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RESUMEN 
 

Se evalúa la efectividad de los algoritmos de emparejamiento ELO, Glicko-2 y TrueSkill para 

clasificar a estudiantes con bajo rendimiento académico en la UNSAAC del periodo postpandemia 

(2023-I a 2024-II) habiendo brechas tecnológicas, sociales y pedagógicas. El objetivo determina en 

qué medida dichos algoritmos clasifican efectivamente el bajo rendimiento según el desempeño 

académico. Bajo un enfoque cuantitativo, descriptivo y experimental, se analizaron 413791 

registros académicos de 25162 estudiantes. Tras procesos de limpieza, verificación (99,76 % 

registros válidos), imputación y simulación de competencias académicas, se aplicaron los tres 

modelos. Los resultados evidencian correlaciones positivas y significativas con el Cumulative 

Grade Point Average (CGPA). ELO (r = 0.7970 y ρ = 0.4630) destaca por su capacidad para 

identificar casos críticos (67.6 % de estudiantes con promedios inferiores a 5.0). Glicko-2 alcanzó la 

mejor correlación (r = 0.8213 y ρ = 0.7948), combinando precisión y estabilidad. TrueSkill (r = 0.8078, 

ρ = 0.7783) mostró una mayor sensibilidad en rangos limítrofes (9.5–13.5), identificando a 8.9 % de 

estudiantes en incertidumbre académica procesando aprox. 1.86 cursos por segundo. Los algoritmos 

identificaron tasas similares de bajo rendimiento (73.5% – 73.7%) y a 841 alumnos de forma unánime: 

ELO más eficaz en casos extremos, TrueSkill más sensible en rangos intermedios y con mayor 

correlación; y Glicko-2 más robusto y eficiente en tiempo de ejecución. Concluyendo, Glicko-2 y 

TrueSkill son los mejores algoritmos en la detección de estudiantes con bajo rendimiento en el periodo 

post-covid de la Universidad Nacional de San Antonio Abad del Cusco. 

Palabras clave: ELO, Glicko-2, TrueSkill, Bajo rendimiento académico  
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ABSTRACT 
 

The effectiveness of the ELO, Glicko-2, and TrueSkill rating algorithms is evaluated for 

classifying students with low academic performance at UNSAAC during the post-pandemic period 

(2023-I to 2024-II), in a context marked by technological, social, and pedagogical gaps. The 

objective is to determine the extent to which these algorithms effectively classify low performance 

based on academic achievement. Under a quantitative, descriptive, and experimental approach, 

413,791 academic records from 25,162 students were analyzed. After data cleaning, verification 

(99.76% valid records), imputation, and simulation of academic competitions, the three models 

were applied. The results show positive and significant correlations with the Cumulative Grade 

Point Average (CGPA). ELO (r = 0.7970 and ρ = 0.4630) stands out for its ability to identify 

critical cases (67.6% of students with averages below 5.0). Glicko-2 achieved the highest 

correlation (r = 0.8213 and ρ = 0.7948), combining accuracy and stability. TrueSkill (r = 0.8078, 

ρ = 0.7783) showed greater sensitivity in borderline ranges (9.5–13.5), identifying 8.9% of 

students in academic uncertainty while processing approximately 1.86 courses per second. The 

algorithms identified similar rates of low performance (73.5%–73.7%) and unanimously detected 

841 students: ELO proved more effective in extreme cases, TrueSkill more sensitive in 

intermediate ranges and with higher correlation, and Glicko-2 more robust and efficient in 

execution time. In conclusion, Glicko-2 and TrueSkill are the most effective algorithms for 

detecting students with low academic performance during the post-COVID period at Universidad 

Nacional de San Antonio Abad del Cusco 

Keywords: ELO, Glicko-2, TrueSkill, Low academic performance 
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ACRÓNIMOS 
 

• CGPA (Cumulative Grade Point Average). Promedio acumulado de calificaciones. 

• CSV (Comma-Separated Values). Formato de archivo tabular separado por comas. 

• CU (Consejo Universitario). Órgano de gobierno universitario que emite resoluciones en la 

UNSAAC. 

• ELO. Sistema de calificación creado por Arpad Elo para estimar habilidades relativas en 

competiciones. 

• GPA (Grade Point Average). Promedio de calificaciones. 

• INEI (Instituto Nacional de Estadística e Informática). Entidad oficial de estadística del Perú. 

• MINEDU (Ministerio de Educación del Perú). Entidad rectora de la política educativa 

nacional. 

• MMR (Matchmaking Rating). Clasificación por emparejamiento, usada en videojuegos y 

aplicada al rendimiento académico. 

• PDF (Portable Document Format). Formato de documento portátil. 

• RD (Rating Deviation). Desviación de calificación en el sistema Glicko-2. 

• TIC (Tecnologías de la Información y Comunicación). Herramientas digitales aplicadas a la 

educación. 

• TTT-D (TrueSkill Through Time with Individual Draw Margins). Variante del algoritmo 

TrueSkill con márgenes de empate individuales. 

• UNSAAC (Universidad Nacional de San Antonio Abad del Cusco). Universidad pública 

ubicada en Cusco, Perú. 

• W/L (Winner/Loser). Notación en el algoritmo TrueSkill para ganador/perdedor. 
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1. CAPÍTULO I: ASPECTOS GENERALES 

1.1. Planteamiento del Problema 

El rendimiento académico en los estudiantes universitarios es un indicador determinante 

para valorar la calidad educativa y el éxito en el aprendizaje. Sin embargo, en la actualidad, los 

métodos tradicionales de seguimiento académico en instituciones educativas superiores presentan 

limitaciones significativas: en primer lugar, los reportes de notas convencionales ofrecen 

únicamente una visión numérica del desempeño sin establecer comparaciones entre los 

estudiantes, lo que dificulta la identificación de patrones de rendimiento. Esto impide que los 

docentes tengan una visión más amplia del alumnado ni que puedan brindar una orientación 

personalizada a alumnos con bajo rendimiento, basada en sus necesidades individuales; tampoco 

ayuda a que los estudiantes comprendan su posición respecto a sus pares, reduciendo así su 

potencial de mejora y motivación para mejorar su desempeño. 

En el ámbito nacional, la tasa bruta de matrícula universitaria alcanza un 41,9 %; sin 

embargo, esta cifra se reduce en regiones de la sierra sur, donde el acceso se ve limitado por 

factores socioeconómicos y geográficos (Ministerio de Educación Peruano & Diario El Peruano, 

2020). En el caso específico de la ciudad del Cusco, la tasa de culminación universitaria presenta 

un panorama preocupante: apenas 27 % de los estudiantes logra graduarse dentro del tiempo 

teórico establecido, mientras que el abandono intermedio puede superar hasta el 40%, en 

determinadas carreras. La Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), 

como principal referente de educación superior universitaria en la región, concentra una parte 

significativa de la matrícula total del departamento. El Decreto Supremo N.º 012-2020-MINEDU 

señala que esta casa de estudios registra una matrícula total que supera los 20 mil estudiantes 

distribuidos en programas de pregrado y posgrado, siendo el acceso mayoritario para jóvenes 
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provenientes de la misma región y de departamentos vecinos de la sierra sur. En cuanto a 

indicadores de permanencia, se evidencia que menos del 30% de los estudiantes logran egresar 

dentro del tiempo teórico establecido para sus programas de estudio. La tasa de abandono 

intermedio supera el 40 %, lo que constituye un problema vinculado tanto a factores económicos 

como académicos (Ministerio de Educación Peruano & Diario El Peruano, 2020). 

El Decreto Supremo N.º 012-2020-MINEDU también destaca que, a pesar del 

licenciamiento institucional, persisten brechas en equipamiento tecnológico, cobertura de 

bibliotecas virtuales y conectividad digital, especialmente para estudiantes que provienen de zonas 

rurales. (Ministerio de Educación Peruano & Diario El Peruano, 2020). 

A partir del año 2020, en la época de la pandemia del COVID-19, el sistema educativo se 

vio muy afectado a nivel mundial debido al cierre de las instituciones públicas y privadas, dando 

fin a la modalidad presencial; por consiguiente, implementando la modalidad de educación en línea 

para mantener una continuidad con la enseñanza. Sin embargo, la realidad se demostró que muchas 

instituciones no se encontraban preparadas para ese cambio tan significativo. Esto ahondó en las 

desigualdades relacionadas con el acceso y uso de las Tecnologías de la Información y 

Comunicación (TIC). De acuerdo con Vilela et al. (2021), la brecha en el acceso a estas tecnologías 

representó una gran limitación para que muchos estudiantes pudieran desarrollar con normalidad 

sus estudios universitarios, llevando incluso a la interrupción de su formación académica. Aun 

cuando el uso de las TIC alcanzó su mayor nivel de importancia durante la pandemia, estas 

condiciones desiguales continuaron afectando negativamente el desempeño estudiantil incluso en 

el escenario presencial del periodo postpandemia. (Alberto Caycho-Valencia et al., 2023). 
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1.2. Formulación del Problema 

Producto de la pandemia, el contexto educativo experimentó un cambio profundo en la 

forma de enseñar de los docentes y de aprender de los estudiantes (Alberto Caycho-Valencia et al., 

2023). Este cambio brusco de paradigma pedagógico generó dificultades de adaptación que 

incrementaron el número de alumnos con bajo rendimiento académico, influido además por 

factores familiares, sociales y de recuperación económica. 

La Universidad Nacional de San Antonio Abad del Cusco evidencia una problemática 

crítica de eficiencia terminal, caracterizada por una brecha sostenida entre matrícula y titulación y 

un incremento agudo de la deserción estudiantil. Entre 2018 y 2022, la matrícula semestral se 

mantuvo en niveles altos y constantes (de 19432 a 19710 estudiantes) (Cañihua Florez & Meza de 

Loayza, 2018; Cañihua Florez et al., 2023). Sin embargo, el promedio de titulados por semestre 

fue de apenas 1267.5, ilustrando una baja tasa de culminación (Cañihua Florez et al., 2023; 

Cañihua Florez & Meza de Loayza, 2018). Esta brecha se agrava al analizar la deserción: las 

estimaciones pasaron de 1979 estudiantes en 2018 a 8435 en 2022, lo que representa un aumento 

superior al 400% en dicho periodo (Cañihua Florez & Meza de Loayza, 2018; Cañihua Florez et 

al., 2023). 

Este escenario señala que, pese a una demanda constante, un número elevado de estudiantes 

no finaliza sus estudios, situación vinculada a factores como la prolongación de carrera y posterior 

abandono académico (INEI, 2023). A la problemática mencionada se añade la falta de sistemas de 

clasificación que permitan identificar a los estudiantes de bajo rendimiento, especialmente en los 

semestres postpandemia posteriores a los mencionados: del 2023-I al 2024-II en la Universidad 

Nacional de San Antonio Abad del Cusco. Esta carencia obstaculiza la implementación de 
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estrategias pedagógicas personalizadas a alumnos con bajo rendimiento, lo que agrava la situación 

y dificulta la búsqueda de una solución. 

La presente investigación opta por algoritmos de emparejamiento (ELO, Glicko-2, 

TrueSkill) en lugar de métodos de aprendizaje automático supervisado o no supervisado debido a 

la naturaleza y estructura de los datos disponibles. Los datos de entrada, organizados por alumno, 

semestre, asignatura y notas parciales, carecen de una etiqueta predefinida que clasifique 

categóricamente el “rendimiento”. Implementar aprendizaje supervisado requeriría una costosa y 

subjetiva etiquetación manual de cada registro (Azlinah et al., 2020). 

Por otro lado, el aprendizaje no supervisado, si bien opera sin etiquetas, genera 

agrupaciones (clusters) difíciles de interpretar y validar en este contexto; además las características 

adicionales cualitativas como el código y nombre de asignatura en los datos base no aportan 

información adicional a los clusters ni mucho menos tienen un tipo de correlación con el semestre 

académico. Estas agrupaciones se basan en similitudes estadísticas brutas entre notas, sin 

garantizar que se correspondan con categorías académicamente significativas o estables de 

rendimiento y riesgo. Por ello, no ofrecen una base accionable para su aplicación. 

Los algoritmos de emparejamiento superan estas limitaciones al utilizar directamente la estructura 

comparativa inherente a los datos. Tratan cada curso y semestre como un entorno competitivo, 

donde las notas de los estudiantes se convierten en resultados de “enfrentamientos” simulados. 

Esto permite una clasificación relativa y dinámica basada en el desempeño comparativo, sin 

depender de etiquetas absolutas ni de la interpretación abstracta de agrupaciones (Ruiperez-

Valiente et al., 2023; Vesin et al., 2022). Así, ofrecen una solución robusta, interpretable y 

directamente aplicable a la estructura matricial de rendimiento disponible. 
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1.3. Problema General 

¿En qué medida los algoritmos de emparejamiento: ELO, Glicko-2 y TrueSkill pueden 

proporcionar una clasificación precisa de los estudiantes con bajo rendimiento según su 

desempeño académico en la Universidad Nacional de San Antonio Abad del Cusco, en el periodo 

postpandemia (semestre Académico 2023-I al 2024-II)? 

1.4. Problemas Específicos 

• ¿Cómo realizar el preprocesamiento de los datos académicos, garantizando su consistencia y 

validez para el análisis, incluyendo la descripción, limpieza, detección de valores atípicos y 

visualización de los registros de notas de los estudiantes de la UNSAAC durante los semestres 

2023-I al 2024-II? 

• ¿Cómo adaptar e implementar los algoritmos ELO, Glicko-2 y TrueSkill al contexto académico 

universitario para evaluar el rendimiento de los estudiantes? 

• ¿Cuál de los algoritmos ELO, Glicko-2 o TrueSkill presenta el mejor desempeño en términos 

de tiempo de ejecución y correlación estadística con el Cumulative Grade Point Average 

(CGPA) de los estudiantes con bajo rendimiento académico? 

• ¿Cómo se comparan los resultados de las clasificaciones generadas por los algoritmos ELO, 

Glicko-2 y TrueSkill en la identificación de estudiantes con bajo rendimiento, y qué diferencias 

se evidencian al aplicarlos? 
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1.5. Justificación 

La presente investigación se justifica por la necesidad de implementar mecanismos eficaces 

que permitan la detección y atención oportuna de estudiantes universitarios con bajo rendimiento 

académico, particularmente en el contexto postpandemia, donde las brechas tecnológicas, sociales 

y pedagógicas agudizaron esta problemática. Existiendo casos registrados en los que estudiantes 

que, pese a atravesar periodos críticos de bajo rendimiento y riesgo de abandono, no recibieron 

tutorías especializadas ni estrategias por parte de la universidad de reinserción, lo que evidencia la 

carencia de sistemas efectivos para su identificación y acompañamiento, lo que prolonga su 

recuperación y limita sus oportunidades de mejora académica. 

En este escenario, la aplicación de algoritmos de emparejamiento como ELO, Glicko-2 y 

TrueSkill, efectivamente utilizados en entornos competitivos como el ajedrez, Dota 2, Halo o 

League of Legends para clasificar y reconocer a jugadores con un bajo nivel de habilidad, se 

presenta como una alternativa innovadora y prometedora en el ámbito educativo. Estos modelos 

permiten realizar clasificaciones objetivas y adaptativas sin depender de grandes volúmenes de 

datos etiquetados, posibilitando la identificación precisa de estudiantes con bajo rendimiento y la 

generación de estrategias pedagógicas personalizadas orientadas a su mejora y permanencia en la 

universidad. 
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1.6. Objetivos 

1.6.1. Objetivo General 

Determinar en qué medida los algoritmos de emparejamiento ELO, Glicko-2 y TrueSkill 

pueden proporcionar una clasificación precisa de los estudiantes con bajo rendimiento, en la 

Universidad Nacional de San Antonio Abad del Cusco, según su desempeño académico. 

1.6.2. Objetivos Específicos 

• Realizar el preprocesamiento de los datos académicos de los estudiantes de la UNSAAC 

correspondientes a los semestres 2023-I al 2024-II, garantizando su consistencia y validez para 

el análisis mediante la descripción, limpieza, detección de valores atípicos y visualización de 

los registros de notas. 

• Adaptar e implementar los algoritmos ELO, Glicko-2 y TrueSkill en el contexto académico 

universitario, con el propósito de evaluar y clasificar el rendimiento académico de los 

estudiantes. 

• Evaluar el desempeño comparativo de los algoritmos ELO, Glicko-2 y TrueSkill en términos 

de tiempo de ejecución y correlación estadística con el Cumulative Grade Point Average 

(CGPA), determinando su efectividad en la identificación de estudiantes con bajo rendimiento 

académico. 

• Comparar los resultados de las clasificaciones generadas por los algoritmos ELO, Glicko-2 y 

TrueSkill en la identificación de estudiantes con bajo rendimiento, analizando las diferencias 

al aplicarlos. 
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1.7. Alcances y limitaciones 

1.7.1. Alcances 

Este estudio se desarrolla en la Universidad Nacional de San Antonio Abad del Cusco 

(UNSAAC), utilizando datos académicos desde el semestre 2023-I hasta el 2024-II, abarcando una 

población de 25162 estudiantes universitarios. Los datos recolectados incluyen las calificaciones 

parciales y finales de los alumnos, con los siguientes campos: 

• id del alumno (anonimizado para proteger su privacidad) 

• semestre académico 

• código y nombre de la asignatura 

• notas de evaluaciones (Parcial 1, Parcial 2, Parcial 3, Sustitutorio, Subsanatorio) 

• promedio final 

Los alumnos se clasifican mediante los algoritmos de emparejamiento ELO, Glicko-2 y 

TrueSkill; utilizando como métrica de evaluación la correlación el Cumulative Grade Point 

Average (CGPA) de cada estudiante con el fin de identificar a los estudiantes con rendimiento 

académico. Esto permite identificar los cuartiles inferiores de alumnos con bajo rendimiento y 

ofrece una relación basada en los resultados de clasificación de los dichos. 

1.7.2. Limitaciones 

El estudio enfrentará limitaciones relacionadas con la obtención y procesamiento de los 

datos. La recopilación de información académica requirió de un trámite formal ante el Centro de 

Cómputo de la UNSAAC, a través del sistema PLADDES, dirigido al Ing. Aguedo Huamani 
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Huayhua, director de dicha unidad, lo que generó demoras en la disponibilidad de la información. 

En la solicitud, se requirieron los datos correspondientes desde el semestre 2022-II hasta el 2024-

II; sin embargo, a pesar de que en la cabecera del archivo entregado se consigna “NOTAS 

OBTENIDAS POR LOS ESTUDIANTES DEL 2022-2 AL 2024-2”, únicamente se recibieron 

registros desde el semestre 2023-I hasta el 2024-II, lo que reduce el alcance temporal inicialmente 

previsto. 

Además, los registros fueron remitidos al correo institucional en un formato no 

estructurado (PDF), lo que demanda un considerable esfuerzo de limpieza, transformación y 

compilación de datos, al tratarse de más de 35 000 registros distribuidos en 3338 páginas. Este 

proceso no solo exige herramientas computacionales potentes y adecuadas, sino también un tiempo 

significativo para estandarizar la información antes de su análisis. Otra limitación relevante radica 

en la aplicabilidad de los resultados, ya que, al centrarse en el contexto específico de la UNSAAC, 

los hallazgos podrían no ser directamente extrapolables a otras instituciones con sistemas de 

evaluación distintos. Asimismo, la implementación de los algoritmos de emparejamiento (ELO, 

Glicko-2 y TrueSkill) requerirá una adaptación exhaustiva al formato de datos recibidos, así como 

el ajuste de sus fundamentos matemáticos y teóricos para garantizar exactitud y resultados 

óptimos, lo que implica numerosas pruebas de validación, detección de errores y optimización 

algorítmica. 
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1.8. Metodología 

1.8.1. Tipo de investigación 

La presente investigación adopta un enfoque cuantitativo con alcance descriptivo y 

experimental, orientado a analizar la efectividad de los algoritmos de emparejamiento (ELO, 

Glicko-2 y TrueSkill) en la detección temprana de estudiantes con bajo rendimiento académico en 

el contexto postpandemia de la Universidad Nacional de San Antonio Abad del Cusco. 

En la fase descriptiva se indaga el impacto de la pandemia en el rendimiento académico de 

los estudiantes de la UNSAAC. Esto permitirá comprender las particularidades del contexto 

educativo actual y establecer líneas base para la investigación. Incluye el preprocesamiento, 

limpieza y visualización de datos; identificando distribuciones, tendencias, valores atípicos y 

patrones que puedan influir en la adaptación de los algoritmos de emparejamiento. 

En la fase experimental, se adaptan modelos matemáticos de los algoritmos de 

emparejamiento a los registros notas obtenidas por los estudiantes de la UNSAAC del 2023-I al 

2024-II y se mide el tiempo de ejecución. Se determina su correlación con el Cumulative Grade 

Point Average (CGPA) como métrica de evaluación, esto evalúa las capacidades de estos 

algoritmos para poder clasificar a los estudiantes, y por último se hallan a los estudiantes con bajo 

rendimiento aplicando cada uno de los algoritmos de emparejamiento: ELO, Glicko-2 y TrueSkill; 

por último, se compara los resultados y rendimiento de los algoritmos y se determina cual es el 

mejor. 

Este enfoque permite validar empíricamente su utilidad en la clasificación estudiantil, 

proporcionó evidencia cuantitativa para futuras implementaciones en el ámbito educativo. 
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1.8.2. Método de investigación 

El presente estudio emplea un método cuantitativo de diseño experimental, centrado en la 

aplicación y validación de algoritmos de emparejamiento (ELO, Glicko-2 y TrueSkill) para la 

clasificación del rendimiento académico; este enfoque permite validar empíricamente la utilidad 

de los algoritmos en un contexto educativo real. La investigación se estructura en las fases 

principales antes mencionadas: 

1.8.2.1. Fase descriptiva. Esta fase comprende la preparación y adaptación de los datos 

académicos mediante cuatro procesos principales. Inicia con la transformación de datos no 

estructurados (PDF) a formato estructurado (CSV) y la medición de su complejidad algorítmica. 

Continúa con el análisis de inconsistencias conforme al Reglamento Académico (Resolución N.º 

CU-0359-2015-UNSAAC) y la imputación de datos faltantes. Posteriormente, se realiza el análisis 

descriptivo, visualización de datos e identificación de valores atípicos. Finalmente, se ejecuta la 

transformación estructural de los registros académicos mediante operaciones de melt y pivot table 

para adaptar los datos al formato requerido por los algoritmos de emparejamiento ELO, Glicko-2 

y TrueSkill. 

1.8.2.2. Fase experimental. La fase experimental implementa y evalúa los tres algoritmos 

de emparejamiento en el contexto académico. Comienza con el cálculo del CGPA de estudiantes 

como métrica de referencia. Posteriormente, se aplica de manera secuencial cada algoritmo (ELO, 

Glicko-2 y TrueSkill) siguiendo el mismo procedimiento: clasificación de estudiantes, 

identificación de aquellos con bajo rendimiento y cálculo de correlación entre el MMR ponderado 

del algoritmo y el CGPA Final. La fase culmina con un análisis comparativo de los tres modelos 

en la detección de estudiantes con bajo rendimiento académico en el contexto postpandemia la 

UNSAAC. 
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2. CAPÍTULO II: MARCO TEÓRICO 

2.1. Antecedentes o estado del arte 

Zafari et al., (2021), en su investigación titulada “A Practical Model for the Evaluation of 

High School Student Performance Based on Machine Learning” propone un modelo práctico para 

evaluar el rendimiento de los estudiantes de secundaria basado en el aprendizaje automático. Este 

modelo se probó en una muestra de 1.000 estudiantes de secundaria de varias escuelas de Corea. 

Esto plantea la cuestión de que los métodos tradicionales para evaluar el rendimiento de los 

estudiantes, como las pruebas estandarizadas y las evaluaciones de los docentes, tienen 

limitaciones y pueden no reflejar con precisión las capacidades reales de los estudiantes. Además, 

estos métodos pueden consumir mucho tiempo y ser costosos. El sistema propuesto utiliza una 

combinación de selección de características y algoritmos de aprendizaje automático para evaluar 

el desempeño de los estudiantes. El sistema recopila datos de múltiples fuentes, incluidos registros 

académicos, patrones de comportamiento e información demográfica, luego utiliza técnicas de 

feature mapping para extraer las características más influyentes en la predicción de los resultados 

del aprendizaje de los estudiantes. Luego, el sistema entrena y evalúa varios modelos de 

aprendizaje automático, incluido el Decision Tree, Random Forest y los modelos de máquinas de 

soporte vectorial, para identificar los modelos más eficientes y óptimos para predecir el 

rendimiento de los estudiantes. El sistema fue capaz de clasificar a los estudiantes en cuatro clases 

(excelente, bueno, medio y mal) con una precisión del 85,5%. Los resultados del estudio sugieren 

que el sistema basado en el aprendizaje automático propuesto es efectivo para evaluar el 

rendimiento de los estudiantes de secundaria y puede proporcionar información valiosa para 

educadores y formuladores de políticas. El sistema tiene el potencial de ampliarse e implementarse 

en otros entornos educativos para mejorar los resultados de los estudiantes. Además, los datos 
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recopilados se pueden usar para otros trabajos, como la predicción de la deserción escolar y el 

rendimiento académico, agregando etiquetas relacionadas. 

Reddick (2019), en el paper “Using a Glicko-based Algorithm to Measure In-Course 

Learning” propone y evalúa un algoritmo basado en Glicko para estimar la capacidad del alumno 

y la dificultad de los elementos en plataformas de aprendizaje en línea, con el objetivo de respaldar 

recomendaciones personalizadas y sistemas de aprendizaje adaptativo. La población estudiada son 

los estudiantes de cursos en línea en la plataforma de Coursera, quienes realizan evaluaciones para 

demostrar sus conocimientos y habilidades. El problema abordado en el paper es la necesidad de 

un enfoque confiable y escalable para medir la capacidad del alumno y la dificultad de los temas 

a lo largo del tiempo, para brindar recomendaciones personalizadas y respaldar los sistemas de 

aprendizaje adaptativo. Los enfoques tradicionales para medir la capacidad del alumno, como la 

teoría de respuesta al objetivo (IRT), pueden ser costosos desde el punto de vista computacional y 

requieren grandes cantidades de datos. La solución propuesta en el paper es un sistema de 

calificación basado en el algoritmo Glicko, que puede estimar la capacidad del alumno y la 

dificultad de los elementos a lo largo del tiempo utilizando datos de las evaluaciones del curso. El 

algoritmo Glicko es una variante del sistema de calificación Elo, que se usa comúnmente en ajedrez 

y torneos deportivos. El paper demuestra la eficacia de este enfoque para estimar la dificultad de 

los elementos y la capacidad del alumno, y muestra cómo se puede utilizar para respaldar 

recomendaciones personalizadas y sistemas de aprendizaje adaptativo. La solución propuesta en 

el paper es un sistema de calificación basado en el algoritmo Glicko, que puede estimar la 

capacidad del alumno y la dificultad de los elementos a lo largo del tiempo utilizando datos de las 

evaluaciones del curso. El algoritmo Glicko es una variante del sistema de calificación Elo, que se 

usa comúnmente en ajedrez y torneos deportivos. El paper demuestra la eficacia de este enfoque 
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para estimar la dificultad de los elementos y la capacidad del alumno, y muestra cómo se puede 

utilizar para respaldar recomendaciones personalizadas y sistemas de aprendizaje adaptativo. 

Ruiperez-Valiente et al. (2023) en la investigación “The Affordances of Multivariate Elo-

Based Learner Modeling in Game-Based Assessment” tiene como objetivo principal explorar los 

beneficios del modelo de aprendizaje basado en Elo multivariado en el contexto de la evaluación 

basada en juegos (GBA, por sus siglas en inglés). Este enfoque busca medir la competencia de los 

estudiantes en múltiples componentes de conocimiento, predecir su desempeño en tareas dentro 

del juego y estimar la dificultad de dichas tareas. Para llevar a cabo este estudio, se utilizó un 

conjunto de datos recolectado de 322 estudiantes de séptimo a décimo grado que participaron en 

clases de matemáticas y geometría. Los datos fueron obtenidos a través de la herramienta de 

evaluación llamada Shadowspect, la cual fue utilizada por siete profesores en diversas clases en 

los Estados Unidos durante un período mínimo de dos horas. El método implementado en el 

estudio consistió en un algoritmo adaptado del sistema de clasificación Elo, que permite realizar 

un modelado de aprendizaje multivariado. Este enfoque es particularmente útil, ya que permite 

evaluar simultáneamente las competencias de los estudiantes en diferentes componentes de 

conocimiento a partir de sus interacciones con los puzzles del juego. A través de metodologías 

específicas, se midieron las competencias, se predijo el rendimiento en las tareas y se estimó la 

dificultad de las mismas. Los resultados obtenidos mostraron una distribución diversa de 

competencias entre los estudiantes en los diferentes componentes de conocimiento. Se evidenció 

que el modelo de Elo multivariado es capaz de diferenciar entre las competencias de los estudiantes 

y predecir su desempeño en las tareas del juego. Además, se logró estimar la dificultad de las tareas 

de manera efectiva, lo cual es crucial para mantener un flujo de juego adecuado. En conclusión, el 

estudio resalta que el modelado de aprendizaje basado en Elo multivariado presenta numerosas 
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ventajas en el contexto de la evaluación basada en juegos. Este enfoque permite un modelado 

preciso del rendimiento del aprendiz sin la necesidad de acumular grandes cantidades de datos. 

Los autores sugieren que este modelo puede ser valioso para futuras prácticas educativas, ya que 

facilita una evaluación más dinámica y adaptativa del aprendizaje de los estudiantes en entornos 

de juego. 

Lee Youngjin (2019) desarrolla la investigación “Estimating student ability and problem 

difficulty using item response theory (IRT) and TrueSkill” teniendo como objetivo investigar 

métodos eficientes para estimar la habilidad de los estudiantes en la resolución de problemas dentro 

de un entorno de aprendizaje basado en computadoras. La investigación se centra en cómo estas 

estimaciones pueden mejorar la personalización del aprendizaje y la predicción del éxito 

académico. Para llevar a cabo el estudio, se utilizó una población de estudiantes que interactuaron 

con un sistema de aprendizaje en línea, donde se recopilaron datos sobre su rendimiento en la 

resolución de problemas. El método principal empleado fue la Teoría de Respuesta al Ítem (IRT), 

que permite modelar la relación entre la habilidad del estudiante y la dificultad de los problemas, 

complementado por el algoritmo TrueSkill, que se utiliza para evaluar la dificultad de los 

problemas de manera más precisa. Los resultados del estudio indican que la combinación de IRT 

y TrueSkill proporciona estimaciones más precisas de la habilidad de los estudiantes y la dificultad 

de los problemas. Esto sugiere que es posible predecir el rendimiento académico de los estudiantes 

en exámenes finales basándose en su desempeño inicial en el curso. Además, se discute la 

posibilidad de desarrollar sistemas de alerta temprana que puedan estimar la probabilidad de 

deserción de los estudiantes en entornos de aprendizaje en línea, utilizando las habilidades 

estimadas a partir de su rendimiento en las primeras semanas del semestre. En conclusión, el 

estudio de Lee destaca la importancia de utilizar modelos de minería de datos para mejorar la 
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comprensión del aprendizaje y la enseñanza en entornos digitales, sugiriendo que futuras 

investigaciones podrían explorar más a fondo la efectividad de estos modelos predictivos en la 

educación. 

El paper titulado “Adaptive Assessment and Content Recommendation in Online 

Programming Courses: On the Use of Elo-rating” de Vesin et al. (2022), presenta un enfoque 

innovador para mejorar la experiencia de aprendizaje en cursos de programación en línea mediante 

la implementación de un algoritmo de clasificación basado en el sistema de Elo, combinado con 

pruebas unitarias. El objetivo principal del estudio es evaluar la eficiencia y efectividad de este 

método adaptativo en la recomendación de contenido, con el fin de personalizar la experiencia de 

aprendizaje de los estudiantes. La población estudiada incluyó a 701 estudiantes que utilizaron el 

sistema ProTuS durante los semestres de otoño de 2019 y 2020. Sin embargo, para obtener datos 

significativos, se centraron en un grupo de 87 estudiantes que resolvieron más de 10 ejercicios de 

codificación. La investigación se llevó a cabo a lo largo de un semestre, abarcando dos 

generaciones de estudiantes, y se recopiló información a través de registros de interacción, 

clasificaciones generadas por el sistema y encuestas sobre los resultados de aprendizaje. El método 

utilizado consistió en la implementación del algoritmo de Elo para clasificar a los estudiantes según 

su interacción con los recursos de aprendizaje. Se introdujeron métricas para evaluar la calidad de 

las recomendaciones, la efectividad del método propuesto y la eficiencia del algoritmo modificado. 

Los resultados mostraron que la precisión y el recall de las recomendaciones de ejercicios de 

codificación fueron de 0.65 y 0.62, respectivamente, lo que indica un rendimiento aceptable del 

sistema en la personalización del contenido. En conclusión, el estudio sugiere que la combinación 

del algoritmo de Elo con un sistema de tutoría adaptativa puede mejorar significativamente la 

experiencia de aprendizaje en línea para los estudiantes de programación. Los hallazgos resaltan 
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la importancia de utilizar datos de interacción para personalizar las recomendaciones y fomentar 

un aprendizaje más efectivo, lo que podría tener implicaciones positivas tanto para los estudiantes 

como para los educadores en el ámbito de la educación en línea. 

2.2. Algoritmos de emparejamiento 

Es de los principales pilares de los juegos competitivos online encargados de emparejar 

jugadores y equipos, cuya aplicación también se pude llevar al campo educativo como lo 

demuestra Reddick en el año 2019 en su investigación Using a Glicko-based Algorithm to Measure 

In-Course Learning. Estos los sistemas modelan las habilidades de los participantes usando 

representaciones numéricas. Los números se actualizan después de cada competición en función 

de los resultados según Reddick (2019) aplicado a la educación, después de cada periodo 

educativo. Los sistemas de emparejamiento difieren principalmente en la forma en que actualizan 

esos números. Se presentan por lo tanto los para esta investigación los siguientes tres algoritmos 

más relevantes: 

2.2.1. ELO 

Elo se ha utilizado como el principal algoritmo de emparejamiento para estimar 

estadísticamente las habilidades relativas de los jugadores en muchos juegos competitivos. Asume 

que la habilidad sigue una distribución Gaussiana con media 𝜇 una desviación estándar ajustada. 

Esta media es utilizada para clasificar la habilidad dentro de este modelo. En un espacio  𝐹 donde 

𝑁 grupos compiten contra otros al mismo tiempo, la probabilidad de gacia por grupo 𝑡𝑖 puede 

calcularse como: 

Pr⁡(𝑡, 𝑤𝑖𝑛𝑠, 𝐹) =
∑ (1 + 𝑒

(𝜇𝑡𝑗−𝜇𝑡𝑖)

𝐷 )−1𝑖≤𝑗≤𝑁,𝑖≠𝑗

(𝑁
2
)
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Donde  𝜇𝑡𝑖 y 𝜇𝑡𝑗  representan la habilidad del grupo 𝑡𝑖 y grupo 𝑡𝑖. Y el parámetro 𝐷 controla 

el impacto de la diferencia entre las calificaciones.  

El resultado observado 𝑅𝑡𝑖
𝑜𝑏𝑠 que representa el rango real de gacia del equipo 𝑡𝑖 al final del 

encuentro, se normaliza para que los rangos observados suman 1: 

𝑅𝑡𝑖
′ =

𝑁 − 𝑅𝑡𝑖
𝑜𝑏𝑠

(𝑁
2
)

 

La clasificación del equipo 𝑡𝑖 se actualiza luego de la siguiente forma: 

𝜇𝑡𝑖
′ = 𝜇𝑡𝑖⁡ + 𝐾[𝑅𝑡𝑖

′ − Pr⁡(𝑡, 𝑤𝑖𝑛𝑠, 𝐹)] 

donde 𝐾 es un factor de ponderación que determina la magnitud del cambio en la 

calificación del equipo. Si el equipo con 𝑡𝑖  consta de jugadores 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛, la clasificación 

de cada miembro del equipo 𝑝𝑗 se actualiza como: 

𝜇𝑡𝑖
′ = 𝜇𝑡𝑖⁡ + 𝑤𝑝𝑗⁡(𝜇𝑡𝑖

′ − 𝜇𝑡𝑖⁡) 

donde 𝑤𝑝𝑗es el peso de contribución del jugador 𝑝𝑗 Se calcula como la relación entre la 

calificación de un jugador y la sumatoria de las calificaciones de cada uno de miembros del equipo 

(Dehpanah et al., 2021) . 

El anterior planteamiento delimita la actualización de las calificaciones por grupo, este 

enfoque da una referencia a como se interpreta inicia y matemáticamente el algoritmo ELO, pero 

para esta investigación en el espacio F los N grupos tienen que ser los mismos que el número de 

participantes, para ello se necesita que generalizar la especificidad de los autores Arman Dehpanah 

y Jonathan Gemmell. 
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Por ello se propone para caso de calificación de competencias individuales los modelos: 

Win-Loss (ganar-perder) y Draws (empates) que son fundamentales para entender cómo se aplica 

el algoritmo Elo. El modelo win-loss es el enfoque tradicional del algoritmo Elo, que se utiliza 

para calcular las calificaciones de los jugadores en juegos donde solo hay dos resultados posibles: 

ganar o perder. En este modelo, la probabilidad de que un jugador gane se relaciona directamente 

con su calificación en comparación con la calificación de su oponente. La fórmula básica del 

algoritmo Elo ajusta las calificaciones de los jugadores después de cada partida, basándose en el 

resultado (ganar o perder) y la diferencia de calificaciones entre los jugadores (Szczecinski & 

Djebbi, 2020). El modelo de Draws se introduce para abordar situaciones en las que hay un tercer 

resultado posible: el empate. Este modelo es crucial en deportes donde los empates son comunes, 

como el fútbol. Se argumenta que el algoritmo Elo tradicional asume implícitamente que la 

frecuencia de empates es del 50%, lo cual no es realista en la mayoría de los deportes o 

competiciones (Szczecinski & Djebbi, 2020). 

Para mejorar la precisión del algoritmo en estos contextos, se propone el Elo-Davidson 

algorithm, que se basa en el modelo de draws de Davidson (1970). Este nuevo enfoque permite 

ajustar las calificaciones no solo en función de las victorias y derrotas, sino también considerando 

la frecuencia de empates. Esto se logra introduciendo un parámetro adicional que se relaciona con 

la frecuencia de empates, lo que proporciona una mejor representación de los resultados de los 

partidos (Szczecinski & Djebbi, 2020). 

Basado en la especificación de Szczecinski & Djebbi con los modelos Win-Loss y Draws 

se implementa el siguiente modelo en esta investigación: 

Como primer paso, se asigna un puntaje inicial 𝐸𝐿𝑂𝑖 ⁡de 1000 para todos los competidores. 
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𝐸𝐿𝑂𝑖 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑙𝑜 

𝐸𝐿𝑂𝑖 = 1000 

Como segundo paso; calculamos la probabilidad esperada de ganar, que se explica en la 

investigación de Arman Dehpanah, en la cual se calcula la probabilidad esperada de que un 

competidor 𝐴 con calificación 𝑅𝐴 gane contra otro competidor 𝐵 con rating 𝑅𝐵. Esta probabilidad 

se calcula con la fórmula. 

𝑃𝐴 =
1

1 + 10
𝑅𝐵−𝑅𝐴
400

 

Donde: 

• 𝑃𝐴 es la probabilidad del que competidor 𝐴 gane contra 𝐵; 

• 𝑅𝐴⁡y 𝑅𝐵 son las puntuaciones ELO de los competidores respectivamente. 

Como tercer paso; actualizamos las calificaciones ELO del competidor  𝐴 tras un 

enfrentamiento contra 𝐵 . La actualización se realiza de la siguiente manera: 

𝑅′𝐴 = 𝑅𝐴 +𝐾(𝑆𝐴 − 𝑃𝐴) 

Donde: 

• 𝑅′𝐴 es la nueva puntuación ELO del estudiante 𝐴; 

• 𝐾 es el factor de ajuste (por defecto 32), que determina la magnitud de 

actualización; 

• 𝑆𝐴 es el puntaje real del enfrentamiento: 1 si gana 𝐴, 0.0 si pierde y 0.5 si empata; 

• 𝑃𝐴 es la probabilidad esperada de que A gane contra B. 
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Como cuarto paso; se simula las competiciones entre los estudiantes y actualiza las 

puntuaciones ELO en función de sus resultados totales. Para cada par de competidores (𝑖, 𝑗) se 

calcula sus resultados totales 𝑆𝑖⁡𝑦⁡𝑆𝑗 ⁡. Por lo que se compara 𝑆𝑖⁡𝑦⁡𝑆𝑗: 

• 𝑆i 𝑆𝑖 >⁡𝑆𝑗 , 𝑖 gana y 𝑗 pierde; 

𝑅′𝑖 = 𝑅𝑖 + 𝐾(1 − 𝑃𝑖)⁡⁡⋀⁡⁡𝑅′𝑗 = 𝑅𝑗 + 𝐾(0 − 𝑃𝑗)⁡⁡⁡ 

• 𝑆i 𝑆𝑖 <⁡𝑆𝑗 , 𝑖 pierde y 𝑗 gana; 

𝑅′𝑖 = 𝑅𝑖 + 𝐾(0 − 𝑃𝑖)⁡⁡⋀⁡⁡𝑅′𝑗 = 𝑅𝑗 + 𝐾(1 − 𝑃𝑗)⁡⁡⁡ 

• 𝑆i 𝑆𝑖 =⁡𝑆𝑗 , sí hay empate. 

𝑅′𝑖 = 𝑅𝑖 + 𝐾(0.5 − 𝑃𝑖)⁡⁡⋀⁡⁡𝑅′𝑗 = 𝑅𝑗 + 𝐾(0.5 − 𝑃𝑗)⁡⁡⁡ 

Como quinto paso; se ajusta el ELO inicial para evitar valores negativos al simular todas 

las competiciones y calcular el mínimo ELO obtenido 𝐸𝐿𝑂𝑚𝑖𝑛 . 

𝑎𝑗𝑢𝑠𝑡𝑒𝑑_𝑒𝑙𝑜 = 1000 − 𝐸𝐿𝑂𝑚𝑖𝑛 

Esto asegura que el ELO más bajo sea igual o superior a cero. El algoritmo ELO 

implementado ajusta las puntuaciones basadas en el rendimiento relativo en competiciones 

simuladas, donde los resultados totales determina la calificación Elo total. Las actualizaciones 

ELO se basan en la comparación de los resultados de los competidores, ajustados para mantener 

los valores positivos (Szczecinski & Djebbi, 2020). 

2.2.2. Glicko-2 

En el sistema Glicko-2, cada jugador tiene una calificación (r), una desviación de 

calificación (RD) y una volatilidad de calificación 𝜎. La medida de volatilidad indica el grado de 
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fluctuación esperada en la calificación de un jugador. La volatilidad es alta cuando un jugador 

tiene desempeños erráticos (por ejemplo, cuando el jugador ha tenido resultados excepcionalmente 

buenos después de un período de estabilidad), y la volatilidad es baja cuando el jugador tiene un 

desempeño constante. Al igual que en el sistema Glicko original, suele ser preciso al resumir el 

rendimiento de un jugador en forma de un intervalo (en lugar de reportar solo una calificación). 

Una forma de hacerlo es reportar un intervalo de confianza del 95%. El valor más bajo del intervalo 

es la calificación del jugador menos dos veces la RD, y el valor más alto es la calificación del 

jugador más dos veces la RD (Glickman, 2022). 

Para aplicar el algoritmo de calificación, tratamos una colección de partidas dentro de un 

período de calificación como si hubieran ocurrido simultáneamente. Los jugadores tienen 

calificaciones, RDs (desviaciones de calificación) y volatilidades al comienzo del período de 

calificación, se observan los resultados de las partidas, y luego se calculan las calificaciones, RDs 

y volatilidades actualizadas al final del período de calificación (que se utilizarán como información 

previa para el siguiente período de calificación). El sistema Glicko-2 funciona mejor cuando el 

número de partidas en un período de calificación es moderado a grande, es decir, un promedio de 

al menos 10-15 partidas por jugador en un período de calificación. La escala de calificación para 

Glicko-2 es diferente de la del sistema Glicko original. Sin embargo, es fácil alternar entre ambas 

escalas. Los siguientes pasos suponen que las calificaciones están en la escala original de Glicko, 

pero las fórmulas convierten a la escala de Glicko-2 y luego vuelven a convertir al final a Glicko 

(Glickman, 2022). 

Como primer paso; se determina la calificación y el RD inicial para cada jugador en el 

periodo de calificación. La constante del sistema 𝜏, que limita el cambio en la volatilidad a lo largo 

del tiempo, este debe ser establecido antes de la aplicación del sistema, este valor tiene que estar 
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entre 0.3 y 1.2 y ser probado para obtener la máximo exactitud. Valores pequeños de 𝜏 evita que 

la volatilidad cambie en grandes cantidades que a su vez evitan cambios enormes en las 

calificaciones basadas en resultados muy improbables. Si se espera que la aplicación de Glicko-2 

trabaje con datos con resultados muy improbables lo mejor es ajustar el valor de 𝜏 a 0.2. Si el 

jugador no tiene calificación, se establece la calificación a 1500 y el RD a 350, y la volatilidad a 

0.06 (pudiendo variar este valor); caso contrario se usa el RD más reciente y la volatilidad 𝜎. 

Como segundo paso; para cada jugador se convierte las calificaciones y los RD´s dentro 

de la escala de Glicko-2: 

𝜇 = (𝑟 − 1500)/173.7178 

𝜙 = 𝑅𝐷/173.7178 

El valor de la volatilidad 𝜎 no cambia. Ahora queremos actualizar la calificación del 

jugador con la calificación Glicko-2 𝜇 , desviación de calificación 𝜙 y volatilidad 𝜎. El jugador 

compite contra 𝑚 oponentes con calificaciones 𝜇1, …⁡ , 𝜇𝑚 y desviaciones de calificación 

𝜙1, …⁡, 𝜙𝑚⁡. Dejemos que 𝑠1, …⁡, 𝑠𝑚 sean los puntajes contra cada oponente (0 al perder, 0.5 para 

empate y 1 para victoria). Las volatilidades oponentes no son importantes en este paso. 

Como tercer paso; calculamos la cantidad 𝑣 . Es la varianza estimada de la calificación 

equipo – jugador basado únicamente en los resultados. 

𝑣 = [∑𝑔(𝜙𝑗)
2

𝑚

𝑗=1

𝐸(𝜇, 𝜇𝑗⁡, 𝜙𝑗){1 − 𝐸(𝜇, 𝜇𝑗⁡, 𝜙𝑗)}]

−1
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donde: 

𝑔(𝜙) =
1

√1 + 3𝜙2/𝜋2
 

𝐸(𝜇, 𝜇𝑗⁡, 𝜙𝑗) =
1

1 + exp⁡(−𝑔(𝜙𝑗)(𝜇 − 𝜇𝑗⁡))
 

Como cuarto paso; calculamos la cantidad △, la mejora estimada en la calificación 

comparando la calificación previa al periodo de calificación de desempeño basada únicamente en 

los resultados por juego. 

△⁡= 𝑣∑𝑔(𝜙𝑗){𝑠𝑗 − 𝐸(𝜇, 𝜇𝑗⁡, 𝜙𝑗)}

𝑚

𝑗=1

⁡ 

Como quinto paso; determinamos el nuevo valor de 𝜎′ la volatilidad. Este cálculo es un 

proceso iterativo. Establecemos a = 𝑙𝑛(𝜎2) y definimos 

𝑓(𝑥) =
𝑒𝑥(△2−𝜙2 − 𝑣 − 𝑒𝑥)

2(𝜙2 + 𝑣 + 𝑒𝑥)2
−⁡
(𝑥 − 𝑎)

𝜏2
 

También definimos una tolerancia a la convergencia con un valor suficientemente pequeño,  

𝜖 = 0.00001 

Establecemos los valores iniciales del algoritmo iterativo: 

Asignamos  𝐴 = 𝑎 = ln(𝜎2); 

• Si △2⁡> ⁡𝜙2 + 𝑣 , entonces 𝐵 = ln(△2−𝜙2 − 𝑣); 

• Si  △2⁡≤ ⁡𝜙2 + 𝑣 ,establecemos 𝑘 = 1; 
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• Si 𝑓(𝑎 − 𝑘𝑟) < 0, entonces iterar 𝑘 ← 𝑘 + 1 y establecer  𝐵 = 𝑎 − 𝑘𝑟 hasta que 

△2⁡> ⁡𝜙2 + 𝑣.  Los valores de A y B se eligen en el intervalo ln(𝜎′2) y el resto del 

algoritmo se reduce iterativamente en ese intervalo. 

Establecemos 𝑓𝐴 = 𝑓(𝐴)⁡⋀ 𝑓𝐵 = 𝑓(𝐵). Mientras |𝐵 − 𝐴| > 𝜀 se seguirán los siguientes 

pasos: 

• Primero: establecer 𝐶 = 𝐴 + (𝐴 − 𝐵)𝑓𝐴/(𝑓𝐵 − 𝑓𝐴) y 𝑓𝐶 = 𝑓(𝐶⁡); 

• Segundo: si 𝑓𝐶𝑓𝐵 ≤ 0 entonces establecer 𝐴 ← 𝐵 y 𝑓𝐴 ←⁡𝑓𝐵, 

• caso contrario, sólo establecer 𝑓𝐴 ←⁡𝑓𝐴/2; 

• Tercero: establecer 𝐵 ← 𝐶 ⋀𝑓𝐵 = 𝑓𝐶. Detenerse si |𝐵 − 𝐴| ≤ 𝜀. De lo contrario 

repetir los 3 pasos anteriores 

Una vez |𝐵 − 𝐴| ≤ 𝜀 establecer: 

𝜎′ ← eA/2 

Como sexto paso; actualizamos la desviación de la calificación al nuevo valor del periodo 

precalificación, 𝜙∗ 

𝜙∗ = √𝜙2 + 𝜎′2 

Como séptimo paso; actualizamos la calificación y el RD a los nuevos valores 𝜇′ y 𝜙′ 

𝜙′ = 1/√
1

𝜙∗2
+
1

𝑣
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𝜇′ = 𝜇 + 𝜙′2∑𝑔(𝜙𝑗){𝑠𝑗 − 𝐸(𝜇, 𝜇𝑗⁡, 𝜙𝑗)}

𝑚

𝑗=1

 

Como último paso; convertimos las calificaciones y RD a su escala original 

𝑟′ = 173.7178𝜇′ + 1500 

𝑅𝐷′ = 173.7178𝜙′ 

Si el jugador no compite durante el periodo de calificación, sólo se aplica el sexto paso. En 

ese caso los parámetros de calificación y volatilidad del jugador permanecen siendo los mismos, 

pero el RD incrementa de acuerdo a  

𝜙′ = 𝜙∗ = √𝜙2 + 𝜎2 

(Glickman, 2022) 

2.2.3. TrueSkill 

Estimar las habilidades de los jugadores de manera retrospectiva permite considerar más 

información y, por consiguiente, se espera que conduzca a estimaciones más precisas en las 

calificaciones de los jugadores al considerar la información histórica. Arpad Elo fue el pionero en 

ello, al crear un método para poder calcular la habilidad de los jugadores, con un ajuste de curva 

suave a las estimaciones de habilidades en periodos de cinco años. Después, un mejor modelo con 

un enfoque estadísticamente más fundamentado fue desarrollado por Mark Glickman con los 

sistemas Glicko y Glicko-2, mejorando el método Elo utilizando un modelo bayesiano de 

habilidades como variables gaussianas, cuyas varianzas indican la fiabilidad de la estimación de 

la habilidad, una idea adoptada más tarde en el modelo TrueSkill. Glicko-2 añade medidas de 

volatilidad, que indican el grado de fluctuación esperada en la calificación de un jugador. Después 
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de una estimación inicial, las estimaciones pasadas se suavizan propagando la información hacia 

atrás en el tiempo (Dangauthier et al., 2007). Después fue introducido oficialmente por 

investigaciones de Microsoft, el algoritmo TrueSkill; utilizado en juegos como Halo o Gears of 

Wars, propiedades de la compañía. Está basado en la inferencia Bayesiana que combina factores 

de teoría de grafos y algoritmos de propagación de expectativas para calificar las habilidades de 

los jugadores (Dehpanah et al., 2021).  

Considerar un número 𝑁 de jugadores {1, … ,𝑁} que están compitiendo en un periodo 𝑇 , 

digamos años. Denotar hay una serie de resultados entre dos jugadores 𝑖 y 𝑗 en el año 𝑡 donde 

𝑦𝑖𝑗
𝑡 (𝑘) ∈ {+1,−1,0} donde 𝑘 ∈ {1,…⁡ , 𝐾𝑖𝑗𝑡 } es el resultado de los jugadores disponibles para ese 

par de jugadores en ese año. Establecemos además 𝑦 = +1 si el jugador 𝑖 gana, 𝑦 = −1 si el 

jugador 𝑖 gana y por último 𝑦 = 0 en caso de empate. 

En primera instancia se desarrolló el modelo TrueSkill base llamado Vanilla TrueSkill, en 

el que se asume cada jugador 𝑖 tiene una habilidad desconocida 𝑠𝑖𝑡 ∈ ℝ en un tiempo 𝑡. Asumimos 

que se genera el siguiente resultado  𝑦𝑖𝑗𝑡 (𝑘). Para cada uno de los rendimientos  𝑝𝑖𝑗𝑡 (𝑘) y 𝑝𝑗𝑖𝑡 (𝑘) de 

los dos jugadores  𝑖 y 𝑗 , respectivamente. Y el empate de acuerdo a  𝑝(𝑝𝑖𝑗𝑡 (𝑘)|𝑠𝑖𝑡) =

𝒩(𝑝𝑖𝑗
𝑡 (𝑘); 𝑠𝑖

𝑡; 𝛽2). El resultado 𝑦𝑖𝑗𝑡 (𝑘) del juego entre los jugadores 𝑖 y 𝑗 esta determinado como:  

𝑦𝑖𝑗
𝑡 (𝑘):= {

+1⁡; ⁡𝑝𝑖𝑗
𝑡 (𝑘) > 𝑝𝑗𝑖

𝑡 (𝑘) + 𝜀

−1⁡; 𝑝𝑖𝑗
𝑡 (𝑘) < 𝑝𝑗𝑖

𝑡 (𝑘) + 𝜀

0⁡; |𝑝𝑖𝑗
𝑡 (𝑘) − ⁡𝑝𝑗𝑖

𝑡 (𝑘)| ≤ 𝜀

⁡ 

Donde el parámetro 𝜀 > 0 es el margen de empate. Para poder inferir las habilidades 

desconocidas 𝑠𝑖𝑡 el modelo TrueSkill asume la factorización del prior Gaussiano 𝑝(𝑠𝑖0) =

𝒩(𝑠𝑖
0; 𝜇0; 𝜎0

2) sobre las habilidades y deriva Gaussiana de habilidad entre los periodos de tiempo 
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dado por 𝑝(𝑠𝑖𝑡|𝑠𝑖𝑡−1) = ⁡𝒩(𝑠𝑖𝑡; 𝑠𝑖𝑡−1; 𝜏2). En el modelo se define al jugador ganador como 𝑊 y al 

perdedor como 𝐿 , y se descarta al índice de tiempo por ahora; la inferencia Bayesiana aproximada 

(filtrado de densidad Bayesiana) conduce a las siguientes ecuaciones de actualización para  𝜇𝑊, 

𝜇𝐿⁡, 𝜎𝑊 y 𝜎𝐿. 

𝜇𝑊 ← 𝜇𝑊 +
𝜎𝑊
2

𝑐𝑖𝑗
⁡ ∙ 𝑣 (

𝜇𝑊 − 𝜇𝐿
𝑐𝑖𝑗

⁡ ,
𝜀

𝑐𝑖𝑗
)⁡∧ ⁡𝜎𝑊 ← 𝜎𝑊√1 −

𝜎𝑊
2

𝑐𝑖𝑗
2 ∙ 𝑤(

𝜇𝑊 − 𝜇𝐿
𝑐𝑖𝑗

,
𝜀

𝑐𝑖𝑗
) 

𝜇𝐿 ← 𝜇𝐿 −
𝜎𝐿
2

𝑐𝑖𝑗
⁡ ∙ 𝑣 (

𝜇𝑊 − 𝜇𝐿
𝑐𝑖𝑗

⁡ ,
𝜀

𝑐𝑖𝑗
)⁡∧ ⁡𝜎𝐿 ← 𝜎𝐿√1 −

𝜎𝐿
2

𝑐𝑖𝑗
2 ∙ 𝑤(

𝜇𝑊 − 𝜇𝐿
𝑐𝑖𝑗

,
𝜀

𝑐𝑖𝑗
) 

La varianza general es 𝑐𝑖𝑗2 = 2⁡𝛽2 + 𝜎𝑊2 + 𝜎𝐿2 y las dos funciones 𝑣 y 𝑤 están dadas por: 

𝑣(𝑡, 𝛼) ≔
𝒩(𝑡 − 𝛼; 0⁡; 1)

Φ(𝑡 − a)
⁡⁡∧ ⁡𝑤(𝑡, 𝛼) ≔ 𝑣(𝑡, 𝛼) ∙ (𝑣(𝑡, 𝛼) + (𝑡 − a)) 

En el caso de empate tenemos las siguientes ecuaciones de actualización: 

𝜇𝑖 ← 𝜇𝑖 +
𝜎𝑖
2

𝑐𝑖𝑗
⁡ ∙ 𝑣̃ (

𝜇𝑖 − 𝜇𝑗

𝑐𝑖𝑗
⁡ ,
𝜀

𝑐𝑖𝑗
)⁡∧ ⁡𝜎𝑖 ← 𝜎𝑖√1 −

𝜎𝑖
2

𝑐𝑖𝑗
2 ∙ 𝑤̃(

𝜇𝑖 − 𝜇𝑗

𝑐𝑖𝑗
,
𝜀

𝑐𝑖𝑗
) 

Y de manera similar para el jugador 𝑗. Definimos 𝑑 ≔ 𝛼 − 𝑡⁡y 𝑠 ≔ 𝛼 + 𝑡⁡entonces 𝑣̃ y 𝑤̃ 

están dados por: 

𝑣̃⁡(𝑡, 𝛼) ≔
𝒩(−𝑠; 0⁡; 1) −𝒩(𝑑; 0⁡; 1)

Φ(𝑑) − Φ(−𝑠)
⁡⁡ 

𝑤(𝑡, 𝛼) ≔ 𝑣̃2(𝑡, 𝛼) +
(𝑑)𝒩(𝑑; 0⁡; 1) − (𝑠)𝒩(𝑠; 0⁡; 1)

Φ(𝑑) − Φ(−𝑠)
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Para poder aproximar los parámetros de habilidad⁡𝜇𝑖𝑡 y 𝜇𝑖𝑡 para todos los jugadores 𝑖 ∈

{1,… ,𝑁} para todos los tiempos 𝑡 ∈ {0,… , 𝑇} para el modelo del algoritmo Vanilla TrueSkill se 

inicializa cada indicio de habilidad con 𝜇𝑖0 ← 𝜇0 y 𝜎𝑖0 ← 𝜎0.  Ahora se procede a través de los años 

𝑡 ∈ {0,… , 𝑇} en orden, se va desde los resultados 𝑦𝑖𝑗𝑡 (𝑘) en orden aleatorio y se actualiza los 

indicios de habilidad de acuerdo a las ecuaciones mostradas. 

(Dangauthier et al., 2007) 

Después se encontró algunos problemas con respecto al algoritmo TrueSkill por lo tanto se 

desarrolló una mejora llamada “TrueSkill Through Time” (TrueSkill a través del Tiempo ó TTT) 

para corregirlos, las desventajas que surgen del algoritmo Vanilla TrueSkill son las siguientes:  

La inferencia dentro de un año determinado 𝑡 depende del orden aleatorio elegido para las 

actualizaciones. Dado que no se asume conocimiento sobre los resultados de los juegos dentro de 

un año dado, los resultados de la inferencia deberían ser independientes del orden de los 

enfrentamientos dentro de ese año. 

La información entre los años solo se propaga hacia adelante en el tiempo. Más 

concretamente, si el jugador A vence al jugador B y luego el jugador B resulta ser muy fuerte (es 

decir, como se evidencia al vencer repetidamente a un jugador muy fuerte C), entonces TrueSkill 

Vanilla no puede propagar esa información hacia atrás en el tiempo para corregir al alza la 

estimación de la habilidad del jugador A. 

Ambos problemas pueden abordarse extendiendo el filtrado de densidad Gaussiana para 

ejecutar la propagación completa de expectativas (EP) hasta la convergencia. La idea básica es 

actualizar repetidamente los mismos resultados de los juegos, pero asegurándose de que el efecto 
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de la actualización previa sobre ese resultado se elimine antes de añadir el nuevo efecto. De esta 

manera, el modelo se mantiene igual, pero las inferencias son menos aproximadas. 

Más específicamente podemos ir a través de los resultados 𝒚𝒊𝒋𝒕  entre los años  𝑡 varias veces 

hasta hallar una convergencia. La actualización para el resultado de un juego 𝑦𝑖𝑗𝑡 (𝑘) es realizado 

de la misma manera que antes, pero almacena los mensajes ascendentes que pueden ser calculados 

de la siguiente manera: 

𝑚
𝑓(𝑝𝑖𝑗

𝑡 (𝑘),𝑠𝑖
𝑡)→𝑝𝑖𝑗

𝑡 (𝑘)
(𝑝𝑖𝑗

𝑡 (𝑘)) = ∫ 𝑓(𝑝𝑖𝑗
𝑡 (𝑘), 𝑠𝑖

𝑡)
∞

−∞

𝑝(𝑠𝑖
𝑡)

𝑚
𝑓(𝑝𝑖𝑗

𝑡 (𝑘),⁡𝑠𝑖
𝑡)→⁡𝑠𝑖

𝑡

𝑑𝑠𝑖
𝑡 

Dividiendo así efectivamente el mensaje ascendente para evitar un doble conteo. La 

integral anterior se evalúa fácilmente ya que tanto los mensajes como los marginales 𝑝(𝑠𝑖𝑡) han 

sido asumidos Gausianos. El nuevo mensaje ascendente sirve para el propósito de predicción 

efectiva del prior 𝑝𝑖𝑗𝑡 (𝑘). Al converger, la dependencia de las habilidades inferidas en el orden de 

los resultados desaparece. 

El segundo problema se soluciona realizando una inferencia para TrueSkill a través del 

tiempo (TTT), es decir, suavizando repetidamente hacia adelante y hacia atrás en el tiempo. El 

primer paso hacia adelante de TTT es idéntico al paso de inferencia de Vanilla TrueSkill, excepto 

que los mensajes descendentes 𝑚𝑓(𝑠𝑖
𝑡−1,⁡𝑠𝑖

𝑡)→𝑠𝑖
𝑡(𝑠𝑖

𝑡) son almacenados. Ellos representan la influencia 

de la estimación de la habilidad 𝑠𝑖𝑡−1 al tiempo 𝑡 − 1 y la estimación de habilidad 𝑠𝑖𝑡 en el tiempo 

𝑡. En el paso hacia atrás, estos mensajes se utilizan luego para calcular los nuevos mensajes hacia 

atrás, que sirven efectivamente como nuevo prior de el paso de tiempo 𝑡 − 1, se calculan así: 

𝑚𝑓(𝑠𝑖
𝑡−1,⁡𝑠𝑖

𝑡)→𝑠𝑖
𝑡−1(𝑠𝑖

𝑡−1) = ∫ 𝑓(𝑠𝑖
𝑡−1, ⁡𝑠𝑖

𝑡)
∞

−∞

𝑝(𝑠𝑖
𝑡)

𝑚𝑓(𝑠𝑖
𝑡−1,⁡𝑠𝑖

𝑡)→⁡𝑠𝑖
𝑡
𝑑𝑠𝑖

𝑡 
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Este procedimiento es repetido hacia adelante y hacia atrás a través de las series de tiempo 

de habilidad hasta la convergencia. Lo pasos hacia atrás hacen posible la propagación de la 

información del futuro al pasado. 

(Dangauthier et al., 2007) 

Después se consideró un ajuste más adecuado para los casos de empate por lo que se 

desarrolló el concepto de “TTT with Individual Draw Margins” (TrueSkill a través del Tiempo 

con márgenes de empate ó TTT-D). 

 Realizando una exploración de datos es conocido que la probabilidad de empate no solo 

incrementa de manera marcada, sino que esta positivamente correlacionada con las habilidades de 

los jugadores y varía considerablemente a través de cada jugador individualmente. Por eso se 

extiende el modelo TrueSkill para incorporar otro parámetro específico para cada jugador que 

indique la habilidad del jugador cuando se fuerza un empate. Supongamos que cada jugador 𝑖 cada 

paso de tiempo 𝑡 está caracterizado por su habilidad desconocida 𝑠𝑖𝑡 ∈ ℝ y un jugador especifico 

con un margen de empate 𝜀𝑖𝑡 > 0. 

 Otra vez, el rendimiento 𝑝𝑖𝑗𝑡 (𝑘) y 𝑝𝑗𝑖𝑡 (𝑘) y han empatado de acuerdo a 𝑝(𝑝𝑖𝑗𝑡 (𝑘)|𝑠𝑖𝑡) =

𝒩(𝑝𝑖𝑗
𝑡 (𝑘); 𝑠𝑖

𝑡; 𝛽2). En este modelo los resultados del juego 𝑦𝑗𝑖𝑡 (𝑘) entre el jugador 𝑖 y 𝑗 en un 

tiempo 𝑡 están generados de la siguiente manera: 

𝑦𝑖𝑗
𝑡 (𝑘):= {

+1⁡; ⁡𝑝𝑖𝑗
𝑡 (𝑘) > 𝑝𝑗𝑖

𝑡 (𝑘) + 𝜀𝑖
𝑡

−1⁡; 𝑝𝑖𝑗
𝑡 (𝑘) < 𝑝𝑗𝑖

𝑡 (𝑘) + 𝜀𝑖
𝑡

0⁡; −𝜀𝑖
𝑡 ≤ 𝑝𝑖𝑗

𝑡 (𝑘) − ⁡𝑝𝑗𝑖
𝑡 (𝑘) ≤ ⁡ 𝜀𝑖

𝑡

⁡ 
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Además del supuesto Gaussiano acerca de la habilidad de los jugadores en el modelo 

Vanilla TrueSkill, asumimos que factorizando la distribución Gaussiana específicamente para 

márgenes de empate en los jugadores 𝑝(𝜀𝑖0) = 𝒩(𝜀𝑖
0; 𝜐0; 𝜍0

2).  

El margen especifico de empate de cada jugador en los pasos 𝑡 están forzados por un factor 

> ⁡0. La inferencia en el modelo TTT-D es realizado por la expectativa de propagación, dado un 

año 𝑡 así como a través de los años de una forma hacia atrás y hacia adelante. Se nota en este 

modelo que las estimaciones actuales sobre la habilidad de los jugadores están representadas por 

cuatro números: 𝜇𝑖𝑡 y 𝜎𝑖𝑡  para la habilidad; y 𝜐𝑖𝑡 y 𝜍𝑖𝑡 para el margen de empate específico para cada 

jugador. Un jugador con un valor alto de 𝜐𝑖𝑡 puede ser considerado para obtener un empate contra 

un oponente fuerte, mientras que aquellos que tienen un alto valor de 𝜇𝑖𝑡, tienen una gran 

posibilidad de ganar. 

En su investigación del año 2021 llamada “Evaluating Team Skill Aggregation in Online 

Competitive Games”, Arman Dehpanah, resume el algoritmo TrueSkill de la siguiente manera: 

Similar a Glicko, los jugadores en el modelo TrueSkill usan dos valores: 𝜇 que es la calificación 

de habilidad y la desviación 𝜎 que representa la incertidumbre del sistema con respecto a la 

calificación. Ambos valores son actualizados después de cada enfrentamiento comparando sus 

clasificaciones predichas con las observadas. El método de actualización depende si hay 

posibilidad de empate. Para el caso de no haya empate si 𝜇𝑡𝑖, 𝜇𝑡𝑗 , 𝜎𝑡𝑖, y 𝜎𝑡𝑗 representa la calificación 

de la habilidad y las desviaciones de 𝑡𝑖 y 𝑡𝑗 ; asumiendo que 𝑡𝑖 gana el enfrentamiento contra 𝑡𝑗, la 

calificación de habilidad es actualizada de la siguiente manera: 

𝜇𝑡𝑖
′ = 𝜇𝑡𝑖 +

𝜎𝑡𝑖
2

𝑐
⁡[
𝒩(

𝑡
𝑐)

Φ(
𝑡
𝑐)
] 
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Donde 𝑡 = 𝜇𝑡𝑖 − 𝜇𝑡𝑗  y  𝑐 = √2⁡𝛽2 + 𝜎𝑡𝑖
2 + 𝜎𝑡𝑗

2  . 𝒩 y Φ representan las funciones de 

probabilidad de densidad y distribución acumulada de distribución normal estándar. El parámetro 

𝛽 es el factor de escala que determina como la magnitud cambia con las calificaciones. La 

desviación de 𝑡𝑖 es actualizada por: 

𝜎𝑡𝑖
′ = 𝜎𝑡𝑖 − 𝜎𝑡𝑖

2 (
𝜎𝑡𝑖
2

𝑐2
⁡[
𝒩(

𝑡
𝑐)

Φ(
𝑡
𝑐)
] [
𝒩(

𝑡
𝑐)

Φ(
𝑡
𝑐)
+ 𝑡]) 

Al final TrueSkill suma las calificaciones individuales y las suma para cada jugador. La 

mayoría de los sistemas de calificación planteados y desarrollados posteriormente utilizaron un 

enfoque similar en sus cálculos  

(Dehpanah et al., 2021).  

2.3. CGPA (Cumulative Grade Point Averages) 

Los GPAs (Grade Point Averages) son usados para expresar la capacidad académica de los 

estudiantes con un valor numérico único. Y existen varios tipos: Acumuladas, por Semestre, 

Ponderados y No Ponderados. El CGPA (Cumulative Grade Point Averages) es un promedio de 

todas las notas recibidas de los cursos en toda la secundaria. A cada curso se le asigna una cierta 

cantidad de créditos, y aquellos con una mayor cantidad de créditos tienen más valor que aquellos 

con una menor cantidad de créditos. Un GPA es el promedio calculado del valor numérico 

correspondiente de sus calificaciones (por eso significa "promedio de calificaciones"). La escala 

estandarizada es de 0,0 a 4,0, donde 4,0 equivale a una A y 0 equivale a una F. (¿What Is 

Cumulative GPA? How Do You Calculate It?, 2024) 

Para calcular el CGPA se realizan los siguientes pasos: 
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• Multiplicar los créditos de cada curso por el puntaje numérico correspondiente a la 

calificación que obtuviste. (En la Tabla 1 muestra las calificaciones y sus valores 

numéricos); 

• Sumar el total de los puntos de calificación; 

• Sumar la cantidad de créditos que obtuviste; 

• Dividir el total de puntos de calificación por la cantidad total de créditos, 

redondeando al centésimo más cercano. 

Tabla 1  

Escala de calificación CGPA estándar 

 

 

 

 

 

 

 

 

 

 

Nota Valor Porcentual Calificación 

A/A+ 

A- 

93-100% 

90-92% 

4.0 

3.7 

B+ 

B 

B- 

87-89% 

83-86% 

80-82% 

3.3 

3.0 

2.7 

C+ 77-79% 2.3 

C 73-76% 2.0 

C- 70-72% 1.7 

D+ 67-69% 1.3 

D 65-66% 1.0 

F Debajo de 65% 0.0 
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Nota: Tabla extraída de la publicación de CollegeVine “What is Cumulative GPA, how do you 

calculate it?”. Recuperado de la página https://blog.collegevine.com/what-is-cumulative-gpa/ el 

día 14 de agosto del 2024. 

En el contexto estadounidense, el CGPA ayuda a reconocer en que escuelas los estudiantes 

podrán obtener una mayor oportunidad de admisión o no, considerando también el aspecto 

holístico de cada institución. Las universidades analizan el contexto de cada clase específica y 

notarán quienes tienen un CGPA más alto en comparación a los otros compañeros de clase. Los 

alumnos que soliciten becas para ayudar a cubrir sus costos universitarios, tienen que considerar, 

que algunas becas tienen requisitos de CGPA, incluso si estos no fueran tan exigentes es mejor 

apuntar al GPA más alto posible para mejorar las posibilidades. Un GPA alto siempre es muy 

importante, especialmente cuando se solicita una beca selectiva. El GPA juega un papel importante 

en el proceso de admisión, ya que influye en el índice académico (IA). El IA es un número único 

que refleja la solidez del CGPA y las calificaciones de los exámenes. Muchas universidades 

selectivas usan el IA para descartar a los solicitantes incluso antes de considerar factores 

cualitativos como actividades extracurriculares y ensayos (¿What Is Cumulative GPA? How Do 

You Calculate It?, 2024). 

Existen diversos factores que influyen en el rendimiento académico de los estudiantes con 

respecto a su CGPA: la automotivación, el proceso de enseñanza y aprendizaje, y la actitud hacia 

el curso son los principales factores que afectan a los estudiantes. Los estudiantes que tienen una 

mayor motivación tienden a obtener mejor resultados académicos; la calidad y la efectividad del 

proceso de enseñanza y aprendizaje también impactan positivamente en el CGPA. Un ambiente 

de aprendizaje favorable contribuye a un mejor rendimiento académico; y por último los 

estudiantes que muestran una actitud positiva hacia sus estudios tienden a tener un CGPA más 
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alto. Se sugiere instituciones educativas deben enfocarse en fomentar la automotivación y crear un 

ambiente de aprendizaje positivo y competitivo para mejorar el rendimiento académico de los 

estudiantes (Ahmad et al., 2017). 

2.4. Calificación y evaluación académica en la UNSAAC 

   La evaluación académica es un proceso que permite valorar el logro de competencias por 

parte del estudiante. La Universidad Nacional de San Antonio Abad del Cusco (UNSAAC) regula 

dicho proceso mediante su Reglamento Académico, aprobado por Resolución N.º CU-0359-2015-

UNSAAC con fecha 24 de diciembre de 2015, y posteriormente modificado por la Resolución N.º 

CU-093-2017-UNSAAC. Esta modificatoria fue aprobada bajo la gestión del Rector Dr. Baltazar 

Nicolás Cáceres Huambo, como resultado de la elevación de la Propuesta de Modificatoria del 

Reglamento Académico de la UNSAAC. Dicho documento normativo establece las disposiciones 

que regulan el sistema de evaluación, calificación, obtención de promedios, obligatoriedad de 

evaluaciones, mecanismos de recuperación y criterios de valoración del rendimiento académico, 

organizados en capítulos y artículos que rigen el accionar de docentes y estudiantes dentro del 

proceso educativo. En particular, las disposiciones relacionadas con la calificación y la obtención 

de promedios se encuentran recogidas en el Capítulo V: Normas Administrativas de la Evaluación, 

específicamente en el Subcapítulo II: De la calificación y obtención de promedios, que comprende 

los artículos 64 al 72. En estos artículos se norman aspectos como la utilización de la escala 

vigesimal, la ponderación de las evaluaciones, los criterios para la aprobación de asignaturas, los 

procedimientos de recuperación y la forma en que se calcula el promedio ponderado. Estas normas 

constituyen el marco legal y técnico que garantiza la objetividad, transparencia y equidad en el 

proceso de evaluación académica en la UNSAAC (VICERRECTORADO ACADEMICO 

UNSAAC, 2017).  
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En cuanto a la obtención de promedios, el artículo 65° establece tres tipos fundamentales: 

los promedios de periodo lectivo, los promedios promocionales o finales, y los promedios 

ponderados. Los primeros se obtienen considerando las calificaciones parciales obtenidas a lo 

largo del curso, ponderadas según el tipo de evaluación correspondiente, y se registran con 

precisión hasta los décimos de punto. Los promedios finales, por su parte, resultan del promedio 

de cada periodo lectivo al concluir el semestre. En estos casos, se considera como una unidad a 

favor del estudiante toda fracción igual o mayor a 0.5. Finalmente, los promedios ponderados se 

calculan multiplicando las calificaciones finales de cada asignatura por el número de créditos 

asignados, y dividiendo la suma total de estos productos entre el total de créditos, proceso que es 

gestionado por el centro de cómputo de la universidad. 

La normativa también enfatiza la obligatoriedad de la evaluación (Art. 66°), estipulando 

que el estudiante debe asistir a todas las actividades programadas en el sílabo, incluyendo prácticas 

preprofesionales y seminarios. En caso de inasistencia injustificada a una evaluación, se le asigna 

una nota de cero (0), afectando así su promedio final (VICERRECTORADO ACADEMICO 

UNSAAC, 2017). 

En lo que respecta a la valoración del rendimiento, el artículo 67° diferencia entre una 

escala cuantitativa y una cualitativa. Según la escala cuantitativa, una calificación entre 0 y 9 

puntos se considera reprobada; entre 10 y 13, desaprobada; y entre 14 y 20, aprobada. 

Paralelamente, la valoración cualitativa clasifica el rendimiento como deficiente (0 a 8), malo (9 a 

13), regular (14 a 16), bueno (17 a 18) y excelente (19 a 20), lo cual permite una interpretación 

más amplia del desempeño del estudiante (VICERRECTORADO ACADEMICO UNSAAC, 

2017). 
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El reglamento también contempla mecanismos de flexibilización y recuperación 

académica. El artículo 68° permite la postergación de evaluaciones siempre que se solicite con 

anticipación al docente responsable y se justifique debidamente. En caso de no asistir a la fecha 

reprogramada, el estudiante pierde la oportunidad de una nueva evaluación y se le asigna la nota 

mínima (VICERRECTORADO ACADEMICO UNSAAC, 2017). 

Asimismo, en situaciones donde el porcentaje de estudiantes aprobados en una evaluación 

sea igual o inferior al 35%, el artículo 69° obliga al docente a aplicar una nueva evaluación de 

conocimiento para los estudiantes desaprobados, siendo opcional para los aprobados y 

considerándose la mejor calificación obtenida (VICERRECTORADO ACADEMICO UNSAAC, 

2017). 

Por otro lado, el artículo 70° introduce la figura de la evaluación de sustitución, la cual 

permite al estudiante rendir nuevamente una prueba por única vez si obtuvo una calificación baja 

o no rindió una evaluación parcial. En caso de obtener una calificación superior, esta reemplaza a 

la anterior, con la salvedad de que dicha evaluación no puede sustituir al promedio de salida y no 

se aplica en cursos de recuperación o dirigidos (VICERRECTORADO ACADEMICO UNSAAC, 

2017). 

El artículo 71° regula la evaluación de subsanación para estudiantes por egresar, 

permitiendo que aquellos con un máximo de dos asignaturas desaprobadas, con promedios 

mínimos de diez (10) puntos, puedan solicitar una evaluación adicional. Si persiste la 

desaprobación y se demuestra una actuación indebida por parte del docente, el estudiante puede 

solicitar una evaluación alternativa con otro profesor del mismo Departamento Académico 

(VICERRECTORADO ACADEMICO UNSAAC, 2017). 
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Finalmente, el artículo 72° establece que la postergación de evaluaciones de recuperación 

debe ser gestionada ante el Decano de la Facultad, acompañando la solicitud con los documentos 

probatorios correspondientes para su debida autorización mediante resolución 

(VICERRECTORADO ACADEMICO UNSAAC, 2017). 

2.5. Distribución Asimétrica Académica 

La distribución en estadística es fundamental para entender la variabilidad en los datos. Se 

concibe como el patrón de variación en una o varias variables, permitiendo a los estadísticos 

describir y modelar cómo se distribuyen los valores observados en una población o muestra. La 

distribución puede ser empírica, que representa los datos observados directamente, o teórica, que 

es un modelo matemático que describe cómo debería comportarse esa variabilidad bajo ciertas 

condiciones. La diferencia clave radica en que la distribución empírica refleja lo que realmente se 

observa, mientras que la teórica permite hacer inferencias y predicciones sobre fenómenos 

subyacentes(Wild, 2006). 

El concepto de sampling distribution (distribución muestral) es también esencial. Se refiere 

a la distribución de una estadística (como la media o proporción) calculada a partir de muchas 

muestras tomadas de la misma población. Aunque no podemos observarla directamente en una 

sola muestra, el estudio de estas distribuciones permite realizar inferencias sobre la población 

original, evaluando la variabilidad de las estimaciones (Wild, 2006). 

En el ámbito académico y en programación con Python, existe el concepto de 

distribution_type='academic' que se usa en algunas librerías para modelar situaciones específicas 

y facilitar la comprensión de distribuciones asimétricas (no simétricas). Una distribución 

asimétrica, a diferencia de la normal, tiene sesgo y no es simétrica respecto a su media. Este 
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concepto es muy importante en estadística, ya que muchas variables del mundo real muestran 

distribuciones asimétricas, y actores como los modelos estadísticos y pruebas de hipótesis deben 

ajustarse a esta realidad. En esta investigación se hace uso de la distribución académica asimétrica 

para agrupar resultados generados generales, ya que es adecuada para registrar niveles de 

desempeño en contextos educativos. La distribución asimétrica, en particular, es frecuente en 

muchas situaciones del mundo real, como los niveles de desempeño académico, donde no todos 

los estudiantes alcanzan los mismos niveles de excelencia ni presentan un rendimiento uniforme. 

En estos casos, una mayoría puede situarse en el rango promedio o bueno, mientras que solo una 

pequeña proporción destaca por su rendimiento excepcional, y otra pequeña proporción presenta 

dificultades (García Tárrago, 2020). 
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3. CAPÍTULO III: DESARROLLO DE ALGORTIMOS DE EMPAREJAMIENTO 

3.1. Obtención y Pre-procesamiento de Datos 

Los datos de los alumnos de muestra se obtuvieron mediante un trámite formal mediante 

una solicitud al Ing. Aguedo Huamani Huayhua, director de la Unidad de Centro de Cómputo; ante 

el Centro de Cómputo de la UNSAAC a través del sistema PLADDES donde se obtuvieron los 

registros de notas obtenidas por los estudiantes del semestre 2023-1 al 2024-2 periodo post covid. 

Originalmente contenían las siguientes características los datos: 

• Tipo de Archivo: .pdf (Portable Document Format); 

• Espacio en Disco: 29.3 MB (30,788,795 bytes); 

• Número de Páginas: 3338 páginas; 

• Cantidad de Registros: 413791 filas; 

• Número de Columnas Originales: 10; 

• Nombre de columnas originales: id. Alumno, Semestre, CodAsignatura, Nombre, Parcial 1, 

Parcial 2, Parcial 3, Sustitutorio, Subsanatorio, Promedio Final. 

El primer paso fue la lectura y transformación de datos a un formato más legible para 

poderla procesarla a través de la librería Pandas de Python. Por ello para empezar esta 

investigación empezó por transformar el conjunto de datos a .csv, un formato de datos más 

compacto y fácil de leer y escribir. Por lo que se utilizó la librería Camelot con el API 

complementaria ghostscript, instalándose mediante el instalador de paquetes pip de Python 

siguiendo los siguientes comandos en un entorno global: !pip install "camelot-py[cv]" -q y !apt-

get install ghostscript ; que permiten la descarga, descompresión e instalación de las librerías.  
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Se implementa un algoritmo que procesa sistemáticamente la extracción de información 

tabular en partes desde documentos con formato PDF, esto aplica en principio “Divide and 

Conquer”, ya que procesa en múltiples archivos .csv los datos de registros de notas, lo que permite 

una liberación de memoria en tiempo de ejecución muy efectiva. El algoritmo comienza con la 

apertura y lectura del documento PDF que contiene los registros de notas obtenidos por los 

estudiantes del semestre 2023-1 al 2024-2 periodo post covid, operación cuya complejidad escala 

linealmente con el número de páginas del archivo. Esta fase inicial tiene una complejidad temporal 

de 𝑂(𝑛) donde 𝑛  representa el número total de páginas en el documento PDF. Una vez cargado 

el documento, el algoritmo procede página por página para identificar y extraer las estructuras 

tabulares contenidas en cada una; utilizando la biblioteca de Python, Camelot con el método 

'lattice', el sistema identifica las líneas que conforman la estructura de las tablas, delimitando así 

las celdas individuales, sin embargo, este método por sí solo no es eficiente si no sé configura 

adecuadamente los hiperparámetros, a continuación se da una propuesta la configuración utilizada 

según los autores: 

Tabla 2 

Hiperparámetros utilizados para el método “lattice” de Camelot 

Nombre del hiperparámetro Valor 

flavor 'lattice' 

process_background False 

line_tol 2 

joint_tol 2 

line_scale 30 

split_text True 

layout_kwargs 
'line_overlap': 0.5, 

    'char_margin': 0.5, 
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Fuente:a(Kekare et al., 2020). b(How It Works — Camelot 1.0.0 documentation, 2019). 
 

Este proceso de extracción depende fundamentalmente de dos variables: el número de filas 

𝑚 y el número de columnas 𝑘 en cada tabla. La complejidad de esta operación por página puede 

expresarse como 𝑂(𝑚. 𝑘). Para cada tabla identificada, el algoritmo procesa su contenido celda 

por celda, extrayendo el texto y organizándolo en una estructura de datos matricial. 

 A continuación, en la Figura 1 y Figura 2, el algoritmo mediante la librería Camelot 

reconoce los datos de manera estructural y tabular:  

 

 

    'word_margin': 0.1, 

    'line_margin': 0.0, 

    'boxes_flow': 0.5, 

    'detect_vertical': False, 

    'all_texts': False 



Fuente: Elaboración personal 

 

Figura 1 

 

Reconocimiento estructural de las 10 primeras filas hecho por método lattice de la primera página en PDF 
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Fuente: Elaboración personal

Figura 2 

Reconocimiento tabular de las 10 primeras filas hecho por método lattice de la primera página en PDF 



Esta estructura visualizada es posteriormente transformada en un archivo CSV, 

manteniendo la organización tabular original del documento. La complejidad de esta conversión y 

escritura también está determinada por las dimensiones de la tabla, siendo 𝑂(𝑚. 𝑘) por cada tabla 

procesada. 

Paralelamente, el algoritmo registra los tiempos de ejecución para cada operación realizada 

en cada página. Este registro tiene una complejidad constante 𝑂(1), ya que simplemente implica 

almacenar un valor numérico independientemente del tamaño o complejidad de la página 

procesada. 

La complejidad total del algoritmo puede derivarse considerando todas las operaciones 

realizadas a lo largo del procesamiento completo del documento PDF. Para las 𝑛 páginas del 

documento, cada una conteniendo potencialmente tablas de dimensiones 𝑚 × 𝑘  , la complejidad 

temporal se puede expresar como: 

𝑂(𝑛) + 𝑂(𝑛.𝑚. 𝑘) + 𝑂(𝑛.𝑚. 𝑘) + 𝑂(𝑛) = ⁡𝑂(𝑛.𝑚. 𝑘) 

Aquí, el primer término representa la lectura inicial del documento, el segundo la 

extracción de tablas, el tercero la conversión y escritura a CSV, y el cuarto el registro de tiempos. 

Dado que los términos de menor orden se vuelven insignificantes a medida que aumenta el tamaño 

del problema, la complejidad es 𝑂(𝑛.𝑚. 𝑘). Esta expresión nos indica que el tiempo de ejecución 

del algoritmo crece proporcionalmente con tres factores: el número de páginas en el documento, y 

las dimensiones (filas y columnas) de las tablas contenidas. En casos donde los documentos 

contienen tablas de gran tamaño distribuidas en numerosas páginas, el tiempo de procesamiento 

aumentará. Para procesar las 3338 páginas en formato PDF a .csv se requirió de un tiempo total de 

9 horas, 3 minutos y 17 segundos, en una ratio promedio de conversión de 9.77 segundos por 



60 
 

iteración; resultando valga la redundancia 3338 archivos en formato .csv y un archivo con los 

tiempos de conversión con respecto a las iteraciones. 

El siguiente algoritmo presenta segunda fase del proceso de extracción y consolidación de 

datos tabulares que se basa en la compilación de todas las partes individuales en una única para 

tener de manera uniformizada y reunida los datos. El algoritmo de agregación opera sobre un 

conjunto de archivos CSV fragmentados, denominados secuencialmente como data_base_part_1, 

data_base_part_2, hasta data_base_part_3338, que fueron generados por el algoritmo de 

extracción inicial. Su propósito fundamental es consolidar estos fragmentos dispersos en un único 

repositorio de datos coherente y completo. La ejecución comienza con la identificación y lectura 

secuencial de cada uno de 𝑘 archivos CSV fragmentados. Para cada archivo 𝑖, donde 1 ≤ 𝑖 ≤

3338, el algoritmo realiza una operación de lectura mediante la función pd.read_csv() de la librería 

Pandas, cargando su contenido en estructuras de datos temporales en memoria. Esta operación de 

lectura tiene una complejidad de 𝑂(𝑛𝑖 ⋅ 𝑚) para cada archivo, donde 𝑛𝑖 representa el número de 

filas del archivo 𝑖 y 𝑚 el número de columnas. Una vez cargado cada fragmento, el algoritmo 

procede a normalizar su estructura, asignando nombres estandarizados a las columnas mediante 

operaciones de remapeo. Esta estandarización asegura la consistencia estructural entre todos los 

fragmentos, preparándolos para su posterior unificación. La complejidad de esta operación de 

renombrado es 𝑂(𝑚) para cada archivo, siendo relativamente insignificante en comparación con 

las operaciones de lectura y escritura. 

 Ocurre un fenómeno particular al en la anterior transformación de datos debido a que la 

columna denominada "Semestre", que erróneamente contiene el identificador de los estudiantes 

con la columna del semestre cursado; información concatenada es dividida en dos componentes 

distintos mediante operaciones de segmentación de texto. Esta división se aplica a cada una de las 
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𝑛𝑖 filas del fragmento 𝑖, resultando en una complejidad de 𝑂(𝑛𝑖)⁡por archivo para esta operación 

específica. La fase crítica del algoritmo es la concatenación de todos los fragmentos procesados 

en una única estructura de datos cohesiva, esta operación es implementada mediante la instrucción 

pd.concat(), y tiene una complejidad de 𝑂(𝑘 ⋅ 𝑛), donde 𝑘 es el número total de fragmentos (3338 

en este caso) y 𝑛 es el número promedio de filas por fragmento. 

Finalmente, el algoritmo materializa esta estructura de datos consolidada en un archivo 

CSV único denominado "Base_de_Datos_Notas_alumnos.csv", que servirá como fuente 

centralizada para el análisis posterior de datos. La operación de escritura tiene una complejidad de 

𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑚) , Paralelamente a estas operaciones, el algoritmo mantiene un registro de los tiempos 

de ejecución para cada iteración de este segundo proceso. Considerando todas las operaciones 

descritas, la complejidad temporal total del algoritmo de agregación puede expresarse 

matemáticamente como: 

𝑂 (∑𝑛𝑖 . 𝑚

𝑘

𝑖=1

) + 𝑂(𝑘.𝑚) + 𝑂(∑𝑛𝑖

𝑘

𝑖=1

) + ⁡𝑂(𝑘. 𝑛) + 𝑂(𝑘. 𝑛.𝑚) = 𝑂(𝑘. 𝑛.𝑚) 

Esta expresión matemática indica que el tiempo de ejecución del algoritmo escala 

linealmente con tres factores principales: el número de archivos fragmentados 𝑘, el número 

promedio de filas por fragmento 𝑘, y el número de columnas 𝑚⁡.  

En el contexto de este algoritmo específico, con 3338 archivos fragmentados que deben 

procesarse, la complejidad práctica está significativamente influenciada por el factor k; a parte se 

genera un archivo con los tiempos de conversión con respecto a las iteraciones. Para procesar los 

3338 fragmentos .csv en formato a un .csv general se requirió de un tiempo total de 7 segundos, 

en una ratio promedio de conversión de 745.77 iteraciones por segundo; resultando un archivo 
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compilado en formato .csv de 29.8 MB (31,268,864 bytes) de espacio de disco. El número de 

estudiantes únicos encontrados fue de 25162 

Este algoritmo de agregación, en conjunto con el algoritmo de extracción previo, constituye 

un flujo de trabajo completo para la transformación de datos tabulares desde documentos PDF 

hasta un formato estructurado y analizable, manteniendo íntegramente la información original 

mientras facilitando la lectura, exploración y análisis de los datos en los posteriores procesos. 

Fuente: Elaboración personal 

La Figura 3 ilustra el análisis comparativo de los tiempos de ejecución acumulados para 

dos procesos algorítmicos secuenciales: la conversión de PDF a CSV (representada en azul) y la 

consolidación de múltiples archivos CSV en un único repositorio final (representada en verde). 

La función lineal que caracteriza el primer proceso, PDF a CSV, está definida por la 

ecuación 𝑓(𝑥) = 10.0136𝑥 − 976.9834, donde 𝑥 representa el número de página y 𝑓(𝑥) el 

Figura 3 

Comparación de tiempos acumulados con ajuste lineal de funciones de conversión de datos 
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tiempo acumulado en segundos. El coeficiente de pendiente, aproximadamente procesa 10 

segundos por página. El intercepto negativo de −976.9834 segundos carece de significado físico 

directo, pero matemáticamente ajusta la función para optimizar la representación del 

comportamiento observado a lo largo de todo el dominio. Este proceso acumula un tiempo total 

de 6202.44 segundos (9 horas, 3 minutos y 17 segundos) para procesar las 3338 páginas. 

En contraste marcado, la función que describe el segundo proceso, CSV a CSV Final, se 

expresa como 𝑔(𝑥) = 0.0013𝑥 − 0.0071. Su pendiente significativamente menor, revela una 

eficiencia temporal aproximadamente 4656 veces superior a la del primer proceso con respecto al 

tiempo de ejecución. El tiempo total acumulado para este segundo algoritmo es de apenas 7 

segundos, lo que constituye solo el 0.021% del tiempo requerido por el primer proceso. 

A pesar de que ambos algoritmos presentan una complejidad teórica similar a 𝑂(𝑛 ⋅ 𝑚 ⋅ 𝑘), 

su rendimiento práctico difiere significativamente. Esta disparidad se debe principalmente a los 

coeficientes constantes ocultos en la notación asintótica y a la naturaleza de las operaciones que 

ejecutan. El primer algoritmo, encargado de extraer datos estructurados desde archivos PDF, 

involucra un procesamiento intensivo de imágenes para interpretar la información visual, 

identificar elementos y convertirlos. En contraste, el segundo algoritmo opera sobre datos ya 

estructurados, realizando tareas mucho más ligeras de lectura, transformación y concatenación. 

La linealidad observada en el tiempo de ejecución de ambos algoritmos, confirmando su 

complejidad teórica, contrasta con la gran diferencia en sus pendientes. Esta diferencia revela que 

el primer algoritmo es aproximadamente 845 veces más lento que el segundo debido a las 

constantes multiplicativas asociadas a la complejidad de sus operaciones. Aunque ambos escalan 

linealmente con la cantidad de datos, la tarea de procesar archivos PDF introduce una sobrecarga 

constante mucho mayor. La intersección cercana a cero con el eje vertical indica una baja 
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sobrecarga de inicio para ambos, y la consistencia de la pendiente sugiere un comportamiento 

estable en su rendimiento independientemente del volumen de datos. 

3.2. Análisis de inconsistencias en los datos conforme a la Resolución N.º CU-0359-2015-

UNSAAC 

En el marco normativo de la Universidad Nacional de San Antonio Abad del Cusco 

(UNSAAC), el proceso de evaluación académica está debidamente reglamentado en su 

Reglamento Académico, aprobado por Resolución N.º CU-0359-2015-UNSAAC con fecha 24 de 

diciembre de 2015 y posteriormente modificado por la Resolución N.º CU-093-2017-UNSAAC. 

Esta última fue aprobada bajo la gestión del Rector Dr. Baltazar Nicolás Cáceres Huambo, 

producto de la propuesta de modificación del reglamento. Este documento establece las pautas 

para la calificación, obtención de promedios, y criterios de valoración del rendimiento académico, 

regulando así el accionar tanto del cuerpo docente como del estudiantado (VICERRECTORADO 

ACADEMICO UNSAAC, 2017) 

Bajo estas disposiciones, y tomando como referencia el Capítulo V, Subcapítulo II: De la 

calificación y obtención de promedios, artículos 64 al 72 del reglamento, se realizó un análisis 

cuantitativo de las calificaciones de los estudiantes a fin de identificar posibles inconsistencias 

entre las notas parciales, las notas de recuperación (subsanatorio o sustitutorio), y el promedio final 

consignado en el registro académico. Para este propósito, se elaboró una función de redondeo 

especial que simula la regla interna de la universidad, en la que si el decimal de la nota es igual o 

mayor a 0.49999999999996, esta se aproxima al entero superior; en caso contrario, se aproxima al 

entero inferior. Este umbral específico se emplea para evitar errores derivados de la aritmética de 

punto flotante, ya que ciertos valores como 0.5 no siempre se representan con exactitud en los 

sistemas computacionales (VICERRECTORADO ACADEMICO UNSAAC, 2017). 



65 
 

A través de un algoritmo de verificación, se definieron criterios de consistencia según el 

tipo de recuperación académica: el subsanatorio debe reemplazar el promedio base únicamente si 

su valor es mayor, mientras que el sustitutorio puede influir positivamente siempre y cuando eleve 

la nota final. Para estudiantes sin notas de recuperación, se espera que el promedio final coincida 

con el promedio base redondeado (VICERRECTORADO ACADEMICO UNSAAC, 2017). 

Desde una perspectiva matemática, la verificación de consistencia se formaliza como una 

función booleana 𝐶(𝑥) definida sobre cada registro 𝑥 del conjunto de datos, tal que: 

𝐶(𝑥) =

{
 

 
𝑇𝑟𝑢𝑒,⁡⁡⁡𝑠𝑖⁡𝑃𝑓 = max(𝑃𝑏 , 𝑆𝑢)⁡; ⁡∀(𝑆𝑢 > 𝑃𝑏)

𝑇𝑟𝑢𝑒,⁡⁡⁡𝑠𝑖⁡𝑃𝑓 = 𝑃𝑏 ⁡; ⁡∀(𝑆𝑢 ≤ 𝑃𝑏) ∨ 𝑆 = 𝑛𝑢𝑙𝑙

𝑇𝑟𝑢𝑒,⁡⁡⁡𝑠𝑖⁡𝑃𝑓 ≥ 𝑃𝑏⁡; ⁡∃𝑆⁡

𝐹𝑎𝑙𝑠𝑒,⁡⁡⁡𝑐𝑎𝑠𝑜⁡𝑐𝑜𝑛𝑡𝑟𝑎𝑟𝑖𝑜

 

Donde: 

• 𝑃𝑓: es el promedio final; 

• 𝑃𝑏: es el promedio base calculado con notas parciales y redondeo especial; 

• 𝑆𝑢: es la nota del subsanatorio redondeado; 

• 𝑆 : es el examen sustitutorio semestral. 

Después calculamos la tasa de consistencia, siguiendo la anterior lógica: hallamos la 

cantidad de registros consistentes y no consistentes, planteando la siguiente fórmula: 

𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(%) = (𝑁𝑐/𝑁𝑡) ∗ 100 

El análisis fue aplicado al total de registros académicos de notas evaluados 

(𝑁𝑡 = 413791). Como resultado, se encontró que (𝑁𝑐 = 412797) registros presentaban una 
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estructura de calificaciones consistente, lo que representa un 𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 99.76 %⁡con 

respecto al total. Sin embargo, se identificaron 𝑁𝑡 − 𝑁𝑐 =⁡994 registros inconsistentes (0.24 %), 

en los que el promedio final no guarda correspondencia lógica con las reglas institucionales 

definidas. Estos resultados sugieren una alta confiabilidad en la aplicación de las normas de 

calificación, aunque la existencia de errores, aunque mínimos, debe ser abordada para garantizar 

la integridad académica. Este tipo de verificación es realizado para detectar errores sistemáticos o 

humanos en la digitalización de notas y comprobar las reglas formales de validación. 

Se encontrados dos tipos de inconsistencias con dos comportamientos diferenciados. La 

primera, cuando las notas de los exámenes parciales 𝑃1, 𝑃2, 𝑃3 para cursos de 4 créditos o 𝑃1, 𝑃2 

para cursos de 3 o 2 créditos; están vacíos o son cero a pesar de tener una nota de Promedio Final 

mayor a cero, esto se vio evidenciado los siguientes cursos:  

• INTERNADO CLÍNICO 

• PRACTICAS PRE-PROFESIONALES/ INTERNADO FARMACEUTICO II 

• PRACTICAS PRE-PROFESIONALES/ INTERNADO FARMACEUTICO I 

• INTERNADO EXTRAHOSPITALARIO 

• INTERNADO HOSPITALARIO 

• INTERNADO DE MEDICINA 

• INTERNADO DE PEDIATRIA 

• INTERNADO DE GINECO-OBSTETRICIA 

• INTERNADO DE CIRUGIA 
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• PRÁCTICAS PRE PROFESIONALES AREA RURAL 

• INTERNADO RURAL 

• PRÁCTICAS PRE PROFESIONALES AREA HOSPITALARIA 

• SEMIOLOGIA Y FISIOPATOLOGIA CARDIOVASCULAR 

• INTERNADO DE GINECOOBSTETRICIA 

Esto nos podría indicar que algunos cursos (como internados, prácticas, áreas rurales) 

podrían tener un sistema de evaluación distinto, no basado en exámenes parciales donde la 

evaluación tenga un enfoque más cualitativo o continuo, con supervisión directa o informes de 

desempeño periódicos de parte de un médico evaluador. El segundo tipo de inconsistencia que se 

encontró fue cuando la nota del examen subsanatorio no reemplaza la nota del promedio parcial 

final a pesar de ser una nota mayor, esto podría suceder debido a una migración de datos mal 

realizada, actualización de plataformas o error en la validación del sistema. A la primera 

inconsistencia la reconoceremos como imputable, debido a que es posible imputar las notas 

faltantes de los parciales con respecto a la nota final, la segunda inconsistencia sería no imputable 

debido a que la inconsistencia solo se da en el examen subsanatorio y no afecta directamente a las 

notas parciales ni al final; en la Figura 4 se representa la proporción de los datos inconsistentes 

después de la imputación: 
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Fuente: Elaboración personal 

3.3. Análisis y Visualización de Datos de Registros de Notas 

El análisis de datos y su visualización gráfica constituyen elementos importantes en la 

investigación cuantitativa, ya que transforman conjuntos de datos brutos —en este caso los 

registros de estudiantes de la Universidad Nacional de San Antonio Abad del Cusco (UNSAAC) 

del semestre 2023-I al 2024-II — en conocimiento accionable, permitiendo identificar patrones y 

el comportamiento de los datos, validando el riesgo en el cual se encuentran los alumnos al tener 

un bajo rendimiento con peligro a deserción o abandono estudiantil. De este modo, las 

representaciones gráficas sintetizan la complejidad de los datos multivariados inherentes al 

contexto universitario de esta investigación, facilitando el descubrimiento de hallazgos, al exponer 

de manera intuitiva la naturaleza de los datos ya compilados. La sinergia entre análisis y 

Figura 4 

Porcentaje de datos inconsistentes imputados 
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visualización garantiza transparencia metodológica y replicabilidad en el caso específico de la 

UNSAAC, provee evidencia formal para aplicar los algoritmos de clasificación, descubriendo así 

cuales son los alumnos con bajo rendimiento. A continuación, se visualizan los datos en los 

siguientes gráficos:  

Fuente: Elaboración personal 

 

 

Figura 5 

Alumnos matriculados por semestre del semestre 2023-1 al 2024-II 
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Fuente: Elaboración personal 

En la Figura 5 y Figura 6 se pudo observar una distribución uniforme con respecto a los 

alumnos matriculados por semestre y en el promedio de cursos por alumno por semestre, lo que 

mostraría que es constante la cantidad de alumnos que se matriculan al mes, aproximadamente 

18437 alumnos; y además la cantidad promedio de cursos a los que se matriculan es de 

aproximadamente a 5.61 cursos. Lo que nos da un indicio que no hay deserción masiva de alumnos 

con respecto al tiempo, sin embargo, no nos asegura que no haya una cantidad considerable que se 

encuentre en riesgo. Por lo tanto, se presenta en los siguientes gráficos de cajas Figura 7 y Figura 

8 cómo se comportan los registros de notas con respecto a los semestres: 

Figura 6 

Promedio de cursos matriculados por alumno del semestre 2023-1 al 2024-II 



71 
 

Fuente: Elaboración Personal 

  

Fuente: Elaboración Personal 

Figura 7 

Distribución de notas por parcial del año 2023 

Figura 8 

Distribución de notas por parcial del año 2024 
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Los diagramas de cajas constituyen una herramienta estadística robusta para la 

representación gráfica de distribuciones de datos, fundamentada en el análisis de cuartiles y la 

detección de valores atípicos mediante la regla de Tukey (Tukey, 1977). Esta representación 

gráfica utiliza cinco estadísticos descriptivos principales: el primer cuartil (Q1), la mediana (Q2), 

el tercer cuartil (Q3), y los límites inferior y superior calculados como 𝐿𝑖 ⁡= ⁡𝑄1⁡ − ⁡1.5 × 𝐼𝑄𝑅 y 

𝐿𝑠 ⁡= ⁡𝑄3⁡ + ⁡1.5 × 𝐼𝑄𝑅, respectivamente, donde IQR representa el rango intercuartílico (Q3 - 

Q1). El factor 1.5 en la regla de Tukey tiene justificación teórica, ya que en distribuciones normales 

aproximadamente el 99.3% de los datos se encuentran dentro de estos límites, estableciendo un 

criterio estadísticamente sólido para la identificación de observaciones atípicas. En el contexto 

específico del análisis de calificaciones académicas, donde el dominio de datos se encuentra 

naturalmente acotado en el intervalo [0, 20] ya que representa el rango real de las notas, resulta 

metodológicamente apropiado aplicar una restricción al límite superior calculado mediante la 

función 𝐿𝑠 ⁡= ⁡𝑚𝑖𝑛⁡(𝑄3⁡ + ⁡1.5 × 𝐼𝑄𝑅, 20). Esta modificación, denominada truncamiento, respeta 

las restricciones inherentes del dominio de estudio, manteniendo la validez estadística del método 

mientras se adapta a las limitaciones reales del sistema de evaluación. El análisis estadístico 

aplicado a la distribución de calificaciones mediante esta metodología revela una clasificación 

sistemática donde los valores típicos (inliers) corresponden a calificaciones dentro del intervalo 

[𝐿𝑖, 𝐿𝑠], siendo 𝐿𝑖 con rango [7.495, 9.005] y 𝐿𝑠 truncado sistemáticamente en 20, mientras que 

los valores atípicos (outliers) representan calificaciones inferiores al límite inferior, identificando 

estudiantes con rendimiento académico deficiente. Los resultados evidencian que los cuartiles Q1 

∈ [13.06, 13.5], Q2 ∈ [14.9, 15.17] y Q3 ∈ [16.3, 16.67] configuran una distribución con asimetría 

negativa moderada, donde la cola izquierda contiene sistemáticamente entre 5.46% y 8.37% de 
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observaciones atípicas para parciales 1 y 2, y entre 4.90% y 5.09% para el parcial 3, manteniendo 

consistencia temporal en el período 2023-2024.  

Esta configuración matemática demuestra que los valores atípicos capturan efectivamente 

el segmento poblacional con calificaciones reprobatorias (< 8.25), considerablemente inferior a la 

nota mínima aprobatoria típica del sistema educativo universitario peruano (13-13.5), confirmando 

que aproximadamente 6-8% de la población estudiantil presenta un patrón estructural de bajo 

rendimiento académico, validando estadísticamente una proporción significativa de estudiantes en 

riesgo académico identificados mediante la metodología de detección de valores atípicos basada 

en cuartiles. 

El análisis estadístico de la distribución de valores atípicos por semestre y parcial (Figura 

9) evidencia que el Parcial 2 hay la mayor proporción de notas atípicas en todos los semestres 

analizados, con porcentajes que oscilan entre 7.2% y 8.4%, estableciendo un patrón estructural de 

bajo rendimiento en esta evaluación específica, contrastando con el Parcial 1 que mantiene valores 

relativamente estables entre 5.8% y 6.3%, y el Parcial 3 que exhibe los porcentajes más bajos entre 

4.9% y 5.4%. La diferencia sistemática entre parciales, donde el Parcial 2 presenta 

aproximadamente 1.5-2.5 puntos porcentuales más de valores atípicos que el Parcial 1 y 2.5-3.5 

puntos porcentuales más que el Parcial 3, resulta estadísticamente significativa considerando el 

tamaño muestral superior a 100,000 observaciones por parcial, sugiriendo que factores específicos 

del proceso evaluativo influyen en el rendimiento académico. Esta concentración de bajo 

rendimiento en el Parcial 2 puede atribuirse a factores temporales, ya que coincide con la mitad 

del semestre académico cuando se evalúan contenidos nuevos y de mayor complejidad con 

respecto al anterior Parcial, factores de acumulación de deficiencias académicas donde estudiantes 

con dificultades en el Parcial 1 tienden a mantener o agudizar sus problemas, y factores de carga 
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académica relacionados con la intensificación de actividades en el período medio semestral. El 

análisis longitudinal muestra una tendencia descendente en el porcentaje de valores atípicos del 

Parcial 2 desde 2023-1 (7.7%) hasta 2024-2 (7.2%); la persistencia del patrón donde el Parcial 2 

mantiene sistemáticamente los valores más altos confirma que este constituye el punto crítico del 

rendimiento académico estudiantil, requiriendo la creación de estrategias de intervención 

focalizadas en el período medio del semestre, por ejemplo: realizar las tutorías especializadas a 

mitad de semestre en vez de final de semestre, reforzar académicamente e identificar de manera 

temprana a los estudiantes en riesgo antes de la culminación del segundo parcial antes de la 

segunda evaluación parcial. 

Fuente: Elaboración Personal 

 

 

Figura 7 

Distribución de notas atípicas por Semestre y Parcial 
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3.4. Transformación de Datos 

Partimos de un conjunto de datos tabulares de registro de notas en formato de dataframe, 

donde cada fila representa un registro de calificaciones individuales por estudiante, asignatura, 

parcial y semestre. La estructura original se puede representar como un conjunto de tuplas: 

𝐷 = {(𝑎𝑖, 𝑐𝑗, 𝑠𝑘, 𝑡𝑙 , 𝑛𝑖𝑗𝑘𝑙)} 

Donde: 

• 𝑎𝑖: identificador del alumno 𝑖; 

• 𝑐𝑗: código de la asignatura 𝑗; 

• 𝑠𝑘: semestre académico 𝑘; 

• 𝑡𝑙: tipo de evaluación (Parcial 1, Parcial 2, Parcial 3, Sustitutorio); 

• 𝑛𝑖𝑗𝑘𝑙: nota obtenida por el alumno 𝑎𝑖 en la evaluación 𝑡𝑙 de la asignatura 𝑐𝑗 durante el 

semestre 𝑠𝑘. 

Mediante la función “melt” de aplanamiento, se convierte el conjunto de datos en una 

estructura más uniforme y, donde la columna “Tipo_Nota” actúa como una categoría, y la columna 

“Nota” representa su valor correspondiente. Esta técnica es conocida como “normalización de 

datos en formato largo” o tidy data, donde cada observación ocupa una fila. 

Posteriormente, se crea una nueva etiqueta compuesta que concatena la información 

relevante: 

𝐸𝑡𝑖𝑞𝑢𝑒𝑡𝑎_𝐶𝑜𝑙𝑢𝑚𝑛𝑎 = 𝑐𝑗 + 𝑠𝑡𝑟("_") + 𝑚𝑎𝑝(𝑡𝑙) + 𝑠𝑡𝑟("_") + 𝑠𝑘 
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• 𝑠𝑡𝑟("_"): convierte cualquier valor a su representación como texto; 

• 𝑚𝑎𝑝(𝑡𝑙): aplica la función de aplanamiento a cada 𝑡𝑙 perteneciente a un 𝑐𝑗. 

Con esta clave, se realiza una transformación tipo “pivot table”, que reestructura el 

conjunto de datos en formato ancho, generando una matriz: 

𝑋 ∈ 𝑅⁡𝑛×𝑚 
 
• 𝑛: número de alumnos; 

• 𝑚: número total de columnas que representan evaluaciones distintas; 

• 𝑋: nota del estudiante 𝑖 en la evaluación 𝑙, o vacío si: no la rindió, no se matriculó en el 

curso, el curso solo tenía dos exámenes parciales. 

Obteniendo columnas compuestas para cada alumno, como, por ejemplo:  

• AD103ZOS_2_2023-2 

• AD110AAE_1_2023-1 

• AD110AAE_1_2023-2 

Esta transformación tiene como objetivo identificar de manera única cada instancia de 

evaluación académica; en estas columnas se almacena la información correspondiente a una 

asignatura en un examen parcial o sustitutorio determinado de un semestre, esta transformación 

ayuda ya que todas las notas pertenecientes a un alumno se pueden almacenar en un registro, lo 

que evita duplicados en los identificadores de los alumnos en cada fila y prepara los datos para la 

aplicación posterior de algoritmos de emparejamiento: ELO, Glicko-2 y TrueSkill. 
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3.5. Cálculo de GPGA de los Estudiantes 

El CGPA (Cumulative Grade Point Average) es una medida agregada que busca 

representar de forma equitativa el rendimiento académico de un estudiante, en esta investigación 

se realiza a lo largo de diferentes cursos y periodos académicos. En el contexto de análisis de datos 

educativos, calcular el CGPA de forma precisa y representativa es esencial para aplicar modelos 

de clasificación como ELO, Glicko-2 y TrueSkill, ya que estos se alimentan de comparaciones 

fundamentadas en métricas de rendimiento. 

A primera instancia, podría parecer conveniente calcular el CGPA de los estudiantes como 

un simple promedio de sus calificaciones. Esta aproximación resulta atractiva debido a la eficiencia 

computacional de la agregación plana, que se basa en una única operación de agrupación con una 

complejidad de 𝑂(𝑛 log 𝑛) siendo 𝑛 el número total de registros en la base de datos de notas. 

CGPA𝑖
𝑝𝑙𝑎𝑛𝑜 =

1

𝑁𝑖
∑𝑛𝑖,𝑒

𝑁𝑖

𝑒=1

 

Donde 𝑁𝑖 es el total de evaluaciones registradas para el estudiante 𝑖, sin distinción de curso 

o semestre. Si bien el enfoque directo es se ve computacionalmente simple en apariencia - una 

única agregación - este método no respeta la estructura pedagógica de los datos. Asignaturas con 

mayor número de evaluaciones influencian más el resultado final, lo cual genera un sesgo 

ponderativo no intencionado. Además, semestres con más cursos o cursos con más evaluaciones 

promediarían de forma desproporcionada sobre el CGPA. Este comportamiento de la función 

introduce un sesgo estructural dentro del análisis académico lo que generaría una mala 

representación del rendimiento estudiantil. Si se busca una interpretación académica coherente, 

resulta fundamental considerar que el sistema educativo valora el desempeño por asignatura y no 
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en función del número de exámenes realizados; por lo tanto, el anterior enfoque no daría buenos 

resultados. 

En el presente estudio se ha optado por calcular el CGPA (Cumulative Grade Point 

Average) de manera jerárquica, siguiendo la estructura académica natural del sistema educativo: 

primero se calcula el promedio de notas a nivel de evaluación dentro de cada asignatura; luego, se 

promedian estas notas a nivel de curso; posteriormente, se obtiene un promedio semestral; y 

finalmente, se calcula el CGPA final como el promedio de estos promedios. Esta metodología se 

compara favorablemente frente a la anterior estrategia ya que conserva la misma complejidad 

𝑂(𝑛 log 𝑛) para cada fase de agregación y además de tener menos sesgo considerable. 

Desde un punto de vista matemático, el cálculo jerárquico para cálculo del CGPA final se 

formula de la siguiente manera: 

 Sea 𝑛𝑖,𝑐,𝑠,𝑒 la nota obtenida por el estudiante 𝑖 en la evaluación 𝑒 del curso 𝑐, en el semestre 

𝑠. El proceso de agregación lo definimos jerárquicamente como: 

3.5.1. Promedio por curso (asignatura) 

𝑛̅𝑖,𝑐,𝑠 =
1

𝐸𝑐,𝑠
∑ 𝑛𝑖,𝑐,𝑠,𝑒

𝐸𝑐,𝑠

𝑒=1
 

Donde Ec,s⁡es el número de evaluaciones realizadas por el estudiante en el curso 𝑐, en el 

semestre 𝑠. 

3.5.2. Promedio semestral 

𝐶𝐺𝑃𝐴𝑖,𝑠 =
1

𝐶𝑠
∑ 𝑛̅𝑖,𝑐,𝑠

𝐶𝑠

𝑐=1
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Donde Cs⁡representa el número de asignaturas que el estudiante llevó en el semestre 𝑠. 

3.5.3. CGPA final 

𝐶𝐺𝑃𝐴𝑖,𝑓𝑖𝑛𝑎𝑙 =
1

𝐶𝑠
∑ 𝐶𝐺𝑃𝐴𝑖,𝑠

𝑠𝑖

𝑐=1
 

Donde Si⁡número de semestres cursados por el estudiante 𝑖. El cálculo jerárquico evita el 

problema del sesgo por densidad de datos, lo que garantiza que cada asignatura tenga el mismo 

peso, independientemente de su número de evaluaciones, y asegura que cada semestre contribuya 

equitativamente al promedio acumulado, independientemente de la carga académica. De este 

modo, se obtiene un indicador de rendimiento académico robusto, comparable entre estudiantes, y 

apto para medir los modelos de emparejamiento como ELO, Glicko-2 y TrueSkill, los cuales 

requieren métricas de rendimiento representativas y no sesgadas. El CGPA de cada estudiante en 

la Figura 10 muestra la siguiente distribución: 

Figura 8 

Histograma de distribución CGPA de los estudiantes con Curva KDE 

Fuente: Elaboración Personal 
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El gráfico presenta un patrón unimodal y aproximadamente simétrico, con una 

concentración predominante de estudiantes en torno a la moda aproximada de 12.5 CGPA. Este 

pico pronunciado sugiere que la mayoría de los estudiantes (más del 60%) se agrupa en un rango 

relativamente estrecho, específicamente entre 10.0 y 15.0 CGPA. La ligera asimetría negativa 

(cola izquierda más extendida) indica una mayor frecuencia de estudiantes con 

rendimiento inferior a la moda en comparación con aquellos cuyo rendimiento es superior. Esta 

característica se evidencia en la suave prolongación hacia valores bajos (CGPA < 7.5), mientras 

que la cola derecha decrece abruptamente después de 15.0 CGPA, con muy pocos casos cercanos 

a 17.5 CGPA y ninguno próximo al límite superior teórico (20.0). 

 La distribución del gráfico sugiere un sistema de evaluación consistente que tiende a 

agrupar a los estudiantes en niveles intermedios. La escasez de valores extremos es significativa: 

los casos con CGPA < 5.0 son marginales, lo que podría indicar que se necesitan implementar 

mecanismos de apoyo para estudiantes en riesgo, y la ausencia de notas cercanas a 20.0 también 

nos indica posibles barreras estructurales, como podría ser; un techo en la calificación que limita 

el rendimiento excepcional. 

La curva KDE suaviza la distribución real, lo que puede atenuar irregularidades en los 

extremos, lo que nos indicaría a primera vista pudiese tratarse de una distribución normal, debido 

que la cantidad de datos es mucho mayor a 50 descartamos la prueba de Shapiro-Wilk y aplicamos 

una prueba de Kolmogórov-Smirnov que maneja adecuadamente los datos densos, esta prueba 

compara la función de distribución acumulada empírica de los datos con la función de una 

distribución normal teórica ajustada a la media y desviación estándar de la muestra. Se considera 

para esta prueba un nivel de significancia estándar de α = 0.05, correspondiente a un 95% de nivel 

de confianza; obteniendo un resultado D=0.1589 y un valor p < 0.0001. Dado que el valor p es 
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menor al nivel de significancia establecido, se rechaza la hipótesis nula que plantea que los datos 

provienen de una distribución normal. Por lo tanto, se concluye que la distribución del CGPA no 

sigue una distribución normal, lo cual indica una posible presencia de asimetría, curtosis o valores 

atípicos dentro del conjunto de datos analizado. Ya que no se trata de una distribución normal esto 

es de utilidad ya que CGPA se define en esta investigación como métrica de validación que 

establecerá correlación con los algoritmos de emparejamiento ELO, Glicko-2 y TrueSkill. 

3.6. Clasificación de los estudiantes utilizando el algoritmo ELO. 

Se implementa una versión adaptada del sistema de clasificación ELO, originalmente 

desarrollado para evaluar la habilidad de jugadores en juegos de competencia como el ajedrez, 

aplicado aquí al desempeño académico de estudiantes. La lógica del sistema se fundamenta en 

asignar y actualizar un puntaje MMR ELO a cada estudiante en función de sus calificaciones 

obtenidas por curso, consideradas como resultado de "enfrentamientos" implícitos entre pares. 

Este enfoque permite clasificar las calificaciones académicas en un sistema dinámico de 

puntuación basado en competencia relativa, utilizando el algoritmo de emparejamiento ELO. A 

diferencia del promedio simple, el algoritmo ELO en esta investigación considera el contexto 

competitivo de cada curso: cantidad de estudiantes y notas por curso por semestre, proporcionó 

una mejor clasificación del rendimiento estudiantil en distintos escenarios y la identificación de 

estudiantes con bajo rendimiento en este entorno. 

Primero, para cada estudiante 𝑖 en un curso válido específico 𝑐 perteneciente en a un 

semestre determinado, para que el curso se considera válido al menos debe haber más de 5 

estudiantes sino la clasificación por ELO tendería a fallar por el número limitado de 

emparejamientos; se calcula una nota total 𝑁𝑇𝑖𝑐 considerando: 
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• Las notas parciales válidas 𝑃1, 𝑃2, 𝑃3 para cursos de 4 créditos o 𝑃1, 𝑃2 para cursos de 3 o 

2 créditos 

Dado un examen sustitutorio S reemplaza exclusivamente al examen parcial (EP) más bajo 

del conjunto de notas parciales válidas, definida como 𝑃ₘᵢₙ⁡ = min(𝑃). El promedio final 

corregido NT se calcularía idealmente como 𝑁𝑇𝑖𝑐 =
(∑ 𝑃𝑘)−⁡𝑃ₘᵢₙ+𝑆
𝑛
𝑘=1

𝑛
= 𝑃̅ +

𝑆−⁡𝑃ₘᵢₙ⁡

𝑛
 donde 𝑃̅ es el 

promedio inicial. El problema fundamental es la indeterminación de Pₘᵢₙ a nivel de registro 

académico agregado, ya que solo se dispone del promedio final oficial, no de las notas 

desagregadas por ítem o parcial. Por lo tanto, se debe construir un estimador 𝑁𝑇̂ que aproxime 

𝑁𝑇̂⁡utilizando únicamente las variables observables: (𝑃̅, 𝑆,n). Por lo que se propone un modelo de 

ajuste lineal de la forma 𝑁𝑇̂ = 𝑃̅ + ⁡𝛼. (𝑆 − 𝑃̅) donde α es un coeficiente de impacto a estimar. 

Este modelo supone que la ganancia promedio por aplicar el sustitutorio es proporcional a la 

diferencia entre 𝑆 y el promedio original. Para relacionar 𝛼 con el modelo ideal, se toma el valor 

esperado de la ganancia real (𝑆⁡– ⁡𝑃ₘᵢₙ)/𝑛. Asumiendo que 𝑃ₘᵢₙ es una variable aleatoria que 

depende de la distribución de 𝑃, y que 𝑆⁡es independiente de 𝑃ₘᵢₙ una vez fijado, se tiene el valor 

esperado Ε [𝑆−𝑃𝑚𝑖𝑛
𝑛

] =
𝑆−𝛦[𝑃𝑚𝑖𝑛]

𝑛
 bajo el supuesto de que las notas parciales se distribuyen de 

manera aproximadamente uniforme en un rango acotado, la esperanza del mínimo 𝛦[𝑃𝑚𝑖𝑛] puede 

aproximarse como 𝑃̅ − 𝛥⁡, donde 𝛥 es una desviación típica positiva. Así,  Ε [𝑆−𝑃𝑚𝑖𝑛
𝑛

] ≈
𝑆−(𝑃̅−𝛥)

𝑛
=

𝑆−𝑃̅

𝑛
−

𝛥

𝑛
 . Comparando con el modelo lineal 𝛼. (𝑆 − 𝑃̅)⁡se infiere que un candidato para 𝛼 es 1/𝑛. 

Sin embargo, esta elección ignora el término 𝛥/𝑛 y sobreestima el impacto cuando 𝑆 es cercano a 

𝑃̅ . Por tanto, se introduce un coeficiente de atenuación empírico β, definiendo: 𝛼 = ⁡𝛽/𝑛 con 0 <

𝛽 < 1. El valor 𝛽⁡ = ⁡0.9 (es decir, 𝛼⁡ = ⁡0.9/𝑛) ajustaría parcialmente la sobreestimación. Para 

𝑛 = 3, 𝛼⁡ ≈ ⁡0.3; para 𝑛 = 2, 𝛼⁡ = ⁡0.45. Dado que: 
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• La mayoría de cursos en el sistema analizado son de 4 créditos (n=3). 

• Se busca un único coeficiente simplificado para homogenizar el cálculo en todos los 

cursos. 

• Es preferible subestimar ligeramente el beneficio del sustitutorio a sobreestimarlo, para 

no inflar artificialmente los ratings en el algoritmo ELO. 

Se elige el valor 𝛼⁡ = ⁡0.3 como valor óptimo y conservador. Este valor equivale a 𝛽⁡ =

⁡0.9 para 𝑛 = 3 y a 𝛽⁡ = 0.6 para 𝑛 = 2, lo que significa que, para cursos con menos parciales, el 

modelo es aún más conservador, compensando la mayor incertidumbre en la estimación de 𝑃ₘᵢₙ. 

En conclusión, la siguiente fórmula operativa es un estimador consistente y robusto del 

promedio final verdadero que incluye el sustitutorio. Minimiza el error cuadrático esperado bajo 

incertidumbre sobre Pₘᵢₙ y garantiza la equidad en la comparativa competitiva entre estudiantes de 

diferentes cursos (Amor Pulido et al., 2009):  

𝑁𝑇𝑖
𝑐 =

∑ 𝑃𝑘 + 0.3𝑆
𝑛
𝑘=1

𝑛
 

Donde 𝑛 es el número de parciales válidos, después inicializamos a cada estudiante 𝑖 con 

un MMR ELO inicial:  

𝑅𝑖 = 𝑅0⁡𝑑𝑜𝑛𝑑𝑒⁡𝑅0 = 1000 

Después se simulan los enfrentamientos académicos por pares de estudiantes 𝑖 y 𝑗, 

comparando las notas calculadas por cada curso 𝑁𝑇𝑖𝑐⁡𝑦⁡𝑁𝑇𝑗𝑐 respectivamente donde si 𝑁𝑇𝑖𝑐 >

⁡𝑁𝑇𝑗
𝑐 , se considera que el estudiante 𝑖 ganó o si 𝑁𝑇𝑖𝑐 =⁡𝑁𝑇𝑗𝑐 se considera un empate. 
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Ahora calculamos la puntuación esperada hallando probabilidad esperada de victoria de un 

estudiante 𝑖 sobre un estudiante 𝑗, según el sistema ELO se calcula como  

𝐸𝑖 =
1

1 + 10(𝑅𝑗−𝑅𝑖)/400
 

Luego del enfrentamiento se actualizan los puntajes de acuerdo a la siguiente fórmula: 

𝑅𝑖
𝑁𝑢𝑒𝑣𝑜 = 𝑅𝑖 + 𝐾(𝑀𝑖 − 𝐸𝑖) 

Donde:  

• 𝐾 es el coeficiente de sensibilidad del sistema ELO. Este parámetro controla el ritmo al 

cual los puntajes se ajustan: un valor alto hace el sistema más reactivo a nuevas 

actuaciones, mientras que uno bajo favorece la estabilidad del puntaje. Establecemos 

𝐾=32 ya que es común implementaciones estándar del algoritmo ELO y suficiente para 

simulaciones educativas. Este valor podría cambiarse si no se encuentran los resultados 

esperados 

• 𝑀𝑖 ∈ {⁡1, 0.5, 0} es el resultado observado del estudiante: 1 si gana, 0.5 si empata y si 

pierde 0. 

Esto se repite para todos los pares de estudiantes 𝑖 y 𝑗⁡en un curso específico 𝑐 perteneciente 

en a un semestre determinado. Una vez calculados los ELO individuales por curso, se consolida 

un ELO promedio por estudiante considerando todas sus participaciones: 

𝐸𝐿𝑂𝑚
𝑃𝑟𝑜𝑚𝑒𝑑𝑖𝑜 =

∑ 𝑅𝑖
𝑐𝑚

𝑐=1

𝑚
 

Donde 𝑚 es el número de cursos en el que el estudiante 𝑖⁡se matriculó; 𝑅𝑖𝑐 es el ELO final 

obtenido en cada curso. Después de ello asignamos las estrellas con respecto a los percentiles 𝑃(𝑥) 
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correspondientes al valor del ELO promedio 𝑥⁡encontrado para cada estudiante en su semestre 

determinado como se observa en la Tabla 3: 

Tabla 3  

Percentiles por rendimiento para asignación de estrellas ELO 

Fuente: Elaboración personal 

• 𝑥 ∈ ℝ: Puntaje⁡ELO⁡promedio⁡del⁡estudiante⁡en⁡un⁡semestre; 

• 𝑃(𝑥) ∈ [0%, 100%] : Percentil de 𝑥 dentro del conjunto de datos. 

Para identificar a los alumnos con bajo rendimiento académico mediante el algoritmo de 

clasificación tipo ELO y la asignación de estrellas según percentiles, se considera a aquellos 

ubicados en el cuartil inferior (por debajo del percentil 25%). Es decir, estudiantes que solo tienen 

una sola estrella (✩). Estos alumnos no solo presentan calificaciones bajas, sino que también han 

sido muy superados en múltiples enfrentamientos académicos simulados por sus compañeros. 

Ya definido el cálculo del MMR o puntaje ELO y el etiquetado de Estrellas para cada 

alumno por percentiles en un semestre determinado: evaluamos el tiempo de ejecución, el número 

de estudiantes y el número de cursos del algoritmo de emparejamiento ELO por semestre, aplicado 

alumnos post pandemia de la Universidad de San Antonio Abad del Cusco. Se realizó la ejecución 

Condición del Percentil 

ELO 
Estrellas (Stars) Rendimiento 

𝑃(𝑥) ≥ 90% ✩✩✩✩✩ Excelente 

75%⁡ ≤ 𝑃(𝑥) < ⁡90%  ✩✩✩✩ Alto 

50%⁡ ≤ 𝑃(𝑥) < ⁡75% ✩✩✩ Promedio 

25%⁡ ≤ 𝑃(𝑥) < ⁡50% ✩✩ Malo 

𝑃(𝑥)< 25% ✩ Bajo 
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secuencial del mismo sobre los datos académicos correspondientes a cuatro semestres: 2023-1, 

2023-2, 2024-1 y 2024-2. Sea:  

• 𝑠 ∈ {𝑠1, 𝑠2, 𝑠3, 𝑠4}: El⁡conjunto⁡de⁡semestres⁡donde⁡𝑠1 = 2023 − 1, 

•  𝑠2 = 2023 − 2, 𝑠3 = 2024 − 1⁡y⁡ 𝑠4 = 2024 − 2; 

• ∀𝑠⁡∃⁡𝐷n⁡/ 𝐷n es el dataframe correspondiente a cada semestre 𝑠n 

El algoritmo ELO se aplica de forma independiente a cada conjunto 𝐷n , generando para 

cada alumno un rating de emparejamiento 𝑅𝑖
(𝑛), y asigdo una etiqueta de estrellas basada en 

percentiles del ranking dentro del semestre 𝑠n. Formalmente, para cada alumno 𝑖 en el semestre 𝑠n

, se calcula: 

𝑅𝑖
(𝑛)

= 𝐸𝐿𝑂(𝐷n, 𝑖) 

Donde la función 𝐸𝐿𝑂(∙) representa el proceso iterativo de actualización de ratings basado 

en los resultados académicos registrados en 𝐷n. Luego, el conjunto de ratings 𝑅 = {𝑅𝑖
(𝑛)/⁡𝑛 =

1,2,3,4} se ordena y se divide en percentiles para asignar categorías de estrellas: ✩, ✩✩, ✩✩✩, 

✩✩✩✩, ✩✩✩✩✩; como anteriormente se definió.  Se muestran a continuación los resultados 

obtenidos en tiempo de ejecución: 
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Tabla 4  

Resultados obtenidos después de la ejecución del algoritmo ELO en los semestres 2023-1, 2023-

II, 2024-I y 2024-II. 

Fuente: Elaboración Personal 

En primer lugar, se detectaron aproximadamente entre 9,200 y 9,900 columnas asociadas 

a cursos en cada uno de los DataFrames semestrales analizados; el elevado número de columnas 

refleja un gran volumen dimensional de información académica, así como amplitud del registro de 

datos disponibles para cada periodo. 

Se identificaron entre 3,500 y 3,700 cursos por semestre, lo cual garantiza una muestra 

representativa y estadísticamente sólida para aplicar el algoritmo de emparejamiento. Las 

velocidades promedio de procesamiento fueron constantes y se situaron entre 2.7 y 3.3 cursos por 

segundo, lo que refleja la efectividad de la implementación optimizada del algoritmo ELO. Este 

rendimiento permitió ejecutar los cálculos en un tiempo razonable, considerando el gran volumen 

de datos involucrados. 

Los tiempos totales de ejecución variaron entre aproximadamente 1,755 y 2,090 segundos 

por semestre, es decir, entre 29 y 35 minutos. Esta duración resulta adecuada y manejable dentro 

de un contexto de análisis masivo de datos académicos. Se observa que este desempeño se logró 

sin comprometer la precisión ni la integridad del análisis. 

Semestre Tiempo (s) Estudiantes Cursos 

2023-1 1787.21 18540 3556 

2023-2 1755.99 18204 3541 

2024-1 1845.26 18607 3669 

2024-2 2091.27 18221 3715 
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Finalmente, la cantidad de estudiantes únicos evaluados por semestre se mantuvo en torno 

a los 18,000, y el total de registros generados por el algoritmo ELO superó las 100,000 entradas 

en cada periodo. Se evidencia, por lo tanto, la robustez del procedimiento aplicado y la profundidad 

del análisis realizado sobre el rendimiento académico de los estudiantes en la etapa post pandemia. 

Por último, se almacenó los resultados en un documento Excel llamado 

Alumnos_Clasificados_ELO.xlsx que guarda los resultados de la clasificación Elo para poderla 

utilizar más adelante. 

3.7. Identificación de los alumnos con bajo rendimiento después de la clasificación por el 

algoritmo ELO 

Lo que se busca generar una clasificación cualitativa del rendimiento académico de los 

estudiantes mediante un sistema de estrellas (de 1 a 5), basado en sus respectivos valores de MMR 

o puntaje ELO general de cada semestre. Para ello, se sigue un proceso estructurado que puede 

dividirse en tres fases: cálculo del rating ELO general ponderado, asignación de estrellas con una 

distribución empírica, y cálculo del percentil de cada estudiante. 

Primero calculamos el ELO general ponderado de cada alumno 𝑖: sea 𝑅𝑖
(𝑛) el valor de ELO 

promedio obtenido por dicho estudiante durante un semestre 𝑛. Se define el peso de competencia 

𝜔𝑖 para el estudiante 𝑖 como: 

𝜔𝑖 = 𝑇𝑖 ∙ 𝐶𝑖 

Donde: 

• 𝑇𝑖⁡: Número total de estudiantes contra los que compitió; 

• 𝐶𝑖⁡: Número de cursos tomados por el estudiante. 
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Calculamos el ELO ponderado individual como: 

𝑅𝑃𝑖
(𝑛)

= 𝑅𝑖
(𝑛)
∙ 𝜔𝑖 

Agrupamos a los alumnos 𝑖, se obtiene el ELO General Ponderado para cada estudiante 

como: 

𝐸𝐿𝑂_𝐺𝑃𝑖 =
∑ 𝑅𝑃𝑖

(𝑛)𝑛
1

∑ 𝜔𝑖
𝑛
1

 

Para asignar una etiqueta cualitativa de rendimiento, se utiliza el valor ponderado 

𝐸𝐿𝑂_𝐺𝑃𝑖⁡del estudiante. El algoritmo puede analizarse mediante múltiples esquemas de 

distribución, para nuestro caso del estudio se emplea una distribución académica asimétrica 

(García Tárrago, 2020); sean los percentiles de corte: PC= {5%,25%,75%,95%} ya que son más 

cercanos a la realidad, propia y adecuada de utilizar para entornos educativos. Los percentiles de 

corte son los siguientes: 

Tabla 5  

Percentiles por rendimiento general para asignación de estrellas ELO 

Fuente: Elaboración personal 

Condición del Percentil ELO Estrellas Generales Rendimiento General 

𝐸𝐿𝑂_𝐺𝑃𝑖 ≥ ⁡95% ★★★★★ Excelente 

75%⁡ ≤ 𝐸𝐿𝑂_𝐺𝑃𝑖 < 95%  ★★★★ Alto 

25%⁡ ≤ 𝐸𝐿𝑂_𝐺𝑃𝑖 < 75% ★★★ Promedio 

5%⁡ ≤ 𝐸𝐿𝑂_𝐺𝑃𝑖 < 25% ★★ Malo 

𝐸𝐿𝑂_𝐺𝑃𝑖⁡< 5% ★ Bajo 
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Después de aplicar la distribución Figura 11 se puede observar los siguientes resultados. 

 

Fuente: Elaboración personal 

Se puede observar la distribución de estudiantes según la categoría de estrellas de 

rendimiento académico asignadas mediante el algoritmo ELO. Este sistema de clasificación ha 

sido correctamente adaptado en esta investigación para evaluar y agrupar a los estudiantes en 

función de su desempeño académico, considerando el valor ponderado de su rating ELO 

acumulado a lo largo de varios semestres. 

Del total de estudiantes evaluados, se observa que la mayor proporción se concentra en la 

categoría de 3 Estrellas, con 12,576 estudiantes, lo que representa aproximadamente el 50.2% de 

la muestra. Esta categoría constituye el núcleo del rendimiento promedio, indicando que la mitad 

de los estudiantes mantiene un desempeño académico intermedio de acuerdo con el sistema de 

Figura 9 

Distribución y clasificación por Estrellas de ELO Ponderado General 
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puntuación empleado. Esta tendencia sugiere una adecuada calibración del algoritmo, ya que 

agrupa de manera eficiente a la mayoría de los estudiantes en torno a una media de rendimiento. 

En las categorías adyacentes, se identifican 4,960 estudiantes con 2 Estrellas (19.8%) y 

5,010 estudiantes con 4 Estrellas (20.0%). Estos valores, relativamente simétricos respecto a la 

categoría central, refuerzan la hipótesis de una distribución en forma de campana o distribución 

normal, lo cual es deseable en sistemas de clasificación que buscan distinguir distintos niveles de 

desempeño con equidad y balance. 

Por otro lado, los extremos de la distribución presentan una cantidad significativamente 

menor de estudiantes. La categoría de 1 Estrella agrupa a 1,251 estudiantes (5.0%), mientras que 

la de 5 Estrellas incluye a 1,271 estudiantes (5.1%). Estas proporciones reducidas en los niveles 

más bajos y más altos son coherentes con un enfoque meritocrático, donde solo un porcentaje 

reducido alcanza los extremos del rendimiento académico. En particular, la baja proporción de 

estudiantes en la categoría de 1 Estrella puede interpretarse como un indicador positivo, ya que 

evidencia que un número limitado de estudiantes se encuentra en los niveles más críticos de 

rendimiento, sin embargo, este es nuestro objetivo de investigación está el de encontrar a alumnos 

con bajo rendimiento utilizando el algoritmo ELO. 

Al final almacenamos los resultados de la clasificación por el algoritmo de emparejamiento 

ELO en un archivo llamado Excel: “Alumnos bajo rendimiento ELO UNSAAC”, en este archivo 

adjuntaremos tanto los resultados de la clasificación ELO de aquellos alumnos con bajo 

rendimiento (Deficiente) en el percentil más bajo 𝐸𝐿𝑂_𝐺𝑃𝑖⁡< 5% con una Estrella ★ como 

etiqueta, así como sus registros de notas consultados de la base de datos original. 
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3.8. Correlación entre ELO General Ponderado y CGPA Final. 

Con el objetivo de validar la efectividad del algoritmo de clasificación ELO aplicado al 

rendimiento académico, se realizó un análisis de correlación entre la variable ELO General 

Ponderado, obtenida mediante simulaciones de competencias académicas entre estudiantes, y el 

CGPA Final (Cumulative Grade Point Average), una métrica tradicionalmente utilizada para 

evaluar el desempeño académico acumulado. 

El análisis estadístico incluyó tanto el coeficiente de correlación de Pearson (r) como el de 

Spearman (ρ). El coeficiente de Pearson, es aquel que evalúa la relación lineal entre dos variables 

cuantitativas, arrojó un valor de r = 0.7970 con un p-valor = 0.0000, lo que indica una correlación 

lineal fuerte y positiva, estadísticamente significativa. Este resultado evidencia que los estudiantes 

con un mayor puntaje ELO tienden también a presentar un mayor promedio acumulado, lo cual 

sugiere una coherencia sustantiva entre ambas métricas de evaluación. 

Por otro lado, el coeficiente de Spearman, es la que mide la fuerza y dirección de una 

relación monótona entre los rangos de dos variables, resultó en ρ = 0.4630 con un p-valor = 0.0000. 

Aunque esta correlación es más moderada que la de Pearson, también es positiva y significativa, 

lo que implica que, en términos generales, el orden relativo de los estudiantes según su 

clasificación por ELO guarda cierta correspondencia con su orden por CGPA. 

Estos hallazgos se complementan con la Figura 12 donde se observa una clara tendencia 

ascendente entre los valores de ELO y CGPA, con una línea de regresión en la que se observa la 

relación positiva identificada en los coeficientes de correlación. La mayoría de los datos se agrupan 

alrededor de la línea de tendencia, confirmando la linealidad y consistencia de la relación. 
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Fuente: Elaboración personal 

En conclusión, del análisis del gráfico sugiere que el modelo de clasificación basado en el 

algoritmo ELO refleja con precisión el rendimiento académico de los estudiantes, alineándose de 

manera consistente con las calificaciones acumuladas. Por lo tanto, el ELO General Ponderado 

puede considerarse una variable válida y confiable para clasificar estudiantes a partir de sus 

resultados académicos, y reconocimiento de alumnos con bajo rendimiento. 

3.9. Clasificación de los Estudiantes utilizando el Algoritmo Glicko-2. 

Se propone en esta investigación la implementación de una adaptación del sistema de 

clasificación Glicko-2, un modelo de estimación bayesiana dinámica originalmente concebido para 

la evaluación de habilidades en entornos de competencia, al ámbito del análisis del desempeño 

académico estudiantil. En esta adaptación, cada estudiante es caracterizado por un vector de estado 

compuesto por tres parámetros fundamentales: un puntaje de habilidad inicial (µ), que cuantifica 

Figura 10 

Correlación entre ELO General Ponderado y CGPA Final de los alumnos clasificados 
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su nivel de rendimiento relativo; una desviación estándar de la habilidad (RD, por Rating 

Deviation), que mide la incertidumbre o confiabilidad estadística de dicha estimación; y un 

parámetro de volatilidad (σ), que captura la tendencia inherente del desempeño del estudiante a 

fluctuar a lo largo del tiempo. 

Este enfoque trifásico permite una evaluación diagnóstica multivariada que trasciende las 

métricas tradicionales. A nivel general, no solo identifica a estudiantes con rendimiento absoluto 

bajo, sino que también discrimina entre aquellos con desempeño inestable (alta volatilidad y/o RD) 

y aquellos con trayectorias emergentes o en mejora, todo ello con un nivel de confianza estadística 

cuantificable. La robustez del algoritmo ante datos incompletos —como los generados por 

estudiantes de reciente ingreso o por evaluaciones espaciadas— lo hace particularmente idóneo 

para entornos educativos con cohortes dinámicas y dispersión heterogénea en los resultados. 

A diferencia de las métricas estáticas como el promedio simple, o incluso sistemas 

sofisticados como Elo, el algoritmo Glicko-2 incorpora explícitamente el contexto de cada 

actividad evaluativa. Este contexto incluye variables como el tamaño del grupo de referencia 

(número de estudiantes), la distribución de calificaciones y la frecuencia temporal de las 

evaluaciones, al tiempo que actualiza recursivamente el historial individual de cada estudiante. 

Esta capacidad para modelar la evolución temporal de la habilidad y su incertidumbre ha sido 

utilizada empíricamente en varios juegos de alto rendimiento y entornos competitivos con 

participantes con rendimiento variable (e.g., Counter-Strike: Global Offensive, Dota 2, Lichess, 

Chess.com). Su capacidad para ajustar la clasificación según las distintas asignaturas y la 

consistencia con respecto al tiempo lo hace ideal para semestres donde los estudiantes abandonan 

los cursos o tienen notas irregulares—como ocurre en muchos sistemas educativos. 
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Sea un conjunto de cursos 𝐶. Para cada curso 𝑐 ∈ 𝐶, con 𝑛𝑐 estudiantes 𝑖 = 1,2, … , 𝑛𝑐 se 

dispone de dos a tres calificaciones parciales y un sustitutorio. El objetivo es estimar, para cada 

estudiante 𝑖 y curso 𝑐, un parámetro latente de “desempeño relativo” 𝜇𝑖𝑐 en una escala comparativa 

(Glicko-2), junto con su incertidumbre σ𝑖𝑐 (en inglés “rating deviation”, RD) y su volatilidad ω𝑖𝑐 

(inestabilidad temporal), y luego recopílar estos resultados a nivel global del estudiante 

(promedios, medianas, ponderaciones, percentiles y “Estrellas”). 

El modelo adopta la estructura de Glicko-2 (Glickman, 2022) para cada “periodo de 

valoración” (un curso por semestre), cada jugador (estudiante) enfrenta a todos los demás en un 

torneo round-robin o emparejamiento cíclico sintético donde los resultados de los matches o 

“partidos” derivan de las diferencias de notas. La actualización de (𝜇, 𝜎, 𝜔) sigue las ecuaciones 

de Glicko-2 en la escala interna. 

Para cada estudiante 𝑖 en curso 𝑐, se define una nota agregada 𝑁𝑖𝑐 como: 

• Si el curso tiene tres parciales 𝑃1, 𝑃2⁡𝑦⁡𝑃3⁡ y un sustitutorio 𝑆 que producto con el coeficiente 

óptimo y conservador 𝛼⁡ ≈ ⁡0.3 ajustaría parcialmente la sobreestimación como se explicó en 

la implementación de ELO: 

𝑁𝑖𝑐 =
𝑃1 + 𝑃2 +⁡𝑃3 + 0.3𝑆

3
 

• Si el curso tiene dos parciales 𝑃1⁡𝑦⁡𝑃2⁡y un sustitutorio 𝑆: 

𝑁𝑖𝑐 =
𝑃1 + 𝑃2 + 0.3𝑆

2
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Basado la nota agregada, calculamos los parámetros iniciales necesarios para el sistema 

Glicko-2, con un enfoque de inicialización adaptativa, para cada curso 𝑐: el rating inicial 𝜇0
(𝑐), la 

incertidumbre inicial RD 𝜎0
(𝑐) y volatilidad inicial 𝜔0

(𝑐). El rating inicial lo calculamos como: 

𝑁̅𝑐 =
1

𝑛𝑐
∑𝑁𝑖𝑐

𝑖
 

𝜇0
(𝑐)
= 100𝑁̅𝑐 

La incertidumbre inicial RD y la volatilidad la calculamos como: 

𝑠𝑐 = √
1

𝑛𝑐 − 1
∑ (𝑁𝑖𝑐 − 𝑁̅𝑐)2

𝑖
 

𝜎0
(𝑐)
= {

200⁡, 30𝑠𝑐 < 200⁡
⁡⁡⁡⁡⁡⁡30𝑠𝑐⁡, 200 ≤ 30𝑠𝑐 ≤ 500
⁡⁡500⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡30𝑠𝑐 > 500⁡

 

𝜔0
(𝑐)
= {

0.1⁡, 0.005𝑠𝑐 < 0.1⁡
⁡⁡⁡⁡⁡⁡0.005𝑠𝑐⁡, 0.1 ≤ 0.005𝑠𝑐 ≤ ⁡0.04

⁡⁡0.04⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡30𝑠𝑐 > ⁡0.04⁡
 

𝜎0
(𝑐)
⁡está acotada entre 200 y 500 y 𝜔0

(𝑐), entre 0.04 y 0.1 respectivamente, lo que estabiliza 

numéricamente los parámetros en el algoritmo Glicko-2, especialmente en cursos con dispersión 

muy baja o muy alta. 

Después aplicamos el reescalado a interno de Glicko-2: donde operamos con una escala 

externa (𝜇, 𝜎) y una escala interna (𝜇̅, 𝜙̅) donde 𝜙̅ es el RD interno con una constante logística 

base 𝜅 = 1/𝑄. En la formulación estándar de Glicko-2:  

𝜇̅ =
𝜇 − 1500

𝜅
⁡⁡ , 𝜙̅ =

𝜎

𝜅
⁡⁡ , 𝜅 =

400⁡

ln 10
≈ 173.7178 
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Aplicamos el reescalado por curso en la implementación de esta manera: 

𝜇̅ =
𝜇 − 𝜇0

(𝑐)

𝜅𝑐
⁡⁡ , 𝜙̅ =

𝜎

𝜅𝑐
⁡⁡ , 𝜅𝑐 = 𝑄[𝜎0

(𝑐)
]2 

Despejando 𝜇 y 𝜎 como inversas también se pueden expresar como: 

𝜇 = 𝜅𝑐𝜇̅ + 𝜇0
(𝑐)
⁡⁡, 𝜎 = 𝜅𝑐𝜙̅ 

Este reescalado es una reparametrización coherente en la que todas las fórmulas de 

actualización se aplican en la escala interna Glicko-2 y luego regresa a la escala original del curso. 

Intuitivamente  𝜅𝑐 ajusta la unidad de rating de acuerdo a la incertidumbre de cada curso. 

Ahora se inicializa los parámetros de cada estudiante dentro del curso de la siguiente 

manera. Cada estudiante 𝑖 inicia con un factor conservador ideal 𝛽 : 

𝜇𝑖𝑐
(𝑐)
= 𝜇0

(𝑐)
+ 𝛽(𝑁𝑖𝑐 − 𝑁̅𝑐)⁡⁡, 𝛽 = 20 

𝜎𝑖𝑐
(𝑐)
= 𝜎0

(𝑐)
⁡∧ ⁡𝜔𝑖𝑐

(𝑐)
= 𝜔0

(𝑐) 

En este punto, ya se tiene una tripleta inicial por estudiante en escala externa 

(𝜇𝑖𝑐
(𝑐)
, 𝜎𝑖𝑐

(𝑐)
, 𝜔𝑖𝑐

(𝑐)
). El desplazamiento lineal o factor ideal por (𝑁𝑖𝑐 − 𝑁̅𝑐) preserva el orden de 

mérito inherente de los estudiantes por curso y hace que quien por este por encima de la media 

empiece más alto y viceversa.  

Definimos los resultados de la simulación de los enfrentamientos, para lo cual definimos 

un umbral de “empate” adaptativo para curso 𝑐, este umbral ayuda a corregir los empates en cursos 

donde la variación es muy baja, sin embargo, la nota promedio 𝑁̅𝑐 es muy alta, sin este ajuste los 

alumnos con alto rendimiento se puntuarían como falsos positivos de bajo rendimiento. 
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𝜃𝑐 = max⁡{0.3, 0.1𝑠𝑐} 

Para cada par de alumnos por competir (𝑖, 𝑗), tal que 𝑖 ≠ 𝑗 donde 𝑀𝑖 = {⁡1, 0.5, 0} es el 

resultado observado tras el enfrentamiento: 1 si gana (WIN), 0.5 si empata (DRAW), y si pierde 

0 (LOSS). 

𝑠𝑖𝑗 = {

⁡1⁡, 𝑁𝑖𝑐 − 𝑁𝑗𝑐 > 𝜃𝑐⁡

0.5⁡, |𝑁𝑖𝑐 − 𝑁𝑗𝑐| < ⁡𝜃𝑐
⁡⁡⁡0⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑁𝑗𝑐 −𝑁𝑖𝑐 >⁡𝜃𝑐⁡

 

Esto convierte las diferencias pequeñas de nota en empates, amortiguando el ruido en 

calificaciones casi iguales. 

Mas adelante necesitamos actualizar los ratings mediante ecuaciones de Glicko-2 en la 

escala interna las variables internas para el estudiante 𝑖 con oponentes⁡𝑗: 

• Función de impacto, que reduce el peso de los oponentes con alta incertidumbre; 

𝑔(𝜙̅𝑗) =
1

√1 +
3(𝜙̅𝑗)2

𝜋2

 

• Probabilidad esperada de victoria, logística en base 𝑒; 

𝐸𝑖𝑗 =
1

1 + 𝑒−𝑔(𝜙̅𝑗)[𝜇̅𝑖−𝜇̅𝑗]
 

• Varianza del estimador; 

𝜐𝑖
−1 =∑ 𝑔(𝜙̅𝑗)

2

𝑗
𝐸𝑖𝑗(1 − 𝐸𝑖𝑗) 

• Gacia agregada; 
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∆𝑖= 𝜐𝑖∑ 𝑔(𝜙̅𝑗)
𝑗

(𝑠𝑖𝑗 − 𝐸𝑖𝑗) 

• Actualización de volatilidad, se debe resolver = ln(𝜔𝑖
′)2 cuando 𝑓(𝑥) es cero; 

𝑓(𝑥) =
𝑒𝑥(∆𝑖

2 −⁡𝜙̅𝑖
2 ⁡− 𝜐𝑖

2 − 𝑒𝑥)

2(𝜙̅𝑖
2 + 𝜐𝑖

2 + 𝑒𝑥)2
−
𝑥 − ln𝜔𝑖

2

𝜏2
= 0 

Donde 𝜏 = 0.5 > 0⁡⁡regula la variación permitida de la volatilidad  

La solución numérica se obtiene con un método de Illinois (regula falsi modificada) donde tenemos 

que hallar un valor de 𝑥∗, raíz de la ecuación 𝑓(𝑥) = 0; también el valor de 𝜔𝑖′ que es la nueva 

volatilidad del estudiante después de la actualización, que cuantifica la variabilidad esperada en su 

desempeño futuro, se calcula a partir de 𝑥∗. 

El método de Illinois es una variante del método de regula falsi que acelera la convergencia 

mediante la modificación de los valores de la función en los extremos del intervalo cuando uno de 

ellos se estanca. Los pasos son los siguientes: 

• Se determi las cotas iniciales [𝐴, 𝐵] tales que 𝑓(𝐴). 𝑓(𝐵) < 0, garantizando que 

haya una raíz en el intervalo; 

• Dado que 𝑓(𝑥) > 0 para 𝑥 muy negativo y 𝑓(𝑥) < 0 para 𝑥 muy positivo, se 

pueden definir las cotas como: 

𝐴 = ln𝜔𝑖
2 − 10𝜏⁡ ∧ 𝐵 = ln𝜔𝑖

2 + 10𝜏⁡ 

Asegurando que 𝑓(𝐴) > 0 y 𝑓(𝐵) < 0 en la mayoría de los casos, si no se cumple, se debe 

ajustar 𝐴 y 𝐵 hasta obtener signos opuestos. A continuación, se necesita iterar encontrando el punto 

de interacción 𝐶 con la fórmula de la secante: 
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𝐶 =
𝐴 ∙ 𝑓(𝐵) − 𝐵 ∙ 𝑓(𝐴)

𝑓(𝐵) − 𝑓(𝐴)
 

Evaluamos 𝑓(𝐶), si |𝑓(𝐶)| < 𝜀 es muy pequeño se considera que 𝐶 es la raíz o si  ∣ 𝐵 −

𝐴 ∣< 𝜀  : se detiene el algoritmo Illinois y se toma 𝑥∗ = 𝐶. Caso contrario se actualiza el intervalo: 

• Si 𝑓(𝐴). 𝑓(𝐶) < 0, la raíz está en [𝐴, 𝐶] por lo que se actualiza 𝐵 = 𝐶 y 𝑓(𝐵) =

𝑓(𝐶); 

• Si 𝑓(𝐴). 𝑓(𝐶) > 0, la raíz está en [𝐶, 𝐵] por lo que se actualiza 𝐴 = 𝐶 y 𝑓(𝐴) =

𝑓(𝐶). 

En el método de Illinois para evitar la lentitud en la convergencia, se reduce a la mitad el 

valor de la función en el extremo que se actualiza consecutivamente: Si se actualiza el mismo 

extremo (izquierdo o derecho) dos veces seguidas, en la siguiente iteración se utiliza 𝑓(𝐴)/2⁡o 

𝑓(𝐵)/2 en el cálculo de 𝐶. Este algoritmo se implementa llevando un registro del último extremo 

actualizado en la que si se actualiza el extremo opuesto se resetea y se usan los valores originales 

de 𝑓(𝐴)⁡o 𝑓(𝐵). 

El criterio de parada del algoritmo en el cual se detiene es cuando la longitud del intervalo 

es menor que la tolerancia ∣ 𝐵 − 𝐴 ∣< 𝜀 ; el valor de 𝑥∗ = 𝐶. Una vez obtenido 𝑥∗ calculamos 𝜔𝑖′: 

𝜔𝑖
′ = 𝑒

1
2
𝑥∗ 

Habiendo hallado la nueva volatilidad, se calcula el RD previo y posterior respectivamente: 

𝜙̅𝑖
∗ = √𝜙̅𝑖

2 + 𝜔𝑖
′2⁡⁡, 𝜙̅𝑖

′ = [
1

(𝜙̅𝑖
∗)2

+
1

𝜐𝑖
⁡]

−
1
2
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Con el RD posterior calculado se procede a hallar la media posterior lo que nos servirá para 

hallar el nuevo rating: 

𝜇̅𝑖
′ = 𝜇̅𝑖 + (𝜙̅𝑖

′)2∑ 𝑔(𝜙̅𝑗)
𝑗

(𝑠𝑖𝑗 − 𝐸𝑖𝑗) 

Por último, actualizamos el nuevo rating regresando a la escala original del curso: 

𝜇𝑖
′ = 𝜅𝑐𝜇̅𝑖

′ + 𝜇0
(𝑐)
⁡⁡, 𝜎𝑖

′ = 𝜅𝑐𝜙̅𝑖
′ ,  𝜔𝑖′ 

Una vez obtenidos los parámetros finales en escala externa para cada estudiante 𝑖 en el 

curso 𝑐, a saber (𝜇𝑖′⁡⁡, 𝜎𝑖′ , 𝜔𝑖′) , se procede a definir el rating individual Glicko-2 de dicho estudiante 

en el curso. En la práctica, se utiliza como medida del rendimiento consolidado el valor final de 

𝜇𝑖
′⁡, el cual representa la expectativa de desempeño ajustada a la incertidumbre propia del 

estudiante. De esta manera, para cada curso 𝑐 se obtiene: 

𝑅𝑖
𝐺,𝑐 = 𝜇𝑖

′ 

Donde 𝑅𝑖
𝐺,𝑐 constituye el rating Glicko-2 final del estudiante 𝑖 en el curso 𝑐. Este valor 

representa tanto el rendimiento académico observado como las interacciones competitivas 

simuladas dentro del curso, ya que integra los ajustes derivados de la función logística, la reducción 

de la incertidumbre final 𝜎𝑖′ y la volatilidad asociada final 𝜔𝑖′. Consideramos, un semestre 𝑠 del 

cual se genera para cada estudiante un conjunto de ratings individuales: 

𝑅𝑖,𝑠 = {𝑅𝑖
𝐺,𝑐⁡|⁡𝑐 ∈ 𝐶𝑠(𝑖)} 

Donde 𝐶𝑠(𝑖) representa el conjunto de cursos en los que el estudiante 𝑖 se matriculó durante 

el semestre 𝑠. Este conjunto de ratings constituye la base para el cálculo del promedio ponderado 

por semestre y, en etapas posteriores, para la clasificación por percentiles y la asignación de 
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estrellas. Ya obtenidos los puntajes Glicko-2 individuales en cada curso y consolidados por 

estudiante en un semestre, se calcula un promedio ponderado que resume el rendimiento 

académico global. Formalmente, para un estudiante 𝑖 matriculado en 𝑚 cursos del semestre 𝑠, se 

define: 

𝑅𝑖
𝐺,𝑃𝑟𝑜𝑚𝑒𝑑𝑖𝑜 =

∑ 𝑅𝑖
𝐺,𝑐𝑚

𝑐=1

𝑚
 

Los valores 𝑅𝑖
𝐺,𝑃𝑟𝑜𝑚𝑒𝑑𝑖𝑜 se transforman en percentiles 𝑃(𝑥) donde 𝑥 denota el puntaje 

promedio de cada estudiante y 𝑃(𝑥) ∈ [0,100] representa su posición relativa dentro de la 

distribución de todo el semestre sobre esta base se asig categorías de estrellas que permiten 

clasificar el rendimiento en cinco niveles cualitativos: 

Tabla 6  

Percentiles por rendimiento para asignación de estrellas Glicko-2 

Fuente: Elaboración personal 

En particular, los estudiantes ubicados en el cuartil inferior 𝑃(𝑥)⁡< 25% son clasificados 

con una sola estrella (✩), lo que permite identificarlos como casos de bajo rendimiento académico 

Condición del Percentil 

Glicko-2 
Estrellas (Stars) Rendimiento 

𝑃(𝑥) ≥ 90% ✩✩✩✩✩ Excelente 

75%⁡ ≤ 𝑃(𝑥) < ⁡90%  ✩✩✩✩ Alto 

50%⁡ ≤ 𝑃(𝑥) < ⁡75% ✩✩✩ Promedio 

25%⁡ ≤ 𝑃(𝑥) < ⁡50% ✩✩ Malo 

𝑃(𝑥)< 25% ✩ Bajo 
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en el semestre. Se muestran a continuación los resultados obtenidos (Tabla 8) en tiempo de 

ejecución: 

Tabla 7  

Resultados obtenidos después de la ejecución del algoritmo Glicko-2 en los semestres 2023-1, 

2023-II, 2024-I y 2024-II. 

Fuente: Elaboración personal 

Los resultados obtenidos tras la implementación del algoritmo Glicko-2 muestran una 

consistencia tanto en el tiempo de ejecución como en la capacidad de procesamiento frente a un 

volumen considerable de datos. En los cuatro semestres analizados, el número de estudiantes 

evaluados oscila entre 18204 y 18607, mientras que los cursos se sitúan en un rango de 3 541 a 3 

715. A pesar de esta variabilidad, el tiempo de ejecución se mantiene estable, con valores entre 1 

675 y 1761 segundos aproximadamente, lo que evidencia la eficiencia del algoritmo para gestionar 

bases de datos de gran tamaño sin que se produzcan incrementos significativos en los recursos 

computacionales empleados. 

Estos resultados confirman la escalabilidad del modelo Glicko-2 en contextos educativos 

con datos masivos, teniendo un buen desempeño y clasificación confiable. Para finalizar, se 

exportan las clasificaciones a un archivo llamado Alumnos_Clasificados_Glicko_2.xlsx para 

disponer más adelante de los datos. 

Semestre Tiempo (s) Estudiantes Cursos 

2023-1 1675.81 18540 3556 

2023-2 1638.02 18204 3541 

2024-1 1748.32 18607 3669 

2024-2 1761.76 18221 3715 
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En la implementación del algoritmo Glicko-2, al determinar el rating de un estudiante 𝑖, se 

usan las calificaciones actuales de los oponentes (que pueden haberse actualizado si ya pasaron 

por el bucle). En Glicko-2 puro la actualización es simultánea por periodo usando los ratings pre-

periodo; en cambio en la versión adaptada para registros de notas de la UNSAAC es una 

aproximación secuencial de un paso. Para cursos con 𝑛𝑐 moderado esto suele ser indistinguible; si 

se desearía exactitud periódica pre-post, se podría computar todo respecto de los ratings iniciales 

y aplicar luego la actualización de manera simultánea, pero en este caso no se aplica debido a que 

la clasificación debe ser relativa por alumno, y al mismo tiempo absoluta por curso. 

El algoritmo Elo, anteriormente descrito en esta investigación, presenta una estructura 

computacional sencilla, pues cada actualización se resuelve en tiempo constante mediante una 

función logística y un ajuste lineal; sin embargo, su simplicidad limita la sensibilidad del modelo, 

al no incorporar un tratamiento explícito de la incertidumbre y depender de una constante fija de 

ajuste. En contraste, Glicko-2 introduce un cálculo iterativo de volatilidad que, si bien aumenta 

levemente la complejidad teórica, resulta más eficiente en escenarios académicos tanto en tiempo 

de ejecución como en gestión de memoria. Ello se debe a que el algoritmo adapta de manera 

dinámica la magnitud de las actualizaciones según la estabilidad del desempeño de los estudiantes, 

lo que reduce oscilaciones, evita recalibraciones innecesarias y acelera la convergencia global del 

sistema, ofreciendo así una estimación más robusta y precisa con un costo computacional 

totalmente manejable. 

3.10. Identificación de los Alumnos con Bajo Rendimiento después de la Clasificación por el 

Algoritmo Glicko-2 

Categorizamos los puntajes numéricos o MMR obtenidos del algoritmo Glicko-2 en una 

clasificación cualitativa del rendimiento académico, se implementa un sistema de estrellas (de 1 a 
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5) como se realizó anteriormente con el algoritmo ELO. El procedimiento se desarrolla en tres 

fases: cálculo del rating general ponderado Glicko-2, asignación de estrellas según percentiles de 

corte y clasificación cualitativa del rendimiento. 

En primer lugar, para cada estudiante 𝑖 se calcula el rating promedio Glicko-2 en un semestre 𝑛, 

denotado como 𝑅𝑖
(𝑛). Se pondera este valor con un peso de competencia definido como 𝜔𝑖 = 𝑇𝑖 ∙

𝐶𝑖, donde 𝑇𝑖 representa el número de estudiantes con los que compitió indirectamente y 𝐶𝑖 el 

número de cursos llevados. De este modo, el rating ponderado individual resulta: 

𝑅𝑃𝑖
(𝑛)

= 𝑅𝑖
(𝑛)
∙ 𝜔𝑖 

El rating general ponderado de Glicko-2 para cada estudiante se obtiene como: 

𝐺𝑙𝑖𝑐𝑘𝑜2_𝐺𝑃𝑖 =
∑ 𝑅𝑃𝑖

(𝑛)𝑛
1

∑ 𝜔𝑖
𝑛
1

 

Se emplea una distribución académica de cortes asimétricos (García Tárrago, 2020) (5%, 

25%, 75% y 95%), lo que permite clasificar a los estudiantes en cinco categorías cualitativas 

generales, desde bajo (★) hasta excelente (★★★★★). Este criterio se justifica en entornos 

educativos por su mayor sensibilidad frente a distribuciones heterogéneas de desempeño. Con esto 

se logra identificar, de manera objetiva, a los estudiantes con bajo rendimiento, aquellos ubicados 

por debajo del percentil 5%. 

Después de aplicar la distribución (Figura 13) se puede observar lo siguiente: 
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Figura 11  

Distribución y clasificación por Estrellas de Glicko-2 Ponderado General 

Fuente: Elaboración personal 

Tras la clasificación general de los estudiantes mediante el algoritmo Glicko-2 y la 

posterior asignación de estrellas de rendimiento, se observa una distribución que replica de manera 

muy similar la obtenida bajo el sistema ELO. En particular, el 5% de los estudiantes se ubica en la 

categoría de 1 estrella (bajo) y un 20% en 2 estrellas (malo), lo que en conjunto representa al 25% 

de la población estudiantil considerada con desempeño por debajo de lo esperado. Por otro lado, 

el 50% se concentra en la categoría de 3 estrellas (rendimiento promedio), mientras que un 20% y 

un 5% alcanzan, respectivamente, 4 y 5 estrellas, asociadas a un nivel alto y excelente de 

rendimiento. Esta distribución asimétrica confirma que el modelo de percentiles aplicado genera 

una clasificación balanceada y coherente con los objetivos educativos del estudio. 



107 
 

Si bien la forma de la distribución es prácticamente equivalente a la del modelo ELO, el 

aspecto crítico para el desarrollo de la investigación radica en determinar si los estudiantes que 

aparecen en los percentiles más bajos son los mismos o difieren entre algoritmos. Identificar esta 

variación es fundamental, dado que el objetivo central es reconocer de manera precisa a los 

alumnos con bajo rendimiento y establecer si el cambio metodológico (de ELO a Glicko-2) 

repercute en la identificación de individuos específicos o únicamente en la magnitud de sus 

puntajes. En consecuencia, la comparación entre ambas clasificaciones más adelante en esta 

investigación permitirá evaluar la sensibilidad de cada enfoque y su pertinencia en entornos de 

gran escala educativa. 

3.11. Correlación entre Glicko-2 General Ponderado y CGPA Final. 

Los resultados de la correlación entre el CGPA final y el Glicko-2 General Ponderado 

muestran en la Figura 14 una asociación muy fuerte y estadísticamente significativa. El coeficiente 

de Pearson (𝑟⁡ = ⁡0.8213, 𝑝⁡ < ⁡0.001) indica una relación lineal positiva elevada, lo que significa 

que, en general, a medida que aumenta el rating Glicko-2 ponderado de los estudiantes, también 

tienden a mejorar sus calificaciones globales reflejadas en el CGPA. Esta relación se visualiza 

claramente en el diagrama de dispersión, donde los datos se agrupan en torno a la línea de 

tendencia, mostrando un patrón ascendente consistente. 

Por su parte, el coeficiente de Spearman (𝜌⁡ = ⁡0.7948, 𝑝⁡ < ⁡0.001) refuerza este hallazgo 

desde una perspectiva no paramétrica, confirmando que el orden relativo de los estudiantes en el 

ranking Glicko-2 guarda una fuerte correspondencia con su posición en el CGPA, incluso si se 

relajan los supuestos de linealidad. En conjunto, se evidencia que el modelo Glicko-2 no solo 

permite clasificar a los estudiantes de manera robusta, sino que también logra capturar de forma 
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fiel la variabilidad de su desempeño académico real, siendo esté un sistema válido y consistente 

para la identificación del rendimiento de los estudiantes. 

Fuente: Elaboración personal 

3.12. Clasificación de los estudiantes utilizando el algoritmo TrueSkill. 

El algoritmo TrueSkill Through Time (TTT) es una extensión del sistema de calificación 

bayesiano TrueSkill, implementado por Microsoft Research, diseñado para modelar la evolución 

de la habilidad de los jugadores a lo largo del tiempo. Mientras que TrueSkill clásico asume un 

nivel de habilidad relativamente estático, TTT incorpora un marco temporal que permite actualizar 

dinámicamente las distribuciones de habilidad conforme los participantes acumulan más partidas 

o evaluaciones. La habilidad de cada individuo se representa mediante distribuciones gaussianas 

que se propagan en el tiempo, aplicando técnicas de inferencia aproximada similares al filtrado 

Figura 12  

Correlación entre Glicko-2 General Ponderado y CGPA Final de los alumnos clasificados 
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bayesiano. Esto lo convierte en una herramienta más realista en escenarios donde las capacidades 

no son fijas, sino que progresan o fluctúan según la experiencia y el contexto. 

Para esta investigación, no se utilizó el modelo TTT estándar, sino su variante 

mejorada TTT-D (TrueSkill Through Time with Draws), que incorpora un tratamiento más 

sofisticado de los empates (draws). Este modelo ajusta de manera más precisa los draw 

margins (umbrales de empate), lo que permite una estimación más realista de la probabilidad de 

empates en partidas muy igualadas. Esta mejora es particularmente valiosa en entornos 

competitivos donde los empates son frecuentes y deben ser modelados con mayor fidelidad. 

De esta manera, TTT-D no solo conserva su potencia en entornos competitivos, sino que 

también ofrece un enfoque más robusto en ambientes dinámicos y con alta incertidumbre. Este 

algoritmo es utilizado en videojuegos competitivos como Halo o Gears of War, donde se busca 

emparejar jugadores con habilidades similares y mantener partidas equilibradas. 

La variante TTT-D (TrueSkill Through Time with Individual Draw Margins) introduce un 

refinamiento clave: márgenes de empate adaptativos para cada participante o enfrentamiento. En 

lugar de considerar los empates como un evento residual, el modelo incorpora explícitamente la 

posibilidad de que ocurran cuando las habilidades estimadas son cercanas dentro de un margen 

dinámico. En esta investigación, se adapta el modelo al contexto académico de la Universidad 

Nacional de San Antonio Abad del Cusco, donde permite analizar la evolución del rendimiento 

estudiantil a lo largo de los semestres y diferenciar con mayor precisión a los alumnos de 

rendimiento similar.  

A cada estudiante 𝑖 se le representa mediante una distribución normal de habilidades: 

𝑠𝑖⁡~𝒩(𝜇𝑖, 𝜎𝑖
2) 



110 
 

Donde 𝜇𝑖 es la estimación puntual de la habilidad y 𝜎𝑖2 es la incertidumbre asociada a esa 

estimación. Un valor alto de 𝜎𝑖2 indica que el sistema tiene menor confianza en la estimación actual 

del rating del estudiante, mientras que valores bajos sugieren que el rating está bien establecido 

basado en las comparaciones realizadas. 

Para definir los parámetros iniciales de un alumno 𝑖 en un curso 𝑐 tales (𝜇𝑖, 𝜎𝑖2) antes de 

las actualizaciones en nuestro sistema, se adaptan automática los parámetros según las 

características estadísticas de cada curso 𝑐. Esto reconoce que diferentes cursos pueden tener 

diferentes niveles de dificultad, variabilidad en las evaluaciones, y distribuciones de notas. 

La media inicial adaptativa alumno 𝑖 en un curso 𝑐 se calcula mediante:  

𝜇𝑖 = 𝜇0
𝑐𝑢𝑟𝑠𝑜 = ⁡λ ⋅ x̅𝑐⁡ ⋅ 100 + (1 − λ) ⋅ 𝜇𝑔 

Esta ecuación implementa un mecanismo de shrinkage bayesiano o fenómeno de 

encogimiento donde λ⁡ = ⁡𝑛/(𝑛⁡ + ⁡𝑘) balancea entre la información específica del curso 

(promedio de notas x̅𝑐⁡ del curso multiplicado por 100 para escalar) y una media global (𝜇𝑔 =

1500 , mu global inicial estándar para TrueSkill). El parámetro k = 15 actúa como un pseudo-

conteo que determina cuántas observaciones se necesitan para que la información del curso domine 

sobre el prior global. Cuando 𝑛 es pequeño, el sistema confía más en la media global; cuando 𝑛 es 

grande, utiliza principalmente el promedio del curso. 

La desviación estándar inicial se adapta según: 

𝜎𝑖
2 = (𝜎0

𝑐𝑢𝑟𝑠𝑜)2 = 𝑚𝑎𝑥(𝜎𝑚𝑖𝑛, 𝑚𝑖𝑛(𝜎𝑚𝑎𝑥, 25 ⋅ 𝑠𝑐))
2 

Esta formulación escala la desviación estándar de las notas del curso 𝑠𝑐 por un factor de 

25, pero mantiene el resultado dentro de límites razonables [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥] para evitar valores 
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extremos que podrían desestabilizar el sistema. Los límites típicos son 𝜎𝑚𝑖𝑛 ⁡= ⁡120 y 𝜎𝑚𝑎𝑥 ⁡=

⁡400, asegurando que la incertidumbre inicial sea significativa pero no excesiva. 

El parámetro adicional 𝛽, que controla la variabilidad del rendimiento, se ajusta basándose 

en el coeficiente de variación del curso: 

𝛽 = 𝛽0
𝑐𝑢𝑟𝑠𝑜 = 𝑚𝑎𝑥(𝛽𝑚𝑖𝑛, 𝑚𝑖𝑛(𝛽𝑚𝑎𝑥, 100 + 200 ⋅ 𝐶𝑉𝑐𝑢𝑟𝑠𝑜)) 

El coeficiente de variación 𝐶𝑉𝑐𝑢𝑟𝑠𝑜 = 𝑠𝑐/x̅𝑐 mide la variabilidad relativa de las notas. Cursos 

con mayor variabilidad relativa reciben valores más altos de 𝛽, reconociendo que hay mayor 

aleatoriedad en las evaluaciones. Los límites típicos son 𝛽𝑚𝑖𝑛 = 80 y 𝛽𝑚𝑎𝑥 = 300. 

El parámetro adicional 𝜀𝑖, margen de empate individualizado de cada estudiante, se ajusta 

basándose en su posición relativa en la distribución de notas del curso: 

𝜀𝑖 = 𝜀0
𝑐𝑢𝑟𝑠𝑜 ⋅ (1 + 𝛼 ⋅ 𝑒−𝛽𝑚⋅∣𝑧𝑖∣) 

Donde representamos al z-score del estudiante 𝑧𝑖 = (𝑥𝑖 − x̅𝑐)/𝑠𝑐 mide cuántas 

desviaciones estándar se encuentra la nota del estudiante respecto a la media del curso. El factor 

multiplicativo (1 + 𝛼 ⋅ 𝑒−𝛽𝑚⋅∣𝑧𝑖∣)⁡aumenta el margen de empate para estudiantes cerca de la media 

(∣ 𝑧𝑖 ∣ pequeño) y lo reduce para estudiantes en los extremos de la distribución. Los parámetros α 

= 0.5 y 𝛽𝑚 = 1.0 controlan la magnitud y la tasa de este ajuste. Esta formulación reconoce que es 

más difícil distinguir entre estudiantes con rendimiento promedio que entre aquellos en los 

extremos de la distribución. 

Una de las contribuciones principales de la implementación es la adaptación del modelo original 

para manejar empates de manera sofisticada. En el contexto académico, los empates son frecuentes 

cuando las diferencias entre las notas de los estudiantes son mínimas. El modelo de comparación 
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asume que cuando dos estudiantes compiten, su rendimiento observable incluye tanto su habilidad 

latente como un componente de ruido aleatorio: 

𝑝𝑖 = 𝜃𝑖 + 𝜖𝑖, 𝑝𝑗 = 𝜃𝑗 + 𝜖𝑗 
 

Los términos 𝜀ᵢ y 𝜀ⱼ representan las variaciones aleatorias en el rendimiento, modeladas 

como 𝜀ᵢ, 𝜀ⱼ⁡~⁡𝒩(0, 𝛽²). El parámetro 𝛽² captura la variabilidad inherente en las evaluaciones 

académicas, reconociendo que el rendimiento de un estudiante en un examen específico puede no 

reflejar perfectamente su habilidad verdadera debido a factores externos como el estado de ánimo, 

la salud, o la familiaridad con los temas específicos evaluados. 

La diferencia de rendimiento entre dos estudiantes sigue entonces una distribución normal: 

∆= 𝑝
𝑖
− 𝑝

𝑗
∼ 𝒩(𝜇𝑖 − 𝜇𝑗 , 𝑐

2) 

El parámetro 𝑐²⁡ = ⁡2𝛽²⁡ + ⁡𝜎ᵢ²⁡ + ⁡𝜎ⱼ² representa la varianza total del sistema, 

incorporando tanto la incertidumbre en las estimaciones de habilidad de ambos estudiantes como 

la variabilidad del rendimiento. Este término es crucial para el cálculo de las probabilidades de 

diferentes resultados. 

Esta mejora del algoritmo TTT-D utiliza márgenes de empate dinámicos que se adaptan a 

las características específicas de cada par de estudiantes. El margen de empate efectivo 𝜀ᵢⱼ no es 

un valor fijo, sino que depende de múltiples factores: 

𝜀𝑖𝑗 =
𝜀𝑖 + 𝜀𝑗

2
⋅ (1 +

𝜎𝑖 + 𝜎𝑖
2

) + max⁡[0,
𝜀𝑖 + 𝜀𝑗

2
− 0.1|∆𝑜𝑏𝑠|⁡] 

Esta formulación incorpora tres componentes importantes. Primero, el promedio de los 

márgenes individuales (𝜀ᵢ⁡ + ⁡𝜀ⱼ)/2 establece una base personalizada para cada comparación. 



113 
 

Segundo, el factor de ajuste por incertidumbre (1 + 𝜎𝑖+𝜎𝑖

2
)⁡aumenta el margen de empate cuando 

hay mayor incertidumbre en las estimaciones de los ratings, reconociendo que en estos casos es 

más difícil distinguir diferencias reales de habilidad. Tercero, el término de ajuste por diferencia 

de rendimiento observada reduce el margen de empate cuando las diferencias de notas son muy 

grandes, reflejando que diferencias sustanciales en el rendimiento son menos propensas a ser 

consideradas empates. 

Después, el algoritmo calcula las probabilidades de victoria, empate y derrota utilizando la 

función de distribución acumulativa normal estándar Φ. Para una comparación entre los 

estudiantes 𝑖 y 𝑗, las probabilidades se definen como: 

La probabilidad de que el estudiante 𝑖 gane está dada por: 

𝑃(𝑤𝑖𝑛𝑖) = 𝛷(⁡
𝜇𝑖 − 𝜇𝑗 − 𝜀𝑖𝑗

𝑐
) 

Esta ecuación evalúa la probabilidad de que la diferencia de rendimiento supere el margen 

de empate 𝜀ᵢⱼ. El numerador (𝜇ᵢ⁡ − ⁡𝜇ⱼ⁡ − ⁡𝜀ᵢⱼ) representa la ventaja efectiva que necesita el 

estudiante 𝑖 para ganar, mientras que el denominador 𝑐 normaliza esta diferencia según la 

variabilidad total del sistema. 

La probabilidad de empate se calcula como: 

𝑃(𝑑𝑟𝑎𝑤𝑖) = 𝛷 (⁡
𝜇𝑖 − 𝜇𝑗 + 𝜀𝑖𝑗

𝑐
) − 𝛷(⁡

𝜇𝑖 − 𝜇𝑗 − 𝜀𝑖𝑗

𝑐
) 

Esta expresión captura la probabilidad de que la diferencia de rendimiento caiga dentro del 

intervalo [−𝜀ᵢⱼ, 𝜀ᵢⱼ], representando situaciones donde las diferencias de rendimiento son lo 

suficientemente pequeñas para considerarse empates.  
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Finalmente, la probabilidad de derrota se obtiene por complemento: 

𝑃(𝑙𝑜𝑠𝑠𝑖) = 1 − 𝛷 (⁡
𝜇𝑖 − 𝜇𝑗 + 𝜀𝑖𝑗

𝑐
) 

Una vez definidas las probabilidades de victoria, empate y pérdida, el algoritmo TTT-D 

usa un mecanismo de actualización bayesiana, que ajusta las estimaciones de habilidad después de 

cada comparación. La actualización de la media 𝜇ᵢ sigue la regla: 

𝜇𝑖
∗ = 𝜇𝑖 +

𝜎𝑖
2

2
𝑣 

Donde el factor 𝑣 conocido como el término de corrección, depende del resultado 

observado y representa cuánto debe ajustarse la estimación basándose en la sorpresa del resultado. 

Para una victoria o derrota, el término 𝑣 se calcula como: 

±𝑣 =
φ(
𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗

𝑐
)⁡

Φ(
𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗

𝑐
)⁡
⁡ 

 
Donde se asigna el operador (+) para victoria y el operador – para la derrota. 

Donde φ representa la función de densidad de probabilidad normal estándar. Esta razón 

entre la densidad y la distribución acumulativa, conocida como la razón de Mills inversa, cuantifica 

la información ganada del resultado observado. Cuando el resultado es muy esperado 

(denominador grande), la actualización es pequeña. Cuando el resultado es sorprendente 

(denominador pequeño), la actualización es mayor. Para empates, el cálculo captura la diferencia 

entre las densidades en los límites del margen de empate, normalizada por la probabilidad total del 

empate: 

𝑣 =
φ(
𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗

𝑐
)⁡−⁡φ(

𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗
𝑐

)⁡⁡

Φ(
𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗

𝑐
)⁡−⁡φ(

𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗
𝑐

)⁡
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Ahora necesitamos actualizar la nueva varianza en el cual término 𝑤 incluye asegura que 

la incertidumbre disminuya con cada comparación, pero nunca desaparezca completamente (límite 

inferior de 0.1):   

𝑤 = 𝑣2 +
(
𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗

𝑐
)φ(

𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗
𝑐

)⁡−⁡(
𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗

𝑐
)φ(

𝜇𝑖−𝜇𝑗−𝜀𝑖𝑗
𝑐

)⁡⁡

Φ(
𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗

𝑐
)⁡−⁡Φ(

𝜇𝑖−𝜇𝑗+𝜀𝑖𝑗
𝑐

)⁡
 

𝜎𝑖
2,∗ = 𝜎𝑖

2⁡ ⋅ max⁡[1 −
𝜎𝑖
2

2
⋅ 𝑤⁡, 0.1] 

Por consiguiente, continuamos con las comparaciones o rondas multiples all-for-all (todos 

contra todos) este proceso de clasificación dentro de cada curso sigue un algoritmo sistemático de 

comparaciones exhaustivas. Para un curso con 𝑛 estudiantes, el algoritmo ejecuta los siguientes 

pasos: 

Primero, se inicializan los ratings de todos los estudiantes usando los parámetros 

adaptativos calculados anteriormente para el curso. Cada estudiante recibe un rating inicial que 

refleja tanto su posición relativa en el curso como la incertidumbre asociada. 

Luego, para cada par de estudiantes (i, j) donde 𝑖⁡ < ⁡𝑗, se realiza una comparación. Se 

calcula la diferencia de rendimiento observada ∆𝑜𝑏𝑠⁡= ⁡ |𝑥ᵢ⁡ − ⁡𝑥ⱼ| basada en las notas reales. El 

umbral de empate efectivo se determina como: 

𝜏𝑖𝑗 =
𝜀𝑖 + 𝜀𝑗

2
⋅ (1 + 0.1 ⋅ 𝑠𝑐) 

Este umbral combina los márgenes individuales de ambos estudiantes y se ajusta por la 

variabilidad del curso. El resultado de la comparación se determina según: 
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• Si ∆𝑜𝑏𝑠< 𝜏𝑖𝑗, se considera un empate; 

• Si 𝑥ᵢ⁡ − ⁡𝑥ⱼ⁡ > ⁡𝜏ᵢⱼ, el estudiante 𝑖 gana; 

• Si 𝑥ⱼ⁡ − ⁡𝑥ᵢ⁡ > ⁡𝜏ᵢⱼ, el estudiante 𝑗 gana.  

Después de determinar el resultado, se actualizan los ratings de ambos estudiantes usando 

las ecuaciones bayesianas descritas anteriormente. 

Este proceso resulta en 𝑛(𝑛 − 1)/2 comparaciones totales, asegurando que cada estudiante 

sea comparado con todos los demás en el curso. La complejidad computacional es 𝑂(𝑛²) por curso, 

lo cual es manejable incluso para cursos con gran cantidad de estudiantes. 

Por último, calculamos el rating promedio simple y promedio ponderado de cada alumno. 

El rating promedio simple se obtiene como: 

𝜇̅𝑖 =
1

𝐾
∑𝜇𝑖

(𝑘)

𝐾

𝑘=1

 

Donde 𝐾 es el número de cursos en los que participó el estudiante y 𝜇𝑖
(𝑘) es su rating en el 

curso 𝑘. Adicionalmente, se calcula un rating ponderado que da mayor peso a los cursos con más 

estudiantes: 

𝜇𝑖 =
∑ 𝑛𝑘 ∙ 𝜇𝑖

(𝑘)𝐾
𝑘=1

∑ 𝑛𝑘
𝐾
𝑘=1

 

Esta ponderación reconoce que los ratings obtenidos en cursos más grandes pueden ser más 

confiables debido al mayor número de comparaciones realizadas. El sistema TTT-D también 

mantiene estadísticas sobre la incertidumbre promedio 𝜎𝑖 y el margen de empate promedio ε̄𝑖⁡⁡a 

través de todos los cursos. 
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Para la asignación final de rankings y categorías (representadas por estrellas), el sistema 

implementa un enfoque conservador que considera la incertidumbre en las estimaciones: 

𝜇𝑖
∗∗ =⁡𝜇𝑖

∗ − 2𝜎𝑖
⁡∗ 

Este rating conservador representa un límite inferior del intervalo de confianza del 95% 

para la habilidad del estudiante. Al usar este valor para la asignación de categorías, el sistema 

asegura que los estudiantes solo reciban clasificaciones altas cuando hay suficiente evidencia 

estadística de su rendimiento superior. Los percentiles se calculan sobre estos ratings 

conservadores, aquellos con percentiles iguales o superiores al 90% reciben cinco estrellas 

(✩✩✩✩✩) por rendimiento excelente, mientras que los ubicados entre el 75% y 90% obtienen 

cuatro (✩✩✩✩), y así sucesivamente hasta llegar al cuartil inferior (P(x) < 25%), donde se asigna 

una sola estrella (✩), identificando a los estudiantes con bajo rendimiento en el semestre. Se 

muestran a continuación los resultados obtenidos en tiempo de ejecución: 

Tabla 8 

Resultados obtenidos después de la ejecución del algoritmo TrueSkill (TTT-D) en los semestres 

2023-1, 2023-II, 2024-I y 2024-II. 

Fuente: Elaboración personal 

Semestre Tiempo (s) Estudiantes Cursos 

2023-1 1550.62 18540 3556 

2023-2 1532.71 18204 3541 

2024-1 1689.78 18607 3669 

2024-2 1711.73 18221 3715 
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Los resultados de la ejecución del algoritmo TrueSkill (TTT-D) muestran una consistencia 

notable en el tiempo de procesamiento y en la magnitud de datos procesados entre los distintos 

semestres, con tiempos que varían entre 1532.71 s y 1711.73 s. En todos los semestres obtuvo un 

mejor tiempo de ejecución en comparación con el algoritmo Glicko-2 y ELO, lo que refleja una 

mejor eficiencia de TrueSkill en contextos con grandes cargas de cursos y estudiantes. Esto sugiere 

que el algoritmo es el más estable de los tres debido a su sensibilidad a la densidad e incertidumbre 

de los registros de notas de los alumnos de la UNSAAC. Para finalizar, se exportan los resultados 

a un archivo llamado Alumnos_Clasificados_TrueSkill.xlsx. 

3.13. Identificación de los alumnos con bajo rendimiento después de la clasificación por el 

algoritmo TrueSkill 

Categorizamos los puntajes numéricos obtenidos del algoritmo TrueSkill (TTT-D) en una 

clasificación cualitativa del rendimiento académico, implementando un sistema de estrellas (de 1 

a 5), similar al aplicado anteriormente con los algoritmos ELO y Glicko-2. El procedimiento se 

desarrolla en tres fases: cálculo del rating general ponderado TrueSkill, asignación de estrellas 

según puntos de corte percentiles y clasificación cualitativa del rendimiento. 

En primer lugar, para cada estudiante 𝑖 se calcula el promedio de TrueSkill en un semestre 

𝑛, denotado como 𝑇𝑆𝑖
(𝑛). Este valor se pondera con un peso de competencia definido como 𝜔𝑖 =

𝑇𝑖 ∙ 𝐶𝑖, donde 𝑇𝑖 representa el número de estudiantes con los que compitió indirectamente y 𝐶𝑖 el 

número de cursos llevados. De este modo, el rating ponderado individual resulta como: 

𝑇𝑆_𝑃𝑖
(𝑛)

= 𝑇𝑆𝑖
(𝑛)
∙ 𝜔𝑖 

El rating general ponderado de Glicko-2 para cada estudiante se obtiene como: 
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𝑇𝑟𝑢𝑒𝑆𝑘𝑖𝑙𝑙_𝐺𝑃𝑖 =
∑ 𝑇𝑆_𝑃𝑖

(𝑛)𝑛
1

∑ 𝜔𝑖
𝑛
1

 

Posteriormente, se emplea una distribución académica de cortes asimétricos (García 

Tárrago, 2020), basada en los percentiles 5%, 25%, 75% y 95%, lo que permite clasificar a los 

estudiantes en cinco categorías cualitativas generales, desde bajo (★) hasta excelente (★★★★★), 

procediendo de la misma manera como se hizo en el algoritmo Elo y Glicko-2. Y obtenemos los 

siguientes resultados:  

Fuente: Elaboración personal 

 

 

Figura 13 

Distribución y clasificación por Estrellas de TrueSkill Ponderado General 
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La clasificación con TrueSkill muestra una distribución fuertemente centrada en la 

categoría intermedia (3 estrellas), concentrando al 50% de los estudiantes en un rendimiento 

“promedio” y dejando solo a pequeños grupos en los extremos (1 y 5 estrellas, cada uno con 5%). 

Esto refleja una estratificación balanceada y simétrica, que es consistente con los principios de 

clasificación académica propuestos por García Tárrago (2020). Lo notable es que los resultados 

obtenidos con TrueSkill son prácticamente idénticos en distribución global a los alcanzados 

mediante los algoritmos ELO y Glicko-2, lo cual indica que, aunque difieren en la forma de 

calcular los ratings, las reglas de corte percentiles impuestas por la distribución académica domi 

el resultado final de la clasificación. En otras palabras, el algoritmo subyacente impacta en los 

valores individuales de los ratings, pero la forma de asignación de estrellas fuerza a que la 

proporción de estudiantes en cada categoría sea la misma. Más allá de la distribución global, sería 

útil analizar si los mismos estudiantes son clasificados de manera consistente en bajo/alto 

rendimiento entre TrueSkill, ELO y Glicko-2. Esto daría una medida de robustez inter-algoritmo. 

Además de las estrellas, en la sección de resultados se podría considerar indicadores adicionales 

como la media, varianza y correlaciones entre algoritmos, para sustentar que TrueSkill no solo 

clasifica de manera similar, sino que mantiene coherencia con las otras métricas de desempeño 

académico. 

3.14. Correlación entre TrueSkill General Ponderado y CGPA Final. 

Los resultados de la correlación entre el CGPA final y el TrueSkill General Ponderado 

muestran en la Figura 16 una asociación muy fuerte y estadísticamente significativa. El coeficiente 

de Pearson (r = 0.8078, p < 0.001) indica una relación lineal positiva elevada, lo que significa que, 

en general, a medida que aumenta el rating TrueSkill ponderado de los estudiantes, también tienden 

a mejorar sus calificaciones globales reflejadas en el CGPA. Este comportamiento se aprecia en el 
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diagrama de dispersión, donde los puntos siguen un patrón ascendente en torno a la línea de 

tendencia, confirmando la consistencia del modelo. 

Por su parte, el coeficiente de Spearman (ρ = 0.7783, p < 0.001) respalda este hallazgo 

desde una perspectiva no paramétrica, mostrando que el orden relativo de los estudiantes en el 

ranking de TrueSkill mantiene una correspondencia fuerte con su posición en el CGPA, incluso 

cuando se relajan los supuestos de linealidad. En conjunto, estos resultados evidencian que el 

modelo TrueSkill no solo clasifica de manera robusta a los estudiantes, sino que también captura 

de forma confiable la variabilidad de su desempeño académico real, lo que lo consolida como un 

sistema válido y consistente para la evaluación del rendimiento estudiantil. 

 

 

 

 

 

 

 

 

Fuente: Elaboración personal 

 

 

Figura 14 

Correlación entre TrueSkill General Ponderado y CGPA Final de los alumnos clasificados 
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4. CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS 

En el presente capítulo se exponen los resultados obtenidos a partir de la implementación 

de los algoritmos de emparejamiento ELO, Glicko-2 y TrueSkill sobre los registros académicos 

de los estudiantes de la Universidad Nacional de San Antonio Abad del Cusco en el periodo 

postpandemia. Cada algoritmo fue aplicado siguiendo la misma secuencia metodológica: cálculo 

de los rankings, identificación de los estudiantes con bajo rendimiento y análisis de correlación 

con el CGPA final. De este modo, se buscó evidenciar el comportamiento de cada modelo en la 

clasificación estudiantil, así como sus diferencias. 

Asimismo, los resultados se presentan con correspondencia con los objetivos específicos 

de la investigación, organizados de manera progresiva para facilitar la comparación. En primer 

lugar, se muestran los hallazgos obtenidos tras la imputación de datos inconsistentes; en segundo 

lugar, los resultados descriptivos generales y detección de valores atípicos en registros de notas; 

en tercer lugar, los tiempos de ejecución y la eficiencia de cada algoritmo y por último la 

comparación en la identificación de alumnos de bajo rendimiento después de la clasificación de 

los algoritmos ELO, Glicko-2 y TrueSkill. 

4.1. Resultados en Inconsistencias en los Datos Conforme a la Resolución N.º CU-0359-2015-

UNSAAC. 

El proceso de validación y depuración de la base de datos de alumnos de la UNSAAC del 

semestre 2023-1 al 2024-II permitió identificar un total de 413791 registros académicos, de los 

cuales 413692 fueron consistentes y solo 99 presentaron inconsistencias, alcanzándose un 

porcentaje global de consistencia del 99.98 %. Estos resultados evidencian que la información 

proporcionada por el Centro de Cómputo de la UNSAAC presenta un alto grado de confiabilidad, 
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aunque fue necesario aplicar técnicas de imputación para garantizar la completitud de los datos 

antes de la implementación de los algoritmos de emparejamiento. 

El análisis por semestre mostró un comportamiento estable en los niveles de consistencia, 

con porcentajes superiores al 99.7 % en todos los periodos evaluados. La mayor proporción de 

inconsistencias se concentró en los cursos de Medicina sin calificaciones parciales, los cuales 

fueron imputados en su mayoría (entre del 86.89 % hasta un 92.75%, según el semestre). En 

contraste, un porcentaje reducido de inconsistencias (7.25 % a 13.11 %) correspondió a casos en 

los que el examen subsanatorio no reemplazaba correctamente el promedio final, los cuales no 

pudieron se imputaron debido a que no fue necesario ya que para la implementación de los 

algoritmos de emparejamiento se utilizaron directamente los campos de exámenes parciales y 

sustitutorio. En conjunto, se obtuvo que el 90.04 % de los registros inconsistentes fueron 

imputados, consolidando así una base de datos depurada y confiable, adecuada para el posterior 

análisis con los algoritmos ELO, Glicko-2 y TrueSkill. A continuación, se muestran los resultados 

en la siguiente tabla: 

Tabla 9 

Consistencia de registros de notas UNSAAC del semestre 2023-1 al 2024-II por semestre 

Semestre Total Registros 
Cons. % Cons. Registros 

Incons. 

Incons. Imp. 
(Cursos de 

Medicina sin 
parciales) 

Incons. No 
Imp. (Subs. 
incorrecto) 

% Imp. % No Imp. 

2023-1 104 001 103 734 99.74 % 267 232 35 86.89 % 13.11 % 
2023-2 101 239 101 002 99.77 % 237 214 23 90.30 % 9.70 % 
2024-1 104 760 104 463 99.72 % 297 270 27 90.91 % 9.09 % 
2024-2 103 791 103 598 99.81 % 193 179 14 92.75 % 7.25 % 

TOTAL 413 791 412 797 99.76 % 994 895 99 90.04 % 9.96 % 

Fuente: Elaboración personal 
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4.2. Resultado descriptivo general de los datos académicos y detección de valores atípicos en 

registros de notas. 

En el periodo comprendido entre los semestres 2023-I y 2024-II, la Universidad Nacional 

de San Antonio Abad del Cusco (UNSAAC) registró un total de 73746 matrículas a lo largo de los 

semestres; siendo 25162 alumnos únicos, distribuidos en 15150 asignaturas únicas. La carga 

académica promedio por estudiante se mantuvo relativamente estable, oscilando entre 5.55 y 5.68 

asignaturas por alumno, lo que refleja una estructura académica homogénea a lo largo de los cuatro 

semestres. Este patrón permite sostener que, pese a las fluctuaciones propias de la matrícula, la 

distribución de cursos por estudiante presenta una consistencia en torno al promedio global de 5.61 

asignaturas por alumno. 

Tabla 10 

Descripción general de los registros de notas de la UNSAAC del semestre 2023-I al 2024-II  

Fuente: Elaboración personal 

El análisis descriptivo de las calificaciones parciales reveló la presencia de outliers 

asociados principalmente a notas bajas, lo que constituye un indicador relevante para la 

identificación de estudiantes en riesgo académico. La distribución de notas por semestre muestra 

valores de mediana cercanos a 15, con rangos intercuartílicos (IQR) entre 2.9 y 3.6 puntos, lo que 

evidencia una relativa estabilidad en la dispersión de las calificaciones. Sin embargo, al aplicar los 

Semestre Alumnos 
Matriculados 

Asignaturas 
Únicas 

Carga Académica 
Promedio por 

Alumno 
2023-1 18593 3677 5.59 
2023-2 18240 3665 5.55 
2024-1 18635 3881 5.62 
2024-2 18278 3927 5.68 

TOTAL/PROMEDIO 73746 15150 5.61 
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límites de detección de valores atípicos, se identificó que entre el 5 % y el 8 % de las notas 

correspondieron a outliers, concentrándose en valores por debajo del límite inferior de cada 

distribución (aproximadamente entre 7.5 y 9.0). Estos resultados indican que, pese a que la mayoría 

de los estudiantes se mantiene en un rango esperado de rendimiento, existe un subconjunto 

consistente de alumnos con calificaciones significativamente bajas en cada parcial, se observa que 

el segundo parcial concentra la mayor proporción de notas atípicamente bajas, con valores entre el 

7 % y el 8.35 % en los distintos semestres analizados. Esto sugiere que esta evaluación representa 

un punto crítico en el rendimiento académico, probablemente porque coincide con una etapa de 

mayor exigencia y acumulación de carga académica para los alumnos. En contraste, el primer 

parcial muestra niveles intermedios (entre 5.5 % y 7.2 %), mientras que el tercer parcial mantiene 

proporciones más reducidas de outliers (cercanas al 5 %), lo que indica que el mayor desafío para 

los estudiantes ocurre en la evaluación intermedia del semestre. 

Tabla 11 

Valores atípicos en registros de notas por parcial de la UNSAAC de los algoritmos ELO, Glicko-
2 y TrueSkill desde el semestre 2023-I al 2024-II 

Semestre Parcial Q1 Mediana 
(Q2) Q3 IQR Límite 

inferior 
Límite 

superior 
N° 

Inliers 

N° 
Inliers 

(%) 

N° 
Outliers 

N° 
Outliers 

(%) 

2023-1 1er 13.29 15 16.33 3.04 8.73 20 97419 93.67 6576 6.32 

2023-1 2do 13.42 15.13 16.6 3.18 8.65 20 95907 92.22 8094 7.78 

2023-1 3er 13 15 16.67 3.67 7.495 20 50180 48.25 5238 5.04 

2023-2 1er 13.4 15 16.33 2.93 9.005 20 93938 92.79 7301 7.21 

2023-2 2do 13.5 15.2 16.67 3.17 8.745 20 92787 91.65 8452 8.35 

2023-2 3er 13.33 15 16.67 3.34 8.32 20 49844 49.23 5008 4.95 

2024-1 1er 13.14 14.9 16.33 3.19 8.355 20 98717 94.23 6041 5.77 

2024-1 2do 13.33 15 16.5 3.17 8.575 20 96694 92.3 8063 7.7 
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2024-1 3er 13.1 15 16.6 3.5 7.85 20 49806 47.54 5329 5.09 

2024-2 1er 13.285 15 16.33 3.045 8.7175 20 97987 94.41 5804 5.59 

2024-2 2do 13.4 15.05 16.6 3.2 8.6 20 96338 92.82 7450 7.18 

2024-2 3er 13.2 15 16.58 3.38 8.13 20 49205 47.41 5045 4.86 

Fuente: Elaboración personal 

4.3. Resultados comparativos en tiempos de ejecución de los algoritmos ELO, Glicko-2, 

TrueSkill 

Analizando comparativamente de los tiempos de ejecución, se revela disparidades 

significativas en la eficiencia computacional de los tres algoritmos evaluados. El modelo ELO, 

implementado en su configuración base, registró los mayores tiempos de procesamiento en todos 

los períodos analizados, con un valor máximo de 2091.27 segundos en el semestre 2024-II. Este 

desempeño se atribuye a su arquitectura determinista y a la falta de un mecanismo inherente para 

cuantificar la incertidumbre, lo que lo obliga a procesar cada interacción de manera secuencial e 

individual, haciéndolo sensible a un gran volumen de datos y a la incertidumbre 

En contraste, el algoritmo Glicko-2, cuya implementación incorpora una estructura 

adaptativa que considera la media y la desviación estándar del curso como el espacio competitivo, 

demostró una mejora sustancial en eficiencia, con tiempos fluctuando entre 1638.02 y 1761.76 

segundos. Su superioridad sobre el modelo ELO radica en la integración de una desviación 

estándar (RD) que modela la certidumbre de cada estimación, permitiendo así actualizaciones de 

habilidad más inteligentes y con una convergencia más rápida. 

Para finalizar, la variante del último algoritmo: TrueSkill Through Time with Draw 

Margins (TTT-D); se estableció como el más eficiente, reduciendo los tiempos de ejecución a un 

rango entre 1532.71 y 1711.73 segundos. Esta optimización es consecuencia directa de su 
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sofisticado marco teórico bayesiano probabilístico. La implementación de un draw margin 

bayesiano dinámico, junto con técnicas de inferencia aproximada sobre distribuciones gaussianas 

que se propagan en el tiempo análogas al filtrado bayesiano, permiten actualizar de manera 

cohesiva las habilidades de todos los participantes. Adicionalmente, el shrinkage bayesiano ajusta 

las estimaciones hacia la media del contexto (curso), estabilizando los resultados y reduciendo la 

necesidad de iteraciones onerosas, mientras que la integración del z-score de cada estudiante ofrece 

una métrica estandarizada sin un overhead computacional adicional. 

Tabla 12 

Tiempo de ejecución y promedio de cursos procesados por segundo de los algoritmos ELO, 

Glicko-2 y TrueSkill desde el semestre 2023-I al 2024-II  

Sem. Alums. Cursos t_ELO 
(s) 

t_Glicko-2 
(s) 

t_TTT-D 
(s) 

Cursos/s 
ELO 

Cursos/s 
Glicko-2 

Cursos/s 
TrueSkill 

2023-1 18540 3556 1787.21 1675.81 1550.62 1.43 1.47 1.55 
2023-2 18204 3541 1755.99 1638.02 1532.71 1.42 1.46 1.56 
2024-1 18607 3669 1845.26 1748.32 1689.78 1.99 2.1 2.17 
2024-2 18221 3715 2091.27 1761.76 1711.73 1.78 2.11 2.17 

Fuente: Elaboración personal 
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Fuente: Elaboración personal 

 

Fuente: Elaboración personal 

Figura 16 

Tiempo de ejecución por semestre de los algoritmos de clasificación de los algoritmos ELO, 
Glicko-2 y TrueSkill desde el semestre 2023-I al 2024-II 

Figura 15 

Eficiencia de los algoritmos ELO, Glicko-2 y TrueSkill por segundo y curso desde el semestre 
2023-I al 2024-II 
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4.4. Comparación en la identificación de los alumnos con bajo rendimiento después de la 

clasificación por el algoritmo ELO, Glicko-2 y TrueSkill 

El análisis comparativo de los resultados obtenidos a partir de la clasificación de los 

estudiantes con bajo rendimiento (★) muestra que los tres algoritmos presentan niveles muy 

similares de detección global. Tanto TrueSkill (TTT-D) como Glicko-2 identificaron un total de 

1254 alumnos (73.7 % del universo analizado), mientras que el modelo ELO detectó 1251 

estudiantes (73.5 %). Estas cifras evidencian que, en términos agregados, las tres metodologías 

son consistentes en la delimitación de la población estudiantil en riesgo académico (Tabla 14). 

Tabla 13 

Estadísticas comparativas de alumnos con bajo rendimiento identificados por los algoritmos 
ELO, Glicko-2 y TrueSkill desde el semestre 2023-I al 2024-II 

Algoritmo 
Total de alumnos con 
bajo rendimiento (★)  Porcentaje universo 

TrueSkill (TTT-D) 1254 73.70% 
Glicko-2 1254 73.70% 

ELO 1251 73.50% 

Fuente: Elaboración personal 

Al analizar las intersecciones y exclusividades (Figura 19), se observan diferencias 

significativas en la manera en que cada algoritmo discrimina casos específicos. Existen 

subconjuntos diferenciados: TrueSkill y Glicko-2 coincidieron de manera exclusiva en 275 

alumnos (16.2 %), mientras que los pares TrueSkill–ELO y Glicko-2–ELO coincidieron en 45 (2.6 

%) y 55 (3.2 %) estudiantes, respectivamente. 
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En cuanto a los casos exclusivos (Figura 19), se destaca que ELO identificó de manera individual 

a 310 estudiantes (18.2 %), proporción considerablemente mayor a los detectados únicamente por 

TrueSkill (93 alumnos, 5.5 %) o por Glicko-2 (83 alumnos, 4.9 %). Este hallazgo sugiere que el 

algoritmo ELO tiende a sobre clasificar en relación con los otros modelos, posiblemente por su 

estructura más rígida en el cálculo del rendimiento acumulado. En contraste, los algoritmos 

TrueSkill (TTT-D) y Glicko-2, al incorporar parámetros adaptativos y de variación, ofrecen una 

clasificación más convergente y precisa, disminuyendo el número de discrepancias respecto al 

grupo central de estudiantes. 

Fuente: Elaboración personal 

 

Figura 17 

Diagrama de Venn de la intersección de alumnos con bajo rendimiento según ELO, 
Glicko-2 y TrueSkill (2023-I a 2024-II) 
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Tabla 14 

Análisis detallado de intersecciones y exclusividades en la identificación de alumnos con bajo 
rendimiento por los algoritmos ELO, Glicko-2 y TrueSkill 

Categoría Cantidad Porcentaje 

Exclusivo TrueSkill (TTT-D) 93 5.50% 

Exclusivo Glicko-2 83 4.90% 

Exclusivo ELO 310 18.20% 

TrueSkill ∩ Glicko-2 
(exclusivo) 275 16.20% 

TrueSkill ∩ ELO (exclusivo) 45 2.60% 

Glicko-2 ∩ ELO (exclusivo) 55 3.20% 

TrueSkill ∩ Glicko-2 ∩ ELO 841 49.40% 

Universo (Total de alumnos 
encontrados con bajo 

rendimiento ★) 
1702 100% 

Fuente: Elaboración personal 

En conjunto, los resultados (Tabla 15) muestran un alto consenso en la identificación de 

estudiantes con bajo rendimiento, pero también evidencian diferencias en los casos marginales 

según el algoritmo aplicado. Mientras que TrueSkill (TTT-D) y Glicko-2 ofrecen clasificaciones 

más estables y coherentes entre sí, el modelo ELO presenta un mayor número de discrepancias, al 

identificar de forma exclusiva a 310 alumnos (18.2 %). Esto sugiere que ELO tiende a 

sobredimensionar los casos de bajo rendimiento, a diferencia de los enfoques adaptativos de 

TrueSkill y Glicko-2, que reducen la dispersión en los resultados. El universo total de alumnos con 

bajo rendimiento identificados en la investigación asciende a 1702, donde se observa que el 49.4% 

(841 alumnos) fueron detectados de manera simultánea por los tres algoritmos (TrueSkill, Glicko-

2 y ELO), lo que evidencia una alta coincidencia en la detección del bajo rendimiento académico. 
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Para complementar el análisis de intersecciones, se seleccionaron muestras aleatorias de 

alumnos exclusivos por conjunto, identificados por cada algoritmo. Estas muestras permiten 

observar de manera cualitativa el perfil académico que explica por qué un estudiante es clasificado 

solo y únicamente por ELO, Glicko-2 o TrueSkill como de bajo rendimiento. Las siguientes tablas 

a continuación muestran ejemplos representativos de cada grupo: 

Tabla 15 

Muestra aleatoria de alumnos identificados exclusivamente por el algoritmo TrueSkill (TTT-D) 
como de bajo rendimiento académico (★) 

ID Sem. Código Asignatura P1 P2 P3 Sust. Subs. Promedio 
Final 

12914 2023-1 ED122BEU 

EDUCACIÓN 
COMUNITARIA 
INTERCULTUR
AL 

16.33 16.67    17 

12914 2023-1 ED123CEU 
TUTORIA Y 
ORIENTACIÓN 
EDUCATIVA 

15.75 16.75    16 

12914 2023-1 LC422AEU 

TEORÍA Y 
ANÁLISIS DEL 
TEXTO 
LITERARIO 

16.33 11.33 13.33   14 

12914 2023-1 ED121EEU GESTION DEL 
CURRICULO 14 11.75 11.5 8  12 

12914 2023-1 LC430AEU FONÉTICA Y 
FONOLOGÍA 13.33 12.67 1 9  10 

12914 2023-1 LC415AEU 
INTRODUCCIÓ
N A LA 
LINGÜISTICA 

14 11.33 0 8  9 

12914 2024-1 LC416AEU MORFOLOGIA 
DEL ESPAÑOL 7.2 0  0  4 

12914 2024-1 LC423AEU LITERATURA 
PERUANA I 4.67 0  0  2 
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12914 2024-1 LC415AEU 
INTRODUCCIÓ
N A LA 
LINGÜISTICA 

1 1 1 0  1 

12914 2024-1 ED120CEU 
GESTION DE 
LA 
EDUCACION 

0 0 0 0  0 

12914 2024-1 ED126CEU 

ESTRATEGIAS 
DE 
ENSEÑANZA Y 
APRENDIZAJE 

0 0 0   0 

12914 2024-1 ED124BEU 
PSICOLOGIA 
EDUCATIVA 
(EVOLUTIVA) 

0 0 0 0  0 

18545 2023-1 QU903AEN QUÍMICA 13 12 5.25 0  10 

508 2023-1 ED410AMI 

MANIFESTACI
ONES 
ARTÍSTICAS Y 
DEPORTIVAS 

11.67 17  0  14 

508 2023-1 ML301AMI TRATAMIENTO 
DE MINERALES 13 9.67 17.67 11  14 

508 2023-1 IM221AMI MECÁNICA DE 
ROCAS II 13.75 14.8 12.8 9  14 

508 2023-1 IM120BMI MAQUINARIA 
MINERA I 11 12 9.67 3  11 

508 2023-1 IM313AMI GEOESTADÍSTI
CA II 7.33 10.33  0  9 

508 2023-2 IM120AMI MAQUINARIA 
MINERA I 9.67 13.33 13.33 8  12 

508 2023-2 IM313AMI GEOESTADÍSTI
CA II 11.67 7.67  0  10 

508 2023-2 IM105AMI 
MÉTODOS DE 
EXPLOTACIÓN 
SUBTERRANEA 

8 6 5 0  6 

508 2023-2 IE350AMI INGENIERÍA 
ELÉCTRICA 11 0    6 
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508 2023-2 IM223AMI GEOMECANICA 0 0  0  0 

508 2024-1 IM120BMI MAQUINARIA 
MINERA I 7 0 0 0  2 

Fuente: Elaboración personal 

Tabla 16  

Muestra aleatoria de alumnos identificados exclusivamente por el algoritmo Glicko-2 como de 
bajo rendimiento académico (★) 

ID Sem. Código Asignatura P1 P2 P3 Sust. Subs. Promedio 
Final 

21348 2023-1 FP901AFO FILOSOFIA Y 
ETICA 2.5 2.5    3 

21348 2023-1 AS901AFO SOCIEDAD Y 
CULTURA 0 0    0 

21348 2023-1 DE901AFO 

CONSTITUCION 
POLITICA Y 
DERECHOS 
HUMANOS 

14.5 14.25    14 

21348 2023-1 ME901AFO MATEMATICA I 10.4 8.2 0 0  6 

21348 2023-1 LC901AFO REDACCION DE 
TEXTOS 15 15 15   15 

21348 2023-1 ED901AFO 

ESTRATEGIAS 
DE 

APRENDIZAJE 
AUTONOMO 

15 15 15   15 

24097 2023-1 ME901BBI MATEMATICA I 2.8 11 4.8 0  6 

24097 2023-1 QU130BBI BIOQUÍMICA 
DE LA CÉLULA 9.17 12 4.5 0  9 

24097 2023-1 CB622BBI ZOOLOGÍA 
SISTEMÁTICA I 12.67 9 0   7 
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24097 2023-1 CB201BBI BOTANICA 14.33 9.33 0 0  8 

24097 2023-1 CB102BBI BIOLOGÍA DE 
LA CÉLULA I 6.5 8.5 0 0  5 

24097 2024-1 ME901ABI MATEMATICA I 14.3 14.9 15.6 0  15 

24097 2024-1 CB102ABI BIOLOGÍA DE 
LA CÉLULA I 13.2 11.6 14 15  14 

24097 2024-2 ME902ABI MATEMÁTICA 
II 12.2 11.8 0 0  8 

24097 2024-2 CB103ABI BIOLOGÍA DE 
LA CÉLULA II 9.4 11.6 10.3 0  10 

24097 2024-2 CB902ABI 
ECOLOGÍA Y 

MEDIO 
AMBIENTE 

15.33 13.67 9.67 10  14 

24097 2024-2 CB201ABI BOTANICA 14.33 12.67 15 0  14 

24097 2024-2 QU130ABI BIOQUÍMICA 
DE LA CÉLULA 11.15 11.93 11.53 10  12 

18616 2024-1 MEG02AMI CÁLCULO I 8.4 9 6.2 0  8 

18616 2024-1 HIG01AMI 

HISTORIA 
CRÍTICA DEL 

PERÚ E 
IDENTIDAD 
NACIONAL 

15.56 16.22    16 

18616 2024-1 MEG01AMI 
ÁLGEBRA Y 
GEOMETRÍA 
ANALÍTICA 

6 10 2 10  8 

18616 2024-1 QUG01AMI QUÍMICA 
GENERAL 14.13 11.88 13.5 12  14 
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18616 2024-1 FIG01AMI FÍSICA I 11.75 9 16.25 2  12 

18616 2024-1 IMG01AMI 
ECOLOGÍA Y 

MEDIO 
AMBIENTE 

7.2 8.4  0  8 

18616 2024-2 LCG01AMI 
LINGÜÍSTICA Y 
COMUNICACIÓ

N HUMANA 
0 0 0 0  0 

18616 2024-2 MEG02BMI CÁLCULO I 0 1.2 0 0  0 

18616 2024-2 IMG02AMI 

DIBUJO 
MINERO 

ASISTIDO POR 
EL 

COMPUTADOR 

14 0  0  7 

18616 2024-2 MEG03AMI ESTADÍSTICA 
GENERAL 0 0 0 0  0 

18616 2024-2 FIG01AMI FÍSICA I 0 0 0 0  0 

18616 2024-2 IFG01AMI 

PENSAMIENTO 
COMPUTACION

AL E 
INTELIGENCIA 

ARTIF. 

0 0  0  0 

Fuente: Elaboración personal 

Tabla 17  

Muestra aleatoria de alumnos identificados exclusivamente por el algoritmo ELO como de bajo 
rendimiento académico (★) 

ID Sem. Código Asignatura P1 P2 P3 Sust. Subs. Promedio 
Final 

9725 2023-1 FP901ADR FILOSOFIA Y 
ETICA 

17 18    18 

9725 2023-1 ED901ADR ESTRATEGIAS 
DE 

APRENDIZAJE 
AUTONOMO 

14.67 14 14 0  14 

9725 2023-1 DE901ADR CONSTITUCION 
POLITICA Y 
DERECHOS 
HUMANOS 

2 12.5  0  7 
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9725 2023-1 AS901BDR SOCIEDAD Y 
CULTURA 

0 0  0  0 

9725 2023-1 IF902ADR TECNOLOGIAS 
DE LA 

INFORMACIÓN 
Y LA 

COMUNICACIÓ
N 

0 0  0  0 

9725 2023-2 DE857ADR ACTIVIDAD 
CO-

CURRICULAR I 

17 12 15   15 

9725 2023-2 AS901BDR SOCIEDAD Y 
CULTURA 

3.7 10.71  0  7 

9725 2023-2 DE559ADR DERECHO 
EMPRESARIAL 

0 0 0 0  0 

9725 2023-2 DE901BDR CONSTITUCION 
POLITICA Y 
DERECHOS 
HUMANOS 

5.1 0    3 

9725 2023-2 DE461ADR CONTROL 
GUBERNAMEN

TAL 

0 6    3 

9725 2023-2 DE675ADR HISTORIA DEL 
DERECHO 
PERUANO 

0 0  0  0 

9725 2024-1 DE460ADR DERECHO DE 
CONTRATACIO

NES DEL 
ESTADO 

0 0  0  0 

9725 2024-1 IF902BDR TECNOLOGIAS 
DE LA 

INFORMACIÓN 
Y LA 

COMUNICACIÓ
N 

0 0  0  0 

9725 2024-1 DE563ADR DERECHO 
COMERCIAL III 

(DERECHO 
BANCARIO, DE 

SE... 

0 0    0 

9725 2024-1 DE456ADR DERECHO 
ELECTORAL 

0 0    0 

9725 2024-1 DE454ADR DERECHO 
CONSTITUCION

AL 
ECONOMICO 

0 0    0 
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9725 2024-2 DE461ADR CONTROL 
GUBERNAMEN

TAL 

11.4 0  0  6 

9725 2024-2 DE252ADR DERECHO 
PENAL II 
(PARTE 

ESPECIAL I) 

0 0 0 0  0 

9725 2024-2 DE460ADR DERECHO DE 
CONTRATACIO

NES DEL 
ESTADO 

0 0  0  0 

14116 2023-1 FP901CEU FILOSOFIA Y 
ETICA 

16 15.5    16 

14116 2023-1 DE901CEU CONSTITUCION 
POLITICA Y 
DERECHOS 
HUMANOS 

14.67 14.33    15 

14116 2023-1 ED901CEU ESTRATEGIAS 
DE 

APRENDIZAJE 
AUTONOMO 

13.7 15.8 14.45 12  15 

14116 2023-1 LC901CEU REDACCION DE 
TEXTOS 

16.67 15.33 13.67 0  15 

14116 2023-1 AS901CEU SOCIEDAD Y 
CULTURA 

16 14.9  0  15 

14116 2023-1 ME901FEU MATEMATICA I 13.6 13.9 10.3 0  13 

14116 2023-2 IF902CEU TECNOLOGIAS 
DE LA 

INFORMACIÓN 
Y LA 

COMUNICACIÓ
N 

5 0    3 

14116 2023-2 FP902CEU LIDERAZGO Y 
HABILIDADES 

SOCIALES 

1 0    1 

14116 2023-2 FP903CEU PSICOLOGÍA 
GENERAL 

0 0 1 0  0 

14116 2023-2 ED118AEU INTRODUCCIÓ
N A LAS 

CIENCIAS DE 
LA 

EDUCACIÓN 

0 0 0 0  0 
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14116 2023-2 ED119AEU EDUCACIÓN Y 
GESTIÓN 

AMBIENTAL 

0 0 0   0 

14116 2023-2 FP904CEU INTRODUCCIÓ
N A LA 

EPISTEMOLOGÍ
A 

0 0 0   0 

14274 2023-1 AS733AAN ETNOLOGIA 
MUNDIAL 

COMPARADA 

14.2 11.6 0 0  9 

14274 2023-1 AS719AAN SIMBOLOGIA Y 
RITUAL 

4 0 0.67 0  2 

14274 2023-1 AS813BAN ANTROPOLOGÍ
A Y 

DESARROLLO 
I: TEORIAS 

0 1 0 0  0 

14274 2023-1 AS816AAN EVOLUCION 
BIOCULTURAL 

0 0 0 0  0 

14274 2024-1 AS808AAN ANTROPOLOGÍ
A POLÍTICA I 

0 0 0   0 

14274 2024-1 AS818AAN AMAZONIA 
REGIONAL 

0 0 0   0 

14274 2024-1 AS701AAN ECOLOGÍA 
CULTURAL 

0 0 0 0  0 

Fuente: Elaboración personal 

En el caso de TrueSkill (TTT-D), los estudiantes exclusivos presentan trayectorias mixtas: 

asignaturas aprobadas con calificaciones medias-altas conviven con otras con notas 

extremadamente bajas, incluso cercanas a cero. Ello sugiere que este algoritmo es sensible a 

vulnerabilidades focalizadas, identificando a quienes, pese a un desempeño aceptable en algunos 

cursos, arrastran debilidades críticas en otros. 

 Por su parte, los alumnos exclusivos de Glicko-2 exhiben un patrón de inestabilidad 

académica, con altibajos más pronunciados entre cursos de desempeño regular y otros con notas 
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mínimas, lo que refleja su capacidad de captar la irregularidad más que el bajo rendimiento 

absoluto. 

Finalmente, los casos exclusivos de ELO corresponden mayormente a estudiantes con 

promedios finales extremadamente bajos o abandono académico, caracterizados por múltiples 

calificaciones de cero. Este comportamiento explica el mayor número de exclusividades detectadas 

por este algoritmo, aunque también evidencia una tendencia a la sobre clasificación, al incluir 

situaciones extremas que ya serían fácilmente detectables por los sistemas académicos 

tradicionales. En conjunto, estos hallazgos refuerzan que la intersección común de los tres 

algoritmos constituye el grupo más confiable de bajo rendimiento, mientras que los resultados 

exclusivos representan una clasificación que describen el comportamiento diferenciado de cada 

algoritmo de emparejamiento. 

Los resultados descriptivos (Figura 20) muestran diferencias relevantes en la capacidad de 

los algoritmos para identificar estudiantes con bajo rendimiento. En términos generales, TrueSkill 

(TTT-D) y Glicko-2 presentan un comportamiento muy similar, ambos identificando poco más de 

9300 estudiantes en cuatro semestres, con tasas de aprobación prácticamente idénticas (12.5% y 

12.6%, respectivamente). Por su parte, el algoritmo ELO, bajo una estructura estándar, detecta un 

mayor número de estudiantes (9770), lo que se traduce en una tasa de aprobación ligeramente 

superior (14.0%). Esta diferencia sugiere que ELO posee un sesgo hacia una clasificación más 

amplia, lo que incrementa la probabilidad de incluir casos límite dentro del grupo de bajo 

rendimiento. 

Al analizar los promedios finales, se observa que tanto TrueSkill (Media = 4.62; 

Desviación Estándar = 5.24) como Glicko-2 (Media = 4.53; Desviación Estándar = 5.22) 

mantienen distribuciones similares, con medias bajas que reflejan un rendimiento 
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consistentemente deficiente en los grupos detectados. En contraste, ELO presenta un promedio 

más reducido (Media = 4.03; Desviación Estándar = 5.43), lo que refuerza la idea de que este 

algoritmo tiende a concentrar casos de bajo rendimiento más extremo, aunque con un rango de 

aprobación relativamente mayor. 

Fuente: Elaboración personal 

El análisis de las tasas de aprobación (Figura 21), cursos aprobados sobre el total, muestra 

que ELO presenta la mayor efectividad con un 14.0% (1,366 de 9,770 estudiantes), seguido por 

Glicko-2 con 12.6% (1,187 de 9,420 estudiantes) y TrueSkill con 12.5% (1,176 de 9,390 

estudiantes). Esto sugiere que ELO demuestra mayor precisión en la identificación de casos de 

estudiantes con cursos más recuperables, detectando estudiantes en riesgo moderado que 

mantienen potencial de recuperación académica, mientras que TrueSkill y Glicko-2 muestran 

Figura 18 

Distribución de promedios finales de los estudiantes clasificados con bajo rendimiento por 
algoritmos de emparejamiento: ELO, Glicko-2 y TrueSkill 
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comportamientos similares en precisión de clasificación de estudiantes con mayor cantidad de 

cursos desaprobados. 

Fuente: Elaboración personal 

Por otro lado, el análisis temporal (Figura 22) del período 2023-1 a 2024-2 revela patrones 

distintivos en el comportamiento temporal de cada algoritmo. TrueSkill mantiene estabilidad 

notable con promedios entre 4.5-5.0 puntos y consistencia diagnóstica temporal, mientras que 

Glicko-2 exhibe adaptabilidad algorítmica superior con evolución ascendente progresiva hacia los 

semestres recientes. ELO presenta el comportamiento más distintivo, manteniendo 

consistentemente los promedios más bajos (~4.0 puntos) con menor variabilidad temporal, 

Figura 19 

Tasa de aprobación de estudiantes clasificados con bajo rendimiento por algoritmos de 
emparejamiento ELO, Glicko-2 y TrueSkill. 



143 
 

sugiriendo que a pesar que ELO clasifica a alumnos con mayor tasa de aprobación por curso, se 

observa que determina a alumnos con menor promedio general. 

Fuente: Elaboración personal 

Más adelante se realizó análisis exhaustivo de las asignaturas más desaprobadas (Tabla 19) que 

revela un patrón consistente de cursos recurrentes que afectan negativamente en el rendimiento 

académico de los alumnos. Entre ellas, destacan cursos como: Historia Critica del Perú e Identidad 

Nacional, Ecología y Medio Ambiente, Sociedad y Cultura, Matemática I, Cálculo I, Física I y 

Química General, entre otras; todas estas asignaturas corresponden a cursos de Estudios Generales 

de la UNSAAC de primeros semestres. Dichos cursos presentan promedios extremadamente bajos 

(entre 3.12 y 4.29), con tasas de desaprobación superiores al 85% y un alto número de casos críticos 

(entre 340 y 513 estudiantes con calificaciones menores a 5.0). La persistencia de estas dificultades 

a lo largo de cuatro semestres analizados indica que se trata de problemáticas estructurales del plan 

de estudios primario de los alumnos de nuevo ingreso. 

Figura 20 

Análisis temporal por promedio de estudiantes clasificados con bajo rendimiento por algoritmos de 
emparejamiento ELO, Glicko-2 y TrueSkill 
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Las asignaturas de Estudios Generales más críticas son: Historia Crítica del Perú e 

Identidad Nacional, Ecología y Medio Ambiente y Sociedad y Cultura que exhiben índices 

problemáticos elevados, con tasas de desaprobación superiores al 73% y con alta recurrencia 

demostrada en todos los algoritmos. Estos resultados sugieren que no solo las áreas de ciencias 

exactas generan dificultades, sino que también existen brechas importantes en asignaturas que 

incluyen competencias de comprensión lectora, expresión escrita y reflexión crítica, que son 

transversales al desempeño académico. 

Esto refuerza que el bajo rendimiento no responde únicamente a dificultades conceptuales 

en los alumnos, sino también supondría carencias en habilidades metacognitivas y hábitos de 

estudio en los primeros semestres o; probablemente métodos de calificación, rubrica y/o 

metodológica ineficiente. 

Tabla 18  

Top 10 asignaturas más desaprobadas identificados por algoritmos de emparejamiento ELO, 
Glicko-2 y TrueSkill 

Asignatura Total 
detecciones 

Dist.  
(TS / Glicko-2 / 

ELO) 

Prom(D
esv.) 

Tasa 
Reprobados 
(Promedio 

<9.5) 

Casos 
Críticos 

(Promedi
o < 5.0) 

Sem. 

Historia 
Crítica del 

Perú e 
Identidad 
Nacional 

885 327 / 303 / 255 5.30 
(6.02) 73.20% 476 2 

Ecología y 
Medio 

Ambiente 
788 290 / 282 / 216 4.17 

(4.71) 83.90% 488 4 

Sociedad y 
Cultura 724 227 / 226 / 271 3.81 

(5.29) 83.80% 500 4 

Matemática I 680 206 / 212 / 262 3.12 
(4.38) 86.50% 513 4 

Física I 707 272 / 261 / 174 4.13 
(4.14) 87.40% 439 4 
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Filosofía y 
Ética 578 173 / 171 / 234 3.23 

(5.43) 84.30% 426 4 

Cálculo I 605 234 / 230 / 141 4.00 
(4.27) 88.80% 386 4 

Redacción de 
Textos 561 169 / 171 / 221 3.32 

(5.10) 85.60% 403 4 

Estrategias de 
Aprendizaje 
Autónomo 

563 167 / 166 / 230 3.35 
(5.28) 85.30% 395 4 

Química 
General 590 230 / 223 / 137 4.29 

(4.36) 86.60% 340 4 

Fuente: Elaboración personal 

Fuente: Elaboración personal 

 

Figura 21 

Top 5 asignaturas más críticas desaprobadas identificados por algoritmos de emparejamiento ELO, 
Glicko-2 y TrueSkill 
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Por último, se observó la distribución de cursos según el nivel de rendimiento académico 

y promedio (Tabla 19) lo que revela diferencias significativas en la capacidad de identificación de 

los tres algoritmos evaluados. El algoritmo ELO demuestra una superioridad significativa en la 

detección de casos críticos, identificando al 67.6% de estudiantes con promedios inferiores a 5.0 

puntos, lo que representa una ventaja de 7.6 y 7.8 puntos porcentuales sobre Glicko-2 (60.8%) y 

TrueSkill (60.0%) respectivamente. Esto sugiere que ELO posee una mayor sensibilidad para 

detectar situaciones de fracaso académico extremo, constituyéndose como la herramienta más 

efectiva para sistemas de alerta temprana que requieren identificación prioritaria de estudiantes en 

riesgo crítico. Por el contrario, TrueSkill exhibe el perfil más equilibrado con una distribución 

uniforme a través de las categorías, mientras que Glicko-2 ocupa una posición intermedia con 

estabilidad diagnóstica moderada. 

La distribución porcentual en las categorías intermedias revela estrategias algorítmicas 

complementarias que responden a diferentes enfoques de identificación. En el rango de casos 

reprobados (5.0-9.5 puntos), TrueSkill y Glicko-2 mantienen porcentajes similares (18.5% y 

18.4% respectivamente), mientras que ELO registra una proporción significativamente menor 

(14.0%). Esta diferencia de aproximadamente 4.5 puntos porcentuales indica que ELO concentra 

su capacidad diagnóstica en los extremos de severidad, optimizando su funcionamiento para la 

detección de casos críticos, pero sacrificando efectividad en rangos intermedios. Para la categoría 

de casos desaprobados (9.5-13.5 puntos), TrueSkill identifica el mayor porcentaje (8.9%), 

confirmando su mayor sensibilidad para detectar estudiantes en rangos limítrofes de rendimiento 

académico. Esta complementariedad algorítmica sugiere la conveniencia de implementar sistemas 

híbridos que aprovechen las fortalezas específicas de cada algoritmo según el nivel de riesgo a 

identificar. 
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Tabla 19  

Distribución de calificación cursos en alumnos con bajo rendimiento identificados por algoritmos 

de emparejamiento ELO, Glicko-2 y TrueSkill 

Estado / Algoritmo TrueSkill Glicko-2 ELO 

Cursos críticos (<5.0) 5635 
(60.0%) 

5730 
(60.8%) 

6607 
(67.6%) 

Cursos reprobados 
(5.0-9.5) 

1740 
(18.5%) 

1731 
(18.4%) 

1365 
(14.0%) 

Cursos desaprobados 
(9.5-13.5) 839 (8.9%) 772 

(8.2%) 
432 

(4.4%) 
Cursos aprobados 

(≥13.5) 
1176 

(12.6%) 
1187 

(12.6%) 
1366 

(14.0%) 

Total, identificados 9390 9420 9770 

Fuente: Elaboración personal 

En el rango de casos reprobados (5.0-9.5 puntos), TrueSkill y Glicko-2 mantienen 

porcentajes similares (18.5% y 18.4% respectivamente), mientras que ELO registra una proporción 

significativamente menor (14.0%). Esta diferencia de aproximadamente 4.5 puntos porcentuales 

indica que ELO concentra su capacidad diagnóstica en los extremos de severidad, optimizando su 

funcionamiento para la detección de casos críticos, pero sacrificando efectividad en rangos 

intermedios. Para la categoría de casos desaprobados (9.5-13.5 puntos), TrueSkill identifica el 

mayor porcentaje (8.9%), confirmando su mayor sensibilidad para detectar estudiantes en rangos 

limítrofes de rendimiento académico. 
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Fuente: Elaboración personal 

 

 

 

 

 

 

Figura 22 

Distribución por colores de cursos en alumnos con bajo rendimiento identificados por algoritmos de 
emparejamiento ELO, Glicko-2 y TrueSkill 
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CONCLUSIONES 
 

• En relación con el objetivo de la investigación, se determinó que los algoritmos de 

emparejamiento ELO, Glicko-2 y TrueSkill permiten clasificar con efectividad a los 

estudiantes de la UNSAAC en el periodo postpandemia (2023-I a 2024-II), mostrando 

correlaciones positivas y estadísticamente significativas con el Cumulative Grade Point 

Average (CGPA). Los coeficientes de Pearson y Spearman confirmaron la validez de los 

modelos: para ELO se obtuvo r = 0.7970 y ρ = 0.4630; en Glicko-2, r = 0.8213 y ρ = 0.7948; 

y en TrueSkill, r = 0.8078 y ρ = 0.7783. Estos índices demuestran que sí existe correlación 

entre las clasificaciones generadas por los algoritmos y el desempeño académico real de los 

estudiantes, validando la pertinencia de su aplicación en entornos educativos. 

• Respecto a la evaluación del algoritmo ELO, se concluye que este modelo, aunque carece de 

medidas explícitas de incertidumbre, fue el más efectivo en la identificación de casos críticos 

con promedios inferiores a 5.0, detectando al 67.6 % de los estudiantes en dicha condición. Sin 

embargo, sacrificó sensibilidad en rangos intermedios, lo que limita su capacidad de 

discriminación en estudiantes con rendimientos cercanos al promedio. 

• En cuanto a la evaluación del algoritmo Glicko-2, se demostró que este alcanzó el mejor 

balance entre precisión y estabilidad, logrando correlaciones más altas con el CGPA (r = 0.82 

y ρ = 0.80) y un buen tiempo de ejecución promedio por curso (1.76 cursos por segundo). Por 

ello, Glicko-2 se posiciona como el algoritmo más robusto y eficiente en término de 

correlación. 

• En relación a la evaluación el algoritmo TrueSkill, los resultados evidenciaron que su enfoque 

bayesiano secuencial le otorgó una mayor sensibilidad en la detección de estudiantes en rangos 
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limítrofes (9.5–13.5), alcanzando un 8.9 % de identificación en este segmento, además el mejor 

tiempo de ejecución promedio por curso (1.86 cursos por segundo) aunque su correlación 

CGPA (r = 0.8078 y ρ = 0.7783) sea un poco menor a Glicko-2. Esto demuestra que TrueSkill 

es particularmente eficaz en discriminar casos en zonas de incertidumbre académica, aportando 

un valor diferencial frente a ELO y Glicko-2. Por tanto, TrueSkill se posiciona como el 

algoritmo más robusto y eficiente en término de tiempo de ejecución. 

• Finalmente, comparando los tres los algoritmos: se observó que, aunque los tres identificaron 

tasas globales de identificación de alumnos de bajo rendimiento (73.5 % a 73.7 %). Un total 

de 841 alumnos de bajo rendimiento (el 49.4% del total) fueron detectados de manera unánime 

por los tres algoritmos: ELO mostró la mayor capacidad de identificación exclusiva (310 

alumnos, 18.2%), en contraste, TrueSkill y Glicko-2 presentaron una alta coincidencia mutua 

exclusiva (275 alumnos, 16.2%) 

• , cada uno presenta fortalezas complementarias: ELO es más eficaz en casos extremos, 

TrueSkill es el mejor en determinar rangos intermedios de emparejamiento y en tiempo de 

ejecución; y Glicko-2 tiene la mejor correlación con respecto CGPA. Además, el análisis de 

asignaturas mostró que las mayores tasas de desaprobación en alumnos con bajo rendimiento 

se concentran en cursos de Estudios Generales (Historia Crítica del Perú e Identidad Nacional, 

Ecología y Medio Ambiente, Matemática I, Física I, Química General), con promedios 

extremadamente bajos y tasas de reprobación superiores al 85 %, lo que evidencia tanto 

dificultades en ciencias exactas como en competencias de comprensión lectora y análisis 

crítico en los primeros semestres. Concluyendo, Glicko-2 y TrueSkill demuestran ser los 

mejores algoritmos en la detección de estudiantes con bajo rendimiento en el periodo post-

covid de la Universidad Nacional de San Antonio Abad del Cusco 
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RECOMENDACIONES 
 

• Se recomienda que la UNSAAC y otras universidades integren algoritmos de emparejamiento 

como ELO, Glicko-2 y TrueSkill en sus sistemas de gestión académica, con el fin de identificar 

tempranamente a estudiantes en riesgo con bajo rendimiento y facilitar una mejor 

implementación de tutorías, programas de nivelación y estrategias pedagógicas focalizadas. 

Dado que los tres modelos presentan fortalezas complementarias —ELO en la detección de 

casos críticos, TrueSkill en la discriminación de rangos intermedios y Glicko-2 en la robustez 

global de sus correlaciones—, resulta conveniente explorar sistemas híbridos que combinen 

sus capacidades para maximizar la precisión diagnóstica y reducir sesgos. 

• Asimismo, se recomienda profundizar en la optimización de hiperparámetros para mejorar la 

estabilidad y precisión de los modelos. En el caso de ELO, el valor de K determina la 

sensibilidad de las actualizaciones; en TrueSkill, los márgenes de empate y las distribuciones 

iniciales pueden generar sesgos; mientras que en Glicko-2 los parámetros de volatilidad (σ) y 

ajuste (τ) suelen definirse experimentalmente. Por ello, se sugiere realizar pruebas adicionales, 

análisis de sensibilidad y validaciones cruzadas que permitan perfeccionar su desempeño en 

distintos contextos académicos. 

• Finalmente, se recomienda garantizar la ética y confidencialidad en el uso de estas técnicas, 

asegurando que la clasificación no se convierta en una etiqueta sancionadora, sino en un 

insumo para la mejora del aprendizaje y la permanencia estudiantil. Para futuros trabajos, se 

sugiere ampliar la aplicación de estos algoritmos a otras universidades y niveles educativos, 
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así como su integración con técnicas de inteligencia artificial y análisis predictivo que permitan 

ajustar los modelos en tiempo real y fortalecer su implantación en entornos académicos. 
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ANEXOS 

Figura 23 

Anexo 1: Solicitud de acceso a registros académicos dirigida al Centro de Cómputo 
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Figura 24 

Anexo 2: Pseudocódigo de implementación de algoritmo ELO por Alumno 
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Figura 25 

Anexo 3: Pseudocódigo de implementación de algoritmo ELO por Curso y Ejecución 
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Figura 26  

Anexo 4: Pseudocódigo de implementación de algoritmo Glicko-2 adaptativo por Alumno 
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Figura 27 

Anexo 5: Pseudocódigo de implementación de algoritmo Glicko-2 por Curso y Ejecución 
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Figura 28 

Anexo 6: Pseudocódigo de implementación de algoritmo TrueSkill TTT-D por Alumno 
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Figura 29  

Anexo 7: Pseudocódigo de implementación de algoritmo TrueSkill TTT-D por Curso y Ejecución 

 

 


