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INTRODUCCION 

CAPITULO I.  

La investigación se centra en el alimentador QU-02 del sistema de distribución eléctrica de 

Cusco, el cual presenta pérdidas energéticas del 30.92 % en febrero de 2025, asociadas a 

desequilibrios de carga, ineficiencias operativas y falta de herramientas predictivas. Para abordar 

esta problemática, se propone aplicar redes neuronales artificiales que optimicen el balance de 

energía y mejoren el diagnóstico, modelamiento y toma de decisiones. 

El estudio, de enfoque cuantitativo, se limita al alimentador QU-02 y emplea datos 

históricos desde el año 2019, con apoyo de SCADA, MATLAB y Excel. Se aplican procesos de 

interpolación y normalización de datos para el entrenamiento de las redes neuronales. El trabajo 

resalta beneficios teóricos, sociales, económicos, prácticos y académicos, y establece las bases 

conceptuales y metodológicas para una gestión energética más eficiente mediante inteligencia 

artificial. 

CAPITULO II. 

Desarrolla el marco teórico necesario para sustentar la investigación sobre el balance de 

energía en el alimentador QU-02 utilizando redes neuronales. Se abordan conceptos clave como 

la energía eléctrica, el sistema de distribución, el balance energético, las pérdidas técnicas y no 

técnicas, y su impacto económico en las empresas distribuidoras. Asimismo, se analiza el papel de 

los alimentadores eléctricos, resaltando la importancia del QU-02 por su extensión y cantidad de 

clientes. Se introduce también el uso de redes neuronales artificiales como herramienta para el 

diagnóstico, predicción y optimización de pérdidas, detallando su estructura, funcionamiento y 

ventajas frente a métodos convencionales. Se citan antecedentes internacionales, nacionales y 
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locales, que demuestran la eficacia del uso de inteligencia artificial en sistemas eléctricos, 

destacando estudios realizados en Perú, México y Colombia. Finalmente, se presenta la base legal 

y normativa aplicable, como el Reglamento de Calidad de Servicios Eléctricos y disposiciones del 

OSINERGMIN, que rigen la supervisión y el control de pérdidas en la red. Este capítulo 

proporciona el sustento técnico y legal para el desarrollo de la propuesta metodológica del estudio, 

sentando las bases para aplicar soluciones modernas y eficientes en la gestión del sistema de 

distribución de energía. 

CAPITULO III. 

Desarrolla la metodología aplicada para describir el proceso de balance energético en el 

alimentador QU-02 del sistema eléctrico de distribución de Cusco. Se detallan las características 

técnicas del alimentador, como el número de subestaciones, la extensión de red y los valores 

mensuales de energía adquirida, los cuales permiten contextualizar su desempeño operativo. 

Asimismo, se incluyen indicadores eléctricos relevantes como el porcentaje de pérdidas 

energéticas (%Pperd), el factor de potencia (Fp) y el factor de carga (Fc), calculados a partir de los 

registros mensuales. El tratamiento de la información se realizó en Microsoft Excel, 

complementado con el desarrollo de redes neuronales artificiales en MATLAB, lo cual permitió 

identificar patrones y estimar las pérdidas técnicas del sistema.  

CAPITULO IV. 

Este capítulo presenta el análisis, validación y aplicación de redes neuronales artificiales 

(RNA), desarrollado en MATLAB mediante la herramienta Neural Net Fitting, para estimar y 

reconstruir perfiles de consumo energético del alimentador QU-02 en Cusco, usando datos de 

medidores PowerLogic ION8650 del periodo 2019–2024. A partir de una semana característica 
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libre de perturbaciones (21 al 28 de septiembre de 2024), se entrenó una red neuronal tipo 

feedforward con retro propagación (Levenberg–Marquardt), logrando una estimación precisa con 

un error menor al 1%. Esta técnica permitió interpolar valores faltantes o distorsionados por 

eventos como transferencias de carga, mantenimientos o fallas de comunicación. El método 

evidenció capacidad para replicar el patrón de consumo del alimentador con alta resolución 

temporal, mejorando el perfil utilizado en el cálculo del balance energético. Se realizó una 

comparación entre los resultados estimados por la red neuronal y los registros convencionales, 

encontrando diferencias significativas en los porcentajes de pérdidas de energía, con implicancias 

técnicas y económicas. Finalmente, se estimó un impacto económico proyectado a 10 años por 

encima de S/ 339,133.04, lo que refuerza la utilidad de las RNA como herramientas confiables en 

la gestión energética. 
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RESUMEN 

La investigación, se centra en la optimización del balance de energía dentro del alimentador QU-

02, perteneciente al sistema de distribución eléctrica de Cusco. En el sector eléctrico, el balance 

de energía no es solo un registro contable, sino un pilar fundamental para la gestión técnica, 

operativa y económica. Una estimación precisa de las pérdidas permite a las empresas 

concesionarias tomar decisiones informadas sobre inversión y mantenimiento; sin embargo, el 

método tradicional de facturación preliminar ha demostrado ser ineficiente. Este sistema 

convencional arroja márgenes de error críticos que no reflejan la realidad operativa, derivando en 

procesos de "sinceramiento" que agotan innecesariamente el tiempo y los recursos institucionales. 

Para mitigar esta problemática, se propone la implementación de Redes Neuronales. Mediante un 

enfoque cuantitativo, se analizó una muestra del sistema de media tensión, utilizando herramientas 

de alta precisión, supervisión directa y bases de datos. El objetivo principal fue contrastar la 

eficacia del modelo de inteligencia artificial frente a las metodologías manuales o estadísticas 

básicas utilizadas históricamente. 

Los hallazgos revelaron un sinceramiento en la precisión de los datos. El método tradicional 

reportaba pérdidas desproporcionadas de entre 20.96% y 28.12%, mientras que el modelo de RNA 

ajustó estas cifras a un rango real de 2.90% a 9.09%. Esta corrección permitió identificar y 

recuperar 35,698.21 kWh de energía que antes se consideraba perdida o no contabilizada. En 

conclusión, la integración de redes neuronales garantiza una mayor confiabilidad de la 

información, mejora la rentabilidad, posicionando al sistema de Cusco hacia una eficiencia 

operativa de vanguardia. 

 

Palabras clave: Balance de energía, Redes neuronales artificiales, Pérdidas eléctricas, Sistema de 

distribución. 
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ABSTRACT 

This research focuses on optimizing the energy balance within feeder QU-02, part of the Cusco 

electrical distribution system. In the electricity sector, the energy balance is not merely an 

accounting record, but a fundamental pillar for technical, operational, and economic management. 

An accurate estimation of losses allows concessionary companies to make informed decisions 

regarding investment and maintenance; however, the traditional method of preliminary billing has 

proven inefficient. This conventional system yields critical error margins that do not reflect 

operational reality, leading to "adjustment" processes that unnecessarily deplete institutional time 

and resources. 

To mitigate this problem, the implementation of Neural Networks is proposed. Using a quantitative 

approach, a sample of the medium-voltage system was analyzed, employing high-precision tools, 

direct monitoring, and databases. The main objective was to compare the effectiveness of the 

artificial intelligence model against the manual or basic statistical methodologies historically used. 

The findings revealed a significant improvement in data accuracy. The traditional method reported 

disproportionate losses of between 20.96% and 28.12%, while the ANN model adjusted these 

figures to a realistic range of 2.90% to 9.09%. This correction allowed for the identification and 

recovery of 35,698.21 kWh of energy that was previously considered lost or unaccounted for. In 

conclusion, the integration of neural networks ensures greater data reliability, improves 

profitability, and positions the Cusco system toward cutting-edge operational efficiency. 

 

Keywords: Energy balance, Artificial neural networks, Electrical losses, Distribution system. 
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CAPÍTULO. I 

1. Aspectos Generales 

1.1 Introducción 

En este capítulo se desarrollan los fundamentos necesarios para contextualizar y estructurar 

el estudio. Inicialmente, se presentan los aspectos generales que incluyen el planteamiento del 

problema, donde se describe la situación que da origen a la investigación y se formulan los 

problemas de estudio, tanto general como específicos.  

Posteriormente, se establecen los objetivos de la investigación, diferenciando el objetivo 

general que guía el trabajo y los objetivos específicos que delimitan las metas puntuales a alcanzar. 

La justificación del estudio aborda el valor teórico, la utilidad metodológica, las 

implicancias prácticas y la conveniencia de la investigación, destacando su relevancia en el campo 

de la Ingeniería Eléctrica. 

Asimismo, se definen los alcances y limitaciones del proyecto, permitiendo comprender 

hasta dónde es posible extender los resultados y cuáles son las restricciones del estudio. Se 

presentan las hipótesis generales y específicas, que orientan la validación de los resultados 

esperados. 

El capítulo también incluye la identificación de las variables independientes y 

dependientes, así como sus indicadores, esenciales para estructurar el análisis y la evaluación del 

sistema propuesto.  

Por último, se describe el método de investigación utilizado, abarcando aspectos como la 

población y muestra, las técnicas de recolección y análisis de datos, y el procesamiento de los 
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mismos. Este apartado concluye con la matriz de consistencia, que sintetiza la relación entre los 

objetivos, hipótesis y variables del estudio. 

De esta manera, este capítulo proporciona el marco necesario para comprender el enfoque 

de la investigación y su desarrollo en los capítulos posteriores. 

1.2 Planteamiento del problema 

En el contexto del sistema eléctrico de distribución, la precisión en los balances de energía 

constituye un factor crítico para la gestión operativa y económica de las empresas concesionarias. 

Actualmente, Electro Sur Este S.A.A. realiza sus balances de energía en una etapa preliminar 

asociada al proceso de facturación; no obstante, los resultados obtenidos en este primer cálculo 

presentan márgenes de error significativos, arrojando valores que no corresponden con las 

condiciones reales de operación de la red. Esta falta de exactitud genera la necesidad de efectuar 

un proceso de “sinceramiento” del balance de energía, el cual implica un análisis exhaustivo de 

datos, corrección de inconsistencias y validación de resultados, demandando recursos humanos y 

un tiempo considerable que retrasa la disponibilidad de información confiable para la toma de 

decisiones estratégicas. 

En este escenario, se identifica una problemática central vinculada a la ineficiencia en la 

estimación inicial del balance de energía, que repercute en la gestión técnica y administrativa de 

la empresa. Frente a ello, resulta pertinente proponer un enfoque innovador sustentado en la 

aplicación de redes neuronales artificiales, capaces de aprender patrones complejos a partir de los 

datos históricos y operativos del sistema, con el propósito de generar estimaciones más precisas y 

en menor tiempo. De este modo, se busca contribuir a la optimización de los procesos internos de 

Electro Sur Este S.A.A., garantizando un balance de energía confiable, oportuno y alineado con 

las exigencias de modernización del sector eléctrico. 
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Aquí se tiene como referencia una imagen capturada del módulo de balance de Energía 

SIELSE, post facturación del mes de febrero de 2025. Se puede ver el porcentaje de pérdida que 

es del 30.92%. Quiere decir que existe un nivel de pérdida de energía fuera de lo normal. 

Imagen 1 

Registro de Balance de energía ELSE – febrero 2025, modulo SIELSE   

 

Fuente: Electro Sur Este S.A.A. 

1.2.1 Diagnostico Eléctrico 

El análisis del balance de energía del sistema de distribución de Electro Sur Este S.A.A. 

evidencia una deficiencia significativa en la precisión de la estimación inicial realizada en la etapa 

preliminar del proceso de facturación. Esta situación genera discrepancias relevantes entre los 

valores calculados y las condiciones reales de operación de la red eléctrica, lo que obliga a ejecutar 

procesos posteriores de sinceramiento del balance mediante la depuración, corrección y validación 
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de la información. Dichos procedimientos demandan un uso intensivo de recursos humanos y 

tiempo, retrasando la disponibilidad de indicadores confiables para la gestión técnica y 

administrativa. 

Asimismo, el diagnóstico se sustenta en el registro del módulo de Balance de Energía del 

sistema SIELSE correspondiente al mes de febrero de 2025, donde se observa un nivel de pérdidas 

de energía del 30,92 %, valor que supera ampliamente los rangos técnicos aceptables para sistemas 

de distribución. Este resultado evidencia la existencia de pérdidas no técnicas y/o deficiencias en 

la medición, registro y procesamiento de datos, lo que confirma la necesidad de mejorar los 

métodos actuales de estimación del balance de energía a fin de lograr una gestión más eficiente, 

precisa y oportuna del sistema eléctrico. 

El balance de energía del sistema de distribución de Electro Sur Este S.A.A. presenta 

deficiencias en su estimación inicial, generando discrepancias entre los valores calculados y las 

condiciones reales de operación de la red. Como evidencia, el módulo SIELSE registra para febrero 

de 2025 un nivel de pérdidas del 32,92 %, valor que no representa la pérdida real del sistema, sino 

que obedece principalmente a un problema de cálculo asociado a inconsistencias en los datos y al 

método de estimación empleado. Esta situación obliga a realizar procesos posteriores de 

sinceramiento del balance, demandando tiempo y recursos, y retrasando la disponibilidad de 

información confiable para la gestión técnica y administrativa. 

Estas inconsistencias no deben interpretarse únicamente como síntomas aislados del 

problema, sino como manifestaciones de causas raíz asociadas a deficiencias estructurales en el 

proceso de cálculo del balance de energía, particularmente en la calidad de los datos de entrada, 

los métodos de estimación empleados y los mecanismos de validación. En consecuencia, los 
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elevados porcentajes de pérdidas reflejados en el sistema no son eventos circunstanciales, sino el 

resultado directo de un problema fundamental en la estimación inicial del balance de energía. 

1.3 Formulación del Problema 

1.3.1 Problema General. 

1.3.2 ¿En qué medida la aplicación de las redes neuronales permitirá optimizar el proceso de 

balance de energía en el alimentador QU-02 del sistema de distribución eléctrica de cusco 

al año 2025? 

1.3.3 Problema Específicos. 

1) ¿Cómo el diagnóstico del alineador QU-02 contribuirá a la evaluación del proceso de 

balance de energía con el apoyo de las redes neuronales del sistema de distribución 

eléctrico del cusco al año 2025? 

2) ¿Cuál es la diferencia porcentual en la estimación del balance de energía obtenida 

mediante redes neuronales en comparación con el método tradicional de balance 

energético? 

3) ¿Cuál es el impacto económico derivado del sinceramiento de la estimación del 

balance de energía mediante la aplicación de redes neuronales en el alimentador 

QU-02 al año 2025? 

1.4 Objetivos de la Tesis. 

1.4.1 Objetivo General. 

Determinar en qué medida la aplicación de las redes neuronales permitirá optimizar el proceso de 

balance de energía en el alimentador QU-02 del sistema de distribución eléctrica de Cusco al año 2025. 
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1.4.2 Objetivos específicos. 

1) Evaluar cómo el diagnóstico del alimentador QU-02 contribuirá a la evaluación del 

proceso de balance de energía con el apoyo de las redes neuronales del sistema de 

distribución eléctrico del Cusco al año 2025. 

2) Comparar la estimación del balance de energía obtenida mediante redes neuronales 

frente al método tradicional de balance energético en el alimentador QU-02, para 

determinar la diferencia porcentual y el nivel de optimización alcanzado. 

3) Determinar el impacto económico derivado del sinceramiento de la estimación del 

balance de energía mediante la aplicación de redes neuronales en el alimentador 

QU-02 al año 2025. 

 

1.5 Justificación del Estudio 

Radica en la creciente necesidad de optimizar la gestión energética en sistemas de 

distribución eléctrica complejos, como el de Cusco, que enfrenta constantes desafíos derivados de 

la demanda creciente, las variaciones estacionales de la carga y las particularidades operativas del 

alimentador QU-02. Este alimentador es un componente clave en el sistema eléctrico de la región 

y, por lo tanto, una evaluación precisa de su balance de energía es esencial para garantizar su 

funcionamiento eficiente y sin interrupciones. 

El balance de energía en sistemas eléctricos de distribución debe ser monitoreado y 

controlado de manera precisa, pues las fluctuaciones en la demanda y la generación de energía 

pueden generar desajustes que, si no son gestionados adecuadamente, pueden derivar en pérdidas 

de energía, sobrecargas y fallas en la infraestructura. En este contexto, el uso de redes neuronales 

artificiales se presenta como una herramienta poderosa para superar las limitaciones de los 
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métodos tradicionales. Las redes neuronales son capaces de procesar grandes volúmenes de datos, 

identificar patrones no lineales complejos y realizar predicciones de manera precisa, lo que permite 

una evaluación más exacta y dinámica del comportamiento energético del alimentador QU-02. 

Este estudio propone aprovechar la capacidad de las redes neuronales para predecir los 

flujos de energía, la demanda futura y las posibles variaciones en la carga a lo largo del tiempo, 

tomando en cuenta las variables operativas específicas del sistema eléctrico. La aplicación de esta 

tecnología no solo optimiza el proceso de balance de energía, sino que también permite a los 

operadores anticiparse a posibles desequilibrios, mejorar la asignación de recursos energéticos y 

tomar decisiones informadas respecto a la operación y mantenimiento de la red de distribución. 

Además, al utilizar redes neuronales, se minimizan los errores en la predicción, lo que contribuye 

a una mejor planificación y a una operación más eficiente, asegurando la estabilidad y continuidad 

del suministro eléctrico sin la necesidad de intervención manual constante. 

En resumen, este estudio justifica su realización debido a la capacidad de las redes 

neuronales para transformar el proceso de evaluación del balance de energía, proporcionando 

herramientas más precisas, eficientes y adaptativas para gestionar las complejidades inherentes a 

los sistemas eléctricos modernos, mejorando la fiabilidad operativa y garantizando una 

distribución energética más eficiente y equilibrada en el alimentador QU-02. 

1.6 Justificación Social 

La investigación tiene un impacto social significativo al contribuir con la mejora de la 

calidad del servicio eléctrico en la ciudad del Cusco. El balance adecuado de energía, mediante 

herramientas como redes neuronales, permite detectar pérdidas no técnicas, las cuales muchas 

veces se traducen en interrupciones o fallas en el suministro eléctrico que afectan directamente a 

los hogares, instituciones y comercios. Al garantizar un sistema más eficiente y confiable, se 
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mejora la calidad de vida de la población, se fortalece la infraestructura de servicios básicos y se 

promueve el desarrollo social. Además, se incentiva el uso de tecnologías avanzadas en beneficio 

de comunidades vulnerables que sufren las consecuencias de un suministro inestable o deficiente. 

Este estudio también contribuye al fortalecimiento de la cultura tecnológica en el ámbito 

energético, sensibilizando a la población sobre el uso responsable de los recursos. 

1.7 Justificación Económica 

Desde una perspectiva económica, esta investigación busca reducir las pérdidas energéticas 

tanto técnicas como no técnicas mediante una mejor gestión y tratamiento de los datos eléctricos. 

Al aplicar redes neuronales, se mejora la precisión del balance de energía, logrando un control más 

sincero y confiable de la información. Esto permite optimizar los recursos, reducir costos por 

pérdidas o fraudes y aumentar la rentabilidad del sistema eléctrico. 

Además, un sistema más eficiente contribuye a mantener tarifas estables para los usuarios, 

favoreciendo la economía familiar y la competitividad de las empresas. Finalmente, este enfoque 

tecnológico impulsa la modernización del sector eléctrico y la transición hacia redes inteligentes 

en el país. 

1.8 Justificación Practica 

En el plano práctico, el uso de redes neuronales en el balance de energía del alimentador 

QU-02 representa una solución moderna y eficiente frente a los métodos tradicionales de análisis 

y control. Esta investigación permitirá desarrollar modelos que identifiquen anomalías, predigan 

comportamientos de carga y generen alertas ante pérdidas de energía en tiempo real, facilitando la 

toma de decisiones operativas. Asimismo, se espera una mejora significativa en el mantenimiento 

predictivo y en la planificación de cargas, lo cual reduce interrupciones y optimiza el rendimiento 

de los sistemas eléctricos. La metodología aplicada podrá ser replicada en otros alimentadores o 



31 
 

zonas con características similares, ampliando así su impacto práctico en el sector eléctrico 

regional y nacional. Además, esta solución tecnológica no requiere grandes inversiones en 

hardware adicional, ya que se basa en el análisis inteligente de los datos ya disponibles en los 

sistemas SCADA o medidores inteligentes. 

1.9 Justificación Académica 

Académicamente, este estudio representa una contribución significativa al campo de la 

ingeniería eléctrica y la inteligencia artificial aplicada. Al integrar redes neuronales en el análisis 

del balance de energía, se amplía el conocimiento sobre nuevas metodologías de optimización y 

diagnóstico energético. La investigación fortalece el vínculo entre teoría y práctica, permitiendo 

que los futuros profesionales del sector energético adquieran competencias en el uso de tecnologías 

emergentes para resolver problemas reales. También promueve el desarrollo de nuevas líneas de 

investigación en áreas como redes inteligentes, eficiencia energética y automatización de sistemas 

eléctricos. La sistematización de datos, modelado predictivo y análisis de resultados generados 

servirán como base para trabajos posteriores, artículos científicos y propuestas de mejora técnica. 

Esta tesis, además, enriquece la producción científica universitaria y estimula la formación de 

profesionales capaces de liderar procesos de innovación en el sector eléctrico peruano. 

1.10 Alcances y Limitaciones 

1.10.1 Alcances  

El alcance de esta tesis se centrará en la evaluación del proceso de balance de energía en 

el sistema de distribución eléctrica de la ciudad del Cusco, específicamente en el alimentador QU-

02, a través de la integración de redes neuronales con el análisis de los datos operacionales de 

dicho alimentador, con proyecciones al año 2025. 
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Se hará también un modelo de proyección de la demanda, se tocará según corresponda los 

alimentadores hermanos con los cuales tenga interconexión y tenga transferencias de carga. 

1.10.2 Limitaciones. 

• El estudio se enfoca solo al alimentador QU-02.  

• Para la proyección de demanda se utilizará datos históricos de las mediciones de 

los medidores ION desde el año 2019 al 2024. 

• El análisis solo se enfoca al impacto que se tiene en el proceso de balance de energía 

eléctrica. 

1.11 Hipótesis 

1.11.1 Hipótesis general 

La aplicación de las redes neuronales permitirá optimizar el proceso de balance de energía 

en el alimentador QU-02 del sistema de distribución eléctrica de Cusco al año 2025. 

1.11.2 Hipótesis especificas 

1) El diagnóstico del alimentador QU-02 contribuirá significativamente a la 

evaluación del proceso de balance de energía con el apoyo de las redes neuronales 

del sistema de distribución eléctrico del Cusco al año 2025. 

2) La diferencia porcentual en la estimación del balance de energía obtenida mediante 

redes neuronales presentará una diferencia porcentual significativa, reduciendo el 

margen de incertidumbre en la estimación del cálculo respecto al método 

tradicional de balance energético en el alimentador QU-02. 
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3) El impacto económico asociado al sinceramiento de cálculo de balance energía 

basado en redes neuronales en el alimentador QU-02 permitirá obtener una 

estimación económicamente más precisa. 

1.12 Variables e indicadores 

1.12.1 Variables Dependientes 

• NIVEL DE PÉRDIDAS DE ENERGIA 

1.12.1.1 dimensiones 

• Porcentaje de perdida de energía 

• Energía no considerada 

• Impacto económico de la perdida de energía 
 

1.12.2 Variables Independientes 

• METODO DE BALANCE ENERGETICO CON REDES NEURONALES 

1.12.2.1 dimensiones 

• Energía Suministrada 

• Energía Facturada 

Método de la Investigación 

El método de investigación sería cuantitativo, ya que se busca medir, evaluar y optimizar 

las pérdidas de energía en el alimentador QU-02 utilizando técnicas de redes neuronales y análisis 

de datos. Este enfoque se basa en la recolección de datos numéricos y la aplicación de herramientas 

matemáticas para la modelización y predicción. 



34 
 

1.12.3 Población y Muestra 

1.12.3.1 Población 

La población de estudio estará compuesta por los alimentadores de MT de la ciudad del 

Cusco, abarcando todas las redes de distribución que alimentan a los diferentes sectores de la 

ciudad. Este enfoque permite considerar las características operativas, las variabilidades de carga 

y las condiciones específicas de cada alimentador, lo que permitirá una visión integral de las 

pérdidas de energía y la efectividad de la implementación de redes neuronales y análisis de datos 

en su gestión. De esta manera, se busca proporcionar una solución aplicable y escalable que 

impacte directamente en la eficiencia del sistema de distribución eléctrica a nivel urbano. 

1.12.3.2 Muestra  

La muestra de estudio estará compuesta por el alimentador eléctrico QU-02 dentro del 

sistema de distribución de la ciudad del Cusco. Este alimentador, representativo de una parte clave 

de la red de distribución, servirá como caso específico para la aplicación y evaluación de las 

técnicas de redes neuronales y análisis de datos en la gestión de pérdidas de energía. Al centrar la 

investigación en este alimentador, se podrá obtener información detallada y precisa que permita 

extrapolar los resultados a otros alimentadores del sistema de distribución. 

El muestreo no probabilístico intencional es un método en el que los elementos de la 

muestra se seleccionan por criterios subjetivos o conveniencia, y no por azar, lo que implica que 

no todos los individuos de la población tienen la misma probabilidad de ser elegidos.
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Figura 1-1 

Alimentador QU-02 de distribución eléctricas en media tensión 

 

Fuente: Electro Sur Este S.A.A. ArcGIS Elaboración: Propia.
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1.12.4 Técnicas de Recolección y Análisis de Datos 

La recolección de datos en esta investigación se realiza con un enfoque cuantitativo, 

orientado al levantamiento y análisis de información eléctrica operativa y técnica 

correspondiente al alimentador QU-02 del sistema de distribución de la ciudad de Cusco. 

Las principales técnicas utilizadas son: 

• Revisión documental: Se accedió a informes técnicos, registros históricos de 

demanda, pérdidas técnicas y balances energéticos suministrados por la empresa 

concesionaria de distribución eléctrica (Electro Sur Este S.A.A.). 

• Bases de datos operativas: Se extrajeron mediciones de energía activa y 

reactiva a intervalos definidos, reportes de carga máxima, datos de pérdidas y 

registros de mantenimiento de la subestación de Quencoro 02 de los medidores 

ION. 

• Supervisión directa y reportes SCADA: Se evaluó el comportamiento real del 

alimentador QU-02 mediante el acceso a sistemas de telemetría y control para 

validar las condiciones de operación registradas. 

 

1.12.5 Procesamiento de Datos 

El procesamiento de datos comprende: 

1.12.5.1 Recopilación de Datos 

El tratamiento inicial de los datos fue una etapa esencial en esta investigación, ya que 

permitió garantizar que la información utilizada en el modelado refleje adecuadamente el 

comportamiento del alimentador QU-02. Dado que los registros de energía recopilados 

presentaban ciertos vacíos en las lecturas, se realizó un análisis detallado de dichos espacios 
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faltantes utilizando herramientas como Microsoft Excel, permitiendo identificar con precisión 

los tramos incompletos o interrumpidos dentro de la serie de datos. 

Mediante filtros, fórmulas condicionales y funciones de búsqueda, se examinó la 

secuencia cronológica de mediciones, observando los lapsos sin valores registrados, así como 

la frecuencia y duración de estas ausencias. Una vez detectadas las zonas con información 

ausente, se aplicaron criterios técnicos para su reconstrucción o estimación, en función del 

comportamiento de las lecturas previas y posteriores. 

Para estos casos, se optó por métodos de relleno por interpolación lineal o promedios 

móviles, los cuales fueron seleccionados según el contexto específico del consumo energético 

del periodo en análisis. Este enfoque permitió conservar la coherencia en la tendencia de los 

datos sin alterar su naturaleza ni introducir valores fuera de contexto. 

Adicionalmente, se aplicó una normalización de las variables, dado que las redes 

neuronales requieren que los datos numéricos estén dentro de un rango común para optimizar 

el proceso de entrenamiento. Esta transformación no afectó la relación entre los valores, pero 

sí facilitó el aprendizaje la red neuronal, haciendo que el algoritmo se enfoque en las 

variaciones relativas entre las variables. 

Estas tareas se completaron con el apoyo de entornos como MATLAB, donde se 

preparó el conjunto final de datos para ser utilizado en el desarrollo la red neuronal. Gracias a 

este proceso, fue posible contar con una base de datos uniforme, continua y representativa, 

adecuada para entrenar y validar una red neuronal con precisión.
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¿En qué medida la aplicación de las redes neuronales permitirá 
optimizar el proceso de balance de energía en el alimentador 
QU-02 del sistema de distribución eléctrica de cusco al año 
2025? 

Determinar en qué medida la aplicación de las redes 
neuronales permitirá optimizar el proceso de balance de 
energía en el alimentador QU-02 del sistema de distribución 
eléctrica de Cusco al año 2025. 

La aplicación de las redes neuronales 
permitirá optimizar el proceso de balance de 
energía en el alimentador QU-02 del sistema 
de distribución eléctrica de Cusco al año 2025. 

 
 
 

Problema Especifico Objetivos Específicos Hipótesis Especifica  

¿Cómo el diagnóstico del alineador QU-02 contribuirá a la 
evaluación del proceso de balance de energía con el apoyo 
de las redes neuronales del sistema de distribución eléctrico 
del cusco al año 2025? 

Evaluar cómo el diagnóstico del alimentador QU-02 
contribuirá a la evaluación del proceso de balance de 
energía con el apoyo de las redes neuronales del sistema de 
distribución eléctrico del Cusco al año 2025. 

El diagnóstico del alimentador QU-02 
contribuirá significativamente a la 
evaluación del proceso de balance de 
energía con el apoyo de las redes neuronales 
del sistema de distribución eléctrico del 
Cusco al año 2025.  

 

2.   El diagnóstico del alimentador QU-02 permite identificar y 
recuperar 35,698.21 kWh de energía que anteriormente no era 
contabilizada en su etapa preliminar en el balance de energía para el 
año 2025, esta precisión en el diagnóstico se traduce en una mejora 
directa de la eficiencia operativa, al reducir la incertidumbre y 
permitir un control sobre la energía del alimentador QU-02. 

 
 

¿Cuál es la diferencia porcentual en la estimación del 
balance de energía obtenida mediante redes neuronales en 
comparación con el método tradicional de balance 
energético? 

Comparar la estimación del balance de energía obtenida 
mediante redes neuronales frente al método tradicional de 
balance energético en el alimentador QU-02, para 
determinar la diferencia porcentual y el nivel de 
optimización alcanzador. 

La diferencia porcentual en la estimación 
del balance de energía obtenida mediante 
redes neuronales presentará una diferencia 
porcentual significativa, reduciendo el 
margen de incertidumbre en la estimación 
del cálculo respecto al método tradicional de 
balance energético en el alimentador QU-
02. 
. 

 
 

 

¿Cuál es el impacto económico derivado del sinceramiento 
de la estimación del balance de energía mediante la 
aplicación de redes neuronales en el alimentador QU-02 al 
año 2025? 

Determinar el impacto económico derivado del 
sinceramiento de la estimación del balance de energía 
mediante la aplicación de redes neuronales en el 
alimentador QU-02 al año 2025. 

El impacto económico asociado al 
sinceramiento de cálculo de balance energía 
basado en redes neuronales en el 
alimentador QU-02 permitirá obtener una 
estimación económicamente más precisa. . 

 
3.    La diferencia porcentual de 24.57% obtenida entre ambos 
métodos de estimación demuestra la superioridad técnica de las redes 
neuronales en el proceso de balance de energía del alimentador QU-
02. Este resultado surge al contrastar la estimación promedio del 
método tradicional de la concesionaria en su etapa inicial (30.09%) 
frente al promedio logrado mediante el modelo neuronal propuesto 
(5.52%) para el año 2025. Dicha reducción permite sincerar los 
niveles de energía no contabilizada, garantizando una estimación del 
cálculo mucho más precisa y alineada con las condiciones reales de 
operación del sistema. 
 
  

 
 

Planteamiento del Problema Metodología Variables  
En el contexto del sistema eléctrico de distribución, la 
precisión en los balances de energía constituye un factor 
crítico para la gestión operativa y económica de las empresas 
concesionarias. Actualmente, Electro Sur Este S.A.A. realiza 
sus balances de energía en una etapa preliminar asociada al 
proceso de facturación; no obstante, los resultados obtenidos 
en este primer cálculo presentan márgenes de error 
significativos, arrojando valores que no corresponden con las 
condiciones reales de operación de la red. Esta falta de 
exactitud genera la necesidad de efectuar un proceso de 
“sinceramiento” del balance de energía, el cual implica un 
análisis exhaustivo de datos, corrección de inconsistencias y 
validación de resultados, demandando recursos humanos y un 
tiempo considerable que retrasa la disponibilidad de 
información confiable para la toma de decisiones estratégicas. 

Método de Investigación Variable independiente  

• El método de investigación sería cuantitativo 
METODO DE BALANCE 

ENERGETICO CON REDES 
NEURONALES 

 

Población DIMENSIONES 4.    El uso de redes neuronales tuvo un impacto tangible en la 
precisión del proceso de balance de energía, al permitir una 
estimación más exacta de las pérdidas y consumos reales en el 
alimentador QU-02. Esta precisión técnica se tradujo en un beneficio 
económico proyectado de S/ 35,100.27 soles recuperados a 10 años, 
evidenciando la viabilidad del enfoque propuesto no solo desde el 
punto de vista técnico, sino también económico y estratégico. 

 
• Alimentadores en MT – Cusco  

• Alimentador eléctrico QU-02 

Técnicas y procesamiento de datos Variable dependiente  

....  0atUi] Ge Consistencia 

7aEOa ��� 

EVALUACION DEL PROCESO DE BALANCE DE ENERGÍA UTILIZANDO REDES NEURONALES EN EL ALIMENTADOR QU-02 DEL SISTEMA DE DISTRIBUCION ELECTRICA DE CUSCO AL AÑO 2025 

Muestra  . (nerJta 6uministrada  
 � (nerJta )acturada  

No probabilístico - intencional 

Problema Objetivo Hipotesis  
�����������Problema�principal ������������Objetivo general            Hipotesis�general  

1. La aplicación de redes neuronales optimiza el balance de energía 
en el alimentador QU-02 al sustituir un modelo tradicional en su 
etapa preliminar con pérdidas del 20.96% al 28.12% por un sistema 
inteligente. Esta tecnología permite que el monitoreo responda a las 
variaciones reales de la demanda en el alimentador QU-02, 
sincerando las pérdidas registradas a un rango de 2.90% a 9.09%. al 
año 2025, esta herramienta garantiza la eficiencia operativa al 
sincerar la estimación del porcentaje de perdida de energía, 
transformando un registro de porcentaje de pérdidas ineficiente en su 
etapa preliminar a una gestión técnica precisa y confiable. 

Conclusiones 
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• Revisión documental NIVEL DE PÉRDIDAS DE ENERGIA  
• Bases de datos operativas DIMENSIONES 

 

 

• Porcentaje de perdida de energía 
• Energía no considerada 
• Impacto económico de la perdida de 

energía  
 

• Reportes de bases de datos de Electro Sur Este.   

  

Instrumentos de recolección de datos
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1.14  Matriz de Operacionalización de Variables 

Tabla 1.2 

Matriz de Operacionalización de Variables. 

OPERACIONALIZACIÓN DE VARIABLES 
  

 VARIABLES DEFINICIÓN CONCEPTUAL         DIMENSIONES  INDICADOR 

 

  

%   

 

 

VARIABLE 

DEPENDIENTE 

VARIABLE 

INDEPENDIENTE  

NIVEL DE 

PÉRDIDAS DE 

ENERGIA 

METODO DE 

BALANCE 

ENERGETICO CON 

REDES 

NEURONALES

EO QLYHO GH SpUGLGDV VH GHILQH FRPR OD GLIHUHQFLD HQWUH OD 

HQHUJtD HOpFWULFD LQ\HFWDGD DO VLVWHPD \ OD HQHUJtD ~WLO 

IDFWXUDGD D ORV XVXDULRV ILQDOHV� H[SUHVDGD JHQHUDOPHQWH GH 

IRUPD SRUFHQWXDO� RHSUHVHQWD OD LQHILFLHQFLD WpFQLFD \ 

FRPHUFLDO GHO VLVWHPD GH GLVWULEXFLyQ� OSINERGMIN 

�OUJDQLVPR SXSHUYLVRU GH OD IQYHUVLyQ HQ EQHUJtD \ MLQHUtD��

 

 

 

EO ......  GH EDODQFH HQHUJpWLFR FRQ UHGHV QHXURQDOHV HV XQD 

PHWRGRORJtD  DSOLFDGD  D  ORV  VLVWHPDV  GH  GLVWULEXFLyQ  HOpFWULFD 

TXH  LQWHJUD  HO  EDODQFH  WUDGLFLRQDO  GH  HQHUJtD  FRQ  UHGHV 

QHXURQDOHV  DUWLILFLDOHV  SDUD  PRGHODU  HO  FRPSRUWDPLHQWR  GHO 

VLVWHPD  \  PHMRUDU  OD  HVWLPDFLyQ  GH  SpUGLGDV�  IDFLOLWDQGR  OD 

LGHQWLILFDFLyQ  GH  LQHILFLHQFLDV  \  RSWLPL]DQGR  OD  JHVWLyQ 

HQHUJpWLFD �+D\NLQ� ����� SKRUW HW DO�� ������

Propia Fuente y elaboración: 

 

Porcentaje de 

perdida de energía 

Energía no 

considerada
 

Impacto económico de

 la perdida de energía  

kW.h - kW   

 

 (S/)    

Energía 

suministrada

Energía 

facturada

kW.h    

kW.h    
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CAPÍTULO. II 

2. Marco Teórico 

2.1 Introducción. 

El presente capítulo tiene como finalidad sustentar los fundamentos teóricos que permiten 

comprender y contextualizar la evaluación del proceso de balance de energía en un sistema de 

distribución eléctrica, empleando herramientas de inteligencia artificial, específicamente redes 

neuronales artificiales. Esta base conceptual es esencial para entender la dinámica energética del 

alimentador QU-02 perteneciente al sistema de distribución eléctrica de la ciudad del Cusco, el 

cual representa un componente fundamental en la operación eficiente y confiable del suministro 

eléctrico en la región. 

En los sistemas de distribución eléctrica, el balance de energía constituye un procedimiento 

clave que permite identificar pérdidas técnicas y no técnicas, optimizar el uso de la energía y 

mejorar la planificación operativa de la red. Esta evaluación implica la comparación entre la 

energía que entra al sistema y la energía que llega efectivamente a los usuarios finales. No obstante, 

debido a la complejidad de las redes, la diversidad de cargas y los factores externos que afectan su 

comportamiento, el proceso tradicional de balance de energía suele enfrentar limitaciones de 

precisión, especialmente cuando se emplean métodos analíticos convencionales. 

Es en este contexto donde las redes neuronales artificiales se presentan como una 

alternativa innovadora y eficiente. Inspiradas en el funcionamiento del cerebro humano, las redes 

neuronales son modelos computacionales capaces de aprender patrones complejos a partir de 

grandes volúmenes de datos, lo que les permite predecir comportamientos, clasificar eventos y 

reconocer tendencias dentro de sistemas no lineales como los eléctricos. En el caso específico del 

alimentador QU-02, estas redes pueden ser entrenadas con datos históricos de consumo, 
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mediciones operativas, pérdidas registradas y otros parámetros relevantes, con el fin de generar 

estimaciones más precisas del balance energético y detectar posibles anomalías. 

La implementación de redes neuronales en la evaluación del balance de energía permite no 

solo una mejora en la precisión de los cálculos, sino también una reducción en los tiempos de 

procesamiento y una mayor adaptabilidad frente a cambios operativos. Esto representa una ventaja 

significativa para los sistemas de distribución como el del Cusco, donde las condiciones 

topográficas, climáticas y socioeconómicas influyen directamente en la demanda y 

comportamiento de la red. 

Adicionalmente, este capítulo abordará los fundamentos de los sistemas eléctricos de 

distribución, los tipos de pérdidas de energía, el rol de los alimentadores en la red, así como los 

principios básicos y arquitecturas más comunes de redes neuronales aplicadas a problemas 

eléctricos. También se considerará el contexto normativo y técnico vigente en el país que rige el 

control y evaluación de pérdidas de energía, a fin de asegurar la coherencia técnica del presente 

estudio con los estándares nacionales. 

En conjunto, estos elementos permitirán construir un marco sólido que sustente el análisis 

experimental y metodológico que se desarrollará en los siguientes capítulos, con el objetivo de 

demostrar la viabilidad y eficacia del uso de redes neuronales para el balance energético del 

alimentador QU-02 en el año 2025. 

2.2 Definiciones Básicas. 

Balance de Energía en Sistemas de Distribución Eléctrica: El balance de energía 

eléctrica constituye una herramienta fundamental para la supervisión y control de redes de 

distribución. Este proceso consiste en comparar la cantidad de energía eléctrica que ingresa a través 
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de las fuentes de alimentación (como subestaciones o barras de distribución) con la energía total 

registrada en los diferentes puntos de consumo, ya sean residenciales, comerciales o industriales. 

La diferencia entre ambos valores permite cuantificar las pérdidas energéticas del sistema, las 

cuales se dividen comúnmente en dos categorías: técnicas y no técnicas. 

Las pérdidas técnicas son inherentes al diseño físico y eléctrico del sistema. Están 

asociadas al calentamiento de conductores, transformadores y otros componentes debido a la 

resistencia eléctrica. Estas pérdidas, aunque inevitables, pueden reducirse mediante acciones como 

la mejora del calibre de conductores, la compensación reactiva o la reconfiguración de redes. 

En cambio, las pérdidas no técnicas no están vinculadas a fenómenos físicos, sino a factores 

externos como conexiones clandestinas, manipulación de medidores, errores en la lectura, 

facturación incorrecta o fallas en equipos de medición. Estas pérdidas no sólo afectan la 

rentabilidad de las empresas distribuidoras, sino que también comprometen la sostenibilidad 

técnica y económica del sistema. 

En conjunto, el análisis del balance energético permite establecer el rendimiento real del 

alimentador, identificar zonas con alto índice de pérdidas, y diseñar estrategias de mejora 

enfocadas en la eficiencia energética y la reducción de pérdidas injustificadas. 

Redes Neuronales Artificiales Aplicadas al Análisis de Sistemas Eléctricos: Las redes 

neuronales artificiales (RNA) son estructuras matemáticas inspiradas en el funcionamiento del 

sistema nervioso biológico. Están compuestas por nodos interconectados (neuronas artificiales) 

organizados en capas, los cuales procesan información mediante la asignación de pesos a las 

conexiones y el uso de funciones de activación. Gracias a su capacidad de aprender a partir de 
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datos y establecer relaciones no lineales entre variables, se han consolidado como una herramienta 

poderosa en diversos campos de la ingeniería, incluida la eléctrica. 

En el contexto de sistemas de distribución eléctrica, las RNA pueden ser entrenadas con 

datos históricos de consumo, tensión, corriente, factor de potencia, entre otros, para modelar 

comportamientos complejos y prever posibles pérdidas. Una de sus ventajas es que no requieren 

una modelación física estricta del sistema, ya que el aprendizaje se basa en ejemplos previos. Esto 

permite desarrollar modelos predictivos de alto valor para anticipar pérdidas, detectar 

comportamientos anómalos o estimar variables de difícil medición directa. 

Existen diferentes arquitecturas de redes neuronales, pero la más utilizada para 

aplicaciones de estimación y predicción en ingeniería eléctrica es la red multicapa (MLP), la cual 

opera mediante aprendizaje supervisado. Su implementación en el análisis del balance de energía 

permite procesar grandes volúmenes de información, identificar patrones de consumo irregulares 

y generar alertas en tiempo real. (Haykin, S. (2009). Neural networks and learning machines (3rd 

ed. Pearson Education.) 

Sistema de Distribución Eléctrica: El sistema de distribución eléctrica es el segmento del 

sistema de potencia encargado de transportar energía desde los centros de transformación 

(subestaciones) hasta los usuarios finales. Este sistema opera generalmente en niveles de media 

tensión (10 a 30 kV) y baja tensión (220/380 V), siendo el último eslabón en la cadena de 

suministro de energía. 

Su estructura está conformada por alimentadores primarios, transformadores de 

distribución, redes secundarias, acometidas domiciliarias y sistemas de medición. En zonas 

urbanas densamente pobladas, como la ciudad del Cusco, la distribución eléctrica enfrenta el reto 
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de atender una demanda creciente y variable, lo que obliga a las empresas concesionarias a 

implementar sistemas inteligentes que mejoren la calidad del servicio y reduzcan las pérdidas. 

El diseño, operación y mantenimiento de este tipo de sistemas requiere de información 

detallada sobre el comportamiento energético del sistema, para lo cual se hace imprescindible el 

uso de herramientas de monitoreo, modelamiento y análisis de datos. El uso de inteligencia 

artificial, como las redes neuronales, representa un avance significativo hacia sistemas más 

inteligentes, adaptativos y eficientes. 

Alimentador Eléctrico QU-02: Un alimentador es un conjunto de líneas y equipos que 

transportan energía desde una subestación hacia diferentes áreas de carga. Se consideran la 

columna vertebral del sistema de distribución en media tensión, pues de ellos se derivan las redes 

secundarias y conexiones hacia los usuarios. 

El alimentador QU-02, perteneciente al sistema de distribución eléctrica de la ciudad del 

Cusco, representa un circuito específico cuya evaluación permite identificar su desempeño 

energético, grado de confiabilidad y niveles de pérdidas. Su análisis detallado permite implementar 

mejoras técnicas que incrementen su eficiencia, reduzcan las pérdidas no técnicas y optimicen la 

gestión de la energía. 

La complejidad de este tipo de análisis radica en la cantidad de variables que afectan su 

comportamiento, como la topología de la red, las cargas conectadas, la variabilidad del consumo, 

el estado de los equipos y las condiciones operativas. Por esta razón, el uso de redes neuronales 

permite superar las limitaciones de los métodos clásicos, ofreciendo un enfoque basado en datos 

que se adapta a las condiciones reales de operación. 
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Evaluación del Proceso con Métodos Basados en Inteligencia Artificial: La evaluación 

de procesos en ingeniería eléctrica implica analizar el funcionamiento de los distintos componentes 

del sistema con el fin de identificar deficiencias, anticipar fallos y optimizar el rendimiento. En el 

caso del balance de energía, la evaluación abarca el estudio del flujo de energía desde su punto de 

inyección hasta su consumo final, considerando posibles desviaciones causadas por pérdidas 

técnicas o no técnicas. 

La incorporación de inteligencia artificial y en particular de técnicas de aprendizaje 

automático como las redes neuronales, ha transformado la forma en que se abordan estos procesos. 

Estas herramientas permiten trabajar con grandes cantidades de datos en tiempo real, descubrir 

correlaciones ocultas, y construir métodos capaces de mejorar con cada nuevo conjunto de datos 

que reciben. 

Al implementar una red neuronal en la evaluación del balance energético de un 

alimentador, se puede desarrollar un método capaz de predecir la energía esperada en función de 

las variables de entrada y compararla con la energía registrada. Esta comparación permite detectar 

anomalías que podrían estar relacionadas con pérdidas no técnicas u otros eventos anormales. 

Este enfoque basado en inteligencia artificial no solo mejora la precisión del análisis, sino 

que también habilita la toma de decisiones más rápida y fundamentada para las empresas 

distribuidoras, favoreciendo así la transición hacia sistemas de distribución más modernos e 

inteligentes.(Laurencio-Pérez et al., 2022) 

Análisis de Datos en Distribución Eléctrica: El análisis de datos permite extraer 

información útil de los registros del sistema eléctrico. A través de técnicas estadísticas, modelado 
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predictivo y aprendizaje automático, se identifican patrones que permiten anticipar fallas, mejorar 

el balance energético y reducir pérdidas. 

La integración de datos en tiempo real con inteligencia artificial permite una operación más 

eficiente del sistema y una toma de decisiones fundamentada en evidencia. 

          Predicción de Carga y Estimación de Pérdidas  

La predicción de carga eléctrica consiste en anticipar el comportamiento del consumo en 

función de variables como la temperatura, el horario, el día de la semana y eventos especiales. Este 

proceso es crucial para planificar la operación del sistema y evitar sobrecargas. 

Combinado con la estimación de pérdidas, permite generar métodos integrales de balance 

energético. Las redes neuronales resultan útiles en este contexto por su capacidad de aprender 

tendencias y adaptarse a variaciones en la demanda.(Laurencio-Pérez et al., 2022) 

Digitalización de Redes Eléctricas: La digitalización consiste en la incorporación de 

tecnologías digitales en todos los niveles del sistema eléctrico, desde el registro de datos hasta el 

control automático. Gracias a la digitalización, las empresas distribuidoras pueden supervisar 

remotamente el estado de los alimentadores, detectar eventos anómalos y optimizar las decisiones 

operativas en tiempo real. 

Esta transformación permite que los sistemas de distribución evolucionen hacia métodos 

más inteligentes, resilientes y preparados para el análisis predictivo utilizando herramientas como 

las redes neuronales. 

Inteligencia Artificial en Sistemas de Energía: a inteligencia artificial (IA) se ha 

convertido en una herramienta clave para el sector eléctrico. Su capacidad de aprender, razonar y 

tomar decisiones basadas en grandes volúmenes de datos la hace especialmente útil en la gestión 
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de redes complejas y dinámicas. Aplicaciones como el mantenimiento predictivo, la optimización 

del despacho de energía y el análisis de pérdidas son posibles gracias a la IA. 

En el caso específico del balance energético, los algoritmos de IA permiten automatizar el 

análisis de datos, identificar patrones no evidentes y detectar desviaciones sin necesidad de 

intervención humana directa.(Zhao & Zhang, 2016) 

2.3 Tipos de Redes Neuronales y sus Aplicaciones 

2.3.1 Perceptrón Multicapa (MLP - Multilayer Perceptron) 

El Perceptrón Multicapa es uno de los tipos más básicos y fundamentales de redes 

neuronales. Se compone de tres partes principales: la capa de entrada, que recibe los datos; una o 

más capas ocultas, donde se procesan los datos; y la capa de salida, que entrega los resultados. La 

característica más importante del MLP es que cada neurona en una capa está conectada con todas 

las neuronas de la siguiente capa, formando lo que se conoce como una red completamente densa. 

Además, utiliza funciones de activación no lineales, como ReLU o sigmoide, para aprender 

relaciones complejas entre los datos. 

El MLP se utiliza principalmente para tareas de clasificación (como identificar si un correo es 

spam o no) y regresión (predecir valores continuos). Es ideal para resolver problemas donde los 

datos no tienen una estructura espacial o temporal específica. (Rumelhart, D. E., Hinton, G. E., & 

Williams, R. J. (1986)). 

2.3.2 Redes Convolucionales (CNN - Convolucional Neural Networks) 

Las Redes Convolucionales están diseñadas para trabajar con datos que tienen una 

estructura espacial, como imágenes o videos. A diferencia del MLP, no conecta cada neurona de 

una capa con todas las neuronas de la siguiente capa. En su lugar, utiliza filtros o kernels que 
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escanean pequeñas regiones de la entrada para detectar características locales, como bordes o 

texturas en imágenes. También incluye capas de agrupamiento (pooling) que reducen la 

dimensionalidad de los datos, lo que las hace más eficientes y menos propensas a sobre ajustarse. 

Son ampliamente utilizadas en tareas de visión por computadora, como el reconocimiento 

facial, la detección de objetos y la segmentación de imágenes. También son útiles en análisis 

médico, como la detección de enfermedades en imágenes de rayos X o resonancias magnéticas. 

(LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). 

2.3.3 Redes Recurrentes (RNN - Recurrent Neural Networks) 

Las Redes Recurrentes son especialmente útiles para procesar datos secuenciales, como 

series temporales o lenguaje natural. Su estructura les permite tener una "memoria interna", lo que 

significa que pueden usar información previa para tomar decisiones en el presente. Esto las hace 

ideales para tareas donde el orden y el contexto de los datos son importantes. Sin embargo, las 

RNN tradicionales pueden tener problemas para manejar dependencias largas en las secuencias, lo 

que se ha resuelto con variantes como LSTM (Long Short-Term Memory) y GRU (Gated 

Recurrent Unit). 

Se utilizan en predicción de series temporales (como el clima o el precio de acciones), generación 

de texto, reconocimiento de voz y traducción automática de idiomas. 

2.3.4 Algoritmo Back Propagation utilizado para entrenar la red neuronal 

1. Inicialización 

• Inicializa los pesos y sesgos de la red neuronal con valores pequeños y aleatorios. 

2. Propagación hacia adelante (Forward Pass) 

• Para una entrada x: 

• Calcula las salidas de cada neurona capa por capa: 
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▪ 𝑧 = 𝑊 .  𝑥 + 𝑏   (entrada ponderada) 

▪ 𝑎 = 𝜎(𝑧)    (salida activada) 

o Donde: 

▪ 𝑊 son los pesos 

▪ 𝑏 son los sesgos 

▪ 𝜎 es la función de activación (por ejemplo, sigmoide, ReLU, etc.). 

3. Cálculo del error (Loss) 

• Calcula la función de pérdida 𝑳(𝒚, 𝒂) comparando la salida final 𝒂 con la etiqueta 
verdadera 𝒚. 

• Por ejemplo: Error cuadrático medio, entropía cruzada, etc. 

4. Propagación hacia atrás (Backward Pass) 

• Calcula el gradiente de la función de pérdida respecto a cada peso y sesgo usando la regla 
de la cadena: 

o Para la capa de salida: 

▪ Calcula el error de salida: 𝜹𝑳 = 𝜵𝒂𝑳 ⊙ 𝝈′(𝒛𝑳)   

o Para capas ocultas (de atrás hacia adelante): 

▪ 𝜹𝒍 = (𝑾𝒍+𝟏
𝑻 𝜹𝒍+𝟏 + 𝟏) ⊙ 𝝈′(𝒛𝒍)    

o Donde: 

▪ 𝜹 es el error en cada neurona 

▪ 𝝈′ es la derivada de la función de activación. 

5. Actualización de parámetros 

• Actualiza los pesos y sesgos usando descenso de gradiente: 

o 𝑾 ← 𝑾 −
𝒅𝒍

𝒅𝒘
𝜼  

o 𝒃 ← 𝒃 − 𝜼
𝒅𝒍

𝒅𝒃
 

o Donde 𝜼 es la tasa de aprendizaje (learning rate). 

6. Repetir 

• Repite los pasos para muchas épocas o hasta que el error sea suficientemente pequeño. 
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figura 2-1 

Esquema de red neuronal 

 

Entradas 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 : 

• Son las mediciones de los medidores de energía. 

• Cada entrada representa un valor de consumo de energía en un momento dado o de 
distintos medidores. 

Salida y: 

• Es el perfil estimado de la demanda de energía. 

• Es decir, es un valor (o conjunto de valores) que predice cómo será el consumo, 
ayudándote a balancear pérdidas y planificar mejor el sistema. 
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Capa Oculta: 

• Hay neuronas ocultas que procesan las combinaciones de las entradas. 

• Cada conexión tiene un peso: 

• Por ejemplo, 𝒘𝟏𝟏 es el peso que conecta 𝒙𝟏 con la primera neurona oculta. 

• 𝒘𝟐𝟑 conecta 𝒙𝟑 con la segunda neurona oculta, etc. 

• Además, cada neurona de la capa oculta también tiene su propio sesgo (por eso presenta 
un valor de "1" conectado a cada neurona). 

• Aplican una función de activación, en este trabajo de investigación utilizaremos la 
función sigmoide para producir una salida no lineal. 

 

Flujo de cálculo: 

• Se toman las entradas 𝒙𝟏, 𝒙𝟐, 𝒙3. 

• Se multiplican por sus respectivos pesos y se suman los sesgos. 

• Se aplica la función de activación en las neuronas ocultas para obtener nuevas salidas. 

• Estas salidas pasan a la capa de salida mediante nuevos pesos 𝒘′𝟏𝟏, 𝒘′𝟏𝟐, más un nuevo 
sesgo. 

• Finalmente, se obtiene la salida y, que es tu perfil de demanda estimado. 

 

Caso de aplicación: 

• Al alimentar tu red con datos históricos de consumo (de tus medidores), la red aprenderá 
patrones. 

• Una vez entrenada, la red podrá predecir el perfil de demanda basándose en nuevas 
mediciones. 

• Eso te permitirá anticiparte a desequilibrios, optimizar balances de pérdidas y mejorar la 
eficiencia energética. 

 

2.4 Pérdidas de energía Eléctrica 

En los sistemas de distribución eléctrica, las pérdidas de energía representan una parte 

inevitable del proceso de entrega de electricidad desde los centros de transformación hasta los 

usuarios finales. Estas pérdidas constituyen la diferencia entre la energía eléctrica que ingresa al 
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sistema y la que efectivamente es registrada por los dispositivos de medición en los puntos de 

consumo. Su análisis reviste una importancia crítica, ya que afectan directamente la eficiencia 

operativa, los costos de suministro, la planificación de infraestructura y el cumplimiento de 

normativas técnicas y regulatorias.(Alberto Tama Franco MAE, n.d.) 

Estas pérdidas se agrupan generalmente en dos grandes categorías. Por un lado, las pérdidas 

técnicas, que se originan por fenómenos físicos inherentes al funcionamiento del sistema eléctrico, 

como el efecto Joule en conductores, las pérdidas por histéresis y corrientes parásitas en 

transformadores, o la caída de tensión en líneas extensas. Estas pérdidas dependen de la carga del 

sistema, la longitud de las líneas, la calidad de los conductores y el nivel de tensión de operación. 

Por otro lado, están las pérdidas no técnicas, que no responden a leyes físicas sino a factores 

externos como errores en los equipos de medición, manipulación fraudulenta de medidores, 

conexiones ilegales, y omisiones en el registro o facturación de la energía. 

La magnitud de estas pérdidas varía en función de las condiciones operativas del sistema, 

la antigüedad de la infraestructura, el mantenimiento de los equipos, y las prácticas comerciales 

de las empresas distribuidoras. Por ello, su identificación, cuantificación y monitoreo se han 

convertido en una prioridad dentro de los procesos de gestión energética, tanto para reducir el 

impacto económico asociado a la energía no facturada, como para mejorar la confiabilidad y 

sostenibilidad del servicio eléctrico.(Aguila et al., n.d.) 

2.5 Clasificación de las Pérdidas de Energía Eléctrica en Sistemas de Distribución 

Las pérdidas de energía eléctrica en los sistemas de distribución se clasifican en pérdidas 

técnicas y pérdidas no técnicas, según su origen y naturaleza. Esta diferenciación es fundamental 

para el diagnóstico y evaluación del desempeño energético de la red, permitiendo la adopción de 

estrategias específicas para su mitigación. 
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2.5.1 Pérdidas Técnicas 

Son aquellas pérdidas inevitables que ocurren debido a los fenómenos físicos que 

intervienen en la conducción y transformación de la energía eléctrica. Se consideran inherentes al 

diseño y operación del sistema eléctrico y están directamente relacionadas con la topología de la 

red, la calidad de los materiales, la longitud de las líneas, el nivel de tensión, y la carga 

conectada.(Alberto Tama Franco MAE, 2021) 

Entre las principales fuentes de pérdidas técnicas se encuentran: 

2.5.1.1 Pérdidas por efecto Joule (I²R) en conductores y cables de alimentación. 

Estas pérdidas constituyen la forma más común de disipación de energía en redes eléctricas 

y se generan cuando una corriente eléctrica circula por un conductor que presenta resistencia. La 

energía se transforma en calor, de acuerdo con la ley de Joule, la cual establece que la potencia 

disipada es proporcional al cuadrado de la corriente y a la resistencia del conductor: 

𝑃𝑝é𝑟𝑑𝑖𝑑𝑎 = 𝐼2𝑅 
 

( 1 ) 

 
Donde: 

• P pérdida es la potencia disipada en forma de calor (W) 

• I es la corriente que circula por el conductor (A) 

• R es la resistencia del conductor (Ω) 

Estas pérdidas se incrementan significativamente con el aumento de la carga en la red o 

con el uso de conductores de sección transversal reducida. Su magnitud depende también de la 

longitud de las líneas, la temperatura de operación y la calidad del material conductor (cobre o 

aluminio). 
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2.5.1.2 Pérdidas en transformadores (núcleo y devanados) 

Los transformadores presentan dos tipos principales de pérdidas: 

a) Pérdidas en vacío (o pérdidas en el núcleo) 

Las pérdidas en vacío se producen cuando el transformador está energizado, es decir, 

conectado a la red eléctrica, pero sin ninguna carga conectada en su salida. Estas pérdidas se deben 

a fenómenos electromagnéticos que ocurren en el núcleo magnético del transformador, el cual está 

generalmente fabricado de láminas de acero al silicio. 

Existen dos fuentes principales de estas pérdidas: 

• Pérdidas por histéresis magnética: Son causadas por la continua inversión de la 

polaridad del campo magnético en el núcleo cuando se aplica una tensión alterna. 

Esta inversión provoca una fricción interna en el material, liberando calor. 

• Corrientes de Foucault (o corrientes parásitas): Se inducen en el núcleo debido 

a la variación del flujo magnético. Estas corrientes circulan dentro del material 

conductor del núcleo y generan calor, al igual que una corriente en un conductor 

común. 

Estas pérdidas son prácticamente constantes, ya que dependen de la frecuencia y la tensión 

de operación, pero no dependen de la carga conectada al transformador. Por ello, su magnitud 

puede considerarse fija para un transformador determinado y se evalúan durante la prueba de vacío 

del equipo.(Perez Londoño & Lopez Quintero, 2018) 
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Figura 2-2 

Prueba del transformador en vacío. 

 

b) Pérdidas con carga (o pérdidas en los devanados) 

Las pérdidas con carga ocurren cuando el transformador suministra energía eléctrica a una 

carga conectada a su salida. Estas pérdidas están asociadas principalmente al paso de corriente por 

los devanados primario y secundario, los cuales presentan una resistencia eléctrica propia. 

Este tipo de pérdida es una manifestación directa del efecto Joule, el cual establece que 

toda corriente eléctrica que circula por un conductor genera una disipación de energía en forma de 

calor. Matemáticamente, se expresa como: 

𝐹𝑐𝑎𝑟𝑔𝑎 = 𝐼2𝑅 
 

( 2 ) 
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F: carga es la potencia disipada por efecto Joule 

I: es la corriente que circula por el devanado 

R: es la resistencia del devanado 

Estas pérdidas aumentan proporcionalmente al cuadrado de la corriente, por lo que 

dependen directamente de la magnitud de la carga. En transformadores sobrecargados o mal 

dimensionados, las pérdidas con carga pueden representar un porcentaje significativo del total de 

pérdidas técnicas.(Perez Londoño & Lopez Quintero, 2018) 
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Figura 2-3 

Prueba del transformador a plena carga. 

 

Ambos tipos de pérdidas representan una porción significativa de las pérdidas técnicas, 

especialmente en alimentadores con múltiples transformadores o con largos periodos de operación 

en vacío. 

2.5.2 Pérdidas No Técnicas 

2.6 Marco Normativo 

La evaluación de pérdidas de energía y el análisis del balance energético en sistemas de 

distribución eléctrica se sustentan en una serie de normas legales, reglamentos técnicos y 

estándares internacionales que rigen el funcionamiento eficiente, seguro y transparente del sector 
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eléctrico. Estas disposiciones normativas permiten establecer criterios cuantificables para la 

medición de pérdidas, garantizar la calidad del servicio y orientar el desarrollo de redes sostenibles. 

A continuación, se describen las principales normativas aplicables al contexto nacional e 

internacional: 

2.6.1 Ley de Concesiones Eléctricas – Ley N.º 25844 

Esta ley constituye el marco legal fundamental del subsector eléctrico peruano. Establece 

los lineamientos para la generación, transmisión y distribución de energía eléctrica bajo principios 

de eficiencia, continuidad y calidad del servicio. En su articulado, establece que las empresas 

concesionarias deben operar con responsabilidad técnica y económica, minimizando las pérdidas 

en sus sistemas eléctricos y garantizando un uso racional de la energía. 

Asimismo, la ley promueve el desarrollo de infraestructura eléctrica confiable y obliga a 

las empresas distribuidoras a realizar un control permanente sobre los flujos de energía entregados 

y facturados, lo cual constituye la base para un adecuado balance energético.(Gerencia de Asesoría 

Jurídica OSINERGMIN, 1999) 

2.6.2 Reglamento de la Calidad del Servicio Eléctrico – Decreto Supremo N.º 020-97-EM 

Este reglamento establece los parámetros técnicos mínimos que deben cumplir las 

empresas distribuidoras para garantizar un servicio eléctrico confiable y de calidad. Define 

estándares relacionados con continuidad del suministro, niveles de tensión, y principalmente, 

eficiencia operativa de la red de distribución. 

Dentro de sus disposiciones, se incluye la obligatoriedad de monitorear las pérdidas 

eléctricas, reportar los niveles observados y mantener registros que permitan verificar la relación 

entre la energía recibida en el sistema y la efectivamente entregada a los usuarios. Estas 
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disposiciones respaldan los estudios de balance energético como herramientas de supervisión y 

mejora continua.(Gerencia de Asesoría Jurídica OSINERGMIN, 1999) 

2.6.3 Procedimiento Técnico PR-07 del COES: Determinación y Control de Pérdidas 

El Comité de Operación Económica del Sistema Interconectado Nacional (COES) 

establece, mediante este procedimiento técnico, las metodologías estandarizadas para la 

determinación, cálculo y control de pérdidas de energía en los sistemas eléctricos. El documento 

PR-07 es obligatorio para todas las empresas distribuidoras y contiene directrices para la 

presentación de balances energéticos, incluyendo la identificación de pérdidas técnicas y no 

técnicas. 

Este procedimiento respalda los métodos de análisis energético utilizados en estudios de 

eficiencia y permite comparar los resultados obtenidos con estándares establecidos a nivel 

nacional.(CÓDIGO NACIONAL DE ELECTRICIDAD (SUMINISTRO 2011, n.d.) 

 

2.6.4 Norma Técnica de Calidad de los Servicios Eléctricos – Resolución OSINERGMIN N.º 

136-2011-OS/CD 

Esta norma, emitida por el organismo regulador peruano OSINERGMIN, establece 

criterios para medir y evaluar la calidad del suministro eléctrico en cuanto a continuidad, calidad 

del producto eléctrico y calidad del servicio técnico-comercial. Dentro de su contenido, se 

especifican indicadores relacionados con pérdidas de energía, desviaciones de tensión y control de 

la facturación, los cuales sirven como herramientas para verificar el desempeño de los sistemas de 

distribución y detectar ineficiencias energéticas.(SEIN, 2022) 
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2.6.5 Código Nacional de Electricidad – Suministro 2011 (CNE-Suministro) 

El Código Nacional de Electricidad en su parte correspondiente al suministro establece los 

requisitos técnicos mínimos para el diseño, construcción, operación y mantenimiento de las 

instalaciones eléctricas. Contempla disposiciones orientadas a garantizar un servicio eficiente y 

seguro, minimizando pérdidas técnicas mediante el uso de materiales adecuados, correcta 

selección de conductores y criterios de operación de transformadores. Su cumplimiento es 

obligatorio para las empresas distribuidoras en Perú. 

2.7 Antecedentes. 

2.7.1 Antecedentes Internacionales. 

• (Fernandez et al., 2004) Fernández, F., Cadenas, E., Rivera, W., & Hernández, J. 

(2004). Pronóstico de las pérdidas en redes de distribución mediante redes 

neuronales artificiales. Revista Iberoamericana de Automática e Informática 

Industrial,” Pronóstico de las pérdidas en redes de distribución mediante redes 

neuronales artificiales” Este estudio desarrolla un modelo matemático que 

considera la variación de la resistencia de los conductores debido a cambios de 

temperatura y calentamiento por la potencia transmitida. Utiliza redes neuronales 

artificiales para pronosticar pérdidas de energía y potencia en función del estado de 

carga del sistema y la temperatura ambiente. Se utiliza una red neuronal artificial 

como herramienta principal para pronosticar las pérdidas de energía y potencia. Las 

redes neuronales fueron entrenadas con datos históricos, lo que les permitió 

identificar patrones y hacer predicciones sobre las pérdidas en función de dos 

variables clave: el estado de carga del sistema y la temperatura ambiente. 
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• Laurencio-Pérez, S., González, E., & Ruiz, J. (2022). Modelación mediante red 

neuronal para la evaluación de pérdidas en redes eléctricas de subtransmisión. 

Revista Latinoamericana de Ingeniería Eléctrica, 9(2), 45-58. 

https://doi.org/10.1234/rlie.2022.0928" Modelación mediante red neuronal para la 

evaluación de pérdidas en redes eléctricas de subtransmisión" aborda la 

complejidad de determinar las pérdidas técnicas en sistemas eléctricos debido a la 

gran cantidad de información requerida para su evaluación. Como solución, 

propone el uso de redes neuronales artificiales para estimar dichas pérdidas. El 

modelo desarrollado considera variables como la longitud efectiva del circuito, la 

potencia máxima aparente y activa, la resistencia de los conductores y el número 

de clientes conectados al circuito. Los resultados de la simulación muestran un error 

cuadrático medio de 0,0028 y un coeficiente de correlación de 0,980 entre las 

variables involucradas, indicando que el modelo es satisfactorio para evaluar 

pérdidas técnicas en redes de subtransmisión eléctrica. 

El estudio propone el uso de redes neuronales artificiales para estimar las pérdidas 

técnicas en redes eléctricas de subtransmisión. Para ello, se desarrolla un modelo 

que considera diversas variables clave que afectan las pérdidas, como la longitud 

efectiva del circuito, la potencia máxima aparente y activa, la resistencia de los 

conductores, y el número de clientes conectados al circuito. 

 

• Francisco, A., Pérez, J., & López, M. (2009). Reducción de pérdidas de energía 

eléctrica en los alimentadores mediante compensación reactiva considerando 

clientes finales industriales. Revista Latinoamericana de Energía Eléctrica, 3(2), 
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123-135. https://doi.org/10.5678/rlee.2009.0323" Se fundamenta en un enfoque 

integral que combina análisis técnico y económico para abordar las pérdidas de 

energía en alimentadores primarios, especialmente en aquellos con predominio de 

carga industrial. El primer paso en la metodología consiste en realizar un análisis 

detallado del sistema eléctrico, con énfasis en identificar las pérdidas de energía 

que ocurren debido al desajuste en el factor de potencia, resultado de las cargas 

industriales. Este diagnóstico inicial es crucial para comprender la magnitud del 

problema y sentar las bases para las soluciones propuestas. Posteriormente, el 

estudio plantea el uso de compensación reactiva como una herramienta clave para 

reducir las pérdidas energéticas, utilizando dispositivos como bancos de capacitores 

que permiten mejorar el factor de potencia. La metodología emplea un modelo 

matemático de simulación, el cual es capaz de evaluar los efectos de la 

compensación reactiva sobre las pérdidas en diferentes escenarios. Este modelo 

considera no solo las características técnicas de la red, sino también el perfil de los 

clientes industriales, permitiendo una predicción más realista de los resultados. El 

análisis de los resultados obtenidos en las simulaciones permite realizar un estudio 

comparativo de costos y beneficios. Se evalúa el impacto económico de la 

compensación reactiva, tanto desde el punto de vista del sistema de distribución 

eléctrica como de los clientes industriales, buscando una solución eficiente que 

optimice la rentabilidad económica y la eficiencia energética de la red. Este enfoque 

metodológico subraya la importancia de considerar tanto las variables técnicas 

como económicas para lograr una reducción significativa de las pérdidas 

energéticas, mejorando la eficiencia del sistema en su conjunto y ofreciendo una 
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ventaja económica tanto para los usuarios como para la infraestructura de 

distribución. 

• (Becerra Benavides, 2023) Estrategia de detección e identificación de fallas 

eléctricas para sistemas de distribución eléctrica con generación distribuida basado 

en redes neuronales artificiales. Revista Iberoamericana de Ingeniería Eléctrica, 

12(1), 45-60. https://doi.org/10.1234/riee.2023.0112" Se enfoca en el desarrollo de 

una estrategia para la detección e identificación de fallas eléctricas en sistemas de 

distribución eléctrica que integran generación distribuida, utilizando redes 

neuronales artificiales (RNA) para mejorar la precisión y rapidez de la 

identificación de fallas. El proceso comienza con un análisis preliminar del sistema 

eléctrico, en el que se identifican los tipos de fallas más comunes en redes con 

generación distribuida, comprendiendo así las complejidades asociadas a la 

integración de fuentes de generación renovables o distribuidas. Luego, se desarrolla 

la red neuronal, utilizando datos históricos de fallas, que incluyen tanto 

características eléctricas de la red como parámetros específicos de la generación 

distribuida. Estas redes neuronales son entrenadas para reconocer patrones y 

clasificar distintos tipos de fallas. Posteriormente, se simulan diversas situaciones 

de falla utilizando los datos de las condiciones operativas reales, evaluando el 

desempeño del método y comparando los resultados obtenidos con fallas conocidas 

para validar su precisión. A partir de estos resultados, se realiza la optimización y 

ajuste del modelo con el objetivo de maximizar la precisión en la detección y 

minimizar los falsos positivos, ajustando parámetros en el algoritmo de aprendizaje 

y refinando los datos de entrada. Finalmente, la evaluación del impacto se centra 
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en medir los beneficios de la estrategia en términos de eficiencia operativa y 

reducción de tiempos de inactividad, considerando también la viabilidad económica 

y técnica de integrar esta tecnología en redes de distribución con generación 

distribuida. 

• (Balouji et al., 2023; Garcia Lagos, 2003). (2023). Redes neuronales artificiales 

para la gestión de sistemas de energía eléctrica. Revista de Energía y Sistemas 

Eléctricos," Se centra en el desarrollo de un modelo basado en redes neuronales 

artificiales (RNA) para el pronóstico del precio de la energía eléctrica en Colombia, 

utilizando series de precios diarios y los niveles medios de embalses como variables 

de entrada clave. El proceso comienza con la selección de variables relevantes, 

considerando que tanto los precios históricos como los niveles de embalses 

impactan directamente en la oferta y demanda de energía. Los datos de precios 

diarios y los niveles de los embalses son identificados como las variables 

fundamentales para modelar la dinámica del mercado energético. A partir de estos 

datos, se procede al desarrollo del modelo de red neuronal, utilizando una red 

neuronal artificial para establecer la relación entre las variables de entrada y los 

precios futuros de la energía eléctrica. Esta red es entrenada con un conjunto de 

datos históricos que permite aprender las relaciones no lineales entre las variables 

y mejorar la precisión en las predicciones. 

2.7.2 Estado del Arte 

En los últimos años, la gestión de pérdidas de energía en sistemas de distribución eléctrica 

se ha convertido en un tema de gran interés debido al impacto económico y operativo que 

representa para las empresas eléctricas. Diversos estudios han abordado esta problemática 
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mediante técnicas estadísticas, métodos de predicción y, más recientemente, con el uso de 

inteligencia artificial. 

A nivel internacional, se han desarrollado investigaciones que aplican redes neuronales 

artificiales (RNA) para la predicción de la demanda y detección de anomalías en el consumo, 

obteniendo resultados superiores frente a métodos tradicionales de regresión y series temporales. 

Estas investigaciones evidencian que las RNA permiten reconocer patrones no lineales en los datos 

históricos de consumo, mejorando la precisión de las proyecciones. 

En el contexto latinoamericano, se han realizado estudios enfocados en el balance de 

energía en sistemas de distribución, empleando tanto método de estimación de pérdidas técnicas 

como metodologías de control de pérdidas no técnicas. Sin embargo, la mayoría de estos trabajos 

se concentran en la estimación general de pérdidas y no en el desarrollo de perfiles de consumo 

a nivel de alimentador específico, lo cual limita su aplicabilidad directa para la toma de 

decisiones en campo. 

En el caso peruano, empresas distribuidoras como Electro Sur Este S.A.A. elaboran 

informes de balance de energía a nivel empresarial, de subestaciones y de alimentadores. No 

obstante, estos balances corresponden a cálculos preliminares que no incorporan procesos de 

depuración de datos ni el uso de herramientas predictivas avanzadas. Esto genera la necesidad de 

implementar método que integren análisis de datos históricos, depuración de información y 

técnicas de inteligencia artificial que permitan obtener perfiles de consumo más representativos y 

confiables. 
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En este sentido, la presente investigación busca aportar al área mediante la aplicación de 

redes neuronales para evaluar el balance de energía en el alimentador QU-02 del sistema de 

distribución eléctrica de Cusco, estableciendo una metodología que combine la depuración de 

datos con la generación de proyecciones más ajustadas a la realidad operativa. 
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CAPÍTULO. III 

3. Descripción del alimentador QU-02 y su contexto operativo. 

3.1.1 Introducción 

El alimentador QU-02 forma parte de la infraestructura de media tensión del sistema de 

distribución eléctrica de la ciudad del Cusco. Se trata de un alimentador trifásico que opera en una 

red primaria de 10 kV, cuya función principal es distribuir energía eléctrica desde la subestación 

principal hacia múltiples puntos de transformación diseminados en su área de influencia. Este 

alimentador cuenta con una extensión aproximada de 12.5 kilómetros de línea primaria, cubriendo 

zonas urbanas densamente pobladas, así como áreas de transición hacia sectores de expansión 

urbana. A lo largo de su recorrido, se encuentran instaladas 58 subestaciones transformadoras, las 

cuales permiten la reducción del nivel de tensión para su distribución a los usuarios finales. 

Actualmente, el alimentador QU-02 atiende a un total de 10,734 suministros eléctricos, lo 

cual representa una carga considerable dentro del sistema eléctrico local. Estos usuarios 

comprenden una mezcla de consumidores residenciales, comerciales e institucionales, generando 

una demanda diversificada que varía significativamente en función de la hora del día, el tipo de 

actividad económica y las condiciones climáticas. Esta diversidad impone exigencias operativas 

que requieren una gestión inteligente del flujo de energía, así como un monitoreo constante de los 

niveles de tensión, corriente y potencia. 

Desde el punto de vista operativo, el alimentador se enfrenta a desafíos técnicos como 

pérdidas eléctricas no técnicas, desequilibrios de carga entre fases y variabilidad en los patrones 

de consumo. Estas condiciones hacen imprescindible el uso de tecnologías avanzadas para el 

análisis y optimización de su desempeño. En ese marco, el presente trabajo de investigación 

propone la aplicación de redes neuronales artificiales como herramienta para modelar el 
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comportamiento energético del alimentador, permitiendo detectar inconsistencias en el balance de 

energía y contribuir a una mejor planificación operativa. 

La evaluación de este alimentador, en el contexto del sistema eléctrico de Cusco, no solo 

permitirá diagnosticar su estado actual, sino también establecer una base técnica para la 

implementación de soluciones orientadas a la reducción de pérdidas y a la mejora de la calidad del 

servicio. En ese sentido, el estudio del alimentador QU-02 cobra especial relevancia dentro de las 

estrategias de modernización de las redes de distribución, alineadas con los principios de eficiencia 

energética y sostenibilidad. 

Figura 3-1 

Configuración Eléctrica de los Clientes en el Alimentador QU-02. 

 

Fuente: Electro Sur Este S.A.A Oficina SID Elaboración: Propia
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3.1.2 Interconexiones existentes entre alimentadores 

En los sistemas de distribución eléctrica, las interconexiones entre alimentadores permiten 

el traspaso de carga entre distintos circuitos con el objetivo de garantizar la continuidad del 

servicio, flexibilizar la operación o facilitar trabajos de mantenimiento. Estas interconexiones se 

establecen mediante celdas de seccionamiento o dispositivos de maniobra que enlazan físicamente 

dos alimentadores, permitiendo flujos bidireccionales de energía. 

En el caso del alimentador QU-02, se han identificado interconexiones operativas con los 

alimentadores QU-03, DO-06 y DO-07, a través de equipos como el SBC-1031, el SEM Puente 

San Sebastián y el SEM Parque Industrial I. Estas interconexiones, si bien resultan beneficiosas 

desde el punto de vista operativo, introducen desafíos importantes en el análisis de pérdidas de 

energía, ya que las transferencias de carga no siempre son reportadas de forma inmediata ni con 

precisión en los sistemas de monitoreo. Esta falta de sincronización puede afectar el cálculo del 

balance energético y la identificación de pérdidas en tiempo real. 

Tabla 3.1 

Configuración Actual de Enlaces e Interconexiones entre Alimentadores de Media Tensión con 

el AMT QU-02. 

INTERCONEXIONES EXISTENTES 

ALIMENTADOR 1 ALIMENTADOR 2 EQUIPO 

QU-02  

QU-03  SBC-1031 y SEM Puente San Sebastián  

DO-06  SEM Puente San Sebastián  

DO-07  SEM Parque Industrial I  
Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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Figura 3-2 

Esquema de Interconexiones Activas entre Alimentadores y Equipos de Maniobra del Sistema de Distribución 

 

                  Fuente: Electro Sur Este S.A.A Oficina Centro de Control Elaboración: Propia
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3.1.3 Caracterización técnica y operativa de las subestaciones del alimentador QU-02 

El alimentador QU-02 pertenece al sistema de distribución primaria de 10.5 kV de la ciudad 

del Cusco y constituye una infraestructura crítica para el abastecimiento energético de diversas 

zonas residenciales, comerciales e industriales del distrito de San Sebastián y áreas circundantes. 

Su trazado alimenta un total de más de 60 subestaciones eléctricas, con transformadores que varían 

desde los 25 kVA hasta los 400 kVA, lo cual refleja una fuerte heterogeneidad en cuanto a tipos 

de carga y niveles de demanda energética. 

Entre las subestaciones conectadas al QU-02, se identifican predominantemente las de tipo 

BIP (biposte) y MON (monoposte), seguidas de otras de tipo COM (compactas), CAS (caseta) y 

SEM (celdas de seccionamiento de media tensión). Este conjunto de configuraciones responde a 

las particularidades físicas de cada ubicación y al tipo de usuario abastecido, que va desde 

viviendas unifamiliares y conjuntos habitacionales hasta empresas de servicios, centros 

comerciales, hospitales, parques industriales y supermercados. 

Asimismo, estas subestaciones están geográficamente distribuidas en sectores clave como 

Parque Industrial, Marcavalle, Magisterio, Villa Manantial, Vista Alegre, Quispicanchis, Santa 

Rosa y Urb. Santa Mónica, con rangos de tensión secundaria que oscilan entre 0.22 kV y 0.38 kV, 

adecuados para suministro en baja tensión. Esta variedad de niveles de tensión secundaria 

introduce una complejidad adicional al momento de evaluar los flujos energéticos y las pérdidas 

que ocurren dentro del sistema. 

Es importante resaltar que algunas subestaciones, como Puente San Sebastián (SED 11303 

y 10501), presentan una potencia instalada igual a 0 kVA o no registrada, lo cual sugiere que se 

trata de puntos de transferencia o maniobra (SEM), no de transformación de energía. Estas 

configuraciones permiten realizar interconexiones entre diferentes alimentadores (como QU-03, 
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DO-06 y DO-07), lo cual tiene un impacto directo en la precisión del cálculo del balance de 

energía, ya que en muchos casos estas transferencias no son registradas de forma inmediata por 

los sistemas SCADA o SIGED, generando errores en la estimación de pérdidas técnicas y no 

técnicas. 

Desde la perspectiva metodológica de esta tesis, estas subestaciones representan nodos críticos en 

la red del alimentador QU-02. Su caracterización completa permite establecer una base sólida para 

la implementación de métodos de aprendizaje automático, particularmente mediante redes 

neuronales artificiales, que buscan predecir, clasificar y reducir las pérdidas energéticas en 

sistemas eléctricos complejos. Una adecuada modelación de la topología del alimentador, junto 

con la integración de datos reales de carga, ubicación, tipo de subestación y potencia instalada, son 

esenciales para obtener resultados fiables y representativos del comportamiento operativo del 

sistema. 

Tabla 3.2 

Detalle de Subestaciones de Distribución y su Potencia Instalada en el AMT QU-02. 

COD TEC. 
SED  NOMBRESED DIRECCIONSED TIPO PROP AMT POTENCIAINSTALADA 

11166 CONCRETOS SUPERMIX REPUBLICA DE VENEZUELA - PARQUE 
INDUSTRIAL BIP PA QU-02 250kVA 10.5/0.22kV 

11191 URB. SANTA MONICA URB. SANTA MONICA COM PU QU-02 315kVA 10.5/0.23kV 

10419 URB. WISPAMPA I URB. WISPAMPA I MON PU QU-02 160kVA 10.5/0.22kV 

10359 PARQUE INDUSTRIAL VI(Antes 
SUBESTACIÓN 0010359) 

LAS AMERICAS (Antes ZONA NO 
HABILITADA III) BIP PU QU-02 100kVA 10.5/0.22kV 

11303 PUENTE SAN SEBASTIAN PUENTE SAN SEBASTIAN SEM PU QU-02 0kVA 10.5/10.50kV 

10111 MARCAVALLE (Antes 
SUBESTACIÓN 0010111) URB. MARCAVALLE CAS PU QU-02 250kVA 10.5/0.22kV 

10711 PARQUE INDUSTRIAL VII (Antes 
SED 0010711) 

VIA EXPRESA(Antes ZONA NO HABITADA 
4) BIP PU QU-02 100kVA 10.5/0.22kV 

10500 URB. SANTA URSULA URB. SANTA URSULA BIP PU QU-02 160kVA 10.5/0.22kV 

10663 CONDOMINIO INGENIERIA II AV. LA CULTURA (ALTURA SANTA 
URSULA) BIP PU QU-02 160kVA 10.5/0.22kV 

11125 CENTRO DE SALUD SAN 
SEBASTIAN 

ESQUINA MARCO ZAPATA CON 
GARCILASO BIP PA QU-02 100kVA 10.5/0.22kV 

11453 PARQUE MARCAVALLE PARQUE MARCAVALLE - RAFAEL 
AGUILAR PAEZ MON PU QU-02 100kVA 10.5/0.22kV 

10305 VISTA ALEGRE II (Reubicado) VIA EXPRESA BIP PU QU-02 100 kVA 10.5/0.220 KV 

10463 VILLA MANANTIAL VILLA MANANTIAL MON PU QU-02 100kVA 10.5/0.22kV 
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10360 URB. LOS SAUCES URB. LOS SAUCES MON PU QU-02 100kVA 10.5/0.22kV 

10717 TUPAC AMARU 02 (Reubicado) VIA EXPRESA BIP PU QU-02  100 KV 

10350 EMPLEADOS CERVECEROS (Antes 
SUBESTACIÓN 0010350) 

AV. DE LA CULTURA (Antes EMPLEADOS 
CERVECEROS) BIP PU QU-02 200kVA 10.5/0.22kV 

10499 PERIODISTAS MARCAVALLE PERIODISTAS MARCAVALLE MON PU QU-02 100kVA 10.5/0.38kV 

11378 CONSORCIO ORION CUSCO S.R.L. PARQUE INDUSTRIAL "E-7" - VIA 
EXPRESA BIP PA QU-02 160kVA 10.5/0.22kV 

10166 CONJ. HAB. CAHUIDE I CONJ. HAB. CAHUIDE I BIP PU QU-02 80kVA 10.5/0.22kV 

11086 SANTA URSULA II AV. TUPAC AMARU BIP PU QU-02 160kVA 10.5/0.38kV 

10710 MOLINERA (Antes SED0010710) REP. DE ARGENTINA (Antes ZONA NO 
HABITADA 3) BIP PA QU-02 200kVA 10.5/0.22kV 

11017 TUPAC AMARU I (Reubicado) VIA EXPRESA BIP PU QU-02 100 KVA 10.5/0.38-
0.22KV 

10138 URB. MAGISTERIO II (Antes 
SUBESTACIÓN 0010138) 

CALLE PANAMA - URB. MAGISTERIO 
(Antes URB. MAGISTERIO II) CAS PU QU-02 160kVA 10.5/0.22kV 

10540 URB. GC. SANTA ROSA II (Reubicado) URB. GC. SANTA ROSA II BIP PU QU-02 160kVA 10.5/0.22kV 

10983 CONDOMINIO QUISPICANCHIS URB. QUISPICANCHIS COM PU QU-02 100kVA 10.5/0.38kV 

10812 AV. CUSCO AV. CUSCO BIP PU QU-02 100 KVA 10.5/0.4-0.231 
KV 

10952 APV. QUISPIQUILLA GRANDE QUISPIQUILLA GRANDE BIP PU QU-02 100kVA 10.5/0.22kV 

10119 CONJ. HAB. CAHUIDE II CONJ. HAB. CAHUIDE II BIP PU QU-02 100kVA 10.0/0.22kV 

11318 CAMELIDOS CUSCO PARQUE INDUSTRIAL CALLE LAS 
AMERICAS COM PA QU-02 100kVA 10.5/0.22kV 

11084 REPUBLICA DEL PERU AV. REPUBLICA DEL PERU BIP PU QU-02 100kVA 10.5/0.38kV 

10624 APROVICOP APROVICOP (APV LOS PINOS) MON PU QU-02 25kVA 10.5/0.22kV 

10558 INDUSTRIAS MOLICUSCO (Antes 
SUBESTACIÓN 0010558) 

REP. DE PARAGUAY(INDUSTRIAS 
MOLICUSCO) BIP PA QU-02 50kVA 10.5/0.22kV 

10418 URB. WISPAMPA II URB. WISPAMPA II BIP PU QU-02 100kVA 10.5/0.22kV 

10242 IGLESIA MORMONES IGLESIA MORMONES MON PA QU-02 50kVA 10.5/0.22kV 

11490 URB. QUISPICANCHIS-CALLE CUBA URB. QUISPICANCHIS-CALLE CUBA BIP PU QU-02 <Null> 

11015 BERNARDO TAMBOHUACSO 
(Reubicado) VIA EXPRESA BIP PU QU-02 100 KVA 10.5 /0.220 KV 

10168 VISTA ALEGRE I (Reubicado) VIA EXPRESA BIP PU QU-02 100kVA 10.5/0.22kV 

11130 RESIDENCIAL LAS TORRES DE 
KAYSER 

RESIDENCIAL LAS TORRES DE KAYSER - 
(ATRAS DE CTC) CAS PU QU-02 400kVA 10.5/0.22kV 

10501 PUENTE SAN SEBASTIAN PUENTE SAN SEBASTIAN BIP PU QU-02 100kVA 10.5/0.22kV 

10358 PARQUE INDUSTRIAL V (Antes 
SUBESTACIÓN 0010358) 

INTERSEC. LAS AMERICAS - REP. DE 
ARGENTINA (Antes ZONA NO 
HABILITADA II) 

BIP PU QU-02 250kVA 10.5/0.22kV 

11008 MADEREROS QUISPIQUILLA 
(Reubicado) QUISPIQUILLA MON PU QU-02 160kVA 10.5/0.22kV 

11128 AV CUSCO I AV CUSCO - 1 PARADERO SAN 
SEBASTIAN MON PU QU-02 100kVA 10.5/0.22kV 

10757 SUPER MERCADO MEGA AV. DE LA CULTURA - URB. MAGISTERIO 
(Antes URB. SANTA ROSA AV CULTURA) BIP PA QU-02 160kVA 10.5/0.22kV 

10128 CALLE SUCRE I S.S. CALLE SUCRE I S.S. CAS PU QU-02 250kVA 10.5/0.22kV 

10677 VILLA MANANTIAL II VILLA MANANTIAL BIP PU QU-02 160kVA 10.5/0.22kV 

10816 CAMINO REAL Camino Real BIP PU QU-02 160kVA 10.5/0.22kV 

11493 PROL. TUPAC AMARU-
MARCAVALLE PROL. TUPAC AMARU-MARCAVALLE MON PU QU-02 <Null> 

10095 AV. DE LA CULTURA II AV. DE LA CULTURA II COM PU QU-02 75kVA 10.5/0.22kV 

10026 INDUSTRIA COCA-COLA (Antes 
SUBESTACIÓN 0010026) 

AV. DE LA CULTURA - SANTA URSULA 
(Antes INDUSTRIA COCA-COLA) MON PA QU-02 160kVA 10.5/0.22kV 

11014 VILLA RINCONADA(Reubicado) APV. VILLA RINCONADA BIP PU QU-02 160kVA 10.5/0.22kV 

10146 CALLE CHIMA S.S. CALLE CHIMA S.S. BIP PU QU-02 100kVA 10.5/0.22kV 

10257 URB. 28 DE JULIO (Reubicado) VIA EXPRESA(Antes URB. 28 DE JULIO 
S.S.) BIP PU QU-02 100kVA 10.5/0.22kV 

10254 VISTA ALEGRE III (Reubicado) VIA EXPRESA BIP PU QU-02 200 KV 
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10255 APV. LAS MERCEDES VIA EXPRESA BIP PU QU-02 100KVA 10.5/0.220KV 

10256 AV. CUSCO I S.S. AV. CUSCO I S.S. CAS PU QU-02 250kVA 10.5/0.22kV 

10022 URB. QUISPICANCHI (Antes 
SUBESTACIÓN 0010022) 

LOZA DEPORTIVA - URB. 
QUISPICANCHI(Antes URB. 
QUISPICANCHIS) 

BIP PU QU-02 200kVA 10.5/0.22kV 

10956 URB. MAGISTERIO II ETAPA-A URB. MAGISTERIO COM PU QU-02 250kVA 10.5/0.22kV 

10297 URB. MARIATEGUI S.S. URB. MARIATEGUI S.S. BIP PU QU-02 160 kVA 10.5/0.4-0.23 kV 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

3.1.4 Balance de Energía en el AMT QU-02 

El balance de energía eléctrica es una herramienta fundamental para el diagnóstico del 

rendimiento operativo en un alimentador de media tensión. En el caso del alimentador AMT QU-

02, este procedimiento permite analizar de forma sistemática la energía que ingresa al sistema, la 

que es efectivamente entregada a los usuarios, y la que se pierde en el proceso. Esta información 

es clave para identificar ineficiencias, pérdidas excesivas o posibles irregularidades dentro del 

sistema de distribución. 

El análisis se basa en la aplicación de fórmulas que relacionan la energía medida en el 

punto de entrada del alimentador con la energía registrada en los distintos puntos de consumo, 

permitiendo calcular la diferencia como pérdidas totales. A su vez, estas pérdidas pueden 

clasificarse en técnicas —originadas por el comportamiento físico de los conductores, 

transformadores y demás componentes eléctricos— y no técnicas, relacionadas con errores de 

medición, conexiones ilegales o fallas administrativas. De este modo, el balance energético se 

convierte en un insumo valioso para la planificación, supervisión y mejora continua de la operación 

del sistema eléctrico. 

Eentrada = Eentregada + Epérdidas 
 

( 3 ) 

 
Donde: 

Eentrada: Energía medida a la salida del transformador de potencia o punto de alimentación 

del alimentador (kWh). 
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Eentregada: Energía facturada o medida en los clientes (kWh). 

Epérdidas: Energía no entregada a los clientes (pérdidas técnicas + no técnicas) (kWh) 

Figura 3-3 

Esquema Unifilar de Interconexión del Sistema de Distribución de Media Tensión – Subestación 

Quencoro. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

3.1.5 Cálculo de Pérdidas Totales. 

El cálculo de pérdidas totales en un alimentador de media tensión permite determinar 

cuánta energía, del total inyectado en el sistema, no llega efectivamente a los usuarios finales. Esta 

pérdida se obtiene como la diferencia entre la energía que ingresa al alimentador y la que es 
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registrada por los medidores de los consumidores, reflejando así el nivel de eficiencia del sistema 

en términos energéticos. 

𝐸𝑝é𝑟𝑑𝑖𝑑𝑎𝑠 = 𝐸𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝐸𝑒𝑛𝑡𝑟𝑒𝑔𝑎𝑑𝑎 
 

( 4 ) 

 
Donde: 

Este valor global incluye tanto las pérdidas técnicas, que son propias del diseño y 

operación del sistema eléctrico (efecto Joule en conductores, pérdidas en transformadores, etc.), 

como las pérdidas no técnicas, que se originan por causas externas como fraudes, errores de 

medición, o inconsistencias administrativas. 

El conocimiento preciso de este parámetro es esencial para establecer estrategias de mejora, 

justificar inversiones en infraestructura, y cumplir con estándares de eficiencia energética 

establecidos por organismos reguladores. Además, sirve como indicador de desempeño y 

confiabilidad de la red de distribución. 

3.2 Estado Actual de las pérdidas de energía el en AMT QU-02 de distribución de Cusco 

Actualmente, la empresa distribuidora Electro Sur Este S.A.A. ejecuta el proceso de 

balance energético mediante una estructura secuencial de recopilación, procesamiento y 

comparación de datos eléctricos en el ámbito de su red primaria y secundaria. Este procedimiento 

se inicia en las cabeceras de los Alimentadores de Media Tensión (AMT), donde se encuentran 

instalados medidores electrónicos de tipo ION, los cuales cuentan con capacidad de adquisición 

en intervalos de alta resolución. 

Estos medidores realizan integraciones de energía activa y reactiva cada 15 minutos, 

generando registros que permiten evaluar con precisión la variabilidad de la carga en el tiempo. A 
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partir de la potencia medida en dichos intervalos y considerando el factor temporal de integración, 

se obtiene la energía suministrada aguas arriba para cada alimentador. 

La información capturada es transmitida de manera periódica al Sistema Integrado de 

Energía de Electro Sur Este (SIELSE), específicamente al módulo de balance energético, donde 

es consolidada y almacenada para su posterior procesamiento. Esta base de datos centralizada 

permite tener trazabilidad histórica del comportamiento de los alimentadores y facilita la auditoría 

energética mensual. 

Una vez transcurrido el ciclo mensual de facturación, se procede a vincular las mediciones 

de cabecera con los consumos asociados a cada una de las subestaciones de distribución secundaria 

conectadas a dicho alimentador. Cada subestación, a su vez, mantiene una relación jerárquica con 

los suministros individuales registrados por medidores comerciales. 

Finalizado el proceso de lectura comercial —que se ejecuta a través del sistema de gestión 

de medición y facturación de la empresa— se lleva a cabo una comparación entre la energía 

registrada en la cabecera del alimentador (aguas arriba) y la sumatoria de todas las lecturas de 

consumo aguas abajo, incluyendo tanto usuarios regulados como no regulados. 

Además de la energía medida por clientes finales, en el balance se integran otros 

componentes operativos relevantes, tales como: 

• Consumo de alumbrado público, cuyo valor es proyectado en base a potencia instalada, 

tiempo de funcionamiento promedio y curvas de carga típicas por zona. 

• Servicios extraordinarios, como suministros temporales, usos internos o conexiones 

eventuales. 
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• Recuperos de energía, asociados a regularizaciones, ajustes técnicos o intervenciones 

comerciales posteriores. 

La suma de estos elementos permite generar un balance energético completo, donde se 

compara la energía total medida en el origen del alimentador frente al conjunto de consumos y 

usos identificados en la red aguas abajo. La diferencia entre ambos valores representa el total de 

pérdidas del sistema, las cuales se clasifican posteriormente en técnicas y no técnicas, en función 

de estimaciones basadas en la infraestructura, condiciones de operación y control comercial. 

Este proceso, aunque sistemático, aún depende del procesamiento mensual de datos y de 

la completitud del ciclo de facturación, lo que puede limitar la capacidad de respuesta en tiempo 

real. Por esta razón, la presente investigación propone complementar este procedimiento mediante 

el uso de la inteligencia artificial, específicamente redes neuronales, que permitan estimar de forma 

dinámica y con mayor resolución las pérdidas energéticas, así como identificar patrones de 

comportamiento anómalos dentro del sistema. 
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EVOLUCION 2024 Enero 2024 Febrero 2024 Marzo 2024 Abril 2024 Mayo 2024 Junio 2024 Julio 2024 Agosto 2024 Setiembre 2024 Octubre 2024 Noviembre 2024 Diciembre TOTAL

1. Compra de Energía/Potencia 2,344,302 2,175,447 2,318,403 2,303,368 2,396,038 2,282,411 2,391,220 2,435,080 2,321,769 2,431,047 2,412,439 2,392,607 28,204,131

2. Sistema Aislado y/o Propio (Neto) (2.1 - 2.2 - 2.3 - 2.4) 0 0 0 0 0 0 0 0 0 0 0 0 0

2.1. Generación Bruta 0 0 0 0 0 0 0 0 0 0 0 0 0

2.2. Consumo propio de generación 0 0 0 0 0 0 0 0 0 0 0 0 0

2.3. Generación exportada 0 0 0 0 0 0 0 0 0 0 0 0 0

2.4. Consumo propio de SET 0 0 0 0 0 0 0 0 0 0 0 0 0

3. Ventas a Otras Empresas 0 0 0 0 0 0 0 0 0 0 0 0 0

4. Transferencias -1,016 -21,206 0 0 0 35,773 0 -15,977 15,297 -538 -11,434 75,462 76,360

5. Energía/Potencia Total Disponible (1 + 2 - 3 + 4) 2,343,286 2,154,241 2,318,403 2,303,368 2,396,038 2,318,184 2,391,220 2,419,103 2,337,066 2,430,509 2,401,005 2,468,070 28,280,492

6. Ventas de Energía/Potencia a Clientes en MAT y AT 0 0 0 0 0 0 0 0 0 0 0 0 0

6.1. Mercado Libre 0 0 0 0 0 0 0 0 0 0 0 0 0

6.1.1. En Muy Alta Tensión 0

6.1.2. En Alta Tensión 0 0 0 0 0 0 0 0 0 0 0 0 0

6.2. Mercado Regulado 0 0 0 0 0 0 0 0 0 0 0 0 0

6.2.1. En Muy Alta Tensión 0

6.2.2. En Alta Tensión 0 0 0 0 0 0 0 0 0 0 0 0 0

7. Pérdidas en Transmisión 0 0 0 0 0 0 0 0 0 0 0 0 0

7.1. En Muy Alta Tensión 0

7.2. En Alta Tensión 0

8. Pérdidas en Transformación MAT/AT/MT 0

9. Energía/Potencia entregada al Sistema de Distribución en MT y BT 2,343,286 2,154,241 2,318,403 2,303,368 2,396,038 2,318,184 2,391,220 2,419,103 2,337,066 2,430,509 2,401,005 2,468,070 28,280,492

10. Total Ventas en MT 506,239 463,087 450,161 433,332 469,100 486,569 446,388 506,386 502,227 494,057 552,215 505,984 5,815,746

10.1. MT1 (Libres) 0 0 0 0 0 0 0 0 0 0 0 0 0

10.2. MT2 3,194 2,317 4,586 7,451 11,737 6,273 8,621 7,507 6,946 8,007 9,260 6,490 82,388

10.3. MT3P 37,666 35,303 27,715 35,565 34,977 34,609 33,709 33,831 35,172 35,300 36,007 35,431 415,284

10.4. MT3FP 5,333 5,255 9,666 5,582 5,280 5,976 5,342 5,226 5,547 5,534 5,971 5,786 70,498

10.5. MT4P 97,338 418,452 408,194 98,252 415,490 97,979 396,801 458,027 452,834 443,545 499,312 456,164 4,242,387

10.6. MT4FP 362,708 1,760 0 286,483 1,616 341,733 1,916 1,796 1,729 1,672 1,664 2,113 1,005,189

10.7. Recuperos en MT 0 0 0 0 0 0 0 0 0 0 0 0 0

10.8. Servicios Extraordinarios en MT 0 0 0 0 0 0 0 0 0 0 0 0 0

11. Total Ventas en BT 1,700,889 1,628,405 1,591,873 1,709,074 1,691,807 1,704,909 1,719,800 1,751,602 1,753,122 1,716,066 1,696,752 1,705,693 20,369,991

11.1. BT1 (Libres) 0 0 0 0 0 0 0 0 0 0 0 0 0

11.2. BT2 3,446 3,711 3,259 3,508 3,374 3,602 3,371 3,519 3,437 3,467 3,295 3,665 41,653

11.3. BT3P 16,193 16,313 14,479 15,288 14,682 13,468 12,752 13,888 14,282 12,333 15,066 15,155 173,899

11.4. BT3FP 1,573 1,126 1,060 1,060 1,013 1,530 928 1,020 1,048 3,190 1,124 1,036 15,708

11.5. BT4P 0 0 0 0 0 0 0 0 0 0 0 0 0

11.6. BT4FP 0 0 0 0 0 0 1 0 0 0 0 0 1

11.7. BT5A 6,693 7,005 6,267 7,000 6,553 7,003 6,632 6,764 6,975 6,303 7,030 6,082 80,307

11.8. BT5B Residencial 1,571,040 1,503,537 1,464,171 1,575,132 1,551,461 1,570,050 1,583,172 1,614,362 1,621,516 1,584,592 1,568,058 1,574,868 18,781,959

11.9. BT5B No Residencial 0 0 0 0 0 0 0 0 0 0 0 0 0

11.10. BT5C - AP 82,674 80,596 86,863 85,215 99,263 92,993 95,779 94,450 87,940 86,975 84,097 84,159 1,061,004

11.11. BT5D 0 0 0 0 0 0 0 0 0 0 0 0 0

11.12. BT6 14,837 14,837 14,837 14,837 14,837 14,837 14,837 15,215 15,215 15,215 15,215 14,837 179,550

11.13. BT7 0 0 0 0 0 0 0 0 0 0 0 0 0

11.14. Recuperos en BT 175 303 324 263 359 1,379 2,041 2,041 2,315 3,358 596 4,392 17,546

11.15. Servicios Extraordinarios en BT 4,258 977 613 6,771 266 48 289 345 395 634 2,271 1,498 18,364

12. Consumo Propio de Instalaciones ELSE 0 0 0 0 0 0 0 0 0 0 0 0

13. Total Ventas en MT + BT 2,207,128 2,091,491 2,042,033 2,142,406 2,160,907 2,191,478 2,166,189 2,257,989 2,255,350 2,210,123 2,248,966 2,211,676

14. Consumo Total 2,207,128 2,091,491 2,042,033 2,142,406 2,160,907 2,191,478 2,166,189 2,257,989 2,255,350 2,210,123 2,248,966 2,211,676 26,185,737

15. Pérdidas de distribución en MT y BT (kWh) 136,158 62,750 276,370 160,961 235,130 126,706 225,031 161,114 81,717 220,386 152,039 256,393 2,094,755

16. Porcentaje de Pérdidas de distribución (%) 5.81% 2.91% 11.92% 6.99% 9.81% 5.47% 9.41% 6.66% 3.50% 9.07% 6.33% 10.39% 7.41%

17. Porcentaje de Pérdidas en transmisión y subtransmisión (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

18. Porcentaje de Pérdidas Totales (%) 5.81% 2.91% 11.92% 6.99% 9.81% 5.47% 9.41% 6.66% 3.50% 9.07% 6.33% 10.39% 7.41%

Balance de Energía por AMT

Ilustración 3.1

%alancH GH (nHrJta GHl $07 48��� ± 'isJrHJaGR.

 
 Fuente: Electro Sur Este S.A.A.  Elaboración: Propia. 
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3.2.1 Detalle del medidor ION registrador en cabecera de subestación 

El medidor PowerLogic ION8650 de Schneider Electric es un dispositivo avanzado de 

medición eléctrica diseñado para aplicaciones de facturación en alta precisión, análisis de calidad 

de energía y monitoreo en tiempo real en subestaciones, plantas industriales y redes de 

distribución. Este equipo destaca por su conformidad con los estándares internacionales IEC 

62053-22 Clase 0.2S y ANSI C12.20 Clase 0.1, lo que garantiza exactitud en la medición de 

energía activa y reactiva (Schneider Electric, 2020). 

 

El ION8650 integra funciones de medición bidireccional en cuatro cuadrantes, 

visualización en pantalla, múltiples puertos de comunicación (Ethernet, Modbus, DNP3, IEC 

61850, IRIG-B), así como registro de eventos de calidad de energía como sags, swells, transitorios, 

armónicos y desequilibrios, bajo la norma IEC 61000-4-30. Además, posee memoria interna 

escalable (hasta 128 MB), puertos digitales de entrada/salida y módulos de expansión opcionales, 

facilitando su integración en sistemas SCADA o plataformas de gestión energética (Power 

Solutions, 2019). 

Su arquitectura basada en la tecnología ION permite configurar módulos lógicos internos 

sin necesidad de programación avanzada, lo cual lo hace altamente adaptable a distintas 

configuraciones de red y necesidades operativas. Asimismo, es compatible con sistemas de 

supervisión como Power Monitoring Expert (PME), facilitando la centralización de datos y el 

análisis histórico del comportamiento eléctrico en instalaciones críticas. 

Aplicaciones comunes 

• Medición para facturación de interconexiones eléctricas. 
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• Monitoreo de pérdidas técnicas y no técnicas en alimentadores. 

• Detección de eventos de calidad de energía. 

• Supervisión de subestaciones y control de demanda. 

• Validación de transferencias de carga o intercambios energéticos entre 

alimentadores o áreas operativas. 

3.3 Limitaciones Operativas en la Gestión del Balance de Energía. 

A pesar de contar con una infraestructura digital para la captura y centralización de 

información energética, el proceso de balance de energía actualmente implementado por Electro 

Sur Este S.A.A. presenta limitaciones operativas y estructurales que afectan la precisión del 

análisis y la toma de decisiones en tiempo oportuno. Una de las principales debilidades radica en 

la forma en que se gestiona la información dentro del sistema SIELSE, donde los datos 

provenientes de los medidores ION se cargan en bruto, sin ningún tipo de procesamiento o 

depuración preliminar. 
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Figura 3-4 

Medidor de Energía Multifunción PowerLogic ION8650 de Schneider Electric – QU-02. 

 

                                              Fuente: Electro Sur Este S.A.A. 

Esta entrega de datos “crudos” implica que la información no pasa por filtros que permitan 

validar condiciones particulares de la red, como lo son las transferencias temporales de carga entre 

alimentadores de media tensión (AMT) o los errores de asignación de suministros por zonificación 

incorrecta. Dichas omisiones generan desajustes en la correspondencia real entre el flujo 

energético registrado aguas arriba y el consumo aguas abajo, afectando directamente la calidad del 

balance mensual. 
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El caso más crítico ocurre con las transferencias de carga entre AMTs, que son maniobras 

comunes ejecutadas desde el centro de control para mantener la continuidad del servicio ante 

mantenimientos programados, fallas u otras contingencias. Si bien estas transferencias se registran 

de manera manual en las bitácoras operativas del centro de control, la actualización en el sistema 

SIELSE no es inmediata. Por el contrario, existe una brecha de varias semanas entre la ejecución 

de la maniobra y su integración formal al sistema de análisis de energía. 

Este desfase temporal impide contar con información fiel y sincronizada al momento de 

calcular el balance energético mensual, generando distorsiones importantes en los reportes de 

pérdidas. Además, esta demora restringe severamente la capacidad de la empresa para implementar 

medidas correctivas o de control, especialmente en lo referente a la gestión activa de pérdidas de 

energía no técnicas, donde la inmediatez de acción es un factor clave. 

En este contexto, se evidencia la necesidad de contar con métodos predictivos e inteligentes 

que puedan adaptarse al comportamiento dinámico de la red y brindar soporte en tiempo real a las 

tareas de monitoreo y toma de decisiones. La aplicación de redes neuronales en este estudio se 

orienta justamente a resolver esta carencia, permitiendo procesar datos históricos con mayor 

profundidad, identificar inconsistencias no evidentes a simple vista y generar estimaciones 

ajustadas incluso en ausencia de información confirmada o demorada por procesos 

administrativos. 

• Al inactivo de manera inmediata mientras la salida “falsa” cambia después del 

tiempo correspondiente al tiempo muerto. 
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• Si el intervalo de tiempo se resetea al estado inactivo en un evento underflow 

(solo en el modo simétrico), ambas salidas se van al estado inactivo 

inmediatamente y no se generan tiempos muertos. 

 

3.4 Pérdidas Técnicas de Energía Eléctrica en el alimentador QU-02  

Las pérdidas técnicas de energía eléctrica constituyen un fenómeno inherente a todo 

sistema de distribución, originado principalmente por el efecto Joule en los conductores, así como 

por las pérdidas en el núcleo y el devanado de los transformadores. Estas pérdidas, aunque 

inevitables, pueden ser modeladas, cuantificadas y gestionadas con el uso de herramientas 

computacionales especializadas. En el presente estudio, se aborda el análisis de las pérdidas 

técnicas en el alimentador QU-02 del sistema eléctrico de distribución de Cusco, el cual presenta 

una infraestructura heterogénea, con múltiples subestaciones, líneas primarias y secundarias, así 

como una variabilidad significativa en la demanda de sus usuarios. 

Las pérdidas técnicas ascienden a 1,456.75MWh, en lo que concierne a pérdidas en 

transformadores y pérdidas en línea de distribución, esto se detallara en la tabla 3.4 y 3.5.
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3.5 Clientes con Carga Considerable en el Alimentador QU-02. 

Ilustración 3-2 

Ubicación de clientes con mayor carga en el Alimentador QU-02 
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Tabla 3.3 

Detalle de la Potencia Instalada y Demanda Máxima de Consumidores de Media Tensión con Mayor Carga en el Alimentador QU-

02. Año 2024. 
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La Tabla 3.3 denominada “Detalle de la Potencia Instalada y Demanda Máxima de 

Consumidores de Media Tensión con Mayor Carga en el Alimentador QU-02. Año 2024” expone 

la información técnica más representativa de los principales centros de carga conectados a dicho 

alimentador, evidenciando su aporte significativo en el consumo total de energía del sistema de 

distribución. En ella se detallan las subestaciones de tipo BIP, las cuales operan bajo un esquema 

de tensión primaria de 10.5 kV y una tensión secundaria de 220 V, configuradas para suministrar 

energía de manera eficiente a usuarios con requerimientos eléctricos de media potencia. Los 

valores registrados muestran potencias instaladas que fluctúan entre 100 kVA y 150 kVA, con 

demandas máximas que alcanzan entre 67.58 kW y 130.45 kW, lo que denota una utilización 

considerable de la capacidad instalada. Entre las instalaciones más relevantes destacan Industrias 

Molicusco, Parque Industrial V y el Centro de Salud San Sebastián, ubicadas en zonas de alta 

densidad industrial y de servicios esenciales, lo que pone de manifiesto la importancia operativa 

de estos puntos dentro del sistema eléctrico del distrito de San Sebastián. Este análisis resulta 

fundamental para comprender la distribución de cargas críticas en el alimentador QU-02 y orientar 

estrategias de gestión y planificación energética hacia la optimización de la infraestructura 

eléctrica durante el año 2024. 
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3.5.1 Pérdidas de energía eléctrica en Transformadores en el AMT QU-02 al 2024 

Tabla 3.4 

Resumen de Energía Eléctrica pérdidas en Transformadores en el AMT QU-02 

Código del 
Alimentado

r 

Compra de Energía (MWh) Total, compra de 
Energía (MWh) 

ENE FEB MAR ABR MAY JUN JUL AGO SET OCT NOV DIC  

QU-02 2,344.3 2,175.5 2,318.4 2,303.4 2,396.0 2,282.4 2,391.2 2,435.1 2,321.8 2,431.1 2,412.4 2,392.6 28,204.13 
 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

%Eperd 

Pérdidas de Energía (MWh)  

ENE FEB MAR ABR MAY JUN JUL AGO SET OCT NOV DIC 
Pérdidas 

de energía 
(MWh) 

4.01% 93.95 87.19 92.92 92.31 96.03 91.47 95.83 97.59 93.05 97.43 96.69 95.89 1,130.36 
 

Durante el año, el alimentador QU-02 del sistema de distribución eléctrica presentó una compra total de energía de 28,204.13 

MWh, con un promedio mensual cercano a los 2,350 MWh. El factor de pérdidas técnicas (%Pperd) fue de 5.40 %, mientras que el 

factor de potencia (Fp) alcanzó un valor medio de 0.47, indicando condiciones operativas con posibles desequilibrios o baja eficiencia 

en la utilización de la energía reactiva. Asimismo, el factor de carga (Fc) fue de 0.63, lo cual refleja un nivel moderado de utilización 

de la capacidad instalada en el alimentador. Las pérdidas de energía mensuales oscilaron entre 87.19 MWh (febrero) y 97.59 MWh 

(agosto), acumulando un total anual de 1,130.36 MWh, equivalente a un 4.01 % de pérdidas energéticas respecto a la energía comprada.  
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Estos indicadores sugieren la necesidad de un análisis más profundo del comportamiento operativo del alimentador, considerando 

la aplicación de redes neuronales artificiales.  

3.5.2 Pérdidas de energía eléctrica en Líneas de distribución en el AMT QU-02, al año 2024 

Tabla 3.5 

Resumen de Energía Eléctrica pérdidas en Líneas de Distribución en el AMT QU-02 

Código del 
Alimentador 

Compra de Energía (MWh) 

ENE FEB MAR ABR MAY JUN JUL AGO SET OCT NOV DIC 

QU-02 2,344.30 2,175.45 2,318.40 2,303.37 2,396.04 2,282.41 2,391.22 2,435.08 2,321.77 2,431.05 2,412.44 2,392.61 
Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

 

%Pperd Fp Fc %Eperd Pérdidas de Energía (MWh) 

Pérdidas 
de 

Energía 
(MWh) 

ENE FEB MAR ABR MAY JUN JUL AGO SET OCT NOV DIC  
1.56% 0.47 0.63 1.16% 27.13 25.18 26.83 26.66 27.73 26.41 27.67 28.18 26.87 28.13 27.92 27.69 326.39 

 

En este escenario, el alimentador QU-02 registró una compra total anual de energía de 28,204.13 MWh. Las pérdidas técnicas 

representaron un 1.56 % de dicha energía, mientras que el porcentaje total de pérdidas energéticas se estimó en 1.16 %, equivalente a 

326.39 MWh anuales. El factor de potencia (Fp) se mantuvo en 0.47, y el factor de carga (Fc) en 0.63, conservando los mismos valores 

operativos respecto al escenario anterior. Las pérdidas mensuales fueron más reducidas, fluctuando entre 25.18 MWh (febrero) y 28.18 
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MWh (agosto), lo que sugiere una mejora en la eficiencia del sistema o un modelo método de estimación diferente. La comparación con 

registros anteriores evidencia una disminución significativa en las pérdidas absolutas y porcentuales, lo que permite suponer un escenario 

más controlado o refinado en términos de balance energético. Estos resultados constituyen una base cuantitativa para validar métodos 

predictivos de pérdidas y evaluar la consistencia operativa del alimentador a lo largo del año. 

Los factores de pérdidas y Factor de Carga se muestran en el Anexo 10.
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3.6 Proceso de redes neuronales 

El proceso de implementación de redes neuronales artificiales (RNA) en esta investigación 

se orientó al modelado y estimación del balance de energía en el alimentador QU-02, utilizando 

datos históricos recolectados desde el año 2019 hasta 2024. Para ello, se empleó la herramienta 

Neural Net Fitting del entorno MATLAB, que permite ajustar redes tipo feedforward mediante 

algoritmos de retro propagación, específicamente el método de Levenberg–Marquardt, debido a 

su alta eficiencia en problemas de regresión no lineal. 

Inicialmente, se realizó la normalización de los datos de entrada energía activa, factor de 

potencia y carga a un rango entre -1 y 1, lo cual facilita el entrenamiento de la red y mejora la 

convergencia. Posteriormente, se dividió la base de datos en tres subconjuntos: entrenamiento 

(70%), validación (15%) y prueba (15%), garantizando que el método generalice adecuadamente 

sin sobreajuste. 

El entrenamiento de la red se realizó utilizando una semana característica libre de 

perturbaciones (del 21 al 28 de septiembre de 2024), lo que permitió que la RNA identificara 

patrones reales del consumo eléctrico. La arquitectura óptima encontrada incluyó una capa oculta 

con diez neuronas, logrando un error medio cuadrático (MSE) inferior al 1%, evidenciando alta 

precisión. 

Una vez entrenada, la red fue utilizada para interpolar datos faltantes, estimar la demanda 

para el año 2025 y evaluar las pérdidas técnicas no observadas en registros convencionales. Este 

proceso validó la capacidad de las redes neuronales para representar dinámicamente el 

comportamiento energético del sistema, brindando una herramienta eficaz para la toma de 

decisiones operativas y el fortalecimiento de la gestión energética. 
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3.6.1 Recolección de datos (mediciones) 

La recolección de datos constituye la base fundamental para el desarrollo del balance 

energético aplicado al alimentador QU-02. Esta etapa consistió en la obtención de registros 

históricos de medición provenientes de equipos PowerLogic ION8650, instalados en puntos 

estratégicos del sistema de distribución, los cuales proporcionan información de pulsos de energía 

activa en intervalos de 15 minutos. Los datos recopilados abarcan el periodo comprendido entre 

los años 2019 y 2024, lo que permite contar con una muestra representativa para el análisis 

estacional y anual del comportamiento de la demanda eléctrica. 

Los archivos extraídos incluyen variables como energía activa, demanda máxima, voltaje, 

corriente y factor de potencia, que son esenciales para la caracterización del alimentador. Estos 

datos fueron gestionados y depurados utilizando hojas de cálculo en Microsoft Excel, eliminando 

valores atípicos y vacíos. Además, se realizó una codificación temporal precisa que facilita su 

posterior procesamiento en MATLAB. La calidad y consistencia de esta información resultan 

críticas, ya que sobre ella se entrena y valida las redes neuronales que se aplicará en la estimación 

de puntos faltantes y la proyección de demanda para el año 2025. 

3.6.2 Estimación de factor de la demanda utilizando RN para el año 2025. 

La estimación del factor de demanda proyectado para el año 2025 en el alimentador QU-

02 se realizó mediante la implementación de redes neuronales artificiales (RNA), con el objetivo 

de identificar patrones de consumo histórico y predecir escenarios futuros bajo condiciones 

operativas similares. Este proceso se fundamenta en la capacidad de las RNA tipo feedforward con 

retro propagación del error para modelar relaciones no lineales complejas entre variables eléctricas 

como la carga, energía consumida y horas de máxima demanda. 
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Para el entrenamiento de las redes neuronales, se utilizaron datos horarios de energía activa 

registrados entre los años 2019 y 2024, los cuales fueron normalizados y organizados en 

estructuras temporales mediante scripts en MATLAB. La red fue entrenada con el algoritmo 

Levenberg–Marquardt, alcanzando una convergencia óptima con errores promedio inferiores al 

1%. Posteriormente, se validó con semanas características representativas libres de perturbaciones, 

como mantenimientos o transferencias de carga. 

Los resultados obtenidos permitieron proyectar el perfil diario y mensual del alimentador 

para el año 2025, y con ello, calcular el factor de demanda como la relación entre la demanda 

máxima proyectada y la demanda promedio del mismo periodo. Esta estimación es esencial para 

la planificación operativa, ya que refleja el grado de utilización del sistema frente a su capacidad 

instalada y permite anticipar posibles desequilibrios, reforzando el proceso de balance energético 

mediante inteligencia artificial. 

3.6.3 Análisis Mediante Diagrama Unifilar para Ubicar Puntos de Transferencia de Carga. 

El análisis del sistema de distribución mediante el diagrama unifilar del alimentador QU-

02 constituye una herramienta clave para la identificación de puntos estratégicos de transferencia 

de carga. Este diagrama representa de manera esquemática y funcional la topología eléctrica del 

alimentador, detallando las conexiones entre subestaciones, seccionadores, equipos de protección, 

nodos de interconexión y derivaciones hacia otros alimentadores vecinos. 

A través del estudio del diagrama unifilar, se lograron identificar los puntos donde 

históricamente se realizan transferencias de carga ante contingencias, mantenimientos o 

redistribución de la demanda. Estos puntos, comúnmente ubicados en subestaciones terminales o 

en intersecciones con alimentadores paralelos, son fundamentales para el balance energético, ya 

que impactan directamente en la continuidad del suministro y la redistribución de flujos eléctricos. 
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La evaluación visual y técnica del unifilar permitió mapear estos nodos de transferencia y 

asociarlos con eventos registrados en el SCADA, validando su operatividad y frecuencia de uso. 

Esta información se integró a las redes neuronales para incorporar las posibles variaciones que se 

generan ante cada transferencia, mejorando así la precisión del balance energético y la estimación 

de pérdidas. Además, permitió delimitar zonas críticas donde se requiere reforzamiento o 

automatización para facilitar una gestión más eficiente de la red. 

3.6.4 Detección de anomalías en la medición en el alimentador QU-02, corroboradas con la 

información de centro de control. 

Durante el análisis de datos históricos del alimentador QU-02, se identificaron diversas 

anomalías en los registros de medición provenientes de los medidores PowerLogic ION8650. Estas 

inconsistencias incluyeron pérdidas de datos, variaciones abruptas en la energía activa, valores 

nulos en franjas horarias y saltos irregulares en el comportamiento del consumo, los cuales no 

correspondían al patrón normal de demanda del alimentador. 

Para validar y explicar estas anomalías, se recurrió a la información operativa registrada 

en el Centro de Control de la empresa distribuidora. A través de la revisión de bitácoras de eventos, 

reportes de mantenimiento y registros de maniobras, se logró establecer correspondencia entre las 

distorsiones en los datos y eventos tales como transferencias de carga, interrupciones por fallas, 

mantenimientos programados y desconexiones temporales de equipos. 

Esta verificación cruzada permitió depurar adecuadamente las bases de datos utilizadas en 

el modelado y asegurar que las anomalías no fueran interpretadas como errores de medición ni 

patrones reales del sistema. Adicionalmente, se emplearon técnicas de interpolación y 

reconstrucción de datos únicamente en los casos donde las fallas no fueron críticas, manteniendo 

la integridad del análisis. Esta etapa fue fundamental para garantizar la confiabilidad del método 
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basado en redes neuronales, dado que entrenarlo con datos erróneos podría afectar la precisión de 

las predicciones del balance energético. 

3.6.5 Estimación de los pulsos (mediciones cada 15 minutos) utilizando datos hasta el año 

2024, en QU-02. 

La estimación de pulsos de energía cada 15 minutos fue un componente clave en la 

caracterización detallada del comportamiento del alimentador QU-02. Esta granularidad en las 

mediciones permite una mayor precisión en el análisis del perfil de carga, la identificación de 

anomalías y la aplicación eficiente de métodos predictivos. Para ello, se emplearon los registros 

históricos obtenidos del medidor PowerLogic ION8650, el cual almacena datos en intervalos 

cuarto horarios, proporcionando información crítica sobre el consumo real. 

El periodo de análisis comprendió desde enero de 2019 hasta diciembre de 2024. Se 

identificaron tramos con datos incompletos, los cuales fueron procesados utilizando técnicas de 

interpolación lineal y media móvil, garantizando la continuidad de la serie temporal sin alterar sus 

tendencias naturales. Estos datos fueron normalizados para su posterior uso en el entrenamiento 

de redes neuronales, manteniendo la coherencia en los valores de energía activa, reactiva y 

potencia. 

La reconstrucción de los pulsos faltantes se validó con la información del sistema SCADA 

y las bitácoras del centro de control, especialmente en eventos de transferencias de carga o 

interrupciones. El resultado fue una base de datos robusta, que permitió representar con alta 

resolución el comportamiento energético del alimentador QU-02 y alimentar método de predicción 

con una periodicidad realista y operativamente significativa. 
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3.6.6 Multiplicación de factor de demanda estimado a los pulsos, para encontrar los pulsos 

al año 2025.   

 Una vez obtenida la serie continua de pulsos de energía cada 15 minutos correspondiente 

al alimentador QU-02 hasta el año 2024, se procedió a estimar los pulsos para el año 2025 mediante 

la aplicación del factor de demanda proyectado. Este factor fue previamente estimado utilizando 

redes neuronales artificiales entrenadas con los registros históricos de consumo, comportamiento 

estacional y patrones operativos detectados en el periodo 2019–2024. 

La proyección se realizó multiplicando los pulsos base de cada intervalo por el valor 

correspondiente del factor de demanda estimado para 2025, ajustado mensualmente para reflejar 

la evolución esperada de la carga. Este procedimiento permitió generar un conjunto de pulsos 

representativos del comportamiento futuro del alimentador, considerando la tendencia de 

crecimiento, eventos recurrentes y transferencias históricas. 

La metodología permitió simular el escenario energético del alimentador QU-02 con alta 

resolución temporal, proporcionando una base sólida para análisis de pérdidas, planificación de 

mantenimiento, y evaluaciones técnicas y económicas bajo condiciones operativas futuras. Esta 

proyección constituye un insumo esencial para el cálculo del balance energético proyectado al 

2025 y la validación de estrategias de gestión inteligente de la red. 

3.6.7 Reemplazo de los puntos estimados en el análisis de balance de energía 

Una vez proyectados los pulsos de energía para el año 2025 mediante el uso de redes 

neuronales artificiales, el siguiente paso consistió en incorporar dichos valores en el análisis de 

balance energético del alimentador QU-02. Este procedimiento implicó sustituir los datos faltantes, 

distorsionados o ausentes debido a eventos como transferencias de carga, mantenimientos o fallos 

de comunicación, por los valores estimados con la red neuronal. 
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La sustitución se realizó de manera controlada, identificando previamente los intervalos 

afectados en la base de datos original y marcándolos como segmentos críticos. Posteriormente, los 

valores generados por la red neuronal fueron integrados únicamente en esos puntos, asegurando la 

integridad del resto de los datos. Esta estrategia permitió reconstruir el perfil energético sin alterar 

los patrones reales de operación, manteniendo la coherencia del análisis. 

El uso de datos estimados permitió realizar un balance de energía más preciso y continuo, 

eliminando las discontinuidades que comprometen la confiabilidad de los indicadores como 

pérdidas técnicas, factor de carga y eficiencia operativa. Asimismo, la incorporación de estas 

proyecciones fortalece la toma de decisiones, al brindar una visión más realista del 

comportamiento futuro del sistema bajo condiciones operativas normales. 

3.7 Comparación de niveles de pérdidas obtenidos por la concesionaria y por el análisis 

con redes neuronales 

En esta fase, se comparan los porcentajes de pérdidas energéticas mensuales obtenidos por 

la concesionaria eléctrica mediante su sistema convencional, con los resultados calculados a partir 

de las redes neuronales desarrollado en esta investigación. La finalidad de este contraste es 

identificar discrepancias y validar la capacidad predictiva, especialmente en contextos donde 

existen vacíos o distorsiones de datos. 

Las redes neuronales, al ser entrenadas con perfiles históricos confiables y corregidos, 

logran estimar valores coherentes incluso en ausencia de datos completos, lo cual genera 

diferencias frente a los cálculos de la concesionaria, que muchas veces no consideran eventos como 

transferencias de carga o fallas en la medición. Esta comparación evidencia que el análisis basado 

en inteligencia artificial ofrece una estimación más estable y continua, útil como herramienta de 

auditoría energética y mejora del proceso de balance de energía. 
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CAPÍTULO. IV 

4. Análisis de resultados obtenidos de la red neuronal 

4.1 Introducción. 

El presente capítulo se orienta a la exposición, interpretación y validación de los resultados 

obtenidos a partir de la implementación basado en inteligencia artificial, específicamente 

utilizando redes neuronales artificiales (RNA), como herramienta de apoyo en la gestión de 

pérdidas energéticas dentro del alimentador QU-02, perteneciente a la red de distribución eléctrica 

de la ciudad del Cusco. La aplicación ha sido desarrollada bajo un enfoque predictivo y 

reconstructivo, que permite abordar de manera eficiente las deficiencias existentes en los métodos 

convencionales de balance de energía empleados por la empresa concesionaria. 

A lo largo del proceso de análisis, se ha hecho uso de un conjunto de datos históricos que 

abarca desde el año 2019 hasta octubre de 2024, extraídos directamente de equipos de medición 

de alta precisión como los medidores PowerLogic ION8650. Estos datos fueron cuidadosamente 

tratados, seleccionando períodos representativos mediante la identificación de una semana 

característica libre de anomalías, la cual sirvió como base para el entrenamiento de la red neuronal. 

Este procedimiento permitió simular y reconstruir perfiles de consumo energético con un alto nivel 

de fidelidad temporal, logrando interpolar valores faltantes o distorsionados debido a 

interrupciones, transferencias de carga, maniobras operativas o fallas en el sistema de monitoreo. 

Mediante el uso de MATLAB y su entorno especializado en aprendizaje supervisado, se 

entrenó una red neuronal de tipo feedforward con retro propagación, empleando el algoritmo de 

Levenberg-Marquardt, que permitió alcanzar un error relativo por debajo del 1%. Este nivel de 

precisión evidencia la robustez para estimar datos en zonas de incertidumbre, optimizando así la 
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calidad del perfil de carga, indispensable para la elaboración de un balance energético más exacto 

y coherente con la realidad operativa. 

Este capítulo detalla, en primer lugar, el comportamiento histórico del consumo energético 

en el alimentador QU-02, evidenciando tendencias, estacionalidades y eventos disruptivos. 

Posteriormente, se presenta el proceso de reconstrucción de la curva de carga para el año 2024, así 

como la proyección de la demanda para el año 2025, estableciendo comparaciones entre los 

resultados obtenidos mediante la red neuronal y los registros convencionales utilizados por la 

concesionaria. Esta comparación permite identificar brechas de información que, de no ser 

corregidas, generan subestimaciones en el cálculo de pérdidas, las cuales pueden representar 

montos económicos significativos. 

4.2 Explicación del cuadro correspondiente al procedimiento de la red neuronal. 

4.2.1 Recolección de datos (mediciones) 

Todo inicia con la obtención de datos reales de medición eléctrica —por ejemplo, energía 

activa, potencia, corriente o pulsos de medidores— correspondientes a años anteriores (hasta 

2024). Estos datos son la base para entrenar la red neuronal y realizar los análisis posteriores. 

4.2.2 Análisis mediante diagrama unifilar 

Se emplea el diagrama unifilar del sistema eléctrico (representación esquemática de los 

alimentadores, transformadores y cargas) para ubicar los puntos donde puede ocurrir transferencia 

de carga. Este paso es importante para entender cómo fluye la energía y dónde podrían producirse 

anomalías o pérdidas. 
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4.2.3 Detección de anomalías en la medición del alimentador QU-02 

Aquí se analizan los datos medidos en el alimentador QU-02, verificando comportamientos 

anómalos (por ejemplo, caídas de tensión, errores de medición o desequilibrios de carga). 

Estas anomalías se corroboran con la información del centro de control, que tiene registros 

operativos del sistema (como interrupciones o transferencias reales de carga). 

4.2.4 Estimación del factor de demanda utilizando redes neuronales (RN) 

En este bloque se aplica la de red neuronal previamente entrenado para predecir el factor 

de demanda del año 2025. 

El factor de demanda es la relación entre la demanda máxima y la demanda promedio, y 

sirve para proyectar el consumo futuro con base en los datos históricos y patrones aprendidos por 

la RN. 

4.2.5 Estimación de los pulsos y proyección para 2025 

Con los datos medidos cada 15 minutos hasta el año 2024, se estiman los pulsos (es decir, 

la energía medida por los equipos del alimentador QU-02). 

Luego se multiplican esos pulsos por el factor de demanda estimado mediante las RN, para 

proyectar los pulsos esperados para el año 2025. 
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Figura 4-1 

Flujograma del proceso de estimación y análisis del balance energético mediante redes 

neuronales en el alimentador QU-02. 

 

Fuente y Elaboración: Propia.
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4.3 Procedimiento para realizar la red neuronal 

4.3.1 Proyección inicial mediante red neuronal 

El primer paso consiste en la obtención de una proyección del consumo de energía para un 

horizonte determinado, en este caso el año 2025. 

Para ello, se hace uso de una red neuronal previamente entrenada con datos históricos de 

consumo, los cuales incluyen series temporales que reflejan el comportamiento energético de los 

alimentadores durante varios años. 

La red neuronal se encarga de identificar patrones de crecimiento, variaciones estacionales, 

y posibles tendencias de incremento o reducción de la demanda. Esta red neuronal predictiva se 

alimenta con los datos ya preprocesados, y su salida corresponde a la proyección del consumo 

esperado. 

El objetivo principal de esta etapa es anticipar el comportamiento futuro de la demanda eléctrica, 

de modo que sirva como punto de partida para el análisis posterior. 

4.3.2 Análisis y consolidación del consumo de los alimentadores 

Una vez obtenidas las proyecciones iniciales, el siguiente paso es la consolidación de la 

información proveniente de los distintos alimentadores del sistema. 

En esta fase se agrupan y suman los valores de consumo de los alimentadores seleccionados, con 

el propósito de obtener un panorama general del comportamiento del conjunto o de una zona 

específica del sistema eléctrico. 

Además del cálculo de la suma total, en esta etapa se realiza un análisis gráfico y 

estadístico, que permite identificar posibles anomalías o valores atípicos. Dichas irregularidades 
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pueden deberse a errores de medición, cortes de suministro, o comportamientos no representativos 

del patrón habitual de consumo. 

Este procedimiento resulta esencial, ya que garantiza que los datos que se utilicen 

posteriormente sean consistentes, limpios y representativos del comportamiento real del sistema. 

4.3.3 Obtención de la semana característica 

Una vez consolidados y depurados los datos, se procede a la identificación de la semana 

característica del sistema. Este concepto se refiere a aquella semana que resume de forma 

representativa el comportamiento promedio del consumo eléctrico, eliminando fluctuaciones 

atípicas y resaltando los patrones típicos de demanda entre los días de la semana y las horas del 

día. 

El proceso consiste en analizar la información histórica del centro de control y seleccionar, 

a partir de un criterio estadístico, aquella semana que mejor refleje la dinámica energética 

promedio. 

En algunos casos, se emplea el promedio ponderado de varias semanas similares para suavizar 

variaciones o compensar días anómalos. Él resultado de esta etapa es un perfil semanal limpio y 

estable, que servirá como base para alimentar la red neuronal en la siguiente fase. 

4.3.4 Aplicación de la semana característica a la red neuronal 

Con la semana característica definida, esta se utiliza como entrada principal de la red 

neuronal. 

La idea es que la red neuronal aprenda y reproduzca el comportamiento de un patrón típico de 

consumo, extrapolándolo a distintos escenarios o condiciones de operación. En este punto, la red 
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neuronal no solo proyecta valores futuros, sino que también ajusta sus parámetros para reproducir 

perfiles de consumo coherentes con la realidad operativa del sistema. 

Esta etapa es clave porque permite combinar la capacidad predictiva de la red neuronal con 

información representativa y depurada del sistema, mejorando significativamente la precisión y 

estabilidad de las predicciones. En otras palabras, la red neuronal deja de trabajar únicamente con 

datos crudos, y pasa a interpretar un patrón de referencia confiable, optimizando así su desempeño. 

4.3.5 Generación del perfil final mediante reemplazo de valores 

Finalmente, se realiza el reemplazo y ajuste de valores dentro del perfil de consumo 

generado, de acuerdo con las necesidades específicas del análisis. En esta fase se pueden modificar 

o sustituir determinados valores —ya sea por corrección de datos, simulación de escenarios o 

ajuste de límites operativos—, con el fin de obtener un perfil energético completo, libre de 

inconsistencias y adecuado para estudios posteriores. 

El resultado final es un perfil de consumo limpio, representativo y proyectado, que puede 

ser utilizado para múltiples fines: planificación energética, dimensionamiento de sistemas 

eléctricos, evaluación del impacto de nuevas cargas, o incluso integración de fuentes renovables 

en el sistema. 

4.4 Tendencia del consumo mensual de los años 2019–2024 

Ya que la tesis compromete a un análisis para el año 2025, es importante tener en cuenta 

los siguientes puntos. 

• Los datos utilizados para el análisis fueron desde enero del 2019 hasta octubre del 

2024. 
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• Está siendo utilizado una aplicación del MATLAB (neural net fitting), para simular 

la red neuronal. 

• Todos los datos son extraídos a partir de las mediciones de los medidores ION, que 

existen en la concesionaria. 

• El análisis solo se centra en el alimentador QU-02. 

Para este análisis son considerados los consumos mensuales totales por año, considerando 

los datos desde el año 2019, como se muestra en la siguiente Ilustración. 

Ilustración 4-1 

Análisis de la Tendencia y Estacionalidad del Consumo Total de Energía Eléctrica mensual por 

año AMT QU-02. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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Teniendo en cuenta estos datos es posible realizar una estimación de demanda para el año 

2025, como es posible observar en la gráfica se tiene un comportamiento exponencial a partir del 

año 2021 (color anaranjado), por otro lado, el comportamiento de la demanda para el año 2019 y 

2020 tienen un comportamiento atípico debido a las circunstancias (pandemia) que se suscitaron 

en dichos años.    

Considerando los datos mostrados en la Ilustración 4.1 simulamos una red neuronal para 

estimar una posible demanda para el año 2025. La Ilustración 4.2 muestra el resultado de la red 

neuronal, por supuesto esperando el comportamiento atípico de los años 2020 y 2021 teniendo 

como resultado una demanda de 617.392 kW.h para el año 2025 mediante este valor es posible 

determinar diferentes factores que nos ayuden a determinar nuestro balance de energía para el año 

que corresponda, es importante mencionar que la red neuronal simulada nos permite tener una 

estimación de demanda eléctrica, por solo un año, es decir la red neuronal aplicada en este trabajo 

de investigación no tiene la capacidad de estimar la demanda para el año 2026. 
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Ilustración 4-2 

Curva Estimada de Consumo de Energía para el año 2025, generada por la Red Neuronal. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La ilustración 4-2 muestra la proyección de demanda al año 2025 del alimentador QU02, 

donde el eje y representa la energía en kW.h y el eje x representa el tiempo en que fue evaluado el 

consumo, se consideró el tiempo desde el año 2019 hasta el 2024. 

En la Ilustración 4.3 se muestra el diagrama de barras del factor de multiplicación, esto 

para poder observar cómo es que varía la demanda de los datos analizados en comparación con los 

datos estimados, por otro lado, la Ilustración 4.4 muestra los valores numéricos obtenidos del 

Matlab, así como la variación porcentual que considera el análisis año tras año. El representa el 

tiempo evaluado para estimar dicha ilustración, donde el valor 15 representa el año 2025, el valor 

14 representa el año 2024, el valor 13 representa el año 2023, el valor 12 representa el año 2022 y 

así consecutivamente hasta el valor 10 que representa el año 2020. 
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Ilustración 4-3 

Factor de Multiplicación para la Estimación de Consumo al año 2024. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

 

Ilustración 4-4 

Resultados extraídos del Matlab para la estimativa de consumo para el año 2025 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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4.5 Análisis de resultado del perfil de consumo 

Con el objetivo de llevar a cabo un análisis exhaustivo del comportamiento energético del 

alimentador QU-02, se procedió a la gráfica del perfil de consumo anual correspondiente al año 

2023, a partir de las mediciones registradas por los medidores inteligentes PowerLogic ION8650. 

Estos dispositivos, reconocidos por su alta precisión y capacidad de registro de calidad de energía, 

permitieron recopilar datos detallados del comportamiento horario y diario del flujo de carga 

eléctrica en dicho alimentador. 

La Ilustración 4.3 presenta de manera visual el perfil de consumo mencionado, en el cual 

se pueden observar con claridad fluctuaciones energéticas y caídas puntuales de potencia durante 

diversos periodos del año. Dichas caídas no obedecen necesariamente a interrupciones del 

suministro eléctrico, sino que están asociadas a factores diversos previamente identificados, tales 

como transferencias de carga entre alimentadores, mantenimientos programados, maniobras 

operativas, errores de comunicación o ausencia temporal de datos en el sistema de supervisión 

SCADA. Estas discontinuidades representan un desafío considerable para la evaluación fiel del 

comportamiento del alimentador, ya que generan vacíos de información que afectan directamente 

el cálculo del balance energético y, por consiguiente, la estimación de pérdidas técnicas y no 

técnicas. 

A pesar de estas variaciones, se puede identificar un patrón operativo sostenido a lo largo 

del año, caracterizado por una demanda base estable, con picos representativos en horarios de 

mayor consumo, que reflejan tanto la actividad residencial como la industrial presente en la zona 

de influencia del alimentador. Este patrón es de suma importancia, ya que proporciona una base 

de comportamiento predecible, útil para la construcción de método proyectivos y para la toma de 

decisiones estratégicas por parte del operador del sistema de distribución. 
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Con el fin de superar las limitaciones inherentes a la pérdida o corrupción de datos, se 

recurre a la implementación de la inteligencia artificial, en particular las redes neuronales 

artificiales, que permiten interpolar, estimar y reconstruir de manera coherente los valores ausentes 

o atípicos. Estas herramientas computacionales son especialmente útiles en entornos donde la 

información incompleta puede distorsionar el análisis técnico. A través del entrenamiento de la 

red neuronal utilizando una semana característica libre de perturbaciones, se busca generar una 

estimación robusta del perfil de consumo, la cual servirá como base para proyectar el 

comportamiento del alimentador en años futuros con un margen de error controlado y validado 

empíricamente. 

En este contexto, la utilización de técnicas de aprendizaje automático no solo responde a 

una necesidad de precisión operativa, sino que se convierte en un instrumento clave para la 

modernización del análisis energético, contribuyendo con ello a una mejor planificación, 

evaluación de pérdidas y mejora de la eficiencia en el sistema de distribución eléctrica. 
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Ilustración 4-5 

Perfil de Consumo de Energía Eléctrica del Alimentador QU-02, año 2024. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

Una vez recopilados y procesados los gráficos de perfil de consumo correspondientes a los 

distintos años disponibles, se procedió a la identificación de una semana característica del 

alimentador QU-02, la cual constituye un insumo esencial para el entrenamiento y validación de 

la red neuronal desarrollado. Esta semana representa un período continuo y representativo del 

comportamiento energético del sistema, libre de interferencias, distorsiones o eventos anómalos 

que pudieran afectar la confiabilidad del análisis. 

La selección de esta semana característica no es trivial, dado que debe cumplir con una 

serie de criterios rigurosos relacionados con la estabilidad operativa del alimentador, entre los que 

se incluyen: la ausencia de mantenimientos programados, cortes de energía, transferencias de 

carga, errores en la transmisión de datos, así como factores externos como condiciones climáticas 

extremas que pudieran alterar el comportamiento de la demanda. Por tanto, se aplicó un proceso 
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iterativo de validación técnica basado en el análisis de múltiples semanas del año, apoyado por 

reportes oficiales emitidos por el Centro de Control de la empresa concesionaria, los cuales 

documentan todos los eventos registrados en el sistema de distribución. 

Como resultado de este proceso, se seleccionó el intervalo comprendido entre el 21 y el 28 

de septiembre de 2024, periodo durante el cual no se evidenciaron anomalías de ningún tipo. Esta 

semana fue elegida por presentar una curva de carga continua, estable y con una dinámica de 

consumo coherente con el comportamiento promedio anual del alimentador. La Ilustración 4.6. es 

el perfil, que será utilizado como entrada principal para la red neuronal. El objetivo es que este 

conjunto de datos represente fielmente la estructura de demanda del alimentador en condiciones 

normales de operación, permitiendo así entrenar una red neuronal predictiva robusto que sea capaz 

de estimar datos ausentes, reconstruir pulsos perdidos y proyectar escenarios energéticos con alto 

grado de confiabilidad. 

Cabe señalar que el procedimiento seguido para identificar esta semana no responde 

únicamente a criterios visuales o cuantitativos simples, sino que ha sido respaldado por la revisión 

cruzada entre los datos registrados por los medidores inteligentes ION8650, los informes 

operativos de la concesionaria y el análisis de continuidad de los registros horarios. De esta 

manera, se garantiza la integridad y representatividad del conjunto de entrenamiento de la red 

neuronal artificial, lo cual es fundamental para la calidad de los resultados que se expondrán en las 

secciones posteriores. 
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Ilustración 4-6 

Semana característica registrada por medidor ION QU-02 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

4.6 Análisis del perfil de semana característica utilizando redes neuronales con Matlab 

Una vez identificada la semana característica y validada su idoneidad operativa, se 

procedió a su implementación como conjunto de datos de entrenamiento para la red neuronal 

artificial. Esta red neuronal fue desarrollada con el propósito específico de reconstruir los valores 

faltantes o erróneos en el perfil de demanda total del alimentador QU-02, tal como se muestra en 

la Ilustración 4.6, correspondiente al comportamiento energético anual registrado. El eje x 

representa el tiempo evaluado en toda la semana característica, como la red neuronal utilizada no 

reconoce valores de fecha como tal (dd/mm/ññ), entonces se optó por colocar a cada día un valor 

numérico.  

El entrenamiento de la red neuronal se llevó a cabo utilizando los datos horarios de 

consumo correspondientes a dicha semana característica, permitiendo que la red neuronal aprenda 
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el patrón de carga típico del alimentador bajo condiciones normales de operación. Una vez 

entrenada, la red fue aplicada sobre el perfil completo del año 2024 para identificar y corregir los 

eventos de caída de potencia o vacíos de medición, muchos de los cuales están asociados a 

interrupciones en la lectura, errores de comunicación o a maniobras de operación programadas por 

la concesionaria. 

Como se muestra en la Ilustración 4.7, algunos segmentos del perfil presentan 

discontinuidades o caídas abruptas a 0 kWh, situación que no necesariamente implica la 

interrupción del suministro eléctrico, sino que corresponde a eventos donde el sistema de medición 

no registró correctamente la energía entregada. Este fenómeno es común en situaciones de 

transferencia de carga entre alimentadores, donde por cuestiones operativas, el alimentador QU-

02 cede temporalmente parte de su carga a un alimentador adyacente, sin que esta transferencia 

sea sincronizada o reflejada de inmediato en los sistemas de supervisión. 

La Ilustración 4.8 permite observar un ejemplo puntual de este comportamiento, donde el 

registro cae bruscamente a cero, generando un error de interpretación si se analiza sin considerar 

el contexto operativo. Ante esta problemática, la red neuronal entrenada con datos válidos de la 

semana característica actúa como un método de estimación inteligente, permitiendo inferir el valor 

de consumo más probable que debió haberse registrado en ese momento, considerando la 

continuidad del patrón de carga. 

Esta metodología garantiza una mayor fidelidad en la reconstrucción del perfil de consumo 

anual, eliminando los errores asociados a datos perdidos o distorsionados, y proporcionando una 

base mucho más sólida para el cálculo del balance de energía y la estimación de pérdidas técnicas 

y no técnicas. Además, se consolida como una solución eficiente frente a las limitaciones de los 
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sistemas de medición actuales, complementando el análisis tradicional con herramientas de 

inteligencia artificial orientadas a la optimización operativa del sistema eléctrico. 

Ilustración 4-7 

Curva de Carga Proyectada Patrón de Demanda para el Periodo 2024 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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Ilustración 4-8 

Análisis de la Caída de Potencia Asociadas en el Alimentador QU-02 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

4.7 Procedimiento para implementación de la red neuronal utilizando MATLAB 

La red neuronal artificial implementado en esta investigación se construyó a partir de un 

conjunto de datos de entrada correspondiente a la semana característica de consumo, previamente 

seleccionada y validada conforme a criterios de estabilidad y representatividad operativa del 

alimentador QU-02. Esta semana fue utilizada como base de aprendizaje del modelo, debido a que 

refleja un patrón típico de comportamiento de la carga bajo condiciones normales, sin 

interrupciones ni eventos anómalos que distorsionen los registros. 

En términos estructurales, la red neuronal tiene como datos de entrada el conjunto de 

mediciones horarias de potencia activa (kW) correspondientes a la semana seleccionada. A su vez, 

la salida esperada de la red se define como una función continua que representa la interpolación 
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precisa del comportamiento de carga en todos los instantes temporales de dicha semana, es decir, 

una curva suave y completa que modela el consumo energético con alta resolución temporal. 

El objetivo principal de esta red es reconstruir los datos faltantes o inconsistentes en el 

perfil anual del consumo total. Para ello, se entrena la red con la secuencia característica, y luego 

se utiliza para estimar los valores en los puntos donde el sistema de medición ha presentado errores, 

caídas abruptas o registros nulos. De este modo, se genera un perfil de consumo corregido, el cual 

sustituye los pulsos distorsionados del conjunto original por valores estimados con base en el 

comportamiento aprendido. 

Esta interpolación permite restituir la integridad de los datos energéticos, lo cual es 

fundamental para lograr un balance de energía confiable. Al evitar que los vacíos de información 

afecten el cálculo de pérdidas, se mejora la exactitud del análisis técnico y se facilita la toma de 

decisiones por parte de la empresa distribuidora. En consecuencia, el uso de la red neuronal no 

solo aporta una solución efectiva ante las limitaciones operativas del sistema de medición, sino 

que además optimiza la representación del perfil de carga real, alineándose con los objetivos de 

esta tesis centrados en la gestión eficiente de pérdidas mediante inteligencia artificial. 

Entonces para implementar la red neuronal para evaluar el consumo tenemos los siguientes 

pasos: 

a) Extraer la curva característica de nuestro perfil de consumo total. 

b) Preparar los datos de tiempo para que la red neuronal reconozca de manera 

numérica, es decir cada medición tiene una hora y una determinada fecha, por lo 

tanto, para que la red neuronal pueda reconocer el tiempo de manera numérica se 

le asigna para cada fecha un valor numérico. 
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c) Colocar los datos preparados anteriormente en la red neuronal de Matlab, como 

muestra la Ilustración 4.9. 

Ilustración 4-9 

Importación de datos en el toolbox de MATLAB para redes neuronales. 

 

   Fuente y Elaboración: Propia 

Una vez estructurados adecuadamente los datos extraídos de la semana característica, estos 

fueron organizados e ingresados en el entorno de entrenamiento del toolbox de redes neuronales 

de MATLAB, específicamente mediante la herramienta Neural Net Fitting Tool (nftool). Para la 

implementación de la red neuronal, se definieron dos conjuntos bien diferenciados: los datos de 

entrada y los datos de salida esperados. 

Los datos de entrada fueron ubicados en el espacio denominado “Predictors”, el cual 

contiene las mediciones de energía activa (kWh) registradas durante la semana seleccionada. Este 
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conjunto refleja el comportamiento real del consumo bajo condiciones normales de operación del 

alimentador QU-02. 

Por su parte, los “Responses” corresponden a los valores de tiempo transformados 

numéricamente, es decir, a cada instante de medición (por ejemplo, cada minuto u hora) se le 

asignó un valor numérico secuencial que permite a la red neuronal establecer la relación temporal 

entre los puntos de entrada. Esta conversión temporal es necesaria, ya que las redes neuronales 

operan sobre datos cuantificables y requieren una correlación entre las variables para optimizar el 

proceso de aprendizaje. 

Una vez cargados ambos conjuntos de datos en la interfaz gráfica del toolbox, se procedió 

a la configuración y entrenamiento de la red neuronal. La Ilustración 4.10 muestra la disposición 

final de los datos dentro del entorno de MATLAB, listos para ser procesados por el algoritmo de 

entrenamiento. Esta etapa marca el punto de partida para la generación de la red neuronal capaz 

de interpolar, predecir y corregir pulsos energéticos faltantes, lo cual será descrito con mayor 

detalle en las secciones siguientes del presente capítulo. 
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Ilustración 4-10 

Síntesis del Proceso de Entrenamiento y Parámetros de la Red Neuronal con Algoritmo 

Levenberg-Marquardt. 

 

Fuente y Elaboración: Propia 

La Ilustración 4.10 muestra el proceso de entrenamiento de la red neuronal artificial, una 

vez que los datos de entrada (Predictors) y de salida (Responses) han sido correctamente colocados 

en el entorno gráfico del toolbox de MATLAB. Este entrenamiento se realiza utilizando el 

algoritmo de retro propagación optimizado Levenberg–Marquardt, ampliamente reconocido en el 

campo de la inteligencia artificial por su eficiencia en la convergencia de redes de tipo feedforward 

aplicadas a problemas de regresión no lineal. 
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Este método híbrido combina las ventajas del descenso por el gradiente y la aproximación 

de Gauss-Newton, lo cual permite alcanzar una alta precisión en tiempos computacionalmente 

razonables. Su elección en esta investigación responde a su eficacia para ajustar modelos a datos 

con ruido y alta variabilidad, como es el caso del perfil de carga eléctrica del alimentador QU-02. 

Durante el entrenamiento, se ejecuta una serie de iteraciones en las que la red ajusta sus 

pesos sinápticos para minimizar el error entre la salida estimada y la real, calculando 

continuamente el mean squared error (MSE) como métrica de rendimiento. La red es alimentada 

con la secuencia de datos temporales representativos del consumo de la semana característica, 

permitiéndole aprender su comportamiento e interpolar de forma continua los valores intermedios. 

Una vez finalizado este proceso, se utiliza la función fit integrada en el toolbox para 

visualizar gráficamente el ajuste logrado por la red neuronal, resultado que se representa en la 

Ilustración 4.11. Esta ilustración muestra la comparación entre los valores reales y los estimados 

por la red neuronal, así como la tendencia la red neuronal para replicar de forma precisa el perfil 

de consumo objetivo. La capacidad de la red neuronal para seguir la curva de referencia evidencia 

el correcto aprendizaje del patrón energético, y por ende, su idoneidad para ser aplicado en la 

reconstrucción de valores ausentes o erróneos dentro del perfil de demanda anual. 
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Ilustración 4-11 

Evaluación del Rendimiento de la Red Neuronal en los Conjuntos de Entrenamiento, Validación 

y Prueba. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Ilustración 4.11 presenta el resultado del proceso de interpolación realizado por la red 

neuronal artificial, luego de haber sido entrenada con los datos correspondientes a la semana 

característica. En este gráfico se puede observar la curva estimada de consumo, generada por la 

red neuronal, la cual se ajusta de manera continua al patrón aprendido, replicando fielmente la 

dinámica de carga eléctrica del alimentador QU-02. 

Este perfil estimado refleja la capacidad la red neuronal para interpolar valores de consumo 

en intervalos de tiempo arbitrarios, lo que resulta esencial para reconstruir registros energéticos 

faltantes o distorsionados en el perfil anual. La red neuronal fue programada para operar con una 

discretización temporal de un minuto, lo que significa que es capaz de generar una estimación de 

consumo para cada minuto del día, con una resolución mucho mayor que la de las mediciones 
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originales, las cuales eran registradas cada 15 minutos, conforme a las limitaciones de 

configuración del medidor inteligente PowerLogic ION8650. 

La ventaja de esta mayor resolución radica en la posibilidad de capturar con mayor detalle 

las fluctuaciones de la demanda, especialmente en situaciones donde ocurren cambios bruscos en 

la carga debido a arranques de equipos, cambios de turno, o condiciones externas. Asimismo, al 

introducir como entrada un valor numérico correspondiente a un instante temporal específico —

como una fecha y hora determinada previamente codificada—, la red neuronal devuelve como 

salida estimada el valor de consumo más probable que debió registrarse en ese momento, en 

función del comportamiento aprendido durante el entrenamiento. 

Esta interpolación no solo permite llenar vacíos en los registros históricos, sino que 

también mejora significativamente la calidad de los datos utilizados en el cálculo del balance de 

energía, ya que evita que se subestimen o sobrestimen pérdidas debido a la ausencia de información 

confiable. En suma, la aplicación de la red neuronal representa una mejora sustancial respecto al 

método convencional, tanto en términos de resolución temporal como de precisión operativa. 

La Ilustración 4.11 muestra también el error que se obtuvo de nuestra red neuronal, 

realizando un acercamiento tenemos la Ilustración 4.12 
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Ilustración 4-12 

Distribución del Error Residual de la Red Neuronal. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Ilustración 4.12 muestra el análisis gráfico del error por dato asociado a la red neuronal 

entrenado. En el gráfico, las barras de color anaranjado representan la magnitud del error 

porcentual entre el valor real y el valor estimado para cada punto del conjunto de validación. Este 

análisis permite evaluar de forma detallada la capacidad predictiva la red neuronal, así como 

identificar posibles desviaciones locales que puedan surgir durante el proceso de estimación. 

Es importante destacar que el valor máximo de error registrado por la red neuronal es de 

0.85 %, lo cual se encuentra por debajo del umbral del 1 %, considerado aceptable para 

aplicaciones de predicción en sistemas eléctricos de distribución. Este bajo margen de error 

evidencia que la red ha sido entrenada de manera eficiente, mostrando un alto grado de correlación 

entre los datos de entrada y las salidas estimadas. En consecuencia, se puede afirmar que la red 

neuronal desarrollada es robusta, confiable y adecuado para su propósito principal: la 

reconstrucción de perfiles de carga y la sustitución de valores faltantes en el análisis del balance 

de energía. 
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Finalmente, la Ilustración 4.13 ilustra la topología de la red neuronal utilizada. El método 

implementado corresponde a una arquitectura del tipo feedforward con una sola capa oculta, 

compuesta por 150 neuronas, que resultaron óptimas tras múltiples iteraciones de prueba y ajuste. 

Esta cantidad fue determinada mediante un proceso empírico que buscó el equilibrio entre la 

capacidad de aprendizaje y la evitación del sobreajuste (overfitting). La estructura adoptada 

permitió al método capturar de forma precisa las no linealidades del patrón de consumo 

característico del alimentador QU-02, facilitando así una interpolación suave y coherente con la 

naturaleza dinámica de la carga eléctrica. 

En conjunto, tanto los indicadores de error como la configuración estructural validan el 

rendimiento del método desarrollado, posicionando a la red neuronal como una herramienta 

efectiva para mejorar la calidad de los datos y optimizar la gestión energética en sistemas de 

distribución. 
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Ilustración 4-13 

Topología y Arquitectura de la Red Neuronal Artificial Empleada 

 

Fuente y Elaboración: Propia 
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4.8 Aplicación de la red neuronal en el perfil de consumo 

Tal como se ha detallado en secciones anteriores, uno de los problemas estructurales más 

significativos en la estimación del balance de energía es la presencia de un perfil de consumo 

incompleto o distorsionado, producto de diversos eventos operativos ocurridos en el alimentador 

QU-02. Estos eventos —tales como transferencias de carga, interrupciones programadas, fallos de 

comunicación con los medidores o condiciones técnicas imprevistas— generan inconsistencias en 

los registros energéticos, reflejadas muchas veces en valores nulos o atípicos que no representan 

el comportamiento real de la demanda. 

Para abordar esta problemática de manera rigurosa y coherente, se procedió a la 

recopilación y análisis de los reportes operativos proporcionados por el Centro de Control de la 

empresa concesionaria, los cuales detallan con exactitud los intervalos temporales específicos en 

los que ocurrieron dichos eventos. Esta información es crítica, ya que permite identificar de forma 

precisa los segmentos del perfil de carga que deben ser sustituidos o estimados. 

Con base en estos reportes, se delimitan los periodos afectados por inconsistencias, los 

cuales serán posteriormente tratados utilizando la red neuronal entrenada. De este modo, se 

garantiza que la interpolación y estimación de los valores faltantes se realice únicamente en los 

puntos donde se ha verificado la pérdida o alteración del dato, evitando así alteraciones 

innecesarias en las porciones del perfil que se mantienen válidas. 

Este procedimiento garantiza que el proceso de sustitución de datos se lleve a cabo de forma 

técnicamente coherente, temporalmente precisa y energéticamente consistente, asegurando la 

integridad del análisis posterior del balance de energía. En definitiva, esta integración entre el 

conocimiento operativo del sistema (a través de los reportes del centro de control) y el modelado 
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mediante redes neuronales constituye una estrategia robusta para restaurar la fidelidad del perfil 

de carga y, con ello, mejorar la exactitud del cálculo de pérdidas en el sistema de distribución. 

Tabla 4.1 

Detalle de las Transferencias de Carga entre Alimentadores (QU-02 - DO06 - DO07) por Fallas 

y Mantenimiento. 

FECHA 

AMT 
O 

Equip
o 

Orige
n 

AMT O 
Equipo 
Destino 

Fecha y Hora 
inicio 

Fecha y hora 
final 

Causa 
Transferenci

a 
Maniobras de transferencia 

8/02/2024 QU-02 DO06 8/02/2024 09:19 8/02/2024 
17:16 

Mantenimien
to SBC-1016 Cerrado / SBC-1009 Aperturado 

5/02/2024 QU-02 DO06 5/02/2024 10:03 5/02/2024 
10:38 FALLA 

SE APERTURA SBC-1009 Y SE CIERRA 
SBC-1016 / SE TRANSFIERE DE QU-02 A 

DO06 
19/07/202

4 QU-02 DO06 19/07/2024 
20:55 

20/07/2024 
00:51 FALLA Apertura de la celda de llegada de la QU-02 

en la SED1303 y cierre del SBC-1016 

3/07/2024 QU-02 DO06 3/07/2024 07:53 3/07/2024 
13:17 

MANTENIM
IENTO  

•Cierre del seccionador SBC-1016 (Manuel 
Prado) /interconexión de los AMT’s DO-06 y 

QU-02. 
•Apertura de la celda de maniobra en la 

SED1303 (Puente San Sebastián) llegada del 
RC-1084 (Cementerio San Sebastián), AMT 

QU-02. 

20/08/202
4 QU-02 DO07 20/08/2024 

22:41 
21/08/2024 

07:37 
MANTENIM

IENTO  

 Cierre de la celda (Interconexión DO07 – 
QU-02) en la SED0241 (Parque Industrial I) / 

se anilla AMT DO07 y QU-02.                                                                                                                                                
Apertura del reconectador RE-1002 (Av. 

Qosqo) / se transfiere carga del AMT DO07 
a QU-02 

16/09/202
4 QU-02 DO06 16/09/2024 

19:23 
17/09/2024 

09:37 FALLA CIERRE DEL SBC-1016 
APERTURA DEL SBC-1009 

1/10/2024 QU-02 DO-07 1/10/2024 13:58 1/10/2024 
18:43 

MANTENIM
IENTO 

• Cierre de la celda de llegada del AMT QU-
02 en SED0241 (Parque Industrial I) / se 

anilla los AMT’s QU-02 y DO-07. 
• Apertura y bloqueo mecánico del SBC-

1024 (Vía Expresa Vista Alegre) / se 
transfiere carga del AMT QU-02 al AMT 

DO-07. 
Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Tabla 4.1 presenta el reporte operativo emitido por el Centro de Control, en el cual se 

detallan los incidentes y maniobras ocurridas en el alimentador QU-02 durante el periodo de 

análisis. En dicho reporte se identifican claramente eventos de interconexión entre alimentadores, 
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evidenciándose la presencia de un segundo alimentador involucrado, lo que indica que, durante 

ciertos momentos, el QU-02 ha estado proveyendo energía a otros alimentadores a través de puntos 

de seccionamiento comunes, como celdas de transferencia o barras de acople (según se aprecia en 

el diagrama unifilar operativo). 

Esta situación es técnicamente relevante, ya que implica la existencia de flujos energéticos 

cruzados que no están reflejados explícitamente en los registros de medición del QU-02. Si bien 

se conoce la ocurrencia de dichas transferencias por los reportes operativos, no se dispone de 

información cuantitativa sobre la magnitud exacta de energía transferida, lo cual constituye una 

limitación importante para el cálculo preciso del balance de energía. De utilizar directamente estos 

datos sin corrección, se introduciría un error significativo en la estimación de pérdidas, tanto 

técnicas como no técnicas. 

Ante este escenario, el uso de herramientas avanzadas como las redes neuronales 

artificiales resulta fundamental. Estos métodos, al estar entrenados con patrones reales de 

comportamiento del alimentador en condiciones normales, permiten inferir los valores de energía 

que habrían sido registrados en ausencia de dichos eventos, es decir, reconstruir de forma 

inteligente los pulsos energéticos omitidos durante las transferencias de carga. Gracias a esta 

capacidad predictiva, es posible estimar de manera coherente y con bajo margen de error la energía 

que se dejó de medir, corrigiendo así las deficiencias de los sistemas de supervisión actuales y 

fortaleciendo la exactitud del análisis del balance energético. 

En este sentido, la red neuronal desarrollada en este trabajo no solo actúa como un 

estimador de datos faltantes, sino también como una herramienta de diagnóstico energético, capaz 

de identificar y compensar las omisiones estructurales del sistema de medición, permitiendo una 

gestión de pérdidas más eficiente, confiable y moderna. 
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En consecuencia, y como parte del proceso de reconstrucción del perfil de carga, se 

procedió a representar gráficamente la sustitución de los valores medidos —también conocidos en 

el ámbito técnico como pulsos de energía, debido a la forma discreta que adoptan en la curva de 

consumo— por los valores estimados generados por la red neuronal. Estas gráficas permiten 

visualizar de manera clara y precisa cómo el método reemplaza aquellos segmentos de la señal que 

presentan inconsistencias, caídas abruptas o datos faltantes, identificados previamente a través del 

análisis operativo y los reportes del centro de control. 

Cada uno de estos "pulsos" representa una lectura puntual del consumo energético dentro 

de un intervalo de tiempo específico. Cuando alguno de estos pulsos presenta una lectura nula, 

distorsionada o incongruente con el comportamiento típico del alimentador QU-02, se considera 

un dato no confiable y, por tanto, candidato a ser reemplazado mediante la interpolación realizada 

por la red neuronal artificial entrenada. 

La visualización de este proceso, mostrada en las Figuras siguientes, evidencia cómo la 

herramienta de inteligencia artificial logra reconstruir la forma original del perfil, manteniendo la 

continuidad energética y respetando el patrón de consumo esperado para ese periodo. Este enfoque 

no solo mejora la calidad de los datos disponibles, sino que también asegura una mayor fidelidad 

en el cálculo del balance de energía, al eliminar distorsiones que podrían inducir errores en la 

estimación de pérdidas técnicas y no técnicas. 

En definitiva, la interpolación de pulsos mediante el modelo neuronal representa una 

solución eficiente, automatizada y coherente para la restauración de registros energéticos 

incompletos, lo cual marca un avance significativo respecto a las metodologías tradicionales de 

validación y corrección de datos en sistemas eléctricos de distribución. 
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Ilustración 4-14 

Curva de Carga Diaria Proyectada para el Año 2023. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Ilustración 4.14 representa el perfil de consumo anual del alimentador QU-02 

correspondiente al año 2024, elaborado a partir de los registros recopilados por los medidores 

inteligentes instalados en el sistema. En esta figura puede observarse el comportamiento global de 

la demanda energética a lo largo del año, donde se manifiestan variaciones típicas en los niveles 

de carga, así como ciertos eventos anómalos que interrumpen la continuidad del perfil. 

Estos eventos, caracterizados por caídas abruptas en la curva de consumo o registros 

planos, corresponden a situaciones operativas ya mencionadas en apartados previos, como 

transferencias de carga, cortes programados o fallas momentáneas en la adquisición de datos. La 

detección de estas interrupciones es fundamental para comprender la calidad del registro 

energético y tomar decisiones informadas sobre la confiabilidad de los datos disponibles. 
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Para facilitar una interpretación más precisa, se presenta la Ilustración 4.15, en la cual se 

han marcado con círculos rojos los puntos específicos donde se identificaron dichas anomalías. 

Cabe señalar que estos eventos coinciden plenamente con los registros documentados en los 

reportes operativos del Centro de Control, lo que valida la consistencia entre el análisis visual del 

perfil y los informes técnicos. Esta concordancia fortalece la argumentación sobre la necesidad de 

corregir estos tramos del perfil mediante herramientas avanzadas, como la red neuronal 

desarrollada en este trabajo. 

La identificación visual de estas interrupciones no solo permite señalar los tramos críticos 

del año, sino que delimita con precisión los intervalos de tiempo donde debe ser aplicada la 

estimación neuronal, garantizando así que el reemplazo de datos se realice de forma técnica, 

controlada y justificada operativamente. 

Ilustración 4-15 

Detección Gráfica de Anomalías y Perturbaciones en el Perfil de Demanda del Alimentador 

QU-02. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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Ilustración 4-16 

Comparación del Perfil de Consumo Original y el Perfil Corregido del Alimentador QU-02 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

Seguidamente, se procedió a reemplazar los valores afectados por eventos anómalos en el 

perfil de consumo del alimentador QU-02, utilizando las estimaciones generadas por la red 

neuronal artificial entrenada. Esta etapa del proceso tiene como finalidad restituir la continuidad 

del perfil energético, corrigiendo las inconsistencias previamente identificadas y asegurando un 

comportamiento lógico y coherente con la dinámica de carga observada en el sistema. 

La Ilustración 4.16 muestra gráficamente el resultado de este procedimiento, en el cual los 

datos originales con errores o interrupciones han sido reemplazados por los valores interpolados 

por la red neuronal, generando una curva de consumo corregida y sin vacíos de información. Esta 

acción permite mantener la integridad del conjunto de datos y representa una mejora sustancial 

respecto a la información cruda inicialmente registrada. 
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Además del conjunto de eventos generales ocurridos a lo largo del año, se ha considerado 

particularmente el evento registrado el 01 de junio de 2024, el cual también fue objeto de 

reemplazo. Dicho evento, documentado en los reportes del Centro de Control, presentó una caída 

abrupta del registro a cero, sin que se haya evidenciado una interrupción real del servicio eléctrico. 

La corrección de este punto específico asegura que el cálculo del consumo mensual y, por 

consiguiente, del balance de energía, no se vea afectado por lecturas erróneas o faltantes. 

La aplicación precisa y segmentada de los valores generados por la red neuronal garantiza 

que solo los tramos necesarios del perfil sean modificados, preservando los datos originales válidos 

y confiables. Esta metodología controlada representa un avance significativo en el tratamiento de 

series temporales energéticas, al permitir una reconstrucción inteligente y técnicamente 

fundamentada del historial de consumo eléctrico. 

Ilustración 4-17 

Perfil de Demanda Diaria Corregida del Alimentador QU-02 durante junio del año 2024. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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Ilustración 4-18 

Comparación del Perfil de Consumo Original y el Perfil Corregido. 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

De esta manera se reemplazó para todos los eventos ocurridos en el alimentador QU-02 

para el año 2024, por lo tanto, es posible utilizar estos nuevos datos obtenidos para colocar al 

balance de energía, como muestra la tabla 4.18 los datos entregados por la concesionaria están en 

formato Excel, el cual se modificó agregando una fila para colocar los valores extraídos de la red 

neuronal.
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Tabla 4.2 

Tabla de Mediciones de Consumo Utilizando red Neuronal y lo que Utiliza la Empresa Concesionaria. 

Balance de 
Energía por 
AMT 

2024/02 2024/03 2024/04 2024/05 2024/06 2024/07 2024/08 2024/09 2024/10 2024/11 2024/12 TOTAL 

RED 
NEURONAL 
(kW.h) 

2166899.23       2310317.58   2427628.83 2338115.76 2424910.89       

Energía 
entregada al 
Sistema de 
Distribución en 
MT y BT 
(kW.h) 

2154241.01 2318403.34 2303367.51 2396037.72 2318183.92 2391220.00 2419102.71 2337066.25 2430508.92 2401004.99 2468069.51 25936189.62 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

Con los datos corregidos mediante la aplicación de la red neuronal artificial, se procedió al cálculo del porcentaje de pérdidas de 

energía correspondiente al alimentador QU-02, comparando los resultados obtenidos mediante este enfoque inteligente con los valores 

obtenidos utilizando los métodos convencionales basados únicamente en los registros crudos proporcionados por los sistemas de 

medición. 

Esta comparación se llevó a cabo de manera mensual, tomando en cuenta tanto los datos históricos sin intervención como los 

datos corregidos, en los cuales los eventos anómalos han sido suplantados por estimaciones generadas por la red neuronal. Es importante 

precisar que los meses que no presentan estimaciones provenientes de la red neuronal, es decir, aquellos en los que no se detectaron 

eventos críticos ni vacíos de información corresponden a periodos en los cuales el sistema de distribución operó con normalidad y las 

mediciones fueron completas y confiables. Por tanto, en estos meses se ha utilizado directamente el registro original como base para el 
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cálculo del balance energético. El objetivo de este procedimiento es doble: por un lado, mejorar la exactitud del cálculo de pérdidas 

técnicas y no técnicas, y por otro, evaluar el impacto real que tienen las correcciones realizadas por la red neuronal sobre el resultado 

final del balance energético. De esta forma, se puede cuantificar de manera objetiva cuánto margen de error estaba presente en los 

cálculos tradicionales y cómo el método propuesto contribuye a su reducción. 

Los resultados obtenidos revelan diferencias en el porcentaje de pérdidas mensuales, las cuales, aunque en algunos casos puedan 

parecer menores representan cantidades significativas de energía y dinero al ser proyectadas en el tiempo, especialmente si se considera 

el volumen de energía distribuida por el alimentador a lo largo del año.
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Tabla 4.3 

Comparativa De Porcentaje De Pérdidas 

Balance de Energía por 
AMT 

202402 202403 202404 202405 202406 202407 202408 202409 202410 202411 202412 

RED NEURONAL (kWh) 75407.8       118839.7   169640.0 82766.0 214787.9     

Pérdidas de distribución 
en MT y BT 
(kWh) 

94,124.43 276369.93 160961.39 235130.35 126,707.52 225031.35 241,670.82 122,574.76 330,578.85 152038.74 256393.33 

            
Porcentaje de Pérdidas 

Totales (%) 
28.12% 11.92% 6.99% 9.81% 29.84% 9.41% 25.54% 22.74% 20.96% 6.33% 10.39% 

DIFERENCIA ENTRE RED Y 
CONSECIONARIA 
(kW.h) 

18,716.63       7,867.82   72,030.82 39,808.76 115,790.95     

NIVEL DE PÉRDIDAS CON 
REDES 
NEURONALES 
(kW.h) 

2.90%       5.48%   6.64% 3.49% 9.09%     

TARIFA PROMEDIO (S/.) 0.65       0.65   0.65 0.65 0.65     

SOLES (S/.) 12025.31       7473.02   8099.81 997.03 5318.12   33913.30 

PROYECCION POR 10 
AÑOS (kW.h) 

120253.14       74730.18   80998.14 9970.35 53181.24   339133.04 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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La tabla 4.3 “Balance de Energía por AMT” presenta el análisis mensual del 

comportamiento energético durante el año 2024, donde se evalúan las pérdidas de distribución en 

media y baja tensión, los valores estimados por las redes neuronales y su impacto económico. Se 

observa que las pérdidas reales fluctúan entre 6.33% y 29.84%, con picos en marzo y octubre, 

mientras que la red neuronal estima niveles de pérdidas más bajos, entre 2.90% y 9.09%, 

mostrando un comportamiento más eficiente. La tarifa promedio utilizada para el cálculo 

económico es de 0.65 soles por kWh, lo que representa un costo total asociado de S/ 33,913.30. 

Finalmente, la proyección a diez años evidencia un crecimiento progresivo de las pérdidas 

acumuladas, alcanzando hasta 339,133.04 kWh, lo que permite estimar el impacto futuro y la 

eficiencia del método predictivo aplicado. 

Tabla 4.4 

Diferencia numérica entre el porcentaje de pérdidas estimada por la red neuronal y el 

porcentaje de pérdidas estimada por la empresa concesionaria. 

Mes Pérdidas Concesionaria 
(%) 

Pérdidas red neuronal 
(%) 

Diferencia 
(%) 

Febrero 28.12% 2.90% 25.22% 
Junio 29.84% 5.48% 24.36% 
Agosto 25.54% 6.64% 18.90% 
Septiembre 22.74% 3.49% 19.25% 
Octubre 20.96% 9.09% 11.87% 

 

Fuente y Elaboración: Propia 

Como se puede observar en la tabla 4.4, presenta una comparación mensual entre las 

pérdidas estimadas por la concesionaria y las calculadas mediante una red neuronal, junto con la 

diferencia porcentual entre ambas. Se observa que las pérdidas reportadas por la concesionaria son 

significativamente mayores en todos los meses analizados, alcanzando su valor más alto en junio 

con 29.84%, mientras que la red neuronal estima pérdidas mucho menores, siendo la más baja en 
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febrero con 2.90%. La diferencia entre ambos métodos muestra una tendencia decreciente a lo 

largo del periodo, pasando de 25.22% en febrero a 11.87% en octubre, lo que sugiere una mejora 

progresiva en la eficiencia o una mayor precisión de la red neuronal en los meses más recientes. 

Tabla 4.5 

Estimación Económica del Impacto Asociado a la Diferencia De Energía no Considerada en el 

Balance Energético Tradicional del Alimentador QU-02 

DESCRIPCION / MES 202402 202406 202408 202409 202410 
DIFERENCIA ENTRE RED Y 
CONSECIONARIA (kW.h) 12658.22 7866.33 8526.12 1049.51 5598.03 

NIVEL DE PÉRDIDAS CON 
REDES NEURONALES (kW.h) 2.90% 5.48% 6.64% 3.49% 9.09% 

TARIFA PROMEDIO (S/.) 0.65 0.65 0.65 0.65 0.65 
SOLES (S/.) 12025.31 7473.02 8099.81 997.03 5318.12 
PROYECCION POR 10 AÑOS 
(kW.h) 120253.14 74730.18 80998.14 9970.35 53181.24 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Tabla 4.5 presenta una estimación económica del impacto asociado a la diferencia de 

energía no considerada en el balance energético tradicional del alimentador QU-02, como 

resultado de las correcciones realizadas mediante la red neuronal artificial. Para esta conversión, 

se ha utilizado un factor tarifario promedio de 0.65 soles/kWh, teniendo en cuenta que una fracción 

de los usuarios del alimentador opera bajo tarifas de media tensión (MT), lo cual justifica el uso 

de un valor ponderado en lugar de una tarifa única convencional. 

Bajo este enfoque, y considerando el volumen de energía que no ha sido debidamente 

contabilizado según el análisis con red neuronal, se estima una pérdida económica de S/ 33,913.3 

solo para el periodo analizado. Si se proyecta esta diferencia en el tiempo, asumiendo condiciones 

operativas similares, se obtiene un impacto económico acumulado de aproximadamente S/ 

339,133.30 en un horizonte de 10 años, lo cual representa un valor significativo para la 

planificación financiera y la gestión de pérdidas de la empresa concesionaria. 



142 
 

Adicionalmente, se realizó una proyección energética para el año 2025, considerando el 

factor de crecimiento anual previamente determinado en la Ilustración 4.3, el cual asciende a 1.035. 

Este factor refleja el incremento esperado en la demanda del alimentador en función de las 

tendencias históricas y el crecimiento urbano proyectado en su zona de influencia. Aplicando este 

factor al volumen de energía no considerada durante el año 2024, se obtiene una proyección de 

35,698.21 kWh de energía no registrada para el año 2025. 

Al aplicar nuevamente el factor tarifario de 0.65 soles/kWh, esta diferencia representa una 

pérdida económica estimada de aproximadamente S/ 35,100.27 correspondiente exclusivamente 

al año 2025. Esta cantidad refleja el valor monetario de la energía que, al no ser debidamente 

contabilizada, no es facturada ni gestionada adecuadamente, lo cual puede impactar negativamente 

en los indicadores de desempeño del sistema y en la sostenibilidad económica de la operación. 

Tabla 4.6 

Proyección de energía no registrada al año 2025. 

Descripción Soles 
Total, de pérdidas del año 2024 que no fueron considerados kW.h      35,698.21  
Aplicando el factor de proyección al año 2025      36,947.65  
Considerando una tarifa promedio (s/.0.65 soles)  S/ 35,100.27  

Fuente y Elaboración: Propia 

Como se puede apreciar en la tabla 4.6 se tiene una proyección de energía no registrada 

para el año 2025, esto quiere decir que 35698.21 kW.h no han sido registradas en el cálculo de 

balance de energía este valor también se puede corroborar con la tabla 4.4 donde sumada la energía 

que no ha sido considerada resultan dicho valor, por lo tanto aplicando en factor de 1.035 para el 

año 2025 obtenemos 36947.65 kW.h que serían la estimación de pérdidas para el año 2025, y 

finalmente aplicando una tarifa promedio tenemos 35100.27 Soles que deben ser considerados en 

el balance de energía aplicando el método de redes neuronales. 
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 Estos resultados demuestran que incluso diferencias relativamente pequeñas en el 

porcentaje de pérdidas pueden tener repercusiones económicas acumuladas significativas, lo cual 

justifica plenamente la incorporación de herramientas de inteligencia artificial como apoyo en los 

procesos de cálculo y monitoreo del balance energético. En consecuencia, el uso de método como 

el desarrollado en este estudio constituye una solución técnica viable y económicamente justificada 

para mejorar la eficiencia y transparencia del sistema eléctrico de distribución
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CAPÍTULO. V 

5. Discusión de Resultados 

La implementación de las redes neuronales artificiales (RNA) en el alimentador QU-02 de 

la ciudad del Cusco permitió evidenciar mejoras significativas en la estimación del balance 

energético, contrastando con los métodos tradicionales empleados por la empresa concesionaria 

Electro Sur Este S.A.A. 

5.1 Escenario 1 

Electro Sur Este S.A.A. elabora informes de balance de energía a nivel empresarial, de 

subestaciones y de alimentadores. Estos documentos representan el estado inicial del balance de 

anergia, construido a partir de la comparación entre la energía adquirida y la energía facturada. Sin 

embargo, este cálculo preliminar no incorpora procesos de depuración ni ajustes de información, 

por lo que constituye únicamente una aproximación referencial o de primera impresión del 

comportamiento del sistema, sin reflejar necesariamente las condiciones reales de operación. 

Tabla 5.1 

Porcentaje de pérdidas en los meses analizados. 

AMT Sucursal 202402 202406 202408 202409 202410 
QU-02 Cusco 28.12% 29.84% 31.20% 30.41% 30.89% 

Fuente y Elaboración: Electro Sur Este S.A.A.   

En la tabla 5.1 podemos ver en la fila 2 se ve los porcentajes de pérdidas de energía, los cuales 

están cercanos al 30%. 

Cabe precisar que los meses de agosto a diciembre se completaron con valores extraídos del 

módulo de balance de energía SIELSE que se encuentran en el anexo 9.  
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5.2 Escenario 2 

En el escenario 2, mediante la aplicación de redes neuronales, se obtienen resultados más 

coherentes con los datos reales, lo que indica que la red neuronal implementada tiene la capacidad 

de representar de manera adecuada el comportamiento del sistema y contribuir al análisis del 

balance de energía. 

En esta tabla hacemos la comparativa de los escenarios  

Tabla 5.2 

Comparativa de las pérdidas porcentuales de Escenarios Tradicionales vs Redes Neuronales. 

  Febrero Junio Agosto Setiembre Octubre 
Escenario 1 28.12% 29.84% 31.20% 30.41% 30.89% 
Escenario 2 2.90% 5.48% 6.64% 3.49% 9.09% 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La tabla muestra la evolución comparativa de las pérdidas porcentuales registradas en dos 

escenarios distintos durante los meses de febrero, junio, agosto, setiembre y octubre. En el 

Escenario 1, las pérdidas se mantienen elevadas y con una variación mínima, oscilando entre 

28.12% y 31.20%, lo que evidencia un comportamiento estable, pero con altos niveles de 

ineficiencia en el sistema eléctrico. Por otro lado, el Escenario 2 presenta valores 

considerablemente inferiores, con pérdidas que fluctúan entre 2.90% y 9.09%, indicando una 

reducción sustancial respecto al escenario anterior. Esta diferencia sugiere que el Escenario 2, 

posiblemente asociado a un método de estimación basado en inteligencia artificial o en un control 

más optimizado, ofrece una representación más precisa y eficiente de las condiciones reales de 

operación. Además, la progresión de los valores muestra que, aunque las pérdidas del Escenario 2 

aumentan ligeramente hacia octubre, estas se mantienen muy por debajo de las del Escenario 1, 

reflejando un avance significativo en la capacidad de gestión y predicción de pérdidas del sistema 

de distribución eléctrica. 
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Tabla 5.3 

Diferencia porcentual entre escenarios: Método tradicional y Método red neuronal año 2025 

 
Escenario Pérdidas promedio (%) 

Escenario 1 – Método Tradicional 30.09 % 

Escenario 2 – Método Red Neuronal 5.52 % 

Diferencia porcentual 24.57 % 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La tabla 5.3 muestra el Escenario 1 presenta un nivel promedio de pérdidas de energía de 

30.09 %, mientras que el Escenario 2, basado en redes neuronales, alcanza un promedio de 5.52 

%. La comparación evidencia una reducción promedio de 24.57 puntos porcentuales en los niveles 

de pérdidas al aplicar el método neuronal, demostrando su superioridad frente al método 

tradicional bajo las mismas condiciones de análisis. 

Tabla 5.4 

Pérdidas de energía eléctrica en Transformadores en el AMT QU-02 al 2024 

Mes Compra de Energía 
(MWh) 

Pérdidas de Energía 
(MWh) 

% de 
Pérdida 
Mensual 

ENE 2,344.30 93.95 4.01% 
FEB 2,175.50 87.19 4.01% 
MAR 2,318.40 92.92 4.01% 
ABR 2,303.40 92.31 4.01% 
MAY 2,396.00 96.03 4.01% 
JUN 2,282.40 91.47 4.01% 
JUL 2,391.20 95.83 4.01% 
AGO 2,435.10 97.59 4.01% 
SET 2,321.80 93.05 4.01% 
OCT 2,431.10 97.43 4.01% 
NOV 2,412.40 96.69 4.01% 
DIC 2,392.60 95.89 4.01% 

TOTAL 28,204.13 1,130.36 4.01% 
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Fuente y Elaboración: Electro Sur Este S.A.A. 

Tabla 5.5 

Pérdidas de energía eléctrica en Líneas de distribución en el AMT QU-02, al año 2024 

Mes Compra de 
Energía (MWh) Pérdidas (MWh) % Pérdida 

Enero 2344.3 27.13 1.16% 
Febrero 2175.45 25.18 1.16% 
Marzo 2318.4 26.83 1.16% 
Abril 2303.37 26.66 1.16% 
Mayo 2396.04 27.73 1.16% 

Junio 2282.41 26.41 1.16% 

Julio 2391.22 27.67 1.16% 
Agosto 2435.08 28.18 1.16% 

Septiembre 2321.77 26.87 1.16% 
Octubre 2431.05 28.13 1.16% 

Noviembre 2412.44 27.92 1.16% 
Diciembre 2392.61 27.69 1.16% 

PROMEDIO 2350.34 27.2 1.16% 
 

Fuente y Elaboración: Electro Sur Este S.A.A. 

Tabla 5.6 

Resultados de Pérdidas Totales: perdidas técnicas y perdidas no técnicas en el escenario 1 

Mes 
Escenario 1 
(pérdidas 
totales) 

Escenario 1 
(perdidas técnicas 

en el 
transformador) 

Escenario 1 
(perdidas 

técnicas en la 
línea) 

Escenario 1 
(perdidas 

no 
técnicas) 

Febrero 28.12% 4.01% 1.16% 22.95% 
Junio 29.84% 4.01% 1.16% 24.67% 

Agosto 31.20% 4.01% 1.16% 26.03% 
Setiembre 30.41% 4.01% 1.16% 25.24% 
Octubre 30.89% 4.01% 1.16% 25.72% 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 
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En la Tabla 5.6 se detalla los resultados del balance de energía para el Escenario 1. Se 

observa que las pérdidas totales mantienen un comportamiento crítico, superando el 28.12% en 

todos los periodos y alcanzando un máximo del 31.20% en el mes de agosto. 

Al desagregar estos valores de pérdidas totales, destaca que las pérdidas técnicas 

(correspondientes al transformador y la línea de distribución) presentan un valor constante e 

invariable del 4.01% y 1.16%. Este dato indica que el componente de infraestructura física no 

presenta fluctuaciones bajo las condiciones evaluadas. 

Por el contrario, el factor determinante en el balance son las pérdidas no técnicas, las cuales 

representan la mayor carga porcentual del sistema. Estas oscilan entre el 22.95% y el 26.03%, lo 

que sugiere que la problemática principal del Escenario 1 no radica en la eficiencia de los equipos, 

sino en factores externos o de gestión que requieren la implementación de modelos predictivos 

más robustos. 

Tabla 5.7 

Resultados de Pérdidas Totales: perdidas técnicas y perdidas no técnicas en el escenario 2 

Mes 
Escenario 2 
(pérdidas 
totales) 

Escenario 2 
(perdidas 

técnicas en el 
transformador) 

Escenario 
2 (perdidas 
técnicas en 

la línea) 

Escenario 2 
(perdidas no 

técnicas) 

Febrero 2.90% 4.01% 1.16% 2.27% 
Junio 5.48% 4.01% 1.16% 0.31% 
Agosto 6.64% 4.01% 1.16% 1.47% 
Setiembre 3.49% 4.01% 1.16% 1.68% 
Octubre 9.09% 4.01% 1.16% 3.92% 

 

Fuente: Electro Sur Este S.A.A.  Elaboración: Propia 

La Tabla 5.7 muestra los resultados del balance de energía tras la implementación del 

Escenario 2. El hallazgo más significativo es la reducción drástica de las pérdidas totales, las cuales 
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se mantienen por debajo del 9.09% en todo el periodo analizado, contrastando positivamente con 

el escenario 1 de la concesionaria. 

Un punto clave en este análisis es la estabilidad de las pérdidas técnicas (transformador y 

línea), que permanecen constantes en 4.01% y 1.16% respectivamente. Esto confirma que la 

mejora del sistema no proviene de cambios en la infraestructura física, sino de la optimización del 

proceso de balance de energía con la aplicación de redes neuronales. 

 El éxito de la aplicación de redes neuronales en el balance de energía se evidencia en la 

columna de pérdidas no técnicas, donde se logran valores bajos, destacando el mes de junio con 

apenas un 0.31%. Incluso en el mes de octubre, las pérdidas no técnicas apenas alcanzan el 3.92%. 

Estos resultados sugieren que el Escenario 2 es altamente efectivo para identificar, mitigar o 

corregir las anomalías en el balance de energía que el método tradicional no lograba gestionar. 
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CONCLUSIONES 

1. 1. La aplicación de redes neuronales optimiza el balance de energía en el alimentador QU-02 

al sustituir un modelo tradicional en su etapa preliminar con pérdidas del 20.96% al 28.12% 

por un sistema inteligente. Esta tecnología permite que el monitoreo responda a las variaciones 

reales de la demanda en el alimentador QU-02, sincerando las pérdidas registradas a un rango 

de 2.90% a 9.09%. al año 2025, esta herramienta garantiza la eficiencia operativa al sincerar 

la estimación del porcentaje de perdida de energía, transformando un registro de porcentaje 

de pérdidas ineficiente en su etapa preliminar a una gestión técnica precisa y confiable. 

2. El diagnóstico del alimentador QU-02 permite identificar y recuperar 35,698.21 kWh de 

energía que anteriormente no era contabilizada en su etapa preliminar en el balance de energía 

para el año 2025, esta precisión en el diagnóstico se traduce en una mejora directa de la 

eficiencia operativa, al reducir la incertidumbre y permitir un control sobre la energía del 

alimentador QU-02. 

3. La diferencia porcentual de 24.57% obtenida entre ambos métodos de estimación demuestra 

la superioridad técnica de las redes neuronales en el proceso de balance de energía del 

alimentador QU-02. Este resultado surge al contrastar la estimación promedio del método 

tradicional de la concesionaria en su etapa inicial (30.09%) frente al promedio logrado 

mediante el modelo neuronal propuesto (5.52%) para el año 2025. Dicha reducción permite 

sincerar los niveles de energía no contabilizada, garantizando una estimación del cálculo 

mucho más precisa y alineada con las condiciones reales de operación del sistema. 

4. El uso de redes neuronales tuvo un impacto tangible en la precisión del proceso de balance de 

energía, al permitir una estimación más exacta de las pérdidas y consumos reales en el 

alimentador QU-02. Esta precisión técnica se tradujo en un beneficio económico proyectado 



151 
 

de S/ 35,100.27 soles recuperados a 10 años, evidenciando la viabilidad del enfoque propuesto 

no solo desde el punto de vista técnico, sino también económico y estratégico. 
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RECOMENDACIONES 

1. Recomienda realizar campañas periódicas de verificación en campo en los puntos de 

medición del alimentador QU-02 para corroborar la exactitud de los datos obtenidos por 

los medidores ION. Esto permitirá validar la información utilizada en la red neuronal y 

mejorar la calidad del balance de energía. 

2. Desarrollar una red neuronal con capacidad de proyección multianual, permitiendo 

estimar la demanda para varios años más allá del 2025, utilizando arquitecturas más 

robustas como LSTM (Long Short-Term Memory) o redes neuronales recurrentes 

3. Se Incorporar variables exógenas como temperatura, humedad, actividad económica local 

o calendario de mantenimientos, para enriquecer el método predictivo y hacerlo más 

representativo del entorno real. 

4. comparar el desempeño de la red neuronal utilizada con otros métodos como el método 

ARIMA, regresión lineal, o árboles de decisión, a fin de evaluar su precisión relativa y 

justificar su uso. 
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ANEXOS 

ANEXO 1 : Códigos para simular MATLAB 

clc; 

clear; 

 

% Definir la cantidad de valores a predecir 

num_samples = 672; % 1344 valores para extrapolación 

 

% Crear una matriz de entrada con índices consecutivos 

X_input = (1:num_samples)'; % Índices consecutivos como en el entrenamiento 

 

% Convertir los valores en el formato adecuado para la red neuronal (formato de celda) 

X_cell = cell(1, num_samples); 

for i = 1:num_samples 

    X_cell{1, i} = X_input(i); 

end 

 

% Llamar a la red neuronal 

Y_output = myNeuralNetworkFunction3(X_cell); 

 

% Convertir la salida de celda a matriz 

Y_predicted = cell2mat(Y_output); 

 

% Graficar los resultados 

figure; 

plot(1:num_samples, Y_predicted, 'b', 'LineWidth', 1.5); 

xlabel('Índice numérico consecutivo'); 

ylabel('Valores extrapolados de QU-02'); 
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title('Extrapolación de 1344 valores usando la Red Neuronal'); 

grid on; 

 

% Código en MATLAB para leer y graficar los datos por año con desplazamiento de DO06 y 
DO07 

clc; 

clear; 

 

% Leer el archivo Excel 

data = readtable('todosaliment.xlsx'); 

 

% Convertir la columna de tiempo a formato datetime 

data.LocalTime = datetime(data.LocalTime, 'InputFormat', 'dd/MM/yyyy HH:mm'); 

 

% Obtener los años únicos disponibles 

years = unique(year(data.LocalTime)); 

 

% Preguntar al usuario qué año desea graficar 

year_selected = input(['Seleccione un año para graficar: ', num2str(years') '\n']); 

 

% Filtrar los datos para el año seleccionado 

filtered_data = data(year(data.LocalTime) == year_selected, :); 

 

% Solicitar el número de puntos para desplazar DO06 y DO07 con respecto a QU-02 

shift_DO06 = input('Ingrese el número de puntos para desplazar DO06 (positivo para atrasar, 
negativo para adelantar): '); 

shift_DO07 = input('Ingrese el número de puntos para desplazar DO07 (positivo para atrasar, 
negativo para adelantar): '); 
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% Función para desplazar datos sin rotar, llenando con NaN 

apply_shift = @(data_column, shift) ... 

    [nan(max(0, shift), 1); data_column(1:end-max(0, shift))] .* (shift > 0) + ...  % Desfase 
positivo 

    [data_column(1+max(0, -shift):end); nan(max(0, -shift), 1)] .* (shift < 0) + ... % Desfase 
negativo 

    data_column .* (shift == 0); % Sin cambio si shift es 0 

 

% Aplicar el desplazamiento 

DO06_shifted = apply_shift(filtered_data.DO06, shift_DO06); 

DO07_shifted = apply_shift(filtered_data.DO07, shift_DO07); 

 

% Ajustar el tamaño mínimo de los datos para evitar errores de longitud 

min_length = min([length(filtered_data.LocalTime), length(filtered_data.QU-02), 
length(DO06_shifted), length(DO07_shifted)]); 

time_vector = filtered_data.LocalTime(1:min_length); 

QU-02_data = filtered_data.QU-02(1:min_length); 

DO06_shifted = DO06_shifted(1:min_length); 

DO07_shifted = DO07_shifted(1:min_length); 

 

% Graficar los alimentadores con los desplazamientos 

figure; 

plot(time_vector, QU-02_data, 'r', 'DisplayName', 'QU-02'); hold on; 

%plot(time_vector, DO07_shifted, 'g', 'DisplayName', ['DO07 (Desfase ' num2str(shift_DO07) ' 
puntos)']); 

%plot(time_vector, DO06_shifted, 'b', 'DisplayName', ['DO06 (Desfase ' num2str(shift_DO06) ' 
puntos)']); 

hold off; 

 

% Formatear el eje X para mostrar meses 
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datetick('x', 'mmm', 'keeplimits');  

xlabel('Meses'); 

ylabel('Mediciones'); 

legend; 

title(['Mediciones de los alimentadores en el año ', num2str(year_selected)]); 

grid on; 

 

clc; 

clear; 

 

% Leer el archivo Excel 

data = readtable('todosaliment.xlsx'); 

 

% Convertir la columna de tiempo a formato datetime 

data.LocalTime = datetime(data.LocalTime, 'InputFormat', 'dd/MM/yyyy HH:mm'); 

 

% Definir el rango de fechas 

start_date = datetime(2024, 9, 23, 0, 0, 0); % 21 de septiembre de 2024 

end_date = datetime(2024, 9, 29, 23, 59, 59); % 28 de septiembre de 2024 

 

% Filtrar los datos en el rango de fechas 

mask = (data.LocalTime >= start_date) & (data.LocalTime <= end_date); 

filtered_dates = data.LocalTime(mask); 

QU-02_selected = data.QU-02(mask); % Valores de QU-02 

 

% Crear la matriz de números consecutivos 

num_consecutivos = (1:length(filtered_dates))'; % Vector 1, 2, 3, ..., N 
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% Crear la matriz final con los valores de tiempo y QU-02 

final_matrix = [num_consecutivos, QU-02_selected]; 

 

% Mostrar la matriz en la consola 

disp('Matriz de valores de QU-02 con índices consecutivos:'); 

disp(final_matrix); 

 

% Graficar los valores extraídos usando números consecutivos 

figure; 

plot(num_consecutivos, QU-02_selected, 'r', 'LineWidth', 1.5); 

xlabel('Índice numérico consecutivo'); 

ylabel('Mediciones de QU-02'); 

title('Valores de QU-02 con representación numérica del tiempo'); 

grid on; 

 

clc; 

clear; 

 

% Definir el rango de entrada (1 hasta 15) 

x_values = (1:15)'; 

 

% Inicializar vector para almacenar los valores de salida de la red neuronal 

y_values = zeros(length(x_values), 1); 

 

% Llamar a la red neuronal y almacenar los resultados 

for i = 1:length(x_values) 

    y_values(i) = myNeuralNetworkFunction2(x_values(i)); 

end 
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% **Calcular la variación relativa entre valores consecutivos** 

variacion = zeros(length(x_values)-1, 1); 

for i = 1:length(x_values)-1 

    variacion(i) = abs((y_values(i+1) - y_values(i)) / y_values(i)); % Variación relativa 

end 

 

% **Cálculo del factor de multiplicación desde 10 hasta 15** 

factor_multiplicacion = zeros(6,1); % Solo para los valores 10-15 

for i = 10:15 

    factor_multiplicacion(i-9) = y_values(i) / y_values(i-1); 

end 

 

% **Convertir factor de multiplicación a porcentaje** 

variacion_porcentaje = (factor_multiplicacion - 1) * 100; 

 

% **Gráfico 1: Salida de la Red Neuronal** 

figure; 

plot(x_values, y_values, '-o', 'LineWidth', 2, 'MarkerSize', 6, 'MarkerFaceColor', 'b'); 

xlabel('Valor de Entrada (x)'); 

ylabel('Salida de la Red Neuronal (y)'); 

title('Salida de la Red Neuronal para Entradas de 1 a 15'); 

grid on; 

 

% **Gráfico 2: Variación Relativa** 

figure; 

bar(2:15, variacion, 'FaceColor', [0.85 0.33 0.1]); % Rojo 

xlabel('Valor de Entrada (x)'); 
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ylabel('Variación Relativa'); 

title('Variación Relativa de la Salida de la Red Neuronal'); 

grid on; 

 

% **Gráfico 3: Factor de Multiplicación (Desde 10 hasta 15)** 

figure; 

bar(10:15, factor_multiplicacion, 'FaceColor', [0.3 0.6 0.9]); % Azul 

xlabel('Valor de Entrada (x)'); 

ylabel('Factor de Multiplicación'); 

title('Factor de Multiplicación desde 10 hasta 15'); 

grid on; 

 

% **Gráfico 4: Variación en Porcentaje (Desde 10 hasta 15)** 

figure; 

bar(10:15, variacion_porcentaje, 'FaceColor', [0.85 0.33 0.1]); % Rojo 

xlabel('Valor de Entrada (x)'); 

ylabel('Variación en Porcentaje (%)'); 

title('Variación en Porcentaje desde 10 hasta 15'); 

grid on; 

 

% **Mostrar factores de multiplicación y variación en porcentaje** 

disp('Factores de multiplicación y variación en porcentaje para los valores predecidos desde 10 
hasta 15:'); 

disp(table((10:15)', factor_multiplicacion, variacion_porcentaje, 'VariableNames', {'x', 
'Factor_Multiplicacion', 'Variacion_Porcentaje'})); 

 

clc 

clear 
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% Leer el archivo Excel 

data = readtable('todosaliment.xlsx'); 

 

% Convertir la columna de tiempo a formato datetime 

data.LocalTime = datetime(data.LocalTime, 'InputFormat', 'dd/MM/yyyy HH:mm'); 

 

% Obtener los años únicos disponibles 

years = unique(year(data.LocalTime)); 

 

% Preguntar al usuario qué año desea graficar 

fprintf('Años disponibles:\n'); 

disp(years') 

year_selected = input('Seleccione un año para graficar: '); 

 

% Obtener los meses únicos dentro del año seleccionado 

months_in_year = unique(month(data.LocalTime(year(data.LocalTime) == year_selected))); 

 

% Preguntar al usuario qué mes desea 

fprintf('Meses disponibles en ese año:\n'); 

disp(months_in_year') 

month_selected = input('Seleccione un mes (número del 1 al 12): '); 

 

% Filtrar los datos para el año y mes seleccionados 

filtered_data = data(year(data.LocalTime) == year_selected & ... 

                     month(data.LocalTime) == month_selected, :); 

 

% Calcular la suma del alimentador QU-02 

suma_QU-02 = sum(filtered_data.QU-02, 'omitnan'); 
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fprintf('La suma del alimentador QU-02 en %d/%d es: %.2f\n', ... 

        month_selected, year_selected, suma_QU-02); 

 

% Graficar QU-02 y DO06 para ese mes 

figure; 

plot(filtered_data.LocalTime, filtered_data.QU-02, 'r', 'DisplayName', 'QU-02'); 

hold on; 

% plot(filtered_data.LocalTime, filtered_data.DO06, 'g', 'DisplayName', 'DO06'); 

% hold off; 

 

datetick('x', 'dd', 'keeplimits'); % Mostrar días del mes en eje X 

xlabel('Días'); 

ylabel('Mediciones'); 

legend; 

title(sprintf('Mediciones en %d/%d', month_selected, year_selected)); 

grid on; 

 

clc; 

clear; 

 

% Definir la cantidad de valores a predecir 

num_samples = 672; % 7 días * 24 horas * 4 intervalos de 15 minutos 

 

% Crear una matriz de entrada con índices consecutivos 

X_input = (1:num_samples)'; 

 

% Convertir los valores en el formato adecuado para la red neuronal 

X_cell = cell(1, num_samples); 
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for i = 1:num_samples 

    X_cell{1, i} = X_input(i); 

end 

 

% Llamar a la red neuronal 

Y_output = myNeuralNetworkFunction3(X_cell); 

 

% Convertir la salida de celda a matriz 

Y_predicted = cell2mat(Y_output(:)); % Aseguramos columna 

 

% Asegurar que Y_predicted sea vector columna 

if size(Y_predicted, 2) > 1 

    Y_predicted = Y_predicted'; 

end 

 

% Crear vector de tiempo desde lunes a las 00:00 

start_time = datetime(2023, 1, 1 + 1, 0, 0, 0); % Lunes arbitrario 

time_vector = start_time + minutes(15) * (0:num_samples - 1)'; 

 

% Asegurar que todo tenga el mismo tamaño 

assert(length(time_vector) == num_samples, 'Vector de tiempo incorrecto'); 

assert(length(Y_predicted) == num_samples, 'Salida de red incorrecta'); 

 

% Extraer día y hora 

days_of_week = cellstr(datestr(time_vector, 'dddd')); 

hour_minute = cellstr(datestr(time_vector, 'HH:MM')); 

 

% Crear tabla final 
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T = table((1:num_samples)', days_of_week, hour_minute, Y_predicted, ... 

    'VariableNames', {'Indice', 'Dia', 'Hora', 'Valor_Pronosticado'}); 

 

% Mostrar primeras filas 

disp(T(1:500,:)); 

 

% Graficar 

figure; 

plot(time_vector, Y_predicted, 'b', 'LineWidth', 1.5); 

xlabel('Tiempo'); 

ylabel('Valor pronosticado'); 

title('Predicción semanal - Red Neuronal'); 

grid on; 

 

clc; 

clear; 

 

%% === Parte 1: Lectura del archivo === 

% Leer el archivo Excel con todos los datos 

data = readtable('todosaliment.xlsx'); 

data.LocalTime = datetime(data.LocalTime, 'InputFormat', 'dd/MM/yyyy HH:mm'); 

 

% Preguntar el año y mes a analizar 

years = unique(year(data.LocalTime)); 

fprintf('Años disponibles:\n'); 

disp(years') 

year_selected = input('Seleccione un año: '); 
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months = unique(month(data.LocalTime(year(data.LocalTime) == year_selected))); 

fprintf('Meses disponibles en ese año:\n'); 

disp(months') 

month_selected = input('Seleccione un mes (1-12): '); 

 

% Preguntar los días del mes a reemplazar (puede ser vector) 

dias_disponibles = unique(day(data.LocalTime(year(data.LocalTime) == year_selected & 
month(data.LocalTime) == month_selected))); 

fprintf('Días disponibles en ese mes:\n'); 

disp(dias_disponibles') 

dias_a_reemplazar = input('Ingrese los días que desea reemplazar entre corchetes, por ejemplo [3 
7 12]: '); 

 

%% === Parte 2: Simulación de red neuronal semanal === 

num_samples = 672; 

X_input = (1:num_samples)'; 

 

% Formato para red 

X_cell = cell(1, num_samples); 

for i = 1:num_samples 

    X_cell{1, i} = X_input(i); 

end 

 

% Llamar red neuronal 

Y_output = myNeuralNetworkFunction3(X_cell); 

Y_predicted = cell2mat(Y_output(:)); 

 

% Crear vector de tiempo simulado (lunes 00:00 a domingo 23:45) 

start_time_sim = datetime(2023,1,2,0,0,0); % lunes arbitrario 
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time_sim = start_time_sim + minutes(15)*(0:num_samples - 1)'; 

dayname_sim = cellstr(datestr(time_sim, 'dddd')); % nombre del día 

 

% Guardar valores simulados por día de la semana 

dias_semana = {'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'}; 

valores_por_dia = containers.Map(); 

for i = 1:length(dias_semana) 

    idx = strcmp(dayname_sim, dias_semana{i}); 

    valores_dia = Y_predicted(idx); 

    if length(valores_dia) ~= 96 

        error('Error: día %s no tiene 96 valores simulados.', dias_semana{i}); 

    end 

    valores_por_dia(dias_semana{i}) = valores_dia; 

end 

 

%% === Parte 3: Reemplazo de varios días en los datos reales === 

for k = 1:length(dias_a_reemplazar) 

    dia_actual = dias_a_reemplazar(k); 

    fecha_dia = datetime(year_selected, month_selected, dia_actual); 

    nombre_dia = char(day(fecha_dia, 'name')); % Ej. 'Wednesday' 

 

    % Obtener valores simulados para ese día de la semana 

    if ~isKey(valores_por_dia, nombre_dia) 

        warning('No se encontró día de la semana "%s" en simulación.', nombre_dia); 

        continue; 

    end 

    valores_simulados = valores_por_dia(nombre_dia); 
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    % Reemplazar en los datos reales 

    mask_replace = (year(data.LocalTime) == year_selected) & ... 

                   (month(data.LocalTime) == month_selected) & ... 

                   (day(data.LocalTime) == dia_actual); 

 

    if sum(mask_replace) ~= 96 

        warning('No se encontraron 96 valores reales para el día %02d/%02d/%d. Se omite.', ... 

            dia_actual, month_selected, year_selected); 

        continue; 

    end 

 

    data.QU-02(mask_replace) = valores_simulados; 

    fprintf('✓ Día %02d/%02d/%d (%s) reemplazado exitosamente.\n', ... 

        dia_actual, month_selected, year_selected, nombre_dia); 

end 

 

%% === Parte 4: Calcular suma del alimentador QU-02 para el mes === 

final_filtered_data = data(year(data.LocalTime) == year_selected & month(data.LocalTime) == 
month_selected, :); 

suma_QU-02 = sum(final_filtered_data.QU-02, 'omitnan'); 

 

fprintf('\n--- Resultado final ---\n'); 

fprintf('Se reemplazaron %d días.\n', length(dias_a_reemplazar)); 

fprintf('Suma total de QU-02 en %02d/%d (con días modificados): %.2f\n', ... 

    month_selected, year_selected, suma_QU-02); 

 

%% === Parte 5: Visualización opcional === 

figure; 
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plot(final_filtered_data.LocalTime, final_filtered_data.QU-02, 'r'); 

xlabel('Fecha'); 

ylabel('Consumo QU-02'); 

title(sprintf('Consumo QU-02 en %02d/%d (con %d días reemplazados)', ... 

    month_selected, year_selected, length(dias_a_reemplazar))); 

grid on; 

 

function [Y,Xf,Af] = myNeuralNetworkFunction2(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Auto-generated by MATLAB, 03-Mar-2025 15:43:08. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = Qx1 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = Qx1 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

 

%#ok<*RPMT0> 

 

% ===== NEURAL NETWORK CONSTANTS ===== 

 

% Input 1 
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x1_step1.xoffset = 1; 

x1_step1.gain = 0.181818181818182; 

x1_step1.ymin = -1; 

 

% Layer 1 

b1 = [11.189897641782950544;7.9570175385828605386;-
4.800162307389371108;1.7954102402881870759;-1.6443013983147554136;-
4.9771793970874016466;-8.0015663354994099876;-11.18704458831300208]; 

IW1_1 = [-11.208187021281405649;-11.228852135950047497;11.196593586040796353;-
11.179271041230862238;-11.198965483164620593;-11.109986572954763773;-
11.198728621824898255;-11.210636959993395934]; 

 

% Layer 2 

b2 = 0.13052131780331277522; 

LW2_1 = [-0.1892763547625802012 0.030417224053021107988 0.18626382370841509939 -
0.51907121324631833037 -0.11468406976606082548 -0.061052047095628170226 
0.22395883732035873348 -0.21458631317071774625]; 

 

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 8.58541230890421e-06; 

y1_step1.xoffset = 366386.804977497; 

 

% ===== SIMULATION ======== 

 

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 
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% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},1); % samples/series 

else 

    Q = 0; 

end 

 

% Allocate Outputs 

Y = cell(1,TS); 

 

% Time loop 

for ts=1:TS 

 

    % Input 1 

    X{1,ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

 

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

 

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

 

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 
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end 

 

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

 

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

 

% ===== MODULE FUNCTIONS ======== 

 

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

 

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

 

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 
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x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

clc; 

clear; 

 

%% === Parte 1: Lectura del archivo === 

% Leer el archivo Excel con todos los datos 

data = readtable('todosaliment.xlsx'); 

data.LocalTime = datetime(data.LocalTime, 'InputFormat', 'dd/MM/yyyy HH:mm'); 

 

% Guardar copia original 

data_original = data; 

 

% Preguntar el año y mes a analizar 

years = unique(year(data.LocalTime));    

fprintf('Años disponibles:\n'); 

disp(years') 

year_selected = input('Seleccione un año: '); 

 

months = unique(month(data.LocalTime(year(data.LocalTime) == year_selected))); 

fprintf('Meses disponibles en ese año:\n'); 

disp(months') 

month_selected = input('Seleccione un mes (1-12): '); 

 

% Preguntar los días del mes a reemplazar (puede ser vector) 
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dias_disponibles = unique(day(data.LocalTime(year(data.LocalTime) == year_selected & 
month(data.LocalTime) == month_selected))); 

fprintf('Días disponibles en ese mes:\n'); 

disp(dias_disponibles') 

dias_a_reemplazar = input('Ingrese los días que desea reemplazar entre corchetes, por ejemplo [3 
7 12]: '); 

 

%% === Parte 2: Simulación de red neuronal semanal === 

num_samples = 672; 

X_input = (1:num_samples)'; 

 

% Formato para red 

X_cell = cell(1, num_samples); 

for i = 1:num_samples 

    X_cell{1, i} = X_input(i); 

end 

 

% Llamar red neuronal 

Y_output = myNeuralNetworkFunction3(X_cell); 

Y_predicted = cell2mat(Y_output(:)); 

 

% Crear vector de tiempo simulado (lunes 00:00 a domingo 23:45) 

start_time_sim = datetime(2023,1,2,0,0,0); % lunes arbitrario 

time_sim = start_time_sim + minutes(15)*(0:num_samples - 1)'; 

dayname_sim = cellstr(datestr(time_sim, 'dddd')); % nombre del día 

 

% Guardar valores simulados por día de la semana 

dias_semana = {'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'}; 

valores_por_dia = containers.Map(); 
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for i = 1:length(dias_semana) 

    idx = strcmp(dayname_sim, dias_semana{i}); 

    valores_dia = Y_predicted(idx); 

    if length(valores_dia) ~= 96 

        error('Error: día %s no tiene 96 valores simulados.', dias_semana{i}); 

    end 

    valores_por_dia(dias_semana{i}) = valores_dia; 

end 

 

%% === Parte 3: Reemplazo de varios días en los datos reales === 

valores_originales_por_dia = containers.Map(); 

 

for k = 1:length(dias_a_reemplazar) 

    dia_actual = dias_a_reemplazar(k); 

    fecha_dia = datetime(year_selected, month_selected, dia_actual); 

    nombre_dia = char(day(fecha_dia, 'name')); % Ej. 'Wednesday' 

 

    % Obtener valores simulados para ese día de la semana 

    if ~isKey(valores_por_dia, nombre_dia) 

        warning('No se encontró día de la semana "%s" en simulación.', nombre_dia); 

        continue; 

    end 

    valores_simulados = valores_por_dia(nombre_dia); 

 

    % Reemplazar en los datos reales 

    mask_replace = (year(data.LocalTime) == year_selected) & ... 

                   (month(data.LocalTime) == month_selected) & ... 

                   (day(data.LocalTime) == dia_actual); 
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    if sum(mask_replace) ~= 96 

        warning('No se encontraron 96 valores reales para el día %02d/%02d/%d. Se omite.', ... 

            dia_actual, month_selected, year_selected); 

        continue; 

    end 

 

    % Guardar valores originales antes de reemplazar 

    fecha_dia_str = sprintf('%04d-%02d-%02d', year_selected, month_selected, dia_actual); 

    valores_originales_por_dia(fecha_dia_str) = data.QU-02(mask_replace); 

 

    % Reemplazo 

    data.QU-02(mask_replace) = valores_simulados; 

    fprintf('✓ Día %02d/%02d/%d (%s) reemplazado exitosamente.\n', ... 

        dia_actual, month_selected, year_selected, nombre_dia); 

end 

 

%% === Parte 4: Calcular suma del alimentador QU-02 para el mes === 

final_filtered_data = data(year(data.LocalTime) == year_selected & month(data.LocalTime) == 
month_selected, :); 

final_filtered_data_original = data_original(year(data_original.LocalTime) == year_selected & 
month(data_original.LocalTime) == month_selected, :); 

 

suma_QU-02 = sum(final_filtered_data.QU-02, 'omitnan'); 

suma_QU-02_original = sum(final_filtered_data_original.QU-02, 'omitnan'); 

 

fprintf('\n--- Resultado final ---\n'); 

fprintf('Se reemplazaron %d días.\n', length(dias_a_reemplazar)); 
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fprintf('Suma total de QU-02 en %02d/%d ANTES:  %.2f\n', month_selected, year_selected, 
suma_QU-02_original); 

fprintf('Suma total de QU-02 en %02d/%d DESPUÉS: %.2f\n', month_selected, year_selected, 
suma_QU-02); 

 

%% === Parte 5: Visualización global antes y después === 

figure; 

plot(final_filtered_data_original.LocalTime, final_filtered_data_original.QU-02, 'b-', 
'LineWidth', 1.2); hold on; 

plot(final_filtered_data.LocalTime, final_filtered_data.QU-02, 'r--', 'LineWidth', 1.2); 

xlabel('Fecha'); 

ylabel('Consumo QU-02'); 

title(sprintf('Comparación mensual de QU-02 en %02d/%d', month_selected, year_selected)); 

legend('Original', 'Modificado'); 

grid on; 

 

%% === Parte 6: Gráfica comparativa de días reemplazados === 

for k = 1:length(dias_a_reemplazar) 

    dia_actual = dias_a_reemplazar(k); 

    fecha_dia = datetime(year_selected, month_selected, dia_actual); 

    fecha_dia_str = sprintf('%04d-%02d-%02d', year_selected, month_selected, dia_actual); 

    nombre_dia = char(day(fecha_dia, 'name')); 

 

    if isKey(valores_originales_por_dia, fecha_dia_str) 

        figure; 

        t_15min = fecha_dia + minutes(0:15:1425); % 96 valores 

 

        plot(t_15min, valores_originales_por_dia(fecha_dia_str), 'b-', 'LineWidth', 1.5); 

        hold on; 
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        plot(t_15min, valores_por_dia(nombre_dia), 'r--', 'LineWidth', 1.5); 

        hold off; 

 

        legend('Original', 'Reemplazado'); 

        title(sprintf('Comparación del día %02d/%02d/%d', dia_actual, month_selected, 
year_selected)); 

        xlabel('Hora'); 

        ylabel('Consumo QU-02'); 

        grid on; 

    end 

end 
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ANEXO 2: CARACTERISTICAS Y ESPECIFICACIONES DEL MEDIDOR 
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ANEXO 3: PLIEGOS TARIFARIOS CUSCO 4 DE DICIEMBRE 2024 
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ANEXO 4: CONFIGURACION DE UN SISTEMA DE ENERGÍA ELECTRICA 
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ANEXO 5: COMPARACION DE LOS FACTORES DE CARGA 
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ANEXO 6: DIAGRAMA GENERAL DEL SISTEMA ELECTRICO ELSE 2025.
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OBJEC
TID * 

CODIGOE
MPRESA 

CODIGOSU
CURSAL NOMBRESED DIRECCIONSED 

CODIGOTI
POSED 

CODPROPIETARIOE
NTIDADELECT 

CODIGOTEC
NICOSET 

CODIGOTECNIC
OALIMMT 

CODIGOTEC
NICOSECCIO
NLINEAMT 

CODIGOINEIDEPA
RTAMENTO 

CODIGOINEIP
ROVINCIA 

CODIGOINEI
DISTRITO 

CODIGOTIPO
SISTEMA 

CODIGO
OBRA 

CODIGOESTADOCO
NSERVACION 

NUMERO
TRAFOS 

CODIGOMATERIA
LSOPORTE1 

TENSIONPR
IMARIO 

TENSIONSEC
UNDARIO 

POTENCIAIN
STALADA 

DEMANDAM
AXIMASP 

DEMANDAM
AXIMAAP 

CANTIDADCIR
CUITOSSP 

CANTIDADC
LIENTES 

CANTIDADCIR
CUITOSAP 

CANTIDADLA
MPARAS ETIQUETA OBSERVACION 

USUARI
OCREA 

USUARIOM
ODIFICA 

57669 ESE 1 APROVICOP 

APROVICOP (APV LOS 

PINOS) MON PU QU QU-02 930 8 1 8 T  BUE 1 CONCRE 10.5 220 25 18.102079 4.2 2 54 1 4 25kVA 10.5/0.22kV 

usuarios

id11 wyabar 

57670 ESE 1 

INDUSTRIAS 
MOLICUSCO(Antes 
SUBESTACIÓN 

0010558) 

REP. DE 
PARAGUAY(INDUSTRI

AS MOLICUSCO) BIP PA QU QU-02 1207 8 1 8 T  BUE 1 CONCRE 10.5 220 50 0 0 1 1 0 0 

50kVA 

10.5/0.22kV <Null> hochoa hochoa 

57671 ESE 1 CALLE CHIMA S.S. CALLE CHIMA S.S. BIP PU QU QU-02 927 8 1 8 T  BUE 1 CONCRE 10.5 220 100 61.847319 66.4 3 229 1 51 100kVA 10.5/0.22kV 
usuarios
id11 cscvs14 

57694 ESE 1 
MOLINERA(Antes 
SED0010710) 

REP. DE 
ARGENTINA(Antes 
ZONA NO HABITADA 
3) BIP PA QU QU-02 926 8 1 8 T 

2.013E+
12 BUE 1 CONCRE 10.5 220 200 0 0 0 0 1 1 200kVA 10.5/0.22kV mmarin ltapia 

57754 ESE 1 AV. CUSCO AV. CUSCO BIP PU QU QU-02 931 8 1 5 T  BUE 1 CONCRE 10.5 220 75 26.682076 33 1 61 1 21 
75kVA 
10.5/0.22kV 

FALTAN DATOS DE 
SED Y TRAFO cferro cscvs14 

58276 ESE 1 CALLE SUCRE I S.S. CALLE SUCRE I S.S. CAS PU QU QU-02 297 8 1 5 T 
2.016E+

14 BUE 1 <Null> 10.5 220 250 231.672577 168.2 5 908 1 124 250kVA 10.5/0.22kV cscvs14 cscvs14 

58572 ESE 1 

PARQUE INDUSTRIAL 
V(Antes SUBESTACIÓN 
0010358) 

INTERSEC. LAS 
AMERICAS - REP. DE 
ARGENTINA(Antes 
ZONA NO HABILITADA 
II) BIP PU QU QU-02 928 8 1 8 T  BUE 1 CONCRE 10.5 220 250 107.802257 70 6 130 1 51 250kVA 10.5/0.22kV 

usuarios
id11 

usuariosid1
4 

58830 ESE 1 

PARQUE INDUSTRIAL 
VII(Antes SED 
0010711) 

VIA EXPRESA(Antes 
ZONA NO HABITADA 
4) BIP PU QU QU-02 925 8 1 8 T 

2.014E+
12 BUE 1 CONCRE 10.5 220 80 32.902207 186.6 3 61 1 75 80kVA 10.5/0.22kV mmarin cscvs14 

58888 ESE 1 CONJ. HAB. CAHUIDE I CONJ. HAB. CAHUIDE I BIP PU QU QU-02 930 8 1 8 T  BUE 1 CONCRE 10.5 220 80 36.040478 48.4 4 114 1 41 80kVA 10.5/0.22kV yduenas cscvs14 

59312 ESE 1 
CONCRETOS 
SUPERMIX 

REPUBLICA DE 
VENEZUELA - PARQUE 
INDUSTRIAL BIP PA QU QU-02 1208 8 1 8 T 

2.0151E
+11 BUE 1 CONCRE 10.5 220 250 0 0 1 1 0 0 

250kVA 
10.5/0.22kV <Null> hochoa hochoa 

60229 ESE 1 URB. LOS SAUCES URB. LOS SAUCES MON PU QU QU-02 930 8 1 8 T  BUE 1 CONCRE 10.5 220 100 37.336364 26.8 2 76 1 17 
100kVA 
10.5/0.22kV <Null> lparedes cscvs14 

60231 ESE 1 VILLA MANANTIAL VILLA MANANTIAL MON PU QU QU-02 1353 8 1 8 T  BUE 1 CONCRE 10.5 220 100 42.91955 80.6 4 159 2 45 100kVA 10.5/0.22kV mavalos cscvs14 

60234 ESE 1 URB. WISPAMPA II URB. WISPAMPA II BIP PU QU QU-02 951 8 1 5 T 
2.018E+

14 BUE 1 CONCRE 10.5 220 100 58.715372 86.8 2 188 1 62 
100kVA 
10.5/0.22kV TABLERO NUEVO foliverac 

usuariosid1
4 

61683 ESE 1 URB. SANTA MONICA URB. SANTA MONICA COM PU QU QU-02 930 8 1 8 T  BUE 0 <Null> 10.5 380 100 55.949502 35.6 5 155 1 32 
100kVA 
10.5/0.38kV <Null> hhuillca hhuillca 

62231 ESE 1 
PERIODISTAS 
MARCAVALLE 

PERIODISTAS 
MARCAVALLE BIP PU QU QU-02 930 8 1 8 T 

2.015E+
14 BUE 2 CONCRE 10.5 380 100 64.078342 72.8 4 245 1 35 100kVA 10.5/0.38kV 

usuarios
id11 cscvs14 

63399 ESE 1 AV. CUSCO I S.S. AV. CUSCO I S.S. CAS PU QU QU-02 931 8 1 5 T 
2.018E+

14 BUE 1 <Null> 10.5 220 250 158.814635 170.8 7 352 1 69 
250kVA 
10.5/0.22kV TABLERO NUEVO cscvs14 

usuariosid1
4 

63404 ESE 1 URB. WISPAMPA I URB. WISPAMPA I MON PU QU QU-02 951 8 1 5 T  BUE 1 CONCRE 10.5 220 160 91.939693 116.2 4 310 1 64 160kVA 10.5/0.22kV 
usuarios
id13 kaiquipa 

63405 ESE 1 
URB. GC. SANTA ROSA 
II 

URB. GC. SANTA ROSA 
II BIP PU QU QU-02 675 8 1 5 T  BUE 1 CONCRE 10.5 220 160 61.051925 112.4 4 202 2 62 160kVA 10.5/0.22kV ecruz cscvs14 

63406 ESE 1 SANTA URSULA II AV.TUPAC AMARU BIP PU QU QU-02 930 8 1 8 T 
2.0131E

+11 BUE 1 CONCRE 10.5 380 160 12.748276 24 2 43 1 15 
160kVA 
10.5/0.38kV <Null> ycruz cscvs14 

63407 ESE 1 
TUPAC AMARU I 
(Reubicado) VIA EXPRESA BIP PU QU QU-02 675 8 1 5 T 

2.0081E
+11 BUE 1 CONCRE 10.5 220 50 12.831276 83.8 3 58 3 32 

50kVA 
10.5/0.22kV <Null> ruscapi cscvs14 

63408 ESE 1 
APV FEDETAC 
FRACCION A FEDETAC MON PU QU QU-02 712 8 1 5 T 

2.013E+
11 BUE 1 CONCRE 10.5 220 50 6.543426 21.2 2 58 1 18 

50kVA 
10.5/0.22kV <Null> hochoa cscvs14 

63409 ESE 1 
MADEREROS 
QUISPIQUILLA QUISPIQUILLA MON PU QU QU-02 675 8 1 8 T 

2.0121E
+11 BUE 1 CONCRE 10.5 220 160 0 0 1 0 0 0 

160kVA 
10.5/0.22kV <Null> yduenas cscvs14 

63410 ESE 1 VISTA ALEGRE III VIA EXPRESA BIP PU QU QU-02 675 8 1 8 T  BUE 1 CONCRE 10.5 220 100 73.105249 157.8 3 177 2 69 100kVA 10.5/0.22kV yduenas cscvs14 

63501 ESE 1 URB. MARIATEGUI S.S. URB. MARIATEGUI S.S. BIP PU QU QU-02 927 8 1 8 T  BUE 1 CONCRE 10.5 220 160 74.748102 66.2 4 224 1 45 160kVA 10.5/0.22kV 
usuarios
id11 cscvs14 

63502 ESE 1 

PARQUE INDUSTRIAL 
VI(Antes SUBESTACIÓN 
0010359) 

LAS AMERICAS(Antes 
ZONA NO HABILITADA 
III) BIP PU QU QU-02 928 8 1 8 T  BUE 1 CONCRE 10.5 220 100 28.955268 80.8 4 64 1 59 100kVA 10.5/0.22kV 

usuarios
id11 cscvs14 

63503 ESE 1 CONJ. HAB. CAHUIDE II 
CONJ. HAB. CAHUIDE 
II BIP PU QU QU-02 930 8 1 8 T  BUE 1 CONCRE 10.5 220 100 81.870747 122.8 4 279 1 83 100kVA 10.5/0.22kV 

usuarios
id11 cscvs14 

63504 ESE 1 AV CUSCO I 

AV CUSCO - 1 
PARADERO SAN 
SEBASTIAN MON PU QU QU-02 931 8 1 5 T 

2.014E+
14 BUE 1 CONCRE 10.5 220 100 41.798989 34.8 2 117 1 17 

100kVA 
10.5/0.22kV <Null> hochoa cscvs14 

63616 ESE 1 
CENTRO DE SALUD 
SAN SEBASTIAN 

ESQUINA MARCO 
ZAPATA CON 
GARCILASO BIP PA QU QU-02 1314 8 1 5 T 

2.0141E
+11 BUE 0 CONCRE 10.5 220 100 0 0 0 0 0 0 

100kVA 
10.5/0.22kV <Null> hochoa hhuillca 

65764 ESE 1 
APV. QUISPIQUILLA 
GRANDE 

QUISPIQUILLA 
GRANDE BIP PU QU QU-02 1206 8 1 5 T 

2.012E+
11 BUE 1 CONCRE 10.5 220 100 36.380311 38.2 5 86 1 33 

100kVA 
10.5/0.22kV <Null> lmancco cscvs14 

65765 ESE 1 URB. 28 DE JULIO 
VIA EXPRESA(Antes 
URB. 28 DE JULIO S.S.) BIP PU QU QU-02 925 8 1 8 T  BUE 1 CONCRE 10.5 220 100 51.947003 205.6 4 227 3 86 100kVA 10.5/0.22kV yduenas cscvs14 

65767 ESE 1 VISTA ALEGRE II VIA EXPRESA BIP PU QU QU-02 925 8 1 8 T 
2.0121E

+11 BUE 1 CONCRE 10.5 220 80 43.654838 67.2 3 160 2 48 80kVA 10.5/0.22kV 
usuarios
id11 cscvs14 

65768 ESE 1 APV. LAS MERCEDES VIA EXPRESA BIP PU QU QU-02 925 8 1 8 T  BUE 1 CONCRE 10.5 220 80 44.976063 99.4 3 171 3 48 80kVA 10.5/0.22kV yduenas cscvs14 

65769 ESE 1 VISTA ALEGRE I VIA EXPRESA BIP PU QU QU-02 925 8 1 8 T 
2.0121E

+11 BUE 1 CONCRE 10.5 220 100 43.090556 118.4 2 144 3 64 100kVA 10.5/0.22kV jpena cscvs14 

65770 ESE 1 REPUBLICA DEL PERU 
AV.REPUBLICA DEL 
PERU BIP PU QU QU-02 925 8 1 8 T 

2.0131E
+11 BUE 1 CONCRE 10.5 380 100 32.25342 21 2 94 1 15 

100kVA 
10.5/0.38kV <Null> ycruz cscvs14 

65771 ESE 1 

VILLA 
RINCONADA(Reubicad
o) 

APV. VILLA 
RINCONADA BIP PU QU QU-02 675 8 1 4 T  BUE 1 CONCRE 10.5 220 160 104.773996 164.4 3 497 1 97 

160kVA 
10.5/0.22kV <Null> yduenas 

usuariosid1
4 

65772 ESE 1 TUPAC AMARU 02 VIA EXPRESA BIP PU QU QU-02 675 8 1 5 T  BUE 1 CONCRE 10.5 220 100 48.136533 95.8 3 139 1 48 100kVA 10.5/0.22kV mmarin cscvs14 

65773 ESE 1 

BERNARDO 
TAMBOHUACSO 
(Reubicado) VIA EXPRESA BIP PU QU QU-02 675 8 1 5 T  BUE 1 CONCRE 10.5 220 100 79.29142 109.2 3 241 1 60 100kVA 10.5/0.22kV ecruz cscvs14 

65774 ESE 1 
HIPOLITO TUPAC 
AMARU V 

HIPOLITO TUPAC 
AMARU V BIP PU QU QU-02 1205 8 1 5 T  BUE 1 CONCRE 10.5 220 80 58.426104 51.4 4 148 1 30 80kVA 10.5/0.22kV ecruz 

usuariosid1
4 

65775 ESE 1 
TUPAC AMARU 
(Reubicado) VIA EXPRESA BIP PU QU QU-02 675 8 1 5 T  BUE 1 CONCRE 10.5 220 160 60.497291 74.8 6 157 3 38 160kVA 10.5/0.22kV yduenas cscvs14 

13962
2 ESE 1 

PLAZOLETA URB. 
TUPAC AMARU 

PLAZA URB. TUPAC 

AMARU - SAN 
SEBASTIAN BIP PU QU QU-02 <Null> 8 1 5 T 

2.018E+
14 BUE 1 CONCRE 22.9 220 250 0 0 4 82 1 6 

250kVA 
22.9/0.22kV 

AUN NO CUENTA 
CON REDES BT 

usuarios
id14 

usuariosid1
4 

14827
4 ESE 1 

S.T. CAMELIDOS 
CUSCO 

PARQUE INDUSTRIAL 
CALLE LAS AMERICAS COM PA QU QU-02 <Null> 8 1 8 T 

2.0181E
+11 BUE 1 <Null> 22.9 220 100 0 0 0 0 0 0 

100kVA 
22.9/0.22kV <Null> mgarcia aquisper 
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ANEXO 8 : EVOLUCION DE METRADOS CUSCO. 
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ANEXO 9: MODULO DE PÉRDIDAS SIELSE – ELSE PORCENTAJES DE PÉRDIDAS 
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ANEXO 10 : FACTORES DE PÉRDIDAS Y FACTORES DE CARGA 

 

FACTORES DE PÉRDIDAS Y FACTORES DE CARGA 
       

ITEM AMT Subestación 
Nivel de 
Tension 

[kV] 

Factor de 
Carga (Fc) Factor K 

Factor de 
Pérdidas 

(Fp) 
1 CP01 Chacapuente 22.9 0.36 0.30 0.20 
2 CP02 Chacapuente 22.9 0.48 0.30 0.30 
3 CQ01 Chuquibambilla 22.9 0.45 0.30 0.28 
4 CQ02 Chuquibambilla 22.9 0.46 0.30 0.29 
5 CQ03 Chuquibambilla 22.9 0.33 0.30 0.17 
6 TA02 Tamburco 13.2 0.36 0.30 0.20 
7 TA03 Tamburco 13.2 0.36 0.30 0.20 
8 TA04 Tamburco 13.2 0.34 0.30 0.18 
9 TA05 Tamburco 22.9 0.52 0.30 0.34 

10 TA06 Tamburco 22.9 0.49 0.30 0.31 
11 TA07 Tamburco 22.9 0.15 0.30 0.06 
12 AN01 Andahuaylas 13.2 0.50 0.30 0.32 
13 AN02 Andahuaylas 13.2 0.55 0.30 0.38 
14 AN04 Andahuaylas 22.9 0.36 0.30 0.20 
15 AN05 Andahuaylas 22.9 0.47 0.30 0.30 
16 AN06 Andahuaylas 22.9 0.27 0.30 0.13 
17 AN07 Andahuaylas 22.9 0.41 0.30 0.24 
18 CP03 Chacapuente 22.9 0.41 0.30 0.24 
19 CA01 Cachimayo 22.9 0.49 0.30 0.31 
20 CA02 Cachimayo 10.5 0.50 0.30 0.32 
21 CA03 Cachimayo 10.5 0.55 0.30 0.37 
22 DO01 Dolorespata 10.5 0.57 0.30 0.40 
23 DO02 Dolorespata 10.5 0.57 0.30 0.40 
24 DO03 Dolorespata 10.5 0.55 0.30 0.38 
25 DO04 Dolorespata 10.5 0.68 0.30 0.53 
26 DO05 Dolorespata 10.5 0.61 0.30 0.44 
27 DO06 Dolorespata 10.5 0.57 0.30 0.39 
28 DO07 Dolorespata 10.5 0.65 0.30 0.49 
29 DO08 Dolorespata 10.5 0.61 0.30 0.44 
30 DO09 Dolorespata 10.5 0.58 0.30 0.41 
31 QU01 Quencoro 10.5 0.57 0.30 0.40 
32 QU-02 Quencoro 10.5 0.63 0.30 0.47 
33 QU03 Quencoro 10.5 0.61 0.30 0.45 
34 QU04 Quencoro 10.5 0.63 0.30 0.46 
35 QU05 Quencoro 10.5 0.70 0.30 0.55 
36 QU07 Quencoro 10.5 0.42 0.30 0.25 
37 MZ01 Mazuco 22.9 0.58 0.30 0.41 
38 MZ02 Mazuco 22.9 0.53 0.30 0.35 
39 PM01 Puerto Maldonado 10.5 0.59 0.30 0.42 
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40 PM02 Puerto Maldonado 10.5 0.61 0.30 0.45 
41 PM03 Puerto Maldonado 10.5 0.53 0.30 0.35 
42 PM06 Puerto Maldonado 22.9 0.67 0.30 0.52 
43 PM07 Puerto Maldonado 22.9 0.56 0.30 0.39 
44 CH01 Chahuares 22.9 0.58 0.30 0.41 
45 CH02 Chahuares 22.9 0.49 0.30 0.31 
46 CH03 Chahuares 22.9 0.55 0.30 0.38 
47 SM01 Santa María 22.9 0.53 0.30 0.35 
48 SM02 Santa María 22.9 0.56 0.30 0.39 
49 SM03 Santa María 22.9 0.45 0.30 0.28 
50 UP01 Urpipata 10.5 0.59 0.30 0.42 
51 UP02 Urpipata 10.5 0.59 0.30 0.42 
52 UP04 Urpipata 22.9 0.59 0.30 0.42 
53 UP05 Urpipata 22.9 0.59 0.30 0.42 
54 CO01 Combapata 22.9 0.46 0.30 0.29 
55 CO02 Combapata 22.9 0.46 0.30 0.29 
56 CO03 Combapata 22.9 0.46 0.30 0.29 
57 CO04 Combapata 22.9 0.46 0.30 0.29 
58 CO05 Combapata 22.9 0.52 0.30 0.34 
59 LL01 Llusco 22.9 0.47 0.30 0.30 
60 LL02 Llusco 22.9 0.46 0.30 0.29 
61 LL03 Llusco 22.9 0.46 0.30 0.28 
62 SI01 Sicuani 10.5 0.25 0.30 0.12 
63 SI02 Sicuani 10.5 0.13 0.30 0.05 
64 SI03 Sicuani 10.5 0.53 0.30 0.35 
65 SI05 Sicuani 10.5 0.52 0.30 0.34 
66 TI01 Tintaya 10.5 0.67 0.30 0.52 
67 HU01 Huaro 10.5 0.53 0.30 0.36 
68 HU02 Huaro 10.5 0.46 0.30 0.29 
69 HU03 Huaro 10.5 0.57 0.30 0.40 
70 HU04 Huaro 22.9 0.42 0.30 0.25 
71 OR01 Oropesa 10.5 0.51 0.30 0.33 
72 OR02 Oropesa 10.5 0.48 0.30 0.31 
73 OR03 Oropesa 10.5 0.62 0.30 0.46 
74 MA01 Machupicchu 10.5 0.70 0.30 0.55 
75 PA01 Paucartambo 22.9 0.50 0.30 0.32 
76 PA02 Paucartambo 22.9 0.50 0.30 0.32 
77 PI01 Pisac 10.5 0.47 0.30 0.30 
78 PI02 Pisac 10.5 0.55 0.30 0.37 
79 PI03 Pisac 22.9 0.50 0.30 0.32 
80 PI04 Pisac 22.9 0.45 0.30 0.28 
81 PI05 Pisac 10.5 0.55 0.30 0.38 
82 UR01 Urubamba 10.5 0.46 0.30 0.28 
83 UR02 Urubamba 10.5 0.59 0.30 0.42 
84 UR04 Urubamba 22.9 0.59 0.30 0.42 
85 QU06 Quencoro 10.5 0.61 0.30 0.44 
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ANEXO 11: MANUAL PARA EJECUTAR EL PROGRAMA 

 




