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RESUMEN 

El presente trabajo se desarrolló de manera teórica y experimental, 

fundamentado en los principios y leyes de la electricidad y el magnetismo. El 

diseño tridimensional (3D) de las bobinas de Helmholtz se realizó mediante el 

software Solid Word, el cual permitió definir diámetros, espesores de los aros y 

planos constructivos de cada bobina, así como su configuración triaxial para el 

ensamblaje final en disposición (3D). Con esta información se procedió a la 

fundición y torneado de cada par de bobinas, incorporando los aros respectivos 

y los arrollamientos de alambre de cobre esmaltado. 

Posteriormente, las tres bobinas de Helmholtz fueron implementadas sobre 

bases rectangulares de madera, con sus respectivas conexiones eléctricas, 

conservando las propiedades teóricas que caracterizan a este tipo de 

dispositivos. Una vez construidos los pares de bobinas, se realizó el mapeo de 

la inducción magnética ( ⃗𝐵 ) mediante una sonda de efecto Hall modelo 

5170/5180. Para ello se construyeron prismas rectangulares de vidrio 

acondicionados con papel milimetrado, los cuales sirvieron como plano de 

referencia para el mapeo topográfico del campo magnético. 

Estos prismas se colocaron en el centro de cada par de bobinas y a la altura del 

radio correspondiente, permitiendo registrar puntos de medición organizados 

como coordenadas espaciales. Finalmente, se realizó el anidamiento espacial 

de los tres pares de bobinas usando una base de madera, tubos de aluminio 

para la bobina mediana y un soporte adicional para la bobina menor. El análisis 

se presentó mediante isolíneas e isosuperficies de la inducción magnética, 

generadas con el software Surfer. 

Palabras clave: Bobinas de Helmholtz, Software Surfer, Sonda, Mapeo.  
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ABSTRACT 

The present work was developed through both theoretical and experimental 

approaches, based on the fundamental principles and laws of electricity and 

magnetism. The three-dimensional (3D) design of the Helmholtz coils was carried 

out using Solid Word software, which allowed the determination of diameters, ring 

thicknesses, and construction plans for each coil, as well as their triaxial 

configuration for final assembly in a 3D arrangement. Based on this design, the 

casting and machining of each pair of coils were performed, incorporating the 

corresponding rings and windings made of enameled copper wire. 

Subsequently, the three Helmholtz coils were mounted on rectangular wooden 

bases with their respective electrical connections, preserving the theoretical 

properties that characterize this type of device. Once the coil pairs were 

completed, magnetic induction ( ⃗𝐵 )  mapping was performed using a Hall-effect 

probe (model 5170/5180). For this purpose, rectangular glass prisms equipped 

with graph paper were constructed, serving as reference planes for the 

topographic mapping of the magnetic field. 

These glass prisms were placed at the center of each coil pair and at the height 

corresponding to the coil radius, enabling the recording of measurement points 

organized as spatial coordinates. Finally, the spatial nesting of the three coil pairs 

was carried out using a rectangular wooden base, aluminum tubes to support the 

medium-sized coil, and an additional wooden support for the smallest coil. The 

analysis was presented through isolines and isosurfaces of magnetic induction, 

generated using the Surfer software. 

Keywords: Helmholtz coils, Surfer software, Probe, Mapping. 
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CAPÍTULO I  PLANTEAMIENTO DEL PROBLEMA 

1.1. Descripción de la Situación Problemática 

          Debemos señalar que no hay dispositivos que generen campos 

magnéticos uniformes en 3D, en los Laboratorios de Física de la UNSAAC para 

fines de investigación. Esto es un problema que limita el conocimiento y las 

aplicaciones que pueden tener los campos magnéticos uniformes en 3D. 

Los estudios de campo magnético uniforme generados por corriente 

continua en los Laboratorios de de Física con bobinas de Helmholtz son estudiados 

por medio de guias de laboratorio solamente en el eje de simetría. Más no fuera del 

eje de simetría, es decir no existe un registro de mapeo, a través de  todo el plano 

comprendido entre las bobinas  Helmholtz mostrando asi que queda una basta 

región del plano comprendido entre las bobinas Helmholtz sin estudiar. 

Implementar las bobinas de Helmholtz para una distribución triaxial 3D no es 

nada sencillo en hacer coencidir espacialmentemente los diámetros.  Pues para 

este problema se tubo que recurrir a la ayuda  de softwares informáticos. 

El mapeo topográfico de la inducción magnética se realiza mediante una 

sonda de efecto Hall y cuyos datos son registrados procesados por medio de un 

software informatico. El cual permite visualizar la uniformidad de la inducción 

magnetica mediante isolineas magnéticas para cada bobina de Helmholtz.  
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1. 2. Formulación del Problema 

1.2.1. Problema General 

¿Es posible diseñar, implementar , mapear con bobinas de Helmholtz y luego 

disponerlas en 3D  para la obtener campos magnéticos uniformes en  disposición 

triaxial? 

1.2.2. Problemas Específicos 

1. ¿ Se podrá  diseñar un sistema de bobinas de Helmholtz para generar 

campos uniformes con la ayuda de un software informático?  

2. ¿ Es posible implementar el sistema de tres bobinas de Helmholtz 

independientes para la generación de campos uniformes?   

3. ¿ Se podrá obtener un mapa topográfico con datos de inducción 

magnética tomados con un gausimetro en cada bobina de Helmholtz  

haciendo uso de un software informático?  

4. ¿ Es posible obtener un mapa topográfico de inducción magnética 

simultaneo en 3D disposición triaxial con las bobinas de Helmholtz? 

1.3. Áreas de Investigación 

a. Área: Electromagnetismo 

b. Sub Área: Magnétismo 

1.4. Área Geográfica de la Investigación 

Se circunscribe en la ciudad del Cusco, más concretamente en la 

Universidad Nacional de San Antonio Abad del Cusco, en  la Facultad de Ciencias 

Químicas, Físicas y Matemáticas. 
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1.5. Objetivos de la Investigación 

1.5.1. Objetivo General 

Diseñar, implementar y mapear con bobinas de Helmholtz y disponerlas en 

3D  para obtener campos magnéticos uniformes en  disposición triaxial. 

1.5.2. Objetivos Específicos 

1. Diseñar un sistema de tres bobinas de Helmholtz para generar campos 

uniformes con la ayuda del software Solidwork. 

2. Implementar el sistema de tres bobinas de Helmholtz independientes para 

la generación de campos uniformes para luego ser dispuestas 

triaxialmente. 

3. Medir la inducción magnética en los planos comprendidos entre las  

bobinas de Helmholtz independientemente y obtener el mapa topográfico 

con la ayuda del software Surface. 

4. Obtener un mapa topográfico de la inducción magnetica en los tres planos 

de la  disposición triaxial de las tres bobinas de Helmholtz.  

1.6. Justificación 

          En los laboratorios de Física de la Escuela Profesional de Física de la 

Universidad Nacional de San Antonio Abad del Cusco no se registra con un 

dispositivo que genere campo magnético uniforme en 3D, con fines de 

experimentación. Puesto que los campos magnéticos uniformes  son aplicados en 

diferentes áreas como: 

Investigación científica: Se utilizan en laboratorios para estudiar el 

comportamiento de materiales magnéticos y para realizar experimentos en física 

fundamental. 
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Medicina: En resonancia magnética (MRI), donde se aplican campos magnéticos 

uniformes para crear imágenes detalladas del interior del cuerpo humano. 

Tecnología de la información: En la fabricación de dispositivos de 

almacenamiento magnético, como discos duros y cintas magnéticas. 

Industria: En la fabricación y control de calidad de materiales ferromagnéticos, así 

como en la separación magnética de materiales en la industria minera y de 

reciclaje. 

Transporte: En sistemas de levitación magnética, como los utilizados en trenes de 

levitación magnética  para lograr velocidades muy altas con mínima fricción. 

Energía: En generadores eléctricos, transformadores y otros dispositivos 

eléctricos y electrónicos que hacen uso de campos magnéticos para su 

funcionamiento. 

 Por lo tanto podemos afirmar que se  justifica el estudio de generación de 

campos magnéticos uniformes y que mejor en 3D, tal como es la finalidad de este 

presente trabajo. 

1.6.1. Justificación Teórica 

En 1853 Von Helmholtz inventa la bobina de Helmholtz. Una bobina de 

Helmholtz es un dispositivo para la producción de campo magnético casi uniforme 

en una determinada región. Se compone de dos bobinas idénticas circulares 

magnéticas que se colocan simétricamente, uno a cada lado de la zona 

experimental a lo largo de un eje común, y separados por una distancia (h) igual al 

radio (R) de la bobina. Cada bobina lleva una corriente eléctrica igual que fluye en 
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la misma dirección. Existe una serie de variaciones, incluyendo el uso de bobinas 

rectangulares, y el número de bobinas de otras de dos.  

Las bobinas de Helmholtz son un arreglo de dos bobinas circulares 

colocadas simétricamente a ambos lados de un eje común con el mismo radio y 

separación entre ellas. Su diseño se basa en los principios de la ley de Ampère y 

la ley de Biot-Savart del electromagnetismo. 

La justificación teórica de las bobinas de Helmholtz radica en su capacidad 

para producir campos magnéticos uniformes en una región entre las bobinas. Esto 

se logra cuando la separación entre las bobinas es igual al radio de las mismas y 

cuando la corriente que las atraviesa es constante. 

El campo magnético en el centro entre las bobinas se puede calcular 

utilizando la ley de Biot-Savart, y debido a la configuración simétrica, las 

contribuciones magnéticas de cada bobina se suman de manera constructiva, 

produciendo un campo magnético neto uniforme en esa región. 

Estas bobinas son útiles en diversas aplicaciones, como la calibración de 

instrumentos de medición, la generación de campos magnéticos estables para 

experimentos científicos y la resonancia magnética nuclear, entre otros. Su diseño 

y justificación teórica las hacen una herramienta invaluable en el campo de la 

electromagnetismo y la física experimental. 

1.6.2. Justificación Metodológica 

El campo magnético uniforme generado por una bobina de Helmholtz se 

basa en la configuración geométrica y el principio de superposición de campos 

magnéticos. La metodologia se base en:  

La configuración geométrica: Una bobina de Helmholtz consiste en dos 

bobinas circulares idénticas colocadas simétricamente a una distancia específica 
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entre sí, con sus ejes alineados. Esta disposición permite que los campos 

magnéticos generados por cada bobina se sumen de manera constructiva en la 

región entre ellas, creando un campo magnético uniforme en esa región. 

En el principio de superposición de campos magnéticos: Según este 

principio, cuando dos o más campos magnéticos están presentes en una región del 

espacio, el campo resultante es la suma vectorial de los campos individuales en 

cada punto. En el caso de la bobina de Helmholtz, debido a la simetría y orientación 

de las bobinas, los campos magnéticos generados por cada bobina se superponen 

de manera que el campo resultante en el centro entre las bobinas es uniforme y de 

intensidad constante. 

En el control de variables: Para garantizar la uniformidad del campo 

magnético, es crucial controlar variables como la distancia entre las bobinas, el 

radio de las bobinas y la corriente que las atraviesa. Estos parámetros deben 

ajustarse cuidadosamente de acuerdo con las ecuaciones que describen el campo 

magnético generado por una bobina de Helmholtz para garantizar un campo 

magnético uniforme dentro de la región de interés. 

En resumen, la justificación metodológica del campo magnético uniforme de 

una bobina de Helmholtz se basa en la configuración geométrica específica de las 

bobinas, el principio de superposición de campos magnéticos y el control preciso 

de variables relevantes para garantizar la uniformidad del campo magnético en la 

región de interés. 

1.6.3. Justificación Tecnológica 

Las bobinas de Helmholtz son dispositivos utilizados en física experimental, 

particularmente en campos como el electromagnetismo.  Su justificación 

tecnológica radica en su capacidad para producir campos magnéticos uniformes y 
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controlables en un área específica, lo que es fundamental para una variedad de 

aplicaciones. Estas bobinas consisten en dos bobinas circulares idénticas, 

colocadas simétricamente a ambos lados de un punto central, con sus ejes 

alineados. Al pasar corriente eléctrica a través de estas bobinas, se genera un 

campo magnético entre ellas que es uniforme y estable en un área definida entre 

las bobinas. Esto es crucial en experimentos donde se requiere un campo 

magnético homogéneo para estudiar fenómenos físicos con precisión, como en la 

calibración de instrumentos de medición, investigación biomédica, resonancia 

magnética nuclear, entre otros. La justificación tecnológica de las bobinas de 

Helmholtz radica en su capacidad para proporcionar un entorno controlado y 

estable para llevar a cabo una amplia gama de experimentos y aplicaciones 

científicas y tecnológicas. 

Los campos magnéticos uniformes tienen respaldo teórico y experimental en 

la teoría de la Magnetostática.  Las bobina de Helmholtz se construyen bajo normas 

de calidad como la norma ASTM (American Society for Testing and Materials). La 

medida de la inducción magnética se realiza con un magnetómetro o también  

denominado Gausimetro. 

 

1.7. Estado del Arte 

Las bobinas de Helmholtz son dispositivos utilizados en física para generar 

campos magnéticos uniformes en un área específica. Este diseño crea un campo 

magnético uniforme entre las bobinas. Se utilizan en una variedad de aplicaciones, 

como pruebas de susceptibilidad magnética, calibración de instrumentos, 

experimentos de física y resonancia magnética nuclear. Su diseño y optimización 
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continúan siendo áreas de investigación para mejorar la uniformidad del campo 

magnético y su eficiencia energética. 

Los primeros antecedentes en nuestra casa de estudios(UNSAAC), son los 

trabajos de seminario curricular, realizados para una bobina de Helmholtz en su eje 

de simetría, por el estudiante de pregrado de la escuela Profesional de Física:  

Nilton Olivera, en este trabajo de nombre: “DISEÑO Y CONTRUCCION DE LA 

BOBINA DE HELMHOLTZ”, es destacable mencionar. El acomodo de las vueltas  

del cable conductor por capas y seguidamente plantea una reformulación para la 

ecuación de las bobinas de Helmholtz. Cabe señalar que este trabajo tiene un 

desarrollado a nivel teorico. 

También la tesis denominada:”DISEÑO Y CONSTRUCCIÓN DE UN 

MAGNETÓMETRO CON SENSOR GMR” relizados por los tesistas Isidro Ccamac 

y Eulogio Montalvo. En este trabajo de tesis se construye una bobina de Helmholtz 

mediana con la finalidad de calibrar y validar  dicho magnetómetro. 

Actualmente en el Perú se vienen desarrollando diversos trabajos de la 

aplicación de los campos magnéticos lo más resaltante son los trabajos de 

sensores magnéticos para detectar terremotos desarrollados en la Pontificia 

Universidad Católica del Perú PUCP. 

Perú – Magneto.- Dedicado al estudio de los fenómenos electromagnéticos 

vinculados a eventos sísmicos. El proyecto contempla el uso de magnetómetros 

que midan la actividad del campo magnético local a través de sensores magnéticos, 

es decir bobinas enterradas en el suelo.  

Por otra parte los Profesores Fano W. G. Alonso y Quintana G. de la 

universidad de Buenos Aires, publicaron . en agosto del 2017el siguiente trabajo  

de nombre “CAMPO MAGNÉTICO GENERADO POR LAS BOBINAS DE 
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HELMHOLTZ Y SU APLICACIÓN A LA CALIBRACIÓN DE SONDAS”. Este 

trabajo se dedica a calcular y medir el campo magnetico generado por las bobinas 

de Helmholtz y determinar la uniformidad y exactitud del campo magnético respecto 

al centro de simetría. 

Los campos magnéticos se han investigado y seguirán investigándose para 

comprender completamente su naturaleza y su interacción con la materia y sus 

futuras aplicaciones.   

Zhang y Li diseñaron un sistema triaxial de bobinas de Helmholtz 

específicamente para la calibración de sensores magnéticos vectoriales, 

analizando la relación entre corriente y magnitud del campo, así como el tamaño 

de la zona homogénea. Este trabajo demuestra la utilidad de un sistema triaxial en 

la calibración precisa de sensores multicomponente, (Zhang, 2025) 

Estudios han demostrado que imperfecciones prácticas como 

desalineaciones y desajustes de fabricación afectan la uniformidad del campo 

magnético en sistemas triaxiales. En uno de estos trabajos, se construyó y midió 

un sistema triaxial real, confirmando que las imperfecciones reducen la uniformidad 

especialmente fuera del centro del volumen de campo, (Beiranvand, 2014) 

Además de las bobinas circulares, se han desarrollado sistemas de bobinas 

cuadradas triaxiales (también llamados “Helmholtz cages”), usados principalmente 

para la calibración de magnetómetros de alta precisión en observatorios geofísicos 

y centros de investigación. Estos sistemas permiten generar un campo homogéneo 

tridimensional con precisión de nano tesla en volúmenes experimentales 

relativamente grandes (Brewer, 2018)  

En el ámbito industrial y aplicado, existen sistemas comerciales de bobinas 

de Helmholtz 3D con diámetro igual en los tres ejes, diseñados para producir 
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campos magnéticos uniformes en configuraciones tridimensionales para 

calibración, pruebas industriales y experimentación científica avanzada, 

(Cryomagtech, 2025) 

La literatura reciente también presenta diseños optimizados de bobinas con 

múltiples pares y estructuras cuadradas generados mediante algoritmos 

inteligentes. Estos mejoran la uniformidad y extienden el volumen homogéneo del 

campo magnético, constituyendo un avance relevante para configuraciones 

triaxiales. 

Aunque no directamente triaxiales, informes técnicos clásicos (Vrbancich, 

1991) y herramientas de visualización de campo magnético aportan modelos 

teóricos y simulaciones útiles para la comprensión profunda del comportamiento del 

campo en arreglos complejos de bobinas. 

 

1.8. Limitaciones de la Investigación 

Las limitaciones fueron del tipo mecánicas ya que no se pudieron tornear 

bobinas más grandes, por encima del diámetro mayor (53.5cm) de la bobina más 

grande. Debido a las limitaciones mecánicas que presentan los tornos  de nuestra 

región Cusco. El otro incoveniente  es encontrar aluminio reciclave de alta pureza 

esto para  el proceso de fundición, es más este aluminio tiene que ser de alta pureza 

para evitar la magnetización de los aros. Y por otro lado  es el acceso a sodwares 

informáticos que vienen hacer herramientas  de valiosa ayuda en el diseño e 

implementación. De la misma manera el acceso a bibliografía de autores más 

especializados  en electromagnetismo. 
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1.9. Hipótesis  

1.9.1. Hipótesis General 

             Es posible diseñar, implementar, mapear bobinas de Helmholtz al  

disponerlas en disposición triaxial 3D y obtener la topografía del campo magnético 

uniforme en los tres planos que forma la disposición triaxial. 

1.9.2.  Hipótesis Específicas 

1. Es posible diseñar la disposición triaxial de tres bobinas de Helmholtz con 

la ayuda del software Solid Work. 

2. Es posible implementar tres pares de bobinas de Helmholtz 

independientemente para luego ser dispuestas en disposición triaxial. 

3. Cómo es la topografía de la inducción magnética en el plano formado 

entre las bobinas de Helmholtz independientemente al recolectar los 

datos de inducción magnetica. 

4. Es posible obtener campo magnético uniforme en 3D con las bobinas de 

Helmholtz en disposición triaxial. 
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CAPÍTULO II:   MARCO TEÓRICO  

2.1. Bases Teóricas del Electromagnetismo 

Electromagnetismo 

Es una rama de la Física que estudia y unifica los fenómenos eléctricos y 

magnéticos en una sola teoría. El electromagnetismo describe cómo las cargas 

eléctricas crean campos eléctricos y cómo los campos magnéticos se generan a 

partir de cargas eléctricas en movimiento. 

Campo Físico 

Representa la distribución espacial de una magnitud física que muestra 

cierta variación en una región del espacio. Es decir, es una región del espacio que 

tiene una propiedad física en cada punto. Estas propiedades pueden incluir campos 

eléctricos, campos magnéticos, campos gravitatorios, campos de temperatura, 

campos de presión, etc. 

El campo físico se describe matemáticamente como una función que asigna 

un valor a cada punto del espacio. La forma en que un campo físico cambia en el 

espacio y el tiempo está regida por las leyes de la física que rigen ese campo. Por 

ejemplo, el campo electromagnético está descrito por las cuatro leyes conocidas 

como ecuaciones de Maxwell. 

Los campos físicos son fundamentales para entender el comportamiento de 

los objetos en el universo. La interacción de los campos físicos con los objetos en 

el espacio puede causar cambios en la posición, el movimiento o las propiedades 

de los objetos. Por ejemplo, la interacción de un campo eléctrico con una carga 

eléctrica puede hacer que la carga se mueva. (Jiles, 2016) 

http://es.wikipedia.org/wiki/F%C3%ADsica
http://es.wikipedia.org/wiki/Electricidad
http://es.wikipedia.org/wiki/Magnetismo
http://es.wikipedia.org/wiki/Magnitud_f%C3%ADsica
http://es.wikipedia.org/wiki/Espacio_(f%C3%ADsica)
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2.2. Magnetostática 

Magnetismo 

Es un fenómeno por el que los materiales interactúan con  fuerzas de 

atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que 

presentan propiedades magnéticas detectables fácilmente como el níquel, hierro y 

sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los 

materiales son influenciados, de mayor o menor forma, por la presencia de un 

campo magnético. “El magnetismo es una manifestación de la carga eléctrica en 

movimiento”. (Jiles, 2016)  

Figura 1  

a) Un imán de herradura. b) Las líneas de inducción magnética de la tierra 

 

 

Fuente: Elaboración propia 

 

Campo magnético 

Es una de las formas de la materia que estudia la física a la par que la 

sustancia y una de las formas de campo electromagnético. El espacio que rodea a 

http://es.wikipedia.org/wiki/Fen%C3%B3meno
http://es.wikipedia.org/wiki/Material
http://es.wikipedia.org/wiki/Fuerza
http://es.wikipedia.org/wiki/N%C3%ADquel
http://es.wikipedia.org/wiki/Hierro
http://es.wikipedia.org/wiki/Aleaci%C3%B3n
http://es.wikipedia.org/wiki/Im%C3%A1n_(f%C3%ADsica)
http://es.wikipedia.org/wiki/Campo_magn%C3%A9tico
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los conductores  recorridos por una corriente eléctrica se le denomina campo 

magnético, al igual al espacio que rodean a las partículas cargadas de electricidad 

en movimiento y a los cuerpos magnetizados. Otra forma de generar campo 

magnético es a partir de  un campo eléctrico alterno. Actúa solamente sobre las 

partículas y cuerpos en movimiento con carga eléctrica y sobre los cuerpos 

magnetizados. (Jiles, 2016) 

Campo de fuerza magnético 

La peculiaridad más importante de los campos de fuerzas es la de que con 

su ayuda se efectúan las interacciones de diversos tipos. Los campos poseen 

propiedades  muy importantes que caracterizan su materialidad, en primer lugar 

energía, entre el campo y la substancia no existe límites infranqueables se puede 

transformar el uno en la otra y viceversa. (Finn, 1967) 

Inducción magnética (𝑩⃗⃗ ) 

Es una magnitud vectorial, determina la característica fundamental de la 

intensidad del campo magnético en un punto. La unidad de la inducción magnética 

en el sistema internacional es el Tesla. 

Tesla =
newton

Amperio.metro
  

T = Kg. A−1. s−2 

          Para fines de investigaciones en el laboratorio es muy utilizado el Gauss 

(G) que es una unidad de campo magnético del Sistema Cexagesimal de Unidades 

(CGS).  Un gauss es equivalente a 10−4 𝑇esla.   

http://es.wikipedia.org/wiki/Campo_magn%C3%A9tico
http://es.wikipedia.org/wiki/Sistema_Cegesimal_de_Unidades
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1G =  10−4T 

Principio de superposición  

La inducción magnética 𝐵⃗ , creado por varias cargas en movimiento o 

corrientes es igual a la suma vectorial de las inducciones magnéticas 𝐵⃗ 𝑖 que 

engendra las cargas o corrientes por separado. (Matveev, 1988) 

𝐵⃗ = ∑𝐵⃗ 𝑖 (2.1) 

Líneas de fuerza de campo magnético  

Conocidas también como líneas de flujo o líneas de fuerza de inducción 

magnética, son líneas imaginarias y sirven para describir como varía el campo 

magnético en una región del espacio. La tangente a una de las líneas de fuerza 

proporciona la dirección del campo magnético o inducción magnética. (Hewitt, 

2007)  

Figura 2   

Visualización de las líneas de fuerza y del vector tangente a estas que representa 

la dirección del campo magnético para un imán de barra 

 

 

Fuente: Elaboración propia 
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Características de las líneas de fuerza 

• Las líneas de fuerza de inducción magnética siempre salen del polo norte e 

ingresan al polo sur. Son líneas cerradas 

• Las líneas de fuerza de inducción magnética son siempre cerradas 

• Las líneas de fuerza de inducción magnética nunca se cortan porque si asi 

fuera se anularía el campo magnético en dicho punto. 

• Las líneas de fuerza de inducción magnética convergen donde la fuerza 

magnética es mayor y se separan donde es más débil. 

• A mayor densidad de las líneas de fuerza de inducción mayor es la 

intensidad del campo magnético. 

Trazado de las líneas de fuerza de campo magnético 

Para representar el campo de fuerza magnético usamos las líneas de fuerza. 

Las líneas de fuerza pueden trazarse en base a la ley de Biot – Savart.  

Para trazar las líneas de fuerza de campo magnético se siguen los pasos: 

1. Se selecciona un punto de partida en la línea de fuerza. 

2. Se calcula 𝐵𝑥 y 𝐵𝑦 en ese punto mediante la ley de Biot – Savart 

3. Se avanza una corta distancia a lo largo de la línea de fuerza hacia un nuevo 

punto en el plano (Sadiku, 2003). Como se observa en la figura, un 

movimiento ∆𝑙 a lo largo de la línea de fuerza implica un desplazamiento en 

∆𝑥  y  ∆𝑦 a lo largo de las direcciones 𝑥  e  𝑦. 
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Figura 3 

 El campo magnético (𝐵⃗ )es tangente a las líneas de fuerza 

 

 

Fuente: Elaboración propia 

Como el campo es tangente a las líneas de fuerza, entonces también se 

puede escribir una relación matemática de los campos y sus difrenciales. 

𝑑𝑦

𝑑𝑥
=
𝐵𝑦

𝐵𝑥
 (2.2) 

 

Permeabilidad magnética (𝝁) 

La permeabilidad es la capacidad que tiene una sustancia para atraer y dejar 

pasar las líneas de fuerza magnética. Es la capacidad que tienen los conductores 

de afectar y ser afectados por los campos magnéticos. Está dada por la relación 

entre la inducción magnética (B) existente y la intensidad de campo magnético  (H) 

que aparece en el interior de dicho material. (Jiles, 2016) 

https://es.wikipedia.org/wiki/Campo_magn%C3%A9tico
http://es.wikipedia.org/wiki/Inducci%C3%B3n_magn%C3%A9tica
http://es.wikipedia.org/wiki/Intensidad_de_campo_magn%C3%A9tico
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μ =
𝐵

H
 (2.3) 

La permeabilidad de manera diferencial se define: 

μ =
𝑑𝐵

dH
 (2.4) 

 

La permeabilidad relativa, denotada por el símbolo 𝜇𝑟, es la relación entre la 

permeabilidad de un medio específico y la permeabilidad del espacio libre 𝜇𝑜: 

𝜇𝑟 =
𝜇

𝜇𝑜
 (2.5) 

Donde 𝜇𝑜 = 4𝜋 × 10−7 H/m es la permeabilidad magnética del vacío. 

Los materiales se pueden clasificar según su permeabilidad magnética 

relativa en: 

• Ferromagnéticos, cuyo valor de permeabilidad magnética relativa es muy 

superior a 1 (𝜇𝑟 > 1). 

• Paramagnéticos o no magnéticos, cuya permeabilidad relativa es 

aproximadamente 1 se comportan como el vacío (𝜇𝑟 ≈ 1). 

• Diamagnéticos, de permeabilidad magnética relativa inferior a 1 (𝜇𝑟 < 1). 

Intensidad de campo magnético (𝑯⃗⃗⃗ )  

Es una magnitud auxiliar análoga a las características del desplazamiento 

eléctrico 𝐷⃗⃗   del campo eléctrico. Los campos magnéticos generados por las 

corrientes y que se calculan por la ley de Ampere o la ley de Biot-Savart, se 

https://es.wikipedia.org/wiki/Permeabilidad_del_vac%C3%ADo
https://es.wikipedia.org/wiki/Ferromagn%C3%A9tico
https://es.wikipedia.org/wiki/Paramagnetismo
https://es.wikipedia.org/wiki/Diamagnetismo
http://es.wikipedia.org/wiki/Intensidad_de_campo_magn%C3%A9tico
http://hyperphysics.phy-astr.gsu.edu/hbasees/magnetic/amplaw.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbasees/magnetic/biosav.html#c1
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caracterizan por el campo magnetico 𝐵⃗  medido en Teslas. Pero cuando los campos 

generados pasan a través de materiales magnéticos que por sí mismo contribuyen 

con sus campos magnéticos internos, surgen ambigüedades sobre que parte del 

campo proviene de las corrientes externas, y que parte la proporciona el material 

en sí. (Jiles, 2016) como práctica común se ha definido otra cantidad de campo 

magnético, llamada usualmente "intensidad de campo magnético", designada por 

la letra 𝐻⃗⃗ . Se define por la relación: 

 

𝐻⃗⃗ =
𝐵⃗ 

𝜇𝑚
 

(2.6) 

𝜇𝑚 = 𝐾𝑚𝜇𝑜 

siendo 𝜇0 la permeabildad magnética del vacío y  𝐾𝑚 la permeabilidad 

relativa del material. Si el material no responde al campo magnético externo, no 

produciendo ninguna magnetización, entonces 𝐾𝑚 = 1 . Otro cantidad magnética 

comunmente usada es la susceptibilidad magnética, la cual especifica en cuanto 

difiere de 1, la permeabilidad relativa. 

 

Campo magnético uniforme 

 El campo magnético es uniforme u homogéneo si el vector 𝐵⃗  no cambia en 

magnitud ni dirección de un punto a otro es decir permanece constante en todos 

sus puntos. (Alvarenga, 2008) 

Figura 4 

http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/magpr.html#c1
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 El campo magnético entre los polos de un imán, son paralelas planas es casi 

uniforme, excepto en los bordes 

 

 

 
 

      Fuente: Wikipedia 

 

 

2.3. Fuerza Magnética 

Fuerza magnética sobre una carga eléctrica en movimiento 

Cuando una partícula cargada, con carga(𝑞) se mueve con velocidad(𝑣),  a 

través de un campo magnético uniforme(𝐵⃗ ), se ejerce una fuerza(𝐹 )  sobre dicha 

carga y estará dado por el producto cruz: (Hayt, 2006) 

𝐹 = 𝑞(𝑣  × 𝐵⃗ ) (2.7) 

 

Fuera de Lorentz generalizada 

 Es la fuerza ejercida por el campo electromagnético (campo eléctrico y 

magnético) sobre una partícula cargada móvil o una corriente eléctrica.  La fuerza 

http://es.wikipedia.org/wiki/Campo_magn%C3%A9tico
http://es.wikipedia.org/wiki/Producto_cruz
http://es.wikipedia.org/wiki/Fuerza
http://es.wikipedia.org/wiki/Campo_electromagn%C3%A9tico
http://es.wikipedia.org/wiki/Carga_el%C3%A9ctrica
http://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica
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resultante F es igual a la suma vectorial de la fuerza eléctrica y magnética. (Hayt, 

2006) 

𝐹 = 𝑞(𝑣 × 𝐵⃗ ) + 𝑞𝐸⃗  (2.8) 

Figura 5  

a) Fuerza eléctrica sobre una carga que ingresa en un campo eléctrico. 

b) Fuerza magnética sobre una carga que ingresa en un campo magnética           

 

Fuente: Elaboración propia 

Fuerza magnética sobre una corriente eléctrica rectilínea 

Un conductor si se encuentra dentro de un campo magnético, cada una de 

las cargas que él conduce experimentan fuerzas cuya resultante será normal al 

plano que formen el conductor y el campo magnético: (Kovetz A. , 2000) 

𝐹 = 𝑖(𝑙 × 𝐵⃗ ) (2.9) 
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 Figura 6  

Fuerza en un conductor por acción del campo magnético  

 
 

Fuente: Elaboración propia 

En la figura 6,  cuando por el conductor atraviesa una corriente eléctrica el 

columpio se desvía de su posición de reposo, demostrando que cuando fluye la 

electricidad por un conductor dentro de un campo magnético, se genera una fuerza.  

2.4. Inducción Electromagnética 

Cuando un circuito cerrado se encuentra en un campo magnético alterno, se 

crea una fuerza electromotriz de inducción (𝜀) en dicho circuito surge una corriente 

eléctrica, denominada corriente de inducción. (Sadiku, 2003) 

Flujo Magnético 

Es una magnitud escalar que indica el número de líneas de fuerza de campo 

magnético que atraviesa una superficie (A). En el sistema internacional su unidad 

es el Weber (𝑊𝑏 = 𝑇 ∙ 𝑚2). 

ф = A⃗⃗ ∙ B⃗⃗ = 𝐴𝐵𝑐𝑜𝑠𝜃    (2.10) 
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Donde:   

θ : Es el ángulo que forma la dirección del campo y la normal a la superficie. 

𝐴 : Es el vector normal a la superficie. 

𝐵⃗ : La inducción magnética. 

 

Figura 7   

a) Las líneas de inducción magnética 𝐵⃗  forma un ángulo θ  con el vector normal a 

la superficie 𝐴 . 

b) Las líneas de inducción magnética 𝐵⃗  son paralelas al vector normal a la 

superficie 𝐴 . 

 

Fuente: Elaboración propia 
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Podemos generalizar para un diferencial superficie irregular atravesada por 

un campo magnético heterogéneo por la expresión.  

ф = ∫𝐵⃗ ∙ 𝑑𝐴  (2.11) 

 

Ley de Faraday 

La f.e.m. de inducción electromagnética 𝜀 de un circuito cerrado es igual 

numéricamente, pero de signo contrario, al cambio de flujo en el tiempo a través 

del área del circuito cerrado. (Zahn M. , 1991) 

𝜀 = −𝑁
∆ф

∆𝑡
 (2.12) 

 

Figura 8   

Mediante el movimiento de los imanes se induce corriente eléctrica en el circuito 

 

Fuente: Elaboración propia 
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2.5. Ley de Biot-Savart 

Es la expresión general para determinar el campo magnético o inducción 

magnética 𝐵⃗   en un punto cualquiera producido por una corriente cerrada de 

cualquier forma La inducción se mide en Teslas (T). (Jackson, 1980) 

𝐵⃗ =
𝜇0𝑖

4𝜋
∫
𝑑𝑙 × 𝑟 

𝑟3
 

(2.13) 

 

Donde: 

 𝜇0: permeabilidad magnética del vacío (4𝜋 × 10−7𝑁 𝐴2⁄ ). 

 𝑖:  corriente eléctrica.    

𝑟 :  es el radio vector trazado desde el elemento del conductor 𝑑𝑙  hasta el punto                                                

 "𝑃" donde se desea calcular el campo magnético.  

𝑑𝑙 :  es el vector de la longitud elemental del conductor que es tangente al                             

conductor. 

𝑟:  es el modulo del radio vector 𝑟 . 

 

 

 

 

 

http://es.wikipedia.org/wiki/Vac%C3%ADo_(f%C3%ADsica)
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Figura 9 

Cualquier corriente eléctrica sobre un conductor rectilíneo genera un campo 

magnético alrededor de este    

 

Fuente: Elaboración propia 

Distribución espacial de corriente 

Para el caso de una corriente distribuida espacialamente en un tubo de 

volumen (𝑉) La ecuación (2.13) debe ser adaptada. Sea 𝐽 = 𝐽(𝑟 ´) la densidad de 

corriente, la corriente que fluye a través de la sección (𝑑𝑠) del elemento de volumen 

𝑑𝑉´ = 𝑑𝑟𝑑𝑠, es 𝑑𝐼 = 𝐽𝑑𝑠, tal como se  muestra en la figura:(2. )luego. 

𝑑𝐼𝑑𝑟 = 𝐽𝑑𝑠𝑑𝑟 = 𝐽 𝑑𝑠𝑑𝑟 = 𝐽 𝑑𝑉´  
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Figura 10 

 Distribucion espacial de la corriente en un tubo 

 

Fuente: Elaboración propia 

Luego la expresión se covierte para este caso en la siguiente: 

𝐵⃗ =
𝜇0
4𝜋
∫
𝐽 (𝑟 ´) × 𝑅⃗ 𝑑𝑉´

𝑅3
 

(2.14) 

Distribución superficial de corriente 

Cuando se trata de corrientes que fluyen en una superficie (por ejemplo en 

las superficies conductoras), se define la densidad superficial de corriente como se 

muestra gráficamente en la figura:2.11. entonces la densidad de corriente es  

 𝐽𝑠⃗⃗ = 𝐽𝑠⃗⃗ (𝑟 ´) medido en 𝐴 𝑚⁄  . Para este caso la exprecion (2.11) se modifica 

en la forma siguiente la corriente que fluye en el diferencial de superficie 𝑑𝑠´ es  

𝑑𝐼 = 𝐽𝑠𝑑𝑙 

              Luego  

dIdr´ = Jsdldr´ =  j sds´ 
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Figura 11   

Corrientes que fluyen en una superficie 

Fuente: Elaboración propia 

 

Por lo tanto la expresión queda escrita en la forma: 

𝐵 =
𝜇0
4𝜋
∫

𝐽 (𝑟 ´) × 𝑅⃗ 𝑑𝑠´

𝑅3𝑠

 
(2.15) 

Campo magnético de una corriente eléctrica rectilínea 

 A partir de la ley de Biot y Savart se demuestra que toda corriente que 

transporta un conductor “infinitamente largo” genera un campo magnético cuya 

intensidad es directamente proporcional con la corriente (i), pero inversamente 

proporcional a la distancia (d) al conductor. Utilizando la ley de Biot y Savart se 

determina que el campo magnético para un conductor “infinitamente largo”, (Reitz 

& Milford, 1969) es:  

𝐵 =
𝜇0
2𝜋

𝑖

𝑑
 (2.16) 
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Figura 12   

a) El vector de inducción magnética es tangente a la línea de inducción  

 b) Las líneas de inducción magnética  forman círculos concéntricos en torno al 

conductor     

c) El sentido circular de las líneas de inducción magnética se determina por la 

regla de la mano derecha  el pulgar indica el sentido de la corriente y los demás 

dedos el sentido del campo magnético 

 

Fuente: Elaboración propia 

2.6. Leyes de Maxwell 

En la teoría unificada del electromagnetismo, James C. Maxwell demostró 

que las ondas electromagnéticas son una consecuencia natural de las leyes 

fundamentales expresadas en las siguientes cuatro ecuaciones: 

a) Primera ecuación de  Maxwell: El campo magnético (𝐵⃗ ) variable en el 

tiempo crea en cualquier punto del espacio un campo eléctrico rotacional. 

Forma diferencial Forma integral 

∇ × 𝐸⃗ =
𝜕𝐵⃗ 

𝜕𝑡
 

∮𝐸⃗ ∙ 𝑑𝑙 = ∫ (
𝜕𝐵⃗ 

𝜕𝑡
)

𝑠

∙ 𝑑𝑆 
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b) Segunda ecuación de Maxwell: Afirma que el campo magnético lo crean las 

cargas eléctricas en movimiento ordenado, es decir corrientes de 

conducción y de convección. El campo eléctrico (𝐸⃗ ) variable en el tiempo, 

cuya acción magnética viene caracterizada por la corriente de 

desplazamiento, es también origen del campo magnético rotacional. 

Forma diferencial Forma integral 

∇ × 𝐵⃗ = 𝜇𝑜𝐽 + 𝜇𝑜𝜀𝑜
𝜕𝐸⃗ 

𝜕𝑡
 

∮𝐵⃗ ∙ 𝑑𝑙 = (𝜇𝑜𝐼 + 𝜇𝑜𝜀𝑜∫ (
𝜕𝐸⃗ 

𝜕𝑡
) ∙ 𝑑𝑆

𝑠

) 

 

c) Tercera ecuación de Maxwell: Conocida como la ley de Gauss, se aplica 

para evaluar el campo eléctrico, si la distribución de carga es 

suficientemente simétrica 

Forma diferencial Forma integral 

∇ ∙ 𝐸⃗ =
𝜌

𝜀𝑜
 ∫𝐸⃗ ∙ 𝑑𝑠 =

∫ 𝜌𝑑𝑉

𝜀𝑜
 

 

d) Cuarta ecuación de Maxwell: Expresa que no existe cargas magnéticas 

libres. 

Forma diferencial Forma integral 

∇ ∙ 𝐵⃗ = 0 ∫𝐵⃗ ∙ 𝑑𝑠 = 0 
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2.7.  Potenciales Magnéticos  

Los potenciales magnéticos son magnitudes que se utilizan en la descripción 

del campo magnético. Los potenciales magnéticos son el potencial escalar 

magnético y el potencial vector magnético. 

Un campo magnetostático puede ser descrito no solo por los vectores 𝐻⃗⃗  y 𝐵⃗  

sino también por los dos potenciales magnéticos. Además, en una región libre de 

corriente, un campo magnetostático también puede describirse por una cantidad 

escalar denominada potencial escalar magnetico 𝜑. (Jefimenko, 1989) 

Las cuatro magnitudes están íntimamente relacionadas entre sí y pueden 

derivarse unas de otras. Sin embargo, los potenciales magnéticos  𝐴  y 𝜑 son 

frecuentemente más practicos  en determinar la intensidad del campo magnético 

es decir los vectores 𝐻⃗⃗  y 𝐵⃗ . Por lo tanto, con frecuencia es más conveniente usar 

uno de estos potenciales magnéticos en lugar de un vector de campo magnético 

para describir el comportamiento de un campo magnetostático. (Jefimenko, 1989) 

Potencial vector magnético  

También conocido como el vector potencial, es una cantidad vectorial 

utilizada en la descripción del campo magnético. Se define como la integral de línea 

del campo magnético sobre una curva cerrada. 

El carácter rotacional y divergente del campo magnético, expresado con el 

formalismo matemático ∇ × 𝐵⃗ = 𝜇𝑜𝐽 + 𝜇𝑜𝜀𝑜
𝜕𝐸⃗ 

𝜕𝑡
   y  ∇ ∙ 𝐵⃗ = 0  respectivamente 

conocidas como ecuaciones de Maxwell. Ponen en evidencia las diferencias 

esenciales que existen con el campo electrostático, no obstante las analogías 

formales y metodológicas entre los mismos. (Kuong Jo, 1985)  
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Una de las consecuencias de la 2𝑑𝑎 ecuación de Maxwell. ∇ × 𝐵⃗ = 𝜇𝑜𝐽 +

𝜇𝑜𝜀𝑜
𝜕𝐸⃗ 

𝜕𝑡
 ,es que no es posible definir con toda generalidad un potencial escalar 

magnético, pero la ecuación 

 ∇ ∙ 𝐵⃗ = 0 permite definir un potencial vectorial 𝐴 (𝑟 ) tal que 𝐵⃗ = ∇ × 𝐴    , 

puesto que siempre se cumple 

∇ ∙ ∇ × 𝐴 = 0. 

 Podemos determinar el potencial vectorial 𝐴   , partiendo de la ecuación de Biot y 

Savart: 

𝐵⃗ =
𝜇0
4𝜋
∫
𝐽 × 𝑟 

𝑟3
𝑑𝑉´ 

Teniendo en cuenta la identidad     

∇ (
1

𝑟
) = −

𝑟 

𝑟3
 

Se puede escribir. 

𝐵⃗ =
𝜇0
4𝜋
∫∇(

1

𝑟
) × 𝐽  𝑑𝑉´ 

Empleando la identidad vectorial tenemos  

∇ × (
𝐽 

𝑟
) = ∇(

1

𝑟
) × 𝐽 −

∇ × 𝐽 

𝑟
= ∇(

1

𝑟
) × 𝐽  

  Que sustituyendo resulta  

𝐵⃗ =
𝜇0
4𝜋
∫∇ × (

𝐽 

𝑟
) 𝑑𝑉´ 
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Como la integral está definida para variables primadas, el operador nabla puede 

salir del signo integral. 

𝐵⃗ = ∇ × (
𝜇0
4𝜋
∫
𝐽 

𝑟
𝑑𝑉´) = ∇ × 𝐴  

En la que 𝐴   es el potencial vectorial definido por la integral  

𝐴 =
𝜇0
4𝜋
∫
𝐽 

𝑟
𝑑𝑉´ 

(2.17) 

 

Partiendo de las expresiones 

𝐵⃗ =
𝜇0𝐼

4𝜋
∫
𝑑𝑙 ́ × 𝑟 

𝑟3
 

𝐹 𝑚 = 𝐼∮𝑑𝑟 × 𝐵⃗  

 Para distribuciones unifilares y superficiales de corrientes siguiendo un 

procedimiento similar, como el anterior se tiene las expresiones correspondientes. 

𝐴 =
𝜇0
4𝜋
∫
𝐼

𝑟
𝑑𝑙 ́  

𝐴 =
𝜇0
4𝜋
∫
𝐽 

𝑟
𝑑s´ 

Téngase presente que no se ha establecido ninguna restricción para definir 

el potencial vectorial, y la semejanza con las expresiones correspondientes al 

potencial electrostático. 
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Cuando la distribuciones de corriente que genera el campo se extiende hasta 

el infinito, el potencial vectorial resulta infinito (lo mismo sucede con el potencial 

electrostático cuando la distribución de carga se extiende hasta el infinito), en este 

caso debemos calcular el potencial vectorial referido a un punto conveniente 

elegido. 

Figura 13  

El potencial vectorial magnético P referido al punto 𝑃0 

 

Fuente: Elaboración propia 

Sea 𝑃  el punto cuyo potencial se quiere calcular, y 𝑃𝑜 el punto de referencia 

elegido, 𝑟   el vector posición de    𝑃   , 𝑟 0  de  𝑃0  y 𝑟 ´ de un 𝑑V´ , luego el potencial 

vectorial 𝑃 de referido al punto 𝑃0 esta dado por 

𝐴 =
𝜇0
4𝜋
∫
𝐽 

𝑅
𝑑V´ −

𝜇0
4𝜋
∫
𝐽 

𝑅0
𝑑V´ 

  Donde 𝑅 = |𝑟 − 𝑟 ´|  y  𝑅0 = |𝑟 0 − 𝑟 ´| , finalmente tenemos  

𝐵⃗ = ∇ × 𝐴  

𝐻⃗⃗ =
𝐼

𝜇0
∇ × 𝐴  
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Potencial escalar magnético 

El potencial escalar magnético es una función escalar, es decir, que solo 

tiene una magnitud numérica en cada punto del espacio, y no tiene dirección. Esta 

función matemática está relacionada con la densidad de corriente magnética y con 

la permeabilidad del material en el que se encuentra el campo magnético. 

El potencial escalar magnético se utiliza en la formulación de las leyes de la 

física que rigen el comportamiento del campo magnético, como las ecuaciones de 

Maxwell. A partir de la descripción del potencial escalar magnético, se pueden 

calcular las propiedades del campo magnético en un punto dado del espacio, como 

la intensidad del campo magnético y la dirección del flujo magnético. 

El rotacional de un gradiente es siempre cero. El rotacional del campo 

magnetostatico 𝐻⃗⃗  de una corriente (𝐽 = 0) en el espacio libre también es siempre 

cero. 

∇ × 𝐻⃗⃗ = 𝐽  

∇ × 𝐻⃗⃗ = 0 

 Por lo tanto, debería ser posible expresar el campo magnetostatico en un 

espacio libre de corriente mediante la ecuación. 

 

𝐻⃗⃗ = −∇φ (2.18) 

Siempre que la ecuación sea compatible con la cuarta ecuación de Maxwell 

y la ley que relaciona la inducción magnética 𝐵⃗  con la intensidad magnética 𝐻⃗⃗  , 

dadas por: 
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∇ ∙ 𝐵⃗ = 0 

𝐵⃗ = 𝜇0𝐻⃗⃗  

Podemos también escribir. 

𝐵⃗ = −𝜇0∇𝜑     

Utilizando la cuarta ecuación de maxwell tenemos 

∇ ∙ 𝐵⃗ = 0 = ∇ ∙ 𝜇0𝐻⃗⃗ = −𝜇0∇ ∙ ∇φ 

∇2𝜑 = 0 (2.19) 

Por lo tanto, la ecuación. 𝐻⃗⃗ = −∇𝜑 es compatible con la cuarta ecuación de 

Maxwell. Si el potencial escalar magnético 𝜑 satisface la ecuación de Laplace. 

Siempre es posible expresar la intensidad magnética 𝐻⃗⃗  en un espacio libre.  

Donde 𝜑 es una función armónica. A esta función se le denomina potencial escalar 

magnético. 

En el caso particular de un campo magnetostático producido por un filamento 

de corriente en puntos fuera de la corriente, 𝜑 se puede expresar directamente en 

términos de la corriente, utilizando la definición de potencial vectorial magnético.  

𝐴 =
𝜇0𝐼

4𝜋
∮
𝑑𝑙 ́

𝑟
=
𝜇0𝐼

4𝜋
∫𝑑𝑠 ´ × ∇´

1

𝑟
 

De donde usamos el operador ∇´ hay una ambigüedad en la transformación 

𝐻⃗⃗ =
𝐼

𝜇0
∇ × 𝐴 =

𝐼2

4𝜋
∇ ×∫𝑑𝑠 ´ × ∇´

1

𝑟
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Dado que la última integral debe evaluarse con respecto a la coordenada 

prima únicamente, y dado que el operador nabla ∇ sin prima no opera sobre estas 

coordenadas, nabla ∇ puede colocarse bajo el signo integral entonces tenemos:  

𝐻⃗⃗ =
𝐼

4𝜋
∫∇ × (𝑑𝑠 ´ × ∇´

1

𝑟
) 

                                                     Pero:   ∇´ (1
𝑟
) = −∇(

1

𝑟
)          

podemos escribir. 

𝐻⃗⃗ = −
𝐼

4𝜋
∫∇ × (𝑑𝑠 ´ × ∇

1

𝑟
) =

𝐼

4𝜋
∫∇ × (∇

1

𝑟
× 𝑑𝑠 ´) 

Usando identidad vectorial tenemos: 

∇ × (∇
1

𝑟
× 𝑑𝑠 ´) = (𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
+ ∇

1

𝑟
(∇ ∙ 𝑑𝑠 ´) − (∇

1

𝑟
∙ ∇)𝑑𝑠 ´ − 𝑑𝑠 ´ (∇ ∙ ∇

1

𝑟
) 

∇ × (∇
1

𝑟
× 𝑑𝑠 ´) = (𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
− 𝑑𝑠 ´ (∇2

1

𝑟
) 

Donde el Laplaciano es  ∇2 (1
𝑟
) = 0  

∇ × (∇
1

𝑟
× 𝑑𝑠 ´) = (𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
 

La integral se transforma  

𝐻⃗⃗ =
𝐼

4𝜋
∫(𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
 

∇ (∇
1

𝑟
∙ 𝑑𝑠 ´) = (∇

1

𝑟
∙ ∇) 𝑑𝑠 ´ + ∇

1

𝑟
× (∇ × 𝑑𝑠 ´) + (𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
+ 𝑑𝑠 ´ × (∇ × ∇

1

𝑟
) 
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Dado que ∇ × ∇(1
𝑟
) = 0  

∇ (∇
1

𝑟
∙ 𝑑𝑠 ´) = (𝑑𝑠 ´ ∙ ∇)∇

1

𝑟
 

Reemplazamos esta expresión en la ecuación 𝐻⃗⃗  tenemos 

𝐻⃗⃗ =
𝐼

4𝜋
∫∇(∇

1

𝑟
∙ 𝑑𝑠 ´) 

Factorizando del signo de la integral. Finalmente obtenemos 

𝐻⃗⃗ = ∇ (
𝐼

4𝜋
∫∇

1

𝑟
∙ 𝑑𝑠 ´) 

Comparando esta ecuación con 

𝐻⃗⃗ = −∇𝜑 

Tendremos que la expresión entre paréntesis es el potencial escalar magnético. 

𝜑 = −
𝐼

4𝜋
∫∇

1

𝑟
∙ 𝑑𝑠 ´ (2.20) 

 

La expresión 

∇
1

𝑟
= −

𝑟 

𝑟3
 

 Tendremos  

𝜑 =
𝐼

4𝜋
∫
𝑟 

𝑟3
∙ 𝑑𝑠 ´ 
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La expresión de la integral corresponde a la definición del ángulo sólido como 

podemos ver en el apéndice B. 

𝛺 = ∫
𝑟 

𝑟3
∙ 𝑑𝑠 ´ 

 Donde   el ángulo sólido, entonces el potencial escalar magnético en términos 

del ángulo sólido es: 

𝜑 =
𝐼

4𝜋
𝛺 (2.21) 

                         

 El ángulo sólido 𝛺 se considera positivo si la dirección de la corriente en el 

filamento vista desde el punto de observación es en sentido antihorario. 

2.8. Metodo de Expasion Axial 

El método de expansión axial se usa para determinar el potencial 

electrostático externo de distribuciones de carga axialmente simétricas para puntos 

que no están en el eje de simetría cuando se conoce el potencial en el eje. Tambien 

es utilizado para determinar la inducción magnetica o la intensidad magnetica 

conociendo el potencial magnético. (Jefimenko, 1989) 

Si una distribución de carga no tiene variación de densidad de carga 

alrededor de un eje de simetría, el potencial externo de la distribución puede ser 

representado por armónicos esféricos 

𝜑 = ∑(𝐴𝑛𝑟
𝑛 + 𝐵𝑛𝑟

−𝑛−1)

∞

𝑛=0

[𝐶𝑛𝑃𝑛(𝑐𝑜𝑠𝜃) + 𝐷𝑛𝑄𝑛(𝑐𝑜𝑠𝜃) + 𝐶
,] 

 Donde 𝐶𝑛 = 1; 𝐷𝑛 = 0  y 𝐶 , = 0 
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Los polinomios de Legendre de segunda especie 𝑄𝑛(𝑐𝑜𝑠𝜃) son infinitos para 

𝑐𝑜𝑠 𝜃 = ±1 y  por lo tanto, no están permitidos, cuando la región considerada 

incluye el eje de simetría. 

Tendremos: 

𝜑 =∑(𝐴𝑛𝑟
𝑛 +

𝐵𝑛
𝑟𝑛+1

)𝑃𝑛(𝑐𝑜𝑠𝜃)

∞

𝑛=0

 

Donde θ se mide con respecto al eje de simetría. Ya que en el eje el valor de 

  𝜃 = 0 de manera que 𝑃𝑛 = 1 para todo n el potencial se reduce en el eje en la 

siguiente expresion. 

𝜑𝑎𝑥𝑖𝑠 =∑(𝐴𝑛𝑟
𝑛 +

𝐵𝑛
𝑟𝑛+1

) = ∑(𝐴𝑛𝑧
𝑛 +

𝐵𝑛
𝑧𝑛+1

)

∞

𝑛=0

∞

𝑛=0

 

Donde 𝑧 es la distancia desde el origen a lo largo del eje. Supongamos ahora 

que el potencial en el eje es conocido y se expresa como una serie de potencia en 

𝑧 ("expansión axial") 

𝜑𝑎𝑥𝑖𝑠(𝑎ℎ𝑜𝑟𝑎) = ∑(𝑎𝑛𝑧
𝑛 +

𝑏𝑛
𝑧𝑛+1

)

∞

𝑛=0

 

Los coeficientes 𝑎𝑛 y 𝑏𝑛 de esta serie deben entonces ser iguales a los 

coeficientes 𝐴𝑛 y 𝐵𝑛 y por lo tanto a los de la ecuacion.   

𝜑 =∑(𝐴𝑛𝑟
𝑛 +

𝐵𝑛
𝑟𝑛+1

)𝑃𝑛(𝑐𝑜𝑠𝜃)

∞

𝑛=0

 
(2.22) 
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Por lo tanto, 𝑎𝑛 y 𝑏𝑛 pueden ser sustituidos en esta ultima ecuación y así, a 

partir del potencial en el eje, se puede obtener el potencial externo de la distribución 

de carga para otros puntos del espacio.  

2.9. Inducción magnética (𝑩⃗⃗ ) debido a una corriente en un solenoide 

Un solenoide o bobina es un alambre enrrollado en forma de una hélice con 

espiras muy próximas entre si. El solenoide se usa para producir campo magnético 

intenso y uniforme en la región rodeada por sus espiras. 

Las líneas de campo magnético que generá  un solenoide de una serie de 𝑁 

espiras idénticas son aproximadamente paralelas al eje de simétria de la bobina,  

estan espaciadas uniformemente indicando la existencia de un campo magnético 

uniforme e intenso. 

 Fuera del solenoide las líneas de campo son mucho menos densas. 

Divergen de un extremo y convergen en el otro. Comparando estas caracteristicas 

de campo de un solenoide  vemos que las líneas de campo de un solenoide, tanto 

en el interior como en el exterior, coinciden con las de una barra imantada. 

 Consideremos un solenoide de radio 𝑎, de longitud 𝐿, formado por 𝑁 vueltas 

(espiras) del cable conductor y que transporta una corriente de intensidad 𝐼. 

También elegimos como eje del solenoide a la recta simétrica que contiene al punto 

P, como muestra  la figura 14 parte b). 
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Figura 14  

a)Solenoide atravezado por una corriente I  b)Corte longitudinal del 
solenoide 

 

Fuente: Elaboración propia 

             Tomando como muestra un corte longitudinal del solenoide. Como L es la 

longitud y N el numero de espiras, el número de espiras  por unidad de longitud es 

𝑁/𝐿 y el numero de espiras en una seccion de longitud 𝑑𝑅, es (𝑁
𝐿
)𝑑𝑅. Entonces el 

campo o la inducción magnética debido a las espiras contenidas en la seccion 𝑑𝑅, 

en el punto P sobre el eje de simetría del solenoide es:  

𝑑𝐵𝑝 = [
𝜇0𝑎

2

2(𝑎2 + 𝑅2)3 2⁄  
]
𝑁

𝐿
𝑑𝑅 =

𝜇0𝐼𝑁

2𝐿

𝑎2𝑑𝑅

(𝑎2 + 𝑅2)3 2⁄
 

 

(2.23) 

                De la figura 14 parte b) se tiene que  𝑡𝑎𝑛𝛽 = 𝑎

𝑅
 , 𝑅 = 𝑎 𝑐𝑡𝑔𝛽, entonces 

𝑑𝑅 = −𝑎 𝑐𝑠𝑐2𝛽𝑑𝛽,  y  𝑠𝑒𝑛𝛽 = 𝑎

√𝑎2+𝑏2
 , de aquí  𝑎2 + 𝑏2 = 𝑎2𝑐𝑠𝑐2𝛽. Reemplazando 

enla ecuación (2.23), se tiene. 
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𝑑𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿

𝑎2(−𝑎)𝑐𝑠𝑐2𝛽𝑑𝛽

(𝑎2𝑐𝑠𝑐2𝛽)3 2⁄
=
𝜇0𝐼𝑁

2𝐿

(−1)

𝑐𝑠𝑐𝛽
𝑑𝛽 =

𝜇0𝐼𝑁

2𝐿
(−𝑠𝑒𝑛𝛽)𝑑𝛽 

𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿
∫ −𝑠𝑒𝑛𝛽 𝑑𝛽
𝛽2

𝛽1

=
𝜇0𝐼𝑁

2𝐿
(𝑐𝑜𝑠𝛽)𝛽1

𝛽2 

𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿
(𝑐𝑜𝑠𝛽2 − 𝑐𝑜𝑠𝛽1) 

 

(2.24) 

                   Si el solenoide es muy largo con respecto al radio, tenemos para puntos 

cerca del centro que 𝛽1 ≈ 𝜋  y 𝛽2 ≈ 0, de donde:  

𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿
(𝑐𝑜𝑠0 − 𝑐𝑜𝑠𝜋) =

𝜇0𝐼𝑁

𝐿
 

                    Para un punto en uno de sus extremos, 𝛽1 ≈ 𝜋 2⁄   y  𝛽1 ≈ 0  ó  𝛽1 ≈ 𝜋 

y  𝛽1 ≈ 𝜋 2⁄ . En cualquierea de los dos casos 

𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿
(𝑐𝑜𝑠0 − 𝑐𝑜𝑠 𝜋 2⁄ ) =

𝜇0𝐼𝑁

2𝐿
 

Ó 

𝐵𝑝 =
𝜇0𝐼𝑁

2𝐿
(𝑐𝑜𝑠 𝜋 2⁄ − 𝑐𝑜𝑠𝜋) =

𝜇0𝐼𝑁

2𝐿
 

                     Lo cual dice que el campo o la inducción magnética en los extremos 

del solenoide,  es la mitad del valor que pocee en el centro del solenoide. 

2.10. Bobina de Helmholtz 

Es un dispositivo para generar campo magnético uniforme en una pequeña 

región, muy utilizada en los laboratorios de experimentación. Fue nombrada así en 
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honor al físico alemán Hermann von Helmholtz. Consiste de dos electroimanes con 

el mismo eje. (Olivera, 2003) 

Las bobinas de Helmholtz consisten en dos bobinas circulares planas, cada 

una de las bobinas tienen N espiras y con la misma corriente fluyendo en el mismo 

sentido como se puede observar en la figura 15. La separación entre estas bobinas 

es igual al radio R común entre ambas. (Murano, 2006) 

 

Figura 15.  

Bobina de Helmholtz de eje común de simetría y separados una distancia R igual 
al radio R de las bobinas  

 

Fuente: Whikipedia 

Los científicos utilizan bobinas de Helmholtz para generar campos 

magnéticos uniformes para estudiar el electromagnetismo y sus 

características. Estos dispositivos se utilizan en IRM, espectroscopia, mediciones 

de magnetorresistencia y calibraciones de equipos. Además de crear campos 

magnéticos, las bobinas de Helmholtz se utilizan también en dispositivos científicos 

para cancelar campos magnéticos externos, tales como el campo magnético 

terrestre. (Rudd, 1983) 

https://es.wikipedia.org/wiki/Hermann_von_Helmholtz
https://es.wikipedia.org/wiki/Electroim%C3%A1n
https://es.wikipedia.org/wiki/Campo_magn%C3%A9tico_terrestre
https://es.wikipedia.org/wiki/Campo_magn%C3%A9tico_terrestre
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Para el estudio de las interacciones en un campo magnético, es necesario 

producir campos magnéticos uniformes en un volumen adecuado para cada 

estudio. 

Las bobinas de Helmholtz es una solución para los estudios donde es 

necesario colocar dispositivos que van interactuar con el campo magnético y poder 

visualizar el resultado de las interacciones. 

Las características de las bobinas de Helmholtz son: El espacio mayor donde 

el campo magnético es uniforme, es cuando la distancia de las boinas en igual al 

radio de ella. (Frederic, 1964) 

Una bobina de Helmholtz consiste en dos bobinas magnéticas circulares 

idénticas, que se ubican de manera simétrica a lo largo de un eje común, una a 

cada lado de un área experimental, y separadas por una distancia ℎ igual al R 

radio de la bobina. Cada bobina transporta una cantidad igual de corriente 

eléctrica en la misma dirección. (Cacak, 1969). 

Si las separaciones entre las bobinas es igual al radio de la bobina, la 

magnitud del campo magnético es independiente de la posicion a lo largo de su eje 

común(exepto en los puntos ceraca de las bobinas (1) bobinas que cumplan esta 

condición, bobinas de Helmholtz, se utilizan con frecuencia para la exposición de 

los sistemas biológicos tales como células de seres humanos, bajo el supuesto de 

que el campo en al región ocupada por el sistema biológico es realtvamente 

uniforme. (Bell, 1989). 

Método por coordenadas cartesianas para determinar la inducción magnética 

en cualquier punto del eje de la bobina de Helmholtz. 

             Tomando en cuenta que el eje de simetría de la bobina de Helmholtz de 

radio  "𝑅", coencida con el eje "𝑧"  de las coordenadas cartecianas, la distancia de 

https://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica
https://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica
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separación entre las bobinas es  igual a una longitud de "2𝑏" ,  "𝑐" el punto medio 

entre las bobinas sobre el eje "𝑧" de longitud "𝑏" y sea "𝑃" un  punto sobre el eje "𝑧" 

a una distancia "𝑧" del origen de coordenadas que coincide geométricamente con 

un aro de la bobina de Helmholtz. Como indica la figura mostrada. 

Figura 16. 

 Bobina de Helmholtz de radio 𝑅, centro 𝐶 de longitud 𝑏 y un punto 𝑃 en el eje de 
simetría  a una distancia 𝑧 del origen de coordenadas 𝑜 

 

 
Fuente: Wiquipedia 

Teniendo presente que 𝐵⃗  producido por una espira(vuelta) de radio "𝑅", a 

una distancia "𝑧" de su eje vertical está dado por la siguiente formula.  

𝐵⃗ =
𝜇0𝐼

2

𝑅2

(𝑅2 + 𝑧2)3 2⁄
𝑒 𝑧 

 

(2.26) 

 

Por lo tanto para los dos aros de la figura anterior de igual número de vueltas  

"𝑁" , de igual intensidad de corriente eléctrica "𝐼" y en el mismo sentido de las 

corrientes, se puede escribir que 𝐵⃗ , en el punto "𝑝" del eje "𝑧" es: 
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𝐵𝑝 =
𝜇0𝐼𝑁𝑅

2

2(𝑅2 + 𝑧  2)3 2⁄
+

𝜇0𝐼𝑁𝑅
2

2[𝑅2 + (2𝑏 − 𝑧)2]3 2⁄
 

Entonces sacando los terminos  constantes  se tiene. 

𝐵𝑝 =
𝜇0𝐼𝑁𝑅

2

2
[

1

(𝑅2 + 𝑧2)3 2⁄
+

1

[𝑅2 + (2𝑏 − 𝑧)2]3 2⁄
] 

a) Derivando por primera vez esta ecuación se tiene: 

𝑑𝐵𝑝

𝑑𝑧
=
𝜇0𝐼𝑁𝑅

2

2
[−
3

2

2𝑧

(𝑅2 + 𝑧2)5 2⁄
+
3

2

2(2𝑏 − 𝑧)(−1)

[𝑅2 + (2𝑏 − 𝑧)2]5 2⁄
] 

𝑑𝐵𝑝

𝑑𝑧
= −

3

2
 𝜇0𝐼𝑁𝑅

2 [
𝑧

(𝑅2 + 𝑧2)5 2⁄
+

(2𝑏 − 𝑧)

[𝑅2 + (2𝑏 − 𝑧)2]5 2⁄
] 

Se nota que para para   𝑧 = 𝑏 , resulta que:   𝑑𝐵𝑝
𝑑𝑧
= 0 

Derivando nuevamente  𝑑𝐵𝑝
𝑑𝑧

, es decir  𝑑
2𝐵𝑝

𝑑𝑧2
  resulta: 

𝑑2𝐵𝑝

𝑑𝑧2
= −(

3𝜇0𝑁𝑖𝑅
2

2
) {

1

(𝑧2 + 𝑅2)5 2⁄
−

5𝑧2

(𝑧2 + 𝑅2)7 2⁄
+

1

[(2𝑏 − 𝑧)2 + 𝑅2]5 2⁄

−
5(2𝑏 − 𝑧)2

[(2𝑏 − 𝑧)2 + 𝑅2]7 2⁄
} 

De la misma manera  reemplazando en  𝑑
2𝐵𝑝

𝑑𝑧2
  con   𝑧 = 𝑏,  resulta:  

𝑑2𝐵𝑝

𝑑𝑧2
= −

3

2
 𝜇0𝐼𝑁𝑅

2 [
2

(𝑅2 + 𝑏2)5 2⁄
−

10𝑏2

[𝑅2 + (𝑏)2]7 2⁄
] 

𝑑2𝐵𝑝

𝑑𝑧2
= −

3

2
 𝜇0𝐼𝑁𝑅

2 [
2(𝑅2 + 𝑏2)

(𝑅2 + 𝑏2)7 2⁄
−

10𝑏2

[𝑅2 + (𝑏)2]7 2⁄
] 

Haciendo 𝑑
2𝐵𝑝

𝑑𝑧2
= 0, se obtiene: 

[2(𝑅2 + 𝑏2) − 10𝑏2] = 0 
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De lo cual se implica que para:  𝑧 = 𝑏 = 𝑅/2 , 𝑑
2𝐵𝑝

𝑑𝑧2
= 0   

Entonces para una bobina de Helmholtz sustituyendo resulta que 𝐵⃗ 𝑝 es:  

𝐵⃗ 𝑝 =
𝜇0𝐼𝑁𝑅

2

2
[

2

(𝑅2 + 𝑅2 4⁄ )3 2⁄
] 

Y haciendo las respectivas simplificaciones resulta: 

|𝐵⃗ 𝑝| =
𝜇0𝐼𝑁

𝑅
 
8

53/2
   𝑤𝑒𝑏𝑒𝑟/𝑚2 

Nota:  

•  |𝐵⃗ 𝑝|, es el módulo de la inducción magnética en el punto "𝑐" . Punto medio 

del eje de las bobinas de Helmoltz. 

•  1 𝐺𝑎𝑢𝑠𝑠 = 10−4   𝑤𝑒𝑏𝑒𝑟
𝑚2

= 10−4 𝑇 

 

Como las espiras de una bobina están apretadas, entonces la contribución al 

campo de cada una de estas será la misma. Además como el sentido de circulación 

de la corriente en las bobinas es igual, los campos de estas se suman. El campo 

total en el punto “P” será. (Milford, 2001)y (Kovetz A. , 2000) 

𝐵(𝑍) =
𝜇0𝑁𝐼𝑅

2

2
{

1

(𝑧2 + 𝑅2)3 2⁄
+

1

[(2𝑏 − 𝑧)2 + 𝑅2]3 2⁄
} (2.27) 

 

A lo largo del eje "𝑧". 

En (2.26) se tiene la ecuación del campo para  una sola espira sobre su eje. 

b) Derivando la ecuación (2.27), cuatro veces. Se obtiene: 

𝑑𝐵

𝑑𝑧
= −(

3𝜇0𝑁𝐼𝑅
2

2
) {

𝑧

(𝑧2 + 𝑅2)5 2⁄
−

(2𝑏 − 𝑧)

[(2𝑏 − 𝑧)2 + 𝑅2]5 2⁄
} (2.28) 
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𝑑2𝐵

𝑑𝑧2
= −(

3𝜇0𝑁𝑖𝑅
2

2
) {

1

(𝑧2 + 𝑅2)5 2⁄
−

5𝑧2

(𝑧2 + 𝑅2)7 2⁄

+
1

[(2𝑏 − 𝑧)2 + 𝑅2]5 2⁄
−

5(2𝑏 − 𝑧)2

[(2𝑏 − 𝑧)2 + 𝑅2]7 2⁄
} 

(2.29) 

 

𝑑3𝐵

𝑑𝑧3
= (

15𝜇0𝑁𝑖𝑅
2

2
){

3𝑧

(𝑧2 + 𝑅2)7 2⁄
−

7𝑧3

(𝑧2 + 𝑅2)9 2⁄
−

3(2𝑏 − 𝑧)

[(2𝑏 − 𝑧)2 + 𝑅2]7 2⁄

+
7(2𝑏 − 𝑧)3

[(2𝑏 − 𝑧)2 + 𝑅2]9 2⁄
} 

(2.30) 

 

𝑑4𝐵

𝑑𝑧4
= (

45𝜇0𝑁𝑖𝑅
2

2
) {

1

(𝑧2 + 𝑅2)7 2⁄
−

14𝑧2

(𝑧2 + 𝑅2)9 2⁄
+

21𝑧4

(𝑧2 + 𝑅2)11 2⁄

+
1

[(2𝑏 − 𝑧)2 + 𝑅2]7 2⁄
−

14(2𝑏 − 𝑧)4

[(2𝑏 − 𝑧)2 + 𝑅2]9 2⁄

+
21(2𝑏 − 𝑧)4

[(2𝑏 − 𝑧)2 + 𝑅2]11 2⁄
} 

(2.31) 

 

(𝑐)  Observe que la primera y la tercera derivada se anulan en 𝑧 = 𝑏  (punto 

central entre las bobinas). 

En cambio la segunda y la cuarta toman los valores: 

𝑑2𝐵

𝑑𝑧2
= −(3𝜇0𝑁𝑖𝑅

2)
(𝑅2 − 4𝑏2)

(𝑏2 + 𝑅2)7 2⁄
 (2.32) 

 

𝑑4𝐵

𝑑𝑧4
= (45𝜇0𝑁𝑖𝑅

2) {
1

(𝑏2 + 𝑅2)7 2⁄
−

14𝑏2

(𝑏2 + 𝑅2)9 2⁄
+

21𝑏4

(𝑏2 + 𝑅2)11 2⁄
} (2.33) 

 

De (2.32) se ve que la condición para que se anule la segunda derivada en el 

punto central será. 

𝑅2 − 4𝑏2 = 0 (2.34) 
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2𝑏 = 𝑅 (2.34´) 
 

𝑏 =
𝑅

2
  (condición geométrica) 

 

Lo que muestra que la separación entre bobinas está relacionado con el radio de 

estas. 

Reemplazando (2.34´)en (2.27) y (2.33) 

𝐵(𝑅 2⁄ ) = (
8

53 2⁄
) (
𝜇0𝑁𝑖

𝑅
) (2.35) 

 

𝑑4𝐵

𝑑𝑧4
= −(

216𝑥128

125
) (

𝜇0𝑁𝑖

𝑅553 2⁄
) (2.36) 

 

𝑑4𝐵

𝑑𝑧4
= −(

3456

125
) (
𝐵(𝑅 2⁄ )

𝑅4
) (2.36´) 

 

(𝑑) El sistema de bobinas sometidas a la condición (𝑐) , tiene la característica, de 

que el campo magnético en puntos cercanos al centro entre ellas es 

esencialmente uniforme.  

Para ver esto desarrollamos en la serie de Taylor el campo 𝐵(𝑧) en las 

inmediaciones del punto central 𝑧 = 𝑅

2
  

𝐵(𝑧) = 𝐵(𝑅/2) + (𝑧 − 𝑅/2) (
𝜕𝐵

𝜕𝑧
)
𝑧=𝑅/2

+
1

2!
(𝑧 − 𝑅/2)2 (

𝜕2𝐵

𝜕𝑧2
)
𝑧=𝑅/2

+
1

3!
(𝑧 − 𝑅/2)3 (

𝜕3𝐵

𝜕𝑧3
)
𝑧=𝑅/2

+
1

4!
(𝑧 − 𝑅/2)4 (

𝜕4𝐵

𝜕𝑧4
)
𝑧=𝑅/2

+⋯ 

 

Que de acuerdo a los resultados anteriores se reduce a: 
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𝐵(𝑧) = 𝐵(𝑅/2) +
1

24
(𝑧 − 𝑅/2)4 (

𝜕4𝐵

𝜕𝑧4
)
𝑧=𝑅/2

+⋯ 

 
 

𝐵(𝑧) = 𝐵(𝑅/2) {1 +
1

24

(𝑧 − 𝑅/2)4

𝐵(𝑅/2)
(
𝜕4𝐵

𝜕𝑧4
)
𝑧=𝑅/2

} + ⋯ 

 
 

𝐵(𝑧) = 𝐵(𝑅/2) {1 −
144

125
(
𝑧 − 𝑅/2

𝑅
)
4

} 

 
 

Se observa por ejemplo, que para la región en que |𝑧 − 𝑏| < 𝑏

5
  ó  |𝑧 − 𝑅/2| <

𝑅

10
 ,  

𝐵(𝑧) se desvía de 𝐵(𝑅/2) en menos de una parte y media en diez mil. Estas 

ecuación nos dice que la inducción magnética es prácticamente constante 

alrededor del centro del eje de simetría de la bobina. (Zahn M. , 1991) 
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CAPÍTULO III : MÉTODO DE INVESTIGACIÓN 

3. 1. Tipo y nivel de investigación 

 La experimentación fue del tipo teorico y experimental,  ya que se desarrollo 

primero el modelo teorico físico del comportamiento magnético de las bobinas de 

Helmholtz, segundo se registro la inducción magnetica con el sensor de efecto Hall 

en la zona experimental de las tres bobinas de Helmholtz y finalmente se dispuso 

de manera triaxial las tres bobinas de Helmholtz. 

3.1.1. Procedimiento General 

  El procedimiento para llevar a cabo nuestra investigación siguió los 

siguientes pasos primero estudiamos el modelo teórico físico del comportamiento 

magnético de las bobinas de Helmholtz  en su eje y en la zona experimental 

siguiendo el método deductivo, segundo se realizó la simulación con el software 

Comsol para observar el comportamiento de la inducción magnética en el plano de 

experimentación de las bobinas de Helmholtz, mediante el método inductivo se 

observa el cambio del vector inducción magnética  en la zona experimental, tercero 

se diseño y se construyo las tres bobinas de Helmholtz, cuarto se ejecuto las 

pruebas de funcionamiento del equipo, quinto recolectamos y procesamos los datos 

con el software Surface para obtener la topografía de la inducción magnética en la 

zona experimental. Finalmente realizamos el analisis y las respectivas conclusiones 

y recomendaciones. Estos procedimiento se detallan en este capitulo siguiendo las 

reglas teóricas del electromagnetismo, la simulación en un software confiable como 

es el Comsol, la experimentación siguiendo las reglas del método inductivo. Para 

alcanzar los objetivos propuestos y seguir con el normal curso de las actividades 

de tesis se desarrolló un diagrama de flujo que se muestra.  
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Figura 17 

Diagrama de flujo 

 

Ajustar parámetros de funcionamiento 

de las bobinas de Helmholtz.  

  

Inicio del 

Proyecto 

Estudiar el modelo teórico físico del par de 

bobinas de Helmholtz en su eje de simetría y  

fuera del eje de simetría. 

Simular el modelo teórico de las bobinas en su 

eje de simetría y fuera del eje de simetría con el 

software Comsol Multiphysics. 

 

Diseño y construcción de tres pares de bobinas de 

Helmholtz en disposición triaxial, devanadas y con  sus 

respectivas fuentes de alimentación. 

 

¿El equipo cumple con 

los rangos de inducción 

magnética uniforme? 

  

Recolectar datos, procesar y 

mapear el campo magnético en 

cada par de bobinas con el 

software Surface. 

Análisis de resultados, 

Conclusiones y 

recomendaciones. 

  

NO 

SI 

Pruebas de funcionamiento del Equipo. 
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3.2.  Diseño de Investigación 

Primero determinar la intensidad magnetica (𝑯⃗⃗⃗ ) en una bobina de Helmholtz 

Con el  potencial escalar magnético (𝜑) determinamos la intensidad 

magnetica 𝐻⃗⃗   producido en el eje de simetría de una espira  circular que trasporta 

corriente eléctrica, luego sumamos el potencial escalar magnético de una segunda 

espira para lograr la configuración de Helmholtz. para determinar el potencial 

escalar magnético primero determinamos el angulo solido puesto que el potencial 

escalar magnético esta en terminos del angulo solido finalmente para determinar la 

intensidad magnetica 𝐻⃗⃗  solo se tiene que determinar el gradiente del potencial 

escalar magnético. Ahora para determinar en un punto fuera del eje de simetría 

expresamos el potencial escalar magnético en terminos de los polinomios de 

Legendre. En el caso de la bobina de Helmholtz realizamos para dos espiras 

circulares y sumamos el potencial escalar magnético luego desarrollamos con una 

serie de Maclaurin para luego colocar cada termino de esta serie como un polinomio 

de Legendre obtiendo la expasion axial para cualquier punto fuera del eje de 

simetría, finalmente determinamos el gradiente del potencial escalar magnético 

para obtener la intensidad magnetica 𝐻⃗⃗  en cualquier punto de la zona experimental 

de la bobina de Helmholtz.  

Segundo simulación con el Comsol 

Con la finalidad de conocer la topografía de una bobina de Helmholtz se 

simulo en el simulador de fisica Comsol para observa el comportamiento de la 

inducción magnetica y seguir el camino correcto del desarrollo de la tesis. Primero 

se instalo el software luego se vio el enmallado, luego la geometría de la bobina, 

luego se agrego el numero de espiras y finalmente los parámetros físicos como son 
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corriente eléctrica, resistencia eléctrica, etc. Debemos señalar que la simulación no 

se realizo con los datos experimentales tomados en los tres pares de bobinas, la 

simulación se realiza con la finalidad de observar como es el comportamiento 

topográfico de una bobina de Helmholtz en la zona experimental. 

A continuación mostramos el proceso teorico del modelamiento  

electromagnético de la bobina de Helmholtz que se requiere para ejecutar una 

simulación. 

 

3.2.1 Modelamiento Electromagnetico de la Bobina de Helmholtz 

 

Para el estudio del campo magnético en la zona experimental de la bobina 

de Helmholtz primero estudiamos la intensidad del campo magnético de una espira 

en un punto de su eje a partir del potencial escalar magnético para luego estudiar 

la intensidad de campo magnético en toda la zona experimental. 

3.2.2 Intensidad del Campo Magnético Producido por una Espira o 

Corriente Circular en un Punto de su Eje 

Como vimos el potencial escalar magnético se define por: 

𝜑 =
𝐼

4𝜋
𝛺 

Donde el ángulo solido se considera positivo si la dirección de la corriente 

en el filamento vista desde el punto de observación es en sentido antihorario. 

Primero encontraremos la intensidad del campo magnético H a partir del 

potencial escalar magnético φ  de una sola espira: 
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Figura 18 

 Intensidad de campo magnético de una espira circular de radio R utilizando el 
potencial escalar magnético 

 
 Fuente: Elaboración Propia 

El área de un casquete esférico es: 

𝐴 = 2𝜋𝑟ℎ 

En la figura 3.1,  determinamos el coseno del ángulo 𝜃 del triángulo rectángulo 

AOP: 

𝑐𝑜𝑠𝜃 =
𝑟 − ℎ

𝑟
 

 Donde la altura del casquete esférico es: 

ℎ = 𝑟(1 − 𝑐𝑜𝑠𝜃) 

Reemplazando en la ecuación del área del casquete esférico: 

𝐴 = 2𝜋𝑟2(1 − 𝑐𝑜𝑠𝜃) 
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Por ultimo tendremos que el ángulo solido será: 

𝛺 =
𝐴

𝑟2
=
𝑆

𝑟2
=
2𝜋𝑟2(1 − 𝑐𝑜𝑠𝜃)

𝑟2
= 2𝜋(1 − 𝑐𝑜𝑠𝜃) 

𝛺 =
𝐴

𝑟2
=
𝑆

𝑟2
=
2𝜋𝑟2(1 − 𝑐𝑜𝑠𝜃)

𝑟2
= 2𝜋(1 − 𝑐𝑜𝑠𝜃) 

 

(3.1) 

 

También del triángulo rectángulo AOP tendremos que:  

𝑐𝑜𝑠𝜃 =
𝑧

√𝑅2 + 𝑧2
 

Entonces el ángulo solido es: 

𝛺 = 2𝜋(1 − 𝑐𝑜𝑠𝜃) = 2𝜋 (1 −
𝑧

√𝑅2 + 𝑧2
) 

Remplazamos esta expresión en el potencial escalar.  

𝜑 =
𝐼

4𝜋
𝛺 

𝜑 =
𝐼

4𝜋
2𝜋 (1 −

𝑧

√𝑅2 + 𝑧2
) 

           Entonces el valor del potencial escalar magnético de una espira circular de 

radio R que transporta una corriente 𝐼 en todos los puntos del eje simétrico de la 

espira, es: 

𝜑 =
𝐼

2
(1 −

𝑧

√𝑅2 + 𝑧2
) (3.2) 

 

Por lo tanto la intensidad de campo magnético. 
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𝐻⃗⃗ = −𝛻𝜑 

𝐻⃗⃗ = −𝛻 {
𝐼

2
(1 −

𝑧

√𝑅2 + 𝑧2
)} = −

𝐼

2
(
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
) {(1 −

𝑧

√𝑅2 + 𝑧2
)} 

𝐻⃗⃗ =
𝐼

2
[

1

(𝑅2 + 𝑧2)
1
2

−
1

(𝑅2 + 𝑧2)
3
2

] 𝑘̂ 

𝐻⃗⃗ =
𝐼

2(𝑅2 + 𝑧2)
3
2

(𝑅2 + 𝑧2 − 𝑧2)𝑘̂ 

Donde: 

𝐻⃗⃗ =
𝐼𝑅2

2(𝑅2 + 𝑧2)
3
2

𝑘̂ 
(3.3) 

 

Del potencial escalar magnético de una espira circular de radio 𝑅:  

𝜑𝑎𝑥𝑖𝑎𝑙 =
𝐼

2
(1 −

𝑧

√𝑅2 + 𝑧2
) 

Donde z es la distancia al centro del aro. 

𝜑𝑎𝑥𝑖𝑎𝑙 =
𝐼

2

(

 1 −
1

√1 + (
𝑅
𝑧)

2

)

  

Cambiamos de variable: 𝑥 = (𝑅
𝑧
)
2

 

La serie de Maclaurin es:    𝑓(𝑥) = 𝑓(0) + 𝑓 ,(0)𝑥 + 𝑓,,(0)

2!
𝑥2 +⋯+

𝑓𝑛(0)

𝑛!
𝑥𝑛 

𝑓(𝑥) =
1

√1+𝑥
  →           𝑓(0) = 1 

𝑓 ,(𝑥) = −
1

2

1

√(1+𝑥)3
  →  𝑓 ,(0) = − 1

2
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𝑓 ,,(𝑥) =
1

2
 
3

2

1

√(1+𝑥)5
  →  𝑓 ,,(0) = 1

2
 
3

2
 

𝑓(𝑥) = 1 −
1

2
𝑥 +

1

2
 
3

4
𝑥2 +⋯…… 

𝑥 = (
𝑅

𝑧
)
2

 

1

√1 +
𝑅2

𝑧2

= 1 −
1

2
(
𝑅

𝑧
)
2

+
1

2
 
3

4
(
𝑅

𝑧
)
4

−⋯ 

𝜑𝑒𝑗𝑒 =
𝐼

2
[1 − 1 +

1

2

𝑅2

𝑧2
−
1

2

3

4
(
𝑅

𝑧
)
4

+⋯] 

𝜑𝑒𝑗𝑒 =
𝐼𝑅2

2
[
1

2

1

𝑧2
−
1

2
 
3

4

𝑅2

𝑧4
+⋯] 

=
𝐼

2
(1 − (1 −

1

2

𝑅2

𝑧2
+
1 ∙ 3

2 ∙ 3

𝑅4

𝑧4
−⋯)) 

=
𝐼𝑅2

2
(
1

2

1

𝑧2
−
1 ∙ 3

2 ∙ 4

𝑅2

𝑧4
+⋯) 

Desarrollamos la expresión 1
𝑧𝑛

 en función de los polinomios de Legendre. 

1

𝑧𝑛
=
𝑃𝑛−1(𝑐𝑜𝑠𝜃)

𝑟𝑛
 

Remplazamos en la ecuación del potencial escalar magnético tenemos:  

𝜑(𝑟, 𝜃) =
𝐼𝑅2

2
(
1

2

𝑃1(𝑐𝑜𝑠𝜃)

𝑟2
−
1 ∙ 3

2 ∙ 4

𝑃3(𝑐𝑜𝑠𝜃)

𝑟4
+⋯) (3.4) 

 

Donde 𝑟 es la distancia del centro de la espira y 𝜃 es el angulo entre 𝑟 y el eje 𝑧. 

Similarmente para 𝑧 < 𝑅  tenemos: 
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𝜑𝑎𝑥𝑖𝑎𝑙 =
𝐼

2

(

 1 −
𝑧

𝑅√1 + (
𝑧
𝑅)

2

)

  

=
𝐼

2
(1 −

𝑧

𝑅
(1 −

1

2

𝑧2

𝑅2
+
1 ∙ 3

2 ∙ 4

𝑧4

𝑅4
−⋯)) 

=
𝐼

2
(1 −

𝑧

𝑅
+
1

2

𝑧3

𝑅3
−
1 ∙ 3

2.4

𝑧5

𝑅5
+⋯) 

Desarrollamos la expresión 𝑧𝑛  en función de los polinomios de Legendre. 

𝑧𝑛 = 𝑟𝑛𝑃𝑛 (𝑐𝑜𝑠𝜃) 

Y reemplazamos en el potencial escalar magnético y obtenemos: 

𝜑(𝑟, 𝜃) =
𝐼

2
(1 −

𝑟

𝑅
𝑃1(𝑐𝑜𝑠𝜃) +

1

2

𝑟3

𝑅3
𝑃3(𝑐𝑜𝑠𝜃) +⋯) (3.5) 

 

3.2.3. Intensidad del Campo Magnético Producido por una Bobina de 

Helmholtz en un Punto de la Zona Experimental 

Las bobinas de Helmholtz son dos bobinas paralelas de radio R están 

separadas por una distancia R. Las bobinas tienen 𝑛 vueltas, cada bobina 

transporta la misma corriente 𝐼 y en el mismo sentido, las dimensiones del área de 

la sección transversal de las bobinas son pequeñas. Las bobinas de acuerdo a la 

figura se encuentran en el plano  𝑧 = 𝑅

2
 y la otra en el plano 𝑧 = − 𝑅

2
. 
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Figura 19 

 Bobina de Helmholtz ubicadas en el eje Z 

 

Fuente: Wuiquipedia 

El campo magnético en la región central entre las bobinas lo determinaremos 

por el Potencial escalar magnético en la región central de las bobinas en un punto 

cuyas coordenadas cilíndricas son 𝑧 y 𝑟´ = 0 es decir en el eje de simetría y el 

potencial sera: 

𝜑 =
𝑛𝐼

2
{1 − (

𝑅

2
+ 𝑍) [𝑅2 + (

𝑅

2
+ 𝑧)

2

]

−
1
2

}

−
𝑛𝐼

2
{1 − (

𝑅

2
− 𝑧) [𝑅2 + (

𝑅

2
− 𝑧)

2

]

−
1
2

} 

 

(3.6) 

Cambiamos de variable de 𝑧 = 𝑅𝑥 

𝜑 =
𝑛𝐼

2
{1 −

𝑅(1 2 + 𝑥⁄ )

𝑅√1 + (1 2 + 𝑥⁄ )2
} −

𝑛𝐼

2
{1 −

𝑅(1 2 − 𝑥⁄ )

𝑅√1 + (1 2 − 𝑥⁄ )2
} 

Reemplazamos 𝑘 = 1/2 
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𝜑 =
𝑛𝐼

2
{1 −

(𝑘 + 𝑥)

√1 + (𝑘 + 𝑥)2
} −

𝑛𝐼

2
{1 −

(𝑘 − 𝑥)

√1 + (𝑘 − 𝑥)2
} 

Ordenamos, simplificamos y tenemos: 

𝜑 =
𝑛𝐼

2
{

(𝑘 − 𝑥)

√1 + (𝑘 − 𝑥)2
} −

𝑛𝐼

2
{

(𝑘 + 𝑥)

√1 + (𝑘 + 𝑥)2
}                  (3.7) 

Podemos entonces escribir: 

𝜑(𝑘 − 𝑥) =
𝑛𝐼

2
{

(𝑘 − 𝑥)

√1 + (𝑘 − 𝑥)2
} 

𝜑(𝑘 + 𝑥) =
𝑛𝐼

2
{

(𝑘 + 𝑥)

√1 + (𝑘 + 𝑥)2
} 

Podemos escribir el potencial de la siguiente manera: 

𝜑(𝑥) = 𝜑(𝑘 − 𝑥) −  𝜑(𝑘 + 𝑥)   (3.8) 

Desarrollando la ecuación (3.2.3) en una serie de Maclaurin hasta el sexto 

termino.  

𝜑(𝑥) = 𝜑(0) + 𝜑´(0)𝑥 +
𝜑´´(0)

2!
𝑥2 +

𝜑´´´(0)

3!
𝑥3 +

𝜑𝐼𝑉(0)

4!
𝑥4 +

𝜑𝑉(0)

5!
𝑥5 

Para el primer termino de la serie de Maclaurin  tenemos: 

𝜑(0) = 𝜑(𝑘 − 0) −  𝜑(𝑘 + 0) = 𝜑(𝑘) − 𝜑(𝑘) = 0 

𝜑(0) = 0 (3.9) 

Para el segundo termino tenemos: 

𝑑𝜑

𝑑𝑥
= −𝜑´(𝑘 − 𝑥) − 𝜑´(𝑘 + 𝑥) 

𝜑´(𝑥) = −𝜑´(𝑘 − 𝑥) − 𝜑´(𝑘 + 𝑥) 
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𝜑´(0) = −𝜑´(𝑘) − 𝜑´(𝑘) = −2𝜑´(𝑘)   (3.10) 

Para el tercer termino tenemos: 

𝑑2𝜑

𝑑𝑥2
= 𝜑´´(𝑘 − 𝑥) − 𝜑´´(𝑘 + 𝑥) 

𝜑´´(𝑥) = 𝜑´´(𝑘 − 𝑥) − 𝜑´´(𝑘 + 𝑥) 

𝜑´´(0) = 𝜑´´(𝑘) − 𝜑´´(𝑘) = 0   (3.11) 

Para el cuarto termino tenemos: 

𝑑3𝜑

𝑑𝑥3
= −𝜑´´´(𝑘 − 𝑥) − 𝜑´´´(𝑘 + 𝑥) 

𝜑´´´(𝑥) = −𝜑´´´(𝑘 − 𝑥) − 𝜑´´´(𝑘 + 𝑥) 

𝜑´´´(0) = −𝜑´´´(𝑘) − 𝜑´´´(𝑘) = −2𝜑´´´(𝑘) (3.12) 

Para el quinto termino tenemos: 

𝑑4𝜑

𝑑𝑥4
= 𝜑𝑖𝑣(𝑘 − 𝑥) − 𝜑𝑖𝑣(𝑘 + 𝑥) 

𝜑𝑖𝑣(𝑥) = 𝜑𝑖𝑣(𝑘 − 𝑥) − 𝜑𝑖𝑣(𝑘 + 𝑥) 

𝜑𝑖𝑣(0) = 𝜑𝑖𝑣(𝑘) − 𝜑𝑖𝑣(𝑘) = 0 (3.13) 

Para el sexto termino tenemos: 

𝑑5𝜑

𝑑𝑥5
= −𝜑𝑣(𝑘 − 𝑥) − 𝜑𝑣(𝑘 + 𝑥) 

𝜑𝑣(𝑥) = −𝜑𝑣(𝑘 − 𝑥) − 𝜑𝑣(𝑘 + 𝑥) 

𝜑𝑣(0) = −𝜑𝑣(𝑘) − 𝜑𝑣(𝑘) = −2𝜑𝑣(𝑘) (3.14) 

Remplazamos las ecuaciones desde (3.2.4) hasta (3.2.8) en la serie de Maclaurin 

𝜑(𝑥) = 0 + (−2𝜑´(𝑘))𝑥 + 0𝑥2 +
(−2𝜑´´´(𝑘))

3!
𝑥3 + 0𝑥4 +

(−2𝜑𝑣(𝑘))

5!
𝑥5 
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𝜑(𝑥) = −2𝜑´(𝑘)𝑥 − 2𝜑´´´(𝑘)
𝑥3

3!
− 2𝜑𝑣(𝑘)

𝑥5

5!
 (3.15) 

Evaluamos los terminos de la ecuación (3.2.9)   para esto podemos usar  

cualquiera de las ecuaciones : 

𝜑(𝑘 − 𝑥) =
𝑛𝐼

2
{

(𝑘−𝑥)

√1+(𝑘−𝑥)2
}   y   𝜑(𝑘 + 𝑥) = 𝑛𝐼

2
{

(𝑘+𝑥)

√1+(𝑘+𝑥)2
} 

Usaremos: 

𝜑(𝑘 + 𝑥) =  
𝑛𝐼

2

(𝑘 + 𝑥)

√1 + (𝑘 + 𝑥)2
 

Derivamos esta ultima ecuación 𝜑(𝑘 + 𝑥) 

𝜑´(𝑘 + 𝑥) =
𝑛𝐼

2
[
(1 + (𝑘 + 𝑥)2)1 2⁄ − (𝑘 + 𝑥)2(1 + (𝑘 + 𝑥)2)−1 2⁄

1 + (𝑘 + 𝑥)2
] 

𝜑´(𝑘 + 𝑥) =
𝑛𝐼

2

1

(1 + (𝑘 + 𝑥)2)3 2⁄
 

Haciendo: 𝑘 = 1

2
  𝑦    𝑥 = 0 

𝜑´(𝑘 + 0) =
1

(1 + (1/2 + 0)2)3 2⁄
(
𝑛𝐼

2
) =

1

(1 + (1/2)2)3/2
(
𝑛𝐼

2
) 

𝜑´(𝑘) =
8

5√5
(
𝑛𝐼

2
) (3.16) 

Derivando: 𝜑´(𝑘 + 𝑥) 

𝜑´´(𝑘 + 𝑥) =
−3(𝑘 + 𝑥)

(1 + (𝑘 + 𝑥)2)5 2⁄
(
𝑛𝐼

2
) 

Derivamos una vez más 

𝜑´´´(𝑘 + 𝑥) = [−3(1 + (𝑘 + 𝑥)2)−5 2⁄ + 15(𝑘 + 𝑥)2(1 + (𝑘 + 𝑥)2)−7 2⁄ ] (
𝑛𝐼

2
) 
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Haciendo: 𝑘 = 1

2
  𝑦    𝑥 = 0 

𝜑´´´(𝑘 + 0) = 𝜑´´´ (
1

2
+ 0) = 0 (3.17) 

Derivando: 𝜑´´´(𝑘 + 𝑥) 

𝜑𝑖𝑣(𝑘 + 𝑥) = [45(𝑘 + 𝑥)(1 + (𝑘 + 𝑥)2)−7 2⁄ − 105(𝑘 + 𝑥)3(1 + (𝑘 + 𝑥)2)−9 2⁄ ] (
𝑛𝐼

2
) 

Derivando una vez más 

𝜑𝑣(𝑘 + 𝑥) = [45(1 + (𝑘 + 𝑥)2)−7 2⁄ − 630(𝑘 + 𝑥)2(1 + (𝑘 + 𝑥)2)−9 2⁄

+ 945(𝑘 + 𝑥)4(1 + (𝑘 + 𝑥)2)−11 2⁄ ] (
𝑛𝐼

2
) 

Evaluamos 

𝜑𝑣(𝑘 + 0) = 𝜑𝑣 (
1

2
+ 0) = −

1080(128)

3125√5
(
𝑛𝐼

2
) 

(3.18) 

Reemplazamos: (3.2.10) ,  (3.2.11)  y   (3.2.12)    en (3.2.9) 

𝜑(𝑥) = −2𝜑´(𝑘)𝑥 − 2𝜑´´´(𝑘)
𝑥3

3!
− 2𝜑𝑣(𝑘)

𝑥5

5!
 

𝜑(𝑥) = [−2 (
8

5√5
) 𝑥 − 2(0)

𝑥3

3!
− 2(−

1080(128)

3125√5
)
𝑥5

5!
] (
𝑛𝐼

2
) 

𝜑(𝑥) = −
𝑛𝐼8

5√5
(𝑥 −

1080(16)

625

𝑥5

5!
) 

                                                        𝑧 = 𝑅𝑥   →   𝑥 = 𝑧

𝑅
 

𝜑 (
𝑧

𝑅
) == −

𝑛𝐼8

5√5
(
𝑧

𝑅
−
1080(16)

625(5!)

𝑧5

𝑅5
+⋯) (3.19) 

Desarrollamos la expresión 𝑧𝑛  en función de los polinomios de Legendre. 

𝑧𝑛 = 𝑟𝑛𝑃𝑛 (𝑐𝑜𝑠𝜃) 
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Y reemplazamos en el potencial escalar magnético y obtenemos: 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5
(
𝑧

𝑅
−
144

625

𝑧5

𝑅5
+⋯) = −

𝑛𝐼8

5√5
(
𝑟𝑃1(𝑐𝑜𝑠𝜃)

𝑅
−
144

625

𝑟5𝑃5(𝑐𝑜𝑠𝜃)

𝑅5
+⋯ . ) 

Donde, r es la distancia desde el origen hasta el punto donde se determina el 

potencial escalar 𝜑 y 𝜃 es el ángulo entre 𝑟 y el eje 𝑧. Sustituimos los dos 

polinomios de Legendre. 

𝑃1(𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠𝜃  y 𝑃5(𝑐𝑜𝑠𝜃) = (
1

8
) (63𝑐𝑜𝑠5𝜃 − 70𝑐𝑜𝑠3𝜃 + 15𝑐𝑜𝑠𝜃) 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5
(
𝑟𝑐𝑜𝑠𝜃

𝑅
−
144

625

𝑟5𝑃5(𝑐𝑜𝑠𝜃)

𝑅5
+⋯) 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5𝑅
(𝑧 −

144

625

𝑟5

𝑅4
1

8
(63𝑐𝑜𝑠5𝜃 − 70𝑐𝑜𝑠3𝜃 + 15𝑐𝑜𝑠𝜃) + ⋯) 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5𝑅
(𝑧 −

144

625
(
𝑟5

𝑅4
63

8
𝑐𝑜𝑠5𝜃) +

144

625
(
70

8

𝑟5

𝑅4
𝑐𝑜𝑠3𝜃) −

144

625
(
15

8

𝑟5

𝑅4
𝑐𝑜𝑠𝜃)

+⋯) 

𝑧 = 𝑟𝑐𝑜𝑠𝜃 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5𝑅
(𝑧 −

144

625
 
63

8

1

𝑅4
𝑧5 +

144

625
 
70

8

𝑟2

𝑅4
𝑧3 −

144

625
 
15

8

𝑟4

𝑅4
𝑧 + ⋯) 

Reemplazando:     𝑟2 = 𝑟 ,2 + 𝑧2 

𝜑 (
𝑧

𝑅
) = −

𝑛𝐼8

5√5𝑅
𝑧 (1 −

144

625
 
𝑧4

𝑅4
+
144

125
 
𝑧2𝑟 ,2

𝑅4
−
54

125
 
𝑟 ,4

𝑅4
+⋯) (3.20) 

Calculamos el gradiente de este potencial para obtener la intensidad del campo 

magnético fuera del eje de la bobina de Helmholtz. 

𝐻⃗⃗ = −∇𝜑 
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𝐻⃗⃗ = −(
𝜕

𝜕𝑟´
 ;
1

𝑟´

𝜕

𝜕𝜙
 ;
𝜕

𝜕𝑧
)  𝜑(𝑧, 𝑟´) 

𝐻𝑟, = −
𝜕𝜑(𝑧, 𝑟 ,)

𝜕𝑟 ,
 

𝐻𝑧 = −
𝜕𝜑(𝑧, 𝑟 ,)

𝜕𝑧
 

𝐻𝜙 = −
1

𝑟 ,
𝜕𝜑(𝑧, 𝑟 ,)

𝜕𝜙
= 0 

𝐻𝑟, = −
𝜕

𝜕𝑟 ,
(−

𝑛𝐼8

5√5

𝑧

𝑅
(1 −

144

625
 
𝑧4

𝑅4
+
144

125
 
𝑧2𝑟 ,2

𝑅4
−
54

125
 
𝑟 ,4

𝑅4
)) 

𝐻𝑟, =
𝑛𝐼8

5√5

𝑧

𝑅
(
144

125
 
2𝑧2𝑟 ,

𝑅4
−
54

125
 
4𝑟 ,3

𝑅4
+⋯) =

𝑛𝐼8

5√5

𝑧

𝑅
72 (

4𝑧2𝑟 , − 3𝑟 ,3

125𝑅4
+⋯) 

𝐻𝑟, =
𝑛𝐼8

5√5𝑅
 
72𝑧𝑟 ,(4𝑧2 − 3𝑟 ,2 +⋯)

125𝑅4
 

(3.21) 

𝐻𝑧 = −
𝜕

𝜕𝑧
[−
𝑛𝐼8

5√5
(
𝑧

𝑅
−
144

625
 
𝑧5

𝑅5
+
144

125
 
𝑧3𝑟 ,2

𝑅5
−
54

125
 
𝑧𝑟 ,4

𝑅5
+⋯)] 

𝐻𝑧 =
𝑛𝐼8

5√5
(
1

𝑅
− 
144

125

𝑧4

𝑅5
+
432

125
 
𝑧2𝑟 ,2

𝑅5
−
54

125

𝑟 ,4

𝑅5
+⋯) 

𝐻𝑧 =
𝑛𝐼8

5√5𝑅
(1 − 

144

125

𝑧4

𝑅4
+
432

125
 
𝑧2𝑟 ,2

𝑅4
−
54

125

𝑟 ,4

𝑅4
+⋯) 

(3.22) 

 

Finalmente obtenemos las componentes de la Intensidad Magnética(𝐻) por el 

método de Expansión Axial: 

∴ 𝐻𝑟´ =
𝑛𝐼8

5√5𝑅
 
72𝑧𝑟 ,(4𝑧2 − 3𝑟 ,2 +⋯)

125𝑅4
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∴ 𝐻𝑧 =
𝑛𝐼8

5√5𝑅
(1 − 

144

125

𝑧4

𝑅4
+
432

125
 
𝑧2𝑟 ,2

𝑅4
−
54

125

𝑟 ,4

𝑅4
+⋯) 

 

3.3. Simulación de la Bobina de Helmholtz  con Comsol 

3.3.1. Implementos Necesarios para la Simulación 

Antes de comenzar con la simulación necesitaremos lo siguiente: 

• Comsol Multiphysics 5.2  

• Módulo de Helmholtz.mph  

Figura 20 

 Ventana del módulo de Helmholtz 

Fuente: Comsol 
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Este módulo se adjuntará conjuntamente con todos los archivos necesarios 

para la simulación. 

 

3.3.2. Implementación del Esquema y Modelado 

Paso 1. 

Abrir el Comsol Multiphisics 5.2. En el acceso directo que se encuentran en el 

escritorio o en el lugar donde se encuentran el programa.  

Figura 21 

 Ventana para iniciar con el comsol 

 

Fuente: Comsol 

 

 

Paso 2. 
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Hacer Click en “Asistente de Modelo” y seleccionamos “Modelo 3D”. como se 

muestra en la figura 3.5. a continuación. 

Figura 22. 

 Ventana del asistente de Modulo y La petaña 3D 

 
 Fuente: Comsol 
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Paso 3. 

Hacemos Click en AC/DC y seleccionamos “Campos Magnéticos (mf)” luego 

pulsamos en Añadir en la ventana de seleccionar fisica . 

Una vez añadido vamos a la ventana  estudio, una vez ahí seleccionamo en la 

pestaña  “Estacionario” y pulsamos en “HECHO” finalmente. 

Figura 23. 

 Ventanas emergentes de Fisica y Estudio 

 

Fuente: Comsol 
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Paso 4. 

Hacemos Anti-Click en “Geometría 1” luego pulsamos en “Insertar Secuencia”. 

Con la finalidad de conseguir la geometría de la bobina. 

 

Figura 24  

Ventana para la selección de la geometría 

Fuente. Comsol 
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Paso 5. 

Buscamos la Ubicación del Módulo ya antes mencionado “Módulo de 

Helmholtz.mph” y hacemos click consecuentemente en Abrir. 

Figura 25. Ubicación del módulo de Helmoltz 

 

Fuente: Comsol 
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Paso 6. 

1.Vamos a Sphere (Esfera).  

2. Luego nos dirigimos a capas y escribimos (0.1) y así creamos una capa 

estructurada. 

Figura 26.   

Ventana para número de capas 

 

Fuente: Comsol 
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Paso 7. 

Ya en Aquí damos Click en “Construir Todos Los Objetos” y en seguida damos 

Click en “Transparencia” para poder visualizar mucho mejor los datos. 

 

Figura 27.  

Ventana de construcción 

 

Fuente: Comsol 
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Paso 8. 

Observaremos como nos estaría quedando el esquema importado. 

Figura 28.  

Estructura de la bobina 

 
Fuente: Comsol 
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3.3.3 Implementación de Materiales 

Paso 9.  

Damos Anti-Click a la parte de “Definiciones” y seleccionamos “Dominio de 

Elementos Infinitos” (En este procedimiento estaremos creando un espacio en 

memoria en la cual asignaremos funciones a diversas regiones del Modelo). 

Figura 29  

Ventana de elementos infinitos 

 

Fuente: Comsol 
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Paso 10. 

Seleccionamos todas las capas exteriores como se observa. 

 

Figura 30 

Selección de capa 

 

Fuente: Comso 
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Paso 11.  

Luego de seleccionar todas capas agregaremos los materiales, hacemos 

Click en “Añadir Material” luego nos dirigimos a la ventana derecha que se acaba 

de abrir, luego en Materiales Básicos buscamos “AIR(aire)”, Hacemos Doble-Click 

en “AIR” y se asignará el material a las capas seleccionadas. 

Figura 31.   

Ventana agregar el material de la esfera 

 

Fuente: Comsol 
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Paso 12.   

En esa misma pestaña buscamos “Copper(cobre)” también en materiales 

básicos y le asignaremos los anillos circulares (para poderlos seleccionar tenemos 

que poner el cursor del Mouse encima de uno de los anillos y mover el SCROLL o 

usualmente dicho rueda de desplazamiento una vez sombreado hacer Click y 

estará seleccionado en seguida hacemos lo mismo con el otro anillo) luego 

hacemos Doble-Click en Copper para crear el materia. 

Figura 32. 

 Ventana para crear el devanado de cobre en la bobina 

 

Fuente: Comsol 
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3.3.4. Implementación de Bobinas Múltiples y Enmallado 

Paso 13.  

Vamos ha “Campos Magnéticos” Anti-Click y nos dirigimos a “Embobinado 

Múltiple”.(En aquí asignaremos el proceso de embobinado a los anillos de cobre). 

 

 

Figura 33. 

 Ventana de embobinado multiple 

 

Fuente: Comsol 
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Paso 14. 

Nuevamente asignares los anillos de Cobre y se ennumerarán en el recuadro. 

Figura 34. 

 Ventana para asignar los anillos de cobre 

 

Fuente: Comsol 

- Observemos que se crea el Embobinado (Rojo). 

- Ojo el tipo de embobinado que tenemos es “Circular” así que seleccionamos         

esa opción (Rojo). 

-Podemos variar la corriente, la Permitividad, Conductividad, Area Transversal, 

etc… (Celeste,Azul). 
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Figura 35.  

Ventana para colocar parámetros magnéticos 

 

Fuente: Comsol 

Paso 15 

Figura 36. 

 Doble-Click en “Múltiple Embobinado” luego hace Click en “Geometría de la 
Bobina 1” (Rojo) 

Seleccionamos las líneas oblicuas de en una dirección como se ve en la 

imagen, si están en otro sentido podemos invertirlo (Morado) fíjese bien en cuál de 

las líneas oblicuas estamos seleccionando. 
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 Ventana donde se esta colocando el embobinado 

 

 Fuente: Comsol 

Paso16 

Regresamos a “Múltiple Embobinado” luego seleccionamos una capa (Rojo), luego 

vamos a “Hacer Click y Esconder” (Verde), luego a “Seleccionar Contornos” 

(Naranja), Después hacemos Dos Click para quitar las capas, pero la capa del fondo 

la quitaremos una sola vez para un mejor resultado. (Para poder centrar bien la 

figura hacemos click en Perspectiva 3D (Celeste) luego en Ampliar (Azul). Como 

podemos ver en las figuras 35, 36 y 37 
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Figura 37.  

Ventana interactiva para ver la forma geométrica 

 

Fuente: Comsol 
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Figura 38.   

Ventana para visualizar las capas 

 

Fuente: Comsol 

- Luego Simplemente Habilitar el “Hacer Click y Esconder”. 
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Figura 39.  

Ventana de selección de la bobina de Helmoltz 

 

Fuente: Comsol 

3.3.5. Visualización de los Resultados 

Paso 17 

Vamos a “Dominio de Elementos Infinito” (Rojo) y hacemos Click luego en 

“Geometría” escogemos “Esférico” (Azul). 
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Figura 40.  

Manejo de los elementos finitos 

 

Fuente: Comsol 
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Paso 18. 

Click en “Campos Magnéticos (mf)” luego vamos a “Mallas Controladas Por La 

Física” y “Habilitamos” las Mallas. 

Figura 41.  

Habilitación de mallas 

 

Fuente: Comsol 

Paso 19. 

Click en “Estudio 1” luego en “Calcular”. 

(En esta opción nos arrojará los resultados de nuestro experimento) 

 

 

 

 

 

 

 

 



103 
 

 

Figura 42.  

 Ventana para calcular 

 

Fuente: Comsol 

Paso 20. 

En este paso deshabilitaremos la opción “Mostrar Rejilla” (Verde) para una mejor 

vista del gráfico. 

En el apartado (Celeste) se creará Resultados distintos que hemos obtenido. 
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Figura 43.  

Ventana para deshabilitar 

 

Fuente: Comsol 
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3.3.6. Creando un Plano de Corte y Visualizando las Gráficas 

Paso 21. 

Anti-Click en “conjunto de datos” luego nos dirigimos a “plano de corte”. 

Figura 44. 

 conjunto de datos” luego nos dirigimos a “plano de corte”. 

 

Fuente. Comsol 
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Paso 22. 

Seleccionamos “Plano xy” 

Figura 45. 

Selección de planos 

 

 

Fuente: Comsol 
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Paso 23. 

Vamos a “Resultados” Y sobre la pestaña  “Grupo Gráfico 3D” 

Figura 46.  

Tipos de grupos 

 

Fuente: Comsol 
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Paso 24. 

Anti-Click a “Grupo de Gráfico 3D 2” luego a “Curva de Nivel”. 

Figura 47.  

Para las curvas de nivel 

 

Fuente: Comsol 
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Paso 25. 

En “Datos” elegimos “Plano de Corte 1” 

Figura 48. 

 Plano de corte 

 

Fuente: Comsol 
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Paso 26.  

En “Coloración y Estilo” seleccionamos “Tipo de Contorno” y elegimos “Tubos” 

luego “Graficar”. 

Figura 49.  

Ajustes de curvas de nivel 

 

Fuente: Comsol 
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Figura 50. 

. Viisualizacion de curvas de nivel 

 

Fuente: Comso 
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Paso 27. 

Cambiamos a “Lleno” y “Graficar”. 

Figura 51.  

El radio de las curvas de nivel 

 

Fuente: Comsol 
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Figura 52. 

 Mapa topográfico de la densidad de flujo magnético 

 

Fuente: Comsol 
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Paso 28. 

Anti-Click “Grupo de Gráfico 3D ” y luego “Superficie de Flechas”. 

Figura 53.  

Para la visualización del campo de direcciónes 

 

Fuente: Comsol 
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-Variamos los datos como se ve en la imagen, con esto visualizaremos mucho 

mejor. 

Figura 54.  

Campo de dirección de la inducción magnética 

 

Fuente: Comsol 

Paso 29. 

Anti-Click en “Grupo de Gráfico 3D ” observamos que tenemos varias opciones 

las cuales al seleccionar tendremos que ir a la opción de Graficar y nos mostrará 

los resultados correspondientes. 
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Figura 55.  

Ventana para visualizar la densidad del flujo magnético 

 

Fuente: Comsol 

3.3.7. Exportación y Visualización de los Resultados 

Paso 30. 

En este paso en la parte izquierda aparecerá la opción de “Reportes” y le damos 

Anti-Click, se recomienda seleccionar Reporte Completo. 
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Figura 56. 

 Ventana de reportes 

 

Fuente: Comsol 
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Finalmente  podemos observar la distribución de campo magnético en la 

zona de experimentación podemos variar diferentes parámetros para observar la 

distribución de la inducción magnética, como por ejemplo la corriente eléctrica . Al 

final podemos visualizar la bobina y la inducción magnética como un campo de 

direcciones, como en la figura 53. 

 

Figura 57. 

 Simulación final que muestran las bobinas de Helmholtz y el campo de 
direcciones de la inducción magnética 

 

 

Fuente: Comsol 
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3.4. Diseño de planos  de las bobinas de Helmholtz 

El diseño de los diámetros(𝐷), las distancias de separación(𝑅)entre bobinas 

y la secciónes  rectas(∅) de las bobinas circulares fueron diseñadas en el Software 

Solidworks(software de diseño CAD 3D). El cual permitio encontrar las medidas de 

estas longitudes geométricos que establecen la construcción de una bobina circular 

de Helmholtz. En esta etapa del trabajo lo más importante es que los diámetros de 

estas bobinas coencidan espacialmente al momento del ensamblaje final. Para 

obtener finalmente  un dispositivo de bobinas de Helmholtz en disposición 

triaxial(3𝐷).  

 

3.4.1 Planos de Diseños de Bobinas 

             Acontinuación presento  los tres planos de las tres bobinas de Helmholtz 

que detallan los parámetros geométricos que disponen dichas bobinas y 

acompañado de los planos de ensamblaje que detallan el armado o montaje de  su 

disposición triaxial (3𝐷) de dichas bobinas de Helmholtz.  

 

 

 

 

 

 

 

 



120 
 

 

Figura 58.   

   Plano de diseño bobina pequeña 

 

Fuente: Diseño propio 
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Figura 59. 

 Plano de diseño bobina mediana 

Fuente: Diseño propio 
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Figura 60. 

 Plano de diseno de bobina grande  

 

Fuente: Diseño propio 
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Figura 61 

 Plano de ensamblaje 

Fuente: Diseño propio 
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Figura 62.  

Plano de ensamblaje con vistas en distintas posiciones 

 

Fuente: Diseño propio 
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Figura 63.  

Diseño final de las bobinas de Helmholtz en la disposición triaxial(3𝐷) 

 

 

 

Fuente: Diseño propio 
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3.5. Procedimiento para la Implementación de las Bobinas 

Para conseguir las bobinas de Helmholtz físicamente se tuvo que recurrir al 

apoyo de un técnico en fundición  y un técnico en torno a quienes se les  

proporcionó las características gométricas indicadas para cada par de bobinas en 

dichos planos mencionados con anterioridad. Estas bobinas metálicas circulares  

son de aluminio, en lo posible de alta pureza (piezas reciclaves de autos). Los aros 

son de aluminio justamente por que este material es no magnético es decir, que no 

se comporta como imán, pues sobre estos aros se realiza el número de vueltas con 

cable de cobre esmaltado, por el cual circula corriente eléctrica y generá inducción 

magnética. 

3.5.1. Calculo del Número de Vueltas de las Bobinas de Helmholtz 

La inducción magnética  en el centro del eje de una bobina de Helmholtz 

está dado por la ecuación. 

𝐵 =
𝜇0𝐼𝑁

𝑅
 
8

53/2
 

Se establecio trabajar con   la misma inducción magnetica en las tres bobinas de 

Helmholtz, entonces podemos escribir la siguiente proporción matemática. 

𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 

y reemplazando sus respectivos parámetros físicos se obtuvo  la siguiente 

igualdad. 

𝝁𝟎𝑰𝒙𝑵𝒙 𝟖

𝑹𝒙𝟓𝟑 𝟐⁄
=
𝝁𝟎𝑰𝒚𝑵𝒚𝟖

𝑹𝒚𝟓𝟑 𝟐⁄
=
𝝁𝟎𝑰𝒛𝑵𝒛𝟖

𝑹𝒛𝟓𝟑 𝟐⁄
 

• Donde 𝑰𝒙 , 𝑰𝒚  𝒚 𝑰𝒛 son las corrientes  en las respectivas bobinas de ejes 

𝒙, 𝒚, 𝒛.   y se ajustan experimentalmente para que sean constante e iguales  
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con una resistencia variable a través de sus  circuitos eléctricos 

correspondientes. 

• También 𝑵𝒙 , 𝑵𝒚  𝒚 𝑵𝒛  son el número de vueltas de alambre de cobre en 

cada bobina ubicada en los plano xy, yz e zx.   

• Igualmente 𝑹𝒙 , 𝑹𝒚 𝒚 𝑹𝒛  son los radios de las bobinas.   

Entonces como las corrientes son iguales (𝑰𝒙 = 𝑰𝒚 = 𝑰𝒛) y los demás 

términos físicos son constantes entonces la proporción  matemática quedo en la 

siguiente forma e igualando a una constante de proporcionalidad "𝒌". 

𝑵𝒙 
𝑹𝒙

=
𝑵𝒚

𝑹𝒚
=
𝑵𝒛
𝑹𝒛
= 𝒌 

Se tomo la bobina pequeña es decir la bobina de Helmholtz de eje "𝒙" cuyos 

aros los rebobinamos en un mismo sentido y con el número de vueltas de alambre 

de cobre  esmaltado hasta cubrir su sección recta de los aros de aluminio. 

Observando que se llego a cubrir estos aros con 144 vueltas y como se conoce el 

radio de la bobina de eje "𝒙" entonces rápidamente  se encontró el equivalente  de 

la constante de proporcionalidad "𝒌" de la proporción matemática  mostrada. Es 

decir: 

𝑵𝒙 
𝑹𝒙

= 𝒌 

𝟏𝟒𝟒 𝒗𝒖𝒆𝒍𝒕𝒂𝒔

𝟐𝟕𝟓 𝒎𝒎
= 𝒌 

𝒌 = 𝟎. 𝟓𝟐𝟑𝟔𝟑𝟔𝟑𝟔…… 

        Luego se pudo decir que:  

𝑵𝒚 

𝑹𝒚
= 𝒌 
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                 Entonces:  𝑵𝒚 = 𝒌𝑹𝒚 = 𝟎. 𝟓𝟐𝟑𝟔𝟑𝟔𝟑𝟔…∗ 𝟑𝟏𝟓 = 𝟏𝟔𝟒 𝒗𝒖𝒆𝒍𝒕𝒂𝒔. 

                 De la misma manera:  𝑵𝒛 = 𝒌𝑹𝒛 = 𝟎. 𝟓𝟐𝟑𝟔𝟑𝟔𝟑𝟔… .∗ 𝟑𝟒𝟓 =

𝟏𝟕𝟗 𝒗𝒖𝒆𝒍𝒕𝒂𝒔.    

    Tabla 1. Resumen de parámetros geométricos de cada bobina. 

 𝑫(𝒅𝒊𝒂𝒎𝒆𝒕𝒓𝒐)𝒎𝒎 𝑹(𝒓𝒂𝒅𝒊𝒐)𝒎𝒎 𝑵(𝒏ú𝒎𝒆𝒓𝒐 𝒅𝒆 𝒗𝒖𝒆𝒍𝒕𝒂𝒔) 
Bobina  𝒙 550.0 275.0 144 
Bobina  𝒚 630.0 315.0 164 
Bobina  𝒛 691.0 345.5 179 
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3.5.2. Implementacion de las Bobinas de Helmholtz  y Conexiones  

Eléctricas 

En esta parte del trabajo se  implemento las bobinas de Helmholtz sobre una 

base de madera tomando en consideración la sepracion de las bobinas de acuerdo 

a las dipsosicion de Helmholtz. Las conexiones eléctricas para cada bobina de 

Helmholtz de manera individual es en serie y cada una de ellas es alimentada por 

una fuente eléctrica del tipo switching y es controlada por un amperímetro 

conectado en cada una de ellas. Para igualar el valor de la inducción magnetica en 

cada una de ellas utilizamos un reóstato o resistencia variable de la marca Leybold.  

 

• Bobina de Helmholtz de eje "𝒙"(bobina pequeña). 

𝑹𝒙 = 2𝟕𝟓𝒎𝒎 = 𝟐𝟕. 𝟓𝒄𝒎 = 𝟎. 𝟐𝟕𝟓𝒎 

                                            𝑵 = 𝟏𝟒𝟒𝒗𝒖𝒆𝒍𝒕𝒂𝒔 

Figura 63  

a) Implementación bobina pequeña 
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b) Conexión eléctrica  

 

. 

 

 

 

 

Fuente: Elaborción propia 

• Bobina de Helmholtz de eje "𝒚".(bobina mediana) 

𝑹𝒚 = 𝟑𝟏𝟓 𝒎𝒎 = 𝟑𝟏. 𝟓 𝒄𝒎 = 𝟎. 𝟑𝟏𝟓 𝒎 

                                          𝑵 = 𝟏𝟔𝟒 𝒗𝒖𝒆𝒍𝒕𝒂𝒔 

Figura 64 

a) Implementación bobina mediana 
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b) Conexión eléctrica  

 

Fuente. Elaboración propia 

• Bobina de Helmholtz de eje "𝒛".(bobina grande) 

𝑹𝒛 = 𝟑𝟒𝟓 𝒎𝒎 = 𝟑𝟒. 𝟓 𝒄𝒎 = 𝟎. 𝟑𝟒𝟓 𝒎 

                                             𝑵 = 𝟏𝟕𝟗 𝒗𝒖𝒆𝒍𝒕𝒂𝒔 

Figura 65 

a) Implementación bobina grande 

 

 
Fuente. Elboración propia. 
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b) Conexión eléctrica  

 

Fuente. Elboración propia 
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3.5.3  Mapeo de las Bobinas de Helmholtz 

                  El mapeo se realizó con un Gausimetro  modelo 5170/5180, instrumento 

portable. Utiliza una sonda Hall que mide la densidad del flujo magnético en 

unidades de gauss o teslas, cuyo rango de medición es de 0.01 mT  a 3.00 T. este 

instrumento es capaz de medir campos magnéticos estáticos generados por 

corriente (D.C) y (A.C) y acontinuacion se muestra el mapeo respectivo con sus 

respectivos cuadro de datos de las tres bobinas de Helmholtz. 

Figura 66. 

a) Mapeo bobina grande 

 

 

Fuente. Elboración propia
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CUADRO 1: Datos bobina grande 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

-34 16.1 15.8 14 12.6 11.2 10.5 10.3 9.7 9.5 9.1 9.1 8.6 8.3 8.5 8.5 8.6 8.4 8.5 8.6 8.9 9 9.5 10 10.7 12 12 16.9

-33 13.4 21.4 18.2 15.9 14 12.7 11.8 11.3 10.8 10.3 10 10 9.6 9.5 9.3 9.4 9.4 9.6 9.8 10 10.2 10.7 11.3 12.6 14.8 17.3 21

-32 23.2 20.5 17.4 15.3 13.8 12.6 11.8 11.2 10.7 10.3 10.3 9.9 10.1 9.9 9.9 10 10.2 10.6 11 11.3 11.3 12.3 13.4 14.9 17 20 25.6

-31 24.2 22.1 19.5 17.2 15.7 14.6 13.5 12.8 12.2 12 11.5 11.4 11.3 11.2 11.6 11.6 11.7 12 12.8 12.5 14.2 15.3 16.6 18 20.1 22.8 26.2

-30 24.5 22 19 17.8 16.1 15 14.1 13.2 12.8 12.4 12.2 12 12.2 12.2 12.2 12.2 12.5 12.9 13.4 14.2 15.2 16.2 17.5 19.4 21.2 23.7 26.9

-29 24.4 22.7 20.6 18.9 17.2 15.9 14.1 13.4 14.1 13.4 13.1 13 12.7 12.3 12.5 12.5 12.6 13 13.2 13.4 14.2 16.2 17.7 19 21 23 25.7

-28 23.9 22.4 20.6 19.1 17.5 16.5 15.8 14.9 14.3 13.9 13.6 13.4 13.3 13.2 13.3 13.5 13.9 14.3 15 15.4 16.2 17.2 18.1 20 21.1 23 26.3

-27 23 21.9 20.4 19.2 18 17 16 15.4 14.9 14.6 14.1 14.2 13.7 13.9 13.7 13.8 14.3 14.7 15.2 15.7 16.5 17.6 18.4 19.6 21 22.2 23.3

-26 22.5 21 19.9 19 17.9 16.9 16.2 15.7 15.2 14.7 14.2 14.1 14.1 13.8 14.1 14.6 14.9 15.2 15.8 16.5 17.3 18 19 18.8 21 22.4 23.4

-25 22 21.1 20.3 19.4 18.6 17.8 17.2 16.7 16.2 15.7 15.4 15.4 15.1 15.1 15.1 15.2 15.6 15.8 16.2 16.8 17.4 18.1 18.8 19.5 20.5 21.7 22.6

-24 21.4 20.5 20 19.6 18.7 17.9 17.3 18.8 16.2 15.9 15.8 15.6 15.5 15.5 15.7 15.6 15.8 16.2 16.4 17 17.7 18.4 19 19.8 20.5 21.2 21.6

-23 21.2 20.4 20 19.3 18.7 18.1 17.8 17.4 17.1 16.6 16.2 16 16 16.1 16 16.2 16.6 16.8 17.1 17.9 18 18.6 19.3 20.1 20.7 21.2 21.7

-22 19.5 19.1 18.3 18 17.5 17.4 16.8 16.4 16.2 15.9 15.8 15.7 15.7 15.6 15.9 16.2 16.4 16.7 17.1 17.4 17.8 18.3 18.9 19.3 19.8 20.3 20.7

-21 18.9 18.3 18.1 17.5 17.2 16.9 16.3 16 15.9 15.5 15.6 15.3 15.4 15.4 15.7 15.8 16.1 16.2 16.4 16.8 17.1 17.8 18.3 18.7 19 19.5 19.8

-20 18.2 18.1 17.5 17.1 17 16.7 16.2 15.9 15.4 15.4 15.4 15.4 15.3 15.1 15.2 15.1 15.6 15.8 16 16.3 16.5 17.3 17.2 17.9 18 18.4 18.8

-19 19.2 19 18.4 18.3 18.2 18 17.5 17.1 16.9 17.1 16.8 16.8 16.5 16.6 16.5 16.7 16.8 17.5 17.3 17.6 17.8 18.1 18.4 18.8 19.1 19.2 19.7

-18 19.3 18.8 18.7 18.8 18.6 18.4 18 17.6 17.3 17.3 17 16.9 17 17.1 17.1 17.3 17.2 17.5 17.8 17.9 18.2 18.3 18.8 18.9 19.1 19.4 19.7

-17 19.7 19.6 19.4 19 18.9 18.7 18.6 18.3 17.9 17.8 17.8 17.6 17.8 17.5 17.7 17.7 17.7 17.9 18 18.4 18.5 18.8 18.9 19 19.1 19.4 19.4

-16 19.7 19.4 19.3 19.2 19 19 18.9 18.7 18.5 18.7 18.6 18.5 18.6 18.5 18.5 18.4 18.5 18.5 18.7 19 19 19.1 19.5 19.5 19.6 19.8 20

-15 16.9 16.8 16.8 16.6 16.6 16.3 16.3 16 16 15.9 15.8 15.8 15.8 15.6 15.4 15.6 15.7 15.9 16.1 16.1 16.2 16.6 16.6 16.5 16.8 16.9 17.1

-14 17.6 17.6 17.5 17.6 17.3 18.3 17.1 16.9 16.9 16.9 16.8 16.7 16.7 16.7 16.7 16.8 16.8 16.8 17.1 17 17 17.1 17.3 17.6 17.6 17.7 17.7

-13 17.7 17.6 17.6 17.5 17.7 17.7 17.3 17.4 17.4 17.2 17.1 16.9 17 17.2 17.2 17.2 17.2 17.3 17.4 17.4 17.4 17.6 17.7 17.8 18 17.7 17.8

-12 18 18.1 18.1 18.1 18.2 17.8 17.8 17.8 18.8 17.6 17.6 17.6 17.6 17.7 17.7 17.6 17.6 17.6 17.9 17.7 17.7 18.2 18.3 18.3 18 18.1 18

-11 19 19.1 19.1 19.1 18.9 18.9 18.9 18.7 18.8 18.5 18.5 18.5 18.6 18.6 18.6 18.5 18.5 18.6 18.8 18.7 18.9 18.9 19 18.8 18.8 18.8 18.8

-10 19.7 19.7 19.8 19.8 19.7 19.8 19.7 19.7 19.7 19.6 19.6 19.8 19.6 19.6 19.7 19.9 20 20 20 20.2 19.9 19.9 20 19.9 20.2 20.2 19.9

-9 18.1 18.2 18.1 18.1 18.2 18.2 18.3 18.2 18.3 18.2 18.2 18.2 18.1 18 18 18.1 18 18.2 18.3 18 18.1 18.1 18.3 18.3 18.4 18.5 18.4

-8 18 18.2 18 18.2 18.3 18.1 18.2 18.2 18.3 18.3 18.4 18.3 18.2 18.2 18.1 18.2 18 18 18.2 18.3 18.4 18.2 18.3 18.4 18.5 18.4 18.2

-7 18.4 18.5 18.3 18.4 18.6 18.6 18.5 18.5 18.5 18.4 18.2 18.2 18.2 18.4 18.4 18.4 18.2 18.2 18.2 18.2 18.4 18.3 18.3 18.2 18.3 18 18

-6 18.8 19 19.1 19.1 19.1 19 19 19 19.2 19.1 19.1 19.1 19.1 18.9 18.9 18.9 18.9 18.9 19 19 19 19.1 19.1 19.1 19.1 19 18.8

-5 18 18 18.2 18.2 18.6 18.5 18.5 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.8 18.8 18.6 18.7 18.6 18.7 18.7 18.7 18.6 18.7 18.7 18.2

-4 19.1 19.2 19.4 19.4 19.4 19.5 19.5 19.7 19.7 19.7 19.8 19.2 20 20 19.8 19.9 19.9 19.7 19.6 19.7 19.5 19.6 19.5 19.5 19.6 19.7 19.3

-3 19 19.3 19.3 19.3 19.3 19.2 19.6 19.4 19.2 19.1 19.3 19.1 19.2 19.4 19.2 19.3 19.2 19.3 19.3 19.3 19.3 19.5 19.5 19.1 19 18.9 18.8

-2 19.7 19.7 19.8 19.8 20 20 20.2 20.4 20.4 20.9 20.9 20.9 21.1 21.1 21.1 20.9 20.9 20.9 20.9 20.7 20.9 20.9 20.9 20.8 20.8 20.8 20.5

-1 19.7 19.7 20 20 20.4 20.2 20.1 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 19.9 19.9 19.9 19.9

0 18.7 18.7 18.8 18.8 18.9 18.9 18.9 18.9 18.9 18.9 18.9 19.4 19.4 19.4 19.4 19.4 19 18.9 18.9 18.8 18.8 18.8 18.7 18.7 18.7 18.5 18.4

1 20 20.2 20.3 20.4 20.3 19.7 19.8 19.6 19.7 19.6 19.4 19.5 19.5 19.4 19.2 19.2 19.2 19.2 19.2 19 19.2 19.3 19 19.1 18.9 18.8 18.7

2 18.9 19 19 19.1 19 18.9 19.1 19.2 19.2 19 19.1 19.2 19.2 19 18.9 19.9 18.8 19 18.7 18.8 18.8 18.7 18.8 18.5 18.6 18.1 18

3 19.1 19.1 19 19.2 19 19 19.1 19 19 19 18.7 18.8 19 18.8 18.8 18.9 18.9 18.7 18.6 18.9 18.7 18.9 18.8 18.5 18.7 18.6 18.3

4 18.8 19 18.9 19 19.1 18.9 18.9 18.8 19.9 18.7 18.7 18.9 18.5 18.3 18.2 18.1 18.3 18.2 18.1 17.9 18 17.8 17.7 17.6 17.7 17.5 17.4

5 18.2 18.3 18.2 18.1 18 18 18 17.9 17.8 17.6 17.6 17.6 17.7 18 17.6 17.6 17.7 17.7 17.6 17.6 17.8 17.6 17.6 17.5 17.5 17.3 17.3

6 18.2 18.4 18.5 18.6 18.7 18.6 18.6 18.5 18.5 18.4 18.3 18.1 18.1 18.1 17.9 17.9 17.8 17.8 17.7 17.8 17.5 17.3 17.2 17.1 16.9 16.8 16.7

7 18.9 18.8 18.8 18.9 18.9 18.9 18.4 18.5 18.4 18.2 18.2 18.1 17.9 18 18 18.1 18 18 18.2 18.1 17.8 17.8 17.9 18 18 17.9 18

8 18.5 18.7 19 18.9 18.8 18.7 18.7 18.3 18.5 18.5 18.4 18.2 18.1 18.2 18.2 17.7 17.8 17.7 17.6 18 17.5 17.6 17.5 17.5 17.3 16.9 17

9 19.1 19.3 19.1 19.1 19 19 19 18.9 18.8 18.6 18.5 18.7 18.8 18.5 18.6 18.6 18.5 18.5 18.5 18.6 18.5 18.3 18.4 18.1 18.3 18.5 18.4

10 19.1 19 19.1 19 19.1 19 19.2 19 19 18.9 18.6 18.5 18.6 18.6 18.5 18.3 18.4 18.2 18.3 18.1 18 18.3 18.1 18 18.1 18.2 18.2

11 19.4 19.2 19.1 19.1 19 18.9 18.7 18.4 18.4 18.1 18 18 17.8 17.7 17.9 17.8 17.9 17.6 17.8 17.8 17.7 17.9 17.8 17.6 17.8 17.6 17.8

12 19.1 19.1 19 18.8 19 18.9 18.6 18.7 18.6 18.5 18.3 18 18.1 17.9 17.9 17.5 17.3 17.4 17.2 17.1 17.2 17 16.9 16.8 16.5 16.5 16.5

13 19.6 19.4 19.2 19.2 19 19.1 18.8 18.8 18.3 18 17.9 17.8 18 17.7 17.8 17.7 17.6 17.5 17.7 17.6 17.5 17.6 17.7 17.9 18 18.1 18

14 19.2 19.1 19.3 19.3 19 19 18.9 18.7 18.3 18.6 18.5 18 17.9 18.1 17.9 18 17.9 17.8 17.7 17.5 17.3 17.5 17.5 17.4 17.5 17.5 17.4

15 21.2 21 20.9 20.7 20.2 20 19.6 19.4 19.2 19 18.8 18.7 18.2 18.5 18.3 18.3 18.2 18 18.2 18.2 18 18.4 18.4 18.5 18.3 18.4 18.5

16 21.3 21.2 21 20.7 20.5 20.2 20 19.8 19.6 19.6 19.2 19.1 19 18.7 18.5 18.5 18.4 18.4 18.3 18.4 18.3 18.2 18.1 18.1 18.2 17.9 18.4

17 21.8 21.5 21.2 21 20.6 20.2 19.5 19.2 19 18.6 18.4 18.2 18 17.8 17.4 17.4 17.5 17.5 17.5 17.8 17.6 17.7 17.7 18.1 18 17.2 17.9

18 20.8 20.4 20.1 19.9 19.7 19.4 19 18.9 18.4 18.2 18 17.9 17.5 17.1 16.6 16.6 16.4 16.2 16.1 16.4 16.3 16.1 16.5 16.2 16.3 16.5 16.4

19 22 21.8 21.4 20.9 20.4 20 19.5 19.2 18.8 18.3 17.9 18 17.8 17.3 17.3 17.1 17 16.9 17 17 17.2 17.3 17.5 18.2 18.3 18.4 18.6

20 22.5 22.2 21.9 21.3 20.9 20.3 20 19.6 19 18.8 18.7 18.3 18 17.5 17.6 17.1 17.3 17 17 17.1 17.2 17.4 17.8 17.7 17.5 18 18.2

21 20.8 20.5 20.1 20 19.1 18.6 18.1 17.9 17.3 17.1 17 17.4 16.3 16 16.1 16 15.9 16.3 16.4 16.8 16.9 17.3 17.8 18 18.5 18.9 19

22 22.2 21.7 21.3 21 20.3 19.7 19.2 18.6 18.3 18 17.7 17.4 17 16.7 16.6 16.8 16.9 16.9 17 17.3 17.4 17.7 18.1 18.4 18.9 19.2 19.6

23 23.6 23 22.4 21.4 20.5 19.8 18.9 18.4 17.8 19.9 16.4 16 15.6 15 15 15 14.9 14.8 15 15.2 18.4 15.6 16.1 16.6 17.2 17.7 18.5

24 23.3 22.6 21.6 21 20.4 19.6 18.8 18 17.5 17.2 16.7 16.4 16.1 15.8 15.5 15.4 15.3 15.2 15.4 15.6 15.8 16.1 16.5 17.1 17.6 18.4 18.6

25 25.3 24 22.8 22.8 20.8 20.1 19.3 18.5 17.6 17.1 16.3 15.8 15.6 15.6 15.1 14.9 15.1 15 15.2 15.4 15.9 16.6 16.9 17.4 18.4 19.4 19.8

26 23.5 23.9 22.7 21.5 20.2 19.4 18.3 17.6 17.1 16.4 16 15.6 15 15 14.6 15 14.6 15 15.3 15.8 15.8 16.4 17 18 18.9 19.6 20

27 26.5 25.4 23.9 22.2 20.6 19.4 18.3 17 16.6 15.6 15 14.5 14.2 14.1 14 13.7 13.6 13.7 13.9 14.5 14.8 15.6 16.2 17.3 18.4 19.5 20.8

28 25.8 24 22.2 20.5 19.2 18.1 16.6 16.2 15.3 14.6 13.8 13.5 13.1 13 12.6 12.4 12.6 12.7 12.8 13 13.3 14 14.4 15.5 16.5 17.5 18.8

29 27.8 25.4 23.1 21.1 19.3 17.9 16.5 15.6 14.6 14 13.2 12.4 12 11.8 11.7 11.9 11.8 11.7 12 12.1 12.6 13.4 14 14.5 16 18 19.5

30 28.7 25.4 22.7 20.5 18.9 17.1 16 15.1 14.4 13.7 13 12.7 12.6 12 12.2 12.3 11.9 12.4 12.7 13 13.4 14.4 15.7 16.8 19.1 21.4 23

31 28.2 24.8 22.3 19.6 18 16.3 15.4 14.7 13.5 13 12.5 12.1 12 11.9 11.5 11.8 11.7 11.9 12.4 12.8 13.5 14.4 15.9 17.2 19.9 23.1 26.5

32 28.3 23 19.9 17.7 15.6 14.4 13.5 12.8 12 11.5 11 11 10.8 10.7 10.2 10.3 10.2 10.6 10.7 11.1 11.8 12.6 13.5 15 14.3 19.5 22.6

33 25.8 22 18.5 16.3 14.4 13.3 12.8 11.9 11 10.3 10 9.5 9.3 9 8.8 9 8.5 8.8 8.9 9.1 9.2 10 10.4 11.8 12.9 15.4 19.8

34 22 17.3 15.4 13.9 12.8 11.5 10.7 10 9.2 8.8 8.5 8.5 8 7.5 7.7 7.6 7.3 7.5 7.1 7.3 7.5 7.2 7.4 7.9 8.5 9.5 11   
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Figura 67. 

a) Mapeo bobina mediana 

 

 

 

Fuente. Elboración propia 
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-32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-13 16.7 29 28.6 38.5 36.4 35 24.1 25.4 24.9 24.3 22 22.5 20.9 20.4 20 19.9 21 20.7 17.5 17.2 18.2 19.4 17.4 17.7 17.4 17.3 17.9 19.2 18 18.5 18 18 19.1 20.6 20 21.1 21 19.5 18.2 19.3 20.4 18.6 20.4 20.8 21.6 21.5 22 19.7 22 22.5 23.6 24.1 23.6 25 26 26.6 28.9 29.4 31.7 32.8

-12 13.8 19.9 29.7 31.6 31.4 31 25.1 25 24.1 24.2 22.1 22.4 20.9 20.7 19.8 19.6 21.4 21 17.2 17.2 17.9 19.5 17.8 17.9 17.5 17.4 18.2 19.3 18.3 18.5 18 18.1 19.2 20.7 20.1 21.1 21.1 19.3 18.4 19.4 20.3 18.8 20.1 20.7 21.3 21.6 21.9 19.8 21.7 22 23.2 23.7 23 24 25.1 26 27.4 27.8 29 29.2

-11 12 16.9 23.3 25.3 26.6 25.4 25.3 24.7 24.7 23.6 21.6 22 20.5 20.5 19.7 19.9 21.3 21.2 17.1 17.3 18 19.5 17.6 17.8 17.7 17.7 18.1 19.3 18.5 18.6 18.1 18.2 19.2 20.8 20.2 21 21.2 19.4 18.5 19.3 20.1 18.9 21 20.6 21.1 21.5 21.5 19.6 21.4 21.9 23 23.3 22.7 23.2 24.2 24.2 26 26 26.1 26.3

-10 11 14.8 19.4 21.8 22.4 23.7 22.9 23 23.4 22.3 20.5 21.2 20 20.3 19.5 19.6 21 20.7 17.3 17.5 17.9 19.5 17.7 18 18 17.7 18.5 19.4 18.7 18.7 18 18.2 19.5 20.5 20.3 20.9 21.3 19.5 18.6 19.6 20.1 18.8 20 20.8 21 21.7 21.7 19.5 21 21.7 22.5 23.1 22 22.2 23.1 23.2 24.5 24.1 23 23.6

-9 10.4 13 17.1 19 19.9 21.6 21.12 21.8 21.7 21.7 20 21.4 19.4 20 18.9 19.5 20.9 20.7 17 17.4 18 19.5 17.8 17.9 18 17.8 18.7 19.2 18.8 18.7 18.2 18.2 19.5 20.6 20.5 20.5 21.1 19.5 18.7 19.8 20.3 18.9 20 20.8 20.9 21.4 21.9 19.4 20.7 21.1 22 22.6 21.4 21.5 22.4 22.3 23 22.5 21.2 20.4

-8 10 13.7 15.3 17 17.9 19.1 19.5 20.4 20.6 20.7 19.2 20.1 18.9 19.5 18.5 18.19 21 20.5 17 17.5 18.1 19.3 17.9 17.9 18 17.5 18.5 19.4 18.9 18.8 18.2 18.5 19.6 20.6 20.4 20.4 21.3 19.5 18.6 20 20.1 18.7 19.7 20.5 20.7 21.3 21.2 19.2 20.4 20.9 21.4 21.9 20.5 20.7 21.3 21.5 21.8 21.2 20.1 18.8

-7 9.8 12 14 15.9 16.3 17.7 18.2 19.3 19.4 19.9 18.3 20.7 18.8 18.8 18 18.8 20.4 20.2 16.9 17.5 18 19.1 17.7 17.8 17.9 17.7 18.8 19.5 18.9 18.9 18.3 18.8 19.7 20.5 20.5 20.5 21.3 19.3 18.6 19.9 20 18.8 19.7 20.5 20.4 21.2 20.8 19 20 20.5 20.7 21.4 19.8 20.4 20.5 20.6 20.5 19.6 18.6 17.3

-6 9.3 11.2 13.3 14.6 15 16.6 18 18.5 18.6 19 17.8 18.8 18 19 18 18.3 20 19.9 16.8 17 17.9 19 17.9 18 17.8 17.4 18.7 19.6 19.1 18.9 18.4 18.8 19.8 20.5 20.6 20.3 21.2 19.6 18.5 20 20 19 19.4 20 20.5 20.9 20.5 18.8 19.6 20.2 20.5 20.9 19.3 19.6 20 19.8 20 18.7 17.4 16.2

-5 9 11 12.8 13.9 14 15.7 17 17.5 17.9 18.3 17 18.4 17.7 18.5 17.4 18.2 20 19.6 16.5 16.6 18 19 17.6 17.9 17.9 17.6 19 19.3 19.1 18.9 18.5 18.8 20 20.5 20.5 20.2 21.2 19.5 18.5 20 19.8 18.9 19.3 20.1 20.1 20.6 20.5 18.8 19.5 19.9 19.8 20.6 18.5 19.1 19.1 19.2 19.3 18.1 16.3 15.4

-4 8.9 10.6 12.1 13.3 13.4 15 16.5 16.8 17.5 18 16.5 17.8 17.2 17.9 17.5 18 19.8 19.5 16.4 16.6 17.7 19.1 17.7 17.7 17.8 17.5 19 19.3 19.1 19 18.6 18.9 20 20.4 20.4 20.5 21.2 19.4 18.4 19.8 19.8 19 19.1 20 20.2 21 20.2 18.5 19.1 19.6 19.5 20.2 18.1 18.7 18.3 18.6 18.4 17.3 15.3 14.5

-3 9 10.6 11.5 13 13 14.6 15.4 16.1 16.9 17.6 16.1 17.2 16.9 17.7 17.7 17.8 19.7 19.4 16.2 16.6 17.9 19 17.8 17.6 17.9 17.6 19.1 19.2 19.3 19 18.5 19 20.1 20.4 20.5 20.5 21.2 19.2 18.3 19.4 19.5 19.1 19 20 20.1 20.5 20 18.5 19.1 19.7 19.2 19.7 17.6 18.3 18 18.2 17.9 17 15.2 13.9

-2 8.9 10 11.1 12.4 12.9 14.3 14.8 16 16.7 17 16 17 16.6 17.6 16.9 17.4 19.6 19.3 16.3 16.8 17.5 19 17.5 17.7 18 17.3 19 19.5 19.4 19.1 18.6 19 20.2 20.1 20.6 20.3 21.3 19.4 18.1 19.5 19.6 18.9 19.1 19.9 19.9 20.4 19.8 18.1 18.8 19.7 18.9 19.5 17.3 18.1 17.7 18.1 17.3 16.9 14.8 13.6

-1 9 9.6 11.3 12.2 19.4 14.2 15 15.3 16.4 16.5 16 16.9 16.4 17.3 17 17.4 19.9 19.1 16.3 16.7 17.5 18.9 18.8 17.5 18 17.6 19.1 19.5 19.5 19.2 18.6 18.9 20.2 20 20.8 20.2 21.2 19.1 18.1 19.2 19.3 18.9 19 20.1 20 20.3 19.6 18.1 18.6 19.4 18.8 19.4 17 17.9 17.4 18 17 16.8 14.4 13.4

0 8.7 9.7 11 12.5 12.7 14 14.8 15.3 16.6 16.3 16 16.9 16.6 17.1 17 17.6 19.7 19.4 16.3 16.9 17.7 18.8 17.6 17.4 17.9 17.8 19 19.6 19.8 19.5 18.5 19 20.2 20 20.4 20 21.1 19 18.1 19.2 19.2 18.6 18.7 20 19.6 20.4 19.7 18.2 18.4 19.2 18.7 19.1 17 17.7 17.2 17.9 16.7 17 14.2 13.5

1 8.5 10 11.1 12.2 12.6 14.2 15 15.5 16.4 16.5 16.1 16.9 16.5 17.2 16.9 17.4 19.7 19 16.3 16.9 17.4 19 17.8 17.51 18 17.7 19 19.4 19.7 19.6 18.4 19.2 20.2 20 20.5 20.1 20.9 18.9 17.9 19.2 18.9 18.6 18.8 19.8 19.4 20.2 19.4 18 18.5 19.2 18.6 19.2 16.9 17.7 17.1 17.8 16.9 16.9 14.4 13.1

2 8.7 10.4 11 12.3 12.6 14 15.2 15.5 16.7 16.5 16.2 17 17 17.3 17.1 17.2 20 19 16.4 16.9 17.5 18.9 17.8 17.6 18 17.6 19 19.3 19.5 19.4 18.3 19.2 20.1 20 20.6 20.1 21 18.7 17.9 19 19 18.5 18.5 19.7 19.1 20.1 19.2 17.9 18.2 19.1 18.5 19.3 16.8 17.7 17.2 17.7 16.8 16.9 14.1 13.6

3 9 10 11.6 12.7 13 14.3 15 15.8 17 16.6 16.6 17.1 17 17.2 17.2 17.3 19.9 19 16.2 17.2 17.6 19 17.8 17.6 18 17.3 19 19.6 19.4 19.2 18.3 19.1 20 19.8 20.2 20.1 21.1 18.6 17.8 18.8 18.9 18.5 18.7 19.6 19.3 20.2 19.4 18.2 18 19.2 18.7 19.5 17 17.7 17.3 17.8 16.9 17.2 14.3 13.9

4 8.8 10.3 12 12.9 13.4 14.7 15.7 16.1 17.5 16.9 17.5 17.2 17 17.6 17.4 17.4 20 18.9 16.4 17.1 17.8 19.1 17.9 17.6 17.8 17.6 18.9 19.5 19.4 19.3 18.2 19.1 19.9 20 20.3 20.1 20.6 18.2 17.8 19 18.6 18.7 18.6 19.3 19.2 20.2 19.2 18.3 18 19.5 18.6 19.4 16.8 18 17.2 18.1 17.2 17.6 14.8 14.5

5 9 10.6 12.2 13.3 13.8 15.2 16 16.6 18 17.2 17.9 17.7 17.5 17.9 17.9 18.8 20.5 19.1 16.5 17.3 17.7 19.1 17.7 17.5 17.8 17.5 19.1 19.5 19.5 19.2 18.1 19 19.8 20 20.2 20 21 18.1 17.7 19.1 18.3 18.6 18.4 19.5 19.2 20.3 19.3 18.4 18.2 19.6 18.9 19.6 16.7 18.4 17.6 18.5 17.6 18.4 15.6 15.2

6 9.1 11 12.7 14 14.5 15.8 16.5 17 18.6 17.8 18.8 18.3 18 18.4 18 17.9 20.7 19.3 16.6 17.3 17.8 19 17.6 17.8 17.9 17.4 19.1 19.4 19.4 19.1 18 19 19.7 19.9 20.1 20 20.9 18.3 17.8 19.1 18.6 18.3 18.5 19.5 19.2 20.2 19.5 18.6 18.3 19.7 19.1 20 17 18.9 18 19.3 18.1 18.8 16.3 16

7 9.2 11.2 13.5 15 15.7 16.9 17.5 17.6 19.4 18.6 20 18.7 18.4 18.9 18.1 18.1 21 19.4 16.9 17.3 18.1 18.9 17.9 17.6 18.8 17.4 19 19.6 19.6 19 18.6 19 19.6 19.7 20 19.7 20.6 18.4 17.5 18.8 18.4 18.6 18.8 19.3 19.2 20.3 19.8 18.3 18.6 19.9 19.6 20.3 17.5 19.7 18.6 19.9 19 20 17.2 17.1

8 9.5 12 14.5 15.9 17 18 18.5 18.4 20.2 19.5 20.1 19.2 18.9 19.2 18.4 18.5 21 19.4 17 17.4 18.4 18.9 18.1 17.9 18 17.4 19 19.3 19.3 19 18.2 19 19.8 19.7 20 19.5 20.6 18.1 17.3 19 18.2 18.6 18.3 19.4 19.4 20.2 19.8 18.7 18.8 20 19.5 20.7 18 20.4 19.4 20.6 20 21 18.9 18.8

9 9.8 13 16 17.9 19 19.4 19.8 19.4 21.2 20 21 19.7 19.5 19.7 18.7 18.7 21.4 19.6 17.1 17.3 18.8 19 17.8 17.5 17.9 17.4 19.1 19.2 19.4 19.1 18.2 18.9 19.7 19.6 20 19.6 20.5 18.1 17.2 18.8 18.4 18.4 18.4 19.5 19.3 20.4 19.9 19 18.8 20.3 19.7 20.9 18.4 20.7 20.3 21.3 21 22.1 20.5 20.5

10 9.5 13.7 17.6 19.8 21 21 21 21 22.5 21 22 20.3 19.9 20.1 19 19 21.7 19.7 17 17.4 18.9 19.1 17.9 17.6 17.9 17.5 19 19.4 19.4 18.7 18.2 18.8 19.6 19.4 20 19.4 20.6 17.2 17.1 18.6 18.3 18.3 18.5 19.2 19.4 20.3 20 19.1 19 20.4 20.4 21.1 19 21.2 21.2 22.3 22.6 23.6 22.6 22.5

11 9 16 20.5 22.9 24.4 23.5 22.6 22.4 23.9 22.9 22.8 21 20.5 20.4 19.4 19.4 22 19.9 17.2 17.3 18.9 19 17.9 17.7 18 17.6 19.2 19.2 19.5 18.6 18 18.7 19.5 19.2 19.7 20 20.3 17.2 16.9 18.5 18.5 18.5 18.5 19.2 19.2 20.2 20.1 19.2 19 20.5 20.5 21.3 18.4 21.7 22 22.9 23.8 24.7 25.2 25.7

12 8.7 19 24 27.3 28.9 25.3 25 24 25 22.9 22.9 21.6 21 20.9 19.9 19.7 22.1 20 17.3 17.4 18.5 18.9 18 17.9 17.8 17.5 19.1 19 19.4 18.5 18.1 18.6 19.5 18.6 20 19.6 20.1 17.1 16.8 18.2 18.2 18.1 18.3 19.1 19.3 20 20 19 19.1 20.3 20.1 21.1 18.9 21.7 22.1 23.2 23.7 24.8 28.1 29.8

13 8.4 26.5 32 35.1 34.5 27.7 26.9 25.1 25.7 24.2 23.1 22 21.7 20 20.13 20 22.4 19.9 17.6 17.5 18.5 18.9 17.9 18 17.9 17.6 19.1 18.7 19.3 18.4 18 18.5 19.3 18.5 19.7 19.5 20 17 16.7 18 18.1 18 18 19 19.4 19.8 19.9 18.8 18.9 20 20.4 20.9 19.3 21.3 22 23 23.5 23.9 31.1 33.2
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CUADRO 2: Datos bobina mediana 
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Figura 68. 

a) Mapeo bobina pequeña 

 

 

 

Fuente. Elboración propia 
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CUADRO 3. Datos bobina pequeña 

 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-28 10.1 9.3 11 10.8 10.1 9.9 9.5 9.4 9.1 9.1 9.2 8.9 9 9.2 9.3 9.3 9.7 10 10.3 9.3 9.1

-27 18.8 15 13.5 12.3 11.3 10.8 10.4 10 10.1 9.8 10 9.8 9.9 10.3 10.6 11 11.6 12.7 13.7 15.7 18.8

-26 26.5 20 16.6 14.4 13 12 11.4 10.9 10.9 10.5 10.1 10.5 10.8 11 11.5 12 13 14.3 16.6 19.9 24.9

-25 29.8 24 18.9 16.4 14.6 13.7 13 12.3 12 11.6 11.7 11.5 12 12.2 12.8 13.6 14.8 16.1 18.8 23 26.8

-24 30.2 25.4 20.3 17.9 16 15.1 14.2 13.6 13 12.8 12.8 13 13.4 13.6 14.2 15 16.3 18.3 20.9 25.7 28

-23 23 23.4 21.2 19.2 18 16.8 15.6 15.1 14.6 14.3 14.1 14.3 14.8 15 15.9 16.6 17.9 19.3 21 26.4 28.4

-22 23.1 22.9 20.6 19 17.7 16.5 15.8 15.4 14.7 14.6 14.6 14.9 15 15.7 16.4 17.1 18.5 20 21.9 23.5 25.8

-21 25.3 24 22.5 21 20 18.9 18.4 17.5 17.1 17 17 16.8 17.1 17.4 17.6 18.5 19.4 20.7 22 23.8 24.7

-20 23.4 22.3 21.2 19.9 19.2 18.1 17.7 17.2 17 16.9 16.7 17 17.3 17.7 18.5 19 20.1 21.2 22.4 23.7 25

-19 22.8 22 21 20.2 20 19.5 19 18.5 18.3 18.4 18.1 17.9 18.1 18.6 19 19.8 20.5 21.5 22.6 23.5 24.3

-18 22.6 21.9 21.5 20.8 20.1 19.7 19.5 18.9 18.6 18.7 18.7 19 19.1 19.5 19.7 20.6 21.3 21.9 23 23.7 24.6

-17 23.5 23 22.4 21.8 21.3 20.9 20.6 20 19.6 19.9 19.9 19.5 19.7 19.9 20.1 20.9 21.2 22.2 22.5 23.2 23.7

-16 22.3 22 21.8 21.2 20.9 20.6 20.3 20.2 20.1 19.9 20.3 19.8 20.1 20.4 20.7 21.3 21.6 22 22.5 23.1 23.7

-15 21.5 21.2 20.8 20.5 20.3 20 19.6 19.5 19.3 19.4 19.6 19.8 19.9 20.1 20.4 20.8 21.1 21.4 21.9 22.3 22.6

-14 21.2 21.1 20.6 20.4 20.1 19.9 19.8 19.6 19.7 19.6 19.7 19.9 19.9 20.1 20.3 20.5 21 21.1 21.5 22 22.2

-13 22.3 22.1 21.9 21.8 21.6 21.5 21.2 21.1 21 21.1 20.6 20.9 21 21.2 21.4 21.6 21.9 22 22.3 22.4 22.5

-12 21.2 21.1 21 20.9 21 20.9 21 20.5 20.6 20.6 20.8 21 21.1 21.2 21.2 21.4 21.7 21.9 22 22.1 22.5

-11 20.5 20.3 20.2 20.2 20.4 20 20.1 19.8 19.9 20.1 20.1 20 20.1 20.2 20.2 20.4 20.6 20.7 20.8 20.9 21

-10 20.4 20 20.4 20.2 20.3 20.2 20.2 20.3 20.1 20.1 20 19.9 20 20.2 21 20.2 20.5 21 21 20.8 20.9

-9 19.7 20 20 20 20.2 20.2 20 20.4 19.9 21 20 20 20.2 20 20 20.2 20.4 20.7 20.8 20.8 20.7

-8 20 19.9 19.8 20 20.2 19.9 20 19.8 19.9 20 20 19.9 20 20.1 20 19.9 20.2 20.1 20.2 20.1 20

-7 19.8 19.9 19.7 19.8 19.9 20 19.9 20.1 20.2 20.1 20.3 20.5 20.3 20.4 20.1 20.4 20.3 20.4 20.5 20.6 20.7

-6 19.9 20.2 20.2 20.3 20.2 20 20 20.1 20 20.3 20.4 20.2 20.3 20.4 20.2 20.5 20.4 20.3 20.5 20.1 20.2

-5 20 20.2 20.2 20.3 20.4 20.6 20.5 20.9 20.9 20.7 21.1 21 21.1 21.1 21.2 21 21.4 21.3 21.1 21 20.8

-4 20 20.3 20.4 20.5 20.7 20.6 20.6 20.8 20.8 20.7 20.9 20.8 20.6 20.7 20.9 21 20.7 20.6 20.5 20.3 20.2

-3 20.6 20.8 20.7 21 20.7 20.9 21 20.9 21 20.9 21.1 21.2 21.1 21.3 21.1 21.3 21.1 21 21.1 21 20.9

-2 18.9 19.2 19 19.3 19.2 19.4 19.3 19.5 19.4 19.2 19.6 19.7 19.5 19.4 19.3 19.2 19.4 19.3 19.4 19.4 19.3

-1 19.2 19.5 19.5 19.6 19.7 19.4 19.6 19.7 19.8 20.1 20.2 20.1 20 20 19.9 19.8 19.7 19.9 19.9 19.8 19.9

0 20.1 20.2 20.5 20.7 20.7 21 21.2 21 21.4 21.4 21.7 21.5 21.6 21 20.9 20.8 20.8 20.7 20.6 20.6 20.5

1 20.6 20.5 20.4 20.7 20.5 20.3 20.4 20.5 20.3 20.2 20.3 20.2 20.1 20.2 20.1 20 19.9 19.8 20 19.7 19.7

2 20.5 20.8 20.9 20.7 21 21.2 21.3 21 21.2 20.9 21.2 20.9 20.7 20.6 20.7 20.4 20.4 20.3 20.1 20.5 20

3 20 19.9 20 19.8 19.8 20 19.9 19.7 19.7 20 20 20.1 20 19.9 19.4 19.5 19.77 19.4 19.7 19.6 19.4

4 19.2 19.3 19.6 19.4 19.6 19.8 19.9 19.9 19.5 19.6 19.5 19.7 19.5 19.3 19.3 19.4 19.2 19.4 19.2 19.2 19.1

5 18.9 18.8 19 18.9 19 18.8 19 18.9 18.5 18.5 18.7 18.5 18.5 18.5 18.3 18.7 18.5 18.6 18.5 18.4 18.4

6 19.4 19.5 19.5 19.5 19.6 19.5 19.8 19.9 19.6 19.3 19.4 19.4 19.1 18.9 19 18.9 18.8 18.9 18.6 19 18.6

7 19.7 19.4 19.3 19.2 19.2 19.1 19 18.9 19 18.9 19 19 18.8 18.7 18.4 18.7 18.7 18.3 18.8 19 18.6

8 19.1 19.4 19.5 19.5 19.6 19.3 19.3 19 19.3 19 19 18.8 19 18.9 18.8 18.4 18.7 18.5 18.5 18.5 18.2

9 20.2 20.1 20 19.8 19.6 19.5 19 18.8 19.1 18.9 18.6 18.5 18.9 18.7 18.8 18.8 18.7 19 18.8 18.6 18.2

10 20.3 20.4 20.2 20.3 20.2 20 19.9 19.6 19.5 19.4 19.4 19.2 19.3 19.2 19.2 19.1 19.3 19.4 19.2 19.5 19.1

11 21 20.6 20.8 20.4 20.2 20 19.8 19.6 19.5 19.3 19.1 19 18.9 19.1 19 19.2 19.2 19.3 19.9 19.5 19.6

12 21.2 21.3 21.2 21.1 21.1 20.9 20.6 20.3 20.1 20 19.6 19.7 19.5 19.6 19.5 19.6 19.4 19.9 19.9 20 19.9

13 22 21.8 21.5 21.2 20.9 20.4 20 19.9 19.3 19.2 19.2 19 19.1 18.9 19.1 19.2 19.5 19.2 19.5 19.9 20

14 20.2 20.1 19.7 19.4 19.2 18.5 18.5 18.1 18 17.7 17.7 17.5 17.7 17.7 17.6 17.7 17.9 18 18.2 18.4 18.5

15 19.4 19.2 18.9 18.5 17.1 17 16.8 16.6 17 17.1 17.1 17.2 17.6 18 18.4 18.6 19 19.6 20.1 20.4 21

16 21.3 20.8 20.6 19.9 19.5 19 18 18.2 18 17.8 17.3 17.4 17.3 17.5 17.8 18.8 18 18.3 18.9 19 19.2

17 19.1 18.5 17.9 17.5 17.1 16.9 16.5 16.3 16.4 16.5 16 16.9 17.2 17.3 17.9 18 19 19.6 20.5 21.2 22.6

18 23 22.2 21.4 20.4 19.4 18.8 18.3 18 17.6 17.3 17 17 16.9 17.3 17.4 17.8 18.3 18.6 18.8 19.6 20

19 23.8 22.8 22 20.9 19.8 18.8 18 17.5 16.6 16.3 16.1 16 15.9 16.1 16.3 16.7 17.2 17.9 18.7 19.4 20.5

20 24.8 23.5 22 21 19.6 18.7 18.2 17.3 16.6 16.5 16.2 16.2 16.1 16.3 16.7 17.2 17.9 18.2 19.2 20.1 20.9

21 21.3 20.8 19.7 18.2 17.3 16.5 16.1 15.8 14.6 14.8 15 15.1 15.7 16.6 17.3 18.3 19.5 21 22.5 24 25.9

22 27 24.8 22.3 20.6 19.2 17.8 16.8 15.9 15.2 14.9 14.8 14.6 14.6 15 15.3 16 16.6 17.8 18.8 20.4 19.7

23 29 26 22.7 20.6 18.8 17.2 16 15.5 15 14.2 14.1 13.8 13.6 13.8 14 14.6 15.5 16.5 18.4 26.3 28.6

24 28.4 25 21.7 19.2 17.7 16.4 15.3 14.9 14.1 13.7 13.8 14 13.6 14 14.2 14.7 15.6 16.8 18.6 25.6 28.8

25 28.4 24 20.4 18.2 16.2 15 14.2 13.5 12.7 12.3 12.3 12 12 12.3 12.9 13.3 14.2 15.6 17.6 24.3 27.5

26 26.2 21.7 18.5 16 14.8 13.6 13 12.5 11.8 11.6 11.1 11.2 11.2 11.1 11.6 12 12.6 14 16 20.5 25.7

27 26.2 18.4 18.5 16 14.8 13.6 13 12.5 11.8 11.6 11.1 11.2 11.2 11.1 11.6 12 12.6 14 16 14.8 17.7

28 26.2 14.6 18.5 16 14.8 13.6 13 12.5 11.8 11.6 11.1 11.2 11.2 11.1 11.6 12 12.6 14 16 7.8 7.9
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CAPÍTULO IV:  RESULTADOS 

4.1. Resultados del diseño 

4.1.1. Resultado del diseño de las bobinas de Helmholtz.  

El resultado del diseño de las bobinas vienen hacer los planos. En los cuales 

están especificadas los  parámetros geométricos  de dichas bobinas. 

Bobinas 𝑫(𝒅𝒊𝒂𝒎𝒆𝒕𝒓𝒐)𝒎𝒎 𝑹(𝒓𝒂𝒅𝒊𝒐)𝒎𝒎 Distancia de separación 
(𝑹 = 𝒉) mm 

Bobina pequeña 550.0 275.0 275.0 
Bobina mediana 630.0 315.0 315.0 
Bobina grande  691.0 345.5 345.5 

 

4.1.2. Resultado de la implementación 

El resultado de la implementación de las bobinas son las bobinas de aluminio en 

físico con sus respectivas parámetros geométricos y número de vueltas. 

Bobinas 𝑫(𝒅𝒊𝒂𝒎𝒆𝒕𝒓𝒐)𝒎𝒎 𝑹(𝒓𝒂𝒅𝒊𝒐)𝒎𝒎 𝑵(𝒏ú𝒎𝒆𝒓𝒐 𝒅𝒆 𝒗𝒖𝒆𝒍𝒕𝒂𝒔) 
Bobina  pequeña 550.0 275.0 144 
Bobina mediana 630.0 315.0 164 
Bobina grande 691.0 345.5 179 

 

4.1.3. Resultado del mapeo topográfico 

El resultado del mapeo topográfico, vienen hacer los cuadros 1, 2 y 3 . Los cuales 

son un registro de la inducción magnetica coordenada a coordenada y el analisis 

de estos datos fueron realizados  con el software surfer-10, que enseguida 

presentamos. 
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Bobina de Helmholtz Grande 

Los datos son procesados con el Software Surface, el cual procesado los datos  

presenta el campo topográfico de la inducción magnetica en la zona experimental 

de la bobina grande de Helmholtz. Los datos obtenidos en la zona experimental 

de la bobina  grande nos proporciona la variación del campo magnético como 

podemos observar en las isosuperficies de las figuras 69  partes a), b) y c) 

 Se observa que en cercanías a las bobinas la inducción magnética es mayor y 

toma como valores de  22 a 28 Gauss con tonos de color rojo. También se 

observa que se tiene valores muy bajos de inducción magnetica alrededor de 8 

Gauss con tonos de color azul. La discusión más importante  es la homogenidad 

de la inducción magnética  en el centro de la zona experimental de 22 Gauss con 

tonos de anaranjado. Teniendo una variación de inducción magnetica en el 

medio entre 21Gauss y  22Gauss. 
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Figura 69. 

a) Campo topográfico de la inducción magnético en el plano XY 
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b) Muestra las curvas isomagneticas sobre un fondo de papel milimetrado en el 

plano XY, el cual muestra la variación de la inducción magnética 
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c)  Campo de direcciones del vector  inducción magnetica en el plano XY y 

como esta varia en dirección y sentido en la zona experimental 

 
Fuente: Elaboración Propia 
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Bobina de Helmholtz Mediana 

 Los datos obtenidos en la zona experimental de la bobina mediana nos 

proporciona la variación del campo magnético como podemos observar en las 

isosuperficies de las figuras 70 partes a), b) y c) . Se observa que en cercanías 

a las bobinas la inducción magnética es mayor y toma como valores de  30 a 36 

Gauss con tonos de color rojo. También se observa que se tiene valores muy 

bajos de inducción magnetica alrededor de 8 a 16  Gauss con tonos de color 

azul. La discusión más importante  es la homogenidad de la inducción magnética  

en el centro de la zona experimental de 22 Gauss con tonos de color verde. 

Teniendo una variación de inducción magnetica en el medio entre 20Gauss y  

24Gauss. Esta homogenidad  es la esperada en los cálculos teóricos como 

también en la simulación.  
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Figura 70 

a) Campo topográfico de la inducción magnetica en el plano YZ 

 
Fuente: Elaboración propia 
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b) Muestra las curvas isomagneticas sobre un fondo de papel milimetrado el 

cual muestra la variación de la inducción magneticade 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: Elaboración propia 
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c) Campo de direcciones del vector  inducción magnetica en el plano YZ  y 

como esta varia en dirección y sentido en la zona experimental 

 

 

 
 

Fuente: Elaboración propia 
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Bobina de Helmholtz Pequeña 

Esta bobina proporciona un campo magnético en el plano XZ. Al igual que 

las otras bobinas tenemos su distribución del campo magnético, como las que 

muestra las figuras 71 partes a), b) y c) 

Figura 71 

a) Campo topográfico de la inducción magnética en el plano XZ. 
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b) Muestra las curvas isomagneticas sobre un fondo de papel milimetrado el 

cual muestra la variación de la inducción magneticade 
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c) Campo de direcciones del vector  inducción magnetica en el plano XZ  y 

como esta varia en dirección y sentido en la zona experimental 
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4.1.4. Resultado de las bobinas de Helmholtz en disposición triaxial 3D.  

Finalmente presentamos ya, físicamente el prototipo de las bobinas de Helmholtz 

en disposición triaxial 3D. Que fué nuestro principal objetivo y generen campo 

magntico uniforme en las tres direcciones. 

❖ Bobinas ensambladas a nivel  de diseño 

 

 

 

 

 

 

 

❖ Bobinas ensambladas como prototipo 

  

 

 

 

 

 

 



152 
 

 

4.1.5. Resultados a nivel teórico de las bobinas Hemholtz y simulación 

a) Resultado teórico 

Para el desarrollo del modelo teorico se utilizó los potenciales magnéticos  

tomando énfasis en el potencial magnético escalar ya que la intensidad 𝑯⃗⃗⃗  es el 

gradiente del potencial magnético escalar  𝑯⃗⃗⃗ = −𝜵𝝋, Determinamos el potencial 

magnético en un punto del eje de simetría de la bobina de Helmholtz en el 

espacio de experimentación hasta obtener el sexto termino en una serie de 

Maclaurin del potencial magnético escalar  𝝋.   

𝝋(
𝒛

𝑹
) = −

𝒏𝑰𝟖

𝟓√𝟓
(
𝒛

𝑹
−
𝟏𝟎𝟖𝟎(𝟏𝟔)

𝟔𝟐𝟓(𝟓!)

𝒛𝟓

𝑹𝟓
+⋯) 

esta expresión del potencial escalar lo ponemos como función de los polinomios 

de Legendre  

−
𝒏𝑰𝟖

𝟓√𝟓
(
𝒓𝑷𝟏(𝒄𝒐𝒔𝜽)

𝑹
−
𝟏𝟒𝟒

𝟔𝟐𝟓

𝒓𝟓𝑷𝟓(𝒄𝒐𝒔𝜽)

𝑹𝟓
+⋯ . ) 

Por  tablas de polinomios de Legendre (ver apéndice F) tenemos: 

𝑷𝟏(𝒄𝒐𝒔𝜽) = 𝒄𝒐𝒔𝜽  y 𝑷𝟓(𝒄𝒐𝒔𝜽) = (
𝟏

𝟖
) (𝟔𝟑𝒄𝒐𝒔𝟓𝜽 − 𝟕𝟎𝒄𝒐𝒔𝟑𝜽 + 𝟏𝟓𝒄𝒐𝒔𝜽) 

𝝋(
𝒛

𝑹
) = −

𝒏𝑰𝟖

𝟓√𝟓𝑹
𝒛(𝟏 −

𝟏𝟒𝟒

𝟔𝟐𝟓
 
𝒛𝟒

𝑹𝟒
+
𝟏𝟒𝟒

𝟏𝟐𝟓
 
𝒛𝟐𝒓,𝟐

𝑹𝟒
−
𝟓𝟒

𝟏𝟐𝟓
 
𝒓,𝟒

𝑹𝟒
+⋯) 

donde 𝒓´  es la distancia del eje de simetría a un punto cualquiera en la región 

de experimentación. 

Este  potencial escal en todo el espacio experimetal de la bobina de Helmholtz 

se denomina el método de expasion Axial. 
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Finalmente calculamos el gradiente encoordenadas cilíndricas del potencial 

escalar para obtener las componentes de la intensidad magnetica 𝑯⃗⃗⃗   en todo el 

espacio de la zona de experimentación de las bobinas de Helmholtz  

𝑯𝒓´ =
𝒏𝑰𝟖

𝟓√𝟓𝑹
 
𝟕𝟐𝒛𝒓,(𝟒𝒛𝟐 − 𝟑𝒓,𝟐 +⋯)

𝟏𝟐𝟓𝑹𝟒
 

𝑯𝒛 =
𝒏𝑰𝟖

𝟓√𝟓𝑹
(𝟏 − 

𝟏𝟒𝟒

𝟏𝟐𝟓

𝒛𝟒

𝑹𝟒
+
𝟒𝟑𝟐

𝟏𝟐𝟓
 
𝒛𝟐𝒓,𝟐

𝑹𝟒
−
𝟓𝟒

𝟏𝟐𝟓

𝒓,𝟒

𝑹𝟒
+⋯) 

 

 Resultado de la Simulación 

Para observar de manera grafica el comportamiento de la inducción magnetica 

en una bobina de Helmholtz simulamos dicha bobina con el software Comsol 

para esto seleccionamos el estudio en 3D, luego seleccionamos el fenómeno 

físico que corresponde a campo magnético, en la ventana de trabajo de comsol 

elegimos la geometría, buscamos en el archivo del comsol  el módulo de 

Helmholtz, elegimos el contorno esfera construimos la forma de la bobina de 

Helmholtz todo esto utilizando el dominio de elementos finitos, seleccionamos 

las capas exteriores, seleccionamos aire al material de las capas exteriores y a 

los cables de la bobina de Helmholtz seleccionamos como material cobre e 

indicamos que es un embobinado multiple del tipo circular,  seleccionamos la 

geometría de la bobina, seleccionamos el contorno de color naranja, 

visualizamos a la bobina en 3 dimensiones y habilitamos las mallas en la opción 

ajustes, luego el ajuste de curvas de nivel y visualización de las curvas de nivel, 

Para observa los vectores de inducción magnetica en la zona de 

experimentación de la bobina de Helmholtz,  hacemos click sobre la opción 

superficie de flechas y finalmente tenemos el campo de direccion del vector 

inducción magnetica de manera grafica y visual de la bobina de Helmholtz con 
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el fin de anticiparnos que nuestros datos experimentales tome esa forma del 

campo de direcciones al momento de graficar dichos datos o corregir datos que 

no corresponde y volver a medir. Este resultado de simulación podemos verlo en 

la siguiente figura. 

 

 

❖ Simulación final que muestran las bobinas de Helmholtz y el campo de 

direcciones de la inducción magnética 
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CONCLUSIONES  

1. Se logro diseñar las bobinas de Helmholtz, recurriendo a los softwares 

informatcos como el Solid Word y el Autocad. 

2. Se implemento las tres  bobinas de Helmholtz ( fundición y torneado), con los 

datos proporcionados en la primera parte.  

3. Se pudo mapear con una sonda de efecto Hall  cada bobina 

independientemente y registrar esta información por medio de los cuadros 1, 2, 

y 3. Y para su análisis de datos el software Surfer-10. El cual muestra regiones 

con uniformidad de campo magnético mediante  isolineas magneticas y el vector 

campo de direcciones. 

4. Se pudo finalmente ensamblar estos trés pares de bobinas en diposicion 

triaxial  3D. y sus respectivas conexiones eléctricas para el funcionamento y uso 

aplicativo. 

5.  A nivel teórico se pudo estudiar dichas bobinas partiendo de la ley de Biot y 

Savart  y el empleo del potencial magnético escalar, series de Taylor, suma de 

potencias, series de Maclaurin y usando el método axial de los polinomios de 

Legendre.  
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RECOMENDACIONES  

1. En el diseño de las bobinas de Helmholtz es recomendable el uso de softwares 

informáticos. Dada su dificulad de obtener parámetros gométricos que coencidan 

espacialmente dichas bobinas. 

2. Implementar una bobina de Helmholtz con sus conexiones eléctricas no trae 

muchas dificultades. El detalle es en el arrollamientode del alambre conductor, 

es recomendable un arrollamiento por capas. Como la propuesta en el trabajo 

de seminario por el compañero Nilto Olivera.  

3. Durante el mapeo de la inducción magnetica para medidas y datos muy 

grandes; que requieren de tiempo prolongado es decir una gran cantidad de 

datos teniendo prendido las bobinas se debe tener cuidado con el EFECTO 

JOULE. El cual  hace que el magnetómetro sea fluctuante y no registre un valor 

próximo con la realidad. Por tal razón no se debe colocar el magnometro cerca 

de las bobinas. Y para su análisis de datos es necesario el manejo de un software 

capaz de procesar multiples datos y pueda interporlar dichos datos como es el 

software Surface.  

4. En este dispositivo final de las tres bobinas de Helmholtz,  se puede poner 

muestras  orgánicas  o inorgánicas. Es decir  en la intersección de la disposición 

triaxial y afectarlo periódicamente por inducción magnetica uniforme  en las tres 

direcciones. 

5. En la presente tesis se enfatizó la importancia y a su vez se recomienda  el 

uso del potencial escalar magnético en el campo de la fisica teorica. 
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Apéndice A 

Series de Taylor 

Las siguientes funciones  

𝟒 

𝟐 + 𝟑𝐱 

𝟏 + 𝟐𝐱 − 𝐱𝟐 

𝟑 + 𝟕𝐱 + 𝟐𝐱𝟐 + 𝐱𝟑 

Pueden servir como ejemplos de polinomios de grado nulo, primero segundo y 

tercero respectivamente. En general, en general se denomina polinomio de 

grado 𝒏 la suma  

𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 +⋯……+ 𝒂𝒏𝒙

𝒏 = ∑ 𝒂𝒌𝒙
𝒌𝒏

𝒌=𝟎          (𝒂𝒏 ≠ 𝟎) 

Donde 𝒂𝒌 son números constantes prefijados y 𝒙 , la variable independiente. 

Los polinomios son acomodos en la práctica.  Afín de calcularlos, partiendo de 

los 𝒙 dados, resulta necesario efectuar solo las operaciones de adición, 

sustracción y multiplicación. 

Por lo común, los polinomios se utilizan para aproximar por medio de ellos  

otras funciones mas complejas. Uno de los métodos más importantes para 

aproximar las funciones por medio de un polinomio  es la fórmula de Taylor1 

Deduzcamos la fórmula de Taylor prefijemos la función f(x) sobre el segmento 

[−𝒂, 𝒂] que tiene derivadas de cualesquiera órdenes .tracemos su gráfica en el 

sistema rectangular de coordenadas (fig:55). A través del punto A cuya absisa 

es 𝒙 = 𝟎 , tracemos una recta pararlela al eje Z. su ecuación será  



158 
 

 

𝒚 = 𝒇(𝟎) 

Hemos obtenido un polinomio de grado nulo  

𝑸𝟎(𝒙) = 𝒇(𝟎)  

Que se puede considerar como la aproximación nula de una función 𝒇 en un 

entorno suficientemente pequeño del punto 𝒙 = 𝟎,  

𝒇(𝒙) ≈ 𝒇(𝟎) (𝑨. 𝟏) 
 

La función     𝒇(𝒙) es continua y por lo tanto difiere poco de 𝒇(𝟎) para los 

valores de 𝒙  correspondientes al pequeño entorno del punto 𝒙 = 𝟎 . Además, 

en el propio punto  𝒙 = 𝟎 la igualdad aproximada se convierte en una igualdad 

exacta.tracemos ahora por el punto A una tangente a uestra curva. Su 

ecuación tiene la siguiente forma: 𝒚 = 𝒌𝒙 + 𝒃 (Zill, 2009) 

Donde 

                               𝒃 = 𝒇(𝟎),   𝒌 = 𝒇´(𝟎)  

De este modo, la ecuación de una tangente se puede escrbir en forma de  

𝒚 = 𝒇(𝟎) + 𝒇´(𝟎)𝒙 

Hemos obtenido un polinomio de primer grado  

𝑸𝟏 (𝒙) = 𝒇(𝟎) + 𝒇´(𝟎)𝒙 

El cual puede considerarse como la primera aproximación de la función 𝒇(𝒙) en 

tormno al punto 𝒙 = 𝟎  

𝒇(𝒙) ≈ 𝒇(𝟎) + 𝒇´(𝟎)𝒙 (𝑨. 𝟐) 
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De la figura se infiere que la primera aproximación es mejor que la de grado 

nulo, en todo caso, para los 𝒙 de un entorno suficientemente pequeño del 

punto        𝒙 = 𝟎 .  

Los miembros, primero y segundo, de la igualdad aproximada (𝟐)no solo son 

iguales en el punto 𝒙 = 𝟎 , sino que también sus derivadas son iguales entre si 

en dicho punto: 

𝑸𝟏(𝟎) = 𝒇(𝟎)    y    𝑸´(𝟎) = 𝒇´(𝟎) 

En la práctica la igualdad aproximada (𝟐)  se utiliza ampliamente. 

Así pues, un polinomio de primer grado. 

𝑸𝟏 (𝒙) = 𝒇(𝟎) + 𝒇´(𝟎)𝒙 

Posee la propiedad notable de que el mismo coincide con la función 𝒇  en el 

punto cero y tiene la derivada que coincide con la derivada de 𝒇 en este punto. 

Encontremos ahora un polinomio de segundo grado. 

𝑸𝟐 (𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 (𝑨. 𝟑) 

 

Tal que simultáneamente se satisfagan las igualdades  

𝒇(𝟎) = 𝑄𝟐(𝟎)    ,   𝒇´(𝟎) = 𝑸𝟎´(𝟎)   y    𝒇´´(𝟎) = 𝑸𝟐´´(𝟎) 

Sustituyendo 𝒙 = 𝟎  en 𝑸𝟐 (𝒙), obtendremos  

𝒇(𝟎) = 𝒂𝟎 

Tomando la derivada de   𝑸𝟐 (𝒙) , obtendremos  

𝑸𝟐´(𝒙) = 𝒂𝟏 + 𝟐𝒂𝟐𝒙 

Y adoptando 𝒙 = 𝟎 , llegaremos a la igualdad  
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𝒇´(𝟎) = 𝒂𝟏 

Por fin, diferenciando 𝑸𝟐 (𝒙) , obtendremos 

𝑸𝟐´´(𝒙) = 𝟐𝒂𝟐 

De donde  

𝒇´´(𝟎) = 𝟐𝒂𝟐 

Y , por consiguiente  

𝒂𝟐 =
𝒇´´(𝟎)

𝟐
 

A si pues, el polinomio buscado de segundo grado tiene la siguiente forma. 

𝒇(𝟎) +
𝒇´(𝟎)

𝟏
𝒙 +

𝒇´´(𝟎)

𝟐!
𝒙𝟐,   (𝟐! = 𝟏. 𝟐) 

Hemos anotado 𝟐! En vez de dos, teniendo en cuenta las generalizaciones 

posteriores. Plantemos un problema más: se requiere encontrar un polinomio 

de tercer grado. 

𝑸𝟑(𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 + 𝒂𝟑𝒙

𝟑 

𝒇(𝟎) = 𝑸𝟑(𝟎)   ,   𝒇´(𝟎) = 𝑸𝟑´(𝟎)  , 𝒇´´(𝟎) = 𝑸𝟑´´(𝟎)  ,  𝒇´´´(𝟎) =
𝑸𝟑´´´(𝟎) 

(𝑨. 𝟒) 

 

Tenemos  

𝑸𝟑´(𝒙) = 𝒂𝟏 + 𝟐𝒂𝟐(𝒙) + 𝟑𝒂𝟑𝒙
𝟐 

𝑸𝟑´´(𝒙) = 𝟐𝒂𝟐 + 𝟑. 𝟐𝒂𝟑𝒙 

𝑸𝟑´´´(𝒙) = 𝟑 ∙ 𝟐𝒂𝟑 = 𝟑!𝒂𝟑 

Por lo tanto, tomando en consideración (𝟒), obtendremos.  
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𝒇(𝟎) = 𝑸𝟑(𝟎) = 𝒂𝟎 

𝒇´(𝟎) = 𝑸𝟑(𝟎) = 𝟏! 𝒂𝟏 

𝒇´´(𝟎) = 𝟐! 𝒂𝟐 

𝒇´´´(𝟎) = 𝟑! 𝒂𝟑 

Por consiguiente, el polinomio buscando de tercer grado tiene la siguiente 

forma. 

𝑸𝟑(𝟎) = 𝒇(𝒂) +
𝒇´(𝒂)

𝟏
𝒙 +

𝒇´´(𝒂)

𝟐!
𝒙𝟐 +

𝒇´´´(𝒂)

𝟑!
𝒙𝟑 

De modo análogo, se puede plantear el problemas mas general : hay que 

encontrar un polinomio 𝒏. 

𝑸𝒏(𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝑎𝟐𝒙
𝟐 +⋯……… . . +𝒂𝒏𝒙

𝒏 
 

(𝑨. 𝟓) 

 

Tal , que simultáneamente se cumpla las igualdades  

𝒇(𝟎) = 𝑸𝒏(𝟎) 

𝒇′(𝟎) = 𝑸𝒏´(𝟎) 

………………………………………… 

𝒇(𝒌)(𝟎) = 𝑸𝒏
𝒏(𝟎) 

Diferenciando 𝑸𝒏(𝒙)   sucesivamente 𝒏 veces y sustituyendo 𝒙 = 𝟎 

                     Obtendremos  

𝒂𝟎 = 𝑸𝒏(𝟎) 

𝒂𝟏 =
𝒇´(𝟎)

𝟏!
, 
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𝒂𝟐 =
𝒇´´(𝟎)

𝟐!
 

……………………………………… 

𝒂𝒏 =
𝒇(𝒏)(𝟎)

𝒏!
 

Por lo tanto , el polinomio buscado 𝑸𝒏(𝒙) de grado 𝒏 tiene la forma de. 

𝑸𝒏(𝒙) = 𝒇(𝟎) +
𝒇,(𝟎)

𝟏
𝒙 +⋯…… . .

𝒇(𝒏)(𝟎)

𝒏!
𝒙𝒏 

 

(𝑨. 𝟔) 

 

La función      𝑸𝒏(𝒙)   se llama 𝒏 − é𝒔𝒊𝒎𝒐 𝒑𝒐𝒍𝒊𝒏𝒐𝒎𝒊𝒐 𝒅𝒆 𝑻𝒂𝒚𝒍𝒐𝒓  de una 

función de grado 𝒙 . El coeficiente 𝒙𝒌 en el polinomio de Taylor se calcula 

según la formula 𝒇
(𝒌)(𝟎)

𝒌!
  , es decir, se toma la  𝒌 − é𝒔𝒊𝒎𝒂  , derivada de 𝒇, 

sustituyendo en ella 𝒙 = 𝟎  y el resultado obtenido se divide entre 𝒌!. Asi pues, 

si necesitamos aproximar la fución 𝒇  en un entorno pequeño del punto 𝒙 = 𝟎 , 

tiene sentido emplear la igualdad aproximada  

𝒇(𝒙) ≈ 𝑸𝒏(𝒙) 

Donde    𝑸𝒏(𝒙)   es polinomio de Taylor de la función 𝒇 . 

Las gráficas de los polinomios de Taylor consecuentes de la función 𝒇 según 

los grados 𝒙. Se aproximan cada vez más ala gráfica de 𝒇, por lo menor en un 

entorno bastante pequeño del punto A, claro esta, en caso que la función 𝒇 sea 

diferenciable un número suficiente de veces. 
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Apéndice B 

Historia del magnetismo 

El estudio del magnetismo se remonta hace 2600 a.c cuando el 

emperador chino Hwang-ti se guio en una batalla a través de una densa niebla 

por una pequeña figura giratoria instalada en su carro de guerra que siempre 

señalaba al sur debida a la piedra imán incrustada en su brazo extendido. Esta 

prodigiosa capacidad de la brújula de alinearse con el eje norte sur del universo, 

debió inspirar entonces un asombro total. Aun ahora cuando sabe que solo es 

un efecto local del propio campo magnético invisible de la tierra. (Hecht, 1987) 

Los griegos 800 a.C. tenían conocimiento sobre el magnetismo. 

Descubrieron que la magnetita (Fe3O4) atrae fragmentos de hierro. La leyenda 

adjudica el nombre magnetita al pastor Magnes que atraía trozos de magnetita 

mientras pastoreaba sus rebaños con los clavos de sus sandalias y el regatón 

de su bastón. (Serway & Jewett, 2009) 

En 1600, William Gilbert descubrió que la tierra es un imán natural con 

polos magnéticos próximos a los polos geográficos norte sur. Como el polo norte 

de la aguja de una brújula apunta al polo sur de un imán lo que llamamos polo 

norte geográfico de la tierra es realmente un polo sur magnético. De esta forma 

los polos norte y sur de un imán se definen como aquellos polos que marcan el 

norte y sur geográfico respectivamente. (Tipler & Mosca, 2003)  En los tres siglos 

y medio que han trascurrido desde los trabajos de Gilbert nadie ha conseguido 

explicar el magnetismo de la tierra de forma satisfactoria para todos los 

especialistas, durante largo tiempo los científicos especularon con la posibilidad 

de que la tierra pudiese tener como núcleo un gigantesco imán de hierro. A pesar 

de que en efecto se descubrió que nuestro planeta tenía un núcleo de hierro, hoy 
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sabemos que tal núcleo no puede ser un imán puesto que el hierro, cuando se 

calienta hasta los 760°C pierde sus grandes propiedades magnéticas, la 

temperatura del núcleo de la tierra debe ser, por los menos de 1000°C.  La 

temperatura a la que una sustancia pierde su magnetismo se llama temperatura 

de Curie. (Asimov, 1973)  

En 1820 se pensó que el magnetismo era independiente de la electricidad 

en ese año un profesor de física danés llamado Hans Cristian Oersted hizo un 

notable descubrimiento. En el curso de una demostración en clase, Oersted 

descubrió que una corriente eléctrica desvía la aguja de una brújula. Oersted fue 

el primero en establecer que el magnetismo estaba relacionado con la 

electricidad. Este descubrimiento trajo consigo una gran cantidad de adelantos 

tecnológicos, entre los que se encuentran los generadores eléctricos la radio y 

la televisión. (Hewitt, 2007) 

Una semana después de enterarse del descubrimiento de Oersted, André 

Marie Ampére hizo pasar corrientes por dos hilos paralelos uno de los cuales 

estaba suspendido de forma que pudiera alejarse o acercarse al otro. Cuando la 

corriente pasaba en la misma dirección los hilos se atraían en caso contrario se 

repelían. Como los dos hilos eran neutros eléctricamente, la fuerza no podía ser 

electrostática por lo que tenía que ser magnética. (Hecht, 1987) 

También en 1820, se formula la ley de Biot-Savart la cual es una 

aproximación magnetostática, el modelo indica que el campo magnético puede 

ser determinado, si se conoce la densidad de corriente esta ley es en honor a los 

físicos franceses Jean-Baptiste Biot y Félix Savart. 

En 1831 Faraday descubrió el principio de la inducción eléctrica y creo el 

primer transformador. Procedió a demostrar el fenómeno de una manera más 

https://es.wikipedia.org/wiki/Magnetost%C3%A1tica
https://es.wikipedia.org/wiki/Jean-Baptiste_Biot
https://es.wikipedia.org/wiki/F%C3%A9lix_Savart
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clara para lo cual empleo un imán permanente que introducía una y otra vez en 

el interior de una bobina de cable para sacarlo luego del mismo; pues a que no 

existía fuente alguna de electricidad se establecía corriente siempre que las 

líneas de fuerza del imán atravesaban el cable. Los descubrimientos de Faraday 

condujeron directamente no solo en la creación del dinamo para generar 

electricidad, sino que también dieron base a la teoría electromagnética. (Asimov, 

1973) 

En 1864 James Clerk Maxwell tubo la brillante hipótesis de los campos 

eléctricos variables inducen campos magnéticos. Fue llevado a esta idea al 

considerar las relaciones entre las leyes básicas del electromagnetismo 

descubiertas algunas décadas antes. Estas eran: La ley de coulomb para la 

fuerza entre dos cargas, 0, de forma equivalente, para el campo eléctrico debido 

a una carga puntual. La ley de Biot Savart para el campo magnético debido a 

una corriente. La ley de Faraday que establece que un campo magnético variable 

induce un campo eléctrico. La ley de conservación de carga. Maxwell demostró 

que estas leyes no son matemáticamente consistentes cuando los campos 

eléctricos varían con el tiempo sin embargo. Si se hace la hipótesis de que un 

campo eléctrico variable induce un campo magnético, se evita la mencionada 

inconsistencia. Aunque basada en especulaciones puramente teóricas, la 

hipótesis de Maxwell llevo inmediatamente a la predicción de se pueden producir 

ondas electromagnéticas mediante cargas o corrientes oscilantes. (Kane & 

Sternheim, 2007) 

En 1884 Nikola Tesla mientras trabaja en la compañía de Edison en París 

construyo el primer motor eléctrico de inducción magnética. En 1885 ya en los 

Estado Unidos, tesla patento sus inventos y estableció su propio laboratorio en 
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el cual desarrollo inventos como la bobina de Tesla, barcos a control remoto y 

otros dispositivos guiados a distancia . (Alvarenga, 2008)  Tesla estaba fascinado 

por la energía radiante y su posibilidad de convertirse en energía libre y gratuita. 

En 1931 P.A. M. Dirac presento un delicioso argumento teórico sobre los 

monopolos magnéticos una partícula polo sur y una partícula polo norte pares de 

monopolos, la existencia de monopolos proporcionaría también una explicación 

apropiada de la cuantización de carga en cuerpo iguales a la carga del electrón. 

Estos monopolos serían fascinantes diablillos que ejercerían una atracción entre 

sus números opuestos casi unas cinco mil veces mayor que la atracción 

existente entre el electrón y el protón. (Yavorski, 1988) 
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Apéndice C 

Identidades vectoriales 
Concluiremos este apendice mostrando algunas identidades analíticas 

vectoriales usadas en el presente trabajo de tesis de especialmente importancia. 

En estas identidades 𝝋 y 𝑼 son funciones puntuales escalares; 𝑨,𝑩 y 𝑽 son 

funciones vectoriales; 𝑿 es una función de punto escalar o vectorial de 

coordenadas con prima e incorpora un signo de multiplicación apropiado. 

IDENTIDADES PARA EL CÁLCULO DE GRADIENTE 

1.         𝛁(𝝋𝑼) = 𝝋𝛁𝑼+ 𝑼𝛁𝝋 

2.         𝛁(𝑨⃗⃗ ∙ 𝑩⃗⃗ ) = (𝑨⃗⃗ ∙ 𝛁)𝑩⃗⃗ + 𝑨⃗⃗ × (𝛁 × 𝑩⃗⃗ ) + (𝑩⃗⃗ ∙ 𝛁)𝑨⃗⃗ + 𝑩⃗⃗ × (𝛁 × 𝑨⃗⃗ ) 

3.        𝛁𝛗(𝑼𝟏………𝑼𝒏) = ∑
𝝏𝝋

𝝏𝑼𝒊
𝛁𝑼𝒊

𝒏
𝒊=𝟏  

IDENTIDADES PARA EL CÁLCULO DE LA DIVERGENCIA 

 
4.                        𝛁 ∙ (𝝋𝑨⃗⃗ ) = 𝝋𝛁 ∙ 𝑨⃗⃗ + 𝑨⃗⃗ ∙ 𝛁𝝋 

5.                     𝛁 ∙ (𝑨⃗⃗ × 𝑩⃗⃗ ) = 𝑩⃗⃗ ∙ 𝛁 × 𝑨⃗⃗ − 𝑨⃗⃗ ∙ 𝛁 × 𝑩⃗⃗  

6.                     𝛁 ∙ 𝑨⃗⃗ (𝑼𝟏…𝑼𝒏) = ∑
𝝏𝑨⃗⃗ 

𝝏𝑼𝒊
∙ 𝛁𝑼𝒊

𝒏
𝒊=𝟏  

IDENTIDADES PARA EL CÁLCULO DEL ROTACIONAL 

 
7.              𝛁 × (𝝋𝑨⃗⃗ ) = 𝝋𝛁 × 𝑨⃗⃗ + 𝛁𝝋 × 𝑨⃗⃗   

8.             𝛁 × (𝑨⃗⃗ × 𝑩⃗⃗ ) = (𝑩⃗⃗ ∙ 𝛁)𝑨⃗⃗ + 𝑨⃗⃗ (𝛁 ∙ 𝑩⃗⃗ ) − (𝑨⃗⃗ ∙ 𝛁)𝑩⃗⃗ − 𝑩⃗⃗ (𝛁 ∙ 𝑨⃗⃗ ) 

9.            𝛁 × 𝑨⃗⃗ (𝑼𝟏…𝑼𝒏) = ∑ 𝛁𝑼𝒊 ×
𝝏𝑨

𝝏𝑼𝒊

𝒏
𝒊=𝟏  
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APLICACIÓN REPETIDA DE  𝛁 
10.    𝛁 ∙ (𝛁 × 𝑨⃗⃗ ) = 𝟎 

11.    𝛁 × 𝛁𝑼 = 𝟎 

12.    𝛁 × (𝛁 × 𝑨⃗⃗ ) = 𝛁(𝛁 ∙ 𝑨⃗⃗ ) − 𝛁𝟐𝑨⃗⃗  

13.       𝛁𝟐(𝛁 × 𝑨⃗⃗ ) = 𝛁 × (𝛁𝟐𝑨⃗⃗ ) 

14.       𝛁𝟐(𝛁𝝋) = 𝛁(𝛁𝟐𝝋) 

IDENTIDADES PARA EL CÁLCULO DE INTEGRALES DE LÍNEA Y DE 

SUPERFICIE 

 
15.              ∮ 𝑨⃗⃗ ∙ 𝒅𝒍 = ∫𝛁 × 𝑨⃗⃗ ∙ 𝒅𝑺⃗⃗             (Teorema Stokes) 

16.              ∮𝑼𝒅𝒍 = ∫𝒅𝑺⃗⃗ × 𝛁𝑼 

17.              ∮ 𝑨⃗⃗ × 𝒅𝒍 = ∫𝛁 ∙ 𝑨⃗⃗ 𝒅𝑺⃗⃗ − ∫𝛁(𝑨⃗⃗ ∙ 𝒅𝑺⃗⃗ ) 

TEOREMA DE POISSON 

18.              𝐕 = − 𝟏

𝟒𝝅
∫
𝛁,(𝛁,.𝑽)−𝛁,×(𝛁,×𝑽)

𝒓
𝒅𝒗, 

OPERACIONES CON  𝛁 EN LAS INTEGRALES DE POISSON 

 
19.                 𝛁´

(𝑿)

𝒓
=
𝛁´(𝑿)

𝒓
+ 𝒓⃗ 𝒖

(𝑿)

𝒓𝟐
 

20.                 𝛁 (𝑿)
𝒓
= −𝒓⃗ 𝒖

(𝑿)

𝒓𝟐
 

21.               𝛁´(𝑿)
𝒓
= 𝛁

(𝑿)

𝒓
+ 𝛁´

(𝑿)

𝒓
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Apéndice D 

Angulo Solido Ω 
Es un concepto geométrico que cuantifica la apertura con que se ve desde 

un punto una superficie determinada. Se considera un análogo tridimensional de 

lo que representa un ángulo plano (abertura con que se ve un arco desde un 

punto). 

Se define el angulo solido subtendido por una superficie 𝑺 desde un punto 

𝒓⃗ 𝟎 Mediante la siguiente expresión: 

𝜴(𝒓⃗ 𝟎, 𝑺) = ∬
(𝒓⃗ − 𝒓⃗ 𝟎) ∙ 𝒅𝑺⃗⃗  (𝒓⃗ )

|𝒓⃗ − 𝒓⃗ 𝟎|𝟑
 

Donde es necesario especificar el sentido elegido para los elementos de 

superficie 𝒅𝑺⃗⃗  . Evidentemente para el sentido opuesto (simbolizado por −𝑺 ) se 

tendrá: 

𝜴(𝒓⃗ 𝟎, −𝑺) = −𝜴(𝒓⃗ 𝟎, 𝑺) 

 La unidad del angulo solido es el estéreorradian (sr)  y no tiene 

dimensiones. 

 

Figura D.1 Angulo solido de una superficie 
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Interpretación geométrica: en función del vector 𝑹 = 𝒓⃗ − 𝒓⃗ 𝟎 

 

Podemos escribir el integrando en forma 𝒖⃗⃗ 𝑹 ∙ 𝒅𝑺⃗⃗ 𝑹𝟐⁄ , siendo 𝑹 el modulo 

del vector posición relativa de un punto de la superficie al punto definido por 𝒓⃗ 𝟎 

(ver figura) y 𝒖⃗⃗ 𝑹 = 𝑹⃗⃗ 𝑹⁄   por otra parte  𝒖⃗⃗ 𝑹 ∙ 𝒅𝑺⃗⃗   Representa la proyección de un 

elemento de la superficie . Sobre el plano tangente aina esfera de radio 𝑹 con 

centro en 𝒓⃗ 𝟎, 

Definido en el punto 𝒓⃗  . El factor 𝟏 𝑹𝟐⁄  adicional en el integrando nos 

permite relacionar esta superficie proyectada con una superficie definida en la 

esfera de radio unidad mediante una homotecia con centro en 𝒓⃗ 𝟎 . dicho de 

manera ilustrativa, el ángulo sólido se puede entender como el área mínima de 

un obstáculo situado en la esfera de radio unidad dispuesto de tal forma que un 

foco luminoso puntual en  𝒓⃗ 𝟎  no ilumina ningún punto de la superficie 𝑺 . 

Es interesante obtener el ángulo solido correspondiente a una superficie 

elemental definida sobre una esfera de radio 𝑹, subtendido desde el centro , 

cuando dicha superficie  está delimitada por líneas coordenadas  en esféricas. 

En tal caso sabemos que  𝒖⃗⃗ 𝑹 ∙ 𝒅𝑺⃗⃗ = 𝒅𝑺 = 𝑹𝟐𝒔𝒆𝒏𝜽𝒅𝜽𝒅ф y por tanto 𝒅𝜴 =

𝒔𝒆𝒏𝜽𝒅𝜽𝒅ф . en este caso el carácter angular del ángulo solido queda patente.  

• Propiedades: 

(𝟏) 𝜴(𝒓⃗ 𝟎, 𝑺) = 𝟎 si 𝒓⃗ 𝟎 ∉ 𝝉 

La demostración hace uso del teorema de la divergencia 

𝜴(𝒓⃗ 𝟎, 𝑺) = ∫
(𝒓⃗ − 𝒓⃗ 𝟎) ∙ 𝒅𝑺⃗⃗  (𝒓⃗ )

|𝒓⃗ − 𝒓⃗ 𝟎|𝟑
= ∫𝛁 ∙ (

𝑹⃗⃗ 

𝑹𝟑
)𝒅𝝉 
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Pero 𝛁⃗⃗ ∙ ( 𝑹⃗⃗
 

𝑹𝟑
) = 𝛁⃗⃗ ∙ (

𝒖⃗⃗ 𝑹

𝑹𝟐
) , que calculando en coordenadas esféricas {𝑹, 𝜽, ф} 

resulta ser: 

𝛁⃗⃗ ∙ (
𝒖⃗⃗ 𝑹

𝑹𝟐
) =

𝟏

𝑹𝟐
𝝏

𝝏𝑹
(𝑹𝟐

𝟏

𝑹𝟐
) = 𝟎    si 𝑹 ≠ 𝟎 

(𝟐) 𝜴(𝒓⃗ 𝟎, 𝑺) = 𝟒𝝅    si 𝒓⃗ 𝟎 ∈ 𝝉. 

La demostración es inmediata si tenemos en cuenta que por el ángulo sólido  

Con que se ve una superficie serrada desde un punto interior es equivalente al 

de una esfera de radio unidad desde su centro, que es obviamente  𝟒𝝅 

(𝟑) 𝜴(𝒓⃗ 𝟎, 𝑺𝟏) = 𝜴(𝒓⃗ 𝟎, 𝑺𝟐) 𝒔𝒊 𝜸𝑺𝟏 = 𝜸𝑺𝟐 

Esta propiedad se deduce de la primera teniendo en cuenta que en el caso 

topológicamente más simple 𝑺𝟏 ∪ (−𝑺𝟐) = 𝑺    forma una superficie cerrada con 

vector normal saliente (o entrante)  y 𝒓⃗ 𝟎 es un punto exterior. Por tanto. 

 

𝜴(𝒓⃗ 𝟎, 𝑺) = 𝜴(𝒓⃗ 𝟎, 𝑺𝟏) − 𝜴(𝒓⃗ 𝟎, 𝑺𝟐) = 𝟎 

Si la unión de ambas superficies deja dentro al punto 𝒓⃗ 𝟎el resultado 

seria:   𝜴(𝒓⃗ 𝟎, 𝑺𝟐) = 𝜴(𝒓⃗ 𝟎, 𝑺𝟏) − 𝟒𝝅. Podemos imaginar situaciones más 

complicadas que requiere un análisis topológico más detallado, pero no 

las consideraremos aquí por simplicidad. 
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Apéndice E 

Polinomios de Legendre 
Se acostumbra representar la ecuación en terminos del angulo 𝜽 entonces se 

tiene la función 𝑷(𝜽) donde la variable 𝒙 toma la forma  𝒙 = 𝐜𝐨𝐬 𝜽 . Entonces 

tendremos la ecuación: 

𝒅

𝒅𝒙
[(𝟏 − 𝒙𝟐)

𝒅𝑷

𝒅𝒙
] + [𝒍(𝒍 + 𝟏) −

𝒎𝟐

𝟏 − 𝒙𝟐
] 𝑷 = 𝟎 

Que  se conoce como la ecuación generalizada de LEGENDRE y sus 

soluciones son las funciones asociadas de Legendre. La ecuación diferencial 

de Legendre ordinaria con 𝒎𝟐 = 𝟎  tendra la forma : 

𝒅

𝒅𝒙
[(𝟏 − 𝒙𝟐)

𝒅𝑷

𝒅𝒙
] + 𝒍(𝒍 + 𝟏)𝑷 = 𝟎 

Obtendremos una solución de esta ecuación en series de potencias. Suponemos 

que en la región de interés está incluido el margen de valores  completo de 𝐜𝐨𝐬𝜽.  

La solución deseada ha de ser de un solo valor, finita y continúa en el intervalo  

−𝟏 ≤ 𝒙 ≤ 𝟏. Supondremos de antemano que la solución es representable por 

una serie de potencias de la forma: 

𝑷(𝒙) = 𝒙𝜶∑𝒂𝒋

∞

𝒋=𝟎

𝒙𝒋 

Donde 𝜶 , es un parámetro que hay que determinar. Sustituyendo esta solucion 

en la ecuación diferencial anterior, resulta la serie: 

∑{(𝜶+ 𝒋)(𝜶 + 𝒋 − 𝟏)𝒂𝒋𝒙
𝜶+𝒋−𝟐 − [(𝜶 + 𝒋)(𝜶 + 𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏)𝒂𝒋𝒙

𝜶+𝒋]} = 𝟎

∞

𝒋=𝟎

 



173 
 

 

En este desarrollo cada uno de los coeficientes delas potencias de 𝒙 debe 

anularse por separado. Para  𝒋 = 𝟎, 𝟏,  nos encontramos con que: 

Si 𝒂𝟎 ≠ 𝟎,  tenemos 𝜶(𝜶 − 𝟏) = 𝟎 

Si 𝒂𝟏 ≠ 𝟎,  tenemos 𝜶(𝜶 + 𝟏) = 𝟎 

Mientras que para cualquier otro valor de 𝒋 

𝒂𝒋+𝟐 = [
(𝜶 + 𝒋)(𝜶 + 𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏)

(𝜶 + 𝒋 + 𝟏)(𝜶 + 𝒋 + 𝟐)
] 𝒂𝒋 

Un momento de reflexión demuestra que las dos relaciones  

Son equivalentes y basta con elegir 𝒂𝟎 o  𝒂𝟏 distintos de cero pero no ambos 

simultáneamente. Haciendo la primera elección tenemos 𝜶 = 𝟎   o 𝜶 = 𝟏.  

Siguiendo la segunda relación vemos que las series de potencias tiene 

solamente potencias pares de 𝒙 (𝜶 = 𝟎) o solamente potencias impares 

( 𝜶 = 𝟏).  

Para cualquiera de las dos series 𝜶 = 𝟎   o  𝜶 = 𝟏 se pueden probar las 

siguientes propiedades: 

a) La serie converge para 𝒙𝟐 < 𝟏 , cualquiera que sea 𝒍. 

b) La serie diverge para 𝒙 = ±𝟏 , a menos que tenga un numero finito de 

términos. 

Puesto que queremos que la solución sea finita para 𝒙 = ±𝟏,  así como para  

𝒙𝟐 < 𝟏, exigiremos a la serie que se corte. Como 𝜶 y  𝒋 son números enteros 

positivos  o cero, la relación de recurrencia: 
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𝒂𝒋+𝟐 = [
(𝜶 + 𝒋)(𝜶 + 𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏)

(𝜶 + 𝒋 + 𝟏)(𝜶 + 𝒋 + 𝟐)
] 𝒂𝒋 

Dará términos nulos  no solamente si 𝒍 es  cero o un numero entero  positivo. 

Incluso así, solamente una de las dos series es convergente para 𝒙 = ±𝟏.  

Si 𝒍 es par (impar) Solamente termina  la serie 𝜶 = 𝟎  (𝜶 = 𝟏). En cada caso los 

polinomios son de grado 𝒍  siendo 𝒙𝒕−𝟐 el termino siguiente, y así 

progresivamente descendiendo hasta 𝒙𝟎(𝒙) para 𝒍 (par) impar. Por convenio, 

estos polinomios se “ normalizan” para que tengan el valor  unidad en el punto 

𝒙 = +𝟏. Se les llama polinomios de Legendre son:    

𝑷𝟎(𝒙) = 𝟏
 

𝑷𝟏(𝒙) = 𝒙
 

𝑷𝟐(𝒙) =
𝟏

𝟐
(𝟑𝒙𝟐 − 𝟏) 

𝑷𝟑(𝒙) =
𝟏

𝟐
(𝟓𝒙𝟑 − 𝟑𝒙) 

𝑷𝟒(𝒙) =
𝟏

𝟖
(𝟑𝟓𝒙𝟒 − 𝟑𝟎𝒙𝟐 + 𝟑) 

Si 𝒍 = 𝟎, la serie correspondiente a 𝜶 = 𝟏 tiene como coeficientes general 𝒂𝒋 =

𝒂𝟎 𝒋⁄ + 𝟏  para 𝒋 = 𝟎, 𝟐, 𝟒…  Así, la serie 𝒂𝟎 (𝒙 +
𝟏

𝟑
𝒙𝟑 +

𝟏

𝟓
𝒙𝟓 +⋯…… . ) . este es 

precisamente el desarrollo en series de potencias de la función. 

𝑸𝟎(𝒙) =
𝟏

𝟐
𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) 

Donde  𝑸𝟎(𝒙) es un polinomio de legedre de segundo grado. 
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La tabla D-1 muestra los primeros polinomios de Legendre de primera clase  

𝑷𝒏(𝒙) y segunda clase 𝑸𝒏(𝒙) 

Tabla 2.  D-1 

Polinomios de Legendre de primera clase  

𝑷𝒏(𝒙) y segunda clase 𝑸𝒏(𝒙) 

𝒏 𝑷𝒏(𝒙) 𝑸𝒏(𝒙) 

0 1 𝟏

𝟐
𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) 

1 𝒙 
𝟏

𝟐
𝒙𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) − 𝟏 

2 𝟏

𝟐
(𝟑𝒙𝟐 − 𝟏) 

𝟏

𝟒
(𝟑𝒙𝟐 − 𝟏)𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) −

𝟑

𝟐
𝒙 

3 𝟏

𝟐
(𝟓𝒙𝟐 − 𝟑𝒙) 

𝟏

𝟒
(𝟓𝒙𝟑 − 𝟑𝒙)𝒍𝒏(

𝟏 + 𝒙

𝟏 − 𝒙
) −

𝟓𝒙𝟐

𝟐
+
𝟐

𝟑
 

4 𝟏

𝟖
(𝟑𝟓𝒙𝟒 − 𝟑𝟎𝒙𝟐 + 𝟑)  

5 𝟏

𝟖
(𝟔𝟑𝒙𝟓 − 𝟕𝟎𝒙𝟑 + 𝟏𝟓𝒙)  

 

𝒏 𝑷𝒏(𝒄𝒐𝒔𝜽) 𝑸𝒏(𝒄𝒐𝒔𝜽) 

0 1 𝟏

𝟐
𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) 

1 𝒄𝒐𝒔𝜽 𝟏

𝟐
𝒙𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) − 𝟏 

2 𝟏

𝟐
(𝟑𝒄𝒐𝒔𝜽𝟐 − 𝟏) 

𝟏

𝟒
(𝟑𝒙𝟐 − 𝟏)𝒍𝒏 (

𝟏 + 𝒙

𝟏 − 𝒙
) −

𝟑

𝟐
𝒙 

3 𝟏

𝟐
(𝟓𝒄𝒐𝒔𝜽𝟐 − 𝟑𝒙) 

𝟏

𝟒
(𝟓𝒙𝟑 − 𝟑𝒙)𝒍𝒏(

𝟏 + 𝒙

𝟏 − 𝒙
) −

𝟓𝒙𝟐

𝟐
+
𝟐

𝟑
 

4 𝟏

𝟖
(𝟑𝟓𝒙𝟒 − 𝟑𝟎𝒙𝟐 + 𝟑)  

5 𝟏

𝟖
(𝟔𝟑𝒙𝟓 − 𝟕𝟎𝒙𝟑 + 𝟏𝟓𝒙)  

 



176 
 

 

Apéndice F 

Teorema de Poisson 
Teorema de Poison  

Un campo vectorial 𝑽⃗⃗ , regular en el infinito, se puede expresar en términos de su 

divergencia y su rotacional como: 

𝑽⃗⃗ = −
𝟏

𝟒𝝅
∫
𝛁(𝛁 ∙ 𝑽⃗⃗ ) − 𝛁 × (𝛁 × 𝑽⃗⃗ )

𝒓
𝒅𝒗′ 

 
(F. 1) 

 

Corolario: 

Un campo vectorial 𝑽⃗⃗ , infinito regular, cuyo rotacional y divergencia son cero 

fuera de una región finita del espacio, pueden expresarse como. 

𝑽⃗⃗ = −𝛁𝝋+ 𝛁 × 𝑨⃗⃗  
 (F. 2) 

 

 
Figura. F.1 Explicación de los símbolos utilizados en las integrales de Poisson. 
La distancia entre los puntos P´ y P es   𝒓 = √(𝒙 − 𝒙,)𝟐 + (𝒚 − 𝒚,)𝟐 + (𝒛 − 𝒛,)𝟐. 

Donde 𝝋 llamado potencial escalar de 𝑽⃗⃗  , está dado por: 

 

𝝋 = −
𝟏

𝟒𝝅
∫
𝛁 ∙ 𝑽⃗⃗ 

𝒓
𝒅𝒗´ + 𝝋𝟎 

 

(F. 3) 
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Y  𝑨⃗⃗ , llamado potencial vectorial de 𝑽⃗⃗ , viene dado por: 

 

𝑨⃗⃗ =
𝟏

𝟒𝝅
∫
𝛁 × 𝑽⃗⃗ 

𝒓
𝒅𝒗´ + 𝑨⃗⃗ 𝟎 

 
(F. 4) 

 

𝝋𝒐 y 𝑨⃗⃗ 𝟎 siendo constantes arbitrarias. Llamaremos a las integrales a las 

Ecuaciones (F.1), (F.3) y (F.4) las integrales de Poisson;  Donde 𝒓  representa 

la distancia desde el punto 𝑷´ (𝒙´, 𝒚´, 𝒛´) donde el elemento de volumen de 

integración, 𝒅𝒗´, está situado al punto 𝑷 (𝒙, 𝒚, 𝒛) donde 𝑽⃗⃗ ,𝝋 y 𝑨⃗⃗  son 

determinados en la figura F.1.  Las manipulaciones matemáticas con campos 

vectoriales requieren con frecuencia aplicaciones del operador 𝛁 para 

expresiones del tipo. 

𝒇(𝒙,𝒚,𝒛,)

√(𝒙 − 𝒙,)𝟐 + (𝒚 − 𝒚,)𝟐 + (𝒛 − 𝒛,)𝟐
 

 
(F. 5) 

 

Que ocurren en integrales de Poisson. Cuando se aplica ∇ a tales 

expresiones se debe tener en cuenta que pueden ser diferenciadas con respecto 

a las coordenadas primas así como también con respecto a las coordenadas no 

primadas. Siempre que se necesite una declaración explícita de las variables de 

diferenciación, se utiliza el operador ∇´  para indicar una operación con respecto 

a las coordenadas primadas y el operador ordinario ∇ para indicar una operación 

con respecto a las coordenadas no primadas. De manera similar, si se necesita 

una declaración explícita de la dirección de los vectores de radio que ocurren en 

las integrales de Poisson, se usan los vectores primos 𝑟 ´ y  𝑟 𝑢´  para indicar una 
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dirección hacia el punto  𝑥 ′, 𝑦′, 𝑧 ′  y los vectores ordinarios 𝑟  y  𝑟 𝑢, para indicar 

una dirección hacia el punto 𝑥, 𝑦, 𝑧.  

Designando una función escalar o vectorial no especificada 𝑓(𝑥 ′, 𝑦′, 𝑧 ′)   

junto con un signo de multiplicación apropiado por (𝑋) y usando las 

anotaciones anteriores, tenemos las siguientes dos relaciones operacionales: 

∇´
(𝑋)

𝑟
=
∇´(𝑋)

𝑟
+ 𝑟 𝑢

(𝑋)

𝑟2
 

 
          (F. 6) 

 

Cuando usamos la identidad 

∇´
1

𝑟
= −

𝑟 ´𝑢  

𝑟2
=
 𝑟 𝑢
𝑟2

 

∇
(𝑋)

𝑟
= −𝑟 𝑢

(𝑋)

𝑟2
 

 
(F. 7) 

 

Combinando estas dos relaciones tenemos otra relacion util: 

∇´(𝑋)

𝑟
= ∇

(𝑋)

𝑟
+ ∇´

(𝑋)

𝑟
 

 

(F. 8) 
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Apéndice G 

Diferentes vistas del anidado de las bobinas de Helmholtz 

 
Vista Frontal 

 
 

Figura G.1 vistas frontal y perfil del anidado de bobinas de Helmholtz 
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Figura G.2 Vista superior 

 
 

Materiales usados 

 
Figura G.3 Carril de mapeo topografico. 
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Figura G.4 Base de la bobina mayor. 

 
Figura G.5 Base de la bobina mediana. 
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Figura G.6 Base de la bobina mediana. 

 
Figura G.7 Base de la bobina pequeña. 
 
 

  
Figura G.8 Fuentes de alimentación de cada bobina. 
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Figura G.9 El potenciómetro. 
 
 
 

 
 
 
Figura G.10: El multímetro. 
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Figura G.11 Alambre de cobre esmaltado 
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