámetros de una bomba centrífuga de 1 HP como turbina. (Quispe & Maquera, 2019)

Se construye un reservorio metálico rectangular abierto, sobre el cual se apoyan los equipos dispuestos sobre perfiles metálicos paralelos. La BFT está pensada para ensayarla en modo bomba y modo turbina. Cuenta además con un vertedero triangular que separa el reservorio en dos compartimentos. Las tuberías son de 2 pulgadas \emptyset de acero galvanizado para un caudal de trabajo máximo de 5.1 l/s y uniones roscadas.

Figura 1.6: Módulo BFT. UNA, Puno Fuente: (Quispe & Maquera, 2019, p. 127)

• Tesis de postgrado: A utilização de bombas operando como turbinas e geradores de indução na geração de energia elétrica. (Medeiros, 2004)
Este proyecto utiliza un reservorio metálico rectangular con atiesadores cruzados y verticales en las paredes. La bomba de simulación se encuentra a nivel del suelo con una capacidad de operación de hasta 15 m de altura y 32 l/s.

Figura 1.7: Módulo BFT. UFI, Itajubá, Brasil Fuente: (Medeiros, 2004, p. 124)

Las uniones de tuberías son bridadas, utiliza válvulas wafer mariposa y de compuerta bridada, el caudal se mide por tubo de Venturi. La BFT se encuentra en la parte superior del reservorio, que fue ensayada a velocidades alrededor de los 1800 rpm.

• Artículo científico: Design and development of a reversible pump turbine test rig. (Koirala, Chitrakar, Maharjan, Gurung & Aryal, 2014)

Se diseña este banco de pruebas para ensayar un prototipo a escala en modo bomba y turbina. El equipo de bombeo tiene una capacidad de operación de 24 m de altura y 16 l/s, la cual es generada por un par de bombas situadas a nivel del suelo. La tubería es de 3 pulgadas Ø con uniones roscadas.

Figura 1.8: Módulo BFT. U. de Kathmandu, Nepal Fuente: (Koirala, et al., 2014, p. 83)

• Tesis de pregrado: Factibilidad técnica de la utilización de una bomba como turbina hidráulica (Puchi Gonzalez, 2010)

Este banco de pruebas tiene reservorios rectangulares metálicos separados, angulares para refuerzo del reservorio y apoyo de equipos, vertedero rectangular que une ambos reservorios, tuberías de PVC y freno Prony. Las condiciones de operación máxima son de 25 m y 228 l/min.

Figura 1.9: Módulo BFT. UAC, Valdivia, Chile Fuente: (Puchi Gonzalez, 2010, p. 24)

Tesis de pregrado: Diseño de un banco de pruebas para turbinas Michel Banki para el laboratorio de energía de la PUCP. (Egusquiza & Sanchez, 2009)

Este diseño propone un reservorio metálico rectangular con perfiles de soporte y un vertedero rectangular. El equipo de bombeo tiene una capacidad de 35 m de altura y 38 l/s. La tubería se tiene un diámetro de 6 pulgadas.

Figura 1.10: Banco de pruebas para turbina Michell-Banki. PUCP, Lima Fuente: (Egusquiza & Sanchez, 2009, p. 148)

• Tesis de pregrado: Diseño y fabricación de un banco de pruebas para microturbinas hidráulicas de acción. (Guevara & Ortiz de Zevallos, 2007)

Este módulo igualmente considera un reservorio metálico rectangular con un vertedero rectangular y la turbina a ensayar sobre el banco de pruebas. La impulsión se realiza por dos bombas de 2 HP cada una. Las tuberías son de hierro dúctil con uniones roscadas y soldadas.

Figura 1.11: Ensamble total del banco de pruebas. UNSAAC Fuente: (Guevara & Ortiz de Zevallos, 2007)

CAPITULO II

2 MARCO TEÓRICO

2.1 METODOLOGÍA DE DISEÑO EN INGENIERÍA

Las metodologías de diseño permiten que quien las use sea consciente de muchos más elementos inherentes al diseño que no serían visibles si se trabajara de forma improvisada; es decir, una metodología claramente establecida lleva al diseñador a enfocarse en más elementos necesarios para el diseño, facilita la retroalimentación, permite determinar factores de evaluación, e incorpora elementos mesurables y tangibles al diseño. (Gutiérrez R., 2009, pág. 2)

2.1.1 Directriz VDI 2221

"El método generalizado, VDI 2221 se optimiza en cada una de sus fases, lo cual se presenta como una ventaja ya que por una parte obliga al diseñador a buscar criterios de evaluación que lo conduzcan a la optimización. De otro lado el diseñador recibe y está obligado también a entregar las mejores soluciones aumentando así su rendimiento". (Barriga, 2018, p. 10)

Al diseñar máquinas se puede observar que esta actividad tiene las siguientes fases:

- Comprensión de la Solicitud: en esta primera fase "se define el estado de la tecnología que es la búsqueda de información sobre el tema que se está desarrollando, y la lista de exigencias que es el pedido concreto de un sistema técnico, con una serie de exigencias debidamente clasificadas y cuantificadas". (Barriga Gamarra, 2016, p.2-I)
- Concepto de Solución: en esta fase "se obtiene un bosquejo de la solución completa mediante los conceptos de ingeniería y diseño cualitativo del producto".
 (Barriga Gamarra, 2018, p. 6)
- Elaboración del proyecto: en esta fase del diseño "se llegará a desarrollar un proyecto definitivo a partir de la estructura de construcción óptima encontrada en la fase anterior". (Barriga Gamarra, 2015, p. 2-IV)
- Elaboración de ingeniería de detalles: Es la etapa final donde "se obtendrán todos los planos para la fabricación y montaje de la máquina, así como todos los cálculos documentados, es decir se hace la ingeniería de detalle del proyecto". (Barriga Gamarra, 2018, p. 6)

A continuación, se presentan las fases de diseño mediante la directriz VDI 2221

Figura 2.1: Método del diseño por la directriz VDI 2221 y sus fases Fuente: (Barriga, 2018, p. 11)

2.2 IMPLEMENTACIÓN DE BANCO DE PRUEBAS

Un banco de pruebas está definido como "una instalación provista de aparatos y dispositivos, que permite medir las características de una máquina simulando las condiciones de su funcionamiento real". (Real Academia Española, 2016)

2.2.1 Banco de pruebas para turbomáquinas hidráulicas

"Un banco de pruebas es el conjunto de equipos, dispositivos de regulación y control, así como instrumentos de medición que permite simular un recurso hidráulico y su aprovechamiento en la generación de energía eléctrica mediante una turbina hidráulica". (Egusquiza & Sánchez, 2009, p. 2)

"La importancia de realizar pruebas se basa en que las principales empresas de manufactura de máquinas de acción y reacción (bombas y turbinas) en el mundo tienen bancos de prueba en continuo mantenimiento y actualización. Asimismo, existen varios

laboratorios académicos dedicados a la certificación del desempeño y la investigación experimental". (Hasmatuchi, Botero, Gabathuler, & Munch, 2014, p. 3)

2.2.2 Reservorio de agua en banco de pruebas

Los reservorios o tanques de paredes planas se utilizan únicamente para presiones hidrostáticas bajas, debido a su forma mecánicamente débil. La cantidad de material requerida para los tanques rectangulares es mayor que la que requieren los tanques cilíndricos de igual capacidad. Sin embargo, a veces se prefiere utilizar dichos tanques por la facilidad de fabricación y buena utilización de espacio. (Megyesy, 2001, p. 213) A continuación, se aprecia la forma y distribución de fuerzas en un reservorio rectangular:

Figura 2.2: Recipiente rectangular sometido a presión hidrostática. Fuente: (Megyesy, 2001, p. 213)

2.3 TEORÍA DE TURBOMÁQUINAS HIDRÁULICAS

Las turbomáquinas son máquinas rotativas que permiten una transferencia energética entre un fluido y un rotor provisto de álabes o paletas, mientras el fluido pasa a través de ellos. La transferencia de energía tiene su origen en una gradiente de presión dinámica que se produce entre la salida y la entrada del fluido en el rotor, por lo que también se denominan a estas máquinas de presión dinámica. (Guevara & Ortiz de Zevallos, 2007, p. 30)

Figura 2.3: Clasificación de las máquinas de fluido. Fuente: (Mataix, 1986, p. 358)

2.3.1 Clasificación de turbomáquinas

En la figura 2.3 se tiene una clasificación de máquinas de fluido, siendo las turbomáquinas de interés especial para la presente tesis.

2.3.2 Bomba hidráulica

"Bomba es una máquina que absorbe energía mecánica y restituye al líquido que la atraviesa energía hidráulica. Se emplean para impulsar toda clase de líquidos. Su funcionamiento se basa en la ecuación de Euler y su órgano transmisor de energía se llama rodete". (Mataix, 1986, p. 369)

• Potencia interna de una bomba

"Es la potencia total suministrada al fluido, ósea la potencia de accionamiento descontando las pérdidas". (Mataix, 1986, p. 397)

$$P = Q \times \rho \times g \times \frac{H}{\eta} \quad \dots (2.1)$$

2.3.3 Turbina hidráulica

"Una turbina absorbe energía del fluido y restituye energía mecánica. Es una turbomáquina motora, y por lo tanto esencialmente es una bomba rotodinámica que trabaja a la inversa". (Mataix, 1986, p. 460)

• Potencia interna de una turbina

"Es la potencia suministrada por la turbina descontando las pérdidas totales". (Mataix, 1986, p. 495)

$$P = Q \times \rho \times g \times H \times \eta \quad \dots (2.2)$$

2.3.4 Bomba funcionando como turbina

"Las máquinas rotatorias de fluido o turbomáquinas son completamente reversibles, por lo que una bomba puede funcionar eficientemente como turbina. Sin embargo, el desempeño en ambos modos es diferente, debido a las pérdidas hidráulicas. Sin

Figura 2.4: Dirección de flujo para bomba y turbina hidráulica Fuente: (Chapallaz, Eichenberg, & Fischer, 1992, p. 9)

excepción, el caudal y altura óptima en modo turbina es mayor que en modo bomba". (Chapallaz, Eichenberg, & Fischer, 1992, p. 6)

"La utilización de bombas funcionando como turbinas (BFT) para generación es una alternativa atractiva con creciente interés internacional para pico, micro y minicentrales que hacen frente a turbinas convencionales más costosas en esta categoría como son las turbinas Pelton, Turgo y Michell-Banki". (Carravetta, Derakhshan, & Ramos, 2018, p. 9)

2.3.5 Selección de una BFT

"La selección de una BFT no es tan directa, por lo que se desea predecir su comportamiento a partir de las características de la bomba en términos de caudal, altura y eficiencia". (Chapallaz, Eichenberg, & Fischer, 1992, p. 33)

"El método más común de selección es partiendo del punto de mayor eficiencia en modo bomba para predecir el punto de mayor eficiencia en modo turbina, lo cual está basado en resultados experimentales". (Chapallaz, Eichenberg, & Fischer, 1992, p. 40)

Figura 2.5: Coeficientes de selección de BFT Fuente: (Carravetta, Derakhshan, & Ramos, 2018, p. 83)

2.4 TEORÍA DE MECÁNICA DE FLUIDOS

"La mecánica de fluidos es la parte de la mecánica que estudia las leyes del comportamiento de los fluidos en equilibrio (hidrostática), y en movimiento (hidrodinámica)". (Mataix, 1986, p. 1)

2.4.1 Propiedades del fluido

• Densidad

"La densidad es la masa por unidad de volumen: masa en kg y volumen en m³". (Mataix, 1986, p. 14)

$$\rho = \frac{m}{V} \quad \dots (2.3)$$

• Viscosidad dinámica

La viscosidad produce una resistencia a la deformación, o resistencia a que unas capas de fluido resbalen sobre las otras y, por lo tanto, una pérdida de energía en la corriente. En los fluidos muy poco viscosos o newtonianos (agua, aire y otros gases), esta resistencia es muy pequeña en el interior del fluido, pero se hace sentir intensamente en la capa contigua al fluido. (Mataix, 1986, p. 23)

$$n = \left(\frac{kg}{m \times s}\right)(Pa - s) \dots (2.4)$$

• Presión

Resalta el principio de Pascal, donde la presión en un punto de un fluido en reposo es igual en todas direcciones. Además, la fuerza de contacto que ejerce en el interior de un fluido sobre otra contigua a la misma tiene la dirección normal a la superficie de contacto. (Mataix, 1986, p. 33)

$$p = \rho \times g \times H\left(\frac{N}{m^2}\right) \circ (Pa) \quad \dots (2.5)$$

• Caudal

"Es el volumen de fluido por unidad de tiempo que pasa a través de una sección transversal a la corriente. Se puede expresar en función de la velocidad media de la corriente y la superficie". (Mataix, 1986, p. 92)

$$\boldsymbol{Q} = \boldsymbol{v} \times \boldsymbol{A} \left(\frac{\boldsymbol{m}^3}{\boldsymbol{s}}\right) \quad \dots (2.6)$$

2.4.2 Fuerzas sobre un fluido

"Las fuerzas que actúan sobre un fluido son la fuerza de la gravedad, la fuerza causada por la diferencia de presiones y la fuerza de viscosidad que es nula para un fluido ideal". (Mataix, 1986, p. 95)

$$Pabs = Patm + pgH \dots (2.7)$$

2.4.3 Teorema de Bernoulli

"Por el principio de conservación de energía, se define la siguiente ecuación, incluyendo pérdidas": (Mataix, 1986, p. 112)

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho Q Y_1 - Hr = p_2 + \frac{1}{2}\rho v_2^2 + \rho Q Y_2 \quad \dots (2.8)$$

2.4.4 Número de Reynolds

"Mide la importancia relativa de las variables que intervienen en un fenómeno en que la fuerza predominante es la viscosidad dinámica. Cuanto mayor es el número de Reynolds, menos importancia tiene la fuerza de viscosidad". (Mataix, 1986, p. 175)

$$Re = \frac{\rho \times \nu \times \emptyset}{n} \quad \dots (2.9)$$

"En tuberías, el fluido es considerado laminar cuando el número de Reynolds es menor a 2000" (Nayyar, 2000, p. A19)

• Flujo turbulento

"Es el más frecuente en las aplicaciones prácticas de la ingeniería, en esta clase de flujo las partículas del flujo se mueven siguiendo trayectorias muy irregulares, originando un intercambio de cantidades de movimiento que pueden variar de un pequeño a uno muy grande". (Guevara & Ortiz de Zevallos, 2007, p. 28)

2.5 TEORÍA SOBRE VERTEDEROS

"Un vertedero es un dique o pared que intercepta la corriente, causando una elevación del nivel de agua y se emplea para medición de caudales o para control de nivel". (Mataix, 1986, p. 291)

2.5.1 Vertedero de pared delgada

La parte superior del vertedero que está en contacto con el líquido suele ser una chapa de algunos milímetros de espesor, en ella se practican diversas aberturas (rectangular, trapezoidal, triangular, parabólico). Posee a su vez otras características como la contracción lateral y la ventilación que influyen en la precisión de la medición. (Mataix, 1986, p. 293)

• Vertedero rectangular con contracción lateral

"Los vertederos rectangulares se adaptan para medir caudales desde 6 l/s a 10 m³/s" (Mataix, 1986, p. 297), se calcula mediante:

$$Q = Cq \times \frac{2}{3} \times b \times h\sqrt{2g \times h}$$
(2.10)

• Vertedero trapezoidal

"Es un vertedero de determinadas características geométricas. Para el cálculo del caudal teórico se considera que la sección está conformada por tres partes: una central que es rectangular, y dos laterales, que son triangulares". (Rocha, n.d., p. 483)

$$Q = Cq \times \frac{2}{3} \times \sqrt{2g} \times b \times h^{\frac{3}{2}} + Cq \times \frac{8}{15} \times \sqrt{2g} \times tan \ \alpha \times h^{\frac{5}{2}} \quad \dots (2.11)$$

2.6 ESFUERZOS, PÉRDIDAS Y FUERZAS EN TUBERÍAS

2.6.1 Esfuerzos en tuberías

• Esfuerzo tangencial o circunferencial

Se denota por:

$$\sigma_t = \frac{p \times \emptyset int}{2t} \quad \dots (2.12)$$

(Budynas & Nisbett, 2008, p. 108)

• Esfuerzo longitudinal

Se denota por:

$$\sigma_l = \frac{p \times \emptyset int}{4t} \quad \dots (2.13)$$

(Budynas & Nisbett, 2008, p. 109)

2.6.2 Pérdidas en tuberías

2.6.2.1 Pérdidas primarias

"Son las pérdidas de superficie en el contacto del fluido con la tubería (capa límite), rozamiento de unas capas de fluido con otras (régimen laminar) o de las partículas de fluido entre sí (régimen turbulento). Tienen lugar en flujo uniforme, por tanto, principalmente en los tramos de tubería de sección constante". (Mataix, 1986, p. 203) Se determinan mediante la ecuación fundamental de Darcy-Weisbach:

$$Hrp = \lambda \frac{L' \times v^2}{\emptyset \times 2 \times g} \quad \dots (2.14)$$

• Diagrama de Moody

"Resuelve todos los problemas de pérdidas de carga primarias en tuberías con cualquier diámetro, cualquier material de tubería y cualquier caudal. Se usa para determinar el coeficiente λ , el cual luego se lleva a la ecuación de Darcy Weisbach". (Mataix, 1986, p. 207). Ver Anexo 04.

2.6.2.2 Pérdidas secundarias

"Son las pérdidas de forma, que tienen lugar en las transiciones o cambios de sección y dirección de la corriente: estrechamientos, expansiones, codos, válvulas, y en toda clase de accesorios de tubería". (Mataix, 1986, p. 203)

La fórmula por coeficiente adimensional de pérdida secundaria es:

$$Hrs = \zeta \frac{v^2}{2 \times g} \quad \dots (2.15)$$

2.6.3 Fuerzas cambio de dirección de tuberías

El fluido, al cambiar su dirección en un codo o la cantidad de movimiento en una reducción, está sometido a un sistema de fuerzas cuya resultante se rige por la 3ra ley de Newton (o principio de acción y reacción), donde el fluido reacciona contra el conducto con una fuerza igual y de sentido contrario. (Mataix, 1986, p. 333)

$$F = \rho \times Q \times v + p \times A \dots (2.16)$$

2.7 TEORÍA SOBRE PLANCHAS, VIGAS Y TRANSMISIÓN DE POTENCIA

2.7.1 Esfuerzo general

Se denota por la fuerza aplicada por unidad de área:

$$\sigma = \frac{F}{A} \quad \dots (2.17)$$

(Avallone, Baumeister, & Sadegh, 2007, p. 5-15)

2.7.2 Planchas metálicas

En la teoría de placas se definen los esfuerzos resultantes por unidad de longitud integrando las fuerzas y los momentos actuantes a lo largo del espesor de la placa. Las fuerzas resultantes N producen en la placa esfuerzos membranales y los momentos M producen esfuerzos flexionales: (Massa, Giro, & Giudici, 2015, p. 67)

• Momento de inercia en plancha de acero

Figura 2.6: Esfuerzos membranales y flexionales en planchas Fuente: (Massa, Giro, & Giudici, 2015, p. 67)

Se aplica la fórmula:

$$I = \frac{1 \times t^3}{12} \dots (2.18)$$

(ASME Sec. VIII Div. 1, 2013, p. 452)

2.7.3 Vigas

"Se asume que una viga es una pieza prismática de largo de al menos 10 veces su espesor. Las fuerzas externas están en ángulo recto a su eje y en un plano de simetría, la flexión es leve". (Avallone, Baumeister, & Sadegh, 2007, p. 5.21)

• Momento de inercia de sección rectangular

Se halla por la fórmula:

$$I = \frac{b \times h^3}{12} \ (2.19)$$

(Budynas & Nisbett, 2008, p. 1016)

Figura 2.7: Flexión en vigas Fuente: (Avallone, Baumeister, & Sadegh, 2007, p. 5-21)

2.7.4 Transmisión de potencia por fajas en V

Es ampliamente usada en transmisión de potencia con eficiencias entre 70 y 96%. Son fajas de sección trapezoidal con ranuras de la misma forma en las poleas. Las fajas se forman de cables impregnados de caucho. Son silenciosas, absorben impacto y operan a bajas presiones de apoyo. (Avallone, Baumeister, & Sadegh, 2007, pág. 8.54)

Figura 2.8: Faja en V y templado de fajas Fuente: (Avallone, Baumeister, & Sadegh, 2007, pág. 8.57)

2.8 TEORÍA DE CIMENTACIÓN DE MÁQUINAS Y VIBRACIONES

2.8.1 Cimentación de máquinas

"Las cimentaciones de maquinaria requieren una atención especial ya que la operación del equipo genera fuerzas, momentos dinámicos desbalanceados y vibraciones, llamadas cargas dinámicas que son transmitidas a la cimentación y al suelo, además se adicionan las cargas estáticas por el peso de la maquinaria y el bloque de soporte". (Chávez, 2014, p. 3)

Figura 2.9: Cimentación tipo bloque Fuente: (ACI 351.3R-18, 2018, p. 07)

2.8.2 Sistema amortiguado de un grado de libertad

"Cuando la masa es libre de moverse en una sola dirección y su comportamiento depende del resorte y amortiguador". (ACI 351.3R-18, 2018, p. 19)

Figura 2.10: Sistema amortiguado de cimentación con excitación vertical Fuente: (ACI 351.3R-18, 2018, p. 20)

• Frecuencia natural libre o no amortiguada

"La frecuencia que oscila un sistema sin la acción de fuerzas externas". (Macedo Silva, n.d., p. 3)

$$\omega n = \sqrt{\frac{k}{m}} \quad \dots (2.20)$$

• Amortiguamiento crítico

Se obtiene por la fórmula:

$$ccr = 2\sqrt{m \times keq} \dots (2.21)$$

(Macedo Silva, n.d., p. 27)

• Relación de amortiguamiento

"La relación de la constante de amortiguamiento y el amortiguamiento crítico" (Macedo Silva, n.d., p. 27)

$$\xi = ceq/ccr \dots (2.22)$$

• Frecuencia natural amortiguada

Se obtiene por la fórmula:

$$\omega d = \omega n \sqrt{1 - D^2} \dots (2.23)$$

(Macedo Silva, n.d., p. 29)

• Relación de frecuencias

Se obtiene por la fórmula:

$$r' = \omega o/\omega d \dots (2.24)$$

(Macedo Silva, n.d., p. 61)

• Amplitud de oscilación

Se obtiene por la fórmula:

$$A' = \frac{\frac{Fo}{keq}}{\sqrt{(1 - (r')^2)^2 + (2D \times r')^2}} \dots (2.25)$$

(Macedo Silva, n.d., p. 76)

• Transmisibilidad

Se obtiene por la fórmula:

$$Tr = \sqrt{\frac{1 + (2\xi \times r')^2}{(1 - (r')^2)^2 + (2\xi \times r')^2}} \dots (2.26)$$

(Macedo Silva, n.d., p. 114)

• Fuerza transmitida a la base

Se obtiene por la fórmula:

$$Tr = Ft/F \dots (2.27)$$

(Macedo Silva, n.d., p. 114)

2.8.3 Modos de vibración

$$det[k - \omega n^2 m] = 0 \dots (2.28)$$

La ecuación 2.28 se conoce como ecuación característica o ecuación de frecuencias que tiene N raíces o valores propios que corresponden a las N frecuencias de vibración natural, modos naturales de vibración o formas naturales de los modos de vibración. (Chopra, 2014, p. 407)

Durante la vibración libre en cada modo natural, un sistema no amortiguado oscila en su frecuencia natural con todos los grados de libertad del sistema que vibra en la misma fase, pasando por sus posiciones máxima, mínima o de equilibrio en el mismo instante de tiempo. (Chopra, 2014, p. 408)

2.9 TEORÍA DE SIMULACIÓN COMPUTACIONAL

2.9.1 Análisis de elementos finitos

Es una técnica numérica para resolver problemas de campo del tipo estructural, vibracional y térmico, descrita por un conjunto de ecuaciones diferenciales parciales. El método de elementos finitos es comúnmente usado en muchas disciplinas de ingeniería como el diseño de máquinas, dinámica de fluidos, además en la ingeniería mecánica se aplica en problemas estructurales, térmicos y vibraciones. (Dassault Systemes, 2017, p.

• Procedimiento

Se comienza con un modelo geométrico que puede ser una parte o un ensamble al cual se le asignan propiedades de material, cargas y se aplican restricciones para luego poder discretizar o mallar que consiste en separar la geometría en entidades pequeñas y de forma simple llamados elementos finitos a partir de los cuales se dan soluciones simples para elementos individuales que conforman el modelo entero. (Dassault Systemes, 2017, p. 9)

Figura 2.11: Proceso de elementos finitos Fuente: (Dassault Systemes, 2017, p. 10)

2.9.2 Dinámica de fluidos computacional (CFD)

Es la ciencia de predicción de flujo de fluidos, transferencia de calor y masa, reacciones químicas y otros fenómenos relacionados. Para esto se resuelve:

- La ecuación de continuidad (conservación de masa).
- Ley fundamental de dinámica (segunda ley de Newton).
- Ecuación de energía (conservación de energía). (Ansys, 2019)

Figura 2.12: Ecuación de transporte de Reynolds utilizada en CFD Fuente: (Ansys, 2019)

Procedimiento

De manera similar a los elementos finitos, se discretiza un número finito de volúmenes de control las cuales se procesan como ecuaciones diferenciales parciales y ecuaciones algebraicas para arrojar una solución general. (Ansys, 2019)

Figura 2.13: Región de fluido en tuberías Fuente: (Ansys, 2019)

CAPÍTULO III

3 DISEÑO CONCEPTUAL

3.1 INTRODUCCIÓN

En este capítulo se aplica una metodología de diseño conceptual del banco de pruebas basado en la directriz 2221 y 2225, para obtener la mejor disposición de equipos, tuberías y seleccionar materiales para el banco de pruebas. Para el presente capítulo se desarrolla las tres primeras fases de la figura 3.1, siendo la última fase de elaboración de detalles, abordada en los subsiguientes capítulos.

 Comprensión de la solicitud Concepción de la solución 	 Estado de la tecnología Lista de exigencias Abstraccion caja negra Estructura de funciones Concentos de selveión
3. Elaboración del proyecto	Proyectos preliminares Proyecto definitivo
4. Elaboración de detalles	Memoria de cálculo Planos e instrucciones

Figura 3.1: Fases del diseño por VDI 2221

3.2 COMPRENSIÓN DE LA SOLICITUD

3.2.1 Estado de la tecnología

Actualmente los inversionistas y empresas de energía tienen altas demandas sobre las turbinas, por lo que se deben realizar pruebas extensas para alcanzar dichas demandas. Para esto, los bancos de prueba proveen condiciones reproducibles para ensayos de certificación, que ahorran tiempo y dinero. (Jersch, 2019)

Figura 3.2: Rango de aplicación de BFT y turbinas convencionales Fuente: (Chapallaz, Eichenberg, & Fischer, 1992, p. 15)

Por otro lado, el funcionamiento de una BFT ha sido analizado experimentalmente en algunos estudios para micro generación según el tipo de bomba y condiciones de operación que se ven en la figura 3.2 (izquierda), donde cada punto representa un estudio realizado, siendo la más recurrente una bomba centrífuga de flujo radial. A su vez, cada tipo de BFT puede ser comparada con una turbina de similares características de operación de la figura 3.2 (derecha).

3.2.2 Elaboración de lista de exigencias

Se toma en cuenta la guía para la redacción de una lista de exigencias con las características principales (Barriga, 2016, p.8-I), a partir de eso se genera la tabla 3.1:

Tabla 3.1: Lista de exigencias

		LISTA DE EXIGENCIAS			
TEMA	DISEÑO Y CONSTRUCCION DE UN BANCO DE PRUEBAS PARA Fecha: 30/12/1				
IEMA:	TURBOMAQUINAS HIDRÁULICAS PARA POTENCIAS DE HASTA 6 kW Revisado: E.A.O				
LUGAR:	Lat	poratorio de Máquinas Hidráulicas - EPIM - UNSAAC	Elaborado: R.G.C.		
Deseo o Exigencia	Característica	Descripción			
F	Función	Desarrollar una plataforma para ensayar y comparar turbomáquinas hidráulica convencionales semejantes.	s no convencionales y		
E	principal	Contar con un sistema de simulación de condiciones hidráulicas para un rango	de operación.		
		Accionar cada grupo de generación de manera alternada con recirculación de	l fluido.		
Е	Geometria	Dimensiones proporcionadas para albergar dos grupos de generación, que sean alimentados equivalentemente.			
Б	Poseer rigidez estructural ante vibraciones de equipos.				
Е	Fuerzas	Poseer rigidez estructural ante cargas dinámicas y estáticas del fluido.			
	Manipular la presión y caudal de trabajo.				
E	Energia Asemejar pérdidas por conducción para ambos grupos de generación.				
		Evaluar la eficiencia de transformación de energia hidráulica y mecánica a energia eléctrica.			
E	Materia Prima	Agua como fluido de trabajo a condiciones ambientales.			
F	Señalec	Posibilidad de medir caudal y presión de trabajo.			
Б	Senaies	Posibilidad de medir energia generada.			
F	Semuidad	Sistema de protección de los sistemas eléctrico, hidráulico y mecánico.			
Е	Segundad	Procedimientos y técnicas de seguridad durante operación.			
Е	Ergonomia	Disposición y altura de componentes adecuadas para manejo.			
Е	Fabricación	Procesos de fabricación in-situ de acuerdo a norma y manuales.			
Б	Montaia	Debe ser versatil, de fácil montaje, instalación.			
Б	wonaje	Posibilidad de albergar otros equipos similares.			
E	Costos	En base a limitación presupuestal y disponibilidad de mercado.			
Е	Mantenimiento	Equipos, componentes y accesorios de fácil acceso para mantenimiento.			
D	Transporte	Estructura anclada a piso de laboratorio con posibilidad de movimiento ocasio	onal.		
D	Uso	Realización de ensayos en laboratorio.			

3.3 CONCEPCIÓN DE LA SOLUCIÓN

3.3.1 Abstracción y obtención de caja negra

"Dentro de la caja negra ocurre un proceso técnico aún desconocido, es decir una transformación de las propiedades de las 3 magnitudes básicas (señal, materia y energía) descritas como entradas y salidas" (Barriga, 2016, p. 7-II), se tiene:

	ENTRADAS:				SALIDAS:
MATERIA:	Agua				Agua turbinada para recircular
	Energia eléctrica	1	Banco de pruebas para	⇒	Energia hidráulica, mecánica y eléctrica generada
ENERGÍA:	Energia ciccurica		turbomáquinas hidráulicas	⇒	Calor, vibración, ruido
SEÑALES:	Visual (Encendido)] 🔿			Visual (Apagado)

Figura 3.3: Abstracción caja negra

Entradas:

- Materia: Agua como fluido de trabajo a condiciones ambiente.
- Energía: Energía eléctrica como suministro principal.
- Señal: Visual al encendido.

Salidas:

- Materia: Agua turbinada para recirculación.
- Energía: Obtención de energía hidráulica del sistema de simulación, energía mecánica entregada por las turbinas y energía eléctrica entregada por los generadores además de pérdidas en forma de calor, vibración y ruido.
- Señal: Visual al apagado.

3.3.2 Obtención de estructura de funciones

"En base a principios tecnológicos, se buscan todas las "funciones parciales" que la máquina a diseñar debe cumplir para llevar a cabo su función principal, y estas se presentan en forma estructurada de manera tal que se aprecie su contribución a la función total": (Barriga, 2016, p. 3-II).

Figura 3.4: Estructura de funciones

3.3.3 Elaboración de matriz morfológica

"Se transforma la estructura de funciones, a través de principios de solución para cada una de las funciones parciales en una estructura de construcción". (Barriga, 2013, p. 3-III) "Los efectos de un proceso técnico pueden ser ejecutados mediante procesos manuales, mecánicos o automáticos". (Barriga, 2016, p. 15-II)

		MATRIZ MORE	FOLOGICA		
TEMA.	DISEÑO Y CONSTRU	JCCION DE UN BANCO	O DE PRUEBAS PARA	TURBOMAQUINAS	Fecha: 10/04/2020
ILMA:	HIDR	ÁULICAS PARA POTE	ENCIAS DE HASTA 10) kW	Revisado: E.A.C.A.
LUGAR:	Labor	ratorio de Máquinas Hidi	ráulicas - EPIM - UNS.	AAC	Elaborado: R.G.C.
FUNCIONES	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4	Alternativa 5
Almacenar en recipiente	Reservorio cerrado	Reservorio de concreto	Reservorio abierto	Reservorio cilíndrico	Reservorio esférico
Accionar sistema de impulsión	Bomba rotatoria	Tanque elevado	Bomba centrifuga	Bomba reciprocante	
Regular caudal y altura	Válvula/tuberia auxiliar	Variador de frecuencia	Auxiliary Variador		
Conducir y direccionar fluido	Tuberia PVC	Tuberia galvanizada	Tuberia acero	Manguera	
Accionar turbina no convencional	Bomba flujo doble	Bomba flujo radial	Bomba multietapa	Bomba flujo mixto	Bomba axial
Generación eléctrica no convencional	Motor de inducción	Alternador (C.C.)			
Accionar turbina convencional	R	Trubino Delera	Turkin Emais	Transformer	Turking Kanlar
Generación eléctrica convencional	Generador asincrono	Generador sincrono			
Sistema de transmisión de potencia		(C)	80	-	6.2
Medición de caudal	Union eje directo	Treveas y fajas	Engranzies	Sistema variable	Cadenas
	Vertedero	Caudalimetro	Verted y Caudalimetro	Flujómetro	Cubeta & crono
		NOMBRE Concepto solución 1 Concepto solución 2 Concepto solución 3			

Concepto solución 4

Figura 3.5: Matriz morfológica

Es decir, se materializa cada función parcial con alternativas o portadores de función parcial que se ordenan en la matriz morfológica de Zwicky de la figura 3.5.

3.3.4 Desarrollo de conceptos de solución

"La concepción de una solución es el resultado de las combinaciones factibles y compatibles de un portador por cada función parcial, que además trasmite una idea aproximada de la disposición y relación entre los elementos". (Barriga, 2013, p. 7-III)

A partir de la matriz morfológica se relacionaron cuatro conceptos de solución que se presentan a continuación:

Concepto de solución 1: Considera un reservorio rectangular cerrado con un equipo de impulsión a nivel de suelo que, mediante tuberías de PVC, alimenta a una bomba de flujo doble funcionando como turbina y una turbina Francis conectados a sus respectivos generadores mediante transmisión directa. El caudal se mide por caudalímetro.

Concepto de solución 2: Se almacena el agua en un reservorio de concreto armado que a la vez sirve de soporte para situar a la bomba de impulsión, una bomba multietapa funcionando como turbina y una turbina Pelton conectados a sus respectivos generadores mediante transmisión directa; se utiliza tubería galvanizada. Ambos equipos descargan a un mismo vertedero.

Figura 3.6: Conceptos de solución 1 y 2

Concepto de solución 3: Consta de un reservorio metálico rectangular abierto que, mediante un sistema de impulsión por bombeo a nivel de suelo y tuberías de acero, alimenta en la parte superior del reservorio a una bomba centrífuga funcionando como turbina y una turbina Michell Banki conectados a sus respectivos equipos de generación eléctrica mediante poleas y fajas. El caudal se mide por vertederos y caudalímetro.

Concepto de solución 4: Se tiene un reservorio cilíndrico elevado que, a través de mangueras y la fuerza gravitatoria alimenta a una bomba de flujo mixto y una turbina Kaplan conectados a sus generadores mediante transmisión de potencia variable. Un equipo de bombeo recircula el fluido, el caudal se mide por caudalímetro.

Figura 3.7: Conceptos de solución 3 y 4

3.3.5 Evaluación técnico económica de los conceptos de solución

"Las alternativas del concepto se deben evaluar, aunque todavía el grado de concretización es débil y las características de diseño del sistema ofrecen muy pocos puntos de referencia para la cuantificación de la mayoría de las exigencias". (Barriga, 2013 p. 7-III)

Se realiza una evaluación técnico-económica donde se asigna un puntaje para calificar los criterios de 0 a 4

- 0 = No satisface
- 1 = Aceptable a las justas
- 2 = Suficiente
- 3 = Bien
- 4 = Muy Bien (puntaje reservado para la solución ideal). (Barriga, 2013 p. 9-III)

Aspecto	Característica principal	Criterios	Solu	ción l	Solu	ción 2	Solu	ción 3	Solu	ición 4	Solución ideal
1	Función	Accionamiento de máquinas hidráulicas para ensayos	3	3	3	3	3	3	3	3	4
1000	Farme	Disposición de equipos y grupos generadores	2	1	3	3	3	1	2		4
	Forma	Tamaño y utilización de espacio	2	-	3	3	3	3	2	-	4
		Conducción y recirculación de fluido	3		3		3	-	2	-	
	Diseño	Volumen de almacenamiento de fluido	3	25	3	20	3	20	3	20	
Diseno		Solidez y estabilidad estructural	2 4.5		3	5.0	3 3.0	5.0	2	4.0	7
Técnico Seguridad Ergonomia		Duración y resistencia a impactos	2		3		3		1		
	Commided	Seguridad de uniones entre componentes	3	1	3 3	3	3	1	2		- G - 1
	Seguridad	Seguridad del operario	3	3 3	3	3	3	2		4	
	Ergonomia	Relación hombre-máquina	3	3	3	3	3	3	2	2	4
1.00	Fabricación	Simplicidad de fabricación	3	3	2	2	3	3	2	2	4
	Control de	Cumple lista de exigencias	3	3 2		3	3	2	2		4
	calidad	Confiabilidad de funcionamiento	3	3	3	3	3	2	2	1	-
	Transporte	Transportabilidad	3	3	$^{\circ}$ I $^{\circ}$	1	3	3	2	2	4
1	Uso	Facilidad de manejo	3	3	3	3	3	3	2	2	4
1.00	Mantenimiento	Accesibilidad y simplicidad de mantenimiento	3	3	3	3	3	3	1	1	4
Faanámiaa	Montaia	Simplicidad de montaje	3	3	2	2	3	3	3	3	4
Economico	wiontaje	Reequipabilidad	2	2	2	2	3	3	2	2	4
	Costos	Costos generales	2	2	2	2	2	2	2	2	4
		Puntaje Total	1	35.5	1	33	1.1	38	-	27.0	52

Tabla 3.2: Evaluación técnica y económica de conceptos de solución

De la tabla 3.2, el concepto solución N.º 3 es el que obtiene la puntuación más alta por sobre los demás.

3.4 ELABORACIÓN DEL PROYECTO

3.4.1 Desarrollo de proyectos preliminares

"Lo que se persigue aquí es elaborar una descripción aproximada de la construcción del sistema técnico, es decir un documento de diseño con datos para fabricar o adquirir los elementos que lo constituyen". (Barriga, 2015, p. 3-IV) Se presentan tres variantes como proyectos preliminares:

Proyecto preliminar 1

Figura 3.8: Proyecto preliminar 1

Se trata de un reservorio rectangular con una estructura de planchas metálicas y un marco rectangular intermedio como refuerzo horizontal. El sistema de conducción por tuberías se compone de uniones por soldadura únicamente, y un accesorio en "Y" para direccionar a cada grupo generador. El sistema de control de caudal se lleva a cabo por dos vertederos rectangulares y caudalímetro. Se tiene un bloque de cimentación de concreto para todo el banco de pruebas incluida la bomba centrífuga. Los ejes de los equipos están paralelos al lado corto del banco de pruebas.

Proyecto preliminar 2

El reservorio rectangular tiene una estructura metálica con refuerzos verticales que conectan a un marco superior y otro inferior. El sistema de conducción por tuberías se compone de uniones mixtas por bridas y soldadura. El sistema de control de caudal se lleva a cabo por vertederos (rectangular y trapezoidal) y caudalímetro. Se tiene un bloque de cimentación para la bomba centrífuga simuladora de salto y el reservorio se apoya sobre vigas en H. El eje de los equipos sobre el banco de orientan paralelos al lado más largo con el sistema de transmisión hacia afuera.

Figura 3.9: Proyecto preliminar 2

Proyecto preliminar 3

Se trata de un reservorio rectangular con una estructura metálica con refuerzos en equis para cada lado. El sistema de conducción por tuberías se compone de uniones por bridas únicamente. El sistema de control de caudal se lleva a cabo por vertederos (triangular y circular) y caudalímetro. Cuenta con un bloque de cimentación para el reservorio y una plancha con dobleces para la bomba centrífuga. Los equipos sobre el banco de orientan paralelos al lado más largo con los sistemas de transmisión hacia adentro.

Figura 3.10: Proyecto preliminar 3

3.4.2 Evaluación técnico económica de los proyectos preliminares

"A este nivel ya es posible practicar un primer análisis técnico económico de las alternativas, cada criterio de evaluación lleva un peso ponderado por tener diferente nivel de importancia en el proyecto". (Barriga, 2015, p. 11-IV)

En base a los tres proyectos preliminares elaborados se procede a realizar la evaluación técnica y otra económica por separado

Evaluación Técnica

	Evaluación Técnica Proyectos Preliminares									
	Variantes de Concepto		Preli	minar L	Preli	minar 2	Preli	minar 3	Solu ide	ción eal
No.	Criterios Técnicos	g	р	gp	р	gp	р	gp	р	gp
1	Conducción de fluido	4	3	12	3	12	3	12	4	16
2	Rigidez estructural	4	3	12	3	12	2	8	4	16
3	Versatilidad de equipamento	4	1	4	3	12	3	12	4	16
4	Cumple lista de exigencias	4	3	12	3	12	3	12	4	16
5	Seguridad en operación	4	3	12	3	12	3	12	4	16
6	Disposición de equipos	3	2	6	3	9	3	9	4	12
7	Facilidad de operación	3	3	9	3	9	3	9	4	12
8	Simplicidad de diseño	3	3	9	3	9	3	9	4	12
9	Cimentación	3	2	6	3	9	2	6	6	18
10	Peso de tuberias	2	3	6	3	6	1	2	4	8
11	Espacio requerido	2	3	6	3	6	3	6	4	8
	Puntaje Total	36	29	94	33	108	29	9 7	46	150
	Valor técnico Xi			0,65		0,75		0,67		1,0

Tabla 3.3: Evaluación técnica de proyectos preliminares

Evaluación Económica

Evaluación Económica Proyectos Preliminares																								
	Variantes de Concepto		Preliminar 1		Preliminar 1		Preliminar 1		Preliminar 1		Preliminar H		Preliminar 1		Preliminar 1		Preliminar 1		Preli	minar 2	Preli	minar 3	Solu id	ción eal
No.	Criterios Económicos	g	р	gp	р	gp	р	gp	р	gp														
1	Facilidad de montaje	4	1	4	3	12	2	8	4	16														
2	Facil adquisición de componentes	3	3	9	3	9	3	9	4	36														
3	Costo de materiales y equipos	3	2	6	2	6	2	6	4	24														
4	Cantidad de componentes	3	3	9	3	9	2	6	4	36														
5	Fácil mantenimiento	2	1	2	3	6	2	4	4	8														
	Puntaje Total	15	10	30	14	42	11	33	20	120														
	Valor técnico Yi			0,5		0,7		0,55		1														

Tabla 3.4: Evaluación económica de proyectos preliminares

3.4.3 Diagrama de Proyecto Preliminar Óptimo

"Sólo se tendrán en cuenta las alternativas que hayan alcanzado valores mayores a 0.6, que son las mejores": (Barriga, 2015, p. 11-IV)

Tabla 3.5: Rangos de val	or técnico y valor económico
--------------------------	------------------------------

Valor Técnico _{Xi}	Valor Económico Yi	Calificación
0,8	0,8	muy buena solución
0,7	0,7	buena solución
0,6 o menos	0,6 o menos	solución deficiente

Fuente: (Barriga, 2015, p. 11-IV)

Se realiza una gráfica en el plano cartesiano en la que se ubican los 3 conceptos de solución con coordenadas de las valoraciones técnicas y económicas. Se determina como el concepto de solución óptimo a la solución que está más cercana a la recta de pendiente 45 grados, el cual es el proyecto preliminar 2.

Figura 3.11: Diagrama de evaluación proyectos preliminares

3.4.4 Obtención de proyecto definitivo

"Aquí se trata de afinar el proyecto preliminar escogido donde se logre una completa descripción de la estructura del diseño, por supuesto aspirando que ésta sea definitiva". (Barriga, 2016, p. 3-V)

Figura 3.12: Borrador del proyecto definitivo

3.4.4.1 Restricciones técnicas

Función

• Cada elemento contribuye a la función total del banco de pruebas, desde el reservorio rectangular, el sistema de bombeo y las tuberías que entregan energía hidráulica a las turbomáquinas a ensayar.

Fabricación

• Para la unión por soldadura de planchas, perfiles y tuberías se debe seguir un procedimiento de acuerdo a normas, considerando el material.

Montaje y desmontaje

• Los tramos y elementos de tuberías, equipos y sistemas de transmisión pueden ser montados y desmontados fácilmente mediante bridas y pernos.

Tolerancias

- La alineación de bridas y ajuste de pernos se da según la presión de trabajo y otras recomendaciones.
- El alineamiento de poleas se realiza con un dispositivo electrónico.

Solicitaciones estructurales

- El espesor de las planchas en el reservorio debe estar de acuerdo a la presión hidrostática ejercida contra la base y las paredes.
- Los soportes de tubería deben aportar rigidez ante las fuerzas estáticas y dinámicas.
- La estructura del reservorio debe soportar las cargas de los equipos que alberga.
- Debe existir un tramo recto de tubería de mínimo 1.8 m para instalar el caudalímetro digital.
- Considerar el suministro y drenaje de agua para cada compartimento del reservorio.

Seguridad

- Se tuvo en cuenta el mínimo riesgo de daño al operario y a los componentes del banco de pruebas.
- La ubicación de las válvulas permite operarlas de una manera segura.
- El sistema de transmisión por fajas debe contar con una guarda de seguridad.

Confiabilidad

- El equipo de bombeo debe accionarse mediante un variador de velocidad.
- Existen válvulas controladas manualmente y automáticamente.

Pruebas y control

- Las condiciones de caudal y altura deben medirse por dispositivos analógicos y digitales.
- Las pruebas a realizar son a nivel operacional.

Otras propiedades de materiales

• Las planchas metálicas del reservorio deben estar cubiertas de una pintura que prevenga la corrosión.

Influencia del medio ambiente

- Las condiciones de presión atmosférica y altitud (3400 msnm) son un factor a considerar sobre el funcionamiento de los equipos.
- El laboratorio de máquinas hidráulicas está expuesto a acumulación de polvo sobre los módulos por lo éste podría enturbiar el agua del reservorio si permanece lleno de agua.

Influencias propias

• Existen pérdidas inevitables de potencia en la conducción y transformación de energía hidráulica y mecánica en energía eléctrica.

Mantenimiento

• Los equipos y demás componentes son de fácil acceso para mantenimiento.

Peso

- Se tuvo en cuenta el peso de las tuberías en su trazado.
- El peso de toda la estructura del reservorio otorga rigidez ante el movimiento de los equipos.

Volumen

• El espacio utilizado para el banco de pruebas va acorde con la función a realizar.

3.4.4.2 Restricciones económicas

Costos

 La adquisición de materiales, equipos y el servicio de construcción del banco de pruebas debe cumplir ciertas limitaciones presupuestales relacionadas al proyecto de investigación al cual pertenece.

Costo mínimo de funcionamiento

• Se necesita sólo una persona para la operación del banco de pruebas que comprende la verificación de apertura y cierre de válvulas, el encendido del sistema de bombeo y la medición de parámetros que se deseen evaluar.

Empleo de partes estandarizadas

• Se prefiere la utilización de componentes estándar y que estén disponibles en el mercado nacional.

3.4.4.3 Restricciones ergonómicas

• Se diseña y construye el banco de pruebas para que se adapte a la manipulación del operario.

CAPÍTULO IV 4 DISEÑO HIDRÁULICO

4.1 INTRODUCCIÓN

En base al "proyecto definitivo" obtenido previamente, en este capítulo se aborda el sistema hidráulico donde se determina las condiciones de operación, volumetría del reservorio, diseño del sistema de tuberías y selección de turbomáquinas y equipos.

4.2 PARÁMETROS Y CRITERIOS DE DISEÑO HIDRÁULICO

4.2.1 Parámetros del sistema hidráulico

Los parámetros de diseño requeridos para el sistema hidráulico son:

- Garantizar las condiciones de simulación de un recurso hidráulico de hasta 6 kW de potencia.
- Suministrar energía hidráulica mediante sistema de tuberías a dos grupos generadores de forma independiente y con similitud en pérdidas.
- Garantizar la recirculación, control y medición del fluido dentro del banco de pruebas.

4.2.2 Criterios de diseño para el sistema hidráulico

Se emplean los siguientes criterios de diseño:

- Se utiliza las ecuaciones de potencia de turbinas y bombas hidráulicas para definir las condiciones de operación y bombeo respectivamente.
- Se diseña una volumetría rectangular con compartimentos y medición de caudal por vertederos de pared delgada.
- Las pérdidas primarias por rozamiento son halladas por la ecuación de Darcy-Weisbach y el diagrama de Moody. Para las pérdidas secundarias por accesorios se usa una distancia equivalente con coeficientes correspondientes.
- Se utiliza la combinación de métodos experimentales y teóricos de selección para definir el equipo BFT.

4.3 DESCRIPCIÓN DEL SISTEMA HIDRÁULICO

4.3.1 Funcionamiento del sistema hidráulico

El sistema hidráulico es el sistema más importante del banco de pruebas y tiene como función principal la de proveer energía hidráulica, transportarla y entregarla controladamente mediante un sistema de tuberías a los equipos de generación convencional y no convencional de manera independiente para la obtención de energía mecánica rotacional y posterior generación de energía eléctrica.

4.3.2 Modos de operación

Según el equipo generador a accionar, existen dos modos de operación:

- El primero consiste en direccionar el flujo hidráulico hacia la turbina no convencional (BFT) mediante la correcta apertura y cierre de válvulas. (Figura 4.1)
- El otro modo de operación funciona similarmente para direccionar el flujo hidráulico hacia la turbina convencional (Michell Banki).

Ambos modos, luego de pasar el agua por la turbina asignada, poseen un sistema de medición de caudal por vertedero descargando hacia el compartimento central para recircular el agua.

4.3.3 Construcción del modelo matemático conceptual del sistema fluídico

"La modelización o modelaje matemático es el proceso racional de elaborar modelos para expresar fenómenos reales. (Cervantes Gómez, 2015, p. 2)

Asimismo, "los modelos conceptuales son representaciones, generalmente cualitativas, construidas para explicar o caracterizar una porción de la realidad haciendo uso de ideas, palabras o esquemas sencillos." (de Torres Curth, 2015, p. 9)

Este modelo matemático conceptual del sistema hidráulico del banco de pruebas se representa mediante el siguiente diagrama unifilar isométrico general.

4.3.3.1 Diagrama unifilar isométrico general (DUIG)

Este diagrama permite la ubicación espacial y seguimiento de los cálculos hidráulicos y mecánicos referidos al sistema de tuberías del banco de pruebas.

Se encuentra ilustrado en el plano DUIG-01, también llamado esquema hidráulico que "es la representación esquemática del sistema de tuberías, procesos de control e instrumentación que muestra las relaciones funcionales de los componentes del sistema". (Nayyar, 2000, p. B8)

4.3.4 Componentes del sistema hidráulico

El sistema hidráulico para el banco de pruebas está conformado por un reservorio rectangular, sistema de tuberías, equipos hidráulicos, accesorios y válvulas que hacen posible la conducción del fluido para alimentar a los equipos generadores, y posteriormente realizar la medición del caudal y recirculación del fluido. Se distinguen los siguientes componentes: (figura 4.1)

a) Reservorio

Figura 4.1: Componentes de banco de pruebas

Constituye el espacio donde se almacena y recircula el fluido, sirve de fuente hidráulica para el equipo de bombeo y está dividido en tres compartimentos que habilitan la medición de caudal por vertedero, uno para cada equipo de generación.

b) Línea de succión

Es el tramo de tubería que succiona el agua del reservorio y la transporta hacia el equipo de bombeo.

c) Equipo de bombeo

Es el encargado de generar energía hidráulica bajo ciertas condiciones de caudal y altura a partir de una fuente de energía eléctrica externa.

d) Línea de descarga principal

Tramo de tubería que transporta el fluido desde el equipo de bombeo hasta alguna de las derivaciones siguientes.

e) Línea reguladora de caudal

Tramo de tubería auxiliar que sirve para regular el caudal de trabajo, parte de la línea principal y descarga directamente al reservorio evitando pasar por los grupos de generación.

f) Líneas de alimentación a equipos de generación

Son dos derivaciones que continúan la línea de descarga principal y conducen independientemente el fluido hacia cada equipo de generación convencional y no convencional.

g) Grupo de generación no convencional

Está conformado por una bomba centrífuga funcionando como turbina que transmite energía mecánica mediante poleas y fajas a un motor de inducción funcionando como generador.

h) Grupo de generación convencional

Está conformado por una turbina Michell Banki que transmite energía mecánica mediante poleas y fajas a un generador síncrono.

4.4 DETERMINACIÓN DE CONDICIONES DE OPERACIÓN

Se toma 6 kW de potencia como tope de diseño de energía hidráulica que recibe la turbina hidráulica la cual se selecciona después de varias iteraciones, tomando en cuenta que, al escoger mayores condiciones de operación, aumenta el dimensionamiento de tuberías, además de equipos y costos.

4.4.1 Rango de trabajo para turbinas hidráulicas

Como paso inicial, se determina condiciones máxima, media y mínima de trabajo para la turbina hidráulica del equipo generador no convencional ubicado en el punto en 7 del plano DUIG-01:

Tabla 4.1: Rango de valores de potencia y altura

Denominación	Valor máximo	Valor medio	Valor mínimo
Potencia entregada a turbina	6 kW	4 kW	1 kW
Altura de trabajo en turbina	22 m	22 m	22 m
Caudal de operación	0.037 m ³ /s	0.025 m ³ /s	0.006 m ³ /s

Adicionalmente, "las BFT son usadas mayormente en el rango de 5 a 500 kW para microgeneración debido a sus múltiples ventajas. También se sabe que el rango de altura

Figura 4.2: Diagrama caudal-altura para tipos de BFT Fuente: (Carravetta et al., 2018, p. 12)

para aplicaciones de BFT parte de 10 m a más de cien metros". (Chapallaz, Eichenberg, & Fischer, 1992, p. 6)

De la figura 4.2, el presente caso se ubica por debajo de la línea de 10 kW, en la zona de bombas centrífugas.

4.4.2 Obtención de caudal de operación para equipos de generación (Q)

Para el punto "bomba funcionando como turbina" del Diagrama Unifilar Isométrico General (ver plano DUIG-01) y con las condiciones iniciales, se despeja un caudal con la ecuación de potencia útil o mecánica para turbinas: (Mataix, 1986, p. 495)

$$\boldsymbol{P} = \boldsymbol{Q} \times \boldsymbol{H} \times \boldsymbol{\rho} \times \boldsymbol{g} \times \boldsymbol{\eta} \qquad \dots (4.1)$$

Donde:

P: potencia útil = 6 kW /4 kW /1 kW

- H: altura neta = 22 m
- ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

g: gravedad = 9.81 m/s^2

* η : eficiencia en BFT = 0.75

Q: caudal (m^3/s)

*Nota: "la máxima eficiencia que puede alcanzar una BFT es del 80%" (Patel &

Jain, 2014, p. 862), por lo que se toma una eficiencia conservadora de 75%.

Despejando Q se obtienen caudales de:

Tabla 4.2: Caudales de operación

Denominación	Valor máximo	Valor medio	Valor mínimo
Caudal de operación	$0.037 \text{ m}^{3}/\text{s}$	0.025 m ³ /s	0.006 m ³ /s

4.4.3 Restricción de velocidad lineal en tubería (v)

"Se limita la velocidad del fluido en el sistema en la fase de diseño para evitar problemas potenciales de operación".(Nayyar, 2000, p. B60)

Se determina como máxima la velocidad de 3 m/s del agua según la tabla 4.3, siendo la condición de servicio general, que es independiente del material en la tubería:

Tabla 4.3: Rango de velocidades en tuberías

Condición de servicio	Rango de velocidad pies/s (m/s)
Caldero	8-15 (2.5-4.6)
Succión de bomba y drenaje	4-7 (1.2-2.1)
Servicio general	4-10 (1.2-3.0)
Agua potable	to 7 (to 2.1)

Fuente: (Nayyar, 2000, p. B60)

4.4.4 Obtención de diámetro teórico de tubería (Ø)

Para el tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), y en base al caudal de agua máximo y la velocidad en tubería, se halla el área de sección mediante la fórmula:

$$\boldsymbol{Q} = \boldsymbol{v} \times \boldsymbol{A} \qquad \dots (\boldsymbol{4}. \boldsymbol{2})$$

Donde:

Q: caudal de operación máxima = $0.037 \text{ m}^3/\text{s}$ (extraído del cálculo anterior) v: velocidad lineal = 3 m/s (de tabla anterior)

A: área de sección circular (m^2)

Despejando A se obtiene un área de:

$A = 0.012 m^2$

Se trata de una tubería circular, por lo que se procede a calcular un diámetro teórico mediante la fórmula:

$$A = \frac{\emptyset^2 \times \pi}{4} \quad \dots (4.3)$$

Donde:

A: área teórica de sección circular = 0.012 m2 (extraído del cálculo anterior)

Ø: diámetro teórico de tubería (m)

Despejando Ø se obtiene un diámetro teórico de:

$\emptyset = 0.126 \text{ m}$

4.4.5 Obtención de diámetro estándar de tubería (Ø)

A partir del diámetro teórico hallado se procede a escoger un diámetro estándar que pueda ser adquirido comercialmente. Del anexo 02 se toma los valores de DN 125 o NPS 5 del tipo STD ó SCH 40, y se procede a hallar el diámetro interno:

$$\emptyset$$
int = \emptyset *ext* - 2 × t ... (4.4)

Donde:

Øint: diámetro interno de tubería (mm)

Øext: diámetro externo de tubería = 141.3 mm (Anexo 02)

t: espesor de tubería = 6.55 mm (Anexo 02)

Reemplazando se obtiene:

Øint = 0.128 m

4.4.6 Recálculo de velocidad en tubería (v)

Se emplea la ecuación (4.3) con el nuevo valor del diámetro de tubería estándar y se obtiene una nueva área de sección:

A: área de sección circular = 0.013 m^2 (DN 125)

Se lleva este valor a la ecuación (4.2), se mantiene el caudal Q= $0.037 \text{ m}^3/\text{s}$ y la nueva velocidad es:

v = 2.874 m/s

Con lo que cumple la condición de velocidad de la tabla 4.3 y por consiguiente el diámetro de tubería seleccionado DN 125 SCH 40 es válido.

4.5 DISEÑO DE VOLUMETRÍA DE RESERVORIO EN BANCO DE PRUEBAS

Siendo el reservorio del tipo abierto y rectangular ilustrado en (1) del plano DUIG-01, se procede a analizar el volumen general del mismo y de sus compartimentos conformantes.

4.5.1 Delimitación de funciones de reservorio rectangular

El reservorio de agua contemplado para el banco de pruebas necesita cumplir determinadas funciones desde el punto de vista hidráulico:

- Disponer de un volumen de agua suficiente para la succión que realiza el equipo de bombeo durante operación.
- Recibir la descarga de agua turbinada proveniente de cualquiera de las turbinas convencional y no convencional.
- Permitir la medición de caudal mediante vertederos.
- Permitir la recirculación del fluido en reservorio.

4.5.2 Generación de compartimentos en reservorio rectangular

Para cumplir las funciones indicadas previamente se decide realizar dos seccionamientos del reservorio mediante planchas metálicas para generar tres compartimentos, estos tienen diferentes alturas de nivel de llenado de agua para habilitar a los vertederos de pared delgada a poder medir caudal (figura 4.3).

Figura 4.3: Compartimentos de reservorio
- El compartimento central tiene las funciones de proveer el volumen de agua necesario para la succión del equipo de bombeo, así como recibir el caudal proveniente de los vertederos. La turbulencia generada por la caída de agua de los vertederos no interfiere la succión de bombeo.
- Los compartimentos laterales reciben el agua turbinada de cada equipo de generación y se llenan hasta activar su vertedero respectivo.

4.5.3 Solicitud de volumen de succión (V)

Es el volumen de agua que abastece al equipo de bombeo durante una operación constante con recirculación de fluido, este es contenido en el compartimento central.

Se propone tener un "volumen de succión de 20 veces el caudal de operación" (Egusquiza & Sanchez, 2009, p. 52), se aplica la fórmula:

$$V = Q \times tiempo \dots (4.5)$$

Donde:

V: Volumen de agua requerido (m³)

Q: caudal de operación máxima = $0.037 \text{ m}^3/\text{s}$

*tiempo = 20 segundos

*Nota: para obtener un volumen en función de caudal se multiplica por una unidad de tiempo que representa en este caso las n veces el caudal de operación.

Reemplazando se obtiene:

V requerido= 0.742 m³

4.5.4 Obtención de dimensiones de reservorio rectangular

"Para un reservorio rectangular, se recomienda tener una relación de longitudes de 1.5 para el lado largo y 0.667 para el lado corto, a partir un lado C si fuera un cubo de caras iguales". (Megyesy, 2001, p. 213)

A partir de esta recomendación, se evalúa las dimensiones estándar de planchas metálicas comerciales que son de 2.40 x 1.20 m (Anexo 22) y se ensambla para una máxima capacidad:

- Largo reservorio: 2.40 m
- Ancho reservorio: 1.20 m
- Altura reservorio: 1.20 m

Se halla el volumen con la fórmula:

$$V = largo \times ancho \times altura$$
 ... (4.6)

Se obtiene el volumen del reservorio:

V reservorio = 3.456 m^3

Suponiendo un cubo de caras iguales, se halla:

$$\boldsymbol{C} = \sqrt[3]{\boldsymbol{V}} \quad \dots (\boldsymbol{4}.\,\boldsymbol{7})$$

Donde:

V: Volumen de reservorio = 3.456 m³ (del cálculo anterior)

C: lado del cubo de caras iguales (m)

Se obtiene:

C reservorio =1.511 m

Tabla 4.4: Relaciones de dimensiones en reservorio

Denominación	Fórmula	Ratio Real obtenida	Ratio recomendada
Ratio para el largo	Largo/C	1.588	1.5
Ratio para el ancho	Ancho/C	0.794	0.667

Las relaciones obtenidas son muy próximas a las recomendadas por lo que las dimensiones del reservorio son válidas.

note obteneton de dimensiones de compartimentos internos	4.5.5	5 Obte	nción	de	dimei	nsiones	de	com	partim	entos	intern	OS
--	-------	--------	-------	----	-------	---------	----	-----	--------	-------	--------	----

Figura 4.4: Generación de tres compartimentos internos en reservorio

Las dimensiones del reservorio rectangular global sirven para generar tres compartimentos internos equidistantes (figura 4.4) en función del largo del reservorio (2.4 m) lo cual arroja las siguientes dimensiones para los compartimentos internos:

- Largo compartimento: 1.20 m (eje z de figura 4.4)
- Ancho compartimento: 0.80 m (eje x de figura 4.4)
- *Altura compartimento: 1.10 m (eje y de figura 4.4)

*Las planchas internas que generan los compartimentos tienen una altura de 1.10 m, (menor a la altura del reservorio: 1.20 m) para prevenir el rebalse en caso de operación inusual.

4.5.6 Comprobación de volumen de succión (V)

El compartimento central será llenado sólo hasta una altura de 0.8 m para habilitar la caída de los vertederos. Se aplica la fórmula (4.6), donde:

Largo = 1.20 mAncho = 0.80 m

Altura de llenado = 0.80 m

Reemplazando se tiene un volumen de agua real de:

V real= 0.768 m³

Tabla 4.5: Volúmenes de agua							
Denominación Volumen de agua		Volumen de agua					
	Ital	requeriuo					
		- 1					

El volumen de agua real es superior al requerido (hallado en 4.5.3) por lo que el dimensionamiento de compartimentos es adecuado.

4.6 DISEÑO DE VERTEDEROS MEDIDORES DE CAUDAL

Dentro de los métodos de medición de caudal se selecciona el vertedero de pared delgada, por su fácil construcción, toma de datos, simplicidad de diseño y precisión. Los compartimentos laterales internos del reservorio rectangular cuentan cada uno con un vertedero, del tipo rectangular y trapezoidal, respectivamente.

4.6.1 Dimensionamiento del vertedero rectangular

Figura 4.5: Dimensiones de vertedero rectangular Fuente: (Mataix, 1986, p. 294)

Primero se necesita conocer el coeficiente de caudal adimensional para un vertedero rectangular con contracción lateral: (Mataix, 1986, p. 297)

$$Cq = \left[0.578 + 0.037 \left(\frac{b}{B}\right)^{2} + \frac{3.615 - 3\left(\frac{b}{B}\right)^{2}}{h+1.6}\right] \left[1 + 0.5 \left(\frac{b}{B}\right) + \left(\frac{h}{h+zc}\right)^{2}\right] \dots (4.8)$$

Donde:

b: ancho de vertedero = 400 mm (asumido)

B: ancho de canal = 1200 mm (lado largo de compartimento)

h: altura de vertedero = 150 mm (asumido)

zc: distancia al fondo = 950 mm (altura de plancha menos h)

Reemplazando se obtiene:

Cq = 0.716

A continuación, se halla el caudal que podrá medir el vertedero rectangular con las dimensiones propuestas, mediante la fórmula: (Mataix, 1986, p. 296)

$$Q = Cq \times \frac{2}{3} \times b \times h\sqrt{2g \times h} \quad \dots (4.9)$$

Donde:

g: gravedad = 9.81 m/s^2

Reemplazando se obtiene:

Q vert. rectangular=0.042 m³/s

Tabla 4.6: Caudales en vertedero rectangular

Caudal máximo de diseño	Caudal de	Caudal de
de vertedero rectangular	operación máximo	operación medio
Q vert. rect.= $0.042 \text{ m}^3/\text{s}$	Qmax = $0.037 \text{ m}^3/\text{s}$	Qmed= $0.025 \text{ m}^{3/s}$

El vertedero rectangular propuesto puede manejar un caudal mayor los caudales de operación máximo y medio con lo que su dimensionamiento es adecuado.

Figura 4.6: Funcionamiento de vertedero rectangular

4.6.2 Dimensionamiento del vertedero trapezoidal

Se emplea la fórmula: (Rocha, n.d., pág. 483)

$$Q = Cq \times \frac{2}{3} \times \sqrt{2g} \times b \times h^{\frac{3}{2}} + Cq \times \frac{8}{15} \times \sqrt{2g} \times \tan \alpha \times h^{\frac{5}{2}} \dots (4.10)$$

Donde:

Cq: coeficiente de vertedero = 0.6 (Rocha, n.d., pág. 483) b: ancho de vertedero = 0.35 m (asumido) α: ángulo de apertura = 45° (asumido)

h: altura de vertedero = 0.15 m (asumido)

g: gravedad = 9.81 m/s^2

Reemplazando se obtiene:

Q vert. trapezoidal = 0.056 m³/s

Figura 4.7 Dimensiones de vertedero trapezoidal Fuente: (Rocha, n.d., p. 483)

Tabla 4.7: Caudales en vertedero trapezoidal

Caudal máximo de diseño	Caudal	de	Caudal	de
de vertedero trapezoidal	operación máxin	no	operación medi	0
Q vert. rect.= $0.056 \text{ m}^3/\text{s}$	$Qmax = 0.037 m^3$	⁸ /s	Qmed= 0.025 m	³ /s

El vertedero trapezoidal propuesto también puede manejar un caudal mayor a los caudales de operación máximo y medio con lo que su dimensionamiento es adecuado.

Figura 4.8 Funcionamiento de vertedero trapezoidal

4.7 DETERMINACIÓN DE PÉRDIDAS TEÓRICAS EN TUBERÍAS

Se hallan primero las pérdidas primarias y secundarias en toda la línea de descarga principal hasta el punto donde se tienen componentes diferentes antes de entrar a cada turbina convencional y no convencional. Luego se hallan estas pérdidas por separado y se comparan.

4.7.1 Obtención de pérdidas primarias en línea de descarga principal (Hrp)

Iniciando desde el tramo 3 "tubería de descarga principal" hasta el "codo 03" y "codo 04" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se tienen niples en 4 pulgadas y luego segmentos de tubo y niples en 5 pulgadas que se detallan en la tabla resumen 4.8 que van en el orden que aparecen.

Figura 4.9 Componentes y accesorios en tubería

Tabla 4.8: Pérdidas primarias línea de descarga	
Componentes en línea principal de	Pérdida por fricción
descarga en el orden que aparecen	(m)
Niple roscado DN 100 de 0.10 m	\downarrow
Niple roscado DN 100 de 0.15 m	\downarrow
Niple DN 100 de 0.10 m	\downarrow
Niple DN 100 de 0.05 m	\downarrow
Subtotal en DN 100 de 0.4 m	0.072
Tubo DN 125 de 0.6 m	\downarrow
Tubo DN 125 de 2.0 m	\downarrow
Niple DN 125 de 0.15 m	Igual en ambos lados
Niple DN 125 de 0.10 m	Igual en ambos lados
Subtotal en DN 125 de 2.85 m	0.164
Pérdidas primarias acumuladas	0.317

4.7.1.1 Cálculo de velocidad de fluido en tubo DN 100 (v)

Se usa la ecuación (4.4) para hallar el diámetro interno, tomando las características de un tubo DN 100 o NPS 4 del tipo STD ó SCH 40.

Donde:

Øext: diámetro externo de tubería = 114.3 mm (Anexo 02)

t: espesor de tubería = 6.02 mm (Anexo 02)

Reemplazando se obtiene:

Øint = 0.102 m

A continuación, se usa la ecuación (4.3) para definir el área de sección circular:

Donde:

Øint: diámetro interno de tubería = 0.102 m

Reemplazando se obtiene:

$A = 0.008 m^2$

Luego se usa la ecuación (4.2) para determinar la velocidad de fluido:

Donde:

Q: caudal = $0.037 \text{ m}^3/\text{s}$ (caudal de operación máximo)

A: área de sección circular = 0.008 m^2

Despejando v se obtiene una velocidad de:

v = 4.517 m/s

4.7.1.2 Cálculo de pérdida en niples DN 100 (Hrp)

Hallamos primero el número de Reynolds para una tubería DN 100 con la fórmula:

$$Re = \frac{\rho \times v \times \emptyset}{n} \dots (4.11)$$

Donde:

Re: número de Reynolds (adimensional)

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

v: velocidad del fluido = 4.517 m/s (DN 100)

Ø: diámetro de tubería = 0.102 m (DN 100)

n: viscosidad dinámica del agua a 10° C = $1.305*10^{-3}$ kg /m-s (Anexo 03)

Reemplazando se obtiene

Re = 352 947 (Régimen turbulento)

Luego se aplica la fórmula de Darcy-Weisbach para pérdidas primarias. (Mataix, 1986, p. 206)

$$Hrp = \lambda \frac{L' \times v^2}{\emptyset \times 2 \times g} \quad \dots (4.12)$$

Donde:

Hrp: Pérdida por fricción (m)

* λ : coeficiente por fricción = 0.0177 (Anexo 04)

L': longitud de tubería = 0.4 m (suma de todos los niples DN 100)

v: velocidad del fluido = 4.517 m/s (DN 100)

Ø: diámetro de tubería = 0.102 m (DN 100)

g: gravedad = 9.81 m/s^2

*: "La información más usada y aceptada para el coeficiente por fricción es la ilustrada

en el diagrama de Moody" (Crane, 2013, p. 1-6)

Reemplazando se obtiene

Hrp niples DN 100 = 0.072 m

4.7.1.3 Cálculo de pérdida en tubos y niples DN 125 (Hrp)

Se halla primero el número de Reynolds con la fórmula (4.11):

Donde:

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

v: velocidad del fluido = 2.874 m/s (DN 125, hallado en 4.4.5)

Ø: diámetro de tubería = 0.128 m (DN 125, hallado en 4.4.4)

n: viscosidad dinámica del agua a 10° C = 1.305*10-3 kg m/s (Anexo 03)

Reemplazando se obtiene

Re = 281 810 (Régimen turbulento)

Luego se usa la fórmula (4.12):

Donde:

 λ : coeficiente por fricción = 0.0175 (Anexo 04)

L: longitud de tubería = 2.85 m

v: velocidad del fluido = 2.874 m/s (DN 125)

Ø: diámetro de tubería = 0.128 m (DN 125)

g: gravedad = 9.81 m/s^2

Reemplazando se obtiene

Hrp tubos y niples DN 125 = 0.164 m

4.7.2 Obtención de pérdidas secundarias en línea de descarga principal (Hrs)

De la misma manera, desde el tramo 3 "tubería de descarga principal" hasta el "codo 03" y "codo 04" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se

determinan las pérdidas por accesorio que se detallan en la siguiente tabla resumen 4.9 en

el orden que aparecen:

Componentes en línea principal de	Pérdida por accesorio
descarga en el orden que aparecen	o por fricción (m)
Ampliación DN 65 a DN 100	1.373
Válvula anti retorno DN 100	1.003
Válvula mariposa wafer DN 100	0.604
Unión Dresser DN 100	No se considera
Tee DN 100	0.0
Ampliación DN 100 a DN 125	0.036
Codo 90° DN 125	0.091
Tee DN 125	0.463
Reducción DN 125 a DN 100	0.011
Válvula mariposa wafer DN 100	0.604
Ampliación DN 100 a DN 125	0.036
Codo 90º DN 125	0.091
Pérdidas secundarias acumuladas	4.312 m

Tabla 4.9: Pérdidas secundarias línea de descarga

4.7.2.1 Cálculo de pérdida en ampliación de tubería DN 65 a DN 100

Para el componente "ampliación 01" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla el coeficiente por ampliación por la fórmula: (Crane, 2013, p. 2-11)

Figura 4.10: Ampliación en tubería Fuente: (Crane, 2013, p. A-27)

$$\zeta = 2.6 \sin \frac{\theta}{2} \times \left(1 - \left(\frac{\emptyset 1}{\emptyset 2} \right)^2 \right)^2 \dots (4.13)$$

Donde:

ζ: coeficiente de sección menor (adimensional)

Ø1: diámetro de entrada = 62.68 mm (DN 65, Anexo 05)

Ø2: diámetro de salida = 102.26 mm (DN 100, Anexo 05)

 θ : ángulo de divergencia = 21.2° (deducido de Anexo 05)

Reemplazando se obtiene

$\zeta = 0.186$

Luego se aplica la ecuación:

$$Hrs = \zeta \frac{v^2}{2g} \quad \dots (4.14)$$

Donde:

Hrs: pérdida secundaria (m)

v: velocidad = 12.023 m/s (DN 65)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de ampliación = 0.186

Reemplazando se obtiene

Hrs ampliación DN 65 a DN 100 = 1.373 m

4.7.2.2 Cálculo de pérdida en válvula antirretorno de DN 100

Para el componente "válvula de retención 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla primeramente el factor de fricción en zona de turbulencia, fT: (Crane, 2013, p. 2-9)

$$fT = \frac{0.25}{\left[log\left(\frac{\varepsilon}{3.7 \times \emptyset}\right)\right]^2} \quad \dots (4.15)$$

Donde:

 ε : rugosidad absoluta del cobre = 0.001 mm (tabla 4.10)

Tabla 4.10: Coeficientes de rugosidad para tuberías

Tipo de tuberia	Rugosidad absoluta k (mm)	Tipo de tubería	Rugosidad absoluta k (mm)
Vidrio, cobre o latón estirado Latón industrial	<0,001 (o lisa) 0,025 0,05 0,15 a 0,25 1,5 a 3 0,015 0,03 a 0,1 0,4	Hierro galvanizado Fundición corriente nueva Fundición corriente oxidada . Fundición asfaltada Cemento alisado. Cemento bruto Acero roblonado Duelas de madera.	0,15 a 0,20 0,25 1 a 1,5 0,1 0,3 a 0,8 Hasta 3 0,9 a 9 0,183 a 0,9

Fuente: (Mataix, 1986, p. 219)

Ø: diámetro de tubería = 102.26 mm (DN 100)

Reemplazando se obtiene:

fT = 0.008

Para hallar el coeficiente de pérdida ζ , se multiplica fT por 120, que se obtiene de la siguiente tabla para un tamaño de válvula entre NPS 2 y 8:

Luego se aplica la ecuación (4.14),

Donde:

v: velocidad a la entrada = 4.517 m/s (DN 100)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de pérdida = fT*120 = 0.964

Figura 4.11: Coeficientes para válvula antirretorno Fuente: (Crane, 2013, p. A-29)

Reemplazando se obtiene

Hrs válvula antirretorno DN 100 = 1.003 m

4.7.2.3 Cálculo de pérdida en válvula mariposa DN 100

Para los componentes semejantes "válvula de aislamiento 02", "válvula de aislamiento 03" y "válvula de aislamiento 04" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), Se calcula el factor de fricción fT con la fórmula (4.15)

Donde:

 ε : rugosidad absoluta del acero inoxidable = 0.015 mm (tabla 4.10)

Ø: diámetro de tubería = 102.26 mm (DN 100)

Reemplazando se obtiene

fT = 0.013

Figura 4.12: Coeficientes para válvula mariposa Fuente: (Crane, 2013, p. A-29)

Para hallar el coeficiente de pérdida ζ , se multiplica fT por 45, que se obtiene de la figura

4.11 para un tamaño de válvula entre NPS 2 y 8:

Luego se aplica la ecuación (4.14),

Donde:

v: velocidad = 4.517 m/s (DN 100)

- g: gravedad = 9.81 m/s^2
- ζ : coeficiente de pérdida = fT*45 = 0.581

Reemplazando se obtiene

Hrs válvula mariposa DN 100 = 0.604 m

4.7.2.4 Cálculo de pérdida en tee DN 100

Para el componente "tee 01" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se considera un flujo divergente, como en la figura 4.13, donde se mantiene todo el caudal en línea vertical y no hay flujo por el ramal a 90°, por lo cual, la relación de caudales que es el caudal desviado por el ramal a 90° entre caudal principal inicial, es 0. De la figura 4.14 se obtiene:

Figura 4.13: Flujo divergente en tee Fuente: (Crane, 2013, p. 2-14)

 ζ 2: coeficiente de línea principal = 0.0

Se aplica la ecuación (4.14)

Figura 4.14: Coeficientes para tee en divergencia Fuente: (Crane, 2013, p. 2-16)

Donde:

v: velocidad a la entrada = 4.517 (DN 100)

- g: gravedad = 9.81 m/s^2
- ζ : coeficiente de pérdida = 0.0

Reemplazando se obtiene

Hrs tee DN 100 = 0.0 m

4.7.2.5 Cálculo de pérdida en ampliación de tubería DN 100 a DN 125

Para los componentes semejantes "ampliación 02", "ampliación 03" y "ampliación 04" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla el coeficiente de ampliación por la fórmula (4.13):

Donde:

```
d1: diámetro de entrada = Ø 102.26 mm (DN 100, Anexo 05)
```

d2: diámetro de salida = Ø 128.2 mm (DN 125, Anexo 05)

 θ : ángulo de divergencia = 11.54° (deducido de Anexo 05)

Reemplazando se obtiene

ζ ampliación = 0.034

```
Luego se aplica la ecuación (4.14):
```

Donde:

v: velocidad a la entrada = 4.517 m/s (DN 100)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de pérdida = 0.034

Reemplazando se obtiene

Hrs ampliación DN 100 a DN 125 = 0.036 m

4.7.2.6 Pérdida en codo de DN 125

Para el componente "codo 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla el factor de fricción fT con la fórmula 4.15.

Donde:

ε: rugosidad absoluta del acero = 0.046 mm (Crane, 2013, pág 2-9)

Ø: diámetro de tubería = 128.2 mm (DN 125)

Reemplazando se obtiene

fT = 0.016

Se halla el valor r/Ø para codo DN 125 según las dimensiones estándar, (Anexo 07)

Esto es r/Ø: 190/128.2 = 1.482, que es próximo a 1.5.

Para hallar el coeficiente de pérdida ζ , se multiplica fT por 14, de la figura 4.15:

Luego se aplica la ecuación (4.14),

					_
	r/d	к	r/d	к	ļ
- T	1	20 f ₇	8	24 f_T	
	1.5	$14 f_{\tau}$	10	$30 f_{\tau}$	
	2	$12 f_{\tau}$	t2	$34 f_{\tau}$	L
	3	$12 f_{\tau}$	14	$38 f_{\tau}$	L
	4	14 f_{τ}	16	$42 f_{\tau}$	L
	6	$17 f_T$	20	50 / _T	

Figura 4.15: Coeficientes para codos en 90° Fuente: (Crane, 2013, p. A-30)

Donde:

v: velocidad = 2.874 m/s (DN 125)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de pérdida = fT*14 = 0.217

Reemplazando se obtiene

Hrs codo DN 125 = 0.091 m

4.7.2.7 Cálculo de pérdida en tee DN 125

Para el componente "tee 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se considera todo el caudal proviene del ramal a 90°, por lo cual, la relación de caudales que es el caudal del ramal a 90° entre caudal combinado, es 1. Para los cálculos se toma un flujo convergente, como en la figura 4.16.

 ζ 1: coeficiente de desviación a 90° = 1.1 (figura 4.17)

Se aplica la ecuación 4.14:

Figura 4.17: Coeficientes para tee en convergencia Fuente: (Crane, 2013, p. 2-16)

Donde:

v: velocidad a la entrada = 2.874 (DN 125)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de pérdida = 1.1

Reemplazando se obtiene

Hrs tee DN 125= 0.463 m

4.7.2.8 Cálculo de pérdida en reducción de tubería DN 125 a DN 100

Para los componentes semejantes "reducción 02" y "reducción 03" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla el coeficiente de reducción por la fórmula: (Crane, 2013, pág 2-11)

Figura 4.18: Reducción gradual en tubería Fuente: (Crane, 2013, p. A-27)

$$\zeta = 0.8 \sin \frac{\theta}{2} \times \left(1 - \left(\frac{\emptyset 1}{\emptyset 2} \right)^2 \right) \quad \dots (4.16)$$

Donde:

Ø1: diámetro de entrada = 102.26 mm (Anexo 05)

Ø2: diámetro de salida = 128.2 mm (Anexo 05)

 θ : ángulo de divergencia = 11.54° (deducido de Anexo 05)

ζ: coeficiente de ampliación (adimensional)

Reemplazando se obtiene

 $\zeta = 0.011$

Luego se aplica la ecuación (4.14):

Donde:

v: velocidad a la salida = 4.517 m/s (DN 125)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de reducción = 0.011

Hr: pérdida (m)

Reemplazando se obtiene

Hrs reducción DN 125 a DN 100= 0.011 m

4.7.3 Sumatoria de pérdidas hasta diferenciación de componentes

Se hace una primera sumatoria de pérdidas primarias y secundarias hasta antes de presentarse componentes diferentes en los tramos finales de entrada a cada turbina:

Línea de descarga	Pérdida (m)
Pérdidas primarias	0.236
Pérdidas secundarias	4.312
Pérdidas acumuladas	4.548

Tabla 4.11: Sumatoria de pérdidas línea de descarga

4.7.4 Obtención de pérdidas en tramos diferenciados

En los tramos 6 "tubería de entrada a BFT" y 8 "tubería de entrada a turbina" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), existen componentes diferenciados que se detallan en la siguiente tabla según aparecen:

Componentes en línea de alimentación a cada turbina						
Hacia BFT	Pérdida	Hacia turbina	Pérdida			
	(m)	convencional	(m)			
Niple DN 125 de 0.15 m	0.009	Niple DN 125 de 0.20 m	0.012			
Unión Dresser DN 125	-	Unión Dresser DN 125	-			
Niple DN 125 de 0.15 m	0.009	Niple DN 125 de 0.20 m	0.012			
Válvula mariposa wafer DN 125	DN 125 0.234 Codo 90° DN 125		0.091			
Reducción DN 125 a DN 100	lucción DN 125 a DN 100 0.011 Niple DN 125 de 0.1 m		0.006			
Reducción DN 100 a DN 80	0.049	Válvula mariposa wafer DN	0.234			
		125				
Pérdidas acumuladas	0.312	Pérdidas acumuladas	0.355			

Tabla 4.12: Pérdidas en líneas independientes de tubería

Figura 4.19 Tramos de tubería hacia cada turbina

Se halla las pérdidas respectivas:

4.7.4.1 Cálculo de pérdidas en niples DN 125

Se mantiene el número de Reynolds hallado en 4.8.1.7, luego se usa la fórmula 4.12, para cada longitud de niple:

Donde:

 λ : coeficiente por fricción = 0.0175 (Anexo 04)

L: longitud de niple = 0.15 m, 0.2 m y 0.1 m

- v: velocidad del fluido = 2.874 m/s (DN 125)
- Ø: diámetro de tubería = 0.128 m (DN 125)
- g: gravedad = 9.81 m/s^2

Reemplazando se obtiene:

Hrp niple DN 125 de 0.15 m = 0.009 m

Hrp niple DN 125 de 0.20 m = 0.012 m

Hrp niple DN 125 de 0.10 m = 0.006 m

4.7.4.2 Cálculo de pérdida en válvula mariposa DN 125

Para los componentes semejantes "válvula de control 02" y "válvula de control 03" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se calcula el factor de fricción fT con la fórmula (4.15)

Donde:

 ε : rugosidad absoluta del acero inox. = 0.015 mm (tabla 4.10)

Ø: diámetro de tubería = 128.2 mm (DN 125)

Reemplazando se obtiene

fT = 0.012

Para hallar el coeficiente de pérdida ζ , se multiplica fT por 45. (figura 4.11)

Luego se aplica la ecuación (4.14),

Donde:

v: velocidad = 2.874 m/s (DN 125)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de pérdida = fT*45 = 0.556

Reemplazando se obtiene

Hrs válvula mariposa DN 125 = 0.234 m

4.7.4.3 Cálculo de pérdida en reducción de tubería DN 100 a DN 80

Para el componente "reducción 04" del Diagrama Unifilar Isométrico General (ver plano

DUIG-01), se halla el coeficiente de reducción por la fórmula 4.16:

Donde:

Ø1: diámetro menor = 77.92 mm (Anexo 05)

Ø2: diámetro mayor = 102.26 mm (Anexo 05)

 θ : ángulo de divergencia = 13.42° (deducido de Anexo 05)

Reemplazando se obtiene

 $\zeta = 0.016$

Luego se aplica la fórmula 4.14:

Donde:

v: velocidad a la salida = 7.78 m/s (DN 80)

g: gravedad = 9.81 m/s^2

 ζ : coeficiente de reducción = 0.016

Reemplazando se obtiene

Hrs reducción DN 100 a DN 80 = 0.049 m

4.7.5 Obtención de pérdidas acumuladas totales (Hr)

Se tiene la siguiente tabla resumen de todas las pérdidas acumuladas totales hacia ambos equipos generadores:

PÉRDIDAS ACUMULADAS TOTALES				
Hacia BFT	Hacia BFT Pérdida (m) Hacia turbina		Pérdida (m)	
		convencional		
Línea descarga	4.548	Línea descarga		4.548
Tramo hacia BFT	0.312	Tramo hacia	turbina	0.355
		convencional		
PÉRDIDAS TOTALES	4.86 m	PÉRDIDAS TO	TALES	4.903 m

Se evidencia que las pérdidas totales hacia cada equipo generador son muy próximas entre sí.

4.8 DETERMINACIÓN DE CONDICIONES DE BOMBEO

En base a la máxima condición de operación que se desea alcanzar a la entrada de los equipos generadores en términos de caudal y altura, se procede a calcular las condiciones de bombeo necesarias en el punto "bomba centrífuga monobloque" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

4.8.1 Obtención de presión de bombeo (p)

Se utiliza la ecuación de Bernoulli con pérdidas (Mataix, 1986, p. 112) para determinar la presión de bombeo a partir de las condiciones y ubicación del equipo generador. Se define el punto 1 a la salida o descarga de la bomba centrífuga y el punto 2 a la entrada de la turbina, se tiene:

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g Y_1 - Hr = p_2 + \frac{1}{2}\rho v_2^2 + \rho g Y_2 \quad \dots (4.17)$$

Donde:

p1: presión en el punto 1 (kPa)
v1 y v2: constantes
Y1: 0 m (nivel de referencia)
p2: presión en el punto 2 = 22 m.c.a. = 215.75 kPa (definido en 4.4)
Y2: 1.2 m (equipo de generación sobre el reservorio)

Hr: pérdidas totales entre el punto 1 y 2 = 4.9 m.c.a. = 48. 051 kPa (tabla 4.13)

ρ: densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

g: gravedad = 9.81 m/s^2

Reemplazando se obtiene:

p₁ = 275.750 kPa = 28.104 m.c.a.

Figura 4.20: Diferencia de altura entre bomba centrífuga y turbinas

Representa la presión o altura necesaria del equipo de bombeo para satisfacer las condiciones de operación.

4.8.2 Obtención de caudal de bombeo (Q)

Se toma los caudales de operación de las turbinas hidráulicas hallados en 4.4.1 asumiendo que no existen fugas que provoquen una disminución de caudal, los cuales son Qmax = $0.037 \text{ m}^3/\text{s y Qmed} = 0.025 \text{ m}^3/\text{s}$

4.8.3 Obtención de potencia de bombeo (P)

Con las condiciones de bombeo establecidas, se calcula la potencia de bombeo. (Mataix, 1986, p. 397)

$$P = Q \times \rho \times g \times \frac{H}{n} \quad \dots (4.18)$$

Donde:

P: potencia útil (kW)

Q: caudal de operación máximo = $0.037 \text{ m}^3/\text{s}$

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

g: gravedad = 9.81 m/s^2

H: altura neta = 28.104 m

* η : eficiencia en bomba centrífuga = 0.8

*Nota: la máxima eficiencia que puede alcanzar normalmente una bomba centrífuga es de 80% (Anexo 09)

Reemplazando se obtiene:

$$P = 12.747 \text{ kW}$$

Con estos datos puede seleccionarse un equipo de bombeo de la figura 4.21 siendo una bomba del tipo 65/160.

Figura 4.21: Caudales y altura de operación para equipo de bombeo Fuente: (Pedrollo, n.d., p. 127)

4.9 DETERMINACIÓN DE CONDICIONES DE BFT

Para el punto 7 del plano DUIG-01, se toma las condiciones máximas de operación de caudal y altura de la BFT (definido en 4.4) de H = 22 m y Q = $0.037 \text{ m}^3/\text{s}$.

4.9.1 Altura de selección para BFT (Hb)

Primero se determina la máxima eficiencia que alcanza una bomba centrífuga para lo cual se asume un 80%. Luego se define la relación de altura para BFT (fj) dando preferencia a la curva teórica por sobre los métodos experimentales (Sharma y Stepanoff) de la figura 4.22.

Luego se aplica la fórmula:

$$\mathfrak{h} = \frac{Ht}{Hb} \quad \dots (4.19)$$

Figura 4.22: Coeficiente de altura BFT Fuente: (Carravetta, Derakhshan, & Ramos, 2018, p. 83)

Donde:

Hb: altura de selección BFT (m)

 \mathfrak{h} : ratio de altura BFT = 1.6 (figura 4.22)

Ht: altura de operación BFT = 22 m

Reemplazando se obtiene

Hb = 13.75 m

4.9.2 Caudal de selección para BFT (Qb)

De la misma manera se define la relación de caudal para BFT (q) de la figura 4.23, conservando la máxima eficiencia de 80%:

Y se emplea la fórmula:

$$q = \frac{Qt}{Qb} \quad \dots (4.20)$$

Donde:

Qb: caudal de selección BFT (m³/s)

q: ratio de caudal BFT = 1.4 (figura 4.23)

Qt: caudal de operación máximo BFT = $0.037 \text{ m}^3/\text{s}$

Reemplazando se obtiene

 $Qb = 0.026 \text{ m}^3/\text{s}$

Figura 4.23: Coeficiente de caudal BFT Fuente: (Carravetta, Derakhshan, & Ramos, 2018, p. 83)

4.9.3 Obtención de condiciones de selección para BFT

Con las condiciones anteriormente obtenidas, se puede seleccionar una BFT de la figura

4.24 siendo una bomba 80/200

Figura 4.24: Caudales y altura de operación para BFT Fuente: (Pedrollo, n.d., p. 194)

4.10 DETERMINACIÓN DE CONDICIONES DE TURBINA CONVENCIONAL

Para el punto 9 del plano DUIG-01, se selecciona un tipo de turbina hidráulica convencional que trabaje adecuadamente bajo las mismas condiciones de operación establecidas para la BFT de:

Altura máxima: 22 m

Caudal máximo: 0.037 m³/s

De la figura 4.25 se observa que, por la intersección de líneas de caudal y altura, se encuentra en la zona de la turbina Michell Banki (Cross-flow).

Figura 4.25: Diagrama Q-H para turbinas Fuente: (Patel & Jain, 2014, p. 848)

4.11 BALANCE DE POTENCIAS

Figura 4.26: Cadena energética Fuente: (OLADE, 2017, pág. 10)

A partir de la abstracción de la caja negra y la obtención de la estructura de funciones desarrollados en 3.3.1 y 3.3.2, se sabe que a nivel energético (figuras 3.4 y 3.5), el banco de pruebas tiene como entrada una fuente de energía eléctrica, y como salidas tiene energía hidráulica, mecánica y eléctrica generada. Este proceso de transformación se ve en la primera fase de la cadena energética (figura 4.26).

Además, por la naturaleza del banco de pruebas de generar energía a diferentes condiciones hidráulicas, mecánicas y eléctricas, se obtuvo los siguientes diagramas de Sanki con datos promedio luego de varias pruebas operacionales.

4.11.1 Flujo de potencias de bomba centrífuga monobloque

Figura 4.27: Flujo de potencia de bomba centrífuga monobloque

*De la figura 4.27, en un motor de inducción existen cinco tipos de pérdidas: (Procobre, 2019, pág. 7)

- Pérdidas en el núcleo del estator y del rotor
- Pérdidas I²R del estator
- Pérdidas I²R del rotor
- Pérdidas por fricción y ventilación
- Pérdidas adicionales con carga

**De la figura 4.26, en una bomba centrífuga existen pérdidas mecánicas, volumétricas e hidráulicas. (Martín Reina, 2012, pág. 140)

4.11.2 Flujo de potencias de turbina hidráulica

De la figura 4.28, las pérdidas en turbina (BFT), pérdidas por transmisión y pérdidas en generador asíncrono se calculan tomando las eficiencias del 80%, 0.90% y 80% respectivamente.

Figura 4.28: Flujo de potencia de turbina hidráulica

4.12 CONDICIONES DE OPERACIÓN ALTERNATIVAS

Representa el funcionamiento simultáneo de los puntos 7 "equipo generador no convencional" y el punto 9 "equipo generador convencional" lo cual se logra con la apertura de "válvula de aislamiento 03" y "válvula de aislamiento 04" del plano DUIG-01.

4.12.1 Operación simultánea de turbinas con potencia de diseño base

En este escenario se mantiene la potencia inicial máxima de diseño (hallada en 4.8.3) de la "bomba centrífuga monobloque" del plano DUIG-01.

Esta potencia genera un caudal de:

Q: caudal de operación máximo = $0.037 \text{ m}^3/\text{s}$

• Pérdidas en línea de descarga principal con caudal 0.037 m³/s

Con este caudal primero se determinan las pérdidas desde el punto "bomba centrífuga monobloque" hasta el punto 5 "tee bifurcador de caudal" del plano DUIG-01 con las fórmulas 4.12 y 4.14 para pérdidas primarias y secundarias respectivamente cuyos resultados se muestran en la siguiente tabla:

Tabla 4.14: Pérdidas en	línea de descarga	hasta tee bifurcadora	con caudal $0.037 \text{ m}^3/\text{s}$
	0	~	

Componentes en línea principal de	Pérdida (m)	Tipo de pérdida
descarga en el orden que aparecen		
Ampliación DN 65 a DN 100	1.373	Secundaria
Niple roscado DN 100 de 0.10 m	0.018	Primaria
Válvula anti retorno DN 100	1.003	Secundaria
Niple roscado DN 100 de 0.15 m	0.027	Primaria
Válvula mariposa wafer DN 100	0.604	Secundaria
Niple DN 100 de 0.10 m	0.018	Primaria
Niple DN 100 de 0.05 m	0.009	Primaria
Tee DN 100	0.0	Secundaria
Ampliación DN 100 a DN 125	0.036	Secundaria
Tubo DN 125 de 0.6 m	0.035	Primaria
Codo 90° DN 125	0.091	Secundaria
Tubo DN 125 de 2.0 m	0.115	Primaria
Tee DN 125	0.463	Secundaria
Pérdidas acumuladas	3.792 m	

• Pérdidas en tramos diferenciados con caudal 0.019 m³/s

A partir del punto 5 "tee bifurcador de caudal" del plano DUIG-01 el caudal se reparte hacia los tramos 6 "tubería de entrada a BFT" y 8 "tubería de entrada a turbina convencional" del plano DUIG-01, el cual es:

Q: caudal de operación repartido = $0.019 \text{ m}^3/\text{s}$

Con este caudal se determinan las siguientes pérdidas hacia cada equipo de generación con las fórmulas 4.12 y 4.14 donde:

 λ : coeficiente por fricción = 0.019 (Anexo 04)

v: velocidad del fluido = 1.473 m/s (DN 125)

Tabla 4.15: Pérdidas hacia cada equipo generador con caudal 0.019 m^3/s

Componentes en línea de alimentación a cada turbina				
Hacia BFT	Pérdida	Hacia turbina convencional	Pérdida	
	(m)		(m)	
Niple DN 125 de 0.15 m	0.002	Niple DN 125 de 0.15 m	0.002	
Reducción DN 125 a DN 100	0.003	Reducción DN 125 a DN 100	0.003	
Válvula mariposa wafer DN	0.167	Válvula mariposa wafer DN	0.167	
100		100		
Ampliación DN 100 a DN 125	0.009	Ampliación DN 100 a DN 125	0.009	
Niple DN 125 de 0.10 m	0.001	Niple DN 125 de 0.10 m	0.001	
Codo 90° DN 125	0.024	Codo 90° DN 125	0.024	
Niple DN 125 de 0.15 m	0.002	Niple DN 125 de 0.20 m	0.003	
Niple DN 125 de 0.15 m	0.002	Niple DN 125 de 0.20 m	0.003	

Válvula mariposa wafer DN	0.061	Codo 90° DN 125	0.024
125			
Reducción DN 125 a DN 100	0.003	Niple DN 125 de 0.1 m	0.001
Reducción DN 100 a DN 80	0.013	Válvula mariposa wafer DN	0.061
		125	
Pérdidas acumuladas	0.287	Pérdidas acumuladas	0.298

• Sumatoria de pérdidas

A continuación, se suman las pérdidas acumuladas totales a lo largo de "tubería de descarga principal" hasta los puntos 7 "equipo generador no convencional" y el punto 9 "equipo generador convencional" respectivamente del plano DUIG-01.

PÉRDIDAS ACUMULADAS TOTALES				
Hacia BFT Pérdida (m)		Hacia	turbina	Pérdida (m)
		convencional		
Línea descarga	3.792	Línea descarga		3.792
Tramo hacia BFT	0.287	Tramo hacia	turbina	0.298
		convencional		
PÉRDIDAS TOTALES	4.079	PÉRDIDAS TO	TALES	4.09

Tabla 4.16: Sumatoria de pérdidas para operación simultánea con potencia base

4.12.2 Operación simultánea de turbinas con potencia hipotética

En este escenario hipotético se determina la potencia necesaria para la "bomba centrífuga monobloque" del plano DUIG-01, para que ambas turbinas (convencional y no convencional) operen simultáneamente a sus condiciones de diseño máximas de:

Q: caudal de operación máximo = $0.037 \text{ m}^3/\text{s}$

H: altura máxima: 22 m

Para cumplir este requisito hipotético, se necesita primeramente que por la "tubería de descarga principal" circule el doble de caudal siendo:

Qh: caudal de operación hipotético = $0.074 \text{ m}^3/\text{s}$

• Pérdidas en línea de descarga principal con caudal 0.074 m³/s

Con este caudal hipotético se determinan las pérdidas desde el punto "bomba centrífuga monobloque" hasta el punto 5 "tee bifurcador de caudal" del plano DUIG-01 al igual que en 4.12.1 donde:

v: velocidad del fluido = 9.25 m/s (DN 100)

v: velocidad del fluido = 5.69 m/s (DN 125)

Componentes en línea principal de	Pérdida (m)	Tipo de pérdida
descarga en el orden que aparecen		
Ampliación DN 65 a DN 100	5.768	Secundaria
Niple roscado DN 100 de 0.10 m	0.073	Primaria
Válvula anti retorno DN 100	4.204	Secundaria
Niple roscado DN 100 de 0.15 m	0.109	Primaria
Válvula mariposa wafer DN 100	2.534	Secundaria
Niple DN 100 de 0.10 m	0.073	Primaria
Niple DN 100 de 0.05 m	0.036	Primaria
Tee DN 100	0.0	Secundaria
Ampliación DN 100 a DN 125	0.148	Secundaria
Tubo DN 125 de 0.6 m	0.128	Primaria
Codo 90º DN 125	0.358	Secundaria
Tubo DN 125 de 2.0 m	0.425	Primaria
Tee DN 125	1.815	Secundaria
Pérdidas acumuladas	15.671	

Tabla 4.17: Pérdidas en línea de descarga hasta tee bifurcadora con caudal 0.074 m³/s

• Pérdidas en tramos diferenciados con caudal 0.037 m³/s

A partir del punto 5 "tee bifurcador de caudal" del plano DUIG-01 nuevamente se reparte el caudal hacia los tramos 6 "tubería de entrada a BFT" y 8 "tubería de entrada a turbina convencional" del plano DUIG-01, el cual es:

Q: caudal de operación por línea = $0.037 \text{ m}^3/\text{s}$

Con este caudal se determinan las siguientes pérdidas hacia cada equipo de generación con las fórmulas 4.12 y 4.14 donde:

v: velocidad del fluido = 2.874 m/s (DN 125)

Componentes en línea de alimentación a cada turbina			
Hacia BFT	Pérdida	Hacia turbina convencional	Pérdida
	(m)		(m)
Niple DN 125 de 0.15 m	0.009	Niple DN 125 de 0.15 m	0.009
Reducción DN 125 a DN 100	0.011	Reducción DN 125 a DN 100	0.011
Válvula mariposa wafer DN	0.604	Válvula mariposa wafer DN	0.604
100		100	
Ampliación DN 100 a DN 125	0.036	Ampliación DN 100 a DN 125	0.036
Niple DN 125 de 0.10 m	0.006	Niple DN 125 de 0.10 m	0.006
Codo 90° DN 125	0.091	Codo 90° DN 125	0.091
Niple DN 125 de 0.15 m	0.009	Niple DN 125 de 0.20 m	0.012
Niple DN 125 de 0.15 m	0.009	Niple DN 125 de 0.20 m	0.012

					_		7
Tabla 4	4.18: Pérdidas	hacia cada	equipo	generador con	n caudal 0.037	m^{3}/s	

Válvula mariposa wafer DN	0.234	Codo 90° DN 125	0.091
125			
Reducción DN 125 a DN 100	0.011	Niple DN 125 de 0.10 m	0.006
Reducción DN 100 a DN 80	0.049	Válvula mariposa wafer DN	0.234
		125	
Pérdidas acumuladas	1.069	Pérdidas acumuladas	1.112

• Sumatoria de pérdidas

Finalmente, se suman las pérdidas acumuladas totales a lo largo de "tubería de descarga principal" hasta los puntos 7 "equipo generador no convencional" y el punto 9 "equipo generador convencional" respectivamente del plano DUIG-01.

Tabla 4.19: Sumatoria de pérdidas para operación simultánea con potencia hipotética

PERDIDAS ACUMULADAS TO			LES	
Hacia BFT	Pérdida (m)	Hacia	turbina	Pérdida (m)
		convencional		
Línea descarga	15.671	Línea descarga		15.671
Tramo hacia BFT	1.069	Tramo hacia	turbina	1.112
		convencional		
PÉRDIDAS TOTALES	16.74	PÉRDIDAS TO	DTALES	16.783

• Obtención de presión de bombeo hipotética

Para conocer la presión necesaria en el equipo "bomba centrífuga monobloque" del plano DUIG-01 se aplica la ecuación de Bernoulli 4.17 donde:

Hr: pérdidas totales = 16.8 m.c.a. = 164.753 kPa (tabla 4.19)

Reemplazando se obtiene:

p1 = 392.268 kPa = 40.0 m.c.a

• Obtención de potencia de bombeo hipotética

A continuación, se aplica la fórmula de potencia para bombas 4.18 donde:

Q: caudal de operación hipotético = $0.074 \text{ m}^3/\text{s}$

H: altura neta = 40 m

 η : eficiencia en bomba centrífuga = 0.7 (valor conservador)

P = 41.47 kW

CAPÍTULO V 5 DISEÑO MECÁNICO

5.1 INTRODUCCIÓN

En este capítulo se diseñan los elementos estructurales que conforman el banco de pruebas, se seleccionan las planchas, angulares de refuerzo, vigas de apoyo del reservorio, vigas de apoyo para los grupos de generación, también se analiza el sistema de tuberías y finalmente se dimensiona el bloque de cimentación de la bomba centrífuga.

El reservorio rectangular se apoya sobre vigas en el piso del laboratorio y está compuesto por planchas de acero con angulares de refuerzo soldados por fuera del reservorio. A su vez se apoyan más angulares que constituyen los soportes de tuberías. Los grupos de generación se apoyan sobre vigas paralelas de acero, empernadas sobre el reservorio.

5.2 PARÁMETROS Y CRITERIOS DE DISEÑO MECÁNICO

5.2.1 Parámetros de diseño mecánico

Los parámetros de diseño requeridos para el análisis estructural del banco de pruebas son:

- Garantizar la integridad estructural del reservorio rectangular, vigas de grupos generadores y soportes de tuberías frente a todas las cargas intervinientes.
- Proveer rigidez a la bomba centrífuga monobloque y cargas relacionadas.

5.2.2 Criterios de diseño mecánico

Se emplean los siguientes criterios de diseño:

- Se analizan los esfuerzos en los diferentes elementos del banco de pruebas en base a las cargas a las que está expuesto.
- Se diseña un bloque de cimentación con un modelo matemático de un grado de libertad según norma.

5.3 ANÁLISIS DE RESERVORIO RECTANGULAR Y ELEMENTOS RELACIONADOS

5.3.1 Funciones del reservorio rectangular

El recipiente rectangular utilizado en el banco de pruebas tiene dos funciones:

- Almacenamiento y suministro de agua que succiona la bomba centrífuga monobloque, además de recepción de agua descargada por las turbinas.
- Soporte estructural de las turbomáquinas, equipos y tuberías.

5.3.2 Selección de material para planchas y elementos estructurales

En la tabla 5.1 se tienen los materiales para planchas recomendados en la construcción de recipientes a presión:

Tabla 5.1: Materiales para recipientes a presión Type/Grade Spec. No. SA 36 SA 53 E/A.E/B, S/A. S/B SA 105 A. B. C. SA 106 SA 135 A B SA 178 A C SA 179 SA 181 FR F1 F2 F3V F3VCb F5 F5a F9 SA 182 F11 CL 1 & 2, F12 CL 1 & 2, F21, F22 CL 1 & 3, F22V, F91

Fuente: (ASME Sec. VIII Div. 1, 2013, p. 164)

De aquí se selecciona el acero estructural ASTM A36 para las planchas del reservorio por cumplir las siguientes recomendaciones: (ASME Sec. VIII Div. 1, 2013, p. 162)

- El recipiente no contiene sustancias letales.
- El material no conforma partes de un caldero.
- El espesor de planchas soldadas no supera los 16 mm.

El acero ASTM A36 también es seleccionado como material para los elementos de refuerzo del reservorio, vigas y soportes de tubería por ser "recomendado para estructuras en general". (Megyesy, 2001, p. 186)

5.3.3 Requerimiento de elementos de refuerzo

"Los tanques rectangulares requieren atiesadores a partir de 30 pies³ hasta 140 pies³". (Megyesy, 2001, p. 213), se tiene:

- El volumen del reservorio rectangular: V = 3.456 m³ = 122.043 pies³ (hallado en 4.5.4) está dentro de ese rango por lo que si necesita elementos de refuerzo.
- El volumen de un compartimento considerando la altura de 1.1m tiene un volumen: V = 1.056 m³ = 37.292 pies³ (deducido de 4.5.5), que también justifica el uso de elementos de refuerzo.

5.3.4 Obtención de espesor de plancha para reservorio rectangular y compartimentos

Se analiza el espesor de plancha para dos situaciones: primero considerando la totalidad del reservorio rectangular y luego únicamente un compartimento interior como unidad. Se toma como válido el mayor valor obtenido.

Figura 5.1: Recipiente rectangular con atiesadores y distribución de fuerzas Fuente: (Megyesy, 2001, p. 216)

5.3.4.1 Cálculo de espesor de plancha a partir de reservorio rectangular (t)

A partir de la necesidad de contar con refuerzos, en el largo L = 2.4 m del reservorio rectangular se definen dos angulares verticales de refuerzo que dividen la plancha en 3 partes iguales (figura 5.1), esto coincide con la distancia donde se generan los compartimentos interiores. Luego se aplica la fórmula con unidades americanas: (Megyesy, 2001, p. 216)

$$t = l \sqrt{\frac{\beta' \times H' \times 0.036 \times G}{S}} \quad \dots (5.1)$$

Donde:

t: mínimo espesor de plancha (pulgadas)

H': alto de reservorio = 1.2 m = 47.244 pulgadas (hallado en 4.5.4)

l: distancia entre atiesadores verticales = 0.8 m = 31.496 pulgadas

 β ': coeficiente de relación = 0.26 (de la tabla 5.2 para H'/l = 1.5)

G: gravedad específica del agua= 1

S: máximo esfuerzo permisible plancha ASTM A36= 16 600 psi (Anexo 17)

Tabla 5.2: Coeficientes para reservorio rectangular

Ratio, H or H	0.25	0.286	0.333	(0.4	0.5	0.667
Constant, B	0.024	0.031	0.041	0.0	56	0.080	0.116
Constant, a	0.00027	0.00046	0.00083	0.00	16	0.0035	0.0083
Ratio, H or H	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Constant, B	0.16	0.26	0.34	0.38	0.43	0.47	0.49
Constant, a	0.022	0.043	0.060	0.070	0.078	0.086	0.091

Fuente: (Megyesy, 2001, p. 213)

Reemplazando se obtiene:

t = 0.163 pulgadas = 4.129 mm

5.3.4.2 Cálculo de espesor de plancha a partir de compartimento unitario (t)

Considerando como recipiente unitario a un compartimento de largo L = 1.2 m, se le coloca 1 atiesador vertical lo que divide la plancha en 2 partes iguales y l = 0.6 m. Se aplica la fórmula (5.1):

Donde:

l: distancia entre atiesadores verticales = 0.6 m = 23.622 pulgadas

β': coeficiente de relación H'/l = 0.34 (de la tabla 5.2 para H'/l = 2)

Reemplazando se obtiene:

t = 0.139 pulgadas = 3.541 mm

5.3.4.3 Selección de plancha comercial

Del mayor valor obtenido t = 4.129 mm, se selecciona un espesor de 4.5 mm de plancha comercial (Anexo 22), la cual se destina para la base, lados del reservorio y planchas intermedias que forman los compartimentos.

Figura 5.2: Plancha comercial ASTM A36

5.3.5 Determinación de vigas base del reservorio rectangular

Se define apoyar el reservorio rectangular sobre vigas en H (figura 5.3) para evitar la acumulación de agua y corrosión en la base, dar espacio para instalación y manejo de las tuberías de drenaje de cada compartimento y tener espacio en el ala del perfil para los pernos de anclaje.

5.3.5.1 Cálculo de espaciamiento entre vigas base (IB)

Se calcula el espaciamiento entre vigas mediante la fórmula con unidades americanas: (Megyesy, 2001, pág. 214)

$$lB = 1.254 \times t \sqrt{\frac{S}{0.036 \times G \times H'}} \dots (5.2)$$

Donde:

lB: distancia entre vigas base (pulgadas)

t: espesor de plancha seleccionado para la base = 4.5 mm = 0.177 pulgadas

S: máximo esfuerzo permisible plancha = 16 600 psi (Anexo 17)

G: gravedad específica del agua= 1

H': alto de reservorio = 1.2 m = 47.244 pulgadas (hallado en 4.5.4)

Reemplazando se obtiene:

IB = 22.31 pulgadas = 0.567 m

Figura 5.3: Vigas base para reservorio Fuente: (Megyesy, 2001, p. 214)

Con este resultado se decide situar 5 vigas equidistantes y transversales al lado largo de la base del reservorio (L = 2.4 m) con un espaciamiento de 0.60 m de centro a centro y 0.497 m de extremo a extremo entre ellas. (figura 5.5)

5.3.5.2 Cálculo de módulo de sección requerido para viga base

Se hace un estimado de la carga que soportan las vigas base considerando planchas, perfiles, equipos, tuberías, soportes, cargas dinámicas y el agua dentro del reservorio y tuberías.

Tipo de carga	Volumen (m ³)	Masa (kg)	Obs.
Agua en reservorio	3.456 (Hallado en 4.5.4)	3454.963	$\rho = 999.7 \text{ kg/m}^3$
Otras cargas	Estimado	6909.926	Dos veces el anterior
Total		10364.889	

Tabla 5.3: Estimado de cargas sobre vigas base

Esta masa se convierte en fuerza multiplicando por la gravedad: F total = 101 679.561 N. Esta fuerza se distribuye en partes iguales entre las 5 vigas base con lo que se tiene:

F = 20 335.912 N

Luego se determina la sección mínima para soportar esa fuerza con la fórmula para elementos cortos sometidos a compresión: (Budynas & Nisbett, 2008, pág. 180)

$$\sigma = \frac{F}{A} + \frac{M}{Z} \dots (5.3)$$

De aquí se toma el caso más crítico donde la fuerza se aplica a un extremo de la viga H (figura 5.4), con lo que sólo se toma el segundo miembro de la ecuación. Donde: Z: módulo de sección (cm³)

 σ : Esfuerzo máximo permisible para viga A36 = 114 MPa (Anexo 17)

M: momento: F x 50mm= (se asume un brazo de 50 mm por ser viga en H)

F: Fuerza sobre una viga base= 20 335.912 N (hallado en 5.3.4.2)

Reemplazando se obtiene

 $Z = 8.919 \text{ cm}^3$

Figura 5.4: Fuerza aplicada sobre viga H

5.3.5.3 Selección de perfil para vigas base

De aquí se selecciona el perfil H de ala ancha **W4x13** con módulo de sección Z = 72.76 cm³ (Anexo 21) para conformar las vigas base, las cuales serán soldadas al marco inferior del reservorio rectangular y estarán sujetas al suelo del laboratorio mediante pernos de anclaje.

Figura 5.5: Posición final de vigas base

5.3.6 Obtención de perfil para refuerzos de reservorio rectangular

A partir de la necesidad de contar con atiesadores para el reservorio rectangular y compartimentos laterales, se procede a calcular los módulos de sección y momentos de inercia para cada caso y seleccionar un perfil tomando el mayor valor hallado.

5.3.6.1 Cálculo de módulo de sección en atiesador vertical a partir de reservorio (Z) Se aplica la fórmula con unidades americanas: (Megyesy, 2001, p. 216)

$$Z = \frac{0.0642 \times 0.036 \times G \times {H'}^3 \times l}{S} \dots (5.4)$$

Donde:

Z: módulo de sección (pulgadas³)

G: gravedad específica del agua= 1

H': altura reservorio = 1.2 m = 47.244 pulgadas (hallado en 4.5.4)

1: distancia entre atiesadores verticales = 0.8 m = 31.496 pulgadas

S: máximo esfuerzo permisible plancha = 16 600 psi (Anexo 17)

Reemplazando se obtiene:

Z = 0.462 pulgadas³ = 7 577.505 mm³

5.3.6.2 Cálculo de momento de inercia en perfil de marco superior a partir de reservorio (I)

Se aplica la fórmula: (Megyesy, 2001, p. 216)

$$I = \frac{0.3 \times 0.036 \times G \times {H'}^2 \times L^4}{2 \times 192 \times E \times t} \quad \dots (5.5)$$

Donde:

I: Momento de inercia (pulgadas⁴)

G: gravedad específica del agua= 1

H': altura reservorio = 1.2 m = 47.244 pulgadas (hallado en 4.5.4)

L: largo de reservorio = 2.4 m = 94.488 pulgadas (hallado en 4.5.4)

E: módulo elasticidad del acero = 29 400 000 psi (Anexo 18)

t: espesor de plancha seleccionado 4.5 mm = 0.177 pulgadas (hallado en 5.3.3.3)

Reemplazando se obtiene:

I = 0.962 pulgadas⁴ = 400 277.337 mm⁴

5.3.6.3 Cálculo de módulo de sección en atiesador vertical a partir de compartimento lateral (Z)

A continuación, se procede a un cálculo similar al anterior, tomando el lado corto del reservorio (1.2 m) como el lado largo del compartimento. Se aplica la fórmula en unidades americanas (5.4)

Donde:

1: distancia entre atiesadores verticales = 0.6 m = 23.622 pulgadas

Reemplazando se obtiene:

Z = 0.347 pulgadas³ = 5 683.125 mm³

5.3.6.4 Cálculo de momento de inercia en marco superior a partir de compartimento (I)

Se aplica la fórmula (5.5):

Donde:

L: largo de compartimento = 1.2 m = 47.244 pulgadas

Reemplazando se obtiene:

I = 0.060 pulgadas⁴ = 25 014.209 mm⁴

5.3.6.5 Selección de perfil para atiesadores

Se toma el módulo de sección o momento de inercia más elevado: I= 0.962 pulgadas⁴ = 400 277.337 mm⁴

Con este valor se selecciona el angular de acero de dimensiones L 3x3x1/4 pulgadas con: I= 1.2 pulgadas⁴ (Anexo 20) para todos los atiesadores verticales y marco superior, donde a su vez servirá para apoyar las vigas de equipos generadores y soportes de tuberías. Adicionalmente se considera un marco inferior usando el mismo angular para sujetar las vigas base y angulares en las esquinas del reservorio rectangular.

Figura 5.6: Angulares de refuerzo en reservorio

5.3.7 Ubicación de soportes para tubería

Los soportes deben diseñarse previniendo esfuerzos localizados o deformaciones en el recipiente a presión. (ASME Sec. VIII Div. 1, 2013, p. 575)

Se recomienda no trazar la tubería muy cerca de la estructura de la cual se apoyan los soportes. Si se diseña bastidores para soporte, apoyar preferentemente la base del tubo. (Nayyar, 2000, p. B91)

Los soportes de tubería descritos a continuación se relacionan con la figura 5.7:

- a) El primer soporte se diseña a modo de repisa sujetada al marco superior del reservorio rectangular para apoyar parte del tramo vertical de descarga de la bomba centrífuga.
- b) El segundo soporte a modo de estructura elevada con cuatro apoyos se apoya también sobre el marco superior del reservorio rectangular y soporta el tramo horizontal de descarga y las desviaciones de tubería que se dirigen a cada equipo de generación.
c) El tercer soporte sostiene el último tramo de tubería antes de ingresar a la turbina Michell Banki.

Figura 5.7: Soportes de tubería

5.4 ANÁLISIS DE ESFUERZOS EN RESERVORIO RECTANGULAR

Aquí se selecciona un modelo de reservorio rectangular con elementos de refuerzo para encontrar los esfuerzos por flexión y de membrana.

5.4.1 Obtención de máxima presión en reservorio (p)

La máxima presión en el reservorio ocurre a nivel de la base debido a la fuerza hidrostática que ejerce el agua contra las paredes. Para hallarla se recurre a la ecuación de Bernoulli, en la cual se toma como línea de referencia y punto 1 al fondo del reservorio y el punto 2 en la superficie. Se considera que no existen pérdidas ni velocidades, despejando la ecuación (4.17), queda:

$$p_1 + \rho g Y_1 = p_2 + \rho g Y_2 \quad \dots (5.6)$$

Donde:

p1: presión en el fondo del reservorio (Pa)

 ρ : densidad del agua a 10 °C = 999.7 kg/m3 (Anexo 03)

g: gravedad = 9.81 m/s2

Y₁: 0 m (nivel de referencia)

p2: 0 (a la atmósfera)

Y₂: 1.2 m

Reemplazando se obtiene

p₁ = 11 768.468 Pa = 0.012 MPa = 1.2 m.c.a.

5.4.2 Obtención de esfuerzos a partir de reservorio rectangular

Se toma como aproximación de cálculo la siguiente sección transversal con planchas de refuerzo en cada tercio del recipiente rectangular a presión (figura 5.8). Tener en cuenta que en el lado corto del reservorio (1.2 m) se tiene un angular vertical de refuerzo, por lo que para los siguientes cálculos se considera un ancho de reservorio de 0.6 m.

Figura 5.8: Corte de planta para reservorio con atiesadores Fuente: (ASME Sec. VIII Div. 1, 2013, pág. 438)

5.4.2.1 Cálculo de momento de inercia en plancha de acero (I)

Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 452)

$$I = \frac{1 \times t^3}{12} \dots (5.7)$$

Donde:

I: Momento de inercia (mm⁴)

t: espesor de plancha seleccionado = 4.5 mm

Reemplazando se obtiene:

 $I = 7.594 \text{ mm}^4$

5.4.2.2 Cálculo de esfuerzo de membrana en lado corto a (Sm)

Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 453)

$$Sm = \frac{pl}{2t} \left\{ 3 - \left[\frac{6 + \gamma(11 - \gamma^2)}{3 + 5\gamma} \right] \right\} \quad \dots (5.8)$$

Donde:

Sm: esfuerzo de membrana (MPa)

p: presión en reservorio = 0.012 MPa

t: espesor de plancha = 4.5 mm

1: distancia entre planchas = 800 mm

a: ancho de reservorio = 600 mm

y: coeficiente de relación a/l = 600/800 = 0.75

Reemplazando se obtiene

Sm = 1.015 MPa

5.4.2.3 Cálculo de esfuerzo de flexión normal en lado corto a (SbN)

Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 453)

$$SbN = \frac{pc}{24I} \left[-3a^2 + 2l^2 \left(\frac{3+5\gamma^3}{3+5\gamma} \right) \right] \quad \dots (5.9)$$

Donde:

p: presión en reservorio = 0.012 MPa

c: distancia de eje neutro a borde de plancha = 4.5 mm/2 = 2.25 mm

I: momento de inercia = 7.594 mm^4

- a: ancho de reservorio = 600 mm
- 1: distancia entre planchas = 800 mm
- y: coeficiente de relación a/l = 600/800 = 0.75

Reemplazando se obtiene

SbN =-16.46 MPa

5.4.2.4 Cálculo de esfuerzo de flexión cortante en lado corto a (SbQ)

Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 453)

$$SbQ = \frac{pl^2c}{12I} \left(\frac{3+5\gamma^3}{3+5\gamma} \right) \dots (5.10)$$

Donde:

p: presión = 0.012 MPa

- c: distancia de eje neutro a borde de plancha = 4.5/2 = 2.25 mm
- I: momento de inercia = 7.59 mm^4
- 1: distancia entre planchas = 800 mm
- a: ancho de reservorio = 600 mm
- y: coeficiente de relación a/l = 600/800 = 0.75

Reemplazando se obtiene

SbQ = 143.61 MPa

Este mismo esfuerzo es válido para el esfuerzo de flexión cortante en el largo del reservorio por tener el mismo espesor de plancha.

5.4.2.5 Cálculo de esfuerzo de membrana en lado largo L (Sm)

Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 453)

$$Sm = \frac{pa}{2t} \quad \dots (5.11)$$

Donde:

Sm: esfuerzo de membrana (MPa)

p: presión en reservorio = 0.012 MPa

a: ancho de reservorio = 600 mm

t: espesor de plancha = 4.5 mm

Reemplazando se obtiene

Sm = 0.8 MPa

5.4.2.6 Cálculo de esfuerzo de flexión normal en lado largo L (SbM) Se aplica la fórmula: (ASME Sec. VIII Div. 1, 2013, p. 453)

$$SbM = \frac{pl^2c}{12I} \left[\frac{3 + \gamma(6 - \gamma^2)}{3 + 5\gamma} \right] \quad \dots (5.12)$$

Donde:

p: presión = 0.012 MPa

c: distancia de eje neutro a borde de plancha = 4.5/2 = 2.25 mm

I: momento de inercia = 7.59 mm^4

a: ancho de reservorio = 600 mm

1: distancia entre planchas = 800 mm

y: coeficiente de relación a/l = 600/800 = 0.75

Reemplazando se obtiene:

SbM = 198.946 MPa

5.4.2.7 Determinación de esfuerzo total para lado corto y largo (S)

"Los esfuerzos resultantes se hallan sumando el esfuerzo de membrana con el de flexión normal y cortante para cada lado respectivamente". (ASME Sec. VIII Div. 1, 2013, p. 453) "Estos valores no deben sobrepasar 1.5 veces el valor de S". (ASME Sec. VIII Div. 1, 2013, p. 439)

Donde:

S: máximo esfuerzo permisible plancha de acero A36 = 114 MPa (Anexo 17) Entonces se tiene como esfuerzo límite:

$$S \times 1.5 = 171 MPa$$

Denominación	Tipo de esfuerzo	Valor (MPa)	Observación
Lado corto a	Normal (σ)	-15.445	Cumple
Lado conto a	Cortante (τ)	144.625	Cumple
Lada larga I	Normal (σ)	199.746	*
Lado largo L	Cortante (τ)	144.41	Cumple

Tabla 5.4: Esfuerzos totales en planchas de reservorio

*El modelo de cálculo usado (figura 5.8)., sólo incluye planchas internas como elementos de refuerzo y el modelo real cuenta también con perfiles de refuerzo por el exterior. Ver análisis computacional 6.3.

5.5 ANÁLISIS DE VIGAS PARALELAS PARA GRUPOS GENERADORES

"Algunos componentes instalados sobre un recipiente a presión sirven para montar una bomba, un motor, o cualquier otro equipo rotatorio" (ASME Sec. VIII Div. 1, 2013, p. 576), a partir de esta noción se apoyan perfiles paralelos sobre cada compartimento lateral del reservorio rectangular para poder montar los grupos de generación convencional y no convencional respectivamente (figura 5.9), estos son:

- Grupo de generación no convencional: BFT que transmite potencia mediante fajas en V a motor de inducción.
- Grupo de generación convencional: turbina Michel-Banki que transmite potencia mediante fajas en V a generador síncrono.

Figura 5.9: Grupos generadores no convencional y convencional

A continuación, se determinan las cargas y esfuerzos en las vigas que llevan a seleccionar un perfil.

5.5.1 Determinación de cargas sobre vigas para grupo generador no convencional

Compuesta principalmente por:

- Cargas estáticas de la BFT, accesorios de tuberías, agua contenida y motor de inducción.
- Cargas dinámicas de la fuerza que ejerce el agua y momento generado por los equipos.

5.5.1.1 Sumatoria de masa de equipos y marcos base

Incluye los equipos, marcos base de cada equipo y agua contenida en BFT. No se considera la masa de las vigas paralelas.

	Componente	Masa (kg)	Observación
	Bomba centrífuga de eje libre	73	Anexo 10
DET	Pentax 80-200 A		
DF I	Marco base de BFT	16	Aprox.
	Masa del agua en voluta	10	Aprox.
Subtotal		99	
Motor de	Motor de inducción WEG W22	67	Placa de motor
Inducción	Marco base de motor	8	Aprox.
Subtotal		75	

Tabla 5.5: Cargas de grupo generador no convencional

Lo que equivale a las siguientes fuerzas en sus ubicaciones respectivas sobre el plano vertical:

- F_{BFT} = 971.19 N para la BFT en dirección vertical hacia abajo.
- $F_{Motor} = 735.75$ N para el motor de inducción en dirección vertical hacia abajo.

5.5.1.2 Sumatoria de masa de tuberías conectadas a BFT

Son todos los accesorios de tubería montados hacia la BFT y el agua contenida en ellos.

	Componente	Masa (kg)	Obs.
	Niple de 0.15 m DN 125	3.266	Anexo 02
	Brida clase 150 DN 125	6.22	Anexo 08
Tuborío	Válvula mariposa wafer DN 125	7.9	Anexo 14
l uperta do	Brida clase 150 DN 125	6.22	Anexo 08
ue	Reducción DN 125 a DN 100	2.5	Anexo 05
entraua	Reducción DN 100 a DN 80	1.45	Anexo 05
	Brida clase 150 DN 80	3.87	Anexo 08
	Masa del agua en 0.5 m DN 125	7	Aprox.
Tubaría	Brida clase 150 de DN 100	5.75	Anexo 08
l uperia	Codo 90°DN 100	3.84	Anexo 07
ue salida	Tubo de 0.6 m DN 100	9.648	Anexo 02
sanua	Masa del agua en 0.8 m DN 100	7	Aprox.
Total		64.664	

Tabla 5.6: Cargas de tuberías en BFT

Lo que equivale a $F_{Tuberias} = 634.354$ N para los accesorios de tubería en dirección vertical hacia abajo en la ubicación de la BFT.

5.5.1.3 Cálculo de carga dinámica del agua a la entrada de BFT

Para saber la presión del agua a la entrada de la BFT se utiliza nuevamente la ecuación de Bernoulli (ecuación 4.17) asumiendo que no hay pérdidas y la diferencia de alturas es despreciable. Se define el punto 1 (DN 125) antes de las reducciones y el punto 2 (DN 80) a la entrada de la BFT (figura 5.10), la ecuación queda:

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$
 ... (5.13)

Donde:

p2: presión en el punto 2 (Pa)

*p₁: presión en el punto 1 = 26.4 m.c.a. = 258 888 Pa

v₁: velocidad en el punto 1 = 2.874 m/s (DN 125)

v₂: velocidad en el punto 2 = 7.78 m/s (DN 80) (deducido de ecuaciones 4.2 y 4.3)

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

*Nota: el 20% adicional (ASME B31.1, 2016, pág. 16) a la presión de operación de la BFT (22 m.c.a. establecido en 4.4) es 26.4 m.c.a.

Despejando p se obtiene:

p₂ = 232 762 Pa

Figura 5.10: Reducción de entrada a BFT

Luego se aplica el teorema de cantidad de movimiento para las condiciones de cada punto: (Mataix, 1986, p. 333)

$$F = \rho Q (v_1 - v_2) + p_1 A_1 - p_2 A_2 \dots (5.14)$$

Donde:

F: Fuerza hidrodinámica (N)

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

Qt: caudal de operación máximo = $0.037 \text{ m}^3/\text{s}$

v₁: velocidad en el punto 1 = 2.874 m/s (DN 125)

v₂: velocidad en el punto 2 = 7.78 m/s (DN 80)

p1: presión en el punto 1 = 258 888 Pa

A₁: área de sección DN $125 = 0.013 \text{ m}^2$ (hallado en 4.4.5)

p₂: presión en el punto 2 = 232 762 Pa

A₂: área de sección DN $80 = 0.005 \text{ m}^2$ (deducido de ecuaciones 4.2 y 4.3)

Reemplazando se obtiene

 $F_{h20} = 2020.266 \text{ N}$ con desviación de 45 grados del plano vertical hacia abajo.

Esta fuerza se descompone en los planos x' y y':

- $Fy'_{h20} = 1428.544 \text{ N}$ con dirección vertical hacia abajo.
- Fx'_{h20} = 1428.544 N con dirección horizontal que se traduce en un momento con brazo 0.3 m de distancia vertical desde el eje de la BFT a las vigas paralelas:

 $M_{h2o} = 428.563$ N-m en sentido antihorario

5.5.1.4 Cálculo de momento de fuerza en equipos

Cálculo de momento de fuerza generado por BFT (M):

Se aplica la fórmula: (ACI 351.3R-18, 2018, p. 9)

$$M = \frac{9550 \times P}{f} \dots (5.15)$$

Donde:

M: Momento de fuerza generado (N-m)

P: Potencia máxima transmitida por bomba centrífuga = 6 kW (establecido en 4.4)

f: velocidad de operación = 1800 rpm

Reemplazando se obtiene:

 $M_{BFT} = 31.833$ N-m en sentido antihorario.

Cálculo de momento generado por motor de inducción funcionando como generador (M):

Se aplica la fórmula 5.15:

Donde:

M: Momento recibido (N-m)

P: Potencia recibida por motor de inducción = 6 kW (no se consideran pérdidas por transmisión)

f: velocidad de operación = 1800 rpm (relación de transmisión 1:1)

Reemplazando se obtiene:

M_{Motor} = 31.833 N-m en sentido horario

5.5.1.5 Total de cargas sobre vigas paralelas

Se tienen las fuerzas, ubicación y dirección sobre las vigas paralelas:

Denominación	Magnitud (N)	Distancia del eje 0 (m)	Dirección
F _{Motor}	735.75	0.45	\downarrow
F _{BFT}	971.19	1.05	\downarrow
F _{Tuberias}	634.354	1.05	\downarrow
Fx'h2o	1428.544	1.05	\downarrow

Tabla 5.7: Fuerzas sobre vigas en paralelo

Se tienen los momentos, ubicación y dirección sobre las vigas paralelas:

Denominación	Magnitud (N-m)	Distancia del eje 0 (m)	Dirección
M _{Motor}	31.833	0.45	Horario
M _{h2o}	428.563	1.05	Antihorario
M _{BFT}	31.833	1.05	Antihorario

Tabla 5.8: Momentos sobre vigas paralelas

5.5.2 Obtención de máximo momento en viga

5.5.2.1 Elaboración de diagrama de cuerpo libre

Se tiene el siguiente DCL con las fuerzas y momentos intervinientes en el sistema.

Figura 5.11: DCL de vigas

5.5.2.2 Cálculo de reacciones en apoyos

Sumatoria de momentos Σ M=0 en el punto A:

$$-735.75(0.45) - 31.833 - 3034.088(1.05) + 460.396 + Rb(1.2) = 0$$

Rb = 2573.597 N con dirección vertical hacia arriba.

Sumatoria de fuerzas $\Sigma F=0$ en el sistema:

Ra - 735.75 - 3034.088 + 2573.597 = 0

Ra = 1196.241 N con dirección vertical hacia arriba.

5.5.2.3 Elaboración de diagrama de fuerza cortante y momento flector

Figura 5.12: Diagrama de fuerza cortante y momento flector

En base al DCL se obtienen los diagramas de fuerza cortante y momento flector (figura 5.12)

El máximo momento es **846.436 N-m** ubicado sobre la BFT, el cual será soportado por ambas vigas por lo que para los siguientes cálculos se considera la mitad de dicho valor, ósea:

M: Momento máximo en viga unitaria = 423.218 N-m

5.5.3 Obtención de perfil requerido para vigas paralelas

5.5.3.1 Cálculo de módulo de sección de perfil requerido

Se recurre a la fórmula de esfuerzos normales para vigas en flexión: (Budynas & Nisbett, 2008, p. 86)

$$\sigma = \frac{M}{Z} \quad \dots (5.16)$$

Donde:

Z = Módulo de sección (cm³)

 σ = Esfuerzo máximo permisible para viga A36 = 114 MPa (Anexo 17)

M: Momento máximo en viga = 423.218 N-m

 $Z = 3.12 \text{ cm}^3$

5.5.3.2 Selección de perfil comercial para vigas paralelas

Se requiere un perfil que otorgue espacio para empernar los extremos de las vigas al reservorio rectangular y a su vez empernar el marco base de los equipos a las mismas vigas.

Por ello se selecciona el perfil de acero en C de dimensiones U 3x2x3/16 pulgadas.

5.5.3.3 Cálculo de módulo de sección de perfil seleccionado

El módulo de sección del perfil seleccionado no se encuentra en las tablas comerciales por lo que se halla a partir del momento de inercia de un rectángulo al cual se le resta el momento de inercia del rectángulo interior. (figura 5.13)

Primero se aplica la fórmula para momento de inercia de una sección rectangular (Budynas & Nisbett, 2008, p. 1016):

Donde:

I: Momento de inercia (cm⁴)

b1: ancho de rectángulo mayor =5.08 cm

h₁: altura de rectángulo mayor = 7.62 cm

b₂: ancho de rectángulo menor =4.63 cm

h₂: altura de rectángulo mayor = 6.72 cm

Reemplazando se obtiene:

I = 70.217 cm⁴

Luego se aplica la fórmula que relaciona el momento de inercia con el módulo de sección (Budynas & Nisbett, 2008, p. 86):

$$Z = \frac{I}{c} \quad \dots (5.18)$$

Donde:

Z = Módulo de sección (cm³)

I: Momento de inercia = 70.217 cm⁴

c: Distancia del eje neutro al borde = $h_1/2 = 3.81$ cm

Reemplazando se obtiene:

$Z = 18.43 \text{ cm}^3$

Este resultado es mayor que el módulo de sección requerido, por lo que el perfil seleccionado es adecuado.

5.5.4 Análisis de pernos para vigas paralelas

Se toma el caso empernado de las vigas paralelas por contar con menos pernos que los marcos base de las turbomáquinas y equipos. Los extremos de las vigas paralelas se apoyan sobre el marco superior del reservorio mediante 1 perno en cada extremo (figura 5.14), los cuales están sometidos a las siguientes fuerzas:

5.5.4.1 Cálculo de fuerza por cortante en cada perno

Se toma la fuerza en el plano horizontal que genera el agua a la entrada de la BFT de $Fx'_{h2o} = 1428.544$ N (hallado en 5.5.1.3) y se distribuye en los cuatro pernos, luego se aplica la fórmula:

$$Fs = \frac{Fx}{n} \quad \dots (5.19)$$

Donde:

Fs: Fuerza por cortante (N)

Fx': Fuerza en la dirección x' = 1428.544 N

n: número de pernos = 4

Reemplazando se obtiene:

Fs = 357.136 N

Figura 5.14: Ubicación de agujeros para pernos en vigas

5.5.4.2 Cálculo de fuerza por tensión en cada perno

Se tiene un caso para los pernos 1 y 2 y otro para los pernos 3 y 4, (figura 5.14). Se aplica la fórmula:

$$Ft = \frac{MC}{\Sigma C^2} \quad \dots (5.20)$$

Donde:

Ft: Fuerza por tensión (N)

M: Momento = 1428.544 N x 0.37m = 528.561 N-m

C: distancia para los pernos 1 y 2 = 0.04 m (figura 5.15)

C: distancia para los pernos 3 y 4 = 1.31 m (figura 5.15)

Reemplazando se obtiene:

Ft = 7.831 N (pernos 1 y 2)

Ft = 256.45 N (pernos 3 y 4)

5.5.4.3 Cálculo de carga equivalente

Se asume un ajuste adecuado de los pernos y se aplica la fórmula:

$$Fe \geq Ft + \frac{Fs}{\mu} \quad \dots (5.21)$$

Donde:

Fe: Fuerza equivalente (N)

Ft: Fuerza por tensión = 256.45 N (pernos 3 y 4)

Fs: Fuerza por cortante = 357.136 N

 μ : factor de fricción = 0.2

Reemplazando se obtiene:

Fe = 2042.13 N

Figura 5.15: Fuerza actuante sobre pernos

5.5.4.4 Selección de perno

Se selecciona el material de perno ASTM A325 por ser del "tipo más común de pernos estructurales" (AISC, 2001, p. 3), de ½ pulgada Ø y se comprueba con la fórmula:

$$Fe \leq 0.6$$
 Sy × As ... (5.22)

Donde:

Fe: Fuerza equivalente = 2 042.13 N

Sy: Esfuerzo permisible ASTM A325 = 139 MPa (Anexo 17)

As: Area de sección de perno de $\frac{1}{2}$ pulgada Ø = 91.55 mm² (Tabla 5.9)

Reemplazando se obtiene:

 $2\;043.\,13\;N\leq 7\;635.\,27\;N$

DIAMETRO	ROS	CA GRUE	SA	ROSCA FINA		
NOMINAL Pulg. HILO POR	HILOS POR	AREA DE ESFUERZO		HILOS POR	AREA DE ESFUERZO	
1. A.A.	PULG.	Pulg ²	mm ²	PULG.	Pulg ²	mm²
1/4	20	0,0318	20,53	28	0,0364	23,47
5/16	18	0,0524	33,83	24	0,0581	37,46
3/8	16	0,0775	50,00	24	0,0878	56,66
7/16	14	0,1063	68,59	20	0,1187	76,59
1/2	13	0,1419	91,55	20	0,1600	103,2
1/2	12	0,1378	88,88			
9/16	12	0,1819	117,4	18	0,2030	131,0
5/8	11	0,2260	145,8	18	0,2560	165,1
3/4	10	0,3345	215,8	16	0,3730	240,6
7/8	9	0,4617	297,9	14	0,5095	328,7

Cumple la condición con lo que el diseño de pernos es adecuado.

Tabla 5.9: Área de pernos

Fuente: (Alva Dávila, 200, p. 25)

5.6 DISEÑO DE TRASMISIÓN DE POTENCIAS POR FAJAS EN V

5.6.1 Transmisión de fajas en V para BFT

La energía mecánica que entregan la BFT a través del giro del rotor, debe transmitirse al motor de inducción para obtener energía eléctrica. Esta transmisión se da por medio de fajas en V, por lo que se sigue el siguiente procedimiento de diseño:

5.6.1.1 Determinación de potencia de diseño en transmisión

A partir de la potencia máxima a transmitir por la BFT de 6 kW, se multiplica por un factor de servicio de 1.2 (tabla 5.10) con las siguientes condiciones:

- Un generador como máquina movida.
- Clase 2 por considerar una transmisión accionada a través de línea de eje de la BFT (factor 1.3)
- Se resta 0.1 al factor de servicio por servicio ocasional de 3 a 5 horas por día. (Alva Dávila, 2008, pág. 58)

MAQUINAS MOVIDAS	CLASE 1	CLASE 2
Elevadores de cangilones	1,3	1,5
Excitadores	1,3	1,5
Extractores	1,1	1,2
Generadores	1,2	1,3
Líneas de ejes (ejes de transmisión)	1,2	1,3

Tabla 5.10: Factor de servicio para transmisión fajas en V

Fuente: (Alva Dávila, 2008, pág. 57)

Luego de estas consideraciones se tiene:

P diseño de transmisión = 7.2 kW = 9.655 HP

5.6.1.2 Definición de relación de transmisión y sección de faja en V

Se define que la relación de transmisión será de 1 y que tanto la BFT como el motor de inducción girarán a 1800 rpm. Con la velocidad de rotación y potencia de transmisión, se cruzan datos en la figura 5.16 y se obtiene un punto casi en la línea entre las secciones de faja A y B, por lo que se decide trabajar con la sección B por ser más robusta.

5.6.1.3 Selección de diámetros de paso de las poleas

De la tabla 5.11 se define un diámetro de paso de polea de 7 pulgadas Ø ó 177.8 mm Ø para ambas poleas, que están dentro del rango de medidas para la sección B de fajas en V.

SECCION	DIAMETROS DE PAS RECOMENDADO	O DE POLEAS,MM MINIMO
SECCION	DIAMETROS DE PAS RECOMENDADO	O DE POLEAS,MM MINIMO
SECCION	RECOMENDADO	MINIMO
A B	76 A 127 137 A 190	66 117
C D	229 A 305 330 A 508	178 305
E	533 A 711	457
	C D E	C 229 A 305 D 330 A 508 E 533 A 711

Tabla 5.11: Diámetros estándar, rango y mínimos de poleas

Fuente: (Alva Dávila, 2008, pág. 60, 61)

5.6.1.4 Obtención de faja estándar y distancia entre centros

• Cálculo de distancia entre centros

Se considera una distancia mínima entre centros de la siguiente ecuación (Alva Dávila, 2008, pág. 55):

$$Ce_{min.} \geq \frac{D+3d}{2} \quad \dots (5.23)$$

Donde:

Cemín.: distancia mínima entre centros (pulgadas)

D: diámetro de paso de polea mayor = 7 pulgadas

d: diámetro de paso de polea menor = 7 pulgadas

Reemplazando se obtiene.

Cemín.≥16 pulgadas

Debido a la disposición de la BFT en 45°, marcos base de cada equipo y espacio disponible, se define una distancia entre centros de:

Ce = 26 pulgadas

• Cálculo de longitud aproximada de faja

Se aproxima la longitud de faja por medio de la fórmula (Alva Dávila, 2008, pág. 55):

$$Lf_{aprox.} \cong 2Ce + 1.65(D + d) \dots (5.24)$$

Donde:

Lf = longitud de faja aproximada

D: diámetro de paso de polea mayor = 7 pulgadas

d: diámetro de paso de polea menor = 7 pulgadas

Reemplazando se obtiene.

 $Lf_{aprox.} \cong 75.1 \text{ pulgadas}$

• Selección de faja estándar

La faja estándar que más se aproxima al cálculo anterior es la B75 con longitud de faja de 76.8 pulgadas (tabla 5.12):

Tabla 5.12: Longitud estándar y factor de longitud

SECCION B				
FAJA Nº	LONG. PASO PULG.	KL		
B64 B66 B68 B71 B75	65,8 67,8 69,8 72,8 76,8	0,93 0,93 0,95 0,95 0,97		

Fuente: (Alva Dávila, 2008, pág. 62)

• Cálculo de distancia real entre centros

Se halla la distancia real entre centros de la fórmula (Alva Dávila, 2008, pág. 56):

$$Lf = 2Ce + \frac{\pi}{2}(D+d) + \frac{(D-d)^2}{4Ce}$$
 ... (5.25)

Donde:

Cereal: distancia entre centros (pulgadas)

Lf: longitud de faja = 76.8 pulgadas (tabla 5.12)

D: diámetro de paso de polea mayor = 7 pulgadas

d: diámetro de paso de polea menor = 7 pulgadas

Reemplazando se obtiene.

Ce real = 27.4 pulgadas

5.6.1.5 Obtención de potencia y número de fajas

• Cálculo de potencia por faja

Se halla la potencia que puede transmitir una faja por la fórmula (Alva Dávila, 2008, pág. 56):

$$P/faja = P_{faja} \times Kl \times K\theta \quad \dots (5.26)$$

Donde:

P/faja: potencia por faja (HP)

 P_{faja} = Potencia que transmite una faja= 7.79 HP (tabla 5.14)

Kl: factor por longitud de faja = 0.97 (tabla 5.12)

K θ : factor por ángulo de contacto = 1 (tabla 5.13)

Reemplazando se obtiene.

P/faja = 7.556 HP

$\frac{D-d}{C}$	θ	Ke
0.00	1800	1.00
0.10	174	0,99
0.20	169	0,97
0.30	163	0.90
0.40	157	0.9

Fuente: (Alva Dávila, 2008, pág. 62)

Cálculo de número de fajas

Tabla 5.13: Potencia por faja B

RPM DEL	НР	HP POR FAJA			
EJE RAPIDO	6,0"	6,2"	7,0"		
1200 1400 1600 1800 2000	4,61 5,17 5,68 6,15 6,55	4,87 5,46 6,00 6,48 6,91	5,88 6,59 7,23 7,79 8,28		

Fuente: (Alva Dávila, 2008, pág. 67)

Se divide la potencia de diseño de transmisión (9.655 HP) entre la potencia por faja (7.556 HP) y se obtiene 1.278, por lo que se determina que se requiere:

2 fajas en V, tipo B75.

5.6.2 Transmisión de fajas en V para turbina Michell Banki

La energía mecánica que entregan la turbina Michell Banki a través del giro del rotor, se transmite al generador síncrono para obtener energía eléctrica. Esta transmisión también se da por medio de fajas en V, por lo que el procedimiento de diseño es similar al anterior:

5.6.2.1 Determinación de potencia de diseño en transmisión

La potencia máxima a transmitir por la turbina Michell Banki es también de 6 kW, lo cual hace úselos mismos factores de servicio tomados en 5.6.1.1

P diseño de transmisión = 7.2 kW = 9.655 HP

5.6.2.2 Definición de relación de transmisión y sección de faja en V

Se define que la relación de transmisión será de 2 donde la velocidad de la turbina Michell Banki es de 900 rpm lo que hace que el generador síncrono gire a 1800 rpm. Con esta última velocidad de rotación y potencia de transmisión, se cruzan asímismo los datos en la figura 5.16 y se obtiene el mismo punto que para la BFT para una faja de sección B.

5.6.2.3 Selección de diámetros de paso de las poleas

De la tabla 5.11 se define un diámetro de paso de polea de 12.4 pulgadas para la turbina Michell Banki y un diámetro de 6 pulgadas para el generador síncrono, ambos dentro del rango de medidas para una sección B de fajas en V.

5.6.2.4 Obtención de faja estándar y distancia entre centros

• Cálculo de distancia entre centros

De la ecuación 5.23 se tienen los datos:

Cemín.: distancia mínima entre centros (pulgadas)

D: diámetro de paso de polea mayor = 12.4 pulgadas

d: diámetro de paso de polea menor = 6 pulgadas

Reemplazando se obtiene.

Cemín.≥ 15.2 pulgadas

De aquí se define una distancia entre centros de:

Ce = 20 pulgadas

• Cálculo de longitud aproximada de faja

De la ecuación 5.24 se tienen los datos:

Lf = longitud de faja aproximada

Ce: distancia entre centros = 20 pulgadas

D: diámetro de paso de polea mayor = 12.4 pulgadas

d: diámetro de paso de polea menor = 6 pulgadas

Reemplazando se obtiene.

$Lf_{aprox.} \cong 70.36$ pulgadas

• Selección de faja estándar

La faja estándar que más se aproxima al cálculo anterior es la B68 con longitud de faja de 69.8 pulgadas (tabla 5.12):

• Cálculo de distancia real entre centros

De la ecuación 5.25 se tienen los datos:

Ce_{real}: distancia entre centros (pulgadas)

Lf: longitud de faja = 69.8 pulgadas (tabla 5.12)

D: diámetro de paso de polea mayor = 12.4 pulgadas

d: diámetro de paso de polea menor = 6 pulgadas

Reemplazando se obtiene.

Ce real = 20.19 pulgadas

5.6.2.5 Obtención de potencia y número de fajas

• Cálculo de potencia por faja

De la ecuación 5.25 se tienen los datos:

P/faja: potencia por faja (HP)

 P_{faja} = Potencia que transmite una faja= 6.15 HP (tabla 5.14)

Kl: factor por longitud de faja = 0.95 (tabla 5.12)

K θ : factor por ángulo de contacto = 0.96 (tabla 5.13)

Reemplazando se obtiene.

P/faja = 5.61 HP

• Cálculo de número de fajas

Se divide la potencia de diseño de transmisión (9.655 HP) entre la potencia por faja (5.61 HP) y se obtiene 1.72, por lo que se determina que se requiere:

2 fajas en V, tipo B68.

5.7 ANÁLISIS DE TUBERÍAS, BRIDAS Y VÁLVULAS

5.7.1 Obtención de presión de operación en tubería

Para el inicio del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01) y de las curvas características de la bomba centrífuga seleccionada (Anexo 09) se tiene una máxima altura de impulsión 35 m, o su equivalente en unidades de presión: 35 m.c.a.

"La máxima presión y temperatura de operación permitidas deben incluir cargas ocasionales y transitorias, para considerar seguro el sistema de tuberías. Este incremento es del 20% si la duración del evento es menos de 1 hora en cualquier momento o menos de 80 horas al año". (ASME B31.1, 2016, p. 16)

Siguiendo esta recomendación, el 20% de 35 m.c.a. es 7 m.c.a., por tanto, la presión de diseño para el sistema de tuberías es:

p diseño = 42 m.c.a. = 411.868 kPa = 4.12 bar

5.7.2 Obtención de fuerzas hidrodinámica por cambio de dirección en tuberías

5.7.2.1 Cálculo de fuerza hidrodinámica sobre un codo (F)

Figura 5.17: Fuerzas en cambio de dirección de tubería

Se presenta en los componentes "codo 02", "tee 02", "codo 03", "codo 04" y "codo 05" del Diagrama Unifilar Isométrico General (ver plano DUIG-01) donde existe un cambio de dirección de flujo en 90°, los cuales, según su posición, se ubican en los planos del sistema cartesiano x'y'z'. Para ellos se aplica el teorema de cantidad de movimiento para cada dirección: (Mataix, 1986, p. 333)

$$F(x', y') = \rho \times Q \times v + p \times A \quad \dots (5.27)$$

Donde:

 ρ : densidad del agua a 10 °C = 999.7 kg/m³ (Anexo 03)

Qt: caudal de operación máximo= $0.037 \text{ m}^3/\text{s}$

v: velocidad de fluido = 2.874 m/s (DN 125)

A: área de sección DN $125 = 0.013 \text{ m}^2$ (hallado en 4.4.5)

p = 411.88 kPa (presión de diseño)

Reemplazando se obtiene

$F(x',y') = 5\ 460.59\ N$

5.7.2.2 Fuerza resultante (Fr)

Al tratarse de un codo de 90° o tee, las fuerzas en X y Y son iguales en magnitud, cuya resultante se halla con la fórmula:

$$Fr = \frac{F(x', y')}{\cos\beta} \quad \dots (5.28)$$

Donde:

F(x',y'): fuerza en los planos x' y y' = 5 460.59 N
 $\beta = 45^{\circ}$

Reemplazando se obtiene

Fr = 7 722.441 N

5.7.3 Selección de material para tuberías

Para el sistema de tuberías se opta por usar acero por sus propiedades de alta resistencia mecánica, térmica, al impacto, durabilidad, soldabilidad, rigidez estructural y versatilidad mediante uniones bridadas. Asimismo, "la proyección de tiempo de vida para recipientes

Tabla 5.15	: Materiales	usados e	en tuberías
------------	--------------	----------	-------------

Norma	Especificación	Diámetro NPS	Anlicación
ASTM A53	Seamless/welded	¼ to 26	Ordinary use in gas, air, oil, water, steam
ASTM A106	Seamless	1/8 to 48	High-temperature service (steam, water, gas, etc.)
ASTM A369	Forged and bored	Custom	High-temperature service
ASTM A335	Seamless	Custom	High-temperature service
ASTM A333	Seamless/welded	1/8 and larger	Service requiring excellent fracture toughness at low temperatures
ASTM A671	Electric fusion-welded	16 and larger	Low-temperature service
ASTM A672	Electric fusion-welded	d 16 and larger	Moderate-temperature service
ASTM A691	Electric fusion-welded	1 16 and larger	High-temperature service
ASTM A312	Seamless/welded	1/8 and larger	Low- to high-temperature and corrosive service
API 5L	Seamless/welded		Line pipe, refinery, and trans- mission service

Fuente: (Nayyar, 2000, p. A54)

menores es de 8 a 10 años" (Megyesy, 2001, p. 221) por lo que el uso del acero para las tuberías se acoge mejor a todas estas condiciones.

En la tabla 5.15 se presentan los tipos de acero comúnmente usados en tubería, por lo que se elige el acero ASTM A53 por su aplicación en agua a temperatura ambiente y uso ordinario.

5.7.4 Cálculo de espesor de tubería (t)

A partir del punto "ampliación 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se tiene una tubería NPS 5 que se usa para conocer el espesor mínimo requerido con la siguiente fórmula (ASME B31.1, 2016, p. 21):

$$t = \frac{p\emptyset + 2Sea + 2ypa}{2(Se + py - p)} \quad \dots (5.29)$$

Donde:

t: espesor de tubería (mm)

p: presión de diseño interna = 411.868 kPa (hallado en 5.7.1)

- Ø: diámetro de tubería= 128.2 mm (DN 125)
- S: Esfuerzo máximo permisible de acero A53 = 94 500 kPa (Anexo 17)
- e: Eficiencia de unión =1

*a: espesor adicional por maquinado y corrosión = 4.128 mm

y: coeficiente de temperatura = 0.4 (tabla 5.16)

*Nota: el margen para remoción de material por rosca es 2.54 mm (Anexo 19) y el margen por corrosión es 1.588 mm (Megyesy, 2001, p. 221)

Reemplazando se obtiene

t = 4.388 mm

Con este espesor hallado se define usar SCH40 que para tubería DN 125 tiene un espesor de 6.55 mm por lo que la selección es correcta.

				Temperat	ure, °F (°	C)		
Material	900 (482) and Below	950 (510)	1,000 (538)	1,050 (566)	1,100 (593)	1,150 (621)	1,200 (649)	1,250 (677) and Above
Ferritic steels	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
Austenitic steels	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
Nickel alloy UNS No. N06690	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
Nickel alloys UNS Nos. N06617, N08800, N08810, N08825	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
Cast iron	0.0							
Other metals [Note (1)]	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Tabla 5.16: Coeficiente de temperatura "y"

Fuente: (ASME B31.1, 2016, p. 24)

5.7.5 Cálculo de esfuerzos en tuberías

De la misma manera, a partir del punto "ampliación 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se tiene una tubería NPS 5 que se usa para conocer los esfuerzos tangencial y longitudinal:

5.7.5.1 Esfuerzo tangencial en tubo

Se aplica la fórmula: (Budynas & Nisbett, 2008, p. 108)

$$\sigma_t = \frac{p \times \emptyset int}{2t} \quad \dots (5.30)$$

Donde:

σ_t: Esfuerzo tangencial en tubo (kPa)

p: presión de diseño interna = 411.868 kPa (hallado en 5.7.1)

Ø: diámetro de tubería= 128.2 mm (DN 125)

*t: espesor de tubería = 2.422

*: representa el espesor de tubo = 6.55 mm (DN 125) menos el margen de espesor por maquinado y corrosión a = 4.128, calculado en 5.7.4

Reemplazando se obtiene

 $\sigma_t = 10 \ 900.388 \ \text{kPa}$

5.7.5.2 Esfuerzo longitudinal en tubo

Aquí también a partir del punto "ampliación 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se aplica la fórmula: (Budynas & Nisbett, 2008, p. 109)

$$\sigma_l = \frac{p \times \emptyset int}{4t} \quad \dots (5.31)$$

Donde:

σt: Esfuerzo longitudinal en tubo (kPa)

p: presión de diseño interna = 411.868 kPa (hallado en 5.7.1)

Ø: diámetro de tubería= 128.2 mm (DN 125)

t: espesor de tubería = 2.422 mm (DN 125)

Reemplazando se obtiene

$\sigma_t = 5 \ 450.194 \ \text{kPa}$

Tanto el esfuerzo tangencial como el esfuerzo longitudinal son menores que esfuerzo máximo permisible de acero A53 = 94500 kPa (Anexo 17), por lo que el diseño es adecuado.

5.8 ANÁLISIS DE SOLDADURA EN TUBERÍAS

5.8.1 Obtención de cargas y cordón para soldadura a tope

Para determinar las cargas en la soldadura, se toma el punto "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), por tener una unión soldada. La soldadura a tope se aplica para unir secciones de tubo, niples, codos, tees y reducciones, siendo todos los componentes de SCH 40 cuyo espesor varía en función al diámetro.

Figura 5.18: Fuerzas sobre codo

5.8.1.1 Cálculo de longitud de soldadura (lw)

Para el punto señalado "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se aplica la fórmula de longitud de arco.

$$lw = \pi \emptyset \dots (5.32)$$

Donde:

lw: longitud de soldadura (mm)

Ø: promedio de diámetro interno y externo de tubería DN 125 = 134.75 mm

(Anexo 02)

Reemplazando se obtiene

lw = 423.33 mm

5.8.1.2 Cálculo de carga por corte directo (fw1)

Para el mismo punto "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se aplica la fórmula: *(Alva Dávila, 2008, p. 36)*

$$\mathbf{fw} = \frac{F}{lw} \dots (5.33)$$

Donde:

fw1: carga por corte directo (N/mm)

F (y'): fuerza en la dirección y'= 5 460.59 N (hallado en 5.7.2)

lw: longitud de soldadura = 423.33 mm

Reemplazando se obtiene

 $fw_1 = 12.899 \text{ N/mm}$

Figura 5.19: Carga por corte directo

5.8.1.3 Cálculo de carga por tracción directa (fw2)

Nuevamente para el punto "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se aplica la fórmula 5.29: Donde:

fw2: carga por tracción directa (N/mm)

F (x'): fuerza en la dirección x'= 5 460.59 N (hallado en 5.7.2)

lw: longitud de soldadura = 423.33 mm

Reemplazando se obtiene

Figura 5.20: Carga por tracción directa

fw₂ = 12.899 N/mm

5.8.1.4 Cálculo de módulo de sección de tubo DN 125 (Z)

Se aplica la fórmula de la tabla 5.17:

Tabla 5.17: Propiedades de cordón de soldadura tratado como línea

SECCION	N× , Ny	FLEXION Zw respecto x-x	TORSION Jw
	N×= <u>d</u>	<u>. Па 2</u> 4	d34

Fuente: (Alva Dávila, 2008, p. 40)

$$Z = \frac{\pi \emptyset^2}{4} \quad \dots (5.34)$$

Donde:

Zw = módulo de sección de soldadura (mm²)

 \emptyset : promedio de diámetro interno y externo de tubería DN 125 = 134.75 mm

Reemplazando se obtiene

$Z = 14 \ 260.916 \ mm^2$

5.8.1.5 Cálculo de carga de corte debido a flexión (fw3)

Para este mismo punto "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), se halla con la fórmula: (Alva Dávila, 2008, p. 36)

$$\mathbf{fw}_3 = \frac{M}{Zw} \dots (5.35)$$

Figura 5.21: Carga por flexión

Donde:

Fw3: carga de corte debido a flexión (N/mm)

*M: Momento = 1 040 242.395 N-mm

Zw: módulo de sección de soldadura = $14\ 260.916\ mm^2$

*M = Fx (5 460.59 N) multiplicado por 190.5 mm (figura 5.21)

 $fw_3 = 72.944 \text{ N/mm}$

5.8.1.6 Cálculo de carga resultante

Todas las cargas se hallan para el punto "codo 02" del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01), donde las cargas actúan en planos mutuamente perpendiculares, y se aplica la fórmula: (Alva Dávila, 2008, p. 37)

$$\mathbf{fw} = \sqrt{fw_1^2 + (fw_2 + fw_3)^2} \dots (5.36)$$

Donde:

fw: carga resultante (N/mm)

fw₁: carga por corte directo = 12.899 N/mm

fw₂: carga por tracción directa = 12.899 N/mm

fw₃: carga por flexión = 72.944 N/mm

Reemplazando se obtiene

fw = 86.807 N/mm

5.8.1.7 Cálculo de esfuerzo permisible en soldadura

Se aplica la fórmula: (Alva Dávila, 2008, p. 35)

$$Sw = 0.3 \times Sut \dots (5.37)$$

Donde:

Sw: Esfuerzo permisible de soldadura (N/mm²)

Sut: Esfuerzo a la tensión de E60xx = 427 MPa (tabla 5.18)

Reemplazando se obtiene

$Sw = 128.1 \text{ N/mm}^2$

Número de electrodo AWS*	Resistencia a la tensión, kpsi (MPa)	Resistencia a la fluencia, kpsi (MPa)	Elongación porcentual
E60xx	62 (427)	50 (345)	17-25
E70xx	70 (482)	57 (393)	22
E80xx	80 (551)	67 (462)	19
E90xx	90 (620)	77 (531)	14-17
E100xx	100 (689)	87 (600)	13-16
E12Oxx	120 (827)	107 (737)	14

Tabla 5.18: Propiedades de metal de aporte de soldadura

Fuente: (Budynas & Nisbett, 2008, p. 472)

5.8.1.8 Cálculo de tamaño de cordón de soldadura

Se aplica la fórmula: (Alva Dávila, 2008, p. 37)

$$w = \frac{fw}{Sw} \dots (5.38)$$

Donde:

w: tamaño de soldadura (mm)

fw: carga resultante = 86.807 N/mm

Sw: Esfuerzo permisible de soldadura = 128.1 N/mm^2

Reemplazando y aproximando se obtiene:

w = 1 mm

Fuente: (Budynas & Nisbett, 2008, p. 473)

El espesor de pared de tubo es de 6.55 mm y por la tabla 5.19 le corresponde un espesor de soldadura mínimo de 5 mm por lo que se decide tener un espesor de soldadura igual al espesor de pared del tubo para evitar concentración de esfuerzos, el cual se obtiene mediante dos pasos de soldadura, el cual se compone de un primer cordón de raíz con electrodo E6011 y un paso final con electrodo E7018 por ser una buena práctica de uso recomendada.

5.9 ANÁLISIS DE CIMENTACIÓN PARA BOMBA CENTRÍFUGA MONOBLOQUE

Por la naturaleza del banco de pruebas y disposición de equipos, se diseña un bloque de cimentación para la bomba centrífuga monoblock que se encuentra aproximadamente a nivel del piso del laboratorio (figura 5.21).

Figura 5.22: Cimentación tipo bloque para bomba centrífuga mono bloque

5.9.1 Determinación de características de máquina, soporte y cimentación

Se describe información previa disponible (ACI 351.3R-18, 2018, p. 57) para poder diseñar y dimensionar la cimentación:

	Equipo:	Bomba centrífuga monobloque de 13 kW				
	Función principal:	Succionar agua del reservorio y bombear por el				
ini		sistema de tuberías hacia la turbina asignada.				
áqı	Modelo:	Pentax 65-160B (Anexo 09)				
Σ	Peso:	90 kg (Anexo 09)				
	Velocidad de operación:	3450 rpm (Anexo 09)				
	Marco base:	Perfil de acero en C ASTM A36 de 3 x 1.5				
••		pulgadas y 4.5 mm de espesor (Anexo 23)				
orte	Dimensiones máximas:	Largo: 0.65 m, Ancho 0.35 m				
obc	Pernos:	4 pernos entre bomba centrífuga y marco base.				
\mathbf{S}		8 pernos de anclaje entre marco base y				
		cimentación.				
	Cimentación de concreto:	Tipo bloque de dimensiones de acuerdo a diseño.				
ión:	Restricciones para situar	Distancia vertical entre brida de succión (centro)				
taci	bloque de cimentación:	de bomba centrífuga a base del reservorio: 31 cm				
leni		Distancia horizontal entre brida de succión				
Cin		(centro) de bomba centrífuga a pared del				
reservorio: 42 cm (figura 5.23)						

Figura 5.23: Distancias de bomba centrífuga respecto a reservorio

5.9.2 Determinación de cargas estáticas

5.9.2.1 Cálculo de carga muerta de bomba centrífuga monobloque

Estas cargas la conforman el equipo, el agua que contiene y la estructura, que se detallan en la siguiente tabla:

	Componente	Masa (kg)	Observación
Fauipo	Bomba centrífuga monobloque	90	Anexo 09
Equipo	Masa del agua en voluta	8	Aprox.
Estructura	Marco base	16	Aprox.
Subtotal		114	

Tabla 5.21: Cargas de bomba centrífuga monobloque

Fuente: Elaboración propia

5.9.2.2 Cálculo de carga de operación

La conforma el momento y fuerzas que genera la bomba centrífuga monobloque durante operación.

• Cálculo de momento generado por bomba centrífuga (M):

A partir de los parámetros de operación de la bomba centrífuga se aplica la fórmula 5.15: (ACI 351.3R-18, 2018, p. 9)

$$M = \frac{9550 \times P}{f} \dots (5.15)$$

Donde:

M: Momento transmitido (N-m)

P: Potencia máxima transmitida por bomba centrífuga = 13 kW (Anexo 09)

f: velocidad de rotación = 3450 rpm

Reemplazando se obtiene:

M = 35.986 N-m

Figura 5.24: Momento fuerzas y espaciamiento de apoyos de bomba centrífuga Fuente: (ACI 351.3R-18, 2018, p. 10) y Anexo 09

• Cálculo de fuerza de excitación (F)

Se halla la fuerza que se da en los apoyos de la bomba centrífuga con la fórmula: (ACI 351.3R-18, 2018, p. 10)

$$F=\frac{M}{d'} \dots (5.39)$$

Donde:

F: Fuerza de excitación(N)

M: Momento transmitido = 35.986 N-m (cálculo anterior)

d': espaciamiento entre apoyos de bomba centrífuga = 0.212 m (Anexo 09)

Reemplazando se obtiene:

F = 169.743 N

De esta fuerza se toma la que tiene dirección vertical hacia abajo (figura 5.24), dividiendo esta fuerza entre la gravedad (9.81 m/s²), se obtiene **17.303 kg** que representa la carga de operación en dirección vertical sobre la línea del eje. (ACI 351.3R-18, 2018, p. 9)

5.9.2.3 Cálculo de carga de tuberías

Estas cargas la conforman los accesorios unidos directamente a la bomba centrífuga. En la tubería de succión, son los accesorios hasta la válvula wafer mariposa DN 100, y en la tubería de descarga son los accesorios hasta la unión flexible o Dresser DN 125. Se detalla los componentes en la siguiente tabla:

	Componente	Masa (kg)	Obs.
Tubería	Brida clase 150 DN 80	3.87	Anexo 08
de	Ampliación SCH40 DN 80 a DN 100	1.45	Anexo 05
succión	Niple de 0.1 m DN 100	1.608	Anexo 02
	Brida clase 150 DN 100	5.75	Anexo 08
	Válvula mariposa wafer DN 100	6.4	Anexo 12
	Masa de agua en 0.3 m DN 100	2.5	Aprox.
Tubería	Brida clase 150 DN 65	3.43	Anexo 08
de	Ampliación DN 65 a DN 100	1.37	Anexo 05
descarga	Niple de 0.10 m DN 100	1.608	Anexo 02
	Válvula antirretorno DN 100	3.665	Anexo 15
	Niple de 0.15 m DN 100	2.412	Anexo 02
	Brida clase 150 DN 100	5.75	Anexo 08
	Válvula mariposa wafer DN 100	6.4	Anexo 14
	Brida clase 150 DN 100	5.75	Anexo 08
	Niple de 10 cm DN 100	1.608	Anexo 02
	Masa de agua en 0.7 metros DN 100	5.7	Aprox.
Total		59.271	

Tabla 5 22: Cargas de tuberías de homba centrífuga

5.9.2.4 Sumatoria de cargas estáticas

Figura 5.25: Succión y descarga de bomba centrífuga

Representa la sumatoria de todas las cargas anteriormente calculadas:

Tipo de carga estática	Masa (kg)	
Carga muerta	114	
Carga de operación	17.303	
Carga de tuberías	59.271	
Total	190.574	

Tabla 5.23: Sumatoria de cargas estáticas

5.9.3 Obtención de masa y dimensiones del bloque de cimentación

5.9.3.1 Cálculo de masa del bloque de cimentación

Por regla general se requiere una masa de tres veces la masa del equipo rotatorio (ACI

351.3R-18, 2018, p. 57), esto hace:

Masa bloque cimentación = 3 * 190.574 kg = 571.722 kg

Esto representa la masa mínima a alcanzar.

5.9.3.2 Cálculo de dimensiones del bloque de cimentación

Se diseña el bloque de cimentación de forma rectangular con las siguientes dimensiones:

Denominación	Valor	Observación
Largo	0.85 m	
Ancho	0.55 m	
Profundidad	0.55 m	Cerca de 0.6 m (ACI 351.3R-18, 2018, p. 41)
Volumen	0.257 m ³	
Densidad del concreto	2300 kg/m ³	(MVCS, 2009, p. 14)
Masa bloque	591.388 kg	

Tabla 5.24: Dimensiones de bloque de cimentación

La masa del bloque de cimentación es mayor que la masa requerida por lo que su dimensionamiento es adecuado.

5.9.4 Obtención de características del suelo en laboratorio

El tipo de suelo en la UNSAAC ubicado Av. de la Cultura está compuesto por limo, arena y arcilla (Menendez Garcia, n.d., p. 276), a partir de esa composición se extraen los siguientes datos:

Denominación	Valor (promedio)	Observación
Módulo de corte (G)	30 000 kPa	(Suarez Diaz, 2016)
Coeficiente de Poisson (v)	0.35	(Suarez Diaz, 2016)
Densidad (p)	1700 kg/m ³	(Suarez Diaz, 2016)
Presión admisible (p)	1.35 kg/cm^2	(Motta Zevallos, 2015)
Módulo de reacción (k ₀)	0.24 kg/cm^2	(Motta Zevallos, 2015)

Tabla 5.25: Características del suelo

5.9.5 Determinación de modelo matemático

Se considera al concreto como un elemento rígido que simplifica el análisis dinámico del sistema máquina-cimentación. (ACI 351.3R-18, 2018, p. 41) A partir de ahí se considera un sistema de 1 grado de libertad con desplazamiento vertical (figura 5.26) donde:

Figura 5.26: Sistema real y sistema equivalente

- La masa equivalente representa la masa del bloque de cimentación, bomba • centrífuga y tuberías.
- La rigidez y amortiguamiento equivalentes representan al suelo sobre el que se apoya el bloque de cimentación y el enterramiento que existe.

5.9.5.1 Cálculo de masa equivalente (m)

Representa la sumatoria de todas las cargas calculadas:

Tabla 5.26: Sumatoria de masa equivalente				
Tipo de carga	Masa (kg)	Observación		
Carga estática	190.574	Hallado en 5.9.2.4		
Bloque de cimentación	591.388	Hallado en 5.9.3.2		
Masa equivalente	781.962			

5.9.6 Obtención de coeficientes de rigidez y amortiguamiento vertical

5.9.6.1 Cálculo de frecuencia de excitación o de operación (ωo)

La velocidad de rotación de la bomba centrífuga monobloque es de 3450 rpm (tabla 5.20),

cuyo equivalente en radiares por segundo se da:

$$\omega o = 3450 \left(\frac{rev}{min}\right) \left(\frac{2\pi \, rad}{1 \, rev}\right) \left(\frac{1 \, min}{60 \, seg}\right) = 361.283 \, rad/s$$

Donde wo: frecuencia de excitación

$\omega o = 361.283 \text{ rad/s}$

5.9.6.2 Cálculo de radio equivalente para vibración vertical (R)

Se halla un radio equivalente para las dimensiones de largo y ancho del bloque rectangular por la fórmula: (ACI 351.3R-18, 2018, p. 23)

$$R = \sqrt{\frac{l' \times w}{\pi}} \dots (5.40)$$

Donde:

R: radio equivalente (m)

l': largo de bloque de cimentación = 0.85 m

Figura 5.27: Representación de radio equivalente para base rectangular Fuente: (ACI 351.3R-18, 2018, p. 23)

w: ancho de bloque de cimentación = 0.55 m

Reemplazando se obtiene:

R = 0.386 m

5.9.6.3 Cálculo del coeficiente de rigidez vertical (kv):

Al tratarse de un sistema de un grado de libertad con desplazamiento vertical, se sigue el modelo Richart-Whitman con la fórmula: (ACI 351.3R-18, 2018, p. 24)

$$kv = \frac{4}{(1-v)}G \times R \dots (5.41)$$

Donde:

kv: rigidez en la dirección vertical (N/m)

v: coeficiente de Poisson = 0.35 (tabla 5.25)

G: módulo de corte del suelo = $30\ 000\ 000\ N/m2$ (tabla 5.25)

R: radio equivalente = 0.386 m

Reemplazando se obtiene:

kv = 71 261 538.46 N/m

5.9.6.4 Cálculo del coeficiente de amortiguamiento vertical (cv):

De igual manera se aplica la fórmula del modelo Richart-Whitman: (ACI 351.3R-18, 2018, p. 24)

$$cv = 2 \frac{0.425}{\sqrt{\frac{(1-v)}{4} \frac{m}{\rho R^3}}} \sqrt{kv \times m} \dots (5.42)$$

Donde:

cv: amortiguamiento en dirección vertical (N-s/m)

v: coeficiente de Poisson = 0.35 (tabla 5.25)

- kv: rigidez en la dirección vertical = 71 261 538.46 N/m
- ρ : densidad del suelo = 1700 kg/m3 (tabla 5.25)
- m: masa equivalente = 781.962 kg
- R: radio equivalente = 0.386 m

Reemplazando se obtiene:

cv = 176 005.102 N-s/m

5.9.7 Obtención de coeficientes de rigidez y amortiguamiento vertical adicional por bloque enterrado

El bloque de cimentación tiene la característica de estar enterrado por lo que se adicionan estos coeficientes.

5.9.7.1 Cálculo de frecuencia no dimensional (ao)

Figura 5.28: Bloque de cimentación enterrado Fuentes: (ACI 351.3R-18, 2018, p. 27) y elaboración propia

Para el cálculo de los coeficientes por enterramiento se parte por la frecuencia no dimensional con la fórmula: (ACI 351.3R-18, 2018, p. 23)

$$ao = \omega o \times R \sqrt{\frac{\rho}{G}} \dots (5.43)$$

Donde:

ao: frecuencia no dimensional (rad)

ωo: frecuencia de operación = 361.283 rad/s

R: radio equivalente = 0.386 m

 ρ : densidad del suelo = 1700 kg/m3

G: módulo de corte del suelo = $30\ 000\ 000\ N/m^2$

Reemplazando se obtiene:

ao = 1.05 rad

5.9.7.2 Cálculo de coeficiente de rigidez vertical por bloque enterrado (kev)

Representa la parte real de la ecuación compleja: (ACI 351.3R-18, 2018, p. 27)

$$Kev = G \times l[Sv1 + i \times ao \times Sv2] \dots (5.44)$$

Donde:

kev: rigidez vertical enterrada (N/m)

G: módulo de corte del suelo = $30\ 000\ 000\ N/m2$ (tabla 5.25)

1: longitud enterrada efectiva = 0.45 m

Sv1: parámetro de suelo cohesivo = 2.7 (tabla 5.27)

Sv₂: parámetro de suelo cohesivo = 6.7 (tabla 5.27)

ao: frecuencia no dimensional = 1.05 rad

Reemplazando se obtiene:

kev = 36 450 000 N/m

Movimiento	Suelo	Parámetro	
Vertical	Cohesive	$S_{v1} = 2.7$	$S_{v2} = 6.7$
	Granular	$S_{v1} = 2.7$	$S_{v2} = 6.7$

Note: S values are valid for $0.5 < a_o < 1.5$; C values for valid for $a_o < 2.0$.

Fuente: (ACI 351.3R-18, 2018, p. 26)

5.9.7.3 Cálculo de coeficiente de amortiguamiento vertical por bloque enterrado (cev)

Representa la parte imaginaria de la ecuación 5.44, siendo:

cev* = 94 972 500i que se divide entre ω_0 : frecuencia de operación = 361.283 rad/s, se obtiene:

cev = 262 875.64 N-s/m

5.9.8 Obtención de coeficientes de rigidez y amortiguamiento equivalentes

Es la sumatoria de todos los coeficientes hallados:

	Rigidez (N/m)	Amortiguamiento (N-s/m)
Impedancia vertical	71 261 538.46	176 005.102
Impedancia por	36 450 000	262 875.64
enterramiento		
Total	107 711 538.5	438 880.742
	Rigidez equivalente	Amortiguamiento equivalente

 Tabla 5.28: Coeficientes K y C equivalentes

5.9.9 Obtención de frecuencia natural no amortiguada y amortiguada

5.9.9.1 Cálculo de frecuencia natural no amortiguada (ωn)

La primera frecuencia natural donde no considera amortiguamiento se obtiene por la fórmula: (Macedo Silva, n.d., p. 3))

$$\omega n = \sqrt{\frac{keq}{m}} \dots (5.45)$$

Donde:

wn: frecuencia natural (rad/s)

keq: rigidez equivalente = 107 711 538.5 N/m

m: masa equivalente = 781.962 kg

Reemplazando se obtiene:

 $\omega n = 371.14 \text{ rad/s} = 3544.13 \text{ rpm}$

5.9.9.2 Cálculo de amortiguamiento crítico (ccr)

Se halla por la fórmula: (Macedo Silva, n.d., p. 27)

$$ccr = 2\sqrt{m \times keq} \dots (5.46)$$

Donde:

ccr: amortiguamiento crítico (rad/s)

keq: rigidez equivalente = 107 711 538.5 kN/m

m: masa equivalente = 781.962 kg

Reemplazando se obtiene:

ccr = 580 435.458 N-s/m

5.9.9.3 Cálculo de relación de amortiguamiento (ξ)

Se halla por la fórmula: (Macedo Silva, n.d., p. 27)

$$\xi = ceq/ccr \dots (5.47)$$
Donde:

ξ: relación de amortiguamiento (%)

ceq: coeficiente de amortiguamiento equivalente = 438 880.742 N-s/m

ccr: amortiguamiento crítico = 580 435.458 N-s/m

Reemplazando se obtiene:

$\xi = 0.756$

Este valor al ser mayor a 0 y menor que 1 pertenece a un sistema sub-amortiguado donde existe movimiento oscilatorio.

5.9.9.4 Cálculo de frecuencia natural amortiguada (od)

La frecuencia que considera el amortiguamiento se halla por la fórmula: (Macedo Silva, n.d., p. 29)

$$\omega d = \omega n \sqrt{1-\xi^2} \dots (5.48)$$

Donde:

ωd: frecuencia natural amortiguada (rad/s)

 ω n: frecuencia natural no amortiguada = 371.14 rad/s

 ξ : relación de amortiguamiento = 0.756

Reemplazando se obtiene:

ωd = 242.938 rad/s = 2319.884 rpm

5.9.10 Obtención de amplitud y transmisibilidad

5.9.10.1 Cálculo de relación de frecuencias (r)

Se halla por la fórmula: (Macedo Silva, n.d., p. 61)

$$r = \omega o / \omega d \dots (5.49)$$

Donde:

r: relación de frecuencias (%)

ωo: frecuencia de excitación = 361.283 rad/s

 ω d: frecuencia natural amortiguada = 242.938 rad/s

Reemplazando se obtiene:

r = 1.487

5.9.10.2 Cálculo de amplitud (A')

La amplitud de vibración se halla por la fórmula: (Macedo Silva, n.d., p. 76)

$$A' = \frac{Fo/keq}{\sqrt{(1-(r)^2)^2 + (2\xi \times r)^2}} \dots (5.50)$$

Donde:

A': amplitud cero a pico (m)
Fo/keq: deflexión estática
*Fo: fuerza dinámica = 441.45 N
keq: rigidez equivalente = 107 711 538.5 N/m
r: relación de frecuencias = 1.487
ξ: relación de amortiguamiento = 0.756

*: Se considera la mitad de la masa muerta de la máquina rotatoria (ACI 351.3R-18, 2018)

ósea 45 kg que representa 441.45 N

Reemplazando se obtiene:

A' cero a pico = 1.344*10⁻⁶ m

Para tener la amplitud pico a pico se multiplica A' por 2:

A' pico a pico = 2.688*10⁻⁶ m

El cuadro de la izquierda de la figura 5.29 ubica la vibración en términos de velocidad en la zona de 0.25 mm/s en la zona denominada como "suave".

El cuadro de la izquierda ubica a la vibración en las zonas de "molesto e intenso para las personas" sin llegar a pasar la línea límite para máquinas y cimentación.

Figura 5.29: Cuadros de severidad por amplitud de vibración Fuente: (ACI 351.3R-18, 2018, p. 40 y 53)

5.9.10.3 Cálculo de transmisibilidad (Tr)

El porcentaje de transmisibilidad se halla la fórmula: (Macedo Silva, n.d., p. 114)

$$Tr = \sqrt{\frac{1 + (2\xi \times r)^2}{(1 - (r)^2)^2 + (2\xi \times r)^2} \dots (5.51)}$$

Donde:

Tr: transmisibilidad (%)

r: relación de frecuencias = 1.487

 ξ : relación de amortiguamiento = 0.756

Reemplazando se obtiene:

Tr = 0.964

La fuerza transmitida obtenida representa un 96.4% de la fuerza de excitación.

El valor de r = 1.487 es mayor que 1.4142, lo que hace que la fuerza se transmita de manera constante a la base.

El valor de $\xi = 0.756$ define que la fuerza transmitida sea menor al pasar por zona de resonancia, pero al alcanzar el régimen de trabajo, la fuerza transmitida a la base apenas disminuye del valor de la fuerza de excitación. (figura 5.30)

Fuente: (Maceao Silva, n.a., p. 114)

5.9.10.4 Cálculo de fuerza transmitida a la base

La fuerza que recibe el suelo se halla por la fórmula: (Macedo Silva, n.d., p. 114)

$$Tr = Ft/F \dots (5.52)$$

Donde:

Ft: Fuerza transmitida a la base (N)

Tr: transmisibilidad = 0.964

F: Fuerza de excitación = 169.743 N

Reemplazando se obtiene:

Ft = 163.632 N

CAPÍTULO VI

6 SIMULACIÓN COMPUTACIONAL

6.1 INTRODUCCIÓN

La simulación computacional se hace necesaria pues se presentan situaciones estáticas y dinámicas en el banco de pruebas que requieren una aproximación específica que puede abordarse con el CFD y softwares de simulación para un mejor entendimiento de los fenómenos hidráulicos, mecánicos y vibracionales presentes en la estructura, reservorio y tuberías del banco de pruebas.

6.2 OBJETIVOS DEL ANÁLISIS POR SOFTWARE

Los parámetros de diseño requeridos para el análisis computacional del banco de pruebas y reservorio son:

- Corroborar mediante simulación en Ansys 19 Fluent las pérdidas de carga de tuberías y accesorios del banco de pruebas.
- Corroborar mediante simulación en Solidworks 2018 los esfuerzos presentes en planchas y perfiles estructurales del banco de pruebas.
- Corroborar mediante simulación en Ansys 19 Modal el comportamiento del bloque de cimentación.

6.3 SIMULACIÓN CFD POR ANSYS 19 FLUENT DEL SISTEMA HIDRÁULICO

Parámetro	Descripción	Ud.	Observación		
Configuraciones en Fluent CFD					
Rugosidad pared tubo	0.046	mm	Acero		
Modelo	k-epsilon(2 eqn)		Realizable		
Densidad agua	999.7	Kg/m3			
Viscosidad dinámica	0.001305	Kg/m-s			
Método:					
• Esquema	Simple				
• Gradiente	Green-Gauss		Basado en nodos		
• Turbulencia	Segundo orden				
Residuales	Ninguno				
Iteraciones	300	veces			

Tabla 6.1: Datos generales para las simulaciones CFD

6.3.1 Obtención de pérdidas en tubo recto DN 100

Se toma la sumatoria de niples DN 100 del tramo 3 "tubería de descarga principal" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.1: Pérdida de presión en tubo DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.4	m	
Velocidad	4.517	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	1	mm	Longitudinal
• Altura de primera celda	0.348	mm	www.pointwise.com
Nodos	279 497		
Resultados de caída de pre	esión		
Presión en tubo	1 031	Pa	
Presión en tubo	0.105	m.c.a.	

Tabla 6.2: Condiciones y resultados de simulación para tubo DN 100

6.3.2 Obtención de pérdidas en tubo recto DN 125

Se toma la sumatoria de niples y tubos DN 125 del tramo 3 "tubería de descarga principal"

del Diagrama Unifilar Isométrico General (ver plano DUIG-01)

Figura 6.2: Pérdida de presión en tubo DN 125

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	2.85	m	
Velocidad	2.874	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	5	mm	Longitudinal
• Altura de primera celda	0.609	mm	www.pointwise.com
Nodos	511 045		
Resultados de caída de pre	esión		
Presión en tubo	1 662.1	Pa	
Presión en tubo	0.169	m.c.a.	

Tabla 6.3: Condiciones y resultados de simulación para tubo DN 125

Los siguientes componentes de tubería como ampliaciones, reducción, tees y codo, se representan como sólidos unidos a un tramo de tubo de 0.4 m de largo con motivo de que el fluido se desarrolle y mejore la precisión de la simulación, luego al resultado se le resta la pérdida de dicho tramo.

6.3.3 Obtención de pérdidas en ampliación DN 65 a 100

Se toma el componente "ampliación 01" del Diagrama Unifilar Isométrico General (ver plano DUIG-01)

Figura 6.3: Pérdida de presión en ampliación DN 65 a DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.102 + 0.4	m	
Velocidades	12.023 / 4.517	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	1	mm	Longitudinal
• Altura de primera celda	0.202	mm	www.pointwise.com
Nodos	423 345		
Resultados de caída de pre	sión		

Pérdida total de presión	-48 018	Pa
Pérdida de presión tubo 0.4	1 031	Pa
m		
Presión en ampliación	-46 987	Pa
Presión en ampliación	-4.791	m.c.a.

6.3.4 Obtención de pérdidas en tee DN 100

Se toma el componente "tee 01" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.4: Pérdida de presión en tee DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.21 + 0.4	m	
Velocidad	4.517	m/s	
Preferencia física de malla	CFD Fluent		
Tamaño máx. tetraedro	5	mm	
Altura de primera celda	0.359	mm	www.pointwise.com
Nodos	234 522		
Resultados de caída de presió	ón		
Pérdida total de presión	1 932.8 -	Ра	
Pérdida de presión tubo 0.4 m	1 031	Ра	
Presión en tee	901.8	Ра	
Presión en tee	0.092	m.c.a.	

 Tabla 6.5: Condiciones y resultados de simulación en tee DN 100

6.3.5 Obtención de pérdidas en ampliación DN 100 a 125

Se toma el componente "ampliación 01" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

5.904+02		
219+02		
-1.55e+02		
-5 250+92		
-0.146+02		
-1.29x+03		
1876+63		
-2.066+63		
-2.42++03		
-2.00++01	the second s	
-3 18e403		
-3:556+03		
-3.93++03		
-4.354+03		
-4.59e+03		
-0.00e+03		
-5.84e+02		
-8.82e+03		
-6 20e+93		
-8.57#+03		4 O \$
0 95e+03		- /
COLUMN AND AND AND AND AND AND AND AND AND AN		
		9

Figura 6.5: Pérdida de presión en ampliación DN 100 a DN 125

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.127 + 0.4	m	
Velocidad	4.517 / 2.874	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	1		mm
Altura de primera celda	0.428	mm	www.pointwise.com
Nodos	360 930		
Resultados de caída de presión	n		
Pérdida total de presión	-5 502.5	Pa	
Pérdida de presión tubo 0.4 m	307.43	Pa	
Presión en ampliación	-5 195.07	Pa	
Presión en ampliación	-0.53	m.c.a.	

 Tabla 6.6: Condiciones y resultados de simulación en ampliación DN 100 a 125

6.3.6 Obtención de pérdidas en codo DN 125

Se toma el componente "codo 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.6: Pérdida de presión en codo DN 125

Tabla 6.7: Condiciones y resultados de simulación en codo DN 125

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.254 + 0.4	m	

Velocidad	2.874	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	1		mm
Altura de primera celda	0.547	mm	www.pointwise.com
• Nodos	538 670		
Resultados de caída de presió	n		
Pérdida total de presión	901.64	Pa	
Pérdida de presión tubo 0.4 m	307.43	Pa	
Presión en codo	594.21	Pa	
Presión en codo	0.061	m.c.a.	

6.3.7 Obtención de pérdidas en tee DN 125

Se toma el componente "tee 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.7: Pérdida de presión en tee DN 125

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.248 + 0.4	m	
Velocidad	2.874	m/s	
Preferencia física de malla	CFD Fluent		
Tamaño máx. tetraedro	5	mm	
Altura de primera celda	0.548	mm	www.pointwise.com
• Nodos	330 850		
Resultados de caída de presiór	1		
Pérdida total de presión	3 751.3	Pa	
Pérdida de presión tubo 0.4 m	307.43	Pa	
Presión en tee	3 443.87	Pa	
Presión en tee	0.351	m.c.a.	

6.3.8 Obtención de pérdidas en reducción DN 125 a 100

Se toman los componentes semejantes "reducción 02" y "reducción 03" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.8: Pérdida de presión en reducción DN 125 a DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.127 + 0.4	m	
Velocidades	2.874 / 4.517	m/s	
Preferencia física de malla	CFD Fluent		
Tipo barrido	1	mm	Longitudinal
• Altura de primera celda	0.428	mm	www.pointwise.com
• Nodos	462 690		
Resultados de caída de presió	n		
Pérdida total de presión	7 764.5	Pa	
Pérdida de presión tubo 0.4 m	1 031	Pa	
Presión en reducción	6 733.5	Pa	
Presión en reducción	0.687	m.c.a.	

Tabla 6.9: Condiciones y resultados de simulación en reducción DN 125 a 100

Para la simulación de las siguientes válvulas se representan de manera similar a los anteriores componentes con la diferencia que se añade otro tramo de tubo de 0.4 m de largo al inicio del sólido que luego también se le resta al resultado obtenido.

6.3.9 Obtención de pérdidas en válvula anti retorno DN 100

Se toma el componente "válvula de retención 02" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.9: Pérdida de presión en válvula anti retorno DN 100

Tabla 6.10: Condiciones y resultados de simulación en válvula anti retorno DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.4+0.16+0.4	m	
Velocidad	4.517	m/s	
Preferencia física de malla	CFD Fluent		
• Tamaño máx. tetraedro	5	mm	Longitudinal
• Altura de primera celda	1	mm	
• Nodos	227 365		
Resultados de caída de presió	ón		
Pérdida total de presión	67 971	Pa	
Pérdida de presión tubo 0.8 m	2 062	Pa	
Presión en válvula	65 909	Pa	
Presión en válvula	6.721	m.c.a.	

6.3.10 Obtención de pérdidas en válvula mariposa DN 100

Se toma el componente "válvula de aislamiento 02", semejante a "válvula de aislamiento 03" y "válvula de aislamiento 04" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.10: Pérdida de presión en válvula mariposa DN 100

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.4 + 0.12 + 0.4	m	
Velocidad	4.517	m/s	
Preferencia física de malla	CFD Fluent		
• Tamaño máx. tetraedro	15	mm	
Altura de primera celda	4	mm	
Nodos	595 951		
Resultados de caída de presió	ón		
Pérdida total de presión	3 518.4	Pa	
Pérdida de presión tubo 0.8 m	2 062	Pa	
Presión en válvula	1456.4	Pa	
Presión en válvula	0.149	m.c.a.	

Tabla 6.11: Condiciones y resultados de simulación en válvula mariposa DN 100

6.3.11 Obtención de pérdidas en válvula mariposa DN 125

Se toma el componente "válvula de control 02", semejante a "válvula de control 03" del Diagrama Unifilar Isométrico General (ver plano DUIG-01).

Figura 6.11: Pérdida de presión en válvula mariposa DN 125

Parámetro	Descripción	Ud.	Observación
Datos			
Longitud	0.4+0.13+0.4	m	
Velocidades	2.874	m/s	
Preferencia física de malla	CFD Fluent		
• Tamaño máx. tetraedro	15	mm	Longitudinal
• Altura de primera celda	5	mm	
• Nodos	74 676		
Resultados de caída de presió	n		
Pérdida total de presión	1 698.7	Pa	
Pérdida de presión tubo 0.8 m	614.86	Pa	
Presión en válvula	1083.84	Pa	
Presión en válvula	0.111	m.c.a.	

6.3.12 Comparación de resultados hidráulicos

La siguiente tabla muestra la comparación de resultados analíticos hallados en 4.7 con los resultados por simulación siendo la mayoría de ellos muy cercanos entre sí.

Componente	Resultado	Resultado por	Error
	analítico (m.c.a.)	simulación (m.c.a.)	%
Tubo DN 100 de 0.4 m	0.072	0.105	0.458
Tubo DN 125 de 2.85 m	0.164	0.169	0.031
Ampliación DN 65 a DN 100	1.373	*6.328-4.791=1.537	0.119
Tee DN 100	0.0	0.092	-
Ampliación DN 100 a DN 125	0.036	*0.619-0.53=0.089	-1.472
Codo 90º DN 125	0.091	0.061	0.329
Tee DN 125	0.463	0.351	0.242
Reducción DN 125 a DN 100	0.011	*-0.619+0.687=0.068	-5.182
Válvula anti retorno DN 100	1.003	6.721	-5.701
Válvula mariposa DN 100	0.604	0.149	0.753
Válvula mariposa DN 125	0.234	0.111	0.526

Tabla 6.13: Comparación y resultados de simulaciones realizadas

*Para los resultados de simulación para pérdidas en ampliaciones y reducción, se descuenta la presión por cambio de sección hallado por la ecuación de Bernoulli.

6.4 SIMULACIÓN FEA POR SOLIDWORKS 2018 DE LA ESTRUCTURA DEL **BANCO DE PRUEBAS**

6.4.1 Obtención de esfuerzos en planchas laterales de reservorio rectangular

Parámetro	Descripción	Ud.	Observación
Datos			
Conexión	Contacto global		
Sujeción	Fija bajo cada viga base		Geometría fija
Carga externa	0.012	MPa	Presión sobre plancha
Malla	Basado en curvatura		Mixta
Resultados	Lado corto		
Esfuerzo normal	6.881	MPa	Dirección X
Esfuerzo cortante	10.903	MPa	Plano YZ
Resultados	Lado largo		
Esfuerzo normal	3.847	MPa	Dirección Z
Esfuerzo cortante	0.847	MPa	Plano XY

Figura 6.13: Esfuerzo normal y cortante en planchas laterales cortas

Figura 6.12: Esfuerzos normal y cortante en planchas laterales largas

6.4.2 Comparación de resultados de esfuerzos

La siguiente tabla muestra la comparación de resultados analíticos hallados en 5.4 con los resultados por simulación siendo estos últimos valores menores que los hallados analíticamente que puede deberse a que el modelo real simulado cuenta con planchas interiores soldadas (para vertederos) y angulares en las esquinas del reservorio que otorgan más rigidez al sistema.

Componente	Resultado	Resultado por
	analítico (MPa)	simulación (MPa)
σ Normal lado corto	15.445	6.881
τ Cortante lado corto	144.625	10.903
σ Normal lado largo	199.746	3.847
τ Cortante lado largo	144.41	0.847

Tabla 6.15: Comparación y resultados de simulaciones realizadas

6.4.3 Obtención de esfuerzos y deformación en plancha base de reservorio rectangular

Parámetro	Descripción	Ud.	Observación
Datos			
Conexión	Contacto global		
Sujeción	Fija bajo cada viga base		Geometría fija
Carga externa	0.012	MPa	Presión sobre plancha
Malla	Basado en curvatura		Mixta
Resultados			
Esfuerzo máximo	58.077	MPa	Tensión de Von Mises
Deformación máxima	1.224	mm	

Tabla 6.16: Condiciones y resultados de simulación en plancha base

Figura 6.14: Esfuerzos y deformaciones en plancha base

6.4.4 Obtención de esfuerzos y deformaciones en soportes de tubería

Tabla 6 17: Condicionas	v resultados de simulación	en sonortes de tubería
Tubla 0.17. Condiciones	y resultatos de simulación	en soportes de tuberta

Parámetro	Descripción	Ud.	Observación
Datos			
Conexión	Contacto global		
Sujeción	Fija bajo cada viga base		Geometría fija
Carga externa	0.012	MPa	Presión sobre plancha
Malla	Basado en curvatura		Mixta
Resultados			
Esfuerzo máximo	134.564	MPa	Tensión de Von Mises
Deformación máxima	4.631	mm	

Figura 6.15: Esfuerzos y deformaciones en soportes de tuberías

6.5 SIMULACIÓN POR ANSYS 19 MODAL PARA BLOQUE DE CIMENTACIÓN Y ESTRUCTURA DE BANCO DE PRUEBAS

6.5.1 Obtención de modo de vibración en bloque de cimentación para 1 GDL

La siguiente tabla describe datos y valores para hallar el primer modo de vibración del bloque de cimentación.

Parámetro	Descripción	Ud.	Observación	
Datos				
Material	Concreto			
Carga remota bomba	190.57	kg		
centrífuga y tuberías				
Preferencia física de malla	Mecánica			
• Nodos	7271			
Modos de vibración				
Primer modo	38.734	Hz	2324.04 rpm	
Relación de amortiguamiento	0.756			

Tabla 6.18: Condiciones y resultados de modos de vibración en bloque de cimentación

Figura 6.16: Modo de vibración del bloque de cimentación

6.5.2 Análisis de resultados modales para bloque de cimentación

La siguiente tabla muestra resultados muy cercanos entre los hallados analíticamente y por simulación respecto a la frecuencia natural amortiguada (ω d) y la relación de amortiguamiento (ξ)

Tabla 6.19: Comparación y resultados de sin	nulaciones		
Descripción	Resultado	Resultado por	Error
	analítico	simulación	%
Frecuencia natural amortiguada	2319.884 rpm	2324.04 rpm	0.002
Relación de amortiguamiento	0.756	0.756	0.0

Tabla 6.19: Comparación y resultados de simulaciones

6.5.3 Obtención de modos de vibración en reservorio y estructura

La siguiente tabla describe los datos de simulación para obtener los cuatro primeros modos de vibración de la estructura del banco de pruebas considerando al primer modo al de menor valor en Hz o rpm.

Tabla 6.20: Condiciones y resultados de modos de vibración en reservorio y estructura

Parámetro Descripción		Ud.	Observación
Datos			
Material	Acero estructural		
Carga remota grupos generadores	384.285	kg	A cada lado
Carga remota tuberías y agua	263.522	kg	
Preferencia física de malla	Mecánica		
Tamaño de elemento	40	mm	
• Nodos	200 743		
Modos de vibración			
Primer modo	13.635	Hz	818.1 rpm
Segundo modo	14.923	Hz	895.38 rpm
Tercer modo	23.59	Hz	1 415.4 rpm
Cuarto modo	36.708	Hz	2 202.48 rpm

El bastidor superior que sostiene las tuberías (figura 6.17) es la estructura que más movimiento presenta durante los cuatro primeros modos de vibración

Figura 6.17: 1°, 2°, 3° y 4° modo de vibración en reservorio y estructura

CAPÍTULO VII

7 ESPECIFICACIONES TÉCNICAS

7.1 INTRODUCCIÓN

El presente capítulo se refiere a la descripción de materiales estructurales, tuberías, cimentación, así como detalles de construcción del banco de pruebas, fabricación y ensamble de tuberías, montaje de equipos y demás partes del banco de pruebas.

Las especificaciones técnicas son parámetros que gobiernan el tamaño, disposición, proporción y límites de dimensión de un componente o equipo. Muchos de estos poseen estándares de construcción y tamaño. (Nayyar, 2000, p. B19)

7.2 ESPECIFICACIONES TÉCNICAS DE MATERIALES

7.2.1 Especificaciones técnicas de planchas y angulares

Parámetro	Descripción	Ud.	Observación
Planchas metálicas de r	eservorio		
Función	Almacenar y recircular agua		
Norma de diseño	(ASME Sec. VIII Div. 1, 2013)		
Volumen total	3.456	m ³	1 reservorio
Dimensiones	Reservorio rectangular		
• Largo	2.4	m	
• Ancho	1.2	m	
• Altura	1.2	m	
Volumen parcial	1.056	m ³	3 compartimentos
Dimensiones	Compartimentos interiores		
• Largo	1.2	m	
• Ancho	0.8	m	
• Altura	1.1	m	
Sustancia de trabajo	Agua a 10°C		Temp. ambiente
Material de plancha	ASTM A36		
Dimensiones de plancha	2400x1200x4.5	mm	Comercial
Angulares de refuerzo			
Función	Reforzar reservorio, apoyar equi	pos, so	portes y tuberías.
Perfil	L 3x3x1/4	A	anexo 20

Tabla 7.1: Especificaciones de reservorio rectangular

Figura 7.1: Planchas y angulares de reservorio

7.2.2 Especificaciones técnicas de vigas base

Tabla 7.2: Especificaciones de vigas b	pase		
Parámetro	Descripción	Unidad	Observación
Función	Apoyar y fijar res	servorio al suel	o del laboratorio
Perfil	W 4x13		Anexo 21
Material perfil	ASTM A36		
Espaciamiento entre vigas	0.6	m	
Dimensiones			
• Largo	1.35	m	
Cantidad	05		Paralelos
Pernos de anclaje			
Material pernos	ASTM A325		Expansión zincado
Diámetro pernos	5/8 Ø	pulgada	

Figura 7.2: Vigas base de reservorio rectangular

7.2.3 Especificaciones técnicas de vigas paralelas de grupos de generación

Parámetro	Descripción	Unidad	Observación
Función	Apoyar marcos base	de equipos d	e generación
Perfil	U 3x2x3/16	pulgadas	Perfil en C
Material perfil	ASTM A36		
Espaciamiento entre vigas	0.47	m	Lado BFT
	0.26	m	Lado Michell Banki
Dimensiones			
• Largo	1.35	m	
Pernos			
Material pernos	ASTM A325		
Diámetro pernos	1/2 Ø	pulgada	

l'abla	7.3:	Especi	ficaciones	de vigas	paralelas
		1			P

Figura 7.3: Vigas paralelas de grupos de

7.2.4 Especificaciones técnicas de bloque de cimentación y marco base de bomba centrífuga monobloque

Parámetro	Descripción	Unidad	Observación
Cimentación	Bloque de concreto		
Función	Cimentar y anclar bon	nba centrífuga	monobloque
Norma de diseño	(ACI 351.3R-18, 2018	3)	
Material	Concreto		
Densidad	2300	Kg/m ³	(MVCS, 2009)
Dimensiones bloque			
• Largo	0.8	m	
Ancho	0.55	m	
• Altura	0.55	m	
Singularidad	Bloque enterrado		
Pernos de anclaje	Tipo L		
Material pernos	ASTM A325		
Diámetro pernos	5/8 Ø	pulgada	
Número de pernos	8		
Marco base	Perfil 3x1.5x3/16	pulgadas	Perfil en C
Material perfil	ASTM A36		
Dimensiones marco base			
• Largo	0.65	m	
Ancho	0.35	m	

Figura 7.4: Bloque de cimentación y marco base de bomba centrífuga

7.2.5 Especificaciones técnicas de marcos base de equipos de generación

Tabla 7.5: Especificaciones técnicas de marcos base

Parámetro	Descripción	Unidad	Observación
Perfil	Perfil en C		
Material perfil	ASTM A36		
Dimensiones			
Marco base BFT	U 3x1.5x3/16	pulgadas	
• Largo	0.47	m	
• Ancho	0.36	m	
• Altura	0.36	m	
Marco base motor de inducción	U 3x1.5x3/16	pulgadas	
• Largo	0.47	m	
Ancho	0.25	m	
Marco base turbina Michell Banki	U 3x1.5x3/16	pulgadas	
• Largo	0.41	m	
Ancho	0.26	m	
Marco base generador	U 3x1.5x3/16	pulgadas	
• Largo	0.29	m	
Ancho	0.26	m	
Pernos			
Material pernos	ASTM A325		
Diámetro pernos	1/2 Ø	pulgada	

Figura 7.5: Marcos base de equipos de generación

7.2.6	Especificaciones	técnicas	de tubos	y accesorios
-------	------------------	----------	----------	--------------

Parámetro	Descripción	Unidad	Observación
Tubos y niples			
Función	Transportar fluido		
Material	ASTM A53		
Cédula	40	SCH	
Diámetros	100, 125 Ø	DN	
Codos, tees y reducciones			
Función	Conectar tubos y nipl	es	
Material	ASTM A234		
Cédula	40	SCH	
Diámetros	65, 80, 100, 125 Ø	DN	
Bridas			
Función	Ensamblar tuberías		
Material	ASTM A105		
Clase	150	Clase	
Diámetros	65,80,100,125 Ø	DN	
Pernos para bridas			
Material pernos	ASTM A193		
Diámetro pernos	5/8 Ø	pulgada	
Número de pernos	4 a 8 por unión bridad	la	Según DN

Tabla 7.6: Especificaciones de tubos y accesorios

Figura 7.6: Tubos y accesorios

7.2.7 Especificaciones técnicas de transmisión de potencia de BFT y guardas de seguridad

Parámetro	Descripción	Unidad	Observación
Tipo de transmisión	Faja en V		
Función	Transmitir potenc	ia entre BFT y	motor de inducción
Nro de faja.	B75		
Cantidad	2		
Distancia entre centros	26	pulgadas	

Tabla 7.7: Especificaciones de transmisión de potencia BFT y guardas de seguridad

7	pulgadas
7	pulgadas
Aluminio	
ASTM A36	Malla y marco metálico
	7 7 Aluminio ASTM A36

Figura 7.7: Transmisión de potencia y guardas de seguridad

7.2.8 Especificaciones técnicas de turbomáquinas y equipos generadores

Tabla 7.8. Especificacione	s de homha	centrífuga	monobloque	v marco hase
1 uoiu 7.0. Especificacione.	ac oomou	centrijugu	monooroque	marco ouse

Parámetro	Descripción	Unidad	Observación		
Equipo	Bomba centrífuga monobloque de eje horizontal				
Modelo	Pentax 65-160B				
Función	Simular caudal y altura d	le agua			
Potencia	13	kW			
Peso y dimensiones	90	kg	Anexo 09		
Equipo	Bomba centrífuga de eje	libre			
Modelo	Pentax 80-200 A				
Función	Funcionar como turbina	hidráulica			
Potencia	5.5	kW			
Peso y dimensiones	73	kg	Anexo 10		
Equipo	Motor de inducción				
Modelo	Weg W22 132S				
Función	Funcionar como generad	lor			
Potencia	7.5	kW			
Peso	67	kg			
Equipo	Turbina Michell-Banki				
Tipo	Entrada horizontal				
Función	Generar energía y compa	arar rendimi	ento ante BFT		
Potencia	6	kW			
Equipo	Generador síncrono				
Modelo	Stamford D8B				
Función	Comparar rendimiento f	rente a moto	r de inducción		
Potencia	7.5	kVA			
Tableros					

- Tablero de operación de bomba centrífuga monobloque
- Tablero de control de grupo generador no convencional
- Tablero de control de grupo generador convencional
- Tablero de automatización

Figura 7.8: Turbomáquinas y equipos generadores

7.2.9 Especificaciones técnicas componentes de tuberías

Parámetro	Descripción	Unidad	Observación	
Componente	Válvula mariposa	wafer		
Función	Controlar fluido			
Diámetros	100, 125	DN		
Cantidad	05		Manual	
	02		Eléctrico	
Material y dimensiones			Anexo 14	
Componente	Válvula antirretorr	10		
Función	Unidireccionar fluido			
Tipo de válvula				
• En succión	Válvula de pie con	canastilla		
• En descarga	De eje alineado co	n resorte		
Diámetro	100	DN		
Material y dimensiones			Anexo 15	
Componente	Unión flexible o D	resser		
Función	Conectar tubosy/o	niples		
Diámetro	100 y 125	DN		
Cantidad	03			
Material y dimensiones			Anexo 16	

Tabla 7.9: Especificaciones técnicas de componentes de tuberías

7.3 ESPECIFICACIONES TÉCNICAS DE FABRICACIÓN Y MONTAJE

Figura 7.9: Componentes de tubería

7.3.1 Especificaciones técnicas de unión por soldadura y otras

Tabla 7.10: Especificaciones técnicas de soldadura

Parámetro	Descripción	Unidad	Observación			
Proceso de soldadura	SMAW para todas l	SMAW para todas las uniones soldadas				
Electrodo	E6011					
	E7018 como paso fi	nal en alguno	s casos			
• Unión entre planchas d	le reservorio rectang	gular				
Tipo de soldadura	Filete en tees y esqu	iinas				
Posición de soldadura	2F, 3F					
Garganta de soldadura	5	mm				
• Unión a vigas base a re	servorio rectangula	r (bastidor in	ferior)			
Tipo de soldadura	En borde					
Posición de soldadura	2G					
Anclaje empernado	Vigas empernadas a	i piso de labor	atorio			
• Unión de angulares est	ructurales					
Tipo de soldadura:						
• A tope	Entre angulares		Con bisel			
• Filete	Hacia planchas y al	gunos angular	es en tee			
Posición de soldadura	1G, 2G, 3G, 2F, 3F,	, 4F				
Intermitencia de cordón	Entre planchas y angulares					
Cordón	7	cm	mínimo			
Espacio libre	5	cm	máximo			

• Unión vigas paralelas o	le grupos de generación
Tipo de soldadura	A tope y de filete
Posición de soldadura	1G, 2G, 3G, 2F, 3F
Apoyo empernado	Hacia bastidor superior de reservorio rectangular
• Fabricación de marcos	base de equipos
Tipo de soldadura	A tope y de filete
Posición de soldadura	1G, 1F, 2F
• Ароуо	Empernadas a vigas paralelas
• Fabricación de segmen	tos de tuberías
Tipo de soldadura	
• A niples	A tope Con bisel
• A bridas	Filete interno y externo
Posición de soldadura	1G, 2G, 5G
Unión roscada	NPT en DN 100 para conectar válvulas anti retorno
Cordón base	E6011
Cordón final de acabado	E7018
• Pintura en general	
• Base	Zinc-cromato
Acabado	Esmalte sintético
Acabado	Epóxica sólo al interior de reservorio

Figura 7.10: Componentes de tubería

7.3.2 Especificaciones técnicas de vaciado de cimentación y montaje de turbomáquinas y equipos

Parámetro	Descripción	Observación
Vaciado de cimentación	Encofrado y vaciado de bloque	
Montaje de bomba centrífuga	Empernado de marco base	
monobloque		
	Empernado de electrobomba	
Anclaje de reservorio	Empernado de vigas base	
Montaje de grupos de generación	Empernado de vigas paralelas	
	Empernado de marcos base	
	Empernado de turbinas y equipos	
	Templado y alineación de fajas	
	Empernado de guardas de segurid	ad

Tabla 7.11: Vaciado de cimentación y montaje de turbomáquinas y equipos

Figura 7.11 Vaciado de cimentación y montaje de equipos

7.3.3 Especificaciones técnicas de montaje de segmentos de tubería y válvulas

Tabla 7.12: Montaje de tuberías

Parámetro	Descripción	Observación
Ensamble de segmentos	Instalación de válvula de pie roscada	
de tubería de succión		
	Alineación y empernado de válvula wafer	
Ensamble de segmentos	Instalación de válvula anti retorno roscada	
de tubería de succión		
	Empernado y alineación de válvulas wafer	
	Empernado y alineación de bridas con empa	ques

Ajuste de uniones Dresser Empernado de tuberías a angulares de soporte Montaje de manómetros analógicos

Figura 7.12 Montaje de tuberías

CAPÍTULO VIII 8 COSTOS Y PRESUPUESTOS

8.1 INTRODUCCIÓN

En este capítulo se detallan los costos directos de construcción del banco de pruebas que incluyen el metrado de materiales estructurales, metrado de válvulas y accesorios, metrado de turbomáquinas y grupos de generación y metrado de servicios por terceros. Asimismo, se detallan los costos de operación del banco de pruebas en el espacio de un año por ser una instalación destinada al uso académico como herramienta de aprendizaje y de investigación, que ha tenido un financiamiento con fondos provenientes del Canon destinados al rubro de educación y de investigación.

En ese sentido, en el presente capítulo desarrollaremos un presupuesto que representa la inversión en de los Metrados mencionados que nos permitirán hallar un costo directo de construcción y montaje del banco de pruebas. Dado que el objetivo es netamente educativo, para prestar un servicio de instrucción a estudiantes, el uso del equipo será gratuito y no generará ingresos, lo que no da lugar a un análisis económico de rentabilidad.

8.2 COSTOS DIRECTOS Y DE OPERACIÓN DEL BANCO DE PRUEBAS

8.2.1 Costos directos de construcción del banco de pruebas

"Son los costos que contribuyen al producto final y pueden ser atribuidos directamente a la construcción del mismo, incluye el costo de materiales, mano de obra, ingeniería y otros" (AACE International, 1992, p. 4-1)

8.2.1.1 Resumen de costos directos

El metrado y demás costos se expresan en moneda nacional S./ para cotizaciones realizadas en el año 2019.

Tabla 8.1: Costos totales			
Descripción	Ud.	Cant.	Total (S./)
Metrado de materiales estructurales			11 009.00
Metrado de válvulas y accesorios			17 802.00
Metrado de turbomáquinas y grupos de generación			64 550.00
Metrado de servicios por terceros			14 800.00
Total	S. /		108 161.00

8.2.1.2 Costos de materiales para la construcción del banco de pruebas

"Los costos de materiales son todos los de naturaleza sustancial esenciales para construir u operar una instalación". (AACE International, 1992, p. 1-6)

• Metrado de materiales estructurales

Iabla 8.2: Costos de reservorio y estructura Descripción	Ud.	Cant.	P.U	Total (S./)
Plancha de acero ASTM A36 de 2.4x1.2 m	Plancha	5	420.00	2 100.00
por 4.5 mm de espesor				
Tubo ASTM A53 SCH 40 DN 125 por 6 m	Tubo	1	840.00	840.00
Tubo ASTM A53 SCH 40 DN 100 por 6 m	Tubo	1	650.00	650.00
Platina ASTM A36 de 2 pulgadas por 1/8	Platina	2	38.00	76.00
espesor por 6 m				
Angular de acero estructural ASTM A36 en	Varilla	8	210.00	1 680.00
L de 3x3 pulgadas por 1/4 de pulgada de				
espesor por 6 m				
Canal de acero estructural ASTM A36 en C	Varilla	1	250.00	250.00
de 3x1.5 pulgadas por 3/16 de pulgada de				
espesor por 6 m				
Canal de acero estructural ASTM A36 en C	Varilla	1	250.00	250.00
de 3x2 pulgadas por 3/16 de pulgada de				
espesor por 6 m				
Canal de acero estructural ASTM A36 en C	Varilla	1	250.00	250.00
de 2.5x2 pulgadas por 3/16 de pulgada de				
espesor por 6m				
Viga de acero estructural ASTM A36 en H	Varilla	2	590.00	1 180.00
Ala Ancha (WF) de 4x4 pulgadas por 1/4 de				
pulgada de espesor por 6 m				
Brida tipo Slip On ASTM A105, Clase 150,	Ud.	10	70.00	700.00
DN 125				
Brida tipo Slip On ASTM A105, Clase 150,	Ud.	7	60.00	420.00
DN 100				
Brida tipo Slip On ASTM A105, Clase 150,	Ud.	2	50.00	100.00
DN 80				

Brida tipo Slip On ASTM A105, Clase 150,	Ud.	1	40.00	40.00
DN 65				
Tee ASTM A234 SCH 40 DN 125	Ud.	1	70.00	70.00
Tee ASTM A234 SCH 40 DN 100	Ud.	1	70.00	70.00
Codo 90° tipo Long Radius ASTM A234	Ud.	4	70.00	280.00
SCH 40 DN 125				
Codo 90° tipo Long Radius ASTM A234	Ud.	2	70.00	140.00
SCH 40 DN 100				
Reducción concéntrica ASTM A234 SCH	Ud.	6	68.00	408.00
40 DN 100 a DN 125				
Reducción concéntrica ASTM A234 SCH	Ud.	2	38.00	76.00
40 DN 80 a DN 100				
Reducción concéntrica ASTM A234 SCH	Ud.	1	36.00	36.00
40 DN 65 a DN 100				
Pernos ASTM A325, tuerca, volandas plana	Ciento	1/2	950.00	475.00
y de presión zincado de 5/8" Ø por 6				
pulgadas de largo				
Pernos ASTM A325, tuerca, volandas plana			650.00	325.00
y de presión zincado de 5/8" Ø por 3	Ciento	1/2		
pulgadas de largo				
Pernos ASTM A325, tuerca, volandas plana			500.00	250.00
y de presión zincado de 9/16" Ø por 3	Ciento	1/2		
pulgadas de largo				
Pernos ASTM A325, tuerca, volanda plana	Ciento	1/2	350.00	175.00
y volanda de presión zincado de 1/2" Ø por				
2 pulgadas de largo				
Pernos ASTM A325, tuerca, volanda plana	Ciento	1/2	200.00	100.00
y volanda de presión zincado de 1/4" Ø por				
2 pulgadas de largo				
Perno en U ASTM A325, tuerca, volandas	Ud.	4	12.00	48.00
plana y de presión zincado de 1/2" Ø DN				

Subtotal	S. /			11 009.00
100				
plana y de presión zincado de 1/2" Ø DN				
Perno en U ASTM A325, tuerca, volandas	Ud.	2	10.00	20.00

• Metrado de válvulas y accesorios

Descripción	Ud.	Cant.	P.U	Total(S./)
Válvula anti retorno de pie roscada de bronce	Ud.	1	920.00	920.00
DN 100				
Válvula mariposa tipo Wafer PN 16 DN 125	Ud.	2	970.00	1 940.00
con actuador manual				
Válvula mariposa tipo Wafer PN 16 DN 100	Ud.	2	820.00	1 640.00
con actuador manual				
Válvula anti retorno de eje alineado roscada	Ud.	1	920.00	920.00
de bronce PN 16 DN 100				
Válvula mariposa tipo Wafer PN 16 DN 100	Ud.	2	2800.00	5 600.00
con actuador remoto				
Unión flexible tipo Dresser PN 16 DN 125	Ud.	2	420.00	840.00
Unión flexible tipo Dresser PN 16 DN 100	Ud.	1	420.00	420.00
Electrodo de soldadura E6011 Cellocord de	lata	4	450.00	1 800.00
1/8" pulgada Ø				
Electrodo de soldadura E7018 Supercito de	lata	4	480.00	1 920.00
1/8" pulgada Ø				
Grasa múltiple de jabón de litio para partes	kg	1	65.00	65.00
mecánicas.				
Jebe de empaquetadura de 1/8 de pulgada de	m	1	160.00	160.00
espesor con inserción de naylon para junta en				
bridas.				
Pintura epóxica Base Zinc color gris claro	Kit	2	540.00	1 080.00
Pintura base zinc-cromato	galón	3	38.00	114.00
Pintura esmalte sintético color negro	galón	1	32.00	32.00
Pintura esmalte sintético color gris	galón	1	32.00	32.00

Pintura esmalte sintético color verde	galón	1	32.00	32.00
Pintura esmalte sintético color azul	galón	1	32.00	32.00
Thinner	galón	15	17.00	255.00
Subtotal	S. /			17 802.00

• Metrado de turbomáquinas y grupos de generación

Descripción	Ud.	Cant.	Total (S./)
Grupo de bombeo electrobomba de 13 kW incluye	Ud.	1	15 200.00
tablero de control con variador de frecuencia y cableado			
Grupo hidroeléctrico bomba-turbina con motor de	Ud.	1	20 800.00
inducción de 6 kW con tablero electrónico de control de			
carga			
Grupo hidroeléctrico turbina Michell Banki-alternador	Ud.	1	28 550.00
trifásico de 6 kW con tablero electrónico de control de			
carga			
Subtotal	S. /		64 550.00

• Metrado de mano de obra

"El costo de mano de obra es el total pagado al personal de campo que desempeña el trabajo de proyecto" (AACE International, 1992, p. 1-6)

Tabla 8.5: Costo de mano de obra			
Descripción	Ud.	Cant.	Total (S./)
Servicio de fabricaciones metálicas de estructura y tuberías	Ud.	1	14 800.00
de banco de pruebas, cimentación de equipos y adecuación			
de servicios de agua y desagüe.			
Subtotal	S. /		14 800.00

8.2.2 Costo de operación

"Son los gastos incurridos durante la operación normal de la instalación incluyendo materiales, combustibles, lubricantes, mantenimiento general, limpieza y otros factores a fin de mantener el proyecto funcionando." (AACE International, 1992, p. 4-1)

La siguiente tabla muestra los costos de operación en el periodo de un mes para el banco de pruebas cuyo consumo predominante es el de la energía eléctrica.

Descripción	Ud.	Cantidad	P.U	Total (S./)
*Electricidad	kWh	520	0.6761	351.57
Limpieza y mantenimiento	Ud	1	20.00	20.00
Subtotal	S. /			371.57

Tabla 8.6: Costo de operación

*: Se refiere al consumo de energía eléctrica por parte de la bomba centrífuga monobloque de 13 kW (Anexo 09) la cual se considera un tiempo estimado de operación 10 horas a la semana que hacen 40 horas al mes.

8.3 COSTO DE FUNCIONAMIENTO ANUAL

Para el caso del banco de pruebas representa la combinación de los costos directos y costos de operación. (tabla 8.7)

8.3.1 Costo de kW instalado

Representa el costo total de fabricación y montaje del banco de pruebas sobre la potencia estimada de generación del mismo, esto es:

$$CkWi = \frac{S/.\ 108\ 161\ (costo\ directo)}{6\ kW\ (potencia\ de\ generación)} = \ 18\ 026.83$$

Este es un monto referencial pues el banco de pruebas se diseña para la posibilidad de evaluar la generación de dos grupos convencional y no convencional.

8.3.2 Servicio de capital inmovilizado

Representa la remuneración y amortización del capital que considera los siguientes rubros:

• Intereses: se considera un interés anual de 12% según datos de banca comercial.

- Amortización: se debe construir un fondo de amortización con el fin de establecer una reserva apta a renovar la planta en el momento que esta haya cumplido con su vida útil y quede inutilizada. Para este efecto se considera una tasa de amortización del 2%.
- Gastos de operación: incluye herramientas, enseres, derechos de uso de agua etc.
 Para nuestro caso tomaremos una tasa del 1 %.

De las mencionadas hacen un total de 15% anual del costo directo, esto es S/. 16 224.15

8.3.3 Costo directo y costo de operación anualizado

Se elabora la siguiente gráfica en base al servicio de capital inmovilizado derivado del costo directo y el costo de operación mensual donde se observa la evolución del costo de funcionamiento en un periodo de hasta 480 horas.

Figura 8.1 Costo de funcionamiento anual

Los costos directos y de operación están vinculados a la complejidad del diseño planteado el cual, según los capítulos anteriores, buscó la mejor alternativa de solución para el objetivo a alcanzar.
CONCLUSIONES

- El diseño conceptual del banco de pruebas hace uso de la directriz VDI 2221 y 2225 que resulta en el proyecto definitivo para el banco de pruebas que consta de vigas base paralelas sobre el suelo, un reservorio metálico rectangular abierto con elementos de refuerzo verticales, un bloque de cimentación donde se apoya una bomba centrífuga que simula condiciones hidráulicas de caudal y altura, y finalmente un sistema de tuberías que alimenta a una BFT y una turbina Michell Banki, ubicados paralelamente sobre el reservorio rectangular.
- El diseño hidráulico del banco de pruebas define una tubería de DN 125, unas condiciones de operación máximas para las turbinas hidráulicas de 0.037 m³/s de caudal y 6 kW, 0.025 m³/s de caudal y 4 kW como potencia intermedia y 0.006 m³/s de caudal y 1 kW como potencia mínima, además de una altura de 22m. El reservorio rectangular tiene una volumetría de 3.456 m³ dividido en tres compartimentos iguales con dos vertederos rectangular y trapezoidal respectivamente. Para el sistema de tuberías se tienen 4.86 m de pérdidas hidráulicas hasta la BFT y 4.903 m hasta la turbina Michell Banki. Se selecciona la bomba centrífuga monobloque Pentax CH65-160B como equipo simulador de caudal y altura y la bomba centrífuga de eje libre Pentax CA80-200A como la BFT.
- El diseño mecánico determina un espesor mínimo para las planchas metálicas de 4.13 mm con un esfuerzo normal máximo de 199. 746 MPa y un esfuerzo cortante máximo de 144.625 MPa, un módulo de sección máximo de 8.919 cm³ sobre los perfiles base en H, un momento de inercia máximo de 40. 028 cm⁴ sobre los elementos de refuerzo vertical sobre las planchas, un módulo de sección máximo de 3.12 cm³ sobre las vigas paralelas de los grupos generadores y un espesor mínimo para las tuberías de 4.388 mm
- El bloque rectangular de cimentación se modela como un sistema de un grado de libertad con movimiento vertical de dimensiones 0.85x0.55x0.55 m enterrado en el piso del laboratorio, con una frecuencia amortiguada de 242.938 rad/s (2319.884 rpm) y una fuerza transmitida a la base de 163.632 N.
- La dinámica de fluidos computacional arroja una pérdida de presión para un tubo de 0.4 m DN 100 de 0.105 m.c.a., para un tubo de 2.85 m DN 125 una pérdida de

0.169 m.c.a., para una ampliación DN 65 a DN 100 una pérdida de 1.537 m.c.a., para una tee DN 100 una pérdida de 0.092 m.c.a., para una ampliación DN 100 a DN 125 una pérdida de 0.089 m.c.a., para un codo DN 125 una pérdida de 0.061 m.c.a., para una tee DN 125 una pérdida de 0,351 m.c.a., para una reducción DN 125 a DN 100 una pérdida de 0.068 m.c.a., para una válvula anti retorno DN 100 una pérdida de 6.721 m.c.a., para una válvula mariposa DN 100 una pérdida de 0.156 m.c.a. y para una válvula mariposa DN 125 una pérdida de 0.111 m.c.a. El análisis de elementos finitos sobre las planchas laterales cortas y largas del reservorio concluye con esfuerzos normales de 6.881 y 3.847 MPa, y esfuerzos cortantes de 10.903 MPa y 0.847 MPa respectivamente. El análisis vibracional sobre el bloque de cimentación arroja una frecuencia natural amortiguada de 2324.04 rpm y una relación de amortiguamiento de 0.756.

 Los costos y presupuestos demuestran un costo directo de 108 161.00 nuevos soles, compuesto por un costo de materiales estructurales de 11 009.00 nuevos soles, costo de válvulas y accesorios de 17 802.00 nuevos soles, costo de turbomáquinas y grupos de generación de 64 550.00 nuevos soles y un costo de servicio por terceros de 14 800.00 nuevos soles; además de un costo de operación mensual de 371.57 nuevos soles.

RECOMENDACIONES

- Para futuros trabajos de investigación, se recomienda ensayar con la bomba madre en un rango de 20 a 30 HP para generar mayores presiones y caudales de operación.
- Para futuros trabajos de investigación, se recomienda ensayar una BFT en rangos de menor potencia desde 0.5 kW hasta 2.5 kW.
- Para futuros trabajos de investigación, evaluar la mejora de los componentes en el sistema de tuberías que generen menores pérdidas.
- Realizar un análisis de vibraciones con dos grados de libertad para el bloque de cimentación dinámica, además del uso de instrumentos de medición experimental de vibraciones.
- Realizar una inspección de soldadura mediante ensayos no destructivos en las uniones de tuberías, reservorio rectangular y demás componentes estructurales del banco de pruebas.
- Realizar pruebas de hermeticidad y fugas en el sistema de tuberías.
- Mejorar los métodos de mallado y procedimientos de simulación con el software Ansys 19 para hallar pérdidas en los componentes de tubería y válvulas para disminuir el error porcentual en relación a los resultados analíticos.
- Realizar pruebas para determinar las curvas características de funcionamiento hidráulico del sistema.
- Realizar pruebas para determinar el funcionamiento de una BFT a diferentes condiciones de operación y compararla con la turbina Michell Banki.

BIBLIOGRAFÍA

- AACE International. (1992). Skills And Knowledge of Cost Engineering.
- Aceros Arequipa. (2016). Laminados en caliente, Planchas LAC. Catálogo de producto.
- ACI 351.3R-18. (2018). Report on Foundations for Dynamic Equipment.
- AISC. (2001). Guide to design criteria for bolted and riveted joints.
- Alva Dávila, F. (2008). Diseño de Elementos de Maquinas I.
- Ansys. (2019). Overview of the CFD Process and Workflow. Lecture 1.1.
- ASME B1.20.1. (2013). Pipe Threads, General Purpose, Inch.
- ASME B16.5. (2009). Pipe Flanges and Flanged Fittings ASME Standard.
- ASME B16.9. (2001). Factory-Made Wrought Buttwelding Fittings ASME Standard.
- ASME B31.1. (2016). Power Piping ASME Code for Pressure Piping.
- ASME B36.10M. (2015). Welded and Seamless Wrought Steel Pipe ASME Standard.
- ASME PCC-1. (2013). Guidelines for Pressure Boundary Bolted Flange Joint Assembly.
- ASME Sec. II Part. D. (2010). *Materials Properties (Customary) ASME Boiler and Pressure Vessel Code.*
- ASME Sec. VIII Div. 1. (2013). Rules for Construction of Pressure Vessels ASME Boiler and Pressure Vessel Code.
- ASTM A6/A6M. (2000). Standard Specification for General Requirements for Rolled Structural Steel Bars,.
- Avallone, E. A., Baumeister, T. I., & Sadegh, A. M. (2007). *Marks' Standard Handbook* for Mechanical Engineers.
- Barriga Gamarra, B. (2013). Capítulo III : Concepto de Solución. Apuntes de clase. Lima: PUCP.
- Barriga Gamarra, B. (2015). Capítulo IV: Proyecto Preliminar. Apuntes de clase. Lima: PUCP.
- Barriga Gamarra, B. (2016a). Capítulo I : Comprensión de la Solicitud. Apuntes de clase. Lima: PUCP.
- Barriga Gamarra, B. (2016b). Capítulo II : Estructura de Funciones. Apuntes de clase. Lima: PUCP.
- Barriga Gamarra, B. (2018). Métodos de Diseño en Ingeniería Mecánica. Apuntes de clase. Lima: PUCP.
- Briend. (n.d.). Suministros Industriales. Catálogo de producto.
- Budynas, R. G., & Nisbett, K. J. (2008). Diseño en Ingeniería Mecánica de Shigley.
- Carravetta, A., Derakhshan Houreh, S., & Ramos, H. M. (2018). Pumps as Turbines

- Cervantes Gómez, L. (2015). *Modelización matemática principios y aplicaciones* (Vol. 1).
- Chapallaz, J. M., Eichenberg, P., & Fischer, G. (1992). Manual on Pumps Used as Turbines.
- Chávez Schaw, J. M. (2014). Análisis y diseño de cimentaciones para turbinas hidráulicas en hidroeléctricas medianas [Tesis de pregrado]. Universidad de San Carlos de Guatemala.
- Chopra, A. K. (2014). Dinámica de Estructuras.
- Cimberio. (2004). Filtering foot valve CIM 95. Catálogo de producto.
- Crane. (2013). Flow of Fluids Through Valves, Fittings and Pipe.
- Dassault Systemes. (2017). Solidworks Simulation.
- de Torres Curth, M. (2015). Modelos matemáticos en las ciencias.
- Dunlop. (n.d.). Correas de transmisión industrial.
- Eathisa. (n.d.). Union dresser. Catálogo de producto.
- Egusquiza Goñi, J. C., & Sánchez Camones, J. C. (2009). Diseño Un Banco De Pruebas Para Turbinas Michel Banki Para El Laboratorio De Energía De La PUCP [Tesis de pregrado]. Pontificia Universidad Católica del Perú.
- Fiorella Representaciones SAC. (n.d.-a). Bridas Acero Forjado A105 ANSI/ASME B16.5 RF Clase 150. Catálogo de producto.
- Fiorella Representaciones SAC. (n.d.-b). *Reducción concéntrica, codos, tees. Catálogo de producto*.
- Fiorella Representaciones SAC. (n.d.-c). *Tubos A53/A106 API 5L/GR B SCH40/80/160. Catálogo de producto*.
- Genebre. (2011). Válvula de mariposa tipo wafer. Catálogo de producto.
- Google Maps. (2019). UNSAAC.
- Goulds, P. (n.d.). Manual de instalación, funcionamiento y mantenimiento.
- Guevara Ostojic, F., & Ortiz de Zevallos Aguilar, F. (2007). Diseño y fabricación de un banco de pruebas para micro-turbinas hidráulicas de acción [Tesis de pregrado].
 Universidad Nacional San Antonio Abad del Cusco.
- Gutiérrez R., J. C. (2009). Aplicabilidad de las metodologías de diseño de producto en el desarrollo y creación de páginas web y diseños gráficos [Tesis de pregrado].
 Universidad EAFIT, Medellín, Colombia.
- Hasmatuchi, V., Botero, F., Gabathuler, S., & Munch, C. (2014). Design and Control of

a New Hydraulic Test Rig for Small-Power Turbomachines. Research Gate.

Jersch, T. (2019). Test rigs improve the performance of wind turbines.

- Koirala, R., Chitrakar, S., Maharjan, N., Gurung, N., & Aryal, B. P. (2014). Design and Development of a Reversible Pump Turbine Test Rig. *Rentech Symposium Compendium*, 80–85.
- Lee, J. P., Brant, W. D., Pearce, I. W., Smith, P. A., Sutton, W. T., & Wiley, F. A. (2011). Report on Foundations for Dynamic Equipment Reported by ACI Committee 351 (Reapproved 2011).
- Macedo Silva, A. (n.d.). Introducción a las vibraciones mecánicas.
- Martín Reina, G. (2012). Tema 6: Bombas centrífugas. Manual para el diseño de una red hidráulica de climatización.
- Massa, J., Giro, J., & Giudici, A. (2015). Compendio de Cálculo Estructural II.
- Mataix, C. (1986). Mecánica de Fluidos y Máquinas Hidráulicas.
- Medeiros, D. D. M. (2004). A utilização de bombas operando como turbinas e geradores de indução na geração de energia elétrica [Tesis de postgrado]. Universidade Federal de Itajubá, Brasil.
- Megyesy, E. F. (2001). Pressure Vessel Handbook. Oklahoma.
- Mella Mora, P. F. (2017). Implementación de banco de pruebas para ensayos mono y trifásico de grupo bomba-turbina [Tesis de pregrado]. Universidad Técnica Federico Santa María.
- Menendez Garcia, J. (n.d.). Microzonificación de la Ciudad del Cusco.
- Ministerio de Energía y Minas. (1979). Evaluación del Potencial Hidroeléctrico Nacional.
- Ministerio de Vivienda Construcción y Saneamiento. (2009). Norma Técnica de Edificación E.060 Concreto Armado.
- Motta Zevallos, R. Y. (2015). Estudio de mecánica de suelos: local institucional Subcafae Cusco.
- Nayyar, M. L. (2000). Piping Handbook.
- Neyra Huacoto, J. L., & Amado Arias, A. (2011). Generación de energía eléctrica con una bomba funcionando como turbina y un generador de inducción [Tesis de pregrado].
- OLADE. (2017). Manual de Balances Energía Útil.
- Patel, R. N., & Jain, S. V. (2014). Investigations on pump running in turbine mode: A review of the state-of-the-art. *Renewable and Sustainable Energy Reviews*, 30, 841–

868.

Pedrollo. (n.d.). Electrobombas centrífugas normalizadas EN 733. Catálogo de producto.

- Pentax. (n.d.-a). Catálogo Bomba Centrífuga de Eje Libre 4CA Norma EN 733. Catálogo de producto.
- Pentax. (n.d.-b). *Catálogo Bomba Centrífuga Monobloque de Eje Horizontal CM Norma EN 733. Catálogo de producto.*
- Procobre. (2019). Guía para la reparación de motores eléctricos trifásicos.
- Puchi Gonzalez, C. M. (2010). Factibilidad técnica de la utilización de una bomba como turbina hidráulica [Tesis de pregrado]. Universidad Austral de Chile.
- Quispe Ccaso, A., & Maquera Quispe, J. C. (2019). Diseño y construcción de un módulo de laboratorio para el análisis de los parámetros de una bomba centrífuga de 1HP como turbina [Tesis de pregrado]. Universidad Nacional del Altiplano Puno.

Real Academia Española. (2016). Index @ Dle.Rae.Es.

- Rocha, A. (n.d.). Capítulo IX: Vertederos.
- Senamhi. (2019). Promedio de temperatura normal para Cusco.

Stamford. (2010). PI144K Winding 311 Technical Data Sheet.

Suarez Diaz, J. (2016). Propiedades dinámicas de los suelos. Capítulo. 10.

- Tradisa. Catálogo de producto. (2018). Catálogo de productos.
- UNSAAC. (2016). Compendio Estadístico Nº 31 Unidad de Estadística, Dirección de Sistemas de Información.

Weg. (n.d.). Motor Eléctrico Trifásico W22.

Weinman. (2006). Installation and operation manual centrifugal pumps.

Wika. (2009). Instrumentos de medición de presión y temperatura - Catalogo. Wika.

APÉNDICES

Apéndice 01: Matriz de consistencia

del Problema	Objetivos	Hipótesis	Variables	Metodología
I	Objetivo general	Hipótesis general	V. independiente	Enfoque:
	Diseñar y construir un banco de pruebas para turbomáquinas hidráulicas de potencias de generación de energía de hasta 6 kW		Potencia (kW)	Cuantitativo
	Objetivos específicos		V. dependiente	Alcance:
u a u	 a) Aplicar una metodología para la obtención del diseño conceptual del banco de pruebas. b) Realizar el diseño hidráulico en base a la potencia 	El diseño y construcción de un banco de pruebas para	Diseño y construcción de banco de pruebas	Descriptiva
una mo	prevista del banco de pruebas mediante la mecánica de fluidos.	de potencia permite ensayar y		Diseño:
oina ias ?	 c) Realizar el diseño mecánico en base a la potencia prevista del banco de pruebas mediante la resistencia de materiales. 	comparar grupos generadores del tipo convencional y no convencional.		No experimental
	 d) Obtener un bloque de cimentación en base a la teoría de vibraciones. 			
	e) Corroborar por software de simulación el			Muestra:
	comportamiento hidráulico y mecánico de los principales componentes del banco de pruebas.			
	f) Realizar un metrado del banco de pruebas en base a una limitación presupuestal.			No probabilistica

Tabla 01: Matriz de consistencia

Objetivo General	Diseñar y construir un ba potencias de	anco de pruebas para turbo 2 generación de energía de	máquinas hidráulicas de hasta 6 kW
Objetivos específicos	Variable	Dimensión	Indicador
 a) Aplicar una metodología para la obtención del diseño conceptual del banco de pruebas. 	Diseño conceptual	Obtención del proyecto conceptual definitivo	Evaluación técnico - económica
 b) Realizar el diseño hidráulico en base a la potencia prevista del banco de pruebas mediante la mecánica de fluidos. 	Diseño hidráulico	Volumetría Caudal Pérdidas	m3/s m
 c) Realizar el diseño mecánico en base a la potencia prevista del banco de pruebas mediante la resistencia de materiales. 	Diseño mecánico	Esfuerzos máximos	MPa
d) Obtener un bloque de cimentación en base a la teoría de vibraciones.	Bloque de cimentación	Cargas Frecuencias Fuerza transmitida	kg Hz N
 e) Corroborar por simulación el comportamiento hidráulico y mecánico de los principales componentes del banco de pruebas. 	Simulación	Valores máximos de trabajo	MPa, m, Hz
f) Realizar un metrado para el banco de pruebas en base a una limitación presupuestal.	Metrado	Subtotales económicos	Nuevos soles

Tabla 02: Operacionalización de variables

Apéndice 02: Operacionalización de variables

Apéndice 03: Registro de construcción y ensamble

Para	ámetro	Figura	Parámetro		Figura
a) .	Anclaje de vigas base		b) Sol de pla	ldadura	
c) 5	Soldadura de angulares		d) Sol	ldadura ope	

Apéndice 3.1 Construcción de reservorio rectangular

Tabla 03: Construcción de reservorio rectangular

Apéndice 3.2 Construcción de bloque de cimentación para bomba centrífuga

Tabla 04: Construcción de bloque de cimentación

Parámetro	Figura	Parámetro	Figura
a) Medición de distancia para bomba centrífuga monobloque		b) Encofrado de bloque de cimentación	
c) Vaciado de bloque de cimentación		d) Fraguado de bloque de cimentación	

Apéndice 3.3 Construcción soportes para tubería

Parámetro	Figura	Parámetro	Figura
a) Primer soporte		b) Segundo soporte	
c) Tercer soporte			

Tabla 05: Construcción de soportes para tubería

Apéndice 3.4 Construcción de marcos base y vigas paralelas para equipos

Tabla 06: Construcción de marcos base y vigas paralelas

Parámetro	Figura	Parámetro	Figura
a) Marco base de bomba centrífuga monobloque		b) Vigas paralelas de BFT	
c) Vigas paralelas de turbina Michell Banki			

Pa	rámetro	Figura	Pa	rámetro	Figura
a)	Unión de niples y bridas		b)	Biselado para soldadura de tubos	
c)	Posición de soldadura		d)	Niple para manómetro	

Apéndice 3.5 Construcción de secciones de tuberías

Tabla 07: Construcción de secciones de tubería

Apéndice 3.6 Ensamblaje de equipos y tuberías

Tabla 08: Ensamblaje de equipos y tuberías

Parán	netro	Figura	Parámetro	Figura
a) Tu de sud de	ibería cción y scarga		b) Tubería hacia turbinas	
c) Tu de en BF	ibería trada a FT		d) Tubería de entrada a Michell Banki	

Apéndice 04: Hojas de cálculo dinámicas para pérdidas en tuberías

Apéndice 05: Cartilla de mantenimiento de banco de pruebas

Tabla 10: Cartilla de mantenimiento

Cartilla de mantenimiento de banco de pruebas para turbomáquinas hidráulicas

Responsa	ble(s):					
Fecha:	()					
Tiempo d	e realiz	ación:				
Motivo:						
Intérvalo		Semanal	Mensual	Anu	al	
Item				Realizado	Observación	
<u> </u>	mpieza	general				
2. Re	curso h	nidráulico				
• Inspec	ción de	fugas en reservorio	0			
Inspección de fugas en suministro/descarga						
Compi	robació	n de turbidez de ag	ua			
• Reemp	olazo de	e agua y limpieza de	e compartimento BF	T		
• Reemp	olazo de	e agua y limpieza de	e compartimento cen	tral		
Reemplazo de agua y limpieza de compartimento Michel						
<u> </u>	mpone	nte estructural				
• Inspec	ción de	deformaciones, raj	aduras, grietas			
• Ajuste	Ajuste/reemplazo de pernos					
• Inspec	Inspección de soldadura					
• Revisi	ón de e	stado de pintura				
4. Co	mpone	nte de turbomáqu	linas y equipos			
• Inspec	ción de	giro del eje				
• Inspec	ción/ajı	iste de pernos				
• Inspec	ción de	templado de fajas				
• Inspec	Inspección de alineación de poleas					
Inspección de conexiones eléctricas						
5. Co	mpone	nte de tuberías				
• Inspec	ción de	fugas				
• Inspec	ción de	funcionamiento de	e válvulas			
• Inspec	ción de	alineación de brida	as			
• Inspec	ción de	uniones Dresser				
• Inspec	ción/ajı	iste de pernos de bi	ridas			
• Inspec	ción de	empaques de brida	IS			
• Revisi	ón de e	stado de pintura				

Apéndice 06: Guía de operación de banco de pruebas

Tabla.11: Guía de operación de banco de pruebas

1. Seguridad			
Parámetro	Descripción		
Uso de EPP's	Protección auditiva y visual		
	Zapatos de seguridad, casco, mameluco		
2. Verificación pre	liminar de operación		
Parámetro	Descripción		
Recurso hidráulico	Verificación de la turbidez y niveles de agua en		
	compartimentos		
CuberíasCorrecta apertura y cierre de válvulas en tuberías			
Estructura Verificación de pernos sueltos o elementos fuera de luga			
Equipos	uipos Verificación de templado de fajas y guardas de seguridad		
Verificación de giro suave de ejes			
3. Inicio de operación			
Parámetro	Descripción		
Arranque inicial	Encendido de tablero de bomba centrífuga monobloque		
	Seteo de condiciones de operación en interfaz		
4. Inspección durante operación			
Parámetro	Descripción		
Inspección física	nspección física Verificación de fugas hidráulicas		
	Verificación de lectura de manómetros		
	Verificación de funcionamiento de vertederos		
	Verificación de ruidos o vibraciones anormales		

Figura: Interfaz de operación del banco de pruebas

Apéndice 07: Relación de prácticas de laboratorio posibles de realizar en el banco de pruebas

Componente	Practica de laboratorio
1. Electrobomba principal	Determinación de curvas características de
monobloque	funcionamiento
2. Sistema de tuberías	Pérdidas de carga primaria
	Pérdidas de carga secundaria
	Determinación de curvas del sistema
3. Vertedero rectangular y	Medición de caudales y comparación con
trapezoidal	caudalímetro digital
4. BFT	Rendimiento hidráulico a diferentes condiciones
	de operación
5. Motor de inducción	Generación eléctrica no convencional
funcionando como generador	
6. Turbina Michell Banki	Rendimiento y comparación hidráulica a
	diferentes condiciones de operación
7. Generador síncrono	Generación eléctrica convencional
8. Transmisión de potencia por	Relaciones de transmisión, templado de fajas y
fajas	alineación de poleas
9. Tableros de control	Introducción a la ingeniería de control
10. Banco de pruebas	Medición de vibraciones por vibrómetro
	Inspección de soldadura por ensayos no
	destructivos

Tabla 13	: Lista de planos	
Ítem	Código	Descripción
01	DUIG-01	Diagrama unifilar isométrico general del banco de pruebas.
02	PDG-01	Plano de disposición general de banco de pruebas.
03	PFE-01	Plano de fabricación de planchas de reservorio rectangular.
04	PFE-02	Plano de fabricación de perfiles de refuerzo y soportes de
		tubería.
05	PFE-03	Plano de fabricación de reservorio rectangular y estructura.
06	PFE-04	Plano de fabricación de bloque de cimentación.
07	PFE-05	Plano de fabricación de marcos base de bomba centrífuga mono
		bloque y motor de inducción.
08	PFE-06	Plano de fabricación de vigas paralelas de grupo no
		convencional.
09	PFE-07	Plano de fabricación de vigas paralelas de grupo convencional.
10	PFE-08	Plano de fabricación de marcos base de turbina Michell Banki y
		generador síncrono.
11	PFT-01	Plano de fabricación de tramos de succión y descarga de tuberías
12	PFT-02	Plano de fabricación de tramos de descarga de tuberías
13	PFT-03	Plano de fabricación de tramos de tuberías hacia BFT y hacia
		turbina Michell Banki
14	PEG-01	Plano de ensamble general de banco de pruebas

Apéndice 08: Lista de planos

ANEXOS

Anexo 01: Temperaturas máxima y mínima, ciudad del Cusco

Tabla 11: Temperaturas mensuales de la ciudad de Cusco

Mes	Temperatura Máxima °C	Temperatura Mínima °C	Precipitación (Lluvia) Ml.
Enero	20	7.5	156
Febrero	20.1	7.2	120
Marzo	20.2	6.7	102
Abril	20.7	4.3	39
Мауо	21.2	0.8	5
Junio	20.6	-1	5
Julio	20.6	-1.6	3
Agosto	21.3	0.4	5
Setiembre	21.5	3.2	16
Octubre	21.7	5.4	48
Noviembre	21.6	6.2	79
Diciembre	20.9	6.7	110

Fuente: (Senamhi, 2019)

Anexo 02: Dimensiones de tubos de acero

Anexo 2.1 Dimensiones estándar de tubos de acero

Tabla 12: Dimensiones estándar de tubos de acero

ASME B36.10M-2015

		Customary Unit	ts	Identification				SI Units	
	Outside	Wall	Plain End	Extra-Strong (XS),			Outside	Wall	Plain End
NPS	Diameter,	Thickness,	Weight,	or Double Extra	Schedule	DN	Diameter,	Thickness,	Mass,
[Note (1)]	in.	in.	lb/ft	Strong (XXS)]	No.	[Note (2)]	mm	mm	kg/m
21/2	2.875	0.083	2.48		5	65	73.0	2.11	3.69
$2\frac{1}{2}$	2.875	0.109	3.22			65	73.0	2.77	4.80
$2\frac{1}{2}$	2.875	0.120	3.53		10	65	73.0	3.05	5.26
21/2	2.875	0.125	3.67			65	73.0	3.18	5.48
$2^{1/2}$	2.875	0.141	4.12			65	73.0	3.58	6.13
$2\frac{1}{2}$	2.875	0.156	4.53			65	73.0	3.96	6.74
21/2	2.875	0.172	4.97			65	73.0	4.37	7.40
2 1/2	2.875	0.188	5.40		30	65	73.0	4.78	8.04
21/2	2.875	0.203	5.80	STD	40	65	73.0	5.16	8.63
2%	2.875	0.216	6.14	•••		65	73.0	5.49	9.14
2 1/2 2 ¹ /2	2.875	0.250	7.67	XS	80	65	73.0	6.35 7.01	10.44
-1/2	2.075	0.075	10.02				72.0	0.50	44.02
2%	2.8/5	0.375	10.02	xxs	160	65	73.0	9.53	14.92
2/2	2.075	0.332	15.71	<i>N</i> (3		05	75.0	14.02	20.39
3	3.500	0.083	3.03		5	80	88.9	2.11	4.52
3	3.500	0.109	3.95	•••		80	88.9	2.77	5.88
3	3,500	0.125	4.54	•••	10	80	88.9	3.18	6.72
	5.500	0.129	4.51				00.7	0.50	0.72
3	3.500	0.141	5.06	•••	•••	80	88.9	3.58	7.53
3	3.500	0.156	5.58			80	88.9	5.96	0.11
3	3.500	0.188	6.66		30	80	88.9	4.78	9.92
3	3.500	0.216	7.58	STD	40	80	88.9	5.49	11.29
3	3.500	0.250	8.69		•••	80	88.9	6.35	12.93
3	3.500	0.300	10.26	XS	80	80	88.9	7.14	14.40
3	3,500	0.438	14.34	10	160	80	88.9	11.13	21.35
3	3.500	0.600	18.60	XXS		80	88.9	15.24	27.68
4	4.500	0.083	3.92		5	100	114.3	2.11	5.84
4	4.500	0.109	5.12			100	114.3	2.77	7.62
4	4.500	0.120	5.62		10	100	114.3	3.05	8.37
4	4.500	0.125	5.85			100	114.3	3.18	8.71
4	4.500	0.141	6.57			100	114.3	3.58	9.78
4	4.500	0.156	7.24			100	114.3	3.96	10.78
4	4.500	0.172	7.96			100	114.3	4.37	11.85
4	4.500	0.188	8.67		30	100	114.3	4.78	12.91
4	4.500	0.203	9.32			100	114.3	5.16	13.89
4	4.500	0.219	10.02			100	114.3	5.56	14.91
4	4.500	0.237	10.80	STD	40	100	114.3	6.02	16.08
4	4.500	0.250	11.36			100	114.3	6.35	16.91
4	4.500	0.281	12.67			100	114.3	7.14	18.87
4	4.500	0.312	13.97			100	114.3	7.92	20.78
4	4.500	0.337	15.00	XS	80	100	114.3	8.56	22.32
4	4.500	0.438	19.02		120	100	114.5	11.15	28.32
4	4.500	0.531	22.53		160	100	114.3	13.49	33.54
4	4.500	0.674	27.57	XXS	•••	100	114.3	17.12	41.03
5	5.563	0.083	4.86			125	141.3	2.11	7.24
5	5.563	0.109	6.36		5	125	141.3	2.77	9.46
5	5.563	0.125	7.27			125	141.3	3.18	10.83
5	5.563	0.134	7.78		10	125	141.3	3.40	11.56
5	5.563	0.156	9.02			125	141.3	3.96	13.41
5	5.563	0.188	10.80			125	141.3	4.78	16.09
5	5.563	0.219	12.51	STD	40	125	141.3 141 3	5.56	18.61
2	3.303	0.200	14.03	510	40	123	141.3	0.00	21.//
5	5.563	0.281	15.87			125	141.3	7.14	23.62
5	5.563	0.312	17.51			125	141.3	7.92	26.05
5	5.563	0.344	19.19			125	141.3	8.74	28.57
5	5.563	0.375	20.80	XS	80	125	141.3	9.53	30.97
5	5.563	0.500	27.06		120	125	141.3	12.70	40.28
5	5.563	0.625	32.99		160	125	141.3	15.88	49.12
5	5.563	0.750	38.59	XXS		125	141.3	19.05	57.43

Table 1 Dimensions and Weights of Welded and Seamless Wrought Steel Pipe (Cont'd)

Fuente: (ASME B36.10M, 2015, pág. 4)

Anexo 2.2 Dimensiones comerciales de tubos de acero

Tabla 13: Dimensiones comerciales de tubos de acero

Tubo de acero negro sin costura, tri-norma A53 / ASTM A106 / API 5L grado B x 6 metros de largo.

Desde 1/4" a 11/2" en corte recto, y desde 2" a 24" con extremos biselados.

Esta tubería está destinada a aplicaciones mecánicas y de presión y también es aceptable para usos ordinarios en la conducción de vapor, agua, gas, y las líneas de aire.

Este tipo de tubería es apta para ser soldada y roscada. La vida útil corresponde al uso en condiciones normales para lo que fue fabricada.

TUBERÍA DE ACERO

Fluencia, min

Propiedades Mecánicas

Resistencia a la Tracción, min	60000 PSI (415 MPa)
Fluencia, min	35000 PSI (240 MPa)

Tolerancia	a Dimensional
Espesor mínimo	-12.5% del valor nominal
Peso	+/-10% del valor nominal
Diámetro	1/8" hasta 1 1/2": +/- 1/64"; 2" hasta 24": +/-1% del valor nominal

Diámetre	Dimon	SCH-4	10	SCH	-80	SCH-1	60
Nominal	Exterior	Espesor Nominal	Peso	Espesor Nominal	Peso	Espesor Nominal	Peso
Pulgadas	mm	mm	kg/m	mm	kg/m	mm	kg/m
1/4	13.7	2.24	0.63	3.02	0.80	-	-
3/8	17.1	2.31	0.84	3.20	1.10	-	-
1/2	21.3	2.77	1.27	3.73	1.62	4.78	1.95
3/4	26.7	2.87	1.69	3.91	2.20	5.56	2.90
1	33.4	3.38	2.50	4.55	3.24	6.35	4.24
1 1/4	42.2	3.56	3.39	4.85	4.47	6.35	5.61
1 1/2	48.3	3.68	4.05	5.08	5.41	7.14	7.25
2	60.3	3.91	5.44	5.54	7.48	8.74	11.11
2 1/2	73.0	5.16	8.63	7.01	11.41	9.53	14.92
3	88.9	5.49	11.29	7.62	15.27	11.13	21.35
4	114.3	6.02	16.07	8.56	22.32	13.49	33.54
5	141.3	6.55	21.77	9.53	30.97	15.88	49.12
6	168.3	7.11	28.26	10.97	42.56	18.26	67.57

				M	áxima F	resión	PSI					
				Temperature (°C)								
Medida Nominal	Cédula		Espesor de pared	-67	205	260	350	370	400	430	450	
inch (mm)			(mm)	Maximum Allowable Stress (MPa)								
				137.8	137.8	130.2	117.1	115.7	89.6	74.4	59.9	
	STD	40	5.16	2598	2598	2455	2208	2183	1689	1403	1130	
2 1/2"	XS	80	7.01	3600	3600	3401	3060	3024	2339	1944	1566	
(65)		160	9.53	5020	5020	4745	4267	4217	3264	2711	2184	
	XXS		14.02	7699	7699	7275	6544	6467	5004	4157	3349	
3″ (80)	STD	40	5.49	2256	2256	2171	1918	1895	1466	1218	981	
	XS	80	7.62	3189	3186	3014	2711	2679	2073	1722	1387	
		160	11.13	4798	4798	4533	4077	4029	3118	2590	2087	
	XXS		15.24	6813	6813	6439	5791	5723	4429	3679	2964	
	STD	40	6.02	1913	1913	1808	1626	1607	1243	1033	832	
	XS	80	8.56	2764	2764	2612	2349	2322	1797	1754	1202	
4"		120	11.13	3654	3654	3453	3105	3069	2374	1973	1595	
(100)		160	13.49	4499	4499	4251	3824	3779	2924	2429	1916	
	XXS		17.12	5852	5852	5530	4975	4916	3804	3160	2545	
	STD	40	6.55	1677	1677	1584	1425	1408	1089	905	731	
	XS	80	9.53	2474	2474	2338	2103	2079	1609	1336	1076	
5"		120	12.7	3355	3355	3170	2851	2818	2180	1812	1459	
(120)		160	15.88	4265	4265	4030	3626	3583	2772	2303	1856	
	XXS		19.05	5206	5206	4921	4426	4374	3385	2812	2265	

Fuente: (Fiorella Representaciones SAC, n.d.-c)

Anexo 03: Propiedades específicas del agua

Tabla 14: Propiedades del agua

Temperatura (°C)	Densidad (kg/m³)	Viscosidad dinámica η (10 ⁵ kg/m · s)	$\frac{Viscosidad}{cinemática v}$ $10^{6} \frac{m^{2}}{s} = cSt$
0	999,8	178,7	1,787
2	999,9	167,1	1,671
4	1.000	156,2	1,562
6	999,9	146,4	1.464
8	999,8	137,6	1,375
10	999,7	130,5	1,307
12	999,4	122,6	1,227
14	999,2	116,1	1.163
16	998,9	110,4	1,106
18	998,5	105,2	1,053
20	998,2	100,2	1,0038
22	997,7	95,5	0,957
24	997,2	91,1	0,914
26	996,6	87,2	0,875
28	996,1	83,4	0,837
30	995.7	79,7	0,801
32	994,9	76,4	0,768
34	994,2	74,1	0,745
36	993,4	70	0,705
38	992,8	68	0,685
40	992,2	65,3	0,658
45	990,2	59,8	0,604
50	988	54,8	0,554
55	985,7	50,5	0,512
60	983,2	46,7	0,475
65	980,6	43,4	0,443
70	977,8	40,4	0,413
75	974,8	37,8	0,388
80	971.8	35,5	0,365
85	968.6	33,4	0,345
90	965.3	31,5	0,326
95	961,8	29,8	0,310
100	958,4	28,2	0,295
150	916,9	18,6	0,205
200	864,6	13,6	0,161
250	799,2	10,9	0,14
300	712,4	8,91	0,132

DENSIDAD, VISCOSIDAD DINAMICA Y CINEMATICA DEL AGUA EN FUNCION DE LA TEMPERATURA

Fuente: (Mataix, 1986, pág. 17)

Anexo 04: Diagrama de Moody para tubos de acero

Figura 01: Diagrama de Moody Fuente: (Crane, 2013, pág A-26)

Anexo 05: Dimensiones de reducciones en tubería

Anexo 5.1 Dimensiones estándar de reducciones

Tabla 15: Dimensiones estándar de reducciones

FACTORY-MADE WROUGHT BUTTWELDING FITTINGS

Note (1)

D			Out Diame Be	Outside Diameter at Bevel					Out Diame Be		
Nominal Pipe Size (NPS)	DN		Large End	Small End	End-to-End, H	Nominal Pipe Size (NPS)	DN	I	Large End	Small End	End-to-End, <i>H</i>
4 × 3½	100 ×	90	114.3	101.6	102	5 × 4	125 ×	100	141.3	114.3	127
4 × 3	100 ×	80	114.3	88.9	102	5 × 3 ¹ / ₂	125 ×	90	141.3	101.6	127
4 × 2 ¹ / ₂	100 ×	65	114.3	73.0	102	5 × 3	125 ×	80	141.3	88.9	127
4 × 2	100 ×	50	114.3	60.3	102	$5 \times 2^{1}/_{2}$	125 ×	65	141.3	73.0	127
$4 \times 1^{1}/_{2}$	100 ×	40	114.3	48.3	102	5 × 2	125 ×	50	141.3	60.3	127

TABLE 12 DIMENSIONS OF REDUCERS

Fuente: (ASME B16.9, 2001, pág. 19)

Anexo 5.2 Dimensiones comerciales de reducciones

I u u u I u. Dimensiones comerciales ac reduccione	Tabla I	16:	Dimensiones	comerciales	de	reduccione
--	---------	-----	-------------	-------------	----	------------

MEDIDA	DIÁMETRO EXTERIOR		ESPESOR DE PARED			ESPE	ESPESOR DE PARED T2			PESO APROX (Kg)		
MEDIDA	O.D. 1	O.D. 2	SCH 40	SCH 80	SCH 160	SCH 40	SCH 80	SCH 160	н	SCH 40	SCH 80	SCH 160
4' x 3'	114.3	88.9	6.02	8.56	13.49	5.49	7.62	11.13	101.6	1.45	2.02	3.00
4' x 2 1/2'	114.3	73.0	6.02	8.56	13.49	5.16	7.01	9.53	101.6	1.37	1.90	2.76
MEDIDA	DIÁM	etro Rior	ESPES	OR DE TI	PARED	ESPES	OR DE T2	PARED	FINAL A FINAL	PESC	O APROX	(Kg)
MEDIDA	O.D. 1	O.D. 2	SCH 40	SCH 80	SCH 160	SCH 40	SCH 80	SCH 160	н	SCH 40	SCH 80	SCH 160
5' x 4'	141.3	114.3	6.55	9.53	15.88	6.02	8.56	13.49	127.0	2.50	3.52	5.59
5 x 3	141.3	88.9	6.55	9.53	15.88	5.49	7.62	11.13	127.0	2.27	3,18	5.30

Unidad: Milímetros (mm)

Fuente: (Fiorella Representaciones SAC, n.d.-b)

ASME B16.9-2001

Anexo 06: Dimensiones de tees en tubería

Anexo 6.1 Dimensiones estándar de tees

TABLE 8 DIMENSIONS OF STRAIGHT TEES

Nominal Pipe		Outside		Center-to-End
Size (NPS)	DN	Diameter at Bevel	Run, C	Outlet, <i>M</i> [Notes (1) and (2)]
4	100	114.3	105	105
5	125	141.3	124	124

GENERAL NOTE: All dimensions are in millimeters. NOTES:

- (1) Outlet dimension *M* for NPS 26 (DN 650) and larger is recommended but not required.
- (2) Dimensions applicable to crosses NPS 24 (DN 600) and smaller.

Fuente: (ASME B16.9, 2001, pàg. 11)

Anexo 6.2 Dimensiones comerciales de tees

Tabla 18: Dimensiones comerciales de tees

Fuente: (Fiorella Representaciones SAC, n.d.-b)

Anexo 07: Dimensiones de codos en tubería Anexo 7.1 Dimensiones estándar de codos

Fuente: (ASME B16.9, 2001, pág. 8)

Anexo 7.2 Dimensiones comerciales de codos

	DIÁMETRO	ESPE	SOR DE PAR	ED (T)	CENTRO	PESO (Kg)				
MEDIDA	(OD)	SCH 40	SCH 80	SCH 160	A FINAL (A)	SCH 40	SCH 80	SCH 160		
3.	88.9	5.5	7.6	11.1	114.3	2.04	2.74	3.83		
4'	114.3	6.0	8.6	13.5	152.4	3.84	5.36	8.02		
5'	141.2	6.6	9.5	15.9	190.5	6.48	9.13	14.7		
6.	168.1	7.1	11.0	18.3	228.6	9.94	15.0	24.2		

Unidad: Milimetros (mm)

Fuente: (Fiorella Representaciones SAC, n.d.-b)

Anexo 08: Dimensiones de bridas en tubería

Tabla 21: Dimensiones de bridas

Unidades en mm

Mea Noni	dida minal	Dia. Exterior	Espesor	Dia. del Eje a la	Dia. del Eje a los	Largo a través de	Raised	Dia. de Raised	Dia. de	Dia.	Núm. de	Kqs.
(pulg)	(mm)	de Brida (O)	de Brida (C)	Base (X)	Agujeros (K)	Eje (Y)	Face (RF)	Face (R)	Agujero (B)	Agujeros	Agujeros	Aprox.
2 1/2"	63	177.8	22.3	90.4	139.7	28.4	1.5	104.6	74.6	19.0	4	3.43
3"	75	190.5	23.8	107.9	152.4	30.2	1.5	127.0	90.6	19.0	4	3.87
4~	100	228.6	23.8	134.8	190.5	33.2	1.5	157.2	116.0	19.0	8	5.75
5"	125	254.0	23.8	163.5	215.9	36.5	1.5	185.6	143.7	22.3	8	6.22

	PRI	ESION DE T	RABAJO (PSI)	
TEMPE	RATURA		CLA	SES	
°C	۹F	150	300	600	900
< 38	< 100	285	740	1480	2220
93	200	260	680	1360	2035

Fuente: (Fiorella Representaciones SAC, n.d.-a)

Anexo 09: Detalles y curvas características de bomba centrífuga monobloque Pentax 65-160B

Figura 02: Curvas características de electrobomba

Fuente: (PENTAX, n.d., pág 78)

Anexo 09: Detalles y curvas características de bomba centrífuga monobloque Pentax 65-160B (continuación)

TYPE				Α						() (m³/h	- l/mir	1)					
	п	0	P1	2	0	42	48	54	60	66	72	78	84	96	108	120	132	144
2	F	2	(kW)	3~	0	700	800	900	1000	1100	1200	1300	1400	1600	1800	2000	2200	2400
J~				3x380 V							ц	(m)						
	(HP)	(kW)	3~	60 Hz							п (
65-160 C	12,5	9,2	11,7	19,5	29,8	31,2	31,1	30,8	30,5	30,1	29,6	29	28,3	26,6	24,6	22,1	19,3	16
65-160 B	15	11	13	22,5	33	34,6	34,4	34,2	34	33,7	33,3	32,8	32,1	30,6	28,8	26,7	24,1	21,1
65-160 A1	20	15	15,8	27,6	37,1	38,5	38,3	38,1	37,8	37,5	37,1	36,7	36,1	34,6	32,8	30,7	28,4	25,7
65-160 A	20	15	18	30,0	39,2	40,6	40,6	40,4	40,2	40	39,7	39,4	38,9	37,7	36,2	34,3	32,2	29,8

£1

Tabla 22: Detalles característicos de electrobomba

CARATTERISTICHE COSTRUTTIVE / CONSTRUCTION FEATURES CARACTERÍSTICAS CONSTRUCTIVAS / CARACTÉRISTIQUES D'EXÉCUTION

ISTICAS CONSTRUCTIVAS /	CARACTERISTIQUES D'EXECC
Cuerpo bomba	fundición
Soporte motor	fundición
Rodete	fundición, bronce o acero
Sello mecánico	cerámica-grafito
Eje motor	acero AISI 316
Temperatura del liquído	-10 ÷ +90 °C
Presión de trabajo	max 10 bar

MOTORE / MOTOR / MOTOR / MOTEUR

Motor de 2 polos a inducción 3~ 220/380V - 60Hz 1~ 220V - 60Hz Clase de aislamiento F Grado de protección IP55

nanges					
		DIME	NSIONS	(mm)	
$(\underline{a}, \underline{a})$	DN	n	ĸ	ho	les
			ĸ	n°	ø
	32	140	100	4	18
X	40	150	110	4	18
	50	165	125	4	18
DN	65	185	145	4	18
	80	200	160	8	18
ĸ	100	220	180	8	18
	125	250	210	8	18

ТҮРЕ							DIME	SIONS	6 (mm)							Kg
	DNa	DNm	а	h1	h2	m1	m2	n1	n2	b	х	s	С	в	н	
65-160 C	80	65	100	160	200	125	95	280	212	65	14	14	635	290	360	84
65-160 B	80	65	100	160	200	125	95	280	212	65	14	14	635	290	360	90
65-160 A1	80	65	100	160	200	125	95	280	212	65	14	14	635	290	360	95
65-160 A	80	65	100	160	200	125	95	280	212	65	14	14	705	290	360	120

Fuente: (PENTAX, n.d., pág 78)

Anexo 10: Detalles y curvas características de bomba centrífuga de eje libre Pentax 80-200A

Figura 03: Curvas características de bomba centrífuga de eje libre

Fuente: (Pentax, n.d.-a, pág. 106)

Anexo 10: Detalles y curvas características de bomba centrífuga de eje libre Pentax 80-200A (continuación)

			200			Carlos S	17 18-3	Q (m³/h -	l/min)				Sin	5 20 8	e din
TUDE	Nominal	Motor	0	42	48	60	72	84	96	108	120	132	2	150	168
TYPE	Power (kW)	Size	0	700	800	1000	1200	1400	1600	1800	2000	2200	0	2500	2800
	,,					10000	H (m) / pump inp	out power (k	W)					
80-200B	4	112M 132S	12,8 1,37	13,4 2,50	13,3 2,71	13,0 3,21	12,6 3,52	12,1 3,77	11,5 3,92	10,6 4,10	9,6 4,32	8,3	4,37	6,5 4,49	
80-200A	5,5	132S	15,3 1,59	15,9 3,10	15,8 3,35	15,6 3,72	15,2 3,98	14,8 4,31	14,2 4,58	13,5 4,90	12,5 5,15	11,5	5,37	9,8 5,55	8,5 5,64
	CAF	ATTERISTIC	IE COSTRUTTIV	E / CONSTRUC	TION FEATUR	ES.			flanges		DIMEN		mm)		
	CARACTE	RÍSTICAS CO	INSTRUCTIVAS	/ CARACTÉRIS	TIQUES D'EXÉ	CUTION		1	\sim	/			h	oles	
	Cue	rpo bomba	fundición (CA/CAT	- acero inoxidable	AISI 316 (CAX/CAT)	0		15	a al	DN	D	ĸ	n°	Ø	
	Sop	orte motor	fundición					11	NI I	32	140	100	4	18	
		Rodete	fundición, brance,	acero (CA/CAT) - ac	ero (CAX/CATX)			k k	KX I	40	150	110	4	18	
		Sello	mecămico cerămi	ca grafito (CA/CAX)	-			N		50	165	125	4	18	
			or a trenza algodór	n impregnado de gr	afito (CAF/CAFX)				1-1	65	185	145	4	18	

Tabla 23: Detalles característicos de bomba centrífuga de eje libre

Ele bomba acero AISI 316

MOTORE / MOTOR / MOTOR / MOTEUR

Temperatura del liquido -10 ÷ +90 °C Presión de trabajo max 10 bar

TYPE	DIMENSIONS (mm)															Kg			
	DNA	DNM	а	f	h1	h2	mt	m2	n1	n2	S	b	1	d	t	u	х	W	
80-160	3 X		125	360	180	225	125	95	320	250	14	65	50	24	27	8	140	260	58
80-200	100	00	125	470	180	250	125	95	345	280	14	65	80	32	35	10	140	340	73
80-250	100	00	125	470	200	280	160	120	400	315	18	80	80	32	35,3	10	140	340	82
80-315			125	470	250	315	160	120	400	315	18	80	80	32	35,3	10	140	340	97

Fuente: (Pentax, n.d.-a, pág. 106)

145

160

180 210

18

18

18 18

65

80 100 125

DN.

κ

185

Anexo 11: Características de motor de inducción Weg W22 132S

Tabla 24: Detalles característicos de motor de inducción Weg W22

Fuente: (Weg, n.d.)

Anexo 12: Características de generador síncrono Stamford trifásico PI044D

Tabla 25: Detalles característicos de generador síncrono

						P	10440)				9	STA	MF	OR	D
				Wi	ndin	g 311	/ 0.8 Pc	ower F	acto	r						
						F	RATING	S								
60	Series Star (V)	416	440	460	480	416	440 46	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220023	240	208	220	230	240	208	220	230	240
1 12	Delta (V)	240	254	266	277	240	254 26	8 277	240	254	266	277	240	254	266	277
	kVA	7.5	8.0	8.2	8.5	8.3	8.89.1	9.4	8.9	9.5	9.8	10.1	9.1	9.7	10.0	10.3
	kW	6.0	6.4	6.6	6.8	6.6	7.6 7.3	7.5	7.1	7.6	7.8	8.1	7.3	7.8	8.0	8.2
	Efficiency (%)	79.5	79.6	79.7	79.8	78.9	79 <u>.0</u> 79.	1 79.1	78.3	78.3	78.4	78.5	78.1	78.1	78.2	78.3
	kW Input	7.5	8.0	8.2	8.5	8.4	8.9 9.2	9.5	9.1	9.7	10.0	10.3	9.3	9.9	10.2	10.5
						DI	MENSIC	ONS								
							ŏ									
ľ	- ANG WREN FITTED WIT	Ees	-1					-		SEL (MAC) ETTER WITH	WHEN -	-				
	354		-							457 1948	OVERALL -	-				
	-116 - 20	c. 5		13.									- 1.1			

COUPLI	NG DISC	I-BRG	APAPTOR	1			
SAE	"AN"	SAE	Ø*D*				
6.5	30.2	5	361				
7.5	30.2	6	40.5	8-HOLES	SPACED	AS	12
8	62	3	451	8-HOLES	SPACED	AS	12
10	53.8	2	489				
11.5	39.6						

< 10 KU	AL WE DOW
SAE	Ø "E"
	359
4	406
3	455
2	4.9.3

Fuente: (Stamford, 2010)

Anexo 13: Características comerciales de válvula de pie con canastilla

Connection: ISO 228 On request: ANSI B.1.20.1 (NPT)

Fuente: (Cimberio, 2004)

Nº	Denominación / Name	Material
1	Cuerpo / Body	Fundición GG-20 / cast iron GG-20
2	Eje / Stem	Acero Inox AISI 416 / SS 416
3	Pivote / Pivot	Acero Inox AISI 416 / SS 416
4	Disco / Disc	Acero Inox AISI 316 / SS 316
5	Tapón / Cap	Acero Carbono / Carbon Steel
6	Elastómero / Seat	EPDM
7	Casquillo / Bush	PTFE + Grafito
8	Casquillo / Bush	PTFE + Grafito
9	Tórica / O' ring	NBR
10	Arandela / Washer	Bronze
11	Seguro / Stop Ring	Acero / Steel

Tabla 27: Dimensiones comerciales de válvula mariposa

-

DIMENSIONES GENERALES / GENERAL DIMENSIONS

Ref	Medida/		00.000000		Dim	mensions (mm) Peso	Peso/		
	Size	DN	PN	L	A1	A2	D	P	Weight (kg)
2109 09	2"	50	16	43	200	75	90	216	4.10
2109 10	2 1/2"	65	16	46	200	85	90	216	4.40
2109 11	3"	80	16	46	200	100	90	216	4.80
2109 12	4"	100	16	52	220	120	90	216	6.40
2109 13	5"	125	16	56	250	125	90	216	7.90
2109 14	6"	150	16	56	250	150	125	300	10.30
2109 16	8"	200	16	60	300	150	125	300	15.20
2109 18	10"	250	16	68	330	200	125	300	22.10
2109 20	12"	300	16	78	360	250	150	***	41.50
2109 22	14"	350	10	78	390	260	150	***	57.50
2109 24	16"	400	10	102	420	300	175	***	77.60
2109 26	18"	450	10	114	445	330	175	***	118.50
2109 28	20"	500	10	127	480	370	175	***	151.50

Perdidas de Carga (Cv) según posición del disco / Head losses according disc position:

		Posición del Disco (grados) / Disc Position (degrees)								
DN	90°	80°	70°	60°	50°	40°	30°	20°	10°	
50	144	114	84	61	43	27	16	7	1	
65	282	223	163	107	67	43	24	11	1.5	
80	461	364	267	154	96	61	35	15	2	
100	841	701	496	274	171	109	62	27	3	
125	1376	1146	775	428	268	170	98	43	5	
150	1850	1542	1025	567	354	225	129	56	6	
200	3316	2842	1862	1081	680	421	241	102	12	
250	5430	4525	2948	1710	1076	667	382	162	19	
300	8077	6731	4393	2563	1594	1005	555	235	27	
350	10538	8874	5939	3384	2149	1320	756	299	34	
400	13966	11761	7867	4483	2847	1749	1001	397	45	
450	17214	14496	10065	5736	3643	2237	1281	507	58	
500	22339	18812	12535	7144	4536	2786	1595	632	72	

VALORES DE Cv / Cv VALUES

Cv = Es la cantidad de galones por minuto (gpm) que pasará a través de la válvula generando una perdida de carga de 1 psi. Cv = The rate of flow of water in g.p.m. that will generate a pressure drop of 1 psi across the valve

Fuente: (Genebre, 2011)

Anexo 15: Características comerciales de válvula anti retorno o retención

Tabla 28: Dimensiones comerciales de válvula anti retorno

Características

- 1. Válvula de retención monobloque (sólo hasta 2' y desmontable.
- 2. Construcción en latón forjado s/ UNE-EN 12165.
- 3. Extremos rosca gas (BSP) hembra s/ ISO 228/1.
- 4. Temperatura de funcionamiento:
- Aire: -20° C a 100° C.
- Gas:-20° C a 60° C.
- Agua: 0° C a 90° C
- 5. Presión máxima de trabajo 25/18/12 bar (PN-25/ PN-18/PN-12) (Ver tabla).
- 6. Apta para todo tipo de instalaciones
- industriales, neumáticas e hidráulicas.
- 7. Montaje multiposicional (horizontal, vertical y oblicuo).
- B. Junta de clapeta vulcanizada de NBR.
- 9. Muelle en acero inox. AISI 304

Nº	Denominación / Name	Material	Acabado Superficial / Surface Treatment
1 Cuerpo / Body		Latón / Brass CW617N	Granallado + Mecanizado / Peened + Machining
2	Clapeta / Plate	Latón + NBR / Brass + NBR	Granallado + Mecanizado + Vulcanizado / Peened + Machining + Vulcanized
3	Muelle / Spring	Acero Inox. 304 / Stainless steel AISI 304	-
4	Anillo / Ring	Latón / Brass CW617N	Granallado + Mecanizado / Peened + Machining
	Ref. Medida / Siz B	re Dim DN PN	ensiones / Dimensions (mm) ØA C D Peso / Weight (g)

	incuruu / oizc	DN	DNI Difficitatorica / Difficitatoria (filiti)				
Ref.	В	DN	PN	ØA	C	D	Peso / weight (g)
3121 04	G 1/2"	15	25	30	50	7,5	110
3121 05	G 3/4"	20	25	36,5	57	8,5	175
3121 06	G 1"	25	25	43	65	10,5	260
3121 07	G 1 1/4"	32	18	53	70	11	375
3121 08	G 1 1/2"	40	18	64,5	75,5	12	525
3121 09	G 2"	50	18	79,5	81,5	14	800
3121 10	G 2 1/2"	65	12	104	104	22	1555
3121 11	G 3"	80	12	124	113	23,5	2335
3121 12	G 4"	100	12	155	132	27	3665

Fuente: (Briend, n.d.)

Anexo 16: Características comerciales de unión flexible o de presión (Dresser)

Tabla 29: Dimensiones comerciales de unión flexible

UNION DRESSER

Marca: EATHISA Modelo: UD, DN 80-2000/PN 10-16-25

RANGO

DN

Descripción:

La Unión Dresser, es un adaptador que permite unir por ambos extremos tuberías con extremos lisos, en líneas de conducción de Agua o Desagüe.

Estas Uniones son fabricados en Hierro Dúctil y cumplen con lo indicado según la Norma Técnica Peruana; son aptas para una presión nominal (PN10, PN16, PN25, 150psi, 300psi) o a solicitud del cliente.

PESO

Item	Descripción	Material
1	CUERPO	Hierro Dúctil GGG400-10
2	TUBO	Hierro Dúctil GGG400-10
3	RETENEDOR	Hierro Dúctil GGG400-10
4	O'RING	EPDM/NBR
5	PERNOS	ZINCADO

Pintura: Recubrimiento epóxico en polvo – espesor 250 micras. Interno y externo

Uso:

Unión de Accesorios en redes y cámaras de agua (Potable y Residual).

Certificación: ISO 9001

	mm	L	Cantidad	mm	mm	kgs
50	59 - 78	M12 x 180	2	165	98	3.00
65	72 - 85	M12 x 180	2	185	98	4.00
80	83 - 102	M12 x 180	4	185	98	4.10
100	109 - 128	M12 x 180	4	218	98	4.80
125	132 - 146	M12 x 200	4	250	98	6.30
150	159 - 182	M12 x 200	4	272	98	7.20
175	192 - 210	M12 x 220	4	312	135	12.00
200	218 - 235	M12 x 220	4	335	135	12.50
250	273 - 286	M12 x 220	6	405	135	19.00
300	315 - 328	M12 x 220	8	460	135	22.00
300	322 - 339	M12 x 240	6	435	102	20.40
300	340 - 360	M12 x 240	6	455	102	22.00
300	357 - 368	M12 x 240	8	510	130	31.90
350	374 - 391	M16 x 240	8	510	130	33.00
400	400 - 429	M16 x 240	8	489	130	38.50
400	418 - 435	M16 x 240	8	580	130	39.60
400	425 - 442	M16 x 240	8	580	130	40.70
450	455 - 472	M16 x 240	10	715	130	45.10
450	476 - 493	M16 x 240	10	640	130	47.30
500	527 - 544	M16 x 240	10	690	130	53.90
500	555 - 572	M16 x 240	10	715	130	55.00
500	566 - 583	M16 x 240	10	715	130	55.00
500	582 - 599	M16 x 240	10	715	130	57.20
600	600 - 630	M16 x 260	10	790	130	71.50
600	662 - 679	M16 x 260	10	840	130	77.00
Dimon	ionor on mm			·	No.	A. 10

Fuente: (Eathisa, n.d.)
Anexo 17: Esfuerzos permisibles de materiales para tuberías, planchas, vigas y pernos

Anexo 17.1: Sistema Internacional SI

Tabla 30: Características de materiales SI

2010 SECTION II, PART D (METRIC)

TABLE 1A SECTION I; SECTION III, CLASSES 2 AND 3;* SECTION VIII, DIVISION 1; AND SECTION XII MAXIMUM ALLOWABLE STRESS VALUES *S* FOR FERROUS MATERIALS (*See Maximum Temperature Limits for Restrictions on Class)

Line					Min. Tensile	Min. Min. Tensile Yield trength Strength	Maximum Allowable Stress, MPa (Multiply by 1000 to Obtain kPa), for Metal Temperature, °C, Not Exceedi			
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	MPa	MPa	-30 to 40	65	100	125
16	Carbon steel	Wld. pipe	SA-53	E/A	330	205	80.7	80.7	80.7	80.7
17	Carbon steel	Wld. pipe	SA-53	E/A	330	205	94.5	94.5	94.5	94.5
18	Carbon steel	Wld. pipe	SA-53	E/A	330	205	80.7	80.7	80.7	80.7
19	Carbon steel	Wld. pipe	SA-53	F/A	330	205	56.5	56.5	56.5	56.5
20	Carbon steel	Smls. pipe	SA-53	S/A	330	205	94.5	94.5	94.5	94.5
21	Carbon steel	Smls. pipe	SA-53	S/A	330	205	94.5	94.5	94.5	94.5

Line					Min. Tensile	Min. Yield	Maximum / MPa (Mult for Metal T	Allowable S iply by 100 Temperatur	itress, O to Obtain e, °C, Not I	kPa), Exceeding
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	MPa	MPa	-30 to 40	65	100	125
13	Carbon steel	Plate	SA/EN	P275NH	390	265	111	111	111	111
14	Carbon steel	Bar	SA-36		400	250	114	114	114	114
15	Carbon steel	Plate, sheet	SA-36		400	250	114	114	114	114
16	Carbon steel	Plate, sheet	SA-662	A	400	275	114	114	114	114

TABLE 3 SECTION III, CLASSES 2 AND 3;* SECTION VIII, DIVISIONS 1 and 2;† AND SECTION XII MAXIMUM ALLOWABLE STRESS VALUES *S* FOR BOLTING MATERIALS (*See Maximum Temperature Limits for Restrictions on Class) (†Use with Part 4.16 of Section VIII, Division 2)

Lina					Min. M Tensile Yi	Min. Yield	Maximum Allowable Stress, MPa (Multiply by 1000 to Obtain kPa), for Metal Temperature, °C, Not Exceeding				
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	MPa	MPa	-30 to 40	65	100	125	
- 31	Ferrous Materials	1.15	1								
1	Carbon steel	Bolting	SA-307	В	415		48.3	48.3	48.3	48.3	
2	Carbon steel	Bolting	SA-449	1	620	400	100	100	100	100	
3	Carbon steel	Bolting	SA-325		725	560	139	139	139	139	
4	Carbon steel	Bolting	SA-325	1	725	560	139	139	139	139	
5	Carbon steel	Bolting	SA-449	1	725	560	139	139	139	139	
6	Carbon steel	Bolting	SA-354	BC	795	685	159	159	159	159	

Fuente: (ASME Sec. II Part. D, 2010, pág. 10)

Anexo 17.2: Sistema inglés

Tabla 31: Características de materiales

2010 SECTION II, PART D (CUSTOMARY)

TABLE 1A

SECTION I; SECTION III, CLASSES 2 AND 3;* SECTION VIII, DIVISION 1; AND SECTION XII MAXIMUM ALLOWABLE STRESS VALUES S FOR FERROUS MATERIALS (*See Maximum Temperature Limits for Restrictions on Class)

Line					Min. Tensile	Min. Yield	Maximum A (Multiply by for Metal Te	llowable Str 1000 to Obt emperature,	ess, ksi ain psi), °F, Not Exc	eeding
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	ksi	ksi	-20 to 100	150	200	250
16	Carbon steel	Wid. pipe	SA-53	E/A	48	30	11.7	144	11.7	10
17	Carbon steel	WId. pipe	SA-53	E/A	48	30	13.7		13.7	
18	Carbon steel	Wld. pipe	SA-53	E/A	48	30	11.7	11.7	11.7	
19	Carbon steel	WId. pipe	SA-53	F/A	48	30	8.2		8.2	
20	Carbon steel	Smls. pipe	SA-53	S/A	48	30	13.7		13.7	
21	Carbon steel	Smls. pipe	SA-53	S/A	48	30	13.7	13.7	13.7	

Line					Min. Tensile	Min. Min. Tensile Yield	Maximum Allowable Stress, ksi (Multiply by 1000 to Obtain psi), for Metal Temperature, °F, Not Exceeding			
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	ksi	ksi	-20 to 100	150	200	250
13	Carbon steel	Plate	SA/EN	P275NH	56.5	38.5	16.1	16.1	16.1	44.0
14	Carbon steel	Bar	SA-36	***	58	36	16.6	16.6	16.6	
15	Carbon steel	Plate, sheet	SA-36		58	36	16.6	11.2	16.6	
16	Carbon steel	Plate, sheet	SA-662	A	58	40	16.6	16.6	16.6	

τ.	A 1			-	-	
	n.	ю		-	1	
		-	_	_	~	

SECTION III, CLASSES 2 AND 3;* SECTION VIII, DIVISIONS 1 and 2;† AND SECTION XII MAXIMUM ALLOWABLE STRESS VALUES *S* FOR BOLTING MATERIALS (*See Maximum Temperature Limits for Restrictions on Class) (†Use with Part 4.16 of Section VIII, Division 2)

Line					Min. Tensile Strength	Min. Min. Tensile Yield	Min. Yield	Maximum Allowable Stress, ksi (Multiply by 1000 to Obtain psi), for Metal Temperature, °F, Not Exceeding				
No.	Nominal Composition	Product Form	Spec No.	Type/Grade	ksi	ksi	-20 to 100	150	200	250		
1	Carbon steel	Bolting	SA-307	В	60		7.0	***	7.0	1.540		
2	Carbon steel	Bolting	SA-449	1	90	58	14.5	14.5	14.5	114		
3	Carbon steel	Bolting	SA-325		105	81	20.2		20.2			
4	Carbon steel	Bolting	SA-325	1	105	81	20.2	20.2	20.2			
5	Carbon steel	Bolting	SA-449	1	105	81	20.2		20.2			
6	Carbon steel	Bolting	SA-354	BC	115	99	23.0	23.0	23.0			

Fuente: (ASME Sec. II Part. D, 2010, pág. 10)

Anexo 18: Módulo de elasticidad y relación de Poisson de materiales Anexo 18.1: Sistema Internacional SI

Tabla 32: Valores de materiales SI

TABLE TM-1

MODULI OF ELASTICITY E OF FERROUS MATERIALS FOR GIVEN TEMPERATURES

Modulus of Elasticity $E = Valu$	e Given ×	10 ³ MPa	a, for Ter	nperature	e, °C, of
Materials	-125	-75	25	100	150
Carbon steels with $C \le 0.30\%$	212	209	202	198	195
Carbon steels with C > 0.30%	211	207	201	197	194
Material Group A [Note (1)]	210	207	200	196	193

TΔ	RI	F	P	RI	D	
10	-			1.1	<u> </u>	

POISSON'S RATIO AND DENSITY OF MATERIALS

Material	Polsson's Ratio	Density, kg/m ³
Ferrous Materials		
Carbon steels	0.30	7750
Cast irons	0.29	7200
Low alloy steels	0.30	7750
CME Cas II David D 2010 - 4	10)	

Fuente: (ASME Sec. II Part. D, 2010, pág. 10)

Anexo 18.2: Sistema inglés

Tabla 33: Valores de materiales

TABLE TM-1 MODULI OF ELASTICITY E OF FERROUS MATERIALS FOR GIVEN TEMPERATURES

Modulus of Elasticity $E = Value$	e Given >	< 10 ⁶ psi	i, for Te	mperatu	re, °F, of
Materials	-200	-100	70	200	300
Carbon steels with $C \le 0.30\%$	30.8	30.3	29.4	28.8	28.3
Carbon steels with C > 0.30%	30.6	30.1	29.2	28.6	28.1
Material Group A [Note (1)]	30.5	30.0	29.0	28.5	28.0

2010 SECTION II, PART D (CUSTOMARY) TABLE PRD POISSON'S RATIO AND DENSITY OF MATERIALS

Material	Poisson's Ratio	Density, lb/in. ³
Ferrous Materials		
Carbon steels	0.30	0.280
Cast irons	0.29	0.260
Low alloy steels	0.30	0.280

Fuente: (ASME Sec. II Part. D, 2010, pág. 10)

Anexo 19: Profundidad de rosca para tuberías

Tabla 34: Detalles de rosca para tubería

ASME B1.20.1-2013

				Table 2	Ba	isic Dir	nensio	ns of	Amer	ican Na	tion	al Sta	Indarc	d Tape	r Pipe	Thread	, NPT	.(Cont	(p)				
				Pitch Diameter at Berinning		Hand-tight ingagement	- 70	Effe	ctive Threa External	ŕp	Lengt Plane	h, L ₁ to L ₂ e,	Wrend	th Make-Up	i Length,			N Arall E	ominal Col xternal Th	mplete reads ⁵	E O	Hange N in Di ameter	Basic linor ⁶ ameter at
Nominal	0.D. of Pine	hroade/	Pitch of Thread	of External Thread	Leng J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pitch Diam-	Leng, L ₂	th, ³	Pitch Diam- ater	Exter Three L ₂ -	nal d,		L3	Pitch Diam-	Vanis Threat V	드루	construction external List broad 4	ength, P	itch He iam- thr	ight of T	of Turn	End
Size	0	Inch, n	P	E0	A	Threads	E,	.e	Threads	E3	i,	Threads	Ì	Threads	eter, E ₃	ii.	Ireads	L4	Ľ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	h 0.	0625/n	242
1	2	e	4	5	9	7	88	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1/16	0.3125	27	0.03703704	0.27118 0).1600	4.32	0.28118 0	.2611	7.05	0.28750 0	1011	2.73	0.1111	m	0.26424	0.1285 3	.47 0	3896 0.	1870 0.28	3287 0.02	963 0.0	0231 (0.2415
1/8	0.4050	27	0.03703704	0.36351 0	0.1615	4.36	0.37360 0	0.2639	7.13	0.38000 0	.1024	2.76	0.1111	m	0.35656	0.1285 3	.47 0	3924 0.	1898 0.37	537 0.02	963 0.0	0231	0.3338
1/4	0.5400	18	0.05555556	0.47739 0	0.2278	4.10	0.49163 0	0.4018	7.23	0.50250 0	.1740	3.13	0.1667	ę	0.46697	0.1928 3	.47 0	.5946 0.	2907 0.49	9556 0.04	444 0.0	0347 (0.4329
3/8	0.6750	18	0.05555556	0.61201 0	0.2400	4.32	0.62701 0	0.4078	7.34	0.63750 0	.1678	3.02	0.1667	ŝ	0.60160	0.1928 3	1.47 0	.6006 0.	2967 0.63	0.04	444 0.0	0347 (0.5675
1/2	0.8400	14	0.07142857	0.75843 0	0.3200	4.48	0.77843 0	0.5337	7.47	0.79178 0	.2137	2.99	0.2143	e	0.74504	0.2479	8.47 0	.7815 0.	3909 0.78	\$286 0.05	714 0.0	0446 (0.7014
3/4	1.0500	14	0.07142857	0.96768	06861	4.75	0.98887 0	1.54.57	7.64	1.00178 0.	2067	2.89	0,2143	m	0.95429	0.2479 3	.47 0.	.7935 0.	40.29 0.99	286 0.05	714 0.0	0446 (0.9106
1	1.3150	11.5	0.08695652	1.21363 0	0.4000	4.60	1.23863 0	0.6828	7.85	1.25631 0	.2828	3.25	0.2609	ę	1.19733	0.3017 3	1.47 0	.9845 0.	5089 1.24	1544 0.06	957 0.0	0543	1.1441
$1^{1/4}$	1.6600	11.5	0.08695652	1.55713 0	0.4200	4.83	1.58338 0	0.7068	8.13	1.60131 0	.2868	3.30	0.2609	e	1.54083	0.3017 3	1.47 1	.0085 0.	5329 1.59	044 0.06	957 0.0	0543	1.4876
$1^{1/_{2}}$	1.9000	11.5	0.08695652	1.79609 0	0.4200	4.83	1.82234 0	0.7235	8.32	1.84131 0	.3035	3.49	0.2609	m	1.77978	0.3017 3	8.47 1	.0252 0.	5496 1.83	044 0.06	957 0.0	0543	1.7266
2	2.3750	11.5	0.08695652	2.26902 0	0.4360	5.01	2.29627 0	0.7565	8.70	2.31630 0	.3205	3.69	0.2609	6	2.25272	0.3017	3.47 1	.0582 0.	5826 2.30	1543 0.06	957 0.0	0543	2.1995
$2^{1}/_{2}$	2.8750	00	0.12500000	2.71953 0	0.6820	5.46	2.76216 1	.1375	9.10	2.79063 0.	4555	3.64	0.2500	2	2.70391	0.4338 3	1.47 1	.5712 0.	8875 2.77	500 0.10	000 0.0	0781	2.6195
ę	3.5000	80	0.12500000	3.34063 0	0.7660	6.13	3.38850 1	1.2000	9.60	3.41563 0	4340	3.47	0.2500	2	3.32500	0.4338 3	1.47 1	.6337 0.	9500 3.40	000 0.10	000 0.0	0781	3.2406
$3^{1}/_{2}$	4.0000	8	0.12500000	3.83750 0	0.8210	6.57	3.88881 1	1.2500	10.00	3.91563 0	4290	3.43	0.2500	2	3.82188	0.4338 3	8.47 1	.6837 1.	0000 3.90	000 0.10	000 0.0	0781	3.7374
4	4.5000	œ	0.12500000	4.33438 0	0.8440	6.75	4.38713 1	.3000	10.40	4.41563 0	4560	3.65	0.2500	2	4.31875	0.4338	3.47 1	.7337 1.	0500 4.40	0000 0.10	000 0.0	0781	4.2343
\$	5.5630	00	0.12500000	5.39073 0	0.9370	7.50	5.44929	1.4063	11.25	5.47863 0	.4693	3.75	0.2500	2	5.37511	0.4338	3.47 1	.8400 1.	1563 5.46	300 0.10	000 0.0	0/81	5.2907
9	6.6250	80	0.12500000	6.44609 0	0.9580	7.66	6.50597 1	1.5125	12.10	6.54063 0	5545	4,44	0.2500	2	6.43047	0.4338 3	1.47 1	.9462 1.	2625 6.52	500 0.10	000 0.0	0781	5.3460
00	8.6250	00	0.12500000	8.43359 1	1.0630	8.50	8.50003 1	1.7125	13.70	8.54063 0	6495	5.20	0.2500	2	8.41797	0.4338	8.47 2	.1462 1.	4625 8.52	500 0.10	000 0.0	0781	3.3335
10	10.7500	8	0.12500000	10.54531 1	1.2100	9.68	10.62094 1	1.9250	15.40	10.66563 0	.7150	5.72	0.2500	2	10.52969	0.4338	3.47 2	.3587 1.	6750 10.6	500 0.10	000 0.0	0781 10	0.4453
12	12.7500	00	0.12500000	12.53281 1	1.3600	10.88	12.61781 2	2.1250	17.00	12.66563 0	.7650	6.12	0.2500	2	12.51719	0.4338	3.47 2	.5587 1.	8750 12.6	500 0.10	000	0781 1	2.4328
14	14.0000	00	0.12500000	13.77500 1	1.5620	12.50	13.87263	2.2500	18.00	13.91563 0	.6880	5.50	0.2500	2	13.75938	0.4338	3.47 2	.6837 2.	0000 13.9	000 0.10	000 0.0	0781 1	3.6749
16	16.0000	8	0.12500000	15.76250 1	1.8120	14.50	15.87575 2	2.4500	19.60	15.91563 0	6380	5.10	0.2500	2	15.74688	0.4338	3.47 2	.8837 2.	2000 15.9	000 0.10	000 0.0	0781 1	5.6624
18	18.0000	~	0.12500000	17.75000 2	2.0000	16.00	17.87500 2	2.6500	21.20	17.91563 0	.6500	5.20	0.2500	2	17.73438	0.4338	3.47 3	.0837 2.	4000 17.9	000 0.10	000 0.0	0781 1	7.6499
20	20.0000	00 O	0.12500000	19.73750 2	2.1250	17.00	19.87031	2.8500	22.80	19.91563 0	07250	5.80	0.2500	5 5	19.72188	0.4338	3.47 3	2837 2.	6000 19.9	000 0.10	000	0781 1	9.6374
47	74,0000	0	000005710	7 0071/07	00/07	17.00	5 #KN00*C7	000270	70.00	0 0001607	nc /o.	/ ייט	000270	7	00060.07	00004-0	c /+.c	·c /coo.	C.C2 UUUU	01.0 000		7 10/0	47TO.0

Fuente: (ASME B1.20.1, 2013, pág. 9)

Anexo 20: Características técnicas de angulares de acero

Tabla 35: Dimensiones estándar de angulares

Fuente: (ASTM A6/A6M, 2000, pág. 56)

Tabla 36: Dimensiones técnicas de angulares

w = peso por pie, lbf/ft

m = masa por metro, kg/m A = área, pulg² (cm²)

I = segundo momento de área, pulg4 (cm4)

k = radio de giro, pulg (cm)y = distancia centroidal, pulg (cm)

Z = módulo de sección, pulg3 (cm3)

Tamaño, pulg	w	A	<i>I</i> ₁₋₁	k 1-1	Z ₁₋₁	y	k3-3
$1 \times 1 \times \frac{1}{8}$	0.80	0.234	0.021	0.298	0.029	0.290	0.191
$\times \frac{1}{4}$	1.49	0.437	0.036	0.287	0.054	0.336	0.193
$1\frac{1}{2} \times 1\frac{1}{2} \times \frac{1}{8}$	1.23	0.36	0.074	0.45	0.068	0.41	0.29
$\times \frac{1}{4}$	2.34	0.69	0.135	0.44	0.130	0.46	0.29
$2 \times 2 \times \frac{1}{8}$	1.65	0.484	0.190	0.626	0.131	0.546	0.398
$\times \frac{1}{d}$	3.19	0.938	0.348	906.0	0.247	0.592	0.391
$\times \frac{3}{B}$	4,7	1.36	0.479	0.594	0.351	0.636	0.389
$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4}$	4.1	1.19	0.703	0.769	0.394	0.717	0.491
x 3/8	5.9	1.73	0.984	0.753	0.566	0.762	0.487
$3 \times 3 \times \frac{1}{6}$	4.9	1.44	1.24	0.930	0.577	0.842	0.592
× 3	7.2	2.11	1.76	0.913	0.833	0.888	0.587
$\times \frac{1}{2}$	9.4	2.75	2.22	0.898	1.07	0.932	0.584
$3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{8}$	5.8	1.69	2.01	1.09	0.794	0.968	0.694
× 3	8.5	2.48	2.87	1.07	1.15	1.01	0.687
$\times \frac{1}{2}$	11.1	3.25	3.64	1.06	1.49	1.06	0.683
$4 \times 4 \times \frac{1}{4}$	6.6	1.94	3.04	1.25	1.05	1.09	0.795
× 3	9.8	2.86	4.36	1.23	1.52	1.14	0.788
$\times \frac{1}{2}$	12.8	3.75	5.56	1.22	1.97	1.18	0.782
× 5/8	15.7	4.61	6.66	1.20	2.40	1.23	0.779
6×6×1	14.9	4.36	15.4	1.88	3.53	1.64	1.19
$\times \frac{1}{2}$	19.6	5.75	19.9	1.86	4.61	1.68	1.18
× 5	24.2	7.11	24.2	1.84	5.66	1.73	1.18
× 3	28.7	8.44	28.2	1.83	6.66	1.78	1.17

Fuente: (Budynas & Nisbett, 2008, pág. 988)

Anexo 21: Características técnicas de perfiles en H, ala ancha

Tabla 37: Dimensiones estándar de perfiles en H

					ASIN A 6	A 6M					
					TABLE A2.1	"W" Shapes					
Designation	1					Y X t- y bt	1	-			
(Nominal Dooth in	-		Flat	nge		[Nominal	1.00	1.00	Fla	nge	Web
Inches and Weight in Pounds per Linear Fool)	Area A, īn. ²	Depth d. in.	Width b _r	Thickness Ip,	Web Thickness I _w in ^A	metres and Mass in Kilo- grams per Metre]	Area A, mm ^e	Depth d, mm	Width b _a min	Thick- ness, t _e mm ^A	Thick- ness t _w mm ⁴
W5 X 19 X 16	5.54 4.68 3.83	5.15 5.01 4.16	5.030 5.000 4.060	0.430 0.360 0.345	0.270 0.240 0.280	W130 X 28.1 X 23.8 W100 X 19.3	3 590 3 040 2 470	131 127 106	128 127 103	10.9 9.1 8.8	6.9 6.1 7.1

Actual flange and web thicknesses vary due to mill rolling practices; however, permitted variations for such dimensions are not addressed.

Fuente: (ASTM A6/A6M, 2000, pág. 45)

Tabla 38: Dimensiones técnicas de perfiles en H

PROPIEDADES MECANICAS				FIERRO TRADIS.A.
	F	R	Α	NORMA EQUIVALENTE
NORMA TECNICA	Kg/mm ²	Kg/mm ²	%	
ASTM A-36	25.3 min	41min	20 min	JIS G-3101 SS400
ASTM A-572 GR 50	35.2 min	46min	16 min	DIN 17100 St 52.3
ASTM A-992	35.2 min	46min	18 min	JIS G-3106 SM490 YA

CARACTERISTICAS DE LA SECCION PARA EL DISEÑO

DESIGNACION			EJE X - X	(EJE Y -	Y
	AREA	Ι	S	r	ľ	S	ľ
pulg x in / pie	pulg.2	pulg.4	pulg.3	pulg.	pulg.4	pulg.3	pulg.
4 x 13	3,83	11,3	5,5	1,72	3,86	1,90	1,00
6 x 9	2,86	16,4	5,6	2,47	2,20	1,11	0,905
6 x 12	3,55	22,1	7,3	2,49	2,99	1,50	0,918
6 x 15	4,43	29,1	9,7	2,56	9,32	3,11	1,46
6 x 16	4,74	32,1	10,2	2,6	4,43	2,20	0,967
6 x 20	5,87	41,4	13,4	2,66	13,30	4,41	1,50
6 x 25	7,34	53,4	16,7	2,7	17,10	5,61	1,52

DIMENSIONES Y PESO UNITARIO

DESIGNACION pulg x lb / pie *	AREA DE SECCIÓN A pulg.2	ALTURA d pulg	Al ANCHO bf pulg	A ESPES OR pulg	ESPESOR ALMA tw pulg	PESO Kg/m
4 x 13	3,83	4,16	4,060	0,345	0,280	19,35
6 x 9	2,68	5,90	3,940	0,215	0,170	13,39
6 x 12	3,55	6,03	4,000	0,280	0,230	17,86
6 x 15	4,43	5,99	5,990	0,260	0,230	22,32
6 x 16	4,74	6,28	4,030	0,405	0,260	23,81
6 x 20	5,87	6,20	6,020	0,365	0,260	29,76
6 x 25	7.34	6.38	6.080	0.455	0.320	37.20

Fuente: (Tradisa. Catálogo de producto, 2018)

Y

Anexo 22: Características comerciales de planchas de acero

Tabla 39: Dimensiones comerciales de planchas

Laminados en Caliente BOBINAS LAC / PLANCHAS LAC

DENOMINACIÓN: BLAC A 36, PDLAC A 36.

DESCRIPCIÓN:

Bobinas y Planchas de acero laminadas en caliente con bordes de laminación.

USOS:

Se usa en la fabricación de tubos y perfiles plegados. Asimismo, luego de su corte en planchas, se emplea en la construcción de silos, carrocerías y construcción en general.

NORMAS TÉCNICAS:

DESIGNACIÓN	NORMAS TÉCNICAS
Estructural	ASTM A36

DIMENSIONES NOMINALES:

BOBINAS LAMINADAS EN CALIENTE BLAC A36
1.5 x 1200 mm
1.8 x 1200 mm
1.9 x 1200 mm
2.0 x 1200 mm
2.2 x 1200 mm

PLANCHAS DELGADAS LAMINADAS EN CALIENTE PDLAC A36
1.5 x 1200 x 2400 mm
1.8 x 1200 x 2400 mm
1.9 x 1200 x 2400 mm
2.0 x 1200 x 2400 mm
2.2 x 1200 x 2400 mm
2.3 x 1200 x 2400 mm
2.5 x 1200 x 2400 mm
2.9 x 1200 x 2400 mm
4.0 x 1200 x 2400 mm
4.5 x 1200 x 2400 mm
5.9 x 1200 x 2400 mm

ANÁLISIS QUÍMICO DE COLADA (%):

CALIDAD ASTM	%С	%Mn MÁX.	% P MÁX.	%S MÁX.	% Si MÁX.
A36	0.25 máx	0.8 - 1.20 (e< 3/4")	0.040	0.050	0.40

PROPIEDADES MECÁNICAS:

CALIDAD	NORMA ASTM	LÍMITE DE FLUENCIA (kg/cm²)	RESISTENCIA A LA TRACCIÓN (kg/cm²)	ALARGAMIENTO (%) en 50 mm	DOBLADO
Estructural	A36	2,550	4,080-5,610	20 mín.	a 180° (opcional) Diámetro Pin = 3e Sentido Laminación

TOLERANCIAS DIMENSIONALES: Según JIS G3193

			TOL	ERAN	CIAS (MM)		
ESPESOR			ANC	ю		ESPE	SOR
(mm)	CAMBER	APLANADO	≤1200	1500	LONGITUD	ANCHO 1200	ANCHO 1500
1.8 -1.9		18 máx				± 0.19	± 0.23
2.0 - 2.4	10 mm/m	18 máx	+30	+ 35	+ 25	± 0.20	± 0.25
2.5 - 3.0	máx	18 máx	- 0	- 0	- 0	± 0.22	± 0.29
4.0 - 5.9		14 máx				± 0.45	± 0.55

Fuente: (Aceros Arequipa, 2016)

Anexo 23: Características comerciales de perfiles en C

Tabla 40: Dimensiones comerciales de perfiles en C

Descripcion: Perfiles que son conformados ya sea por plegado en una prensa mediante un Proceso de perfilado Continuo (Roll Forming). Así obtenemos los perfiles U, C, Z.

Usos: Construcción de edificios industriales, comerciales, de servicios y en general donde se requiera la edificación de una estructura liviana de alta resistencia y rápida instalación.

DIMENSIONES Y PROPIEDADES PARA DISEÑO

					Area	E	ije X - X	X	E	ije Y - Y	'		
Designación	D	в	t	Peso	(A)	I	S	r	I	S	r	x	eo
	mm	mm	mm	Kg/m	cm2	cm4	cm3	cm	cm4	cm3	cm	cm	cm
	76,2	38,1	4,5	4,86	6,19	51,89	13,62	2,89	8,45	3,19	1,17	1,16	1,12
	76,2	38,1	3	3,36	4,28	37,66	9,88	2,97	6,04	2,22	1,19	1,09	1,22
U 3" x 1 1/2"	76,2	38,1	2,5	2,83	3,6	32,26	8,47	2,99	5,15	1,88	1,2	1,07	1,26
	76,2	38,1	2,3	2,62	3,33	30,01	7,88	3	4,78	1,74	1,2	1,06	1,27
	76,2	38,1	2	2,29	2,92	26,52	9,96	3,02	4,21	1,52	1,2	1,04	1,29
	50,8	25,4	3	2,16	2,75	10,25	4,4	1,93	1,67	0,95	0,78	0,77	0,75
11.0" v 1"	50,8	25,4	2,5	1,83	2,33	8,92	3,51	1,95	1,44	0,8	0,79	0,75	0,78
02 X 1	50,8	25,4	2,3	1,7	2,16	8,34	3,28	1,96	1,34	0,75	0,79	0,74	0,79
	50,8	25,4	2	1,49	1,9	7,44	2,93	1,98	1,19	0,66	0,79	0,73	0,82

Fuente: (Tradisa. Catálogo de producto, 2018)

Anexo 24: Características comerciales de fajas de V

Tabla 41: Dimensiones comerciales de fajas en V

) D	UNLOP	
						TABLA Nº 6	Ø
Tabla Nº 6	-		Longitud	primitiva nominal		_	
Correa (in)	Seactón Z (mm)	-Sección A (mm)	Sección B (mm)	Sección C:(mm)	Secsión D. (mm).	Sección E (mm)	
41	1066	1075	1086	-	-		
42	1092	1106	1100				
43	1117	1134	1140				
44	1143	1153	1156	1191		-	
45	1168	1186	1184	1217		-	
46	1193	1199	1204	1242			
47	1219	1232	1237	1267			
48	1244	1262	1268	1293			
49	1270	1280	1288	1318			
50	1295	1306	1318	1344		-	
51	1320	1330	1328	1357		-	
52	1346	1354	1367	1394			
53	1371	1381	1392	1429			
54	1397	1405	1410	1442		-	
55	1422	1429	1443	1460		-	
56	1447	1459	1460	1497			
57	1473	1492	1491	1527		-	
58	1498	1507	1512	1550		-	
59	1524	1532	1541	1576		-	
60	1549	1556	1556	1598			
61		1584	1601	1623			
62		1605	1626	1648			
63		1633	1641	1674			
64		1658	1674	1699		-	
65		1683	1695	1725		-	
66		1714	1724	1745			
67		1742	1743	1775			
68		1767	1770	1788			
69		1785	1794	1826			
70		1813	1818	1847			
71	-	1841	1846	1877			
72	-	1862	1878	1897			
73		1887	1900	1928		-	
74		1913	1924	1953			
75		1937	1947	1979			
76		1963	1973	1989			
77		1000	1000	0045			

Fuente: (Dunlop, n.d.)

Anexo 25: Características comerciales manómetros analógicos

Fuente: (Wika, 2009)

Anexo 26: Especificaciones de soldadura

Figura 05: Intermitencia de cordón de soldadura para elementos de refuerzo Fuente: (ASME Sec. VIII Div. 1, 2013, pág. UG-30)

Figura 06: Detalle de soldadura brida-tubo Fuente: (ASME B31.1, 2016, pág. 87)

Figura 07: Bisel V de soldadura a tope de tuberías Fuente: (Nayyar, 2000, pág. A100)

Anexo 27: Especificaciones de selección bridas y empaques

Tabla 42: Materiales para bridas

an and		Pressure-	Appli	cable ASTM Specifications	[Note (1)]
Material Group	Nominal Designation	Temperature Rating Table	Forgings	Castings	Plates
1.1	C-Si	2-1.1	A 105	A 216 Gr. WCB	A 515 Gr. 70
	C-Mn-Si	2.1.1	A 350 Gr. LF2		A 516 Gr. 70
	C-Mn-Si	2-1.1			A 537 Cl. 1

Fuente: (ASME B16.5, 2009, pág. 4)

Tabla 43: Clasificación presión-temperatura para clase de brida

Nominal Designation		tion Forgings		Ca	stings	Plates		
C-Si		A 105 (1)		A 216 WC	A 216 Gr. WCB (1)		A 515 Gr. 70 (1)	
C-Mn-Si C-Mn-Si-V 3¹⁄₂Ni		A 350 Gr. LF	2 (1)			A 516 Gr. 70 (1), (2)		
		A 350 Gr. LF	6 Cl 1 (3)			A 537 Cl. 1 (4)		
		A 350 Gr. LF	3					
(Wor	king Pressur	e by Classes,	bar			
1.00	1.00			Class			0-12	
Temp., °C	150	300	400	600	900	1500	2500	
-29 to 38	19.6	51.1	68.1	102.1	153.2	255.3	425.5	
50	19.2	50.1	66.8	100.2	150.4	250.6	417.7	

Fuente: (ASME B16.5, 2009, pág. 23)

Tabla 44: Materiales para pernos de brida

H	ligh Strengt [Note (2)]	th	Inte	ermediate Stre [Note (3)]	ngth		Low Strength [Note (4)]		Nick	el and Speci [Note (5)]	al Alloy
Spec. No.	Grade	Notes	Spec. No.	Grade	Notes	Spec. No.	Grade	Notes	Spec. No.	Grade	Notes
A 193	B7		A 193	B5		A 193	B8 Cl.1	(6)	B164		(7)-(9)
A 193	B16		A 193	B6		A 193	B8C Cl.1	(6)			
A 193	B16		A 193	B6X		A 193	B8M Cl.1	(6)	B166		(7)-(9)
A 320	L7	(10)	A 193	B7M		A 193	B8T Cl.1	(6)			

Fuente: (ASME B16.5, 2009, pág. 8)

Tabla 45: Detalles de empernado para bridas

Tamaño pulgadas	Diametro de circulo	Número de persos	Diámetro de perso	Diámetro de agujero	Largo de perso
		Cla	se 125		
1	314	4	\$6	96	1%
114	31/2	4	16	96	2
11/2	3%	4	34	56	2
2	4%	4	89.	34	21/4
21/2	51%	4	56.	54	216
3	6	4	36	14	215
31/2	7	8	36	14	2%
4	7%	8	- 84	94	3
5	81/2	8	- 14	76	3
6	914	8	34	36	314
8	1134	8	34	36	31/2
10	14%	12	76	1	3%

Fuente: (Nayyar, 2000, pág. A90)

Tabla 46: Materiales para empaque de brida

Group Number	Gasket Material	Sketches
la	Self-energizing types: O rings, metallic, elastomer, other gasket types considered as self-sealing	
	Elastomer without fabric	0
	Compressed sheet suitable for the operating conditions	6
	Ruoropolymer, elastomer with cotton fabric insertion	6

Fuente: (ASME B16.5, 2009, pág. 201)

Anexo 28: Especificaciones de montaje de válvulas y bridas

Figura 08: Disposición de válvulas en instalación de bomba centrífuga Fuente: (Goulds, n.d., pág. 54)

Figura 09: Recomendación para succión de agua Fuente: (Weinman, 2006, pág. 8)

Tabla 47: Tipos y aplicaciones de válvulas

		Service/I	Function	
Valve type	Isolation or stop	Throttling	Pressure relief	Directional change
Gate	yes	no	no	no
Globe	yes	yes	no	yes (note 1)
Check	note 2	no	no	no
Stop check	yes	no	no	no
Butterfly	yes	yes	no	no
Ball	yes	note 3	no	yes (note 4)
Plug	yes	note 3	no	yes (note 4)
Diaphragm	yes	no	no	no
Safety/relief	no	no	yes	no

Notes:
1. Only angle-globe valves can be used for a 90-degree change in direction of flow.
2. Check valves (other than the stop-check valves) stop flow only in one (reverse) direction. Stop-check valves can be and are used as stop, block, or isolation valves, in addition to being used as a check valve.
3. Some devices of bull and plue valves (contact the valve meanifecture) or utilable for the difference.

3. Some designs of ball-and-plug valves (contact the valve manufacturer) are suitable for throttling service.

4. Multiport ball-and-plug valves are used for changing the direction of flow and mixing flows.

Fuente: (Nayyar, 2000, pág. A527)

Figura 10: Tolerancias de ensamble entre bridas Fuente: (ASME PCC-1, 2013, pág. 50)

Tabla 48: Designación d	e clases y presión	PN para válvulas
-------------------------	--------------------	------------------

Class	150	300	400	600	900	1500	2500
PN	20	50	-68	110	150	260	420

Fuente: (Nayyar, 2000, pág. A.6)

Anexo 29: Especificaciones de norma ACI para cimentación de máquinas

Design loads	Load classification
Weight of structure, equipment, internals, insulation, and platforms Temporary loads and forces caused by erection Fluid loads during testing and operation Thermal loads Anchor and guide loads	Dead
Platform and walkway loads Materials to be temporarily stored during maintenance Materials normally stored during operation such as tools and maintenance equipment Vibrating equipment forces Impact loads for hoist and equipment handling utilities	Live
Earthquake loads Transportation loads Snow, ice, or rain loads Wind loads	Environmental

Tabla 49: Clasificación de cargas

Fuente: (ACI 351.3R-18, 2018, p. 18)

Tabla 50: Fórmulas adicionales para cálculo de bloque de cimentación

Definición	Fórmula
Momento a partir de potencia y velocidad de	MT_{-} (9550)(P_{s}) N m
operación	$M = \frac{f_o}{f_o}$ Num
Coeficiente de rigidez para movimiento	Vertical: $k = \frac{4}{GR}$
vertical	$(1-v)^{OR}$
Coeficiente de amortiguamiento para	$c_i = 2D_i \sqrt{k_i m}$ or $c_i = 2D_i \sqrt{k_i I_i}$
movimiento vertical	
Frecuencia no dimensional	$a_o = R \cdot \omega_m / V_s = R \cdot \omega_m \cdot \sqrt{\rho / G}$
Coeficientes de rigidez vertical (parte real) y	Vertical impedance: $k_{ev}^* = G_s l[S_{v1} + i \cdot a_o \cdot S_{v2}]$
amortiguamiento (parte imaginaria) para	
bloque enterrado.	

Fuente: (ACI 351.3R-18, 2018)

Motion	Soil	Side	layer	Half space			
Television 1	Cohesive	$S_{u1} = 4.1$	$S_{u2} = 10.6$	$C_{u1} = 5.1$	$C_{u2} = 3.2$		
Horizontal	Granular	$S_{u1} = 4.0$	$S_{n2} = 9.1$	$C_{u1} = 4.7$	$C_{\mu 2} = 2.8$		
Rocking	Cohesive	$S_{\rm W1} = 2.5$	$S_{\psi 2} = 1.8$	$C_{\psi 1} = 4.3$	$C_{\psi 2} = 0.7$		
	Granular	$S_{\psi 1} = 2.5$	$S_{\psi 2} = 1.8$	$C_{\psi 1} = 3.3$	$C_{\psi 2} = 0.5$		
-	Cohesive	$S_{\eta 1} = 10.2$	$S_{\eta 2} = 5.4$	$C_{\eta 1} = 4.3$	$C_{\eta 2} = 0.7$		
Torsion	Granular	$S_{\eta 1} = 10.2$	$S_{\eta 2} = 5.4$	$C_{\eta 1} = 4.3$	$C_{\eta 2} = 0.7$		
Tanting	Cohesive	$S_{v1} = 2.7$	$S_{v2} = 6.7$	$C_{\nu 1} = 7,5$	$C_{v2} = 6.8$		
Vertical	Granular	$S_{v1} = 2.7$	$S_{v2} = 6.7$	$C_{v1} = 5.2$	$C_{v2} = 5.0$		

Tabla 51: Parámetros de rigidez y amortiguamiento del suelo

Fuente: (ACI 351.3R-18, 2018, p. 26)

	JADO P	UR IGUEL GUSTIN CAMACHO		FECHA			
		DISPOSICIÓN GENER PRUEI	RAL DE BA BAS B	NCO D	E	ESCALA 1:11	
		UNIVERSIDAD NACIONAL SAN A ESCUELA PROFESIONAL DE	NTONIO A INGENIERÍA	ABAD DI A MECÁN	EL CU ICA	ISCO	
POS	CAN	DESCRIPCIÓN	MOD	ELO	OBS	ERVACIONES	
1	01	BOMBA CENTRÍFUGA MONOBLOQUE	E PENTAX	65-160B			
2	01	BOMBA CENTRÍFUGA DE EJE LIBRE	PENTAX	80-200A			
3	01	MOTOR DE INDUCCIÓN	WEG W22	2 132S			
4	01	TURBINA MICHELL BANKI					
5	01	GENERADOR SÍNCRONO					
6	01	RESERVORIO RECTANGULAR				PFE-01, 02 v 03	
7	01	BLOQUE DE CIMENTACIÓN			PFE-04		
8	01	MARCO BASE DE BOMBA CENTRÍFUGA MONOBLOQUE				PFE-05	
9	01	VIGAS PARALELAS DE GRUPO NO CONVENCIONAL				PFE-06	
10	01	MARCO BASE DE MOTOR DE INDUCCIÓN				PFE-05	
11	01	VIGAS PARALELAS DE GRUPO CONVENCIONAL				PFE-07	
12	01	MARCO BASE DE TURBINA MICHELL BANKI			PFE-08		
13	01	<i>MARCO BASE DE GENERADOR SÍNCRONO</i>			PFE-08		
14	01	VÁLVULA DE PIE ANTI RETORNO	CIM - D	N100			
15	01	TUBERÍA DE SUCCIÓN TRAMO 01				PFE-01	
16	03	VÁLVULA MARIPOSA WAFFR	GV - D	GV - DN100			
17	01	ΤUBERÍA DE SUCCIÓN ΤΡΔΜΟ 02					
19 18	01	TUBERÍA DESCARGA TRAMO 01		V 100	 PFT_01		
20 10	01	ΥΔΊ ΥΙ ΙΙ Δ ΔΝΤΙ ΡΕΤΟΡΝΟ ΡΟΘΟΛΟΛ		N 100			
21	01	TUBERIA DESCARGA TRAMO 03				PET 01	
22	01	UNION FLEXIBLE (DRESSER)	RV - DI	N 100		 DET 01	
23	01	TUBERIA DESCARGA TRAMO 04		1 4 0 0		PF1-02	
24	01	TUBERIA DESCARGA AUXILIAR				PFT-02	
25	01	TUBERIA DESCARGA TRAMO 05				PFT-02	
26	02	ELECTRO VÁLVULA MARIPOSA WAFER	GENE DN1	BRE- 100			
27	01	TUBERÍA HACIA BFT TRAMO 01		-		PFT-03	
28	02	UNIÓN FLEXIBLE (DRESSER)	ROLANI - DN	/ALVE 125			
29	01	TUBERÍA HACIA BFT TRAMO 02				PFT-03	
30	02	VÁLVULA MARIPOSA WAFER	HGV-D	N125			
31	01	TUBERÍA HACIA BFT TRAMO 03				PFT-03	
32	01	TUBERÍA DE SALIDA DE BFT				PFT-03	
33	01	TUBERÍA HACIA TURBINA MICHELL BANKI TRAMO 01		-		PFT-03	
34	01	TUBERÍA HACIA TURBINA MICHELL BANKI TRAMO 02		-		PFT-03	

POS: 7		
	FECHA	FORMATO
	17/06/2020	A3
	FECHA REVISIÓN	HOJA
	/06/2020	PFE-04

CO BASE	E DE						
DBLOQUE	Ē			(2)			
)		
			\gg				
	\sim	>	$\langle \rangle$	\bigcirc			
\sim		\searrow	Ì	\checkmark			
		Ì	\succ		\geq		
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$							
	3						
		٨٩٢	-				
λΑ DE ΙΜΑ ΠΠΓΟΙΟΙ	чкс <i>о 6/</i> V	4 <i>3E</i>					
A 0000101	•			3			
				J			
	\searrow						
		Ś					
		\searrow	Ì				
NO			>	\geq			
) / /	//			\geq			
	No.						
	ASTI	ИАЗ	36				
	ASTI	ИАЗ	36				
	ASTI	N A3	36				
	MAT	ERI	AL	OBS	ERVACIONES		
LA GENE	RAI			MAT	FRIAI		
	MEDIO						
N ANTO	NIO AE	BAD	DEL		CO		
. DE INGE	ENIERIA	ME	CAN	ICA			
E BOMB	A CEN	TRÍ	FUG	A	ESCALA:		
E MOTO	OR DE	IND	UCC	ΟÍÓΝ	1:7		
DS: 8, 10							
2					FORMATO		
		FEC	HA		FORMATO		
		FEC 17/0	HA 6/2020		FORMATO A3		
		FEC 17/0 FEC	HA 6/2020 HA RE ^V	VISIÓN	FORMATO A3 HOJA		

Image: Additional and the second s						
	ASTI	ИA.	36			
	ASTI	ИA.	36			
	MAT	ER	IAL	OBS	ERVACIONES	
				MATERIAL		
n an i O . De ingi	NIO AE ENIERÍA	SAL ME	DEL ECÁN	L CUS ICA		
LELAS DE GRUPO NVENCIONAL POS: 9			0		ESCALA: 1:10	
		FE0	CHA 06/2020		FORMATO A3	
		FE0	CHA RE\ 2020	/ISIÓN	HOJA PFE-06	

VISTA ISOMÉTRICA PARA GRUPO

Nota 1: Todas las soldaduras se realizan on electrodo E7018 Nota 2: Luego de la soldadura, realizar ensayo visual VT y de lquidos penetrantes PT.							
	ASTI	ИA	36				
	ASTI	ИA	36				
	MAT	ERI	AL	OBS	ERVACIONES		
CIA GENE	RAL - MEDIO			MA SEGÚ	FERIAL IN INDICA		
N ANTO . DE INGI	NIO AE ENIERÍA	BAC Me) DEI ECÁN	L CUS	CO		
LELAS /ENCIO POS: 11	DE GR NAL	UP	0		ESCALA: 1:8		
		FEC 17/0	CHA 06/2020		FORMATO A3		
		FEC /06/2	CHA RE\ 2020	/ISIÓN	HOJA PFE-07		

ASTM A36							
	ASTM A	36					
	ASTM A	36 IAL	OBS	 ERVACIONES			
CIA GENE	ASTM A MATER	36 IAL	OBS MA ^T SEGÚ	 ERVACIONES FERIAL JN INDICA			
CIA GENE DIN 7168 - N ANTO DE INGE	ASTM A MATERI RAL MEDIO NIO ABAE ENIERÍA ME	36 IAL D DEI ECÁN	OBS MAT SEGÚ L CUS ICA	 ERVACIONES FERIAL IN INDICA			
CIA GENE DIN 7168 DIN 7168 DE INGE TURBIN RADOR S OS: 12,13	ASTM A MATER RAL MEDIO NIO ABAE ENIERÍA ME A MICHEI SÍNCRON	36 IAL D DEI ECÁN L BA O	OBS MA ^T SEGÚ L CUS ICA	ERVACIONES FERIAL JN INDICA CO ESCALA: 1:5			
CIA GENE DIN 7168 - N ANTO DE INGE TURBIN RADOR S DS: 12,13	ASTM A MATER RAL MEDIO NIO ABAE ENIERÍA ME A MICHEI SÍNCRON	36 AL D DEI ECÁN LL BA O	OBS MA ^T SEGÚ L CUS ICA	 ERVACIONES ERIAL JN INDICA CO ESCALA: 1:5			
CIA GENE DIN 7168 - N ANTO DE INGE TURBIN RADOR S DS: 12,13	ASTM A MATERI RAL MEDIO NIO ABAE NIERÍA ME A MICHEI SÍNCRON	36 AL D DEI ECÁN LL BA O CHA D6/2020 CHA REV	OBS MAT SEGÚ L CUS ICA ANKI	ERVACIONES FERIAL IN INDICA CO ESCALA: 1:5 FORMATO A3 HOJA			

		0 0 2		1		
		0.	8 A			
0.15 m	AS	ТМ	53			
	AS7	ΓM 2	234			
	AST	TM 1	105			
	AST	TM 1	105			
	AST	TM 2	234			
0.1 m	AS	ТΜ	53			
	AST	TM :	105			
ONGITUD	MAT	FER	IAL	OBS	ERVACIONES	
CIA GENER	AL IEDIO			MATERIAL SEGÚN INDICA		
N ANTON	IO AE NERÍA	BAD Me) DEI ECÁN	_ CUS ICA	СО	
CIÓN Y D BERÍAS 17, 18, 20, 2	ESCA	ARC	ga d	E	ESCALA: 1:6	
		FEC	HA		FORMATO A3	
		FEC	CHA RE\ 2020	A3 VISIÓN HOJA PET_01		

0.15 m	AS	TΜ	53				
	ASTM 234						
2.0 m	ASTM 53						
	AST	TM 2	234				
	AST	TM 2	234				
0.1 m	AS	TΜ	53				
	AST	TM 1	105				
0.6 m	AS	TM	53				
	ASTM 234						
	ASTM 105						
0.5 m	ASTM 53						
	ASTM 234						
0.05 m	AS	TM	53				
ONGITUD	MAT	ER	IAL	OBSERVACIONES			
IA GENER	AL			MATERIAL			
DIN 7168 - N	IEDIO			SEGÚ	SEGÚN INDICA		
N ANTON DE INGEN	IO AE NERÍA	BAD ME	DEI CÁN	L CUS	CO		
BERÍA DE		SCA	RGA	\	ESCALA:		
: 23, 24, 25	5				1:20		
		FEC	CHA		FORMATO		
		17/0	6/2020		A3		
		FEC /06/2	CHA RE\ 2020	/ISION	HOJA PFT-02		

 ○ 0.8 E ⊥ 1. ⊥ 1.0 			371	46/		
- 0.8	F		6/	<u> </u>		
0.2 m	ASTM	53				
0.6 m	ASTM	53				
	ASTM	234				
	ASTM	105				
	ASTM	234				
	ASTM	105				
0.15 m	ASTM	53				
0.2 m	ASTM	234				
0.1 m	ASTM	53				
	ASTM	234				
	ASTM	105				
ONGITUD	MATER	IAL	OBS	ERVACIONES		
CIA GENER	AL IEDIO		MATERIAL SEGÚN INDICA			
N ANTON	IO ABAD IIERÍA ME) DEL ECÁN	L CUS	CO		
ERÍA HAC MICHELL 29, 31, 32, 3	IA BFT N BANKI 3, 34	/ HA	CIA	ESCALA: 1:15		
	FEC	CHA		FORMATO A3		
	FE0 /06/	CHA RE\ 2020	/ISIÓN	HOJA PFT-03		

	6)	17)						
	19	05	PERNO	EN U 1/2 Ø 5 PULGADAS	ASTM	A325		
	18	02	PERNO	EN U 1/2 Ø 4 PULGADAS	ASTM	A325		
	17	64	TUERCA	1/2 Ø	ASTM	A325		
	16	64	ARANDE	LA DE PRESIÓN 1/2 Ø	ASTM	A325		
	15	128	ARANDE	LA PLANA 1/2 Ø	ASTM	A325		
	14	50	PERNO	1/2 Ø 2 PULGADAS	ASTM	A325		
	13	18	TUERCA	5/8 Ø	ASTM	A325		
	12	18	ARANDE	LA DE PRESIÓN 5/8 Ø	ASTM	A325		
	11	18	ARANDE	ELA PLANA 5/8 Ø	ASTM	A325		
	10	10	PERNO	ANCLAJE 5/8 Ø 7 PULGADAS	ASTM	A325		
	9	01	EMPAQL	JE 4 PULGADAS Ø	ELASTÓ	MERO		
	8	01	EMPAQL	JE 5 PULGADAS Ø	ELASTÓ	MERO		
	7	01	EMPAQL	IE 2.5 PULGADAS Ø	ELASTÓ	MERO		
	6	02	EMPAQL	IE 3 PULGADAS Ø	ELASTÓ	MERO		
	5	84	TUERCA	5/8 Ø	ASTM	4 <i>193</i>		
	4	84	ARANDE	LA DE PRESIÓN 5/8 Ø	ASTM	4 <i>193</i>		
	3	168	ARANDE	TLA PLANA 5/8 Ø	ASTM	4 <i>193</i>		
	2	28	PERNOS	5/8 Ø 3 PULGADAS	ASTM	4 <i>193</i>		
	1	56	PERNO	5/8 Ø 7 PULGADAS	ASTM	4 <i>193</i>		
	POS	CAN		DESCRIPCIÓN	MATE	RIAL	OBS	ERVAC
			UNIVER	SIDAD NACIONAL SAN AN	ITONIO A	BAD DE	EL CU	SCO
	MÉTO	DO DE P	ROYECCIÓN			BANCO	DF	ESCA
10	¢	✐ -		PRUEB POS	AS			1:
			OR IGUEL GI	JSTIN CAMACHO		FECHA		FORMA
	REVI	SADO P	OR AR A. CAT	ACORA ACEVEDO		FECHA REV /06/2020	/ISIÓN	HOJA PEG-01

OBSERVACIONES

ESCALA

FORMATO

1:15