UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS: "ANÁLISIS Y DETERMINACIÓN DE LA CORRELACIÓN ENTRE EL MÓDULO DE ROTURA Y EL ESFUERZO A LA COMPRESIÓN AXIAL PARA PAVIMENTOS RÍGIDOS CON AGREGADOS DE LAS CANTERAS DE HUILLQUE, HUAMBUTIO Y PISAC – 2017"

PRESENTADO POR:

BACH. MILDER QUISPE ALTAMIRANO
BACH. WILZOHON QUISPE YUCA

COMISIÓN DICTAMINADORA:

Ing°. JORGE IVAN CRUZ TELLO

M.Sc. Ing°. SANDRO VIRGILIO GUTIERREZ SAMANEZ

Ing°. LUZ MARLENE NIETO PALOMINO

TESIS PRESENTADA PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO CIVIL

CUSCO 2021

RESUMEN

El presente trabajo de investigación tiene como propósito determinar la correlación que existe entre el módulo de rotura (MR) o esfuerzo a flexo tracción y el esfuerzo a la compresión axial (f'c) del concreto, elaborado con tres de las canteras de agregados gruesos más utilizadas en la ciudad del Cusco. Las canteras seleccionadas para el presente estudio fueron: Huillque, Huambutio y Pisac. Esto con el objetivo de verificar los diseños de pavimento rígidos, en el cual es muy común asumir valores de MR de la ecuación del ACI 363 $MR = k * \sqrt{f'c}$, donde (k=1.99-3.18) ó de MR = (10% - 20%) * (f'c)

Se realizaron ensayos de laboratorio para conocer las características físicas, mecánicas y químicas de los agregados, para con esto, proceder con la elaboración en total de 216 muestras entre prismáticas de 15x15x50cm y cilíndricas de 6"x12" de las tres canteras de estudio para las relaciones agua/cemento; 0.60, 0.55, 0.50, 0.45, 0.40 y 0.35, siendo ensayadas en laboratorio a compresión axial y a flexión respectivamente para encontrar los valores de MR y f'c.

Los resultados encontrados para las correlaciones entre MR y f'c son aproximadas a las establecidas por el ACI 363 y otros autores. Basados en la ecuación del ACI 363 se han determinado las siguientes correlaciones: Huillque $MR = 1.97 * \sqrt{f'_c}$, Huambutio $MR = 1.98 * \sqrt{f'_c}$ y Pisac $MR = 2.12 * \sqrt{f'_c}$; resultando la correlación de la cantera de Pisac la mejor en cuanto a un mayor valor del MR respecto a la resistencia a la compresión axial. También se logró verificar que existe una dependencia importante en el valor del módulo de rotura con respecto a la variación de la relación agua/cemento y al tamaño máximo del agregado.