UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA GEOLÓGICA, MINAS Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS

ANÁLISIS COMPARATIVO DE LOS MÉTODOS DE MODELAMIENTO IMPLÍCITO Y EXPLÍCITO PARA LA ELABORACIÓN DEL MODELO GEOMECÁNICO TRIDIMENSIONAL EN MINERA BATEAS - AREQUIPA-2024

PRESENTADO POR:

Bach. ROCIO LAURA CHOQUE ALARCON

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO GEOLOGO

ASESOR:

Ing. MAURO ZEGARRA CARREON

CUSCO - PERÚ

2025

Universidad Nacional de San Antonio Abad del Cusco INFORME DE SIMILITUD

(Aprobado por Resolución Nro.CU-321-2025-UNSAAC)

El que suscribe	, el Asesor MAURO ALBERTO ZEGARRA CARREON	
	quien aplica el software de detecc	ción de similitud a
	tigación/tesistitulada: ANÁLISIS COMPARATIVO DE LO	
METODOS I	E MODELAMIENTO IMPLÍCITO Y EXPLÍCITO PARA	LA
ELABORACIO	N DEL MODELO GEOMECÁNICO TRIDIMENSIONAL	EN
MINERA BI	ATEAS - AREQUIPA - 2024 .	
	ROCIO LAURA CHOQUE ALARCON DNI N°	
Para optar el tít	ulo Profesional/Grado Académico deINGENTERO GEOLO	GO
Informo que el	trabajo de investigación ha sido sometido a revisión por 0.2 v	veces, mediante e
Software de Sir	militud, conforme al Art. 6° del <i>Reglamento para Uso del Sist</i> e	ema Detección de
Similitud en la U	JNSAAC y de la evaluación de originalidad se tiene un porcentaje o	de <mark>8</mark> %.
Evaluación y acciones del reporte de coincidencia para trabajos de investigación conducentes a		
	grado académico o título profesional, tesis	
Porcentaje	Evaluación y Acciones	Marque con una (X)

Porcentaje	Evaluación y Acciones	Marque con una (X)
Del 1 al 10%	No sobrepasa el porcentaje aceptado de similitud.	×
Del 11 al 30 %	Devolver al usuario para las subsanaciones.	
Mayor a 31%	El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.	

Por tanto, en mi condición de Asesor, firmo el presente informe en señal de conformidad y **adjunto** las primeras páginas del reporte del Sistema de Detección de Similitud.

Cusco, 06 de OCTUBRE de 20.2.5

Firma

Post firma MAURO ALBERTO ZEGARRA CARREON

Nro. de DNI... 23.84.8124

ORCID del Asesor. 0000 - 0003 - 0716 - 3980

Se adjunta:

- 1. Reporte generado por el Sistema Antiplagio.
- 2. Enlace del Reporte Generado por el Sistemade Detección de Similitud: oid: 27259:499558691

Rocio Laura Choque Alarcón

ANALISIS COMPARATIVO DE LOS METODOS DE MODELAMIENTO IMPLICITO Y EXPLICITO PARA LA ELABOR...

Universidad Nacional San Antonio Abad del Cusco

Detalles del documento

Identificador de la entrega trn:oid:::27259:499558691

Fecha de entrega 16 sep 2025, 3:23 p.m. GMT-5

Fecha de descarga 16 sep 2025, 3:35 p.m. GMT-5

Nombre del archivo VERSION FINAL_R.CH_REV0.pdf

Tamaño del archivo 5.3 MB

138 páginas

37.111 palabras

194.198 caracteres

Página 2 de 147 - Descripción general de integridad

Similitud general 8%

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Texto citado
- Texto mencionado
- Coincidencias menores (menos de 10 palabras)

Exclusiones

N.º de coincidencias excluidas

Fuentes principales

Fuentes de Internet

III Publicaciones

Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alerta de integridad para revisión

Caracteres reemplazados 46 caracteres sospechosos en N.º de páginas

Las letras son intercambiadas por caracteres similares de otro alfabeto.

Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirlo de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo, recomendamos que preste atención y la revise.

DEDICATORIA

A la memoria de mis abuelos, Mario Alarcón Quintanilla y María Bárcena, quienes hicieron de mi infancia una etapa llena de amor. Aunque ya no estén físicamente, sé que estarían orgullosos de este logro, los llevo conmigo en cada paso que doy.

A mi princesa, Marleny Alarcón, por motivarme a dar siempre lo mejor de mí, por su compañía y por ser mi apoyo incondicional en cada etapa de mi vida.

A mis hermanos: Fiorela, Armandito, Valeria, Antonella y Dieguito, por ser mi inspiración diaria y el pilar que me impulsa a seguir creciendo.

Con amor,

Rocío Laura

AGRADECIMIENTOS

A Dios, por bendecirme con la vida y la oportunidad de compartir este logro con las personas que más amo.

Detrás de cada meta alcanzada hay esfuerzo, sacrificio y muchas personas que forman parte del camino. Agradezco con todo mi corazón a mi familia, por su amor, paciencia y apoyo incondicional. Cada palabra de aliento y cada gesto de cariño han sido fundamentales en mi desarrollo personal y profesional.

A mi mentor, el Ing. Noe Cabello, por su guía constante y acompañamiento durante el desarrollo de este trabajo de investigación. Sus orientaciones técnicas, sugerencias y observaciones optimizó el resultado del estudio. Agradezco también la confianza depositada en mi trabajo y desempeño.

Al Ing. Gaither De la Sota, por la oportunidad de dar mis primeros pasos como profesional en Geomecánica Latina, experiencia que marcó el inicio de mi crecimiento en esta disciplina.

A mi maestra Erika Lira y a su familia, por la excelente formación en mis primeros años de estudio en el colegio y por su apoyo incondicional incluso después de mi egreso de la universidad.

A mis tíos, Alexander Alarcón y Janet Bárcena, por cuidarme desde niña y acompañarme en los momentos más importantes de mi vida. Tenerlos a mi lado es una bendición.

A mis amigos, Roly Aymachoque, Jonathan Benito y Úrsula Alarico, por demostrarme que el tiempo y la distancia no debilitan la amistad, sino que la hacen más fuerte.

A mis colegas, el Ing. Luis Arce y Thalia Sipión, por su colaboración en las campañas de recolección de datos e información necesaria para el desarrollo de esta investigación.

A mi alma máter, la Universidad Nacional San Antonio Abad del Cusco y a todos los que formaron parte de este proceso.

Con cariño,

Rocío Laura

ÍNDICE

RESUMEN	
ABSTRACT	
INTRODUCCIÓN	
CAPÍTULO I: Generalidades	
1.1. Ámbito de Estudio	
1.1.1 Localización Política	
1.1.2 Localización Geográfica	
CAPÍTULO II: Planteamiento del Problema	17
2.1 Situación Problemática	17
2.2 Formulación de problema	
2.2.1 Formulación del problema general	
2.2.2 Formulación del problema específicos	
2.3 Justificación de la investigación	
2.4 Objetivos	
2.4.1 Objetivo General	
2.4.2 Objetivos Específicos	20
CAPÍTULO III: Marco Teórico Conceptual	21
3.1 Bases Teóricas	21
3.1.1 Antecedentes Locales	21
3.1.2 Antecedentes nacionales	21
3.1.3 Antecedentes internacionales	23
3.2 Marco Conceptual	25
3.2.1 Modelo Implícito	25
3.2.2 Modelo Explícito	27

3.2.3 Logueo Geomecánico	28
3.2.4 Mapeo Geomecánico	28
3.2.5 Geoestadística	29
3.2.6 Variables aleatorias	29
3.2.7 Variable discreta	29
3.2.8 Variable Continua	30
3.2.9 Variable Estocástica	30
3.2.10 Variables regionalizadas	31
3.2.11 Análisis variográfico	31
3.2.12 Análisis exploratorio de datos.	32
3.2.13 Kriging ordinario	32
3.2.14 Validación cruzada	33
3.2.15 Medidas de dispersión o diseminación	33
3.2.16 Media	33
3.2.17 Varianza	34
3.2.18 Desviación Estándar	35
3.2.19 Error Estándar de la Media	35
3.2.20 Nivel de Confianza	36
3.2.21 Intervalo de Confianza (IC)	36
3.2.22 Probabilidades	37
3.2.23 Función de Distribución Acumulativa de la Variable Aleatoria Discreta	37
3.2.24 Elipsoide de Búsqueda (Modelamiento)	38
3.2.25 Métodos de Interpolación: Métodos Determinísticos y Probabilísticos	38
3.2.26 Distancia Inversa Ponderada (IDW)	39
3.2.27 Studio RM de Datamine	39

	3.3 Antecedentes empíricos de la investigación	40
	3.3.1 Geología	40
	3.3.2 Geomorfología	45
	3.3.3 Hidrología	46
	3.3.4 Hidrogeología	48
	3.3.5 Geología Estructural	53
	3.3.6 Clasificación Geomecánica	55
	3.4 Hipótesis	56
	3.4.1 Hipótesis General	56
	3.4.2 Hipótesis Específicas	56
	3.5 Identificación de Variables e Indicadores	57
	3.5.1 Variables Independientes	57
	3.5.2 Variable Dependiente	57
	3.6 Operacionalización de Variables	57
C	APÍTULO IV: Metodología de la Investigación	59
	4.1 Tipo y nivel de investigación	59
	4.1.1 Tipo de Investigación	59
	4.2.2 Nivel de Investigación	59
	4.2.3 Método de Investigación	59
	4.3. Unidad de análisis	60
	4.3.1 Parámetros del RMR	60
	4.4. Población de Estudio	62
	4.5. Tamaño de muestra	62
	4.6. Técnicas de selección de muestra	62
	4.6.1 Criterios de selección de muestras	62

4.7. Técnicas de recolección de información	63
4.7.1. Recursos primarios: Investigaciones en Campo	63
4.7.2 Recursos complementarios	66
4.8 Técnicas de análisis e interpretación de la información	67
4.8.1 Proceso y análisis de datos	67
4.8.2 Construcción del Modelo Geomecánico tridimensional	68
4.9 Técnicas para demostrar la verdad o falsedad de las hipótesis planteadas	69
4.9.1 Definición de lineamientos para la obtención de datos	69
4.9.2 Criterios de Comparación de secuencia de modelado	69
4.9.3 Análisis de precisión y eficiencia	69
CAPÍTULO V: Resultados	70
5.1. Definición de los criterios y lineamientos para la obtención y registro de datos en investigaciones geomecánicas	
5.2 Secuencia de modelado para los métodos: implícito y explícito, destacando sus	
características intrínsecas y diferencias	71
5.2.1 Análisis de datos	71
5.2.2 Construcción del Modelo Geomecánico tridimensional	81
5.3 Análisis de ventajas y desventajas de los métodos de modelado implícito y explíc	ito para la
elaboración del Modelo Geomecánico 3D de la Mina Bateas.	
5.3.1 Método Implícito	97
5.3.2 Método Explícito	97
CAPÍTULO VI: Discusión de Resultados	99
CONCLUSIONES	101
RECOMENDACIONES	102
REFERENCIAS BIBLIOGRAFÍCAS	103
ANEXOS	105

Anexo 1: Matriz de consistencia	. 106
Anexo 2: Instrumentos de recolección de información	. 107
Anexo 3: Registro Geomecánico en Sondajes Diamantinos	. 108
Anexo 4: Registro Geomecánico mediante Líneas de Detall	. 112
Anexo 5: Registro Geomecánico mediante Celdas	. 116
Anexo 6: Base de datos parcial de los valores del registro Geomecánico	. 120
Anexo 7: Resultados de laboratorio	. 131
Anexo 8: Plano com información litológica y estructural en el nivel 12 de la Mina Bateas	. 133
Anexo 8: Base de datos parcial de las estructuras (Diaclasas y Fallas)	. 134

LISTA DE FIGURAS

Figura 1: Ubicación del proyecto	16
Figura 2: Modelo Geomecánico elaborado por el método implícito	26
Figura 3: Modelo Geomecánico elaborado por el método explícito	27
Figura 4: Columna estratigráfica del distrito de Caylloma	42
Figura 5: Geología Local de la zona de estudio.	48
Figura 6: Fisiografía e hidrografía del área de Estudio	48
Figura 7: Modelo hidrogeológico conceptual, Minera Bateas	51
Figura 8: Presencia de agua en las labores subterráneas	53
Figura 9: Principales estructuras en el ámbito de la Mina Bateas	54
Figura 10: Registro Geomecánico de la masa rocosa en sondajes diamantinos	63
Figura 11: Registro Geomecánico de la masa rocosa mediante líneas de detalle	65
Figura 12: Registro Geomecánico de la masa rocosa mediante celdas.	66
Figura 13: Histograma de Frecuencias de la base de datos Geomecánicos	72
Figura 14: Distribución de probabilidad (RMR)	73
Figura 15: Función de distribución acumulativa de la probabilidad (RMR)	73
Figura 16: Diagrama estereográfico de diaclasas, densidad de polos en rocas caja	74
Figura 17: Diagrama estereográfico de diaclasas, rosetas de diaclasas	75
Figura 18: Diagrama estereográfico de diaclasas, densidad de polos	75
Figura 19: Diagrama estereográfico de diaclasas, rosetas de diaclasas	76
Figura 20: Diagrama estereográfico de fallas, densidad de polos	76
Figura 21: Diagrama estereográfico de fallas, rosetas de fallas	77
Figura 22: Vista tridimensional del registro geomecánico en sondajes diamantinos	81

Figura 23: Vista tridimensional del registro geomecánico en líneas de detalle	82
Figura 24: Vista tridimensional del registro geomecánico en celdas.	82
Figura 25: Delimitación de los dominios cercano y lejano a la estructura mineralizada	84
Figura 26: Variograma de índices RMR para el eje X	84
Figura 27: Alcance en el eje Y	84
Figura 28: Alcance en el eje Z	85
Figura 29: Plano nivel 4500 mostrando el índice RMR en el Modelo y sondajes	86
Figura 30: Sección transversal mostrando el índice RMR en el Modelo y sondajes	87
Figura 31: Vista Isométrica	87
Figura 32: Vista Isométrica	88
Figura 33: Vista Isométrica, modelo geométrico y modelo de bloques interceptada con la s	sección
18.	
Figura 34: Vista en planta de las líneas de sección	89
Figura 35: Sección transversal con información de las investigaciones geomecánicas	90
Figura 36: Sección en planta con información de la zonificación geomecánica	90
Figura 37: Sección transversal interpretada	91
Figura 38: Proceso de interpolación por el método explícito	92
Figura 39: Vista Isométrica de secciones unidas	93
Figura 40: Sección interpretada N° 78	93
Figura 41: Vista Isométrica del modelo Geomecánico 3D – Método Explícito	94
Figura 42: Secciones de comparación, zona SW	95
Figura 43: Secciones de comparación, zona NE	96

LISTA DE TABLAS

Tabla 1: Localización Política	15
Tabla 2: Localización Geográfica	15
Tabla 3: Clasificación RMR del macizo rocoso	56
Tabla 4: Operacionalización de variables	58
Tabla 5:Parámetros del RMR89	61
Tabla 6: Tamaño de muestra	62
Tabla 7: Registro Geomecánico en sondajes diamantino por campaña	64
Tabla 8:Registro Geomecánico mediante Líneas de detalle	64
Tabla 9: Registro Geomecánico mediante celdas	66
Tabla 10: Criterios para la clasificación geomecánica	70
Tabla 11: Resultado del análisis estadístico de la base de datos geomecánicos	71
Tabla 12: Análisis de frecuencia de la base de datos Geomecánicos	71
Tabla 13: Análisis de probabilidades de la base de datos Geomecánicos	72
Tabla 14: Sistemas de discontinuidades estructurales	77
Tabla 15: Clasificación geomecánica en las rocas caja	79
Tabla 16: Clasificación geomecánica en el ámbito de la mineralización	80
Tabla 17: Alcance del elipsoide de búsqueda para la estimación RMR	85

LISTA DE ABREVIATURAS

RMR – Rock Mass Rating – Clasificación del macizo rocoso de Bieniawski

RQD – Rock Quality Designation – Índice de calidad de la roca

UCS – Uniaxial Compressive Strength – Resistencia a la compresión uniaxial

ASTM - American Society for Testing and Materia /Sociedad Americana para Pruebas y Materiales.

GSI – Geological Strength Index – Índice geológico de resistencia

IDW – Inverse Distance Weighting – Distancia inversa ponderada

EEM – Error Estándar de la Media

BLUE – Best Linear Unbiased Estimator – Mejor estimador lineal insesgado

FDA – Función de Distribución Acumulativa

ISRM – International Society for Rock Mechanics

SIG – Sistema de Información Geográfica

IC – Intervalo de Confianza

NE – Noreste

SW – Suroeste

RM – Resource Model – Modelo de Recursos

RESUMEN

El presente trabajo desarrolla un análisis comparativo entre dos metodologías de modelamiento: implícito y explícito, para la construcción del modelo geomecánico tridimensional de la mina Bateas ubicada en Arequipa. La investigación se sustenta con los registros geomecánicos obtenidos en campo en las diferentes campañas de investigación, laboratorio e información complementaria de la mina que incluyó: 47155.2 m lineales de sondajes diamantinos, distribuidos en 260 sondajes y 3,398.59 m de mapeo geomecánico, valores expresados mediante el índice de clasificación RMR (Rock Mass Rating).

Los datos fueron integrados en el software Studio RM de Datamine, para generar los sólidos geomecánicos para ambas metodologías. El modelo implícito fue elaborado a partir de algoritmos de interpolación condicionado por el elipsoide de búsqueda, su procesamiento es más corto en cuestión de tiempo y recursos, sin embargo, presenta limitaciones en cuanto a la precisión de los dominios geomecánicos. En contraste, el método explícito se basó en la interpretación de 140 secciones transversales orientadas de forma perpendicular a la estructura mineralizada, permitiendo correlacionar con la información litológica y estructural observadas en campo.

En conclusión, los resultados muestran que el método explícito proporciona una representación más realista de la masa rocosa, evidencia con mayor precisión y coherencia los dominios geomecánicos en relación a la estructura mineralizada y su entorno, concordancia con la litología, geología estructural y las observaciones realizadas en campo.

Palabras clave: Modelo Geomecánico 3D, Método Implícito, Método explícito, Rock Mass Rating.

ABSTRACT

This study presents a comparative analysis of two modeling methodologies: implicit and explicit, for the construction of the three dimensional geomechanical model of the Bateas mine, located in Arequipa. The research is supported by geomechanical records obtained from field investigation campaigns, laboratory testing, and complementary mine data, which included 47,155.2 linear meters of diamond drilling distributed across 260 drill holes, and 3,398.59 meters of geomechanical mapping, with values expressed through the Rock Mass Rating (RMR) classification system.

The data were integrated into Datamine's Studio RM software to generate geomechanical solids for both methodologies. The implicit model was developed using interpolation algorithms conditioned by the search ellipsoid. This process requires less time and fewer resources; however, it presents limitations in terms of accuracy when defining geomechanical domains. In contrast, the explicit method was based on the interpretation of 140 cross-sections oriented perpendicularly to the mineralized structure, enabling correlation with lithological and structural information observed in the field.

In conclusion, the results show that the explicit method provides a more realistic representation of the rock mass, evidencing geomechanical domains with greater precision and consistency in relation to the mineralized structure and its surroundings, in agreement with lithology, structural geology, and field observations.

Keywords: 3D Geomechanical Model, Implicit Method, Explicit Method, Rock Mass Rating.

INTRODUCCIÓN

El modelo Geomecánico tridimensional en minería subterránea es una herramienta fundamental para la planificación y operación de sus actividades. Debido a la complejidad en el diseño minero, surge la necesidad de desarrollar herramientas de modelado más precisas y eficientes. En este contexto, se plantea la interrogante sobre cuál de los métodos de modelado es el más adecuado para la elaboración del Modelo Geomecánico 3D de Minera Bateas, el método implícito o el método explícito. Por ello, el objetivo del presente trabajo es realizar el análisis comparativo entre ambas metodologías, para determinar cuál de estos proporciona mayor confiabilidad, precisión y eficiencia para la elaboración del modelo Geomecánico 3D de la mina Bateas.

En el Capítulo I se presentan las generalidades del estudio, describiendo el ámbito geográfico y político de la Mina Bateas, ubicada en Caylloma, Arequipa.

El Capítulo II aborda el planteamiento del problema, destacando la falta de un modelo geomecánico 3D confiable. Se formula el problema general y los específicos, se plantean los objetivos, se justifica la importancia de comparar ambos métodos de modelamiento en función de su aplicabilidad en la mina.

En el Capítulo III se desarrolla el marco teórico y conceptual. Se revisan antecedentes locales, nacionales e internacionales de estudios similares, se conceptualizan términos claves. Además, se presenta información de la geología, geomorfología, hidrogeología y clasificación geomecánica de la Mina Bateas. Finalmente, se formulan las hipótesis y se identifican las variables de estudio.

El Capítulo IV expone la metodología de investigación, donde se describe el tipo y nivel de estudio, los métodos aplicados y la unidad de análisis. Se establecen la población, muestra y criterios de selección, así como las técnicas de recolección de los datos de entrada. También se explica el procesamiento de la información en el software Studio RM y los criterios de comparación entre ambos métodos de modelado.

El Capítulo V presenta los resultados obtenidos. En esta sección se muestran los criterios aplicados en la recopilación de datos, la secuencia de modelado para ambos métodos y la construcción de sólidos tridimensionales. Asimismo, se realiza un análisis comparativo de ventajas y desventajas.

El Capítulo VI corresponde a la discusión, donde se contrastan los hallazgos con investigaciones previas, los resultados obtenidos y la hipótesis planteada.

Finalmente, se presentan las conclusiones y recomendaciones, que sintetizan los principales aportes del estudio y sugieren lineamientos para mejorar la práctica de modelamiento geomecánico en futuras investigaciones y proyectos mineros.

El resultado, no solo beneficiará directamente a la seguridad y eficiencia de las operaciones en Minera Bateas, sino que también contribuirán al avance del conocimiento en el campo de la geomecánica, pudiendo servir como base para futuras investigaciones y aplicaciones en contextos geológicos y mineros similares.

CAPÍTULO I: Generalidades

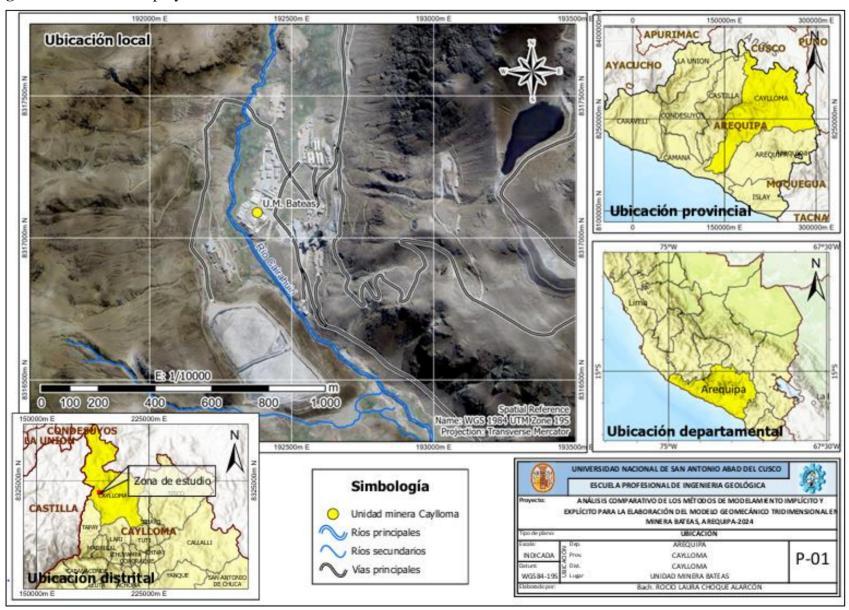
1.1. Ámbito de Estudio

1.1.1 Localización Política

La zona de estudio se encuentra ubicada en la zona sur del Perú, distrito y provincia de Caylloma, región Arequipa a una distancia aproximada de 300 km de recorrido vía terrestre desde la ciudad de Arequipa. El estudio se realizó en las excavaciones subterráneas y su entorno físico. (Ver plano 01 y Figura 1).

Tabla 1: Localización Política

Nivel	Nombre
Departamento	Arequipa
Provincia	Caylloma
Distrito	Caylloma


1.1.2 Localización Geográfica

La unidad minera se encuentra ubicada en las siguientes coordenadas:

Tabla 2: Localización Geográfica

Coordenadas			
Geográficas	Latitud 1	15°12'14.65"	
	Longitud 7	'1°51'46.83"	
UTM-WSG84	Este (m)	192388	
Zona 19 L	Norte (m)	8317086	
	Altura (m)	< 4500	

Figura 1: Ubicación del proyecto

CAPÍTULO II: Planteamiento del Problema

2.1 Situación Problemática

La elaboración del Modelo Geomecánico 3D de una unidad minera, es una herramienta fundamental para la evaluación y planeamiento de las operaciones mineras, ya que permite garantizar la seguridad y eficiencia de las mismas.

Existen dos enfoques generales para la elaboración de un Modelo Geomecánico 3D: el modelamiento implícito y explícito, cada método tiene sus ventajas y desventajas en términos de precisión, tiempo de elaboración y recursos necesarios.

En países como Estados Unidos, Canadá y Australia, afrontan el problema de elegir entre los enfoques de modelamiento implícito y explícito de forma estratégica. Estas unidades mineras combinan ambos enfoques: el modelamiento implícito para una evaluación rápida al inicio de sus operaciones y el modelamiento explícito para las labores que requieren de más detalle.

En Perú afrontan el mismo problema, realizando la comparación de estos enfoques de modelamiento adaptadas a las condiciones y recursos disponibles de cada unidad minera.

La falta de un modelo Geomecánico 3D confiable, puede traer diferentes dificultades, como riesgos para la seguridad del personal, planificación ineficiente, mayores costos operativos y pérdida de productividad.

Esta investigación busca identificar cuál de los dos métodos de modelado representa con mayor exactitud la realidad geomecánica y geológica de la mina Bateas, con el objetivo de optimizar la toma de decisiones según las condiciones que específicas que presenta su entorno.

2.2 Formulación de problema

2.2.1 Formulación del problema general

En el análisis comparativo, ¿cuál de los métodos de modelamiento, implícito y explícito es el más adecuado en términos de confiabilidad, precisión y eficiencia para la elaboración del Modelo Geomecánico 3D de Minera Bateas?

2.2.2 Formulación del problema específicos

- ¿Cuáles son los criterios y lineamientos que se deben considerar para la recopilación de datos en las investigaciones geomecánicas?
- ¿Cuáles son las diferencias más relevantes de la secuencia de modelado del método implícito y explícito?
- ¿Cuáles son las ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de Minera Bateas?

2.3 Justificación de la investigación

La importancia de esta investigación se basa en la necesidad de elaborar un modelo Geomecánico tridimensional confiable de la Mina Bateas, que permita garantizar operaciones mineras seguras y eficientes.

Para ello, se comparan los métodos de modelado: implícito y explícito, para determinar cuál de estas metodologías proporciona mejores resultados en términos de confiabilidad, precisión y eficiencia.

El análisis comparativo entre estos métodos resulta conveniente porque responde a una problemática recurrente en minería subterránea, determinar qué enfoque brinda mayor confiabilidad y precisión para la caracterización geomecánica.

La relevancia social radica en la prevención de accidentes y proteger la vida de los trabajadores, además de reducir riesgos asociados a problemas geomecánicos. De este modo la investigación promueve prácticas mineras más responsables.

Los resultados de este estudio tienen una implicancia práctica significativa, ya que ofrecen a los profesionales del área de planeamiento y geomecánica criterios para elegir el método de modelado más adecuado en función de las condiciones del yacimiento. Esto se traduce en diseños de explotación más seguros, sostenimiento adecuado y reducción de costos operativos.

El estudio aporta un valor teórico al campo de la geomecánica, ya que al aplicarse en un mismo caso de estudio permite contrastar y comprobar la eficiencia de cada enfoque.

Además, propone un procedimiento replicable para la elaboración de modelos geomecánicos 3D, desde la recolección de datos hasta la construcción en software especializado. Esta sistematización representa una utilidad metodológica valiosa, al ofrecer una guía que puede ser aplicada en otros proyectos mineros de entornos geológicos y mineros similares.

2.4 Objetivos

2.4.1 Objetivo General

Realizar el análisis comparativo entre los métodos de modelado implícito y explícito para la elaboración del modelo Geomecánico 3D de Minera Bateas, con el objetivo de determinar cuál de estos, proporciona mayor confiabilidad, precisión y eficiencia.

2.4.2 Objetivos Específicos

- Definir los criterios y lineamientos para la obtención y registro de datos en las investigaciones geomecánicas.
- Establecer la secuencia de modelado para los métodos: implícito y explícito, destacando sus características intrínsecas y diferencias.
- Analizar las ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de Minera Bateas.

CAPÍTULO III: Marco Teórico Conceptual

3.1 Bases Teóricas

3.1.1 Antecedentes Locales

3.1.1.1 Antecedente I

Quevedo A. (2018), en su tesis "Modelamiento Geomecánico de la Veta Animas en mina Caylloma- Arequipa", tiene como objetivo la elaboración del modelo Geomecánico 3D en la Veta Animas, utilizando la información recopilada del logueo geomecánico de los sondajes diamantinos, los mapeos geomecánicos hasta el nivel 12 expresados en valores RMR y ensayos de mecánica de rocas. Para la interpretación e identificación de los dominios geomecánicos se llevaron a cabo 11 secciones, estas secciones extrapoladas fueron utilizadas para generar sólidos basados en los valores de RMR89, lo que permitió el diseño del modelo geomecánico 3D de la mina.

Este trabajo de investigación sirve como referencia para los resultados obtenidos en el modelo geomecánico, el cual abarca los niveles superiores de la Mina Bateas. Dicho modelo proporciona información sobre las condiciones geológicas y geomecánicas en valores de RMR. Cabe resaltar que, para su elaboración, se emplearon ambos enfoques de modelado de forma simultánea: el método implícito y el explícito.

3.1.2 Antecedentes nacionales

3.1.2.1 Antecedente I

Gálvez J, (2019), en su tesis "Estimación geoestadística del RQD, RCU, JRC y densidad aplicada a entender el comportamiento Geomecánico del Cerro La Falda, La Encañada – Cajamarca, 2019", Se enfoca en emplear técnicas geoestadísticas para analizar y comprender la

variabilidad espacial de parámetros Geomecánicos, entre estos el RQD, RCU, JRC y densidad en la región del cerro la Falda. Estos parámetros cuantitativos permiten aplicar métodos estadísticos y geoestadísticos como el variograma y el kriging ordinario, ofreciendo una representación detallada de sus distribuciones espaciales. Los resultados mostraron que los parámetros Geomecánicos del macizo rocoso en el sector La Falda son totalmente independientes, por lo tanto, es importante siempre tratarlos de manera separada y no asumir dependencia entre dichos parámetros.

El aporte de este trabajo de investigación resalta que la base de datos tiene naturaleza numérica lo que permite utilizar una metodología geoestadística. El estudio en el cerro La Falda concluyen con una buena correlación entre los valores reales y predictivos, sin embargo, para aplicar correctamente un método geoestadístico como el Kriging es fundamental revisar si estos datos presentan un patrón espacial.

3.1.2.2 Antecedente II

Llamoctanta J, (2018), en su tesis "Estimación del comportamiento de parámetros geomecánicos aplicando técnicas geoestadísticas en la concesión Mi Grimalda1, Caserío de Piñipata, Hualgayoc- Cajamarca", se enfoca en la utilización de técnicas geoestadísticas para evaluar la variabilidad espacial de los parámetros geomecánicos (Variables de naturaleza numérica). En este estudio, se analizaron parámetros como RQD (Rock Quality Designation), RCU (Resistencia a la compresión uniaxial) y JRC (Coeficiente de rugosidad conjunta), con el objetivo de entender mejor el comportamiento geomecánico en la concesión minera no metálica Mi Grimalda 1. Mediante la aplicación de variogramas y kriging, se logró interpolar estos parámetros, proporcionando una visión de la distribución espacial de las características geomecánicas. Los resultados mostraron que la estimación del macizo rocoso mediante técnicas

geoestadísticas proporciona una fuente de confiablidad, con la interpolación de los datos se realizó una zonificación del comportamiento del macizo rocoso.

La integración de técnicas geoestadísticas utilizadas en variables numéricas (valores RMR) se ha propuesto para mejorar la precisión y confiabilidad de las predicciones geomecánicas. El aporte para este estudio se basa en el uso organizado de herramientas geoestadísticas y la forma en que se aplican.

3.1.3 Antecedentes internacionales

3.1.3.1 Antecedente I

Alvarado F, (2020), Magister en Minería en su tesis "Modelamiento geoestadístico de la clasificación geomecánica de Bieniawski (RMR)" Se enfoca en la aplicación de la geoestadística para la estimación y clasificación geomecánico (RMR). En este estudio se emplearon métodos de simulaciones para obtener un modelo geotécnico, como la simulación directa y la simulación conjunta considerando el puntaje de RMR, para validar y comparar los datos de RMR obtenidos en campo. El objetivo principal fue generar un modelo predictivo de la clasificación geomecánica de Bieniawski (RMR). Los resultados mostraron que el análisis de ambos enfoques concuerda en el área de estudio. El modelamiento geoestadístico del RMR permitió identificar zonas críticas que requieren una atención especial en términos de estabilidad y diseño de estructuras.

La contribución de los resultados del estudio del modelamiento geoestadístico de los parámetros RMR son importantes. El aporte de las simulaciones geoestadísticas mediante sus métodos pueden ser cruciales para la construcción del modelo Geomecánico 3D, sin embargo, es recomendable definir la naturaleza de la variable en evaluación para aplicar herramientas estadísticas y geoestadísticas.

3.1.3.2 Antecedente II

Villagrán C, (2019), en su tesis "Modelamiento implícito de unidades geotécnicas básicas de mina ministro Hales, región de Antofagasta", compara y examina tanto el modelo implícito como el explícito mediante secciones homólogas y sólidos 3D, buscando contrastes y similitudes en aspectos como geometría, volumen, espesor y forma de los contactos y límites de las unidades. Esto equivale al desarrollo de un modelo implícito, que se considera más eficiente en términos de tiempo y comprensión. Lleva a cabo el análisis del modelado implícito de las unidades geotécnicas básicas, identificando las diferencias y similitudes con el modelo explícito utilizando el software de modelado Leapfrog Geo 4.2. Primero realiza una revisión de la base de datos y controles geológicos, definiendo los límites o superficies de contacto entre las unidades. Concluye que la obtención del modelo implícito es equivalente al modelo por el método explícito, reduciendo el tiempo de elaboración y como consecuencia mayor productividad en la unidad minera.

El aporte de este trabajo de investigación servirá como base para corroborar los resultados de la equivalencia de la metodología implícita con la metodología explícita en cuestión de tiempo, recursos, eficiencia y precisión.

3.1.3.3 Antecedente III

Bermúdez Martínez, (2019), en su tesis "Impacto del cambio de metodología de modelamiento geológico de método explícito a implícito en división andina-Codelco Chile", realiza una comparación detallada entre los enfoques de modelado geológico explícito e implícito, centrándose en cómo afectan la reinterpretación de las unidades geológicas y, por ende, las unidades utilizadas para estimar las variables del modelo de recursos. Se concluye que el enfoque implícito permite generar modelos en menos tiempo en comparación con el enfoque explícito, ya

que logra una interpolación espacial óptima al integrar los datos de sondeo con las unidades geológicas de manera eficiente.

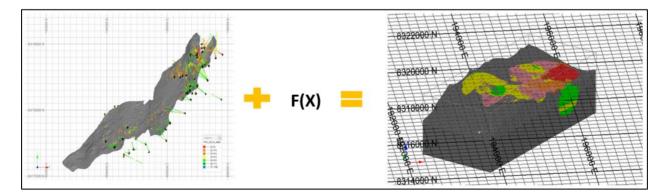
El aporte de esta tesis es la proporción de una guía práctica para evaluar la precisión, la eficiencia y aplicabilidad (tiempo y recursos) de los métodos de modelamiento implícito y explicito en variables regionalizadas para compararlas con la elaboración del modelo Geomecánico 3D con ambas metodologías en base a variables discretas.

3.2 Marco Conceptual

3.2.1 Modelo Implícito

Hernández G, (2022). Indica que este método se obtiene evaluando un conjunto de datos de entrada mediante una función matemática a través del espacio, este método es automatizado.

Cowan et al., (2003). Menciona que el método de modelado implícito fue desarrollado con el propósito de generar modelos geológicos directamente a partir de los datos de entrada, evitando así la labor manual de digitalizar cada nodo de triangulación. Este modelo puede ser ajustado y mejorado según sea necesario, pero su creación fundamentalmente se basa en algoritmos informáticos que combinan datos medidos e interpretaciones del usuario. La contribución del geólogo se manifiesta a través de la introducción de tendencias, temporalidades de las unidades y otros términos geológicamente significativos. En lugar de digitalizar manualmente cada nodo de triangulación, el método utiliza funciones de base radial.

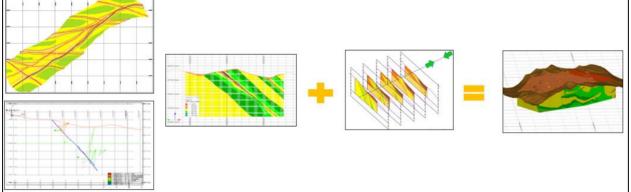

Caumon G. Viseur S. Le Loc'h G. y Sausse J (2008) Definen el modelo implícito como una representación tridimensional de la geometría de las estructuras geológicas y sus propiedades que se construye a partir de datos geológicos y geofísicos mediante técnicas de interpolación y

modelado matemático. Este modelo proporciona una representación continua y suave de la subsuperficie terrestre, permitiendo la visualización y análisis detallados de la distribución de las formaciones geológicas.

M. Robson J. y R. Ruffell A. (2009) Conceptualizan el modelo implícito como una técnica que permite la construcción de modelos geológicos tridimensionales a partir de datos de superficie y subsuelo. Utiliza algoritmos matemáticos para inferir la geometría y las características de las formaciones geológicas entre los puntos de datos conocidos, lo que resulta en una representación continua y realista de la subsuperficie.

Boucher R. y Rivas S. (2010) Definen el modelo implícito como una aproximación matemática de la distribución de las propiedades geológicas en el subsuelo. Este modelo se construye a partir de datos de muestreo, perforación y geofísica, utilizando algoritmos de interpolación para estimar las características de la formación entre los puntos de datos conocidos. El resultado es un modelo tridimensional que proporciona una representación detallada de la estructura y composición del subsuelo.

Figura 2: Modelo Geomecánico elaborado por el método implícito


3.2.2 Modelo Explícito

Hernández G, (2022). Indica que el modelo explícito Es un proceso completamente manual, que consta unir las unidades similares mediante polilíneas, se realiza en dos conjuntos de secciones transversales, para posteriormente unir las intersecciones en un tercer conjunto de secciones en plantas y triangularlo resultando en un conjunto de sólidos posibles de cubicar.

Boyle y Latscha, (2013). Señala que el modelado explícito representa la metodología más tradicional y extendida para delinear los límites de las unidades geológicas y las envolventes de ley. En este enfoque, el geólogo de modelado utiliza secciones transversales para llevar a cabo la interpretación, las cuales son explícitamente definidas por el usuario. Estas secciones bidimensionales se combinan para formar superficies tridimensionales.

Cowan et al., (2003). El modelador identifica y traza estructuras geológicas como vetas y fallas de manera explícita en secciones regularmente espaciadas. Aunque el modelador puede emplear datos para orientar el dibujo y puede haber herramientas para agilizar el proceso, esencialmente se trata de un procedimiento manual de dibujo.

Figura 3: Modelo Geomecánico elaborado por el método explícito

3.2.3 Logueo Geomecánico

Se define como la recolección, descripción y clasificación de propiedades físicas y estructurales de muestras obtenidas en perforación, esto con el fin de evaluar el comportamiento mecánico del subsuelo.

Según la International Society for Rock Mechanics (ISRM, 2007), el logueo geomecánico caracteriza la masa rocosa para fines de estabilidad, diseño de excavaciones y análisis estructurales.

Sönmez y Ulusay (2002) destacan lo esencial de esta práctica para la aplicación de sistemas de clasificación geomecanica como el RMR (Rock Mass Rating) y Q-system, que determinan la calidad del macizo rocoso y su comportamiento.

3.2.4 Mapeo Geomecánico

Es una técnica que caracteriza la masa rocosa y evalúa su comportamiento mecánico para esto identifica, registra y analiza las condiciones geológicas y estructurales de afloramientos rocosos o superficies expuestas.

Según Bieniawski (1989), el mapeo geomecánico nos ayuda en la clasificación de macizos rocosos, la cual se logra según los parámetros esenciales como la resistencia de la roca intacta, la orientación y la frecuencia de discontinuidades, y las condiciones de relleno y apertura de fracturas, datos necesarios para la aplicación de sistemas como RMR y Q.

Hoek (2013) afirman que esta técnica es importante para proyectos de ingeniería civil y minería, pues permite generar modelos geotécnicos que orientan el diseño de estructuras.

3.2.5 Geoestadística

Olea, (1999) "Geoestadística, se puede considerar como una colección de técnicas numéricas que permiten la caracterización de atributos espaciales, empleando modelos principalmente aleatorios de una manera similar al análisis temporal de series de tiempo de datos temporales".

Matheron, G (1962), definió a la Geoestadística como "la aplicación del formalismo de las funciones aleatorias al reconocimiento y estimación de fenómenos naturales". La Geoestadística es la aplicación de la Teoría de las Variables Regionalizadas a la estimación de procesos o fenómenos geológicos en el espacio.

3.2.6 Variables aleatorias

Es la herramienta matemática que permite pasar del estudio de sucesos aislados al estudio de las distribuciones de probabilidad, que son funciones reales, por lo tanto, hace posible la aplicación del análisis matemático y de otras herramientas matemáticas a la estadística (Batanero, 2001). Si X es una función que le asigna a cada uno de los resultados de un experimento aleatorio (aquel cuya respuesta no puede ser establecida de antemano) un número real, entonces X se llama una Variable Aleatoria. Estas pueden ser discretas o continuas (Giraldo, 2006).

3.2.7 Variable discreta

Wackernagel, H. (1998), describe las variables discretas en geoestadística como datos que representan características puntuales en el espacio geográfico y que pueden ser contados o enumerarse.

Olea, R. A. (1999) aborda las variables discretas en geoestadística como aquellas que representan atributos puntuales que pueden contarse en ubicaciones específicas. Esto puede incluir variables como la presencia o ausencia de depósitos minerales en sitios de exploración, o el número de afloramientos rocosos en un área determinada.

Cressie, N. (1993) examina el concepto de variables discretas en el contexto de datos espaciales, donde señala que estas variables pueden tomar un conjunto finito o numerable de valores posibles en ubicaciones discretas en el espacio geográfico.

3.2.8 Variable Continua

Cressie, N. (1993) describe las variables continuas en geoestadística como datos que experimentan cambios graduales en el espacio geográfico.

Chiles, J. P. y Delfiner, P. (2012) definen las variables continuas en geoestadística como datos que representan mediciones que pueden tomar un rango infinito de valores dentro de un intervalo específico.

Journel, A. G. y Huijbregts, C. J. (1989) discuten las variables continuas en el contexto de la estimación y predicción de fenómenos geológicos y minerales en yacimientos. Por ejemplo, la concentración de un metal en un depósito mineral sería una variable continua que pueden ser modeladas utilizando técnicas geoestadísticas como la kriging.

3.2.9 Variable Estocástica

Son variables que toman un determinado valor con una cierta probabilidad. Entonces, una variable estocástica X viene definida por el conjunto de posibles valores que puede tener (rango,

conjunto de estados, espacio muestral, o espacio físico) y una distribución de probabilidad sobre este conjunto.

3.2.10 Variables regionalizadas

(Mora.1996) Variable regionalizada fue propuesto por Matheron para calificar un fenómeno que se desarrolla tanto en el espacio y/o en el tiempo y manifiesta una cierta estructura.

Miyashiro (1996) la define como una variable distribuida en el espacio; utilizando para representar un fenómeno natural.

Journel, A. G. y Huijbregts, C. J. (1989) Las variables regionalizadas son aquellas cuyos valores varían de manera espacial y están correlacionados en cierta medida.

Chiles, J. P. y Delfiner, P. (2012) Las variables regionalizadas exhiben dependencia espacial, lo que implica que la información obtenida en un punto geográfico puede usarse para predecir valores en puntos cercanos.

Olea, R. A. (1999) Las variables regionalizadas muestran autocorrelación espacial, lo que significa que los valores en ubicaciones cercanas están más relacionados entre sí que los valores en ubicaciones más distantes.

Ejemplo: En un depósito mineral, la resistencia a la compresión no confinada puede variar considerablemente entre diferentes bloques o unidades litológicas debido a la variabilidad en la composición y la historia geológica.

3.2.11 Análisis variográfico

Pinheiro, (2017). El análisis variográficos permite verificar la clasificación de una función aleatoria en el espacio, la cual puede ser continua o discontinua, así también si es estacionaria o

no dependiendo de si los variogramas se estabilizan en torno a una meseta para distancias de separación grandes.

3.2.12 Análisis exploratorio de datos.

Es un modo de análisis de los datos que utiliza el resumen numérico y visual para explorar datos en busca de patrones no anticipados.

- Según Emery, (2020); lo mencionan como el análisis preparatorio de datos, que tiene como objetivo proporcionar una comprensión global de los datos disponibles y guiar las elecciones futuras con respecto a su modelamiento.
- Según Hartwig y Dearing,(1979), argumentan que el investigador debe aprender todo lo posible acerca de una variable o conjunto de variables antes de utilizar los datos para probar hipótesis o teorías acerca de las relaciones sociales.
- Más recientemente, Eugene Horber y Dominique Ladiray, (1995) plantean que el "razonamiento" exploratorio es un esquema de análisis que enriquece las posibilidades del investigador para hallar nuevas respuestas a los problemas que se plantee.

3.2.13 Kriging ordinario

Alperin, M. (2013) define el kriging como "un método de estimación lineal que calcula los valores de las variables minimizando la varianza del error de estimación, además se le puede describir con la sigla BLUE (Best Linear Unbiased Estimator) para numerar sus propiedades. Adicionalmente, el kriging proporciona un error de estimación conocido como varianza de kriging que no son afectados por los valores medidos de las variables sino de su ubicación espacial y de

los parámetros del modelado del variograma experimental, es decir que considera la variabilidad espacial de la variable en estudio".

3.2.14 Validación cruzada

(Emery, 2013) Sirve para verificar la adecuación entre los datos y los parámetros adoptados de los modelos del variograma y vecindad de kriging, utilizando la llamada validación cruzada. Mediante el método de kriging, se puede calcular el error de estimación que es la diferencia entre el valor estimado y el valor verdadero, realizando el análisis estadístico de los errores cometidos en todos los sitios con datos.

(Rossi & Deutsh, 2014) Esta técnica, a veces también llamada jackknifing, ha sido utilizado para validar modelos de variogramas alternativos. La idea es volver a estimar cada intervalo de muestreo de perforación z (x α) (α = 1, ..., n) ignorando la muestra en esa ubicación y utilizando las otras (n - 1) muestras en la nueva estimación.

3.2.15 Medidas de dispersión o diseminación

Buscan señalar la diseminación que presentan las variables creando intervalos en un conjunto de datos y resumir dicha información en un solo valor tomando como punto de referencia la media aritmética. Mayorga R, et al. "Medidas de dispersión", (2021).

3.2.16 Media

La media o promedio aritmético, es una medida de tendencia central utilizada para representar un conjunto de datos mediante en un valor único. Se obtiene sumando todos los valores y dividiéndolos por la cantidad total de datos observaciones.

$$\mu = \Sigma[x \cdot P(x)]$$

Según Triola (2018), la media permite describir el comportamiento de una variable cuantitativa destaca 1 cuando los datos se distribuyen de forma simétrica y no hay valores atípicos extremos.

Navidi (2021) señala que es utilizada en estudios de ingeniería, geología y ciencias aplicadas para sintetizar resultados de ensayos, mediciones geotécnicas o evaluaciones de propiedades físicas.

3.2.17 Varianza

Es la medida de dispersión que cuantifica la variabilidad de un conjunto de datos con respecto a su media. Se calcula con el promedio de los cuadrados de las diferencias entre cada valor y la media del conjunto:

$$S^2 = rac{\sum (x_i - ar{x})^2}{n-1}$$

De acuerdo con Triola (2018), es un indicador la cual nos permite interpretar la consistencia o heterogeneidad de una muestra, ya que observa qué tan dispersos están los datos. Si la varianza baja nos indicaría que los datos están agrupados cerca de la media y si es una varianza alta representa mayor dispersión.

Navidi (2021) destaca su utilidad en el análisis de incertidumbre y control de calidad en geotecnia y geomecánica, esto para analizar la variabilidad de propiedades físicas de los materiales.

3.2.18 Desviación Estándar

La desviación estándar es una medida de dispersión señala cuánto se alejan, en promedio, los valores de un conjunto de datos respecto a su media. Se obtiene extrayendo la raíz cuadrada de la varianza, y se expresa en las mismas unidades de los datos iniciales:

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

Según Triola (2018), es necesaria para comprender la variabilidad de los datos de forma más precisa que con la varianza, ya que describe directamente el grado de dispersión sin elevar los valores al cuadrado.

Navidi (2021) señala que, en ingeniería y geomecánica, la desviación estándar es clave para estimar la confiabilidad de parámetros como la resistencia de materiales, el grado de fracturamiento o la variabilidad de propiedades geotécnicas.

3.2.19 Error Estándar de la Media

El error estándar de la media (EEM) es una medida estadística la cual cuantifica la variabilidad de la media muestral respecto a la media poblacional, esta se calcula dividiendo la

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

desviación estándar de la muestra entre la raíz cuadrada del tamaño muestral, sirve para estimar la precisión de la media al estimador el parámetro poblacional.

Según Triola (2018), nos muestra lo confiable de una media obtenida en una muestra, la cual resulta menor cuando la muestra es más grande o cuando los datos tienen menor dispersión. El valor hallado servirá para hallar intervalos de confianza y pruebas de hipótesis.

Navidi (2021) destaca que, en ingeniería y ciencias aplicadas, la EEM sirve para estudiar la incertidumbre con respecto a la medición de propiedades físicas en general cuando se trabaja con un número limitado de muestras.

3.2.20 Nivel de Confianza

Es el parámetro estadístico del grado de certeza con el cual se consigue un intervalo de confianza contenga al valor verdadero de un parámetro poblacional. Se expresa en porcentaje, siendo comunes los niveles del 90 %, 95 % o 99 %.

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

De acuerdo con Triola (2018), un nivel de confianza del 95 % nos da a entender que en caso el muestreo se repita varias veces el 95% de los intervalos calculados incluirían la media poblacional verdadera.

Navidi (2021) dice que el nivel de confianza está relacionado con el valor crítico de una distribución estadística, e incluye que, a mayor nivel de confianza, el intervalo de confianza resultante será más amplio.

3.2.21 Intervalo de Confianza (IC)

Denominado como un rango de valores, calculado a partir de datos muestrales, se estima usando un determinado nivel de confianza para hallar un parámetro poblacional desconocido, como la media o la proporción.

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

Según Triola (2018), el IC se determina en torno a la media muestral, la cual se amplía o reduce en función del nivel de confianza elegido y del error estándar.

Navidi (2021), lo define como una herramienta para la inferencia estadística, ya que permite realizar estimaciones y cuantificar la incertidumbre asociada a esas estimaciones. Cuanto mayor es el nivel de confianza, más amplio será el intervalo.

3.2.22 Probabilidades

La probabilidad es una medida cuantitativa sobre la posibilidad de que ocurra un evento específico dentro de un espacio muestral determinado. Se expresa como un valor entre 0 y 1, donde 0 indica imposibilidad absoluta y 1 certeza total.

Triola (2018) la define como la herramienta base de la estadística inferencial, ya que modela los fenómenos aleatorios y ayuda a tomar decisiones bajo condiciones de incertidumbre, las probabilidades podemos dividirlas en teóricas, empíricas y subjetivas.

Navidi (2021) nos dice que, en contextos de ingeniería y ciencias aplicadas, esta se emplea para determinar riesgos, modelar fallas estructurales, planificar mantenimientos y diseñar con márgenes de seguridad adecuados.

3.2.23 Función de Distribución Acumulativa de la Variable Aleatoria Discreta

La función de distribución acumulativa (FDA) de una variable aleatoria discreta se define como una función la cual describe la probabilidad de que dicha variable pueda tomar un valor menor o igual a un determinado número. se expresa como:

$$F(x) = P(X \le x).$$

De acuerdo con Walpole et al. (2012), la FDA en probabilidad y estadística, es la herramiente que permite conocer de forma acumulativa cómo se distribuyen las probabilidades de los distintos valores posibles de una variable.

Navidi (2021) señala que, para variables discretas, la FDA tiene un comportamiento escalonado tipo "step function" por la naturaleza de los valores que toma la variable

3.2.24 Elipsoide de Búsqueda (Modelamiento)

Define la dirección, extensión y forma del espacio alrededor de un punto de muestreo, de esto se logra seleccionar los principales datos para interpolación espacial.

Domínguez y Deutsch (2007) nos dicen que el elipsoide de búsqueda se caracteriza por tres ejes principales (mayor, intermedio y menor), estas se orientan respecto a la anisotropía geológica o estructural del yacimiento.

Según Isaaks y Srivastava (1989), con el uso adecuado del elipsoide de búsqueda se puede conseguir estimaciones más realistas y coherentes en los modelos de bloques, ya que evita sesgos por agrupamiento o falta de representatividad.

3.2.25 Métodos de Interpolación: Métodos Determinísticos y Probabilísticos

Los métodos de interpolación estiman valores desconocidos en una zona de estudio con datos conocidos de ubicaciones. Los métodos se dividen en dos: determinísticos y probabilísticos (geoestadísticos).

De acuerdo con Isaaks y Srivastava (1989), los métodos determinísticos calculan los valores de puntos desconocidos mediante funciones matemáticas que no consideran la variabilidad estadística del fenómeno. En cambio, los métodos probabilísticos (geoestadísticos) son modelos

estadísticos que incorporan la estructura espacial de los datos, usualmente representada a través del semivariograma, siendo el más representativo el kriging, que proporciona estimaciones óptimas de mínimos cuadrados y el error de estimación asociado.

Domínguez y Deutsch (2007) destacan que los métodos probabilísticos ofrecen mayor robustez en contextos con anisotropía, como ocurre frecuentemente en minería, geotecnia y geomecánica.

3.2.26 Distancia Inversa Ponderada (IDW)

Es un método determinístico el cual estima valores en puntos desconocidos asignando mayor peso a los datos ubicados más cerca del punto de estimación.

Según Isaaks y Srivastava (1989) es un promedio ponderado de los valores cercanos, donde el peso de cada valor es inversamente proporcional al cuadrado de la distancia. Lo cual nos resulta que a puntos más cercanos al punto a estimar tienen mayor influencia que los más lejanos.

Burrough y McDonnell (1998) nos dicen que es utilizado por su simplicidad y facilidad de implementación en sistemas de información geográfica (SIG). Aunque, los resultados pueden ser sensibles respecto a los puntos de muestreo y no proporciona estimaciones de error, lo que limita su aplicabilidad en donde la incertidumbre debe ser cuantificada.

3.2.27 Studio RM de Datamine

Es una plataforma de software desarrollada por Datamine, la cual está diseñada para el modelamiento geológico y la estimación de recursos minerales. Debido a que permite gestionar, visualizar, analizar y modelar datos espaciales y geológicos con altos estándares de precisión.

Según Datamine (2022), Studio RM se especializa en construcción de modelos geológicos tridimensionales, generación de modelos de bloques, interpolación de leyes y parámetros geotécnicos mediante métodos como kriging, IDW y estimación por polígono. También incluye un análisis geoestadístico, control de calidad de datos y visualización interactiva.

Domínguez y Deutsch (2007) nos dicen que herramientas como Studio RM son innovadoras en la industria minera moderna por su capacidad para integrar múltiples fuentes de información en un entorno digital unificado.

3.3 Antecedentes empíricos de la investigación

3.3.1 Geología

3.3.1.1 Geología Regional. – El marco geológico regional corresponde al cuadrángulo de Caylloma, Hoja 31-S (INGEMMET, 1988).

La secuencia estratigráfica muestra desde la unidad más antigua a la unidad más reciente, compuesta por rocas sedimentarias que corresponden al grupo Yura de edad Jurásica-cretácica, sobreyaciendo al grupo Yura se exponen secuencias sedimentarias de ambiente continental representadas por las formaciones "Murco y Arcurquina", sobre las cuales se emplazan secuencias volcánicas (formación Santa Rosa), secuencias de rocas de origen ígneo (eventos piroclásticos del terciario y fenómenos volcánicos del cenozoico superior) y depósitos cuaternarios (ver Figura 4).

Las unidades litológicas que conforman el área de interés en un contexto regional:

 Las rocas sedimentarias del grupo Yura, se conforman por areniscas cuarcíticas con niveles de lutitas negras (pelitas bituminosas).

- Las rocas sedimentarias de la formación Murco, se conforman por lutitas, limolitas y areniscas (grauvacas) de color gris oscuro.
- Las rocas sedimentarias de la formación Arcurquina, se conforman por facies de Calizas con nódulos de Chert y lutitas calcáreas (margas).
- Las rocas volcánicas se constituyen por secuencias alternadas de lavas y piroclastos (brechas y areniscas de ambiente fluvial-lacustre), derrames piroclásticos de composición andesítica y dacítica (volcánicos terciarios), brechas inimgbríticas, flujos de lava y apófisis de riodacitas (volcánicos Kenko), aglomerados volcánicos, lavas andesíticas porfiríticas y afaníticas (volcánico Salhuarque), depósitos lacustrinos, arcillosos y brechas pocos consolidadas (volcánicos Molloco), lavas andesíticas y basálticas afaníticas (volcánicos barroso), conos volcánicos, coladas andesíticas, basálticas y lavas escoriaceas con cenizas (volcánicos Andagua).
- Depósitos cuaternarios se constituyen por suelos aluviales, morrénicos (Qal-mo) e hidromórficos (bofedales y turbas).

3.3.1.2 Geología Local

En el área de estudio predomina la presencia de rocas sedimentarias, tales como areniscas y pelitas bituminosas que corresponderían estratigráficamente al grupo Yura; a estas rocas sedimentarias sobreyace en marcada discordancia angular una potente secuencia de rocas volcánicas constituidas por lavas y flujos piroclásticos de composición intermedia (andesitas, tobas andesíticas y rocas volcanoclásticas de composición dacítica) que estratigráficamente corresponderían al grupo Tacaza y grupo Barroso. Ver Figura 4, Columna estratigráfica simplificada del distrito de Caylloma, Echavarría, L. (2003).

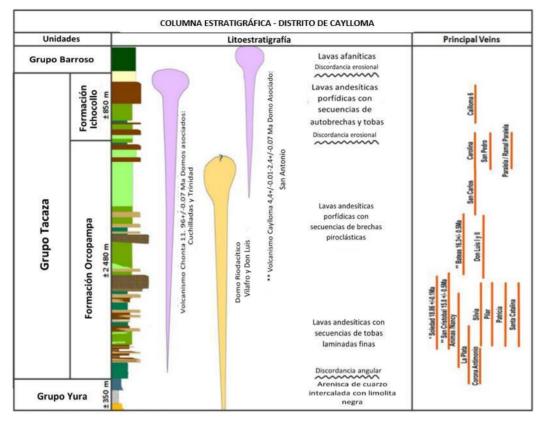
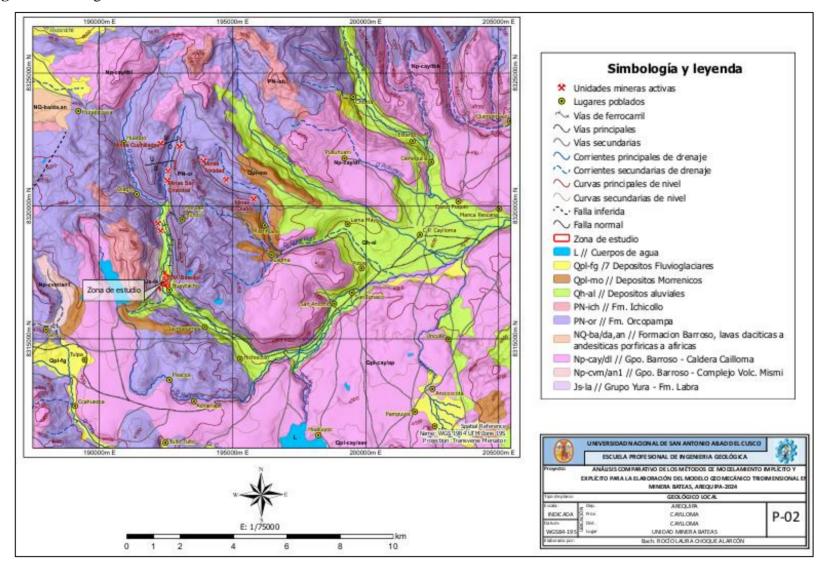


Figura 4: Columna estratigráfica del distrito de Caylloma.

Fuente: Minera Bateas


En el ámbito de la Mina, como rocas caja de las estructuras mineralizadas se exponen predominantemente rocas volcánicas tipificadas como "brechas y lavas andesíticas volcanoclásticas" y en menor proporción hacia el extremo NE, se exponen rocas sedimentarias tipificadas como "areniscas grauvacas y pelitas bituminosas" que corresponderían estratigráficamente al grupo Yura.

Se resume las unidades litológicas que conforman el área de estudio en el ámbito de la mina:

 Tobas andesíticas cristalolíticas. - Rocas piroclásticas de textura fragmental conformada por líticos subangulosos de andesitas micro-porfídicas y microcristalinas en una matriz cripto-microcristalina de feldespatos y máficos alterados en menor grado

- a arcillas, carbonatos, sericitas y cloritas con venillas irregulares de cuarzo, calcita y diseminaciones de pirita.
- Tobas andesíticas. Rocas volcánicas de textura porfídica y amigdalar, color grisverdosa conformada por plagioclasas tabulares y máficos prismáticos alterados a arcillas y cloritas respectivamente en una matriz cripto microcristalina de feldespatos y máficos alterados a sericitas y cloritas. Al extremo NE de la mina subyaciendo a las rocas volcánicas se presentan rocas sedimentarias jurásicas definidas como pelitas bituminosas (intercalaciones de limolitas, arcillitas y areniscas con niveles orgánicos estructuralmente muy fracturadas a intensamente fracturadas).
- Brechas silicificadas y carbonatizadas. Se constituyen por sulfuros de minerales polimetálicos (Pb, Ag, Zn y Cu), asociados con minerales de "cuarzo", "rodonitas", "rodocrosita" y "calcita" con diseminación de sulfuros (piritas y minerales opacos) de textura bandeada coloforme y fluidal con impregnaciones de agregados criptocristalinos de minerales oxidados de manganeso.
- Depósitos morrénicos. Se constituyen de clastos soportados y retrabajados sin ningún arreglo, dispersos en una matriz areno-limosa y areno-arcillosa. El tamaño promedio de los clastos varía entre 10 a 30 centímetros, existiendo bloques erráticos de más de 1 metro de diámetro, los clastos corresponden a fragmentos líticos, heterométricos y polimícticos. Estos depósitos se habrían formado en varias etapas de glaciación.
- Depósitos de cobertura. Estos suelos se emplazan en las partes inferiores (bajas) de la superficie del terreno, se constituyen por "depósitos coluviales" y "suelos residuales con escasa cobertura vegetal".

Figura 5: Geología Local de la zona de estudio

3.3.2 Geomorfología

A escala regional, en la zona de interés se observa un relieve de altas cordilleras con pendientes abruptas en la parte alta e intermedias a suaves en la parte baja, peneplanicie, depresión de Caylloma, zonas volcánicas y otras. (INGEMMET, 1988).

La unidad Minera Bateas, se caracteriza por presentar una geomorfología influenciada por procesos fluvio-glaciares, con valles amplios de pendiente suave y contrafuertes formados por colinas rocosas de elevación moderada, alineadas principalmente en dirección "NE-SW". El relieve está condicionado por la actividad tectónica a lo largo de su historia geológica, así como por el tipo de litología y los procesos de geodinámica externa que siguen actuando hasta ahora. Los principales agentes geodinámicos que han contribuido al modelado actual del terreno incluyen la desglaciación, variaciones de temperatura, precipitaciones, escorrentía superficial y agua subterránea.

Las unidades geomorfológicas representativas en el área de estudio y alrededores son:

- **3.3.2.1 Altas cumbres. -** Estas geoformas presentan altitudes variables entre 4,500 a 5,500 m.s.n.m. Se caracterizan por sus fuertes pendientes en las partes altas, delimitan los valles, definen las microcuencas, los drenajes superficiales y el flujo de agua subterránea.
- **3.3.2.2 Peneplanicie. -** Se presenta hacia el NE de la zona de estudio, caracterizada por estar compuesta por una sola unidad geológica, la formación Sencca, la misma que muestra disyunción columnar y/o cónica.
- **3.3.2.3 Depresión de Caylloma.** Tiene un control vulcano tectónico, se caracteriza por presentar paredes onduladas por la actividad glaciar, el piso cubierto de material volcánico del pleistoceno y pendientes hacia el centro.

- **3.3.2.4 Caldera volcánica.** Estas geoformas son extensas depresiones en la zona central, formadas por las explosiones que destruyen la parte central de la estructura volcánica y generan su colapso, tienen forma elipsoidal a circular y están rodeadas total o parcialmente por fuertes escarpes.
- **3.3.2.5 Zonas volcánicas.** Estas geoformas se caracterizan por su modelado en forma de "conos y domos". Existen tres formas controladas por la naturaleza litológica de las rocas; la primera se caracteriza por su forma cónica con paredes de unos 30° y mesetas en los alrededores del mismo.
- 3.3.2.6 Otras geoformas. A estas geoformas se les puede integrar en dos grupos:

 1) Formas de erosión (valles fluviales y valles glaciares), formados producto de la acción fluvial o glaciar asociada a un control lito-estructural; 2) formas de acumulación (conos de escoria, morrenas, fluvio glaciar, terrazas, conos aluviales y deslizamientos).
- **3.3.2.7 Bofedales.** Son geoformas que se ubican alrededor de las lagunas, ocupando áreas generalmente planas u onduladas, cuya superficie se encuentra "permanente o intermitentemente inundada", el nivel freático en estos sectores está a escasa profundidad aflorando a modo de acuíferos libres.
- **3.3.2.8 Lagunas.** Son geoformas de origen glaciar, cuyas descargas generan arroyos y riachuelos en su drenaje hacia aguas abajo. (Ver Figura 6).

3.3.3 Hidrología

A escala regional (Dávila, 1988), el área de Estudio se enmarca dentro de la cuenca hidrográfica de los ríos "Apurímac y Molloco", la cual corresponde a la región hidrográfica del

Amazonas, cuenca principal Apurímac, subcuenca Santiago; los drenajes o cursos de agua presentan dos patrones preponderantes:

- Centrípeto; que se desarrolla en la zona de la depresión de Caylloma, cuyas aguas
 discurren hacia las partes más bajas. Estas convergen hacia el colector principal, el río
 Apurímac y como río secundario, Hornillas. En el punto de confluencia de estos dos
 ríos se forma un pequeño cañón de dirección norte-sur, que sirve como salida para las
 aguas de la depresión de Caylloma.
- Centrífugo; se desarrolla en los alrededores de la depresión de Caylloma, las aguas discurren hacia el norte o hacia el sur, controladas por la divisoria continental de aguas.
- 3.3.3.1 Fisiografía e hidrografía. La zona de estudio está dentro del sistema hidrográfico conformado por el río "Apurímac y sus tributarios", tienen su naciente en la vertiente nororiental del nevado Culluncuya a 5,000 m.s.n.m.; los cuales desembocan en la laguna Huarhuaco, donde nace el río Huarhuaco. A este río también se une el río Santiago antes de desembocar en el río Apurímac. Este sistema se encuentra entre la subcuenca Santiago (hasta su confluencia con la quebrada Huancané) y las microcuencas "Lamamayo y Azulmayo"; estas microcuencas hidrográficas asocian diferentes patrones de drenaje y cuerpos de agua superficial (río Santiago, quebradas Huarajo, Cuchilladas, Trinidad, Huancané y las lagunas Vilafro, Jesús María y Antimonio), presenta una dirección de flujo preferencial que va de "NW a SE" (Ver Figura 6).

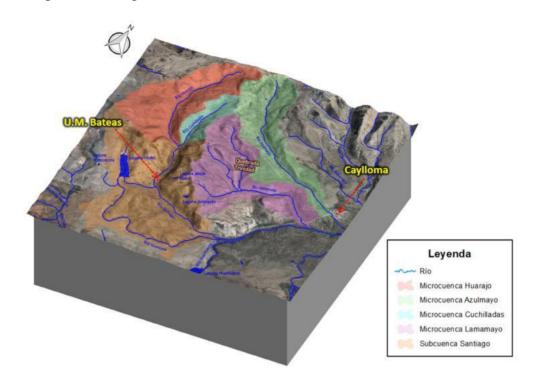


Figura 6: Fisiografía e hidrografía del área de Estudio.

Fuente: GLSA (2022)

3.3.4 Hidrogeología

En esta sección se sintetizan los aspectos relacionados con la hidrogeología vinculada a la Mina, tales como la geometría del acuífero, las unidades hidrogeológicas, el origen de las aguas subterráneas, el comportamiento del agua en el entorno geológico, la interacción entre aguas superficiales y subterráneas, las zonas de recarga y descarga, así como la dirección del flujo, entre otros. Esta síntesis se ha elaborado utilizando información del Estudio Hidrogeológico de Minera Bateas y datos recopilados en las investigaciones geomecánicas de campo.

3.3.4.1 Geometría del acuífero. - La geometría del reservorio acuífero en la zona de estudio es libre, de forma poligonal e irregular. En la Figura 7 se observan bofedales en Quebrada Santiago, con flancos empinados; estos acuíferos se conforman por "depósitos cuaternarios", "rocas volcánicas y rocas sedimentarias".

- **3.3.4.2 Unidades hidrogeológicas. -** Las unidades hidrogeológicas, se caracterizan por el grado variable de almacenamiento y transmisión de agua a través de la "permeabilidad natural e inducida de suelos y rocas". En este contexto en el área de Estudio (superficie e interior mina) se han identificado dos unidades hidrogeológicas representativas:
 - Acuífero. Se define como una formación geológica permeable, por su capacidad de almacenar y transmitir el agua a través de la permeabilidad "natural e inducida" que exponen los depósitos cuaternarios, rocas volcánicas y rocas sedimentarias. Los acuíferos en el área de estudio están formados por depósitos sedimentarios (fluvioglaciares, aluviales y coluviales), rocas volcánicas y sedimentarias, cuya permeabilidad depende de factores como contenido de arcilla de la matriz, compactación, edad y grado de fracturamiento. Los suelos permeables se encuentran en la superficie de la mina, el valle intermedio y el curso inferior del río Santiago, presentándose como acuíferos de suelos fluvioglaciares, coluviales y aluviales recientes (gravas, arenas y limos). Las rocas permeables, principalmente volcánicas y sedimentarias, tienen su capacidad de transmisión hidráulica influida mayormente por el grado de fracturamiento estructural y en menor grado por su porosidad natural.
 - Acuitardo. Se define como una formación geológica semipermeable, debido a que, teniendo la capacidad de almacenar agua, lo transmite lentamente.

Los acuitardos en el área de estudio, corresponden a rocas volcánicas (levemente fracturadas a fracturadas). Estas unidades hidrogeológicas se exponen distales a "fallas

y zonas de corte" en masas rocosas con valores RMR 89 mayores a 80 (zonas muy puntuales).

Las unidades geológicas definidas como "acuícludo y acuífugo", no se observan en áreas evaluadas de la mina subterránea; esto debido a que las masas rocosas por lo general son permeables y semipermeables (masas rocosas fracturadas, muy fracturadas, intensamente fracturadas a descompuestas).

3.3.4.3 Modelo Hidrogeológico conceptual. – En la Figura 7, se muestra el modelo hidrogeológico conceptual donde incluye la zona de estudio. Se observan las microcuencas de interés, zonas de recarga y descarga, direcciones de flujo superficial, direcciones de flujo subterráneo y controles estructurales.

Leyenda Subcuenca Santiago

Figura 7: Modelo hidrogeológico conceptual, Minera Bateas

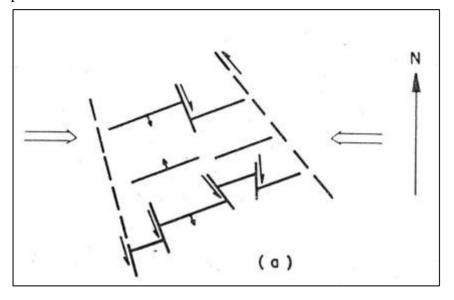
Fuente: GLSA (2022)

De la Figura 7, las zonas de "recarga y descarga" de los acuíferos y acuitardos a escala local, se muestran en la vista en planta del modelo hidrogeológico conceptual; las zonas de recarga corresponden a los afloramientos rocosos del grupo Tacaza y grupo Yura, los cuales son recargados por lluvias en las partes altas de las microcuencas "Huarajo, Cuchilladas, Lamamayo y Santiago" en cuyas áreas se emplazan algunos cuerpos de agua superficial (lagunas, bofedales y manantiales); el agua meteórica de las precipitaciones en parte se infiltra en las rocas a través de su permeabilidad natural e inducida, se almacena en los cuerpos de agua superficial, se evapora, se evotranspira a través de la escasa vegetación y la otra parte se discurre según la fisiografía y el drenaje hacia las quebradas que drenan al río Santiago.

Conociendo el principio del flujo de agua subterránea (el flujo se transporta desde zonas de mayor a menor altura piezométrica), se ha conceptuado que las redes de flujo en áreas de interés, los cuales presentan dirección predominante "Suroeste a Noreste y Noreste a Suroeste", convergiendo ambos vectores de flujo hacia la zona de minado más profunda en el Nivel 18, condicionados principalmente por el control estructural y las excavaciones subterráneas que se constituyen como áreas de descarga en interior Mina.

Figura 8: Presencia de agua en las labores subterráneas

Fuente: GLSA (2022)


3.3.5 Geología Estructural

A escala regional, según el Cuadrángulo de Caylloma, INGEMMET (1988) y la información técnica proporcionada por Minera Bateas, existen dos sistemas de fallas principales con rumbo "NW-SE y NE-SW", los cuales serían resultados de los mecanismos "compresivos y tensionales" respectivamente en concordancia con los eventos tectónicos ocurridos en la región (compresión-orogenia distensión).

El sistema andino (NW-SE), incluye al corredor estructural Caylloma en el cual se hospeda la mineralización predominante y probablemente se asocie a un mayor desarrollo sobre su conjugado (NE-SW); las fallas NW-SE tendrían un desplazamiento en rumbo de

tipo sinestral, y las fallas NE-SW tendrían un desplazamiento de tipo dextral. Ver análisis en el Capítulo de IV: Resultados.

Figura 9: Principales estructuras en el ámbito de la Mina Bateas

Fuente: INGEMMET (1988)

Las estructuras mineralizadas en la Mina subterránea (Vetas Principales) se constituyen por rellenos de fracturas tensionales y fallas paralelas con movimiento normal dextral, de orientación preponderante "N50-70°E/45-60°SE". Existe fallamientos postmineralización "que cortan" y "desplazan" las Vetas, son fallas normales abiertas y de alto ángulo, su intersección con las Vetas genera zonas de corte, persistentes en el rumbo de las estructuras mineralizadas, que deben ser consideradas en el diseño de las excavaciones y la selección del sostenimiento, debido a que esto constituye un factor de riesgo para el desprendimiento de rocas.

3.3.6.1. Mineralización y alteraciones – La mineralización en el área de interés, es de tipo epitermal, se constituye principalmente por "sulfosales, sulfuros de plata y metales base (Pb-Zn-Cu)"; como minerales accesorios se exponen "cuarzo, rodonita y calcita".

La mineralización de "sulfuros y sulfosales" se presenta en bandas intercaladas con brechas mineralizadas de fragmentos líticos constituidos por "rodocrositas y rodonitas" en una matriz de "cuarzo y sílice", con diseminaciones y vetillas de galena y sulfosales de plata; la mineralización se emplaza entre dos fallas longitudinales ubicadas al piso y techo de la veta principal, formando fracturas tipo Riedel en rumbo. Los tipos de alteración predominantes en la mineralización y rocas caja son "propilítica y argílica"; la alteración propilítica está asociado a "cloritas, calcitas" y piritas" y la alteración argílica se constituye por minerales arcillosos óxidos y limonitas; la silicificación y adularización (transformación de plagioclasas a adularia por incremento de potasio en condiciones de presión y temperaturas adecuadas), se encuentran en las estructuras internas del mineral y como impregnaciones en las rocas caja acompañados con diseminaciones de pirita.

3.3.6 Clasificación Geomecánica

Los datos registrados se expresan en términos del RMR (1989) de Bieniawski y sus modificaciones por Romana (2000) tomando en cuenta la sectorización en base a la litología con la finalidad de conceptuar un modelo Geomecánico considerando el modelo Geológico es decir considerando la estructura mineralizada y sus rocas encajonantes.

La caracterización geomecánica de la masa rocosa, se basa en el análisis e interpretación detallada de datos litológicos y estructurales suministrados por Minera Bateas, complementados

con información recolectada en las diferentes campañas de registro Geomecánico en sondajes, líneas de detalle y celdas Geomecánicas en labores subterráneas y en superficie.

Tabla 3: Clasificación RMR del macizo rocoso

RMR	Descripción
91-100	Muy Buena A
81-90	Muy Buena B
71-80	Buena A
61-70	Buena B
51-60	Regular A
41-50	Regular B
31-40	Mala A
21-30	Mala B
0-20	Muy mala

Fuente: Clasificación RMR, Bieniawski (1989)

3.4 Hipótesis

3.4.1 Hipótesis General

El método explícito empleado para la elaboración del modelo Geomecánico 3D, muestra una mayor precisión y confiabilidad en comparación con el método implícito, ya que el Modelo Geomecánico 3D generado es acorde a la caracterización geomecánica y geológica de la Mina Bateas.

3.4.2 Hipótesis Específicas

 Los datos obtenidos en las investigaciones geomecánicas deben tener como característica ser cuantitativos y homogéneos, para asegurar la precisión y validez del análisis de los mismos para ambos métodos.

- La secuencia de modelado para ambos métodos se diferencia por el enfoque empleado
 posterior al proceso de análisis de la base de datos e información como topografía,
 geología e información complementaria. El Modelo Geomecánico 3D generado
 mediante el método implícito se crea a partir de un algoritmo, mientras que en el
 método explícito se desarrolla a partir de secciones interpretadas.
- El método implícito empleado para la elaboración del modelo geomecánico 3D es más
 eficiente en términos de tiempo y recursos en comparación con el método explícito. No
 obstante, su precisión es menos favorable en comparación con el método explícito, ya
 que este último, se acerca más a las condiciones reales de la Mina Bateas.

3.5 Identificación de Variables e Indicadores

3.5.1 Variables Independientes

En este trabajo, la variable independiente es **el método de modelado utilizado para la elaboración del modelo geomecánico tridimensional.** Es decir, se comparará el método implícito con el método explícito para determinar cuál de ellos es más adecuado para este caso.

3.5.2 Variable Dependiente

La variable dependiente es **el modelo geomecánico tridimensional** de la Minera Bateas, considerando la confiabilidad, precisión y eficiencia, la cual se medirá a través de la información geomecánica y geológica que se presenta la mina.

3.6 Operacionalización de Variables

La siguiente tabla muestra la operacionalización de variables, estableciendo los criterios para la recopilación de datos que se alineen con los objetivos de esta investigación.

Tabla 4: Operacionalización de variables

Variable Dependiente	Variable Independiente	Definición Conceptual	Dimensión	Indica	dores	
		Método de modelado	Impl	ícito		
			Metodo de modelado	Expl	ícito	
		Es un enfoque sistemático que se emplea para representar las propiedades geomecánicas del macizo rocoso de un yacimiento en tres dimensiones, que refleje el comportamiento mecánico del subsuelo			Información Básica	Topografía Superficial Topografía Subterránea Modelo Geológico 3D Modelo estructural
Modelo Geomecánico 3D	Método de modelado		Procedimiento para modelado	Investigaciones Geomecánicas	Registro geomecánico de testigos de roca en sondajes diamantinos expresados en valores RMR 89 Registro geomecánico de excavaciones subterráneas mediante celdas y líneas de detalle expresados en valores RMR 89. Ensayos de laboratorio (EMR, EMS, petrografía).	
					Proceso y análisis de datos	Herramientas estadísticas y geoestadísticas para el análisis e interpretación de datos registrados.
				Procedimiento para modelado	Uso de herramientas, software y método de interpolación.	

CAPÍTULO IV: Metodología de la Investigación

4.1 Tipo y nivel de investigación

4.1.1 Tipo de Investigación

4.1.1.1 Correlacional - Explicativo. - La investigación se enfoca en comparar cada método de modelado, evaluando sus ventajas, desventajas, y relacionarlo con la precisión del resultado. Además, el estudio busca dar a conocer qué método resulta ser más adecuado para la elaboración del modelo Geomecánico 3D. De acuerdo con Hernández-Sampieri y Mendoza (2018) los estudios correlacionales se orientan a identificar la relación existente entre dos o más variables.

4.2.2 Nivel de Investigación

4.2.2.1 Aplicada. - Según Bernal (2010) la investigación aplicada se orienta a generar conocimientos, destinados a resolver problemas concretos en contextos determinados. Por lo tanto, al realizar la comparación de las metodologías de modelamiento implícito y explícito, se mostrará las ventajas y desventajas de cada una, permitiendo demostrar cuál de estas dos metodologías es la más adecuada para la elaboración del Modelo Geomecánico 3D de Minera Bateas.

4.2.3 Método de Investigación

4.2.3.1 Mixta. - La investigación integra los enfoques cuantitativos y cualitativos. Por un lado, se basa en datos numéricos provenientes de las investigaciones geomecánicas, como los valores del índice RMR, que son procesados mediante evaluación estadística y técnicas de interpolación para desarrollar el modelo geomecánico tridimensional utilizando el método implícito. Por otro lado, incorpora un enfoque cualitativo al analizar las ventajas y desventajas de cada método de modelamiento, así como su relación con las características geológicas específicas

de Minera Bateas. Los métodos mixtos combinan el análisis numérico y cualitativo, lo que permite obtener una comprensión más completa del fenómeno estudiado según Creswell y Plano Clark (2018).

4.3. Unidad de análisis

4.3.1 Parámetros del RMR

Para este estudio, se hará uso de una base de datos construida a partir del registro geomecánico realizado en líneas de detalle, celdas de explotación y sondajes diamantinos, considerando los parámetros de la metodología propuesta por Bieniawski (1989). Ver **Tabla 5.**

- Resistencia a la compresión uniaxial
- RQD
- Espaciamiento entre discontinuidades
- Condición de las discontinuidades
- Agua subterránea

Los valores obtenidos a partir del sistema de clasificación geomecánica se expresan en valores RMR, este índice que tiene naturaleza cuantitativa. El análisis se efectuará diferenciando zonas según las litologías presentes (caja piso, estructura mineralizada y caja techo). Este enfoque permitirá construir un modelo geomecánico alineado con el modelo geológico.

Tabla 5:Parámetros del RMR89

		Parámetros de caracterización		Valoración
		Roca muy dura	> 250 Mpa	15
Resistencia		Roca dura	100 - 250 Mpa	12
		Roca medianamente dura	50- 100	7
		Roca suave	25 - 50	4
		Roca muy suave	< 25 Mpa	(2) (1) (0)
		Excelente	90-100 %	20
		Buena	75-90 %	17
	RQD	Regular	50- 75 %	13
		Mala	25 - 50 %	8
		Muy mala	< 25 %	3
		. ,	> 2 m	20
			0.6 - 2 m	15
,	Espaciamiento	Distancia perpendicular	200 - 600 mm	10
•	Lispaciamiento	entre discontinuidades	60 - 200 mm	8
			<60 mm	5
			< 1 m	6
			1 - 3 m	4
	Persistencia	Extensión en área denotada	3 - 10 m	2
	reisistencia	por una línea	10 - 20 m	1
				0
		Cerrada	> 20 m 0	6
	-		< 0.1 mm	5
les	A t	Muy angosta		4
dad	Apertura	Angosta Abierta	0.1 - 1.0 mm 1.0 - 5.0 mm	1
nui	-			0
nti		Muy abierta	> 5.0 mm	0
scc		Muy lisa Lisa	1	
s di	D i d. d		D	1
las	Rugosidad	Ligeramente F		<u>3</u> 5
Apertura Oudiciones de las discontinuidades de las discontinuidades de las discontinuidades de la discontinuidade de la discont			Rugosa Muy rugosa	
		Muy rugo	> 5mm	6
icio		Suave		
ndi	Relleno	Dellane	< 5 mm	2 2
သ	Kellello	Relleno Duro	> 5 mm	4
	 -	Ninguno	< 5 mm	
				6
	 	No meteorizada		5
Motoorización		Ligeramente Meteorizada Motoorizada		3
	Meteorización	Meteorizada		1
	 -	Altamente Meteorizada		0
Descompuesta		zsia		
	-	Flujo		0
	Presencia	Goteo		4 7
	de agua	Mojado		7
	-	Húmedo		10
		Seco	15	

Fuente: Bieniawski (1989)

4.4. Población de Estudio

La población de estudio comprende el área que engloba las labores subterráneas de la mina Bateas y sus alrededores, incluyendo las áreas de influencia.

4.5. Tamaño de muestra

El tamaño de muestra está compuesto por el registro Geomecánico mediante líneas de detalle, celdas y sondajes diamantinos de la Mina Bateas. En la **Tabla 6**, se visualiza los detalles:

Tabla 6: Tamaño de muestra

Registro mediante:	Número de sondajes/ estaciones	Longitud (m)
Sondajes diamantinos	260	47155.2
Líneas de detalle	26	978.41
Celdas	146	2420.18

4.6. Técnicas de selección de muestra

4.6.1 Criterios de selección de muestras

- El registro de información geomecánica se fundamentará en los sondajes diamantinos disponibles dentro del área de estudio, asegurando que estos intercepten la estructura mineralizada y sus alrededores.
- El registro geomecánico en labores subterráneas se llevará a cabo mediante el método de líneas de detalle y celdas, garantizando el registro representativo de la zona de estudio.

 Las muestras de roca destinadas a los ensayos de mecánica de rocas y suelos deberán ser obtenidas directamente de la zona de interés, asegurando su representatividad en función de las condiciones geomecánicas.

4.7. Técnicas de recolección de información

4.7.1. Recursos primarios: Investigaciones en Campo

Registros de datos Geomecánicos, estructurales, litología y otros parámetros relevantes obtenidos en campo (in situ). Esta información se obtiene del registro mediante:

4.7.1.1 Registro Geomecánico en Sondajes Diamantinos. - El registro de los parámetros de RMR han sido obtenidos en los almacenes de superficie de minera Bateas (sala de logueo), para testigos rocosos de sondajes diamantinos correspondientes al ámbito de estudio (superficie e interior mina), con la finalidad de caracterizar la masa rocosa a través de un índice numérico cuantitativo en dominios geomecánicos. Ver ejemplo de registros en Anexo 3.

Figura 10: Registro Geomecánico de la masa rocosa en sondajes diamantinos

El registro se realizó en las diferentes campañas, haciendo un total de 47155.2 metros de sondaje diamantino. Ver detalle en la **Tabla 7**

Tabla 7: Registro Geomecánico en sondajes diamantino por campaña

Campaña	Número de sondajes	Longitud (m)
1	183	23371.04
2	26	10290.71
3	51	13493.20
Total	260	47155.20

4.7.1.2 Registro Geomecánico mediante Líneas de Detalle. - El levantamiento de información geomecánica mediante mapeo por líneas de detalle se ha llevado a cabo en las labores subterráneas de Minera Bateas en sus diferentes niveles, con el objetivo de caracterizar la calidad del macizo rocoso en función de sus condiciones estructurales y geomecánicas. Este procedimiento permite obtener datos sobre la orientación, espaciado, persistencia, apertura, rugosidad y relleno de las discontinuidades, proporcionando una base cuantitativa para la delimitación de dominios geomecánicos.

Tabla 8:Registro Geomecánico mediante Líneas de detalle

Campaña	Número de sondajes	Longitud (m)
1	26	978.41
Total	26	978.41

Registro Geomecánico mediante líneas de detalle

El registro de estos parámetros se ha realizado siguiendo un formato estandarizado (ver **Anexo 4**), asegurando la coherencia y precisión de la información recolectada. La metodología aplicada en el mapeo de líneas de detalle complementa los datos obtenidos a partir del análisis de testigos de perforación, permitiendo una evaluación integral del macizo rocoso y su comportamiento geomecánico.

Figura 11: Registro Geomecánico de la masa rocosa mediante líneas de detalle

Fuente: GLSA


4.7.1.3 Registro Geomecánico mediante Celdas. - Se ha llevado a cabo el registro mediante celdas en los distintos niveles de la Mina Bateas. Ver formato estandarizado en el **Anexo 5.** Para ello, se seleccionaron cuadrículas de 1x1 metro en los diferentes dominios geomecánicos, lo que permitió evaluar *in situ* la calidad del macizo rocoso. Durante el proceso, se registraron parámetros como el RQD, resistencia, espaciamiento, las condiciones de las discontinuidades y la presencia de agua subterránea, con el fin de obtener la caracterización de la masa rocosa. Estos datos fueron tomados en diferentes campañas, ver Tabla 9.

Tabla 9: Registro Geomecánico mediante celdas

Registro	Geomecánico	mediante	celdas
176812010	Geometanico	mediante	Ctiuas

Campaña	Número de sondajes	Longitud (m)
1	39	235.80
2	19	1625.55
3	88	558.83
Total	26	2420.18

Figura 12: Registro Geomecánico de la masa rocosa mediante celdas.

4.7.2 Recursos complementarios

La siguiente información fue solicitada previamente a Minera Bateas para complementar las actividades y observaciones en campo:

- Plano topográfico superficial en coordenadas UTM-WGS84.
- Plano topográfico subterráneo en coordenadas UTM-WGS84.

- Planos Geológicos por niveles de toda la Mina.
- Registros digitales del logueo geológico de los sondajes diamantinos en el ámbito de las estructuras mineralizadas.
- Modelo geológico actualizado en 3D.
- Modelo estructural actualizado.
- Resultados de los ensayos de mecánica de rocas de estudios anteriores y actuales.
- Planos geomecánicos detallados por niveles de "rampas, galerías, cruceros, cámaras y tajos".
- Estudio hidrogeológico de la Mina

4.8 Técnicas de análisis e interpretación de la información

4.8.1 Proceso y análisis de datos

- Organización y sistematización de la información geomecánica en hojas de cálculo.
 Como referencia. Ver Anexo 6
- Verificación y ajuste de datos obtenidos del mapeo geomecánico y de los sondajes diamantinos.
- Análisis estadístico de los datos geomecánicos para su interpretación.
- Integración de datos en el software Studio RM de Datamine.

4.8.2 Construcción del Modelo Geomecánico tridimensional

4.8.2.1 Modelo Geomecánico tridimensional por el método Implícito. – La construcción del Modelo Geomecánico 3D mediante el método implícito conlleva el proceso y análisis descrito en el ítem anterior (3.8.1). A partir de este análisis, se desarrollan los siguientes pasos:

- Configuración del elipsoide de búsqueda
- Delimitación de dominios (cercano y lejano) con referencia a la estructura mineralizada.
- Selección del método de interpolación.
- Proceso de interpolación.
- Visualización del modelo Geomecánico 3D en secciones transversales, longitudinales y vistas isométricas.

4.8.2.2 Modelo Geomecánico tridimensional por el método Explícito. – La construcción del Modelo Geomecánico 3D mediante el método explícito, implica seguir el proceso y análisis detallados en el ítem (3.8.1), al igual que en el método implícito, con la diferencia de que a partir de este punto se realizarán los siguientes pasos:

- Definición de la orientación de las secciones a interpretar.
- Generación de secciones
- Interpretación de secciones
- Proceso secuencial de las secciones interpretadas
- Visualización del modelo Geomecánico 3D en secciones transversales, longitudinales y vistas isométricas.

4.9 Técnicas para demostrar la verdad o falsedad de las hipótesis planteadas

Para comprobar las hipótesis de este estudio, se definirá el lineamiento para el registro de la información base, se analizará las ventajas y desventajas de cada método de modelado y se comprobará la eficiencia y precisión por medio de secciones de comparación.

4.9.1 Definición de lineamientos para la obtención de datos

 Se analizará la homogeneidad de los datos y el tipo de variable estadística al que corresponde.

4.9.2 Criterios de Comparación de secuencia de modelado

- Descripción detallada del proceso para cada método de modelado.
- Análisis de comparación de cada proceso, identificando sus características y diferencias entre ambos enfoques.
- Comparación a través de secciones estratégicas, las cuales deberán ser representativas en el ámbito de la estructura mineralizada, la litología y la geología.

4.9.3 Análisis de precisión y eficiencia

- Medición de tiempo y recursos necesarios para cada método de modelado.
- Validación del modelo geomecánico comparando el resultado con las condiciones reales observadas en la Mina Bateas.

CAPÍTULO V: Resultados

5.1. Definición de los criterios y lineamientos para la obtención y registro de datos en las investigaciones geomecánicas

Los valores obtenidos para la elaboración del modelo Geomecánico se da a partir del sistema de clasificación geomecánica de Biewnaski (1989), es decir valores RMR por su naturaleza cuantitativa.

El RMR se basa en parámetros numéricos medibles como la resistencia a la compresión uniaxial, RQD, espaciamiento entre discontinuidades, condición de las discontinuidades y agua subterránea. Ver tabla 5.

A comparación de otros sistemas de clasificación geomecánica los valores RMR tienen mayor homogeneidad, proporciona un valor numérico directo, tiene naturaleza cuantitativa y clasificatoria. En la Tabla 10 se muestran los rangos y colores que se utilizará para la elaboración del modelo geomecánico 3D.

Tabla 10: Criterios para la clasificación geomecánica

TIPO D	TIPO DE ROCA		
	II-A	71-80	
BUENA	II-B	61-70	
	III-A	51-60	
REGULAR	III-B	41-50	
	IV-A	31-40	
MALA	IV-B	21-30	
MUY MALA	V	21	

5.2 Secuencia de modelado para los métodos: implícito y explícito, destacando sus características intrínsecas y diferencias.

5.2.1 Análisis de datos

Previamente a la elaboración del modelo geomecánico 3D, es fundamental identificar el tipo de variable estadística al que corresponde la variable RMR, ya que esta definición, permitirá aplicar el enfoque de análisis más adecuado. Para fines de este análisis se utilizará la base de datos del registro Geomecánico en sondajes diamantinos, línea de detalle y celdas.

Tabla 11: Resultado del análisis estadístico de la base de datos geomecánicos

Análisis de datos					
N° de datos	9987				
Media	48	.56			
Varianza	131.83				
Desviación estándar	11.48				
Error estándar de la media	0.	11			
Nivel confianza	0.95				
IC (Intervalo de Confianza)	19 24 19 1				

Tabla 12: Análisis de frecuencia de la base de datos Geomecánicos

					ENCIAS
Time de Des	T! J. D		Xi	f(xi)	F(X)
Tipo de Roc	a	<w-0></w-0>		0	
Muy mala	V	[0-21>	10.50	263	263
	IVB	[21-31>	26.00	619	882
Maia	IVA	[31-41>	36.00	1315	2197
Dogulou	IIIB	[41-51>	46.00	2072	4269
Regular	IIIA	[51-61>	56.00	5395	9664
	IIB	[61-71>	66.00	317	9981
Buena	IIA	[71-81>	76.00	6	9987
Muy buena	ı	[81-100≥	86.00	0	9987
		<100 - +∞>		0	

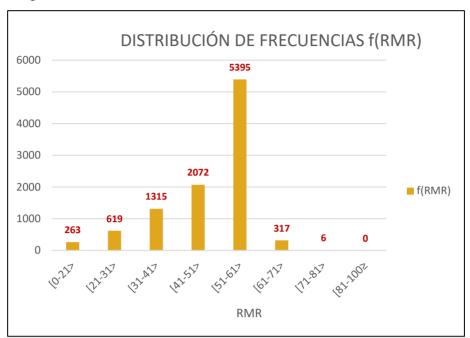


Figura 13: Histograma de Frecuencias de la base de datos Geomecánicos

Tabla 13: Análisis de probabilidades de la base de datos Geomecánicos

				FRECU	ENCIAS	PROBABILIDADES		
Tino de Ro	Tipo de Roca		Xi	f(xi)	F(X)	P(RMR)	F(RMR)	%P(RMR)
Tipo de Ro				0		0.000	0.000	0.0000
Muy mala	V	[0-21>	10.50	263	263	0.026	0.026	2.6334
Mala	IVB	[21-31>	26.00	619	882	0.062	0.088	6.1981
Manu	IVA	[31-41>	36.00	1315	2197	0.132	0.220	13.1671
Regular	IIIB	[41-51>	46.00	2072	4269	0.207	0.427	20.7470
1080101	IIIA	[51-61>	56.00	5395	9664	0.540	0.968	54.0202
Buena	IIB	[61-71>	66.00	317	9981	0.032	0.999	3.1741
Duenu	IIA	[71-81>	76.00	6	9987	0.001	1.000	0.0601
Muy buena	I	[81-100≥	86.00	0	9987	0.000	1.000	0.0000
		<100 - +∞>		0		0.000	0.000	100

Figura 14: Distribución de probabilidad (RMR)

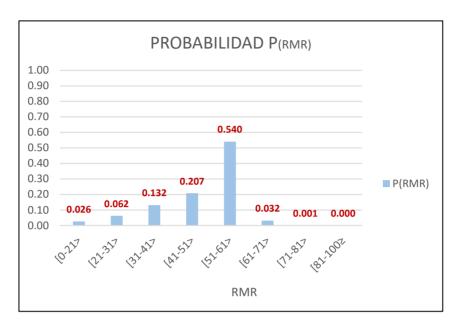
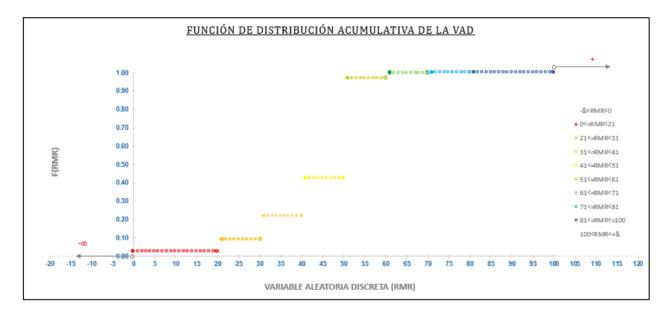
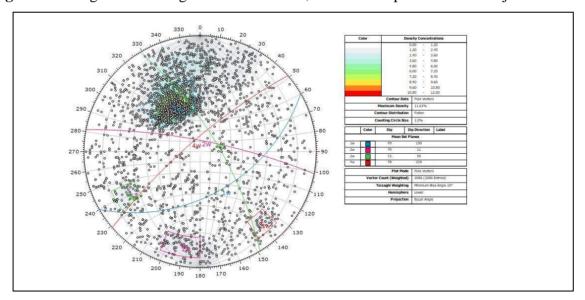



Figura 15: Función de distribución acumulativa de la probabilidad (RMR)

Posterior al análisis de datos, se evidencia que los parámetros del RMR se comportan como variables aleatorias discretas, lo que implica que no pueden tratarse como valores continuos ni


regionalizados. Por ello, resulta fundamental evaluar y seleccionar las técnicas de interpolación más adecuadas.

5.2.1.1 Análisis de datos estructurales. – Posterior al análisis estadístico se realiza el siguiente proceso para la elaboración del modelo Geomecánico 3D.

Con el objetivo de identificar patrones en la distribución espacial de las discontinuidades estructurales (fallas y diaclasas) presentes en la masa rocosa asociada a las estructuras mineralizadas y su entorno, se utilizó la información estructural contenida en los planos geológicos proporcionados por la mina Bateas, así como los registros obtenidos en las investigaciones realizadas.

Análisis en Diaclasas: Rocas Caja

Figura 16: Diagrama estereográfico de diaclasas, densidad de polos en rocas caja

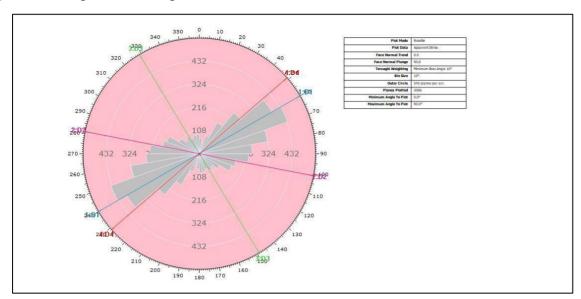
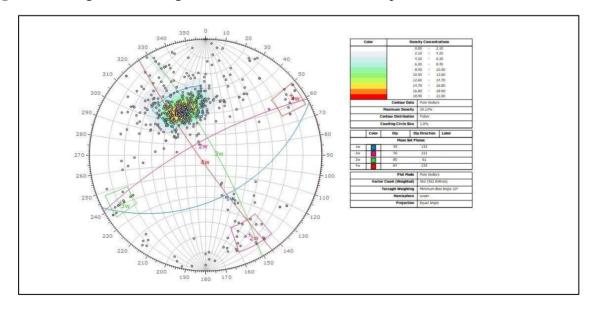



Figura 17: Diagrama estereográfico de diaclasas, rosetas de diaclasas

Análisis en diaclasas: En el ámbito de la mineralización

Figura 18: Diagrama estereográfico de diaclasas, densidad de polos

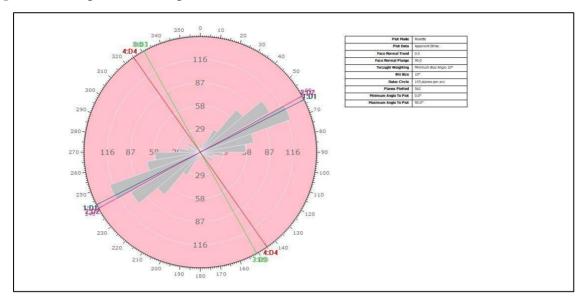
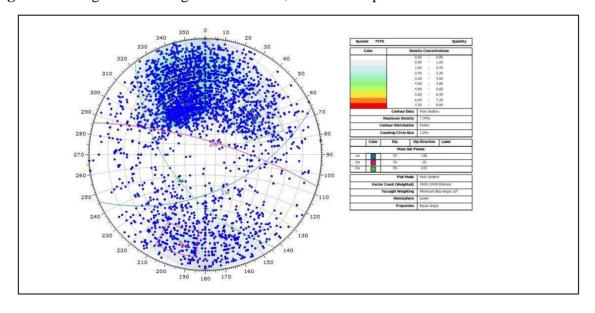



Figura 19: Diagrama estereográfico de diaclasas, rosetas de diaclasas

Análisis en Fallas: Rocas Caja y ámbito de la mineralización

Figura 20: Diagrama estereográfico de fallas, densidad de polos

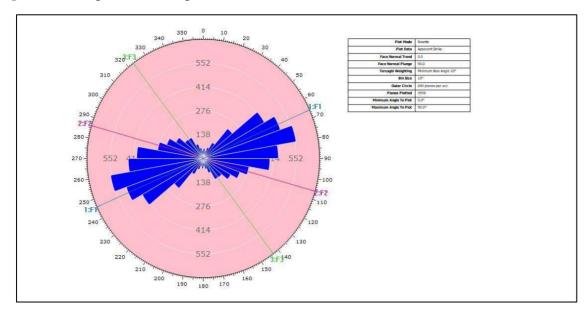


Figura 21: Diagrama estereográfico de fallas, rosetas de fallas

Los datos de orientación se han procesado empleando la técnica de proyección estereográfica equiangular, utilizando el software DIPS versión 7.016 desarrollado por Rocscience Inc. A continuación, se resume los datos obtenidos:

Tabla 14: Sistemas de discontinuidades estructurales

	DIACLASAS						
ZONA	D 1	D2	D3	D4			
Rocas caja	49/150	79/011	72/059	78/319			
Ámbito de la mineralización	48/153	76/331	80/061	84/235			
ZONA	FALLAS						
Rocas caja y	F 1	F2	F3				
ámbito de la mineralización	54/156	76/016	55/233				

5.2.1.2 Investigaciones de laboratorio. – Los resultados de los ensayos de mecánica de rocas (Ver Anexo 7) fueron desarrollados según las normas ASTM correspondiente para cada ensayo.

Los ensayos realizados para fines del estudio son:

- Propiedades físicas (ASTM 2216-02)
- Compresión simple (ASTM D2938)
- Carga puntual (ASTM D5731)
- Compresión triaxial (ASTM D2664-95)
- Constantes elásticas (ASTM D3148)
- Corte directo (ASTM D5607-95)
- Tracción indirecta (ASTM D3967.
- **5.2.1.3** Clasificación Geomecánica. Los resultados de la clasificación geomecánica se obtiene del proceso del análisis e interpretación de la información litológica, estructural, ensayos de laboratorio e información registrada en las investigaciones geomecánicas A continuación se presenta el resumen de las características de los dominios geomecánicos en las rocas caja y el ámbito de la estructura mineralizada.

Tabla 15: Clasificación geomecánica en el ámbito de las rocas caja

		Clasificaci	ón RMR	
Rocas caja	Buena	Regular	Mala	Muy Mala
	61-80	41-60	21-40	<21
RQD	Rocas ligeramente fracturadas (<20%) y fracturadas (80%)	Rocas fracturadas (60%) a muy fracturas (40%).	Rocas muy fracturadas (40%) a intensamente fracturas (60%)	Intensamente fracturadas a trituradas
Resistencia a la compresión uniaxial	101-190 MPa	51-100 MPa	25-50 Mpa	1-24 Mpa
Espaciamiento	Entre "0.6-2.0 y 0.2-0.6 metros	0.2-0.6 y 0.06-0.2 metros	0.06-0.2 y < 0.06 metros	< 0.06 metros
Persistencia	>20, 10-20 y 3-10 metros	10-20, 3-10 y 1-3 metros	3 10, 1-3 y <1 metro	1-3 y < 1 metro
Apertura	<0.1, 0.1-1 mm	<0.1, 0.1-1 y 1-5 mm	1-5 y >5mm	1-5 y >5mm
Rugosidad	Rugosa	Ligeramente rugosas	Ligeramente rugosas	Ligeramente rugosas a lisas
Relleno	Sin relleno	Sin relleno	Rellenos blandos (óxidos, arcillas, carbonatos, sericitas y cloritas).	Rellenos blandos (óxidos, arcillas, carbonatos, sericitas y cloritas).
Meteorización	Ligera	Ligera a moderada	Moderada a alta	Muy alta a descompuesta
Presencia de agua	Húmeda	Húmeda a mojada	Húmeda a mojada	Mojada a goteo y puntualmente flujo

Tabla 16: Clasificación geomecánica en el ámbito de la mineralización

		Clasificaci	ión RMR	
Ámbito de la mineralización	Buena	Regular	Mala	Muy Mala
	61-80	41-60	21-40	<21
RQD	Rocas ligeramente fracturadas (<10%) y fracturadas (90%)	(40%) a muy racturadas (30%)		Intensamente fracturadas a trituradas
Resistencia a la compresión uniaxial	101-160 MPa	51-100 MPa	25-50 Mpa	1-24 Mpa
Espaciamiento	Entre "0.6-2.0 y 0.2-0.6 metros	0.2-0.6 y 0.06-0.2 metros	0.06-0.2 y < 0.06 metros	< 0.06 metros
Persistencia	>20, 10-20 y 3-10 metros	10-20, 3-10 y 1-3 metros	3 10, 1-3 y <1 metro	1-3 y < 1 metro
Apertura	0.1, 0.1-1, 1-5 y >5 mm	0.1-1, 1-5 y >5 mm	1-5 y >5mm	1-5 y >5mm
Rugosidad	Muy rugosas	Muy rugosas a rugosas	Muy rugosas a rugosas	Muy rugosas, ligeramente rugosas a lisas
Relleno	Sin relleno con alternancia de rellenos duros	Rellenos duros y rellenos blandos	Rellenos blandos (óxidos, arcillas, carbonatos, sericitas y cloritas).	Rellenos blandos (óxidos, arcillas, carbonatos, sericitas y cloritas).
Meteorización	Ligera	Ligera a moderada	Moderada a alta	Muy alta a descompuesta
Presencia de agua	Húmeda	Húmeda a mojada	Mojada a goteo	Mojada a goteo y puntualmente flujo

5.2.2 Construcción del Modelo Geomecánico tridimensional

La elaboración del Modelo Geomecánico considerará los siguientes pasos en común para ambas metodologías.

- Información Básica
- Investigaciones Geomecánicas
- Investigaciones de laboratorio
- Análisis e interpretación de los datos registrados en las investigaciones geomecánicas.

Figura 22: Vista tridimensional del registro geomecánico en sondajes diamantinos.

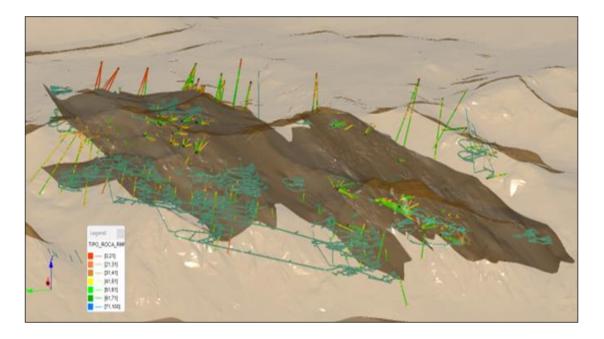
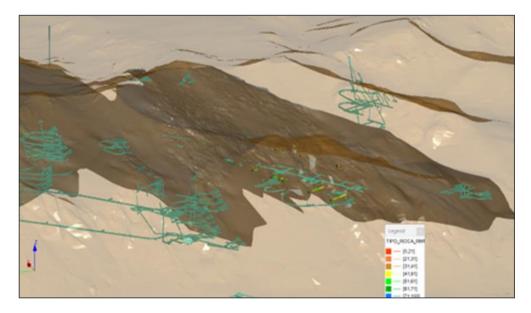
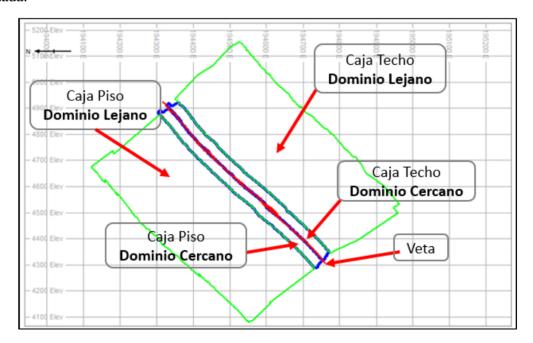



Figura 23: Vista tridimensional del registro geomecánico en líneas de detalle.

Figura 24: Vista tridimensional del registro geomecánico en celdas.



A partir de este paso se realizará la elaboración del modelo Geomecánico por cada metodología con la secuencia que le caracteriza a cada una de ellas.

5.2.2.1 Modelo Geomecánico tridimensional por el método Implícito. – Posterior al análisis estadístico se realiza el siguiente proceso para la elaboración del modelo Geomecánico 3D.

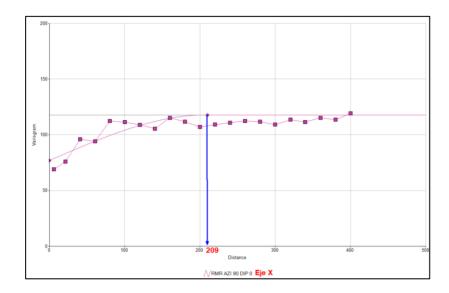

Configuración del elipsoide de búsqueda. – Este proceso es fundamental para el modelado por el método implícito, ya que determina el alcance del análisis espacial de las propiedades Geomecánicas, se delimita los dominios cercano y lejano en las cajas techo, piso y la estructura mineralizada.

Figura 25: Delimitación de los dominios cercano y lejano con respecto a la estructura mineralizada.

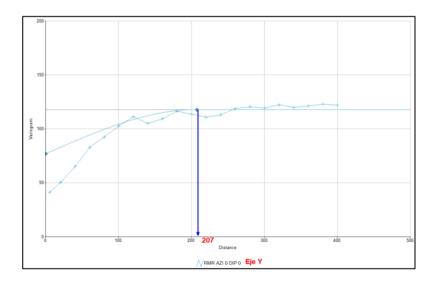

Variografía. - Se llevó a cabo un análisis de variografía en distintas direcciones con el objetivo de determinar las dimensiones óptimas de los ejes que conforman el elipsoide de búsqueda.

Figura 26: Variograma de índices RMR para el eje X

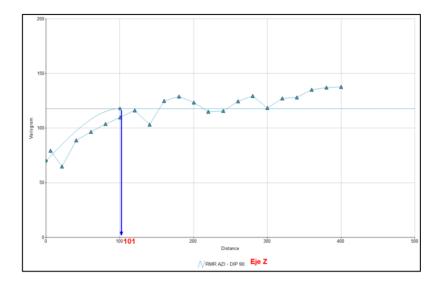

La gráfica del variograma muestra que existe correlación hasta aproximadamente hasta 209 metros para el eje X, sin embargo, para fines de este estudio redondearemos a 200.

Figura 27: Alcance en el eje Y

La gráfica del variograma muestra que existe correlación hasta aproximadamente hasta 207 metros para el eje Y, para fines de este estudio redondearemos a 200.

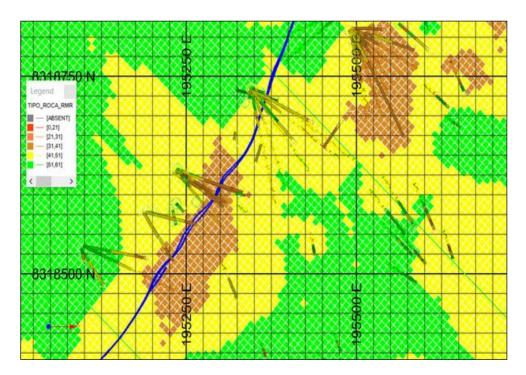
Figura 28: Alcance en el eje Z

La gráfica del variograma muestra que existe correlación hasta aproximadamente hasta 101 metros para el eje Z, para fines de este estudio redondearemos a 100.

- El elipsoide de influencia (búsqueda) para la variable RMR será de 200x200x100m.
- Las rotaciones del elipsoide serán: Rot1= 132°, Rot2=-42°, Rot3= 0°

Modelo de Bloques. - Las dimensiones del modelo de bloques son: Largo=4060m, ancho =1800m y altura=1260m. El tamaño de bloque unitario "4x2x2m", orientado de acuerdo a la dirección de la estructura principal. El número de bloques en cada dimensión en base al tamaño unitario de "4x2x2m" es: Largo=1015, ancho=450 y altura=630 bloques.

Tabla 17: Alcance del elipsoide de búsqueda para la estimación RMR


Pasada	Dist	Dst Y	Dist	Rot 1	Rot	Rot 3	Min	Max	Min -
	x		Z		2		Comp	Comp	DDH
1	200	200	100	138	-42	0	3	16	2
2	400	400	200	138	-42	0	2	16	2

Selección del método de interpolación. – Para la proyección de valores RMR en zonas donde no se cuenta con registro Geomecánico o muestreo directo, se opta por aplicar un método de interpolación que permita estimar valores de forma coherente con el comportamiento esperado de la masa rocosa.

Considerando la naturaleza del RMR, se seleccionó la técnica de: Distancia Inversa Ponderada (IDW). Este método se basa en el principio de que las muestras cercanas tienen mayor influencia sobre el punto a estimar que aquellas más alejadas. Burrough, P. A., (1998). En este caso particular, se utilizó un exponente de ponderación igual a 2, ya que ofrece un balance adecuado entre la fidelidad a los datos originales y la suavidad de la superficie interpolada.

Visualización del modelo Geomecánico 3D.- Posterior al proceso de interpolación el modelo Geomecánico 3D se visualiza en secciones transversales, longitudinales y vistas isométricas.

Figura 29: Plano nivel 4500 mostrando el índice RMR en el Modelo y sondajes

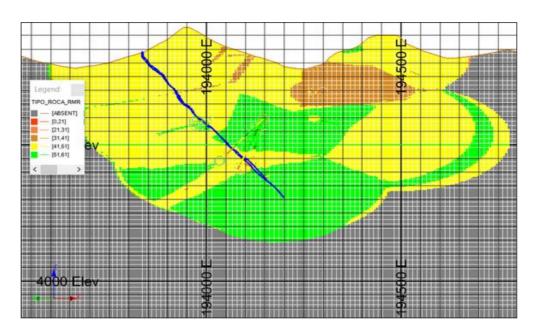
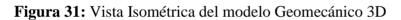



Figura 30: Sección transversal mostrando el índice RMR en el Modelo y sondajes

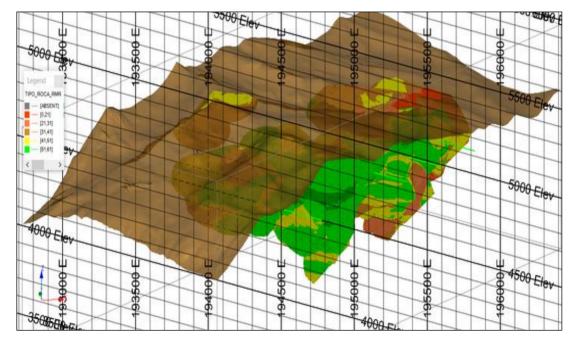
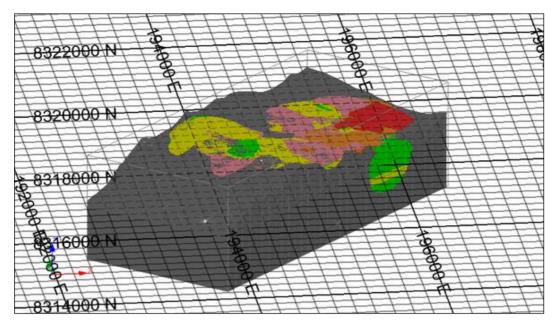
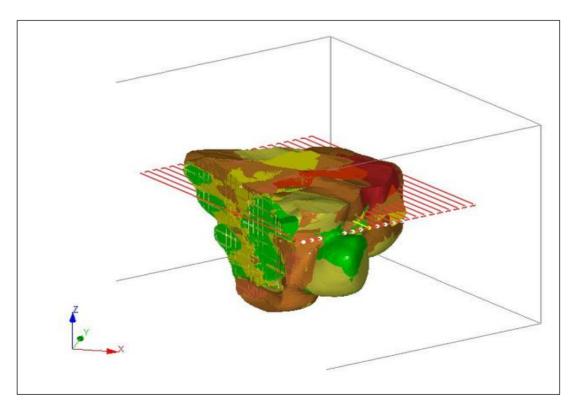




Figura 32: Vista Isométrica del modelo Geomecánico 3D

Figura 33: Vista Isométrica, modelo geométrico y modelo de bloques interceptada con la sección 18.

5.2.2.2 Modelo Geomecánico tridimensional por el método Explícito. – Posterior a los pasos desde el registro de datos hasta el proceso y análisis, el procedimiento de modelado por el método explícito, se realiza el siguiente proceso para la elaboración del modelo Geomecánico 3D.

Generación de secciones e interpretación. — El criterio utilizado para la distribución de las secciones se realiza tomando como referencia la orientación de la estructura mineralizada, estableciendo secciones 140 secciones transversales con un espaciamiento de 100 metros. Este enfoque permite evaluar adecuadamente la calidad del macizo rocoso tanto en la zona mineralizada como en la roca encajonante.

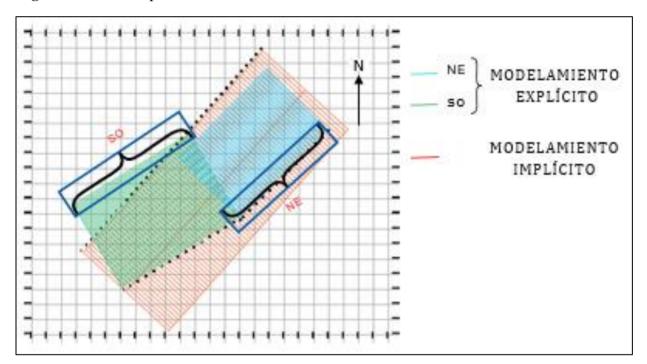


Figura 34: Vista en planta de las líneas de sección

En la Figura 34 se observan las líneas de sección de color rojo, las cuales se utilizaron para la elaboración del Modelo Geomecánico 3D por el método implícito. En contraste, las líneas de color celeste representan las secciones utilizadas para el modelo geomecánico 3D desarrollado con

el enfoque explícito. La inclinación de las líneas, se debe a la variación en la orientación de la estructura mineralizada en una vista en planta.

Interpretación de secciones. — Posterior a la distribución de las secciones, estas deben contener la información geomecánica, es decir, los valores del índice RMR obtenidos durante las investigaciones previas (delimitación de los dominios geomecánicos). Es fundamental que esta información integre tanto las observaciones de campo como los registros geológicos, estructurales y otra información que pueda ser de utilidad para la interpretación más acercada a las condiciones reales de la mina.

Figura 35: Sección transversal con información de las investigaciones geomecánicas.

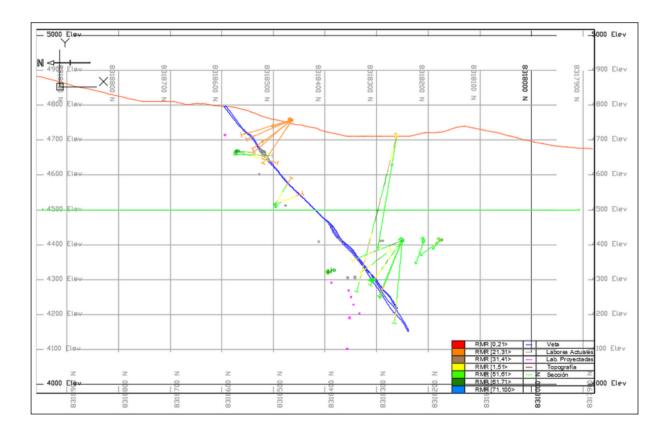


Figura 36: Sección longitudinal con información de la zonificación geomecánica.

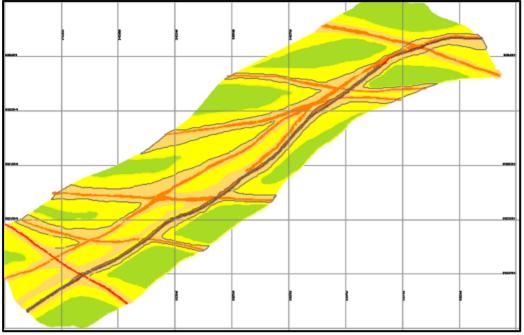
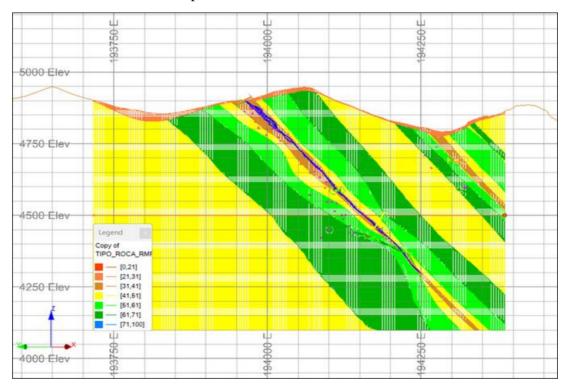
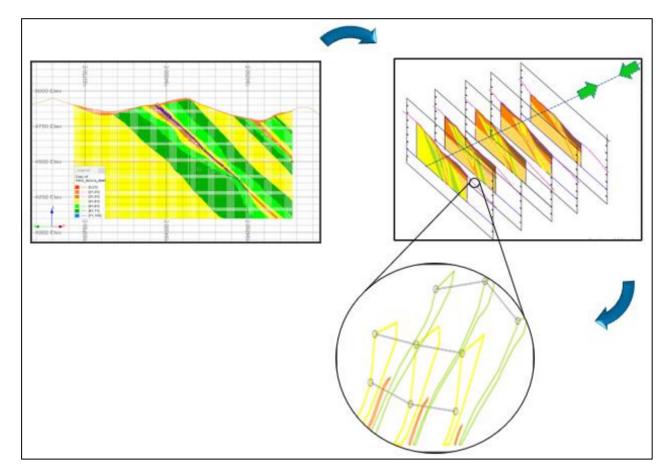




Figura 37: Sección transversal interpretada

Proceso de Interpolación. – Este procedimiento se lleva a cabo una vez que se han interpretado las secciones transversales de forma secuencial, permitiendo la construcción de los sólidos diferenciados según la calidad de la roca. Ver Figura 38

Figura 38: Proceso de interpolación por el método explícito

Visualización del modelo Geomecánico 3D.- Posterior al proceso de interpolación el modelo Geomecánico 3D se visualiza en secciones transversales, longitudinales y vistas isométricas.

Figura 39: Vista Isométrica de secciones unidas

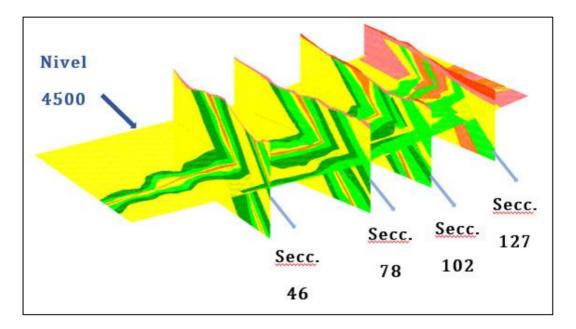
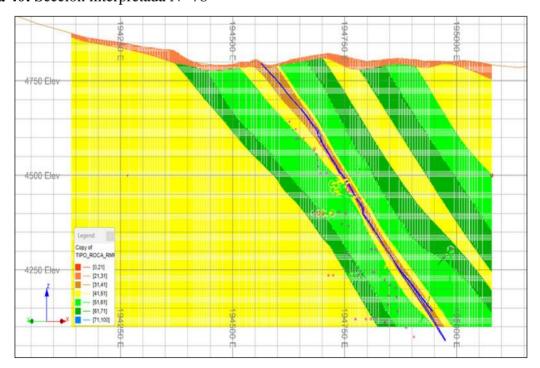



Figura 40: Sección interpretada N° 78

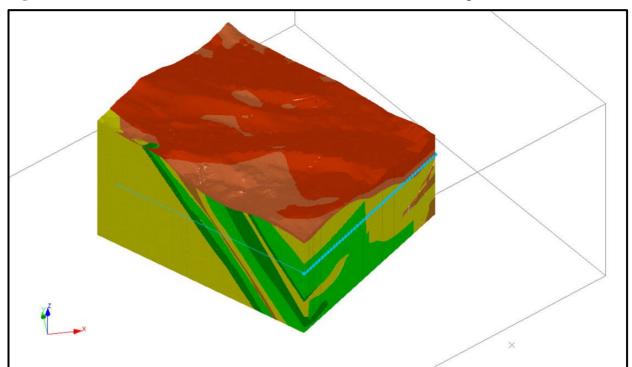
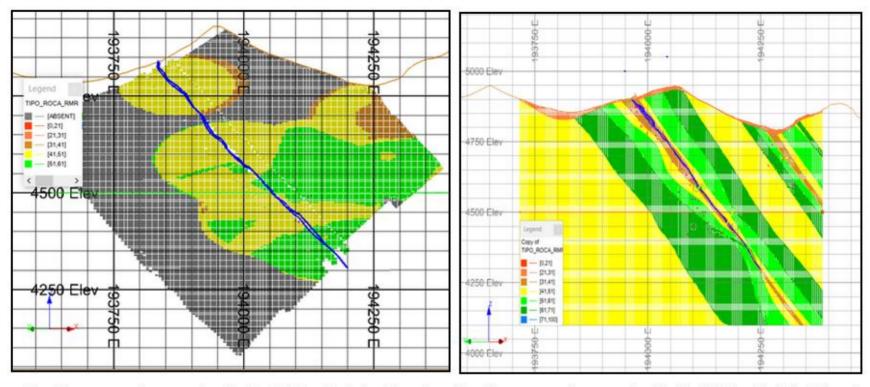
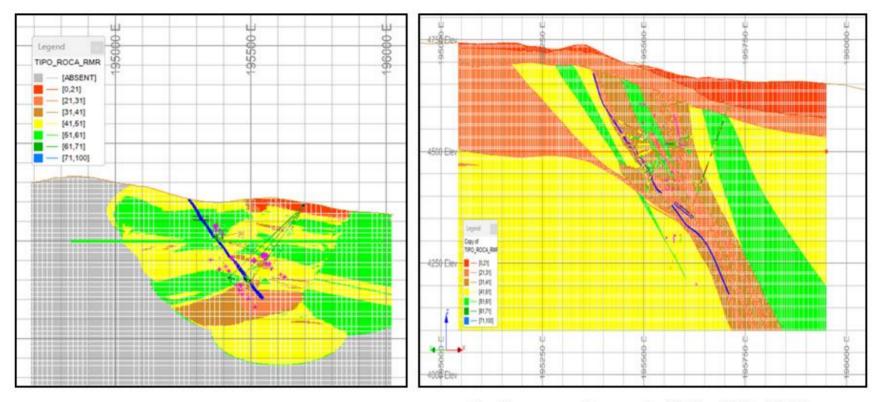



Figura 41: Vista Isométrica del modelo Geomecánico 3D – Método Explícito

5.2.2.3 Secciones de comparación – Con los resultados obtenidos del modelo geomecánico 3D elaborado mediante ambas metodologías, se realiza la comparación de secciones estratégicas con el fin de evaluar y validar la precisión del modelo.


Figura 42: Secciones de comparación, zona SW

Sección transversal mostrando el índice RMR – Modelo elaborado por el enfoque Implícito

Sección transversal mostrando el índice RMR – Modelo elaborado por el enfoque Explícito

Figura 43: Secciones de comparación, zona NE

Sección transversal mostrando el índice RMR – Modelo elaborado por el enfoque Implícito

Sección transversal mostrando el índice RMR – Modelo elaborado por el enfoque Implícito

5.3 Análisis de ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de la Mina Bateas.

5.3.1 Método Implícito

Ventajas:

- Este método permite obtener en corto tiempo una representación visual de la calidad del macizo rocoso, basada en los resultados que dependen de la configuración del elipsoide de búsqueda y de los dominios geomecánicos, tanto cercano como lejano.
- Permite reducir significativamente los costos operativos asociados a la elaboración del modelo geomecánico 3D, es decir menor demanda en recursos humanos para el proceso de interpretación.

Desventajas:

- Debido a que el modelo geomecánico es generado a partir de los datos de entrada y algoritmos automáticos, las oportunidades para realizar ajustes manuales al modelo son limitadas.
- El resultado del modelo geomecánico 3D no muestra la delimitación de los dominios geomecánicos conceptuados en las investigaciones realizadas.

5.3.2 Método Explícito

Ventajas:

- La elaboración del modelo geomecánico 3D a partir de secciones interpretadas permite obtener una representación más coherente y concordante en el ámbito de la estructura mineralizada y la información geológica.
- El modelo elaborado por este método permite ser ajustado con la información geológica, estructural, hidrogeológica y otros.

 Como resultado, el modelo geomecánico 3D se caracteriza por su eficiencia interpretativa, alta precisión y confiabilidad, ya que se construye a partir de criterios geomecánicos y geológicos validados, reflejando con mayor precisión las condiciones reales del macizo rocoso.

Desventajas:

- La elaboración del modelo geomecánico mediante este método demanda mayor tiempo en comparación con el enfoque implícito, ya que implica la construcción de secciones e interpretación acorde a la información registrada en las investigaciones realizadas.
- Considerando el tiempo que implica la elaboración de las secciones, implica una mayor inversión de recursos humanos (especialistas) y económicos.

CAPÍTULO VI: Discusión de Resultados

Este capítulo analiza los resultados obtenidos a partir de la elaboración del modelo geomecánico 3D de la Mina Bateas por ambos métodos, con el objetivo de evaluar su eficiencia, precisión y confiabilidad.

- De acuerdo con el primer objetivo para definir los criterios y lineamientos para la obtención y registro de datos en las investigaciones geomecánicas, se optó por utilizar la clasificación geomecánica de Bieniawski (1989), debido a su carácter cuantitativo y su homogeneidad. Esta elección permitió la adecuada integración de la información para la construcción del modelo geomecánico 3D aplicable a ambas metodologías. Esta variable también es coherente con el enfoque adoptado por Juan Gálvez (2019), Diego Quevedo (2018) y José Llamoctanta (2018), quienes también emplean parámetros numéricos en sus análisis con la finalidad de aplicar herramientas estadísticas, geoestadísticas, así como la integración del modelo geomecánico. Los resultados obtenidos respaldan la hipótesis planteada, demostrando que la naturaleza numérica de los datos contribuye significativamente al modelo, independientemente del enfoque metodológico utilizado.
- A fin de establecer la secuencia de modelado para los métodos implícito y explícito, destacando sus características intrínsecas y diferencias, se describe la secuencia de pasos para la elaboración del modelo Geomecánico 3D. El método implícito generó sólidos de forma automática a través del elipsoide de búsqueda, mientras que el método explícito, los sólidos se elaboraron a partir de la secuencia de las secciones interpretadas. Esta diferencia respalda la segunda hipótesis específica, que indica que el modelo geomecánico 3D se genera a partir de un algoritmo en el caso implícito y por interpretación en el explícito y se corrobora lo indicado por Bermúdez (2019) que indica que el enfoque implícito permite

generar modelos en menos tiempo en comparación con el enfoque explícito, esto debido al proceso de interpretación.

Para el objetivo planteado: Analizar las ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de la Mina Bateas, se puede resumir que el método implícito se destaca por la rapidez y menor demanda de recursos, lo que concuerda con lo señalado por Bermúdez (2019) y Villagrán (2019) en sus estudios, sin embargo, el resultado generado mediante este enfoque presenta menor confiabilidad en zonas de baja densidad de datos, como también se menciona en los trabajos de Alvarado (2020) y Gálvez (2019), quienes señalan la necesidad de evaluar la regionalización antes de aplicar técnicas geoestadísticas.

Se da validez a la hipótesis planteada donde indica que el modelo geomecánico elaborado por el método implícito es eficiente en términos de tiempo y recursos, mientras que el modelo por el método explícito, aunque demandante en tiempo y recursos, tiene como resultado un modelo más preciso y confiable, especialmente en zonas de interés geomecánico.

CONCLUSIONES

- En cuanto a los criterios y lineamientos para la adquisición de datos de las investigaciones Geomecánicas, estas deben tener como principal característica ser numéricos y homogéneos, tal como los valores RMR empleados en este estudio.
- La secuencia de modelado para ambos enfoques emplea la misma información de base y los resultados de las investigaciones Geomecánicas expresadas en valores de RMR (input data). En el método implícito, la construcción del modelo Geomecánico se obtiene en función a la configuración del elipsoide de búsqueda y la delimitación de los dominios (cercano y lejano). En el método explícito, la construcción del modelo Geomecánico se obtiene en base a secciones transversales a la estructura mineralizada, las cuales se analiza, correlaciona e interpreta los resultados de las investigaciones Geomecánicas.
- enfoque implícito facilita una visualización rápida de la calidad del macizo rocoso; sin embargo, no representa la configuración de los dominios geomecánicos conceptuados en las investigaciones realizadas y la información geológica en el ámbito de la estructura mineralizada. Por otro lado, el modelo Geomecánico elaborado mediante el enfoque explícito genera resultados más realistas y concordantes en el ámbito de la estructura mineralizada y los dominios Geomecánicos conceptuados en las investigaciones realizadas.

RECOMENDACIONES

- Se recomienda definir un protocolo estándar para el registro de información geomecánica que servirá como base para la construcción del modelo geomecánico 3D. El mismo debe priorizar que los datos sean cuantitativos y consistentes, evitando depender de métodos cualitativos que, al basarse en observaciones e interpretaciones subjetivas, pueden aumentar la dispersión y reducir la confiabilidad de los resultados.
- La geoestadística solo es aplicable a variables regionalizadas. Dado que el RMR se comporta como una variable aleatoria discreta y no cumple con los criterios de regionalización y correspondencia espacial, su estimación mediante geoestadística no es recomendable. Por lo tanto, la generación del modelo debe realizarse empleando el enfoque explícito, que resulta más apropiado para este tipo de información.
- Los modelos Geomecánicos conceptuales 3D elaborados mediante el enfoque explicito, son modelos de aproximación de una realidad compleja (masa rocosa). Por ello, es indispensable actualizarlos de manera periódica y paralela al avance de las operaciones mineras, con el objetivo de recalibrar y mejorar la precisión del modelo inicial.

REFERENCIAS BIBLIOGRAFÍCAS

- Condal A. y Gonzales M. (primera edición). (2021)." Geoestadística en el ámbito de las ciencias de la tierra. Análisis y discusión acerca de los principales métodos de análisis y estimación". UTEM.
- Ferrari, F., Apuani, T. and Giani, G. P., (2014). "Rock Mass Rating spatial estimation by geostatistical analysis". International Journal of Rock Mechanics and Mining Sciences".
- Alvarado, F. (2020). "Modelamiento geoestadístico de la clasificación geomecánica de Bieniawski (RMR)".
- Villagrán C, (2019), en su tesis "Modelamiento implícito de unidades geotécnicas básicas de mina ministro Hales, región de Antofagasta"
- Bermúdez Martínez, (2019), en su tesis "Impacto del cambio de metodología de modelamiento geológico de método explícito a implícito en división andina-Codelco Chile"
- Gálvez J, (2019), en su tesis "Estimación geoestadística del RQD, RCU, JRC y densidad aplicada a entender el comportamiento geomecánico del Cerro La Falda, La Encañada – Cajamarca, 2019",
- Llamoctanta J, (2018), en su tesis "Estimación del comportamiento de parámetros geomecánicos aplicando técnicas geoestadísticas en la concesión Mi Grimalda1, Caserío de Piñipata, Hualgayoc- Cajamarca",
- Mercado G. y Obregón C, (2017), en su tesis "Modelamiento geomecánico a nivel de prefactibilidad de una mina subterránea".

- Cuadrángulo de Caylloma, Hoja 31-S (INGEMMET, 1988).
- International Society for Rock Mechanics. (2007). The Complete ISRM Suggested
 Methods for Rock Characterization, Testing and Monitoring: 1974–2006. ISRM.
- Sönmez, H., & Ulusay, R. (2002). A study on the validity of the geological strength index
 (GSI) and the modified rock mass rating (RMR) systems. International Journal of Rock
 Mechanics and Mining Sciences, 39(5), 797–817.
- Bieniawski, Z. T. (1989). Engineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley.
- Hoek, E., Carranza-Torres, C., & Corkum, B. (2013). Hoek–Brown failure criterion 2002 edition. Rocscience.
- Navidi, W. (2021). Estadística para ingenieros y científicos (5.ª ed.). McGraw-Hill.
- Triola, M. F. (2018). Estadística (13.ª ed.). Pearson Educación.
- Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probabilidad y estadística para ingeniería y ciencias (9.ª ed.). Pearson Educación.

ANEXOS

Anexo 1: Matriz de consistencia

		ONSISTENCIA	
THULO DEL PROYECTO DE INVESTIGACION : "ANALISIS COMP	AREQUII	PA-2024"	DELO GEOMECÁNICO TRIDIMENSIONAL EN MINERA BATEAS,
PROBLEMA	Bachiller: Rocío La OBJETIVOS	ura Choque Alarcón	HIPOTESIS
DESCRIPCIÓN	GENERAL	JUSTIFICACIÓN	GENERAL
La elaboración del Modelo Geomecánico 3D de una unidad minera, es una herramienta fundamental para la evaluación y planeamiento de las operaciones mineras, ya que permite garantizar la seguridad y eficiencia de las mismas. Existen dos enfoques generales para la elaboración de un Modelo Geomecánico 3D: el modelamiento implícito y explícito, esta investifgación busca identificar cual de los dos métodos de modelado representa con precisión la realidad geomecánica y geológica de la la mina Bateas.	Realizar el análisis comparativo entre los métodos de modelado implícito y explícito para la elaboración del modelo Geomecánico 3D de Minera Bateas, con el objetivo de determinar cuál de estos, proporciona mayor confiabilidad, precisión y eficiencia.	La importancia de esta investigación radica en la necesidad de elaborar un modelo Geomecánico tridimensional confiable de la Mina Bateas. Para ello, se compararán los métodos de modelado implícito y explícito, para determinar cuál de estas metodologías proporciona mejores resultados en términos de confiabilidad, precisión y eficiencia.	El método explícito empleado para la elaboración del modelo Geomecánico 3D, muestra una mayor precisión y confiabilidad en comparación con el método implícito, ya que el Modelo Geomecánico 3D generado es acorde a la caracterización geomecánica y geológica de la Mina Bateas.
FORMULACIÓN	ESPECÍFICOS	METODOLOGÍA Método científico	ESPECÍFICAS
¿En el análisis comparativo, ¿cuál de los métodos de modelamiento, implícito y explícito es el más adecuado en términos de confiabilidad, precisión y eficiencia para la elaboración del Modelo Geomecánico 3D de Minera Bateas? * ¿Cuáles son los criterios y lineamientos que se deben considerar para la recopilación de datos en las investigaciones geomecánicas? * ¿Cuáles son las diferencias más relevantes de la secuencia de modelado del método implícito y explícito? * ¿Cuáles son las ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de Minera Bateas?	Definir los criterios y lineamientos para la obtención y registro de datos en las investigaciones geomecánicas. Establecer la secuencia de modelado para los métodos de modelado implícito y explícito, destacando sus características intrínsecas y diferencias. Analizar las ventajas y desventajas de los métodos de modelado implícito y explícito para la elaboración del Modelo Geomecánico 3D de Minera Bateas.	 Tipo de investigación: Correlacional - Explicativo Nivel: Aplicada Método de investigación: Mixta 	Los datos obtenidos en las investigaciones geomecánicas deben tener como característica ser cuantitativos y homogéneos, para asegurar la precisión y validez del análisis de los mismos para ambos métodos. La secuencia de modelado para ambos métodos se diferencia por el enfoque empleado posterior al proceso de análisis de la base de datos e información como topografía, geología e información complementaria. El Modelo Geomecánico 3D generado mediante el método implícito se crea a partir de un algoritmo, mientras que en el método explícito se desarrolla a partir de secciones interpretadas. El método implícito empleado para la elaboración del modelo geomecánico 3D es más eficiente en términos de tiempo y recursos en comparación con el método explícito. No obstante, su precisión es menos favorable en comparación con el método explícito, ya que este último, se acerca más a las condiciones reales de la Mina Bateas.

Anexo 2: Instrumentos de recolección de información

EQUIPOS / HERRAMIENTAS / MATERIALES

- Laptop
- Cámara fotográfica
- Martillo de Schmidt
- Cuna para ensayo con martillo de Shmidt
- Equipo Till Test
- Goniómetros
- Lápiz imán rayadores
- Flexómetro de 5m
- Peine de Barton
- Martillo de geólogo
- Lupa aumentadora
- Protactor
- Formato de logueo y mapeo
- Libreta de apuntes,
- Lápiz
- Tablero

Anexo 3: Registro Geomecánico en Sondajes Diamantinos

7	CÓDIGO DEL: FECHA DE INI FECHA DE TÉ	NICIO:	SAMIE22_1 18/06/2022 19/06/2022	LABOR: NIVEL: PROFUNDIDAD:	ANIMAS Nv 15 250.75	ORIENTACIÓN AZIMUT: INCLINACIÓN:	270.42 -36.18	RDENADAS: ESTE: NORTI COTA	E: 8317707.51	CRITERIOS PARA VALORACIÓN DE LA CALIDAD DE MASA ROCOSA, SEGÚN LA CLASIFICACIÓN RMRE BIENIAWSKI
П	DESCRIPCIÓN CUALITATIVA		CARACTER	STICAS DE TESTIGOS			PARÁMETROS DE CARACI	rerización	CLASIFICACIÓN GEOMECÁNICA	1. RESISTENCIA.
NIVEL DE AGUA	LITOLOGÍA Y CONDICIÓN ESTRUCTURAL Y 100 00 00 00 00 00 00 00 00 00 00 00 00	DNDICIÓN STRUCTURAL		A)E DE RECUPERACIÓN (%) (%) (%) (%) (%) (%)	(m) S > 10	ÓN MODIFICADA GRÁFICO DE RQD (%)	ALL RESISTENCIA ALL RESISTENCI	FREC FRACTUR. INCLINACIÓN (°)	RAIL PRESENC. DE AGIA RAIRBA Q Q Q Q Q G.S.I. RESISTRACIA MCIZD ROCOSO (Mpa)	RESISTENCIA Rating Descripción (Mpa) Rating RS > 250 15 R4 100 - 250 12
Z	INICIO BOX 001 0.00	-		 -						R3 50-100 7 R2 25-50 4
	ANDESITA COLOR GRIS VIOLÁCEO, TEXTURA PORFIRÍTICA, MUY FRACTURADA. 3.50	MF	LA 105 3.50 3.30 18	94	2.33 9 53		12 13 8 2 4 5 2 6	30 45 70 5	10 62 6.31 57	R1 <25 (2)(1)(0)
	ANDESITA PORFIRÍTICA COLOR GRIS VERDOSA, FRACTURADA. ↓ 10.80	F	LA 105 7.30 7.16 25	98	6.52 15 71		12 17 10 1 1 5 2 6	28 40 70 3	10 64 8.58 59	2. RQD. CONDICIÓN DOD
	ANDESITA PORFIRÍTICA GRIS VIOLÁCEO, VENILLAS DE \$\\ \text{21.20}\$	MF	LA 110 3.40 3.38 22	99	2.15 10 51		12 13 8 2 4 5 2 6	25 35 75 6	10 62 6.31 57	ESTRUCTURAL KQD
	ANDESITA PORFIRÍTICA GRIS VERDOSO, FRACTURADA.	F	LA 110 4.10 3.94 14	96	3.54 11 69		12 17 10 1 1 5 2 6	10 30 70 3	10 64 8.58 59	Rating Descripción % Recuperación Rating M 0 f/m 90 - 100% 20
	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURADA. ↓ 23.00	MF	A 99 4.70 4.15 56	88	1.54 9 26		7 8 8 2 0 3 0 6	28 40 85 12	10 44 0.40 39	LF 1 -5 f/m 75 -90% 17
	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURADA.	MF	LA 110 3.80 3.78 34	99	2.43 11 51		12 13 8 2 1 5 2 6	21 55 67 9	10 59 3.98 54	F 6 - 10 f/m 50 - 75% 13 MF 11 - 20 f/m 25 - 50% 8
	ANDESITA BRECHADA GRIS VIOLÁCEA, MUY FRACTURADA. 👹 30.90	MF	LA 105 4.10 3.90 36	95	2.27 13 44		12 13 8 2 1 5 2 6	18 56 78 9	10 59 3.98 54	IF > 20 f/m <25% 3
ıÌ	ANDESITA GRIS VERDE A VIOLÁCEO, FRACTURADA.	F	LA 120 13.88 13.30 42	96	10.8 23 62		12 17 10 1 1 5 2 6	25 58 78 3	10 64 8.58 59	T Triturado 3. ESPACIAMIENTO DE DISCONTINUIDADES.
	FALLA RELLENO, INTENSAMENTE FRACTURADA. 45.10	IF	MA 25< 0.32 0.20 8	62	5		1 3 5 0 0 1 0 5	70 25	7 22 0.01 22	ESPACIAMIENTO DE
İ	ANDESITA GRIS VERDOSA, FRACTURADA.	F	LA 105 6.25 6.20 24	99	5.55 16 71		12 17 10 1 4 5 2 6	18 35 75 4	10 67 13.59 62	DISCONTINUIDADES Descripción Rating
	TOBA LAPILLI GRIS VIOLÁCEA, FRACTURADA. 🖔 68.87	F	LA 110 17.52 17.10 65	98	15.1 46 69		12 17 10 1 4 5 2 6	18 48 75 4	10 67 13.59 62	> 2 m 20
Ì	ANDESITA GRIS VERDOSA, MUY FRACTURADA.	MF	LA 110 15.26 15.20 90	100	11 39 58		12 13 8 2 1 5 2 6	25 35 68 6	10 59 3.98 54	0.6 - 2 m 15 200 - 600 mm 10
Ì	ANDESITA GRIS VERDOSA, INTENSAMENTE FRACTURADA. ■ 85.55	IF	LA 110 1.42 1.20 24	85	0.36 3 20	,	12 8 5 4 0 3 0 5	- 35 84 17	10 47 0.63 42	60 - 200 mm 8
l	ANDESITA GRIS VERDOSA, FRACTURADA.	5 F	LA 120 28.50 27.72 11:	97	22.4 107 63	:	12 17 10 1 0 3 0 5	20 55 75 4	10 58 3.41 53	< 60 mm 5 4. CONDICIÓN DE LAS DISCONTINUIDA DES.
ı	VENILLAS DE CALCITA MASIVA EMPLAZADOS EN ANDESITA, MUY FRACTURADA.	s MF	LA 95 4.40 4.25 35	97	1.68 13 31		7 8 8 2 0 3 0 5	12 50 65 8	10 43 0.34 38	
l	ANDESITA PORFIRÍTICA GRIS VERDOSA CLARO, MUY FRACTURADA. 151.90	+	LA 100 33.45 32.70 220	98	20.7 102 49	,	12 13 8 2 0 3 0 5	12 30 73 7	10 53 1.58 48	PERSISTENCIA APERTURA RUGOSIDAD RELLENO METEORIZACIÓ
ŀ	ANDESITA PORFIRÍTICA GRIS VERDOSA, INTRUIDO POR DIQUE, MUY FRACTURADA. 153.00	MF	LA 90 1.10 1.00 12	91	0.48 2 35	;	7 8 8 2 1 5 2 6	30 50 85 11	10 49 0.86 44	Descripción Rating Descripción R
ł	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURADA. 161.55	-	LA 120 8.55 8.30 79	97	4.9 27 46		12 13 8 2 1 5 2 6	30 35 70 9	10 59 3.98 54	1 - 3 m 4 Muy angosta <0.1 mm 5 LI 1 Lisa SN 2 Suave < 5mm 5 Lig. meteor
1	ANDESITA PORFIRÍTICA GRIS VERDOSA CON VETILLAS DE	+	A 115 7.35 7.32 123	100	3.05 21 33		12 8 5 4 0 5 0 6	8 55 75 17	10 50 1.00 45	3 - 10 m 2 Angosta 0.1 - 1.0 mm 4 LR 3 Lig. rugosa DW 2 Duro > 5 mm 3 Meteorizz 10 - 20 m 1 Abierta 1.0 - 5.0 mm 1 RU 5 Rugosa DN 4 Duro < 5 mm 1 Alt. meteor
1	ANDESITA PORFIRÍTICA GRIS VERDOSA , INTERCEPTADOS # 173.40	-	A 110 4.50 4.04 53	90	1.81 13 32	,	12 8 8 2 0 6 2 5	3 45 80 12	10 53 1.58 48	> 20 m 0 Muy abierta > 5.0 mm 0 MR 6 Muy rugosa N 6 Ninguno 0 Descompu
1	VENILLAS DE CALCITA MASIVA EMPLAZADOS EN ANDESITA.		A 115 4.60 4.35 79	95	0.86 7 15		12 3 5 0 0 6 2 5	19 40 65 17	10 43 0.34 38	5. PRESENCIA DE AGUA
	INTENSAMENTE FRACTURADA. \$ 178.00 VETA DE SULFUROS, INTENSAMENTE FRACTURADA. \$ 181.10		MA 115 3.10 3.02 81	97	1.52 10 30		12 8 5 0 0 6 2 5	21 45 64 26	10 48 0.74 43	Descripción Flujo Gateo Mojado Halmedo Seco
	BRECHA SUICIFICADA TEXTURA BRECHOIDE OZ-Ro-Ca MUY	1	MA 130 3.90 3.75 28	96	2.62 14 54		12 13 8 0 0 6 2 5	22 50 70 7	10 56 2.51 51	AGUA Rating F G H LH S 0 4 7 10 15
	FRACTURADA. 8	MF	A 130 9.10 8.70 52	90	2.02 14 35		12 13 8 0 0 0 0 2 3	22 30 70 7		
	BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, MUY \$\frac{\pi}{\pi}\$ 194.10 BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, INTENSAMENTE FRACTURADA.) IF		20 6E	4.1 1/ 38		12 0 8 0 0 6 2 5	20 33 70 6	10 51 1.17 46 7 35 0.10 30	CRITERIO DE CLASIFICACIÓN DEL MACIZO ROCOSO, SEGÚN RMR89, MODIFICADO POR ROMANA
	RDECHA SILICIEICADA PA-O+ COLOR REIGE POSÁCEO ≥.			00	5		12 3 5 0 0 1 2 5	- 45 - 26		RMR DESCRIPCIÓN
	INTENSAMENTE FRACTURADA.		MA 130 5.20 4.60 48	88	1.63 9 25		12 8 8 0 0 6 2 5	15 40 70 9	10 51 1.17 46	91 - 100 Muy Buena "A" 81 - 90 Muy Buena "B"
	BRECHA SILICIFICADA, Qz-Ca-Rc, INTENSAMENTE FRACTURADA. BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, MUY		MA 125 4.10 2.30 71	36	0.3 2 6		12 3 5 0 0 6 2 5	25 40 70 17	10 43 0.34 38	71 - 80 Buena "A" 61 - 70 Buena "B"
ŀ	FRACTURADA. & 210.45 ANDESITA GRIS VERDOSA RRECHADA POR TRAMOS MILY	1	MA 130 5.75 5.39 34	94	1.62 10 23		12 8 8 0 0 6 2 5	25 45 88 6	10 51 1.17 46	51 - 60 Regular "A"
	FRACTURADA.	1	LA 125 6.45 5.90 76	91	1.52 12 19	' 	12 3 8 2 1 5 2 6	25 40 70 12	10 49 0.86 44	41 - 50 Regular "B" 31 - 40 Mala"A"
	FRACTURADA. FRACTURADA. Z29.40 TORA ANDESITICA DE LAPILLI GRIS CLARO A GRIS VERDOSO.	1	A 120 12.50 11.86 120	95	4.32 24 28		12 8 8 2 1 5 4 5	26 35 65 10	10 55 2.15 50	21 - 30 Mala"B"
	CON PSEUDO ESTRATIFICACIÓN, INTENSAMENTE \$ 236.80		LA 130 7.40 7.05 99	95	2.65 20 29	<u> </u>	12 8 5 4 1 5 4 5	25 42 70 13	10 54 1.85 49	11 - 20 Muy Mala "A" 0 - 10 Muy Mala "B"
	TOBA DE LAPILLI CORTADO POR VETILLAS DE CUARZO, FRACTURADA.	F	LA 120 6.69 6.20 28	93	4.18 12 50		12 13 10 1 4 5 2 5	6 35 65 4	10 62 6.31 57	V°B° GEOMECANICA:
	TOBA DE LAPILLI CORTADO POR ESTRUCTURAS DE CUARZO, FRACTURADA. \$\frac{1}{2}\$ 246.40		A 125 2.91 2.85 6	98	2.42 3 67	1	12 17 10 1 0 5 2 5	5 2	10 62 6.31 57	
	TOBA DE LAPILLI DE TEXTURA PIROCLÁSTICA, MUY FRACTURADA. 5 249.00	MF MF	A 95 2.60 2.40 12	92	1.8 5 55		7 13 8 2 4 5 2 5	5 55 65 5	10 56 2.51 51	PLANEAMIENTO INGENIERÍA
	TOBA ANDESÍTICA DE COLOR GRIS CLARO, MUY \$ 250.75	s MF	LA 105 1.75 1.68 16	96	1 9 46		12 13 8 2 1 5 2 5	20 35 65 9	10 58 3.41 53	,
RVA	PINAL BUX 084 ACIONES: DE ALTERACIÓN(ROCA).	\perp	NOTAS:	1 111111111						RELOGUEO GEOTÉCNICO DE SONDAJES DIAMANTINOS
	DE ALTERACIÓN(ROCA). ulterada)							CONTRATISTA: REGISTRADO POR:	GEOMECÁNICA LATINA S.A. M.M./ C.H./T.S./ R.CH.	SONDAJE DIAMANTINO
rada)	a)							REVISADO POR: APROBADO POR:	N.C. GDLSP	REVISADO POR: REALIZADO POR: GLSA
ens. A	Alterada) Alterada)							APROBADO POR:	GDLSP	APROBADO POR: FECHA: HOJAS: 1

7	GEDMEC	CÓDIGO DEL SONDAJE FECHA DE INICIO: FECHA DE TÉRMINO:	: SAMIE22_2 18/06/2022 19/06/2022	LABOR: NIVEL: PROFUNDIDAD:	ANIMAS Nv 15 250.75	ORIENTACIÓN AZIMUT: INCLINACIÓN:		0.42 5.18	COORDENADA	S: ESTE NORT COTA	E: 1	194982.85 8317707.51 4303.96	CRITERIOS PARA VALORACIÓN DE LA CALIDAD DE MASA ROCOSA, SEGÚN LA CLASIFICACIÓN RMRI BIENIAWSKI
П	DESCRIPCIÓN CUALITATIVA		CARA	CTERÍSTICAS DE TESTIGOS				PARÁMETRO:	S DE CARACTERIZACIÓ)N	CLASIE	CACIÓN GEOMECÁNICA	1. RESISTENCIA.
MIVEL DE AGUA	LITOLOGÍA Y CONDICIÓN ESTRUCTURAL	SIMBOLOGÍA PROFLINDIDAD (m) CONDICIÓN ESTRUCTIRAL	RESISTENCIA (Mpa) RESISTENCIA (Mpa) LONGITUD PERFORDA (m) RECUPBADA (m)	GRÁFICO DE RECUPERACIÓN GRÁFICO DE RECUPERACIÓN GRÁFICO DE RECUPERACIÓN (%)	10	ÓN MODIFICADA GRÁFICO DE RQD (%)	VAL. RESISTENCIA VAL. RQD	VAL. PERSISTENCIA VAL. APERTURA VAL. RUGOSIDAD	RELENO METEORIZACIÓN 30°	CIÓN (°)	WAL. PRESENC. DE AGUA	Q G.S.I. RESISTBACIA MACIZO ROCCOSO (Mpa)	RESISTENCIA Rating Descripción (Mpa) Rating RS > 250 15 R4 100 - 259 12 R3 50-100 7
	INICIO BOX 001	0.00 -											R2 25-50 4
ı	ANDESITA COLOR GRIS VIOLÁCEO, TEXTURA PORFIRÍTIO MUY FRACTURADA.	A, 💆 3.50 MF	LA 105 3.50 3.30	18 94	2.33 9 5	,	12 13 8	3 2 4 5	2 6 30 4	15 70 5	10 62	6.31 57	R1 <25 (2)(1)(0)
ł	ANDESITA PORFIRÍTICA COLOR GRIS VERDOSA, FRACTURA		LA 105 7.30 7.16	25 98	6.52 15 7		12 17 1	0 1 1 5	2 6 28 4	10 70 3	10 64	8.58 59	2. RQD.
ŀ	ANDESITA PORFIRÍTICA GRIS VIOLÁCEO, VENILLAS DE CALCITA, MUY FRACTURADA.	~	LA 110 3.40 3.38	22 99	2.15 10 5		13 13	2 2 4 5	+	15 75 6	10 62	6.31 57	CONDICIÓN RQD ESTRUCTURAL
ŀ			120 000		1.15				+				Rating Descripción % Recuperación Rating
-	ANDESITA PORFIRÍTICA GRIS VERDOSO, FRACTURADA		LA 110 4.10 3.94	14 96	3.54 11 69	, , , , , , ,	12 17 1	0 1 1 5		0 70 3		8.58 59	M 0 f/m 90 - 100% 20
ļ	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURAL		A 99 4.70 4.15	56 88	1.54 9 20	5	7 8 1	3 2 0 3	0 6 28 4	10 85 12	10 44	0.40 39	LF 1 -5 f/m 75 -90% 17 F 6 - 10 f/m 50 - 75% 13
	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURAL		LA 110 3.80 3.78	34 99	2.43 11 5	· [] [] []	12 13	3 2 1 5	2 6 21 5	5 67 9	10 59	3.98 54	MF 11 - 20 f/m 25 - 50% 8
	ANDESITA BRECHADA GRIS VIOLÁCEA, MUY FRACTURAD	A. 🗸 30.90 MF	LA 105 4.10 3.90	36 95	2.27 13 44	• [[[[]]	12 13	3 2 1 5	2 6 18 5	6 78 9	10 59	3.98 54	IF > 20 f/m <25% 3
	ANDESITA GRIS VERDE A VIOLÁCEO, FRACTURADA.	₩ 44.78 F	LA 120 13.88 13.30	42 96	10.8 23 63	2	12 17 1	0 1 1 5	2 6 25 5	8 78 3	10 64	8.58 59	Triturado 3. ESPACIAMIENTO DE DISCONTINUIDADES.
Ì	FALLA RELLENO, INTENSAMENTE FRACTURADA.	≦ 45.10 IF	MA 25< 0.32 0.20	8 62	5		1 3	5 0 0 1	0 5 -	- 70 25	7 22	0.01 22	ESPACIAMIENTO DE
ŀ	ANDESITA GRIS VERDOSA, FRACTURADA.	₩ 51.35 F	LA 105 6.25 6.20	24 99	5.55 16 7	.	12 17 1	0 1 4 5	2 6 18	15 75 4	10 67	13.59 62	DISCONTINUIDADES Descripción Rating
ı	TOBA LAPILLI GRIS VIOLÁCEA, FRACTURADA.	§ 68.87 F	LA 110 17.52 17.10	65 98	15.1 46 69	,	12 17 1	0 1 4 5	2 6 18	8 75 4	10 67	13.59 62	> 2 m 20
ł	ANDESITA GRIS VERDOSA, MUY FRACTURADA.	₩ 84.13 MF	LA 110 15.26 15.20	90 100	11 39 5	,	12 13	3 2 1 5	2 6 25	15 68 6	10 59	3.98 54	0.6 - 2 m 15
ŀ	ANDESITA GRIS VERDOSA. INTENSAMENTE FRACTURAD		LA 110 1.42 1.20	24 85	0.36 3 2		12 8	5 4 0 2	0 5	15 84 17	10 47	0.63 42	200 - 600 mm 10 60 - 200 mm 8
-	ANDESITA GRIS VERDOSA, INTENSARIENTE PRACTURADA.	A. § 63.33 IF	LA 120 28.50 27.72	111 97	0.30 3 2		12 0 .	, , , , ,		5 75 4	10 58	3.41 53	< 60 mm 5
-	VENILLAS DE CALCITA MASIVA EMPLAZADOS EN ANDESI:		1		22.4 107 6.		12 17 1	0 1 0 3			\vdash		4. CONDICIÓN DE LAS DISCONTINUIDADES.
ļ	MUY FRACTURADA.	7 5 118.45 MF	LA 95 4.40 4.25	35 97	1.68 13 3	·	7 8 1	3 2 0 3	0 5 12 5	0 65 8		0.34 38	PERSISTENCIA APERTURA RUGOSIDAD RELLENO METEORIZACIÓ
ļ	ANDESITA PORFIRÍTICA GRIS VERDOSA CLARO, MUY FRACTURADA.	≸ 151.90 MF	LA 100 33.45 32.70	228 98	20.7 102 49	•	12 13	3 2 0 3	0 5 12	10 73 7	10 53	1.58 48	Descripción Rating Descripción Rating Rating Descripción Rating Descripción Rating Descripción Rating Descripción
	ANDESITA PORFIRÍTICA GRIS VERDOSA, INTRUIDO POI DIQUE, MUY FRACTURADA.	153.00 MF	LA 90 1.10 1.00	12 91	0.48 2 3	5	7 8 1	3 2 1 5	2 6 30 5	0 85 11	10 49	0.86 44	< 1 m 6 Cerrada 0 6 ML 0 Muy lisa SW 0 Suave >5 mm 6 No meteor
	ANDESITA PORFIRÍTICA GRIS VERDOSA, MUY FRACTURAD	DA. 🛓 161.55 MF	LA 120 8.55 8.30	79 97	4.9 27 40	5	12 13 1	3 2 1 5	2 6 30 3	5 70 9	10 59	3.98 54	1 - 3 m
ĺ	ANDESITA PORFIRÍTICA GRIS VERDOSA CON VETILLAS I CALCITA, INTENSAMENTE FRACTURADA.	DE 💆 168.90 IF	A 115 7.35 7.32	123 100	3.05 21 3	3	12 8 !	5 4 0 5	0 6 8 5	5 75 17	10 50	1.00 45	10 - 20 m 1 Abierta 1.0 - 5.0 mm 1 RU 5 Rugosa DN 4 Duro < 5 mm 1 Alt. meteor
Ì	ANDESITA PORFIRÍTICA GRIS VERDOSA , INTERCEPTADO POR VETILLAS DE SULFUROS, MUY FRACTURADA.	OS ⊌ 173.40 MF	A 110 4.50 4.04	53 90	1.81 13 33	2	12 8 1	3 2 0 6	2 5 3 4	5 80 12	10 53	1.58 48	> 20 m 0 Muy abierta > 5.0 mm 0 MR 6 Muy rugosa N 6 Ninguno 0 Descompt
Ì	VENILLAS DE CALCITA MASIVA EMPLAZADOS EN ANDESI	FA, 178.00 IF	A 115 4.60 4.35	79 95	0.86 7 1	5	12 3	5 0 0 6	2 5 19	10 65 17	10 43	0.34 38	5. PRESENCIA DE AGUA
ł	INTENSAMENTE FRACTURADA. VETA DE SULFUROS, INTENSAMENTE FRACTURADA.	≥ 181.10 IF	MA 115 3.10 3.02	81 97	1.52 10 30	,	12 8	5 0 0 6	2 5 21 4	15 64 26	10 48	0.74 43	Descripción Flujo Gateo Mojado Húmedo Seco
ł	BRECHA SILICIFICADA, TEXTURA BRECHOIDE, QZ-Rn-Ca, N FRACTURADA.		MA 130 3.90 3.75	28 96	262 14 5		12 12		 	0 70 7	10 56	2.51 51	AGUA Rating F G H LH S S Rating 0 4 7 10 15
ŀ	FRACTURADA. RRECHA SILICIEICADA PRACY COLOR REIGE POSÁCEO M	S 185.00 MF	1		2.62 14 5	<u>' </u>	12 13 1	5 0 0 0	+	-			
ŀ	BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, M FRACTURADA. BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO,		A 130 9.10 8.70	52 96	4.1 17 36	5	12 8	3 0 0 6	2 5 20 5	5 70 6			CRITERIO DE CLASIFICACIÓN DEL MACIZO ROCOSO, SEGÚN RMR89, MODIFICADO POR ROMANA
	INTENSAMENTE FRACTURADA.	2	MA 130 1.30 0.85	34 65	5		12 3	5 0 0 1		15 - 26	7 35	0.10 30	RMR DESCRIPCIÓN
	BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, INTENSAMENTE FRACTURADA.	2 200.00	MA 130 5.20 4.60	48 88	1.63 9 2	·	12 8 1	8 0 0 6	2 5 15 4	70 9	10 51	1.17 46	91 - 100 Muy Buena "A" 81 - 90 Muy Buena "B"
	BRECHA SILICIFICADA, Q2-Ca-Rc, INTENSAMENTE FRACTURADA.	8 204.70 IF	MA 125 4.10 2.30	71 56	0.3 2 6		12 3	5 0 0 6	2 5 25 4	10 70 17	10 43	0.34 38	71 - 80 Buena "A"
	BRECHA SILICIFICADA, Rn-Qz, COLOR BEIGE ROSÁCEO, M FRACTURADA.	& 110.45 FI	MA 130 5.75 5.39	34 94	1.62 10 2	3	12 8 1	3 0 0 6	2 5 25 4	15 88 6	10 51	1.17 46	61 - 70 Buena "B" 51 - 60 Regular "A"
	ANDESITA GRIS VERDOSA , BRECHADA POR TRAMOS, MI FRACTURADA.	JY 🕹 216.90 MF	LA 125 6.45 5.90	76 91	1.52 12 19	, [12 3 1	3 2 1 5	2 6 25	70 12	10 49	0.86 44	41 - 50 Regular "B"
-	DACITA PORFIRÍTICA GRIS CLARO, TEXTURA AFANÍTICA, I FRACTURADA.	S 229.40 PIF	A 120 12.50 11.86	120 95	4.32 24 28	3	12 8	3 2 1 5	4 5 26 3	15 65 10	10 55	2.15 50	31 - 40 Mala"A" 21 - 30 Mala"B"
ł	TOBA ANDESITICA DE LAPILLI GRIS CLARO A GRIS VERDO CON PSEUDO ESTRATIFICACIÓN. INTENSAMENTE	SO 5 236.80 IF	LA 130 7.40 7.05	99 95	2.65 20 29	, 	12 8	5 4 1 5	4 5 25 4	2 70 13	10 54	1.85 49	11 - 20 Muy Mala "A"
-	FRACTURADA TOBA DE LAPILLI CORTADO POR VETILLAS DE CUARZO FRACTURADA.	243.49 F	LA 120 6.69 6.20	28 93	4.18 12 50	,	12 13 1	0 1 4 5	2 5 6	15 65 4	10 62	6.31 57	0 - 10 Muy Mala "B"
ł	TOBA DE LAPILLI CORTADO POR ESTRUCTURAS DE CUAR		A 125 2.91 2.85	6 98	2.42 3 6	,	12 17 1	0 1 0 5	2 5 5	2	10 62	6.31 57	V°B° GEOMECANICA:
ŀ	FRACTURADA. TOBA DE LAPILLI DE TEXTURA PIROCLÁSTICA, MUY	5 249.00 MF	A 95 2.60 2.40	12 92	1.8 5 5		7		2 5 5 5	5 65 5	10 56	2.51 51	Minera PLANEAMIENTO INGENIERÍA
	FRACTURADA. TOBA ANDESÍTICA DE COLOR GRIS CLARO, MUY		35 35 35		1.0 5 5		/ 13 1	2 7 3	1 1 1 1	15 65 9			PLANEAMIENTO INGENIERÍA PLANEAMIENTO INGENIERÍA
-	FRACTURADA.	≦ 250.75 MF	LA 105 1.75 1.68	16 96	1 9 4	<u> </u>	12 13 1	8 2 1 5	2 5 20 3	15 65 9	10 58	3.41 53	
	FINAL BOX 084												RELOGUEO GEOTÉCNICO DE SONDAJES DIAMANTINOS
O DE	DE ALTERACIÓN(ROCA).		NOTAS:						CONTRA	TISTA:		ECÁNICA LATINA S.A.	SONDAJE DIAMANTINO
v. Alt rada) Jy Alt	Rerada) a) ulterada)								REVISA	ADO POR:	M.M	I./ C.H./T.S./ R.CH. N.C.	REVISADO POR: REALIZADO POR: GLSA
ens. A	Alterada)		1						APROBA	DO POR:		GDLSP	APROBADO POR: FECHA: HOJAS: 1

7	GEOMEC CÓDIGO FECHA D FECHA D	DE INICIO):		23/06/ 24/06/	/2022	NIVEL PROFI		A	AM 502E NIMAS N 97.4	15	ORIENTA AZIMUT: INCLINA	:		331. -37	.5		0	DORDEN	ADAS:	NO CO	RTE:		195054. 8317797 4304.22	.796	L			DRACION DE	: LA CALID	BIENIAWS	KI ROCOSA, SEG	ÚN LA CLASIF	FICACIÓN RMR89
П	DESCRIPCIÓN CUALITATIVA					CARACTE	RÍSTICAS	DE TESTIGO	os							PARÁN	METROS	DE CARA	CTERIZA	CIÓN			CLASTE	TCA CTÓN	GEOMECÁNIC		RESISTENCIA.			-				
VEL DE AGUA	LITOLOGÍA Y CONDICIÓN ESTRUCTURAL	OFUNDIDAD (m)	NDICTÓN TRLCTURAL	ADO DE ALTERACIÓN SISTENCIA (Mps)	DMGITUD PERFORADA (m)	MGITUD CUPERADA (m) 204 DE	SCONTINUIDADES	GRÁFICO RECUPERA (%)	DF	DETROZOS > 10	ERACIÓN (%) Ob	GRÁFI RQD	ICO DE	L. RESISTENCIA	L. ESPACIAMIENTO	L. PERSISTENDA	DAD			REC. FRA		L. PRESENC. DE AGUA	RMR89	ø	G.S.I. SISTENCIA MACIZO	KCCCSO (Mpa)	Rating Descrip	SISTENCIA nción (Mpa 250 0 - 250		-				
Z	INICIO BOX 001	0.00	- 88	8 2	3	28.5	- N	ППП	Ш,	38 2	5 2	Ш	Ш	> >	>	> >		>	> 8	8	8 2		H.	_	. 2	-		0-100	7					
ł	TOBA ANDESÍTICA DE LAPILLI. MARRÓN ROJIZO CON 🕒 .	4.30	F	LA 110	4.30	4.10 1	0 05		Ш.	.00 44			ш	42 42		Н.	-			35	70 4	10	62	6.31	57			5-50 <25	(2)(1)(0)					
ŀ	VENILLEO DE CALCITA, FRACTURADA.	_			├		-	Ш	<u> </u>	.88 14	54	Ш	Ш	12 13	10	1 4	, ,	2	5 8	-	-	_				_ L	RQD.	123	(2)(1)(0)	ال				
ŀ	DIFFERENTES TAMAÑOS, FRACTURADA.	8.05	F	LA 99	3.75	-	3 99		2	.97 9	63	Ш	Ш	7 13	10	1 4	5	2	5 10	+++	65 3	10	57	2.93	52	- [CONDICIÓ	N	RC	.OD				
-	FRACTURADA.	-	LF	LA 82	17.35			Ш	1	2.9 32	59	Ш	Ш	7 13	15	0 4	5	2	5 10	-	65 1	10	61	5.41	56	- I	Rating Descri		% Recupera	ución R	Rating			
	LIGERAMANTE CRAQUELADOS POR HEMATITA, FRACTURADA. ₹ 22	8.30	F	LA 115			0 98	Ш	2	.45 8	68	Ш	Ш	12 13	10	1 4	5	2	5 10		82 3	10		6.31	57	_	м 0 f		90 - 1009		20			
	CALCITA, FRACTURADA.	0.45	F	LA 120	2.15	2.05	9 95	Ш	1	.42 4	53	Ш	Ш	12 13	10	1 4	5	2	5 25	-	62 4	10	62	6.31	57		LF 1-5 F 6-10		75 -90% 50 - 75%		17 13			
ļ	A BRECHADO, FRACTURADA.	32.65	F	LA 120	2.20	2.05	93	ШШ	1	.33 3	48	Ш	Ш	12 8	10	1 4	5	2	5 10	45	65 2	10	57	2.93	52	_	MF 11 - 2	10 f/m	25 - 50%	6	8			
	RELLENO, CALCITA, FRACTURADA.	55.30	F	LA 110	22.65	21.87 7	2 97	ЩЦ	1	6.9 42	60	Ш	Ш	12 13	10	1 1	. 5	2	5 15	55	75 3	10	59	3.98	54		IF > 20	· -	<25%		3			
ļ	FRACTURADA.	55.70	IF	IA 105	0.40	0.30 2	9 75	ШШ	Ш		10	Ш	Ш	12 3	5	0 0	1	0	3 -	Ŀ	71 7	7	31	0.05	26	3.1	ESPACIAMIEN		ISCONTINU	JIDADES.				
	CALCITA Y HEMATITA, FRACTURADA.	88.70	F	LA 148	3.00	2.85 1	3 95	ШШ	1	.43 6	38		Ш	12 8	10	2 4	5	2	5 28	43	80 4	10	58	3.41	53		ESPA	CIAMIENT	TO DE	7				
	ANDESITA GRIS ROJIZO , VENILLAS DE HEMATITA Y CALCITA, HUY FRACTURADA.	3.75	MF	LA 153	5.05	4.85 3	1 96		3	.06 12	48			12 8	8	2 4	5	2	5 29	52	70 6	10	56	2.51	51		Descripo		Rating	4				
	ANDESITA GRIS VERDOSA, MUY FRACTURADA.	54.65	MF	LA 140	0.90	0.85	94		0	.55 3	49			12 8	8	2 4	5	2	5 15	45	- 9	10	56	2.51	51		> 2 n		20	7				
Ì	ANDESITA GRIS VERDOSA, ALTERACIÓN DE CLORITA ,VETILLAS DE CALCITA, FRACTURADA. 63	57.01	F	A 80	2.36	2.30	97	Ш	1	.72 5	58	Ш	Ш	7 13	10	1 1	. 5	2	5 25	40	72 4	10	54	1.85	49		0.6 - 2 200 - 600		15 10					
İ	TODA ANDECÉTICA DE LADRUA MADRÓN DONTA FRACTURAS	9.35	F	LA 140	12.34	12.10 2	1 98	Ш	1	0.5 28	68	Ш	Ш	12 13	10	1 4	5	2	5 14	55	80 2	10	62	6.31	57		60 - 200	mm	8					
Ì		0.75	MF	LA 90	1.40	1.35	7 96	Ш	Ш,	0.8 7	46	Ш	Ш	7 8	8	2 4	5	2	5 -	40	70 5	10	51	1.17	46	1 4	< 60 m		5 ISCONTINUI	IDA DES.				
ł		34.10	LF	LA 140	3.35	3.25	3 97	ш	2	.78 3	66	Ш	ш	12 13	15	0 4	5	2	5 -	48	- 1	10	66	11.66	61	-								
ł	TORA ANDESITICA DE LABILIT DE COLOR CRIS VERDOSO A	90.55	MF	LA 140	6.45	6.30 4	2 98	++++		4 18	50	Ш	ш	12 13	8	2 1	. 5	2	5 25	55	- 7	10	58	3.41	53	-	PERSISTENC		APERTUR		RUGOSIDA			METEORIZACIÓN
ł	GRIS CLARO, CON RELLENO DE PIRITA Y ARCILLA, MUY FRACTURADA ANDESITA GRIS VERDOSA CON VETILLAS DE CALCITA,	21 10	MF	Δ 125	0.55	0.35	5 64	Ш		13 1	19		Ш	12 3	8	0 0	6	2	5 24	55	. 9	10	46	0.54	41		Descripción Ra			Rating 6	Rating Descrip 6 ML 0 Muy		Descripción Ra Jave >5 mm	ating Descripció No meteoriz
ł	SULFUROS DISEMINADOS, MUY FRACTURADA. \$ 91 TOBA ANDESÍTICA DE LAPILLI GRIS VERDOSO CON VETILLAS \$ 0	4.26	MF	IA 145	3.16	3.00 2	2 OF	₩₩	.	76 12	45		Ш	12 0		3 0		-	5 25	-	80 7	10	50	1.00	45	_				0.1 mm 5	5 LI 1 Lis		Jave < 5mm	5 Lig. meteoriz
ł	TORA LAPILLI COLOR VERDE OLIVO - FRACTURAS CON -	09.48	MF	14 470	15.22	44.45		₩₩		0.7 45		Ш	Ш	42 42		1 1	-	-	5 25	+	70 6	10	61	5.41	56	_				- 1.0 mm 4 - 5.0 mm 1	4 LR 3 Lig. ru 1 RU 5 Rugo			3 Meteorizaci 1 Alt. meteoriz
	RELLENO DE CALCITAS, MUY FRACTURADA.	11.57	MF	DA 170	2.09	1.40 3				9.7 43		ш	₩	12 13	-	2 7	-	-	5 15	+	70 1	10	-	0.46	40	-		-		5.0 mm 0	0 MR 6 Muy ru			0 Descompue
		22.20	PF	A 120	10.63	9.91 3	1 67	Ш		.10 1			ш	12 3		2 0	-	-	5 15	+ +	75 4	10	45	3.98	54	5.	PRESENCIA D	E AGUA						
		_	+	LA 148	-		8 93	Ш		.66 27	58	Ш	Ш	12 13	10	1 1	,	2	5 15	57	/5 4	10	59		_	_	Descripció	n Rujo	Goteo Mojado) Húmedo	Seco			
	FRACTORADA	22.35	IF	IA <25	0.15	0.12	9 80	++++			5	Ш	Ш	1 3	5	0 0	1	2	5 -	37	- 61	7	24	0.02	19	_	AGUA Rating	F	G H	UH 10	S			
	FRACTURADA.	25.75	F	LA 145	3.40	3.25 1	2 96	Ш	1	2.3 8	54	Ш	Ш	12 13	10	1 1	. 5	2	5 -	-	85 4	10	59	3.98	54				4 /		Б			
	TOBA ANDESÍTICA DE LAPILLI VERDE OLIVO, MUY FRACTURADA. ANDESITA GRIS VERDOSA CON VETILLAS DE CARBONATOS Y	32.60	MF	LA 115	6.85	6.50 5	2 95	Ш	3	.85 25	45	Ш	Ш	12 8	8	2 1	. 5	2	5 30	60	85 8	10	53	1.58	48	_ '	CRITERIO DE	CLASIFI	CACIÓN DE	L MACIZO) ROCOSO, SE	EGÚN RMR89, I	MODIFICA DO	POR ROMANA
ļ	SULFUROS (GALENA), LIGERAMENTE SILICIFICADA, INTENSAMENTE FRACTURADA.	33.55	IF	A 99	0.95	0.50 1	8 53				10	Ш	Ш	7 3	5	0 0	6	2	5 -	-	83 19	10	38	0.16	33		RMR	DES	CRIPCIÓN					
	SULFUROS (GALENA), MUY FRACTURADA.	40.50	MF	A 90	6.95	6.80 6	0 98		3	.86 26	44		Ш	7 8	8	0 0	6	2	5 3	50	65 9	10	46	0.54	41		91 - 100 81 - 90	. ,	Buena "A" / Buena "B"	٦				
	RODOCROSITA, MUY FRACTURADA.	43.85	MF	A 160	3.35	3.25 3	4 97		1	.72 10	41		Ш	12 8	8	0 0	6	2	5 26	50	75 10	10	51	1.17	46		71 - 80	В	uena "A"					
	ANDESITA GRIS VERDOSA , SILICIFICADA , TRAZOS DE PIRITA DISEMINADA, MUY FRACTURADA.	45.60	MF	A 95	1.75	1.10 2	1 63		0	.22 2	10		ШП	7 3	8	0 0	6	2	5 -	60	- 12	10	41	0.25	36		61 - 70 51 - 60		uena "B" egular "A"					
	ANDESITA GRIS OSCURA SILICIFICADA, MUY FRACTURADA. 💆 14	46.05	MF	A 160	0.45	0.35	78	ШШ	0	.25 1	44		Ш	12 8	8	0 0	6	2	5 -	51	- 9	10	51	1.17	46		41 - 50	Re	gular "B"					
Ì		49.15	MF	A 139	3.10	2.30 1	7 74		Ш	0.8 5	21		Ш	12 3	8	2 0	6	2	5 -	55	80 5	10	48	0.74	43		31 - 40 21 - 30		Mala"A" Mala"B"					
		52.60	F	A 135	3.45	3.05 1	0 88	Ш	1	.47 4	34			12 8	10	0 0	6	2	5 28	54	- 3	10	53	1.58	48		11 - 20 0 - 10		y Mala "A" v Mala "B"					
Ì		56.05	IF	MA 145	3.45	3.10 6	1 90		0	.31 3	7	Ш	$\parallel \parallel$	12 3	5	4 1	. 5	2	5 17	55	80 18	10	47	0.63	42			. nu	,					
	FRACTURADA.	66.00	MF	A 110	9.95	9.30 8	2 93	₩	4	.04 23	32	₩	₩	12 8	8	2 0	5	0	5 25	50	75 8	10	50	1.00	45	+					V°B° GEOM	ECANICA:		
}	ANDESITA GRIS VERDOSA A GRIS CLARO. SILICIFICADA.	66.30	IF.	IA on	0.30	0.28 2	4 93	₩			5		₩	7 3	5	0 0	3	2	5 -	Ħ	. 81	10	35	0.10	30	1	[Aver	1079		PLAN	NEAMIENT	O INGENIER	RÍA	
-	TORA ANDESITICA DE LAPILLE GRIS CLARO A GRIS VERDOSA	84.40	MF	A 140	18.10	· ·	26 96	╫╫		96 46	44	Ш	₩	12 0	8	1 2 0	5	,	5 12	50	84 7	10		1.36	47	+	Mir Bates	AS no to Nacho						
	TORA DE LAPILLE PSELIDOESTRATIFICADA DE COLOR VERDE	-	MF	A 90	1.35	1.32 1	2 98			0.7 3	41		Ш	7 8	8	2 0	5	0	5 -	H	67 9	10	45	0.46	3	1		Ri	ELOGUEO) GEOTÉ	ÉCNICO DI	E SONDAJES	5 DIAMAN	TINOS
	CIONES: E ALTERACIÓN(ROCA).			NOTA	AS:									-					CON	FRATIST	A:				LATINA S.A.					Si	ONDAJE DI	IAMANTINO		
. Alt	terada)																		REV	SADO PO	R:		M.I	N.			REVISADO P	OR:		RE	EALIZADO POR:	: GLSA	$\neg \neg$	
ıv Alt	Iterada) Alterada)																		APR	OBADO P	OR:			GDI	.SP		APROBADO I			_	ECHA: 25/01/20		-	HOJAS: 1/

7	GEOMEC	CÓDIGO DEL S FECHA DE INIC FECHA DE TÉR	CIO:		SAMIE 23/06 24/06	/2022	NI	ABOR: IVEL: ROFUNDIDAD:	ANII	502E 4AS Nv 15 4	ORIENTACI AZIMUT: INCLINACIÓ		331. -37	.5		COOR	DENADAS	N	STE: ORTE: DTA:	8	95054.9 317797. 304.227	796	CRITERIOS PARA VALORACIÓN DE LA CALIDAD DE MASA ROCOSA, SEGÚN LA CLASIFICAC BIENIAWSKI	IÓN RMR
	DESCRIPCIÓN CUALITATIVA				2-1/00			AS DE TESTI						PARÁM	ETROS DE	CARACTI	RIZACIÓN			1			1. RESISTENCIA.	
ŀ	DESCRIPTION CONTENT IN			П	Ê			DE RECUPERA		RECUPERACI	ÓN MODIFICAL	DA		DISCO	INTINUIDA	ADES	FREC.	FRACTUR.		CLASIFIC	ACIÓN G	SEOMECÁNIC	ICA RESISTENCIA	
TIVEL DE AGUA	LITOLOGÍA Y CONDICIÓN ESTRUCTURAL	SIMBOLOGÍA PROFUNDIDAD (m)	CONDICIÓN		RESISTENCIA (Mp.a) CONGITUD PERFORMA	CONGITUD RECUPERADA (m)	v* DE DISCONTINUIDADES	GRÁFIC RECUPER (%	CO DE RACIÓN ODLISMO	W DE TROZOS > 10	GRÁFICO RQD (9	# RESISTENDA	AL. RQD	IAL. PERSISTENCIA	/AL. RUGOSIDAD	/AL. RELLENO /AL. METEORIZACIÓN	00 - 00	6-85	DISC/m IAL. PRESENC DE AGUI	RMR89	0	G.S.I. RESISTENCIA MACIZO	Rating Descripción (Mpa) Rating RS > 250 15 R4 100 - 250 12 R3 59-100 7	
1		185.75	-	-		-	-	-	III -		ШШ	·			-			-		-	-	-	R2 25-50 4	
į	TOBA LAPILLI DE COLOR VERDE OLIVO CLASTOS SUBANGULOSOS DE TAMAÑOS 10MM , VENILLAS DE CUARZ	10, 5 188.70	MF	А	160 2.95	2.80	18 9	95	1.7	9 47	, 11111	12	8 8	2 0	5	0 5	- 40	63	6 10	50	1.00	45	R1 <25 (2)(1)(0)	
ŀ	GALENA Y PIRITA DISEMINADA, MUY FRACTURADA. TOBA DE LAPILLI DE COLOR VERDE OLIVO PSEUDOESTRATIFICADA, VENILLAS DE PIRITA PARALELAS	A 5 189.75	F	LA	120 1.05	0.78	4 7	74	0.6	3 3 52		12	13 10	1 1	5	4 5		68 3	.81 10	61	5.41	56	2. RQD.	
ŀ	TOBA ANDESITICA DE LAPILLI GRIS VERDOSA VETILLAS I CUARZO, CALCITA ,CLORITA , PIRITA Y ARCILLAS, MUY	E 191.40	MF	LA	110 1.65	1.60	18 9	97	0.9	1 5 4		12	8 8	2 0	5	4 5	30 61	82 #	## 10	54	1.85	49	CONDICIÓN RQD	
ŀ	TOBA LAPILLI GRIS CLARO A GRIS VERDOSO LITICOS DE SI A 40MM SUBANGULOSOS A SUB REDONDEADOS, MUY	MM 5 194.40	MF	+	145 3.00	2.94	31 9	19	1.5	3 10 42	.	12	9 9	2 0	5	2 5	. 50	+	## 10	+	1.36	47	Rating Descripción % Recuperación Rating	
ŀ	FRACTURADA ANDESITA DE TEXTURA PORFIRITICA A AFANITICA POR TRAMOS, VETILLAS DE CUARZO Y CALCITA, MUY	\$ 197.40	MF	\perp	155 3.00	-	22 9	~	1.7			12	0 0	1 .	-		- 40	-	.33 10	-	_	47	M 0 f/m 90 - 100% 20	
ŀ	FRACTURADA	₹ 197.40	MF	LA	155 3.00	2.90	22 9	"	1.7	8 4		12	8 8	2 0	5	2 5	- 40	80 7	.33 10	52	1.36	47	LF 1 -5 f/m 75 -90% 17 F 6 - 10 f/m 50 - 75% 13	
ŀ	FINAL BOX 067	\perp										Ш			$\perp \perp$	\perp		\sqcup					MF 11 - 20 f/m 25 - 50% 8	
L								ШШ	Ш			Ш											IF > 20 f/m <25% 3	
												Ш											T Triturado	
ſ				$ \top $					$\Pi\Pi$			\prod							T	$ \top $			3. ESPACIAMIENTO DE DISCONTINUIDADES.	
İ				П					11111			1111			ΠŤ	\top		\sqcap		\Box			ESPACIAMIENTO DE DISCONTINUIDADES	
ŀ				H				-111111	ĦĦ		111111	Ш			Ħ			Ħ					Descripción Rating	
ł				+					₩			₩			H	+		++					> 2 m 20	
ŀ		+		++					₩		+++++	₩	\vdash	++	++	+	_	++				-	0.6 - 2 m 15 200 - 600 mm 10	
ŀ		+		\vdash					₩			₩		\vdash	++	+	\vdash	\vdash	_	+		-	60 - 200 mm 8	
ļ		+		Ш					Ш		ШШ	Ш			ш	\perp		Ш		\perp			< 60 mm 5	
									Ш			Ш											4. CONDICIÓN DE LAS DISCONTINUIDADES.	
												Ш											PERSISTENCIA APERTURA RUGOSIDAD RELLENO METEO	ORIZACIÓ
ſ																							Descripción Rating Descripción Rating Rating Descripción Rating Descripción Rating	Descripci
İ								Ш	Ш			Ш												lo meteor
t				T					###		1111111	1111			\top	\top	\top	TT						ig. meteo
ŀ				+	-		-		₩		111111	₩			H	+		\vdash	-	+	-	+		Meteoriz
ŀ		+						-HHH			++++++	Ш												lt. meteor Descompu
ŀ				+											\vdash				_				5. PRESENCIA DE AGUA	
ŀ		\bot						-	Ш			Ш.			\vdash	\perp		\vdash					Descripción Flujo Gateo Mojado Húmedo Seco	
ļ				Ш					Ш			Ш			Ш			Ш					AGUA F G H LH S	
L												Ш											Rating 0 4 7 10 15	
ſ									Ш			Ш											CRITERIO DE CLASIFICACIÓN DEL MACIZO ROCOSO, SEGÚN RMR89, MODIFICADO POR I	ROMANA
Ī								ШШ	Ш		ШШ	Ш											RMR DESCRIPCIÓN	
İ									1111		111111	Ш			Ħ			Ħ					91 - 100 Muy Buena "A"	
ŀ				H					###		1111111	Ш			Ħ			Ħ					81 - 90 Muy Buena "B"	
ŀ				+					₩			₩			++	+	_	++				+	71 - 80 Buena "A" 61 - 70 Buena "B"	
ŀ		+		++	-				₩			₩			++	+	-	++				_	51 - 60 Regular "A" 41 - 50 Regular "B"	
ŀ		+			_				₩			₩		++	++	+	_	++	_	1		_	31 - 40 Mala"A"	
ŀ		+		\sqcup	_		_		HH		Ш		\vdash	$\perp \perp$	+	\perp		\vdash	-	\sqcup	_	_	21 - 30 Mala"B" 11 - 20 Muy Mala "A"	
-		$\perp \perp \perp$		Ш	_			4444			ШШ				$\perp \perp$	\perp		ш		$\sqcup \bot$			0 - 10 Muy Mala "B"	
L		$\perp \perp \perp$		Ш		$\perp \perp$		ЩШ	Ш			Ш			Ш	\perp		Ш					V°B° GEOMECANICA:	
				Ш				ЩШ	Ш			Ш	Ш	Ш	Ш	Ш	Ш	Ш						
ſ				$ \top $		I			$\Pi\Pi$			\prod							T	$ \top $			Minera Bateas PLANEAMIENTO INGENIERÍA	
Ī				П							ШШ	$\Pi\Pi$			\sqcap								DATEAS Group in the Downski State Offices Inc.	
t				Ħ				-11111	1111		ШШ	1111			П			\sqcap					1	
t		+++		\forall	\pm	+	-	-	###					H	+	\top		+	+	$\dagger \dagger$	_		RELOGUEO GEOTÉCNICO DE SONDAJES DIAMANTINO	5
	0.00100			-		11			шШ			ш			1 1								SONDAJE DIAMANTINO	
DE	CIONES: E ALTERACIÓN(ROCA).			"	NOTAS:												CONTRATI			GEOME	CÁNICA	LATINA S.A.		
rda)	erada)																REGISTRA REVISADO	POR:		M.M.	/ C.H./T N.C	.S./ R.CH.	REVISADO POR: REALIZADO POR: GISA	
Alt	erada) Alterada)			1													APROBAD	O POR:			GDLS	SP.	APROBADO POR: FECHA:	JAS: 2

Anexo 4: Registro Geomecánico mediante Líneas de Detalle

	GEC	ımı						EMPRES	SA DEL G	GRUPO: Gl	EOMEC	ÁNICA L	ATINA	S.A.			REC	GISTRO GEO	VALO	RACION	DEL MA	CIZO RO		OS ROCOSC)S
	PROYECTO			UBICA	ACIÓN		ESTAC	CIÓN DE L	ÍNEA			OORDENAD						ORIENTACIÓN			FE	CHA	HORA		HOJA
										PUN		194730		NO:		COTA 4515.81		IMUT (°)	INCLIN	IACIÓN					
JDIO DE ESTAB	LIDAD LOCAL Y GLOBA	AL UEA SAN CRISTOBAL		TJ 730 - 1	VT 460 S		ı	LD_17_2		FIN							1	124			27/0	6/2017	10:00 a.m.	1	1
LON	GITUD		TIPO DE	ORIEN	TACIÓN	RESIST	ENCIA	RO	ID.	ESPAC	CIADO						N DE LAS					AGUA SI	JBTERRANEA		
DE (m)	A (m)	LITOLOGÍA	JUNTAS	Buz.	Dir. Buz.	COMP (Mpa)	RESIVA VAL		VAL			PERSIST		APER			SIDAD	RELLE			ACION			RMR	TIPO
0.00	1.00		D	(°) 79	(°) 340	(MPa) 25-50	4	% 25-35	8 8	(m) < 0.06	VAL	(m) 3-10	VAL 2	(mm) 1-5	VAL 1	TIPO	VAL 3	TIPO/(mm) Suave<3	VAL 2	TIPO	VAL 1	COND	VAL 7	33	Mala, IV A
1.00	3.00	Toba Andesitica porfidica-	D	71	335	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	0	AM	1	н	10	63	Buena, II B
3.00	6.00	amigdalar	D	80	331	25-50	4	25-35	8	< 0.06	5	3-10	2	1-5	1	LR	5	Suavess	2	AM	1	м	7	35	Mala, IV A
6.00	16.00		D	89	235	50-100	7	50-75	13	0.2-0.6	10	10-20	1	1-5	1	LR	3	Suave<5	2	M	3	M	7	47	Regular, III B
16.00	18.00	Brecha Silicificada	D	80	240	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	6	AM	1	н	10	63	Buena, II B
18.00	27.00		D	89	244	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	м	7	54	Regular, III A
27.00	30.00	Toba Andesitica	D	4	75	50-100	7	50-75	13	0.2-0.6	10	10-20	1	1-5	1	LR	5	Suave <s< td=""><td>2</td><td>M</td><td>3</td><td>м</td><td>7</td><td>49</td><td>Regular, III B</td></s<>	2	M	3	м	7	49	Regular, III B
30.00	32.00 40.00	cristalolítica	D D	10 10	71 80	50-100 100-160	7 12	35-50 50-75	13	0.6-2	15 10	3-10 3-10	2 2	1-5 0.1-1	1 4	LR R	3 5	Sin Relleno Sin Relleno	6	LM AM	5	M H	7 10	54 63	Regular, III A Buena, II B
				VALORACI	ION DEL MA	CIZO ROC	OSO (RM	R - BIENIA	AWSKI)							1			VAL	OR TOTAL	RMRs9	(suma de	valoracione	:)	
R. COMPE	E. UNIAXIAL				>2			~ 100 12		.00~50 7	50)~25 4	<25 (2); <5 (1);	<1(0)	1		RMR		- 81		- 61	60 - 41	40 - 21	20 -0
	D (%) JIENTO (m)				100			~75 17 ~0.6 15	_	75~50 13	_	1~25 8 2~0.06 8		<25 < 0.06	3		DES	CRIPCION	I - Muy	Buena	II - E	Buena	III - Regular	IV - Mala	V - Muy mala
231 ACIA	Persistencia				<1		_	~3 m 4	_	3~10 m 2		0~20 m 1		> 20 m	- 0	1	Ti	po de alterac	ion	T	Т	ipops de	juntas	1	Observacion
	Apertura				Cerr			0.1 mm 5	_	~ 1.0 mm 4		~5.0 mm 1		> 5.0 mm	n 0	1	A1	Roca sana ni		1	D		iaclasa	1	
NDICION DE JUNTAS	Rugosidad					Cerrada 6		ugosa 5	_	g. Rugosa 3		Lisa 1		Espejo de		1	A2	Roca poco		1	F		Falla	1	
	Kelleno				Lim	ipla 6	Duro	,<5mm 4	Dur	ro, > 5 mm 2	Suave	2,<5mm 2		Suave, >5	mm 0		A3	Roca mod.	Alterada	Ι	FM	Foliación	met.]	
	Intemperizacion				Si	ana 6	Lig.	Intemp. 5	Mo	d. Intemp. 3	Mu	y intemp 1		Descom	p. 0]	A4	Roca mu	y mala	1	MF	Mi	crofalla		
Aguas Su	bterraneas				Si	eco 15	Hu	medo 10		Mojado 7		Goteo 4		Flujo	0	l	A5	Roca desco	mpuesta	1]	
tructura; (ca volcanica d arbonatizada(le textura porfi rodocrosita, ca ca de textura fi	alcita), rodo	nitas y dise	minación de	e sulfuros	(pirita y n	ninerales	opacos)	, de textur	a bandea	da.	cloritas.						_		SUPE	RVISOR G	LSA		

	GEC)ME						EMPRES	A DEL G	RUPO: G l	EOMEC	ÁNICA L	ATINA	S.A.			REC		VALO	RACION	DEL MA	ACIZO RO	ORAMIENTO ICOSO wski 1989	S ROCOSC	05
	PROYECTO			UBICA	CIÓN		ESTA	CIÓN DE LI	ÍNEA	PUN		DORDENAD EST			RTE	COTA	AZ	ORIENTACIÓN IMUT (°)		IACIÓN	FE	CHA	HORA		HOJA
ESTUDIO DE ESTABIL	IDAD LOCAL Y GLOBA	AL UEA SAN CRISTOBAL		TJ 73	o w			LD_17_3		FIN		194669	9.738	83178	04.681	4515.81	•	148			27/0	6/2017	12:00 a.m.	1	1
	SITUD	LITOLOGÍA	TIPO DE	ORIEN'	TACIÓN Dir. Buz.	RESIST		RQ	D	ESPAC	IADO	PERSIST	ENCIA	APER		CONDICIO	N DE LAS	JUNTAS RELLE	NO	ALTER	RACION	AGUA SI	JBTERRANEA	RMR	TIPO
DE (m)	A (m)		JUNTAS	(°)	(°)	(Mpa)	VAL	%	VAL	(m)	VAL	(m)	VAL	(mm)	VAL	TIPO	VAL	TIPO/(mm)	VAL	TIPO	VAL	COND	VAL		
0.00	3.00	Toba Andesitica porfidica-	D	79	340	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	6	AM	1	н	10	63	Buena, II B
3.00	5.00	amigdalar	D	71	335	50-100	7	50-75	13	0.2-0.6	10	10-20	1	1-5	1	LR	3	Suave<5	2	M	3	M	7	47	Regular, III B
5.00	9.00		D	80	331	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	M	7	54	Regular, III A
9.00	11.00	Brecha Silicificada	D	89	235	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	6	AM	1	н	10	63	Buena, II B
11.00	21.00		D	80	240	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	M	7	54	Regular, III A
21.00	23.00	Toba Andesitica	D	89	244	50-100	7	50-75	13	0.2-0.6	10	oct-20	1	1-5	1	LR	3	Suave<5	2	M	3	М	7	47	Regular, III B
23.00	25.00	cristalolítica	D	4	75	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	М	7	54	Regular, III A
25.00	31.00		D	10	71	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	6	AM	1	н	10	63	Buena, II B
				VALORACI	ON DEL MA																		valoraciones		
	E. UNIAXIAL				>25			° 100 12	_	00~50 7		0~25 4	<25 (2); <5 (1);	<1(0)			RMR		- 81	_	- 61	60 - 41	40 - 21	20 -0
) (%)				100 ^			~ 75 17	_	5~50 13	_	1~25 8		<25	3		DES	CRIPCION	I - Muy	/ Buena	II - E	Buena	III - Regular	IV - Mala	V - Muy mala
ESPACIAN	MENTO (m)				52			~0.6 15	_	6 ~ 0.2 10	_	2 ~ 0.06 8		< 0.06	5	1				-					-
	Persistencia				<1			~3 m 4	_	3~10 m 2		0~20 m 1		> 20 m	0			po de alterac		1		lipops de			Observacion
CONDICION DE	Apertura				Cerr	ada 6	<	0.1 mm 5	0.1	~ 1.0 mm 4	1.0	~5.0 mm 1		> 5.0 mr	m O		A1	Roca sana no	alterada	1	D	D	iaclasa		
JUNTAS	Rugosidad				Muy C	errada 6	R	ugosa 5	Lig	, Rugosa 3		Lisa 1		Espejo de	falla 0		A2	Roca poco	alterada	1	F		Falla		
	Relleno				Lim	pla 6	Duro	,<5mm 4	Dur	o, > 5 mm 2	Suave	e,<5mm 2		Suave, >5	mm 0		A3	Roca mod.	Alterada	1	FM	Foliación	n met.		
	Intemperizacion				Sa	ana 6	Lig	. Intemp. 5	Mod	d. Intemp. 3	Mu	y intemp 1		Descom	np. 0		A4	Roca mu	y mala	1	MF	Mi	crofalla		
Aguas Sul	oterraneas				Se	eco 15		medo 10		Mojado 7		Goteo 4		Flujo	0		A5	Roca desco	mpuesta	Ι					
Estructura; C	ca volcanica d arbonatizada(le textura porfi rodocrosita, ca ca de textura fr	ilcita), rodor	nitas y dise	minación de	e sulfuros(pirita y n	ninerales o	opacos)	, de textur	a bandea	da.	cloritas.						_		SUPE	RVISOR G	GLSA	_	

REGISTRO GEOLÓGICO _ GEOMECÁNICO DE AFLORAMIENTOS ROCOSOS 🥭 GEDMEC EMPRESA DEL GRUPO: GEOMECÁNICA LATINA S.A. VALORACION DEL MACIZO ROCOSO RMR - Rock Mass Rating - Bieniawski 1989 COORDENADAS _ UTM WGS84 ORIENTACIÓN DE LÍNEA UBICACIÓN ESTACIÓN DE LÍNEA HOJA PROYECTO FECHA HORA AZIMUT (°) PUNTO ESTE NORTE COTA INCLINACIÓN 194322.845 8317005.443 4437.05 INICIO UDIO DE ESTABILIDAD LOCAL Y GLOBAL UEA SAN CRISTOS TJ 626 E LD 17 4 28/06/2017 10:00 a.m. FINAL 4437.05 LONGITUD ORIENTACIÓN RESISTENCIA CONDICION DE LAS JUNTAS TIPO DE ROD ESPACIADO AGUA SUBTERRANEA ALTERACION LITOLOGÍA Buz. Dir. Buz. COMPRESIVA PERSISTENCIA APERTURA RUGOSIDAD RELLENO TIPO JUNTAS DE (m) A (m) (Mpa) VAL VAI VAL (mm) VAL TIPO VAL VAL TIPO VAL (m) VAL (m) TIPO/(mm) COND VAL 0.00 19.00 100-160 50-75 0.2-0.6 3-10 0.1-1 Buena, II B Toba Andesii 22.00 D 72 50-100 35-50 0.6-2 15 3-10 1-5 LR Sin Relleno LM 54 Regular, III A 19.00 180 amigdalar 22.00 23.00 D 70 180 50-100 50-75 13 0.2-0.6 10 44105 1-5 LR 2 47 Regular, III B 1 3 Blando>5 Mala, IV B 23.00 24.00 D 60 54 25-50 25-35 < 0.06 3-10 >5 LR 0 AM 1 27 24.00 25.00 D 60 62 50-100 50-75 13 0.2-0.6 10 44105 1-5 LR Suave<5 2 47 Regular, III B recha Silic 1 3 3 25.00 26.00 D 55 63 25-50 25-35 8 < 0.06 3-10 2 1-5 1 LR Suave<5 2 AM 7 35 Mala, IV A 50 50-100 35-50 0.6-2 1-5 Sin Relleno LM 7 Regular, III A 26.00 27.00 D 300 8 15 3-10 2 1 LR 6 5 54 crista lolifica 27.00 D 59 305 100-160 12 50-75 13 0.2-0.6 10 3-10 2 0.1-1 4 Sin Relleno AM 1 10 63 Buena, II B 38.00 6 VALORACION DEL MACIZO ROCOSO (RMR - BIENIAWSKI) VALOR TOTAL RMRs9 (suma de valoraciones) RMR 60 - 41 40 - 21 20 -0 R. COMPRE, UNIAXIAL 250 ~ 100 12 50 ~ 25 <25 (2): <5 (1): <1(0) >250 100~50 DESCRIPCION I - Muy Buena III - Regular ESPACIAMIENTO (m) 0.2 ~ 0.06 < 0.06 2~0.6 15 0.6 ~ 0.2 10 10 ~ 20 m Tipo de alteracion Tipops de juntas Observacion 1~3 m 3~10 m > 20 m < 1 m 0.1 ~ 1.0 mm 1.0 ~ 5.0 mm > 5.0 mm A1 Roca sana no alterada D Diaclasa A2 F Falla Muy Cerrada Rugosa Lig. Rugosa 3 Lisa Espejo de falla Roca poco alterada A3 FM oliación met. Suave. < 5 mm Suave. >5 mm Roca mod. Alterada Duro. < 5 mm Duro. > 5 mm 2 Limpia A4 Roca muy mala MF Microfalla Lig. Intemp. A5 Aguas Subterraneas Mojado 7 Fluio Roca descompuesta Caja piso; Roca volcanica de textura porfídica y amigdalar conformada por plagioclasas tabulares y máficos prismáticos alterados a arcillas y cloritas. Estructura; Carbonatizada(rodocrosita, calcita), rodonitas y diseminación de sulfuros(pirita y minerales opacos), de textura bandeada. SUPERVISOR GLSA Caja techo; Roca piroclástica de textura fragmental conformada conformada por líticos subangulosos de andesitas micro-porfídicas.

	GEC	JME						EMPRES	A DEL G	GRUPO: GE	OMEC	ÁNICA L	ATINA	S.A.			KE	GISTRO GEO	VALO	RACION	DEL MA	ACIZO RO		JS ROCUS	03
	PROYECTO			UBICA	CIÓN		ESTA	CIÓN DE L	ÍNEA	PUN		DORDENAD		M WGS84		COTA	AZIMUT (ORIENTACIÓN	I DE LÍNEA		FE	CHA	HORA		HOJA
TUDIO DE ESTAB	LIDAD LOCAL Y GLOBA	AL UEA SAN CRISTOBAL		TJ 62	26 E			LD_17_5		INIC		19433	9.467	83176	75.194	4437.05		151			29/0	6/2017	10:00 a.m.	1	1
	GITUD	LITOLOGÍA	TIPO DE	ORIEN'	TACIÓN Dir. Buz.	RESIST		RQ	D	ESPAC	IADO	PERSIST	ENCIA	APER			ON DE LAS	JUNTAS RELLE	NO	ALTER	ACION	AGUA S	UBTERRANEA	RMR	TIPO
DE (m)	A (m)	LITOLOGIA	JUNTAS	(°)	(°)	(Mpa)	VAL	%	VAL	(m)	VAL	(m)	VAL	(mm)	VAL	TIPO	VAL	TIPO/(mm)	VAL	TIPO	VAL	COND	VAL	Kirik	1110
0.00	13.00	Toba Andesitica	D	70	185	100-160	12	50-75	13	0.2-0.6	10	3-10	2	0.1-1	4	R	5	Sin Relleno	6	AM	1	н	10	63	Buena, II
13.00	17.00	porfidica-	D	72	180	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	M	7	54	Regular, II
17.00	21.00	amigdalar	D	70	180	50-100	7	50-75	13	0.2-0.6	10	44105	1	1-5	1	LR	3	Suave<5	2	M	3	M	7	47	Regular, I
21.00	22.00	Brecha Silicificada	D	60	54	25-50	4	25-35	8	< 0.06	5	3-10	2	>5	0	LR	3	Blando>5	0	AM	1	G	4	27	Mala, IV
22.00	24.00		D	60	62	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1	LR	3	Sin Relleno	6	LM	5	M	7	54	Regular, I
24.00	25.00	Toba Andesitica	D	55	63	50-100	7	50-75	13	0.2-0.6	10	44105	1	1-5	1	LR	3	Suave<5	2	M	3	M	7	47	Regular, I
25.00	26.00	cristalolítica	D D	50	300	50-100	7	35-50	8	0.6-2	15	3-10	2	1-5	1 4	LR R	3	Sin Relleno	6	LM AM	5	М	7	54	Regular, II
26.00	38.00			59	305	100-160	12	50-75	13	0.2-0.8	10	3-10	2	0.1-1			5	Sin Relleno	6		1		10	63	Buena, II
				VALORACI	ON DEL MA	CIZO ROC	OSO (RM	IR - BIENIA	WSKI)]							e valoracione	s)	
	RE. UNIAXIAL				>2:	50 15	250	°100 12	1	00~50 7	50	0~25 4	<25	2); <5 (1);	<1(0)			RMR	100	- 81	80	- 61	60 - 41	40 - 21	20 -0
RQ	D (%)				100	90 20	90	~75 17	7	75 ~ 50 13	51	1~25 8		<25	3		DES	CRIPCION	I - Muy	/ Buena	11 - 1	Buena	III - Regular	IV - Mala	V - Muy mala
ESPACIA	MIENTO (m)				8	2 20	2	~0.6 15	0.	.6∼0.2 10	0.3	2 ~ 0.06 8		< 0.06	5					_					
	Persistencia				<1	m 6	1	~3 m 4		3~10 m 2	10	0~20 m 1		> 20 m	0		Ti	po de alterac	ion	Ι	1	Tipops de	juntas		Observacio
	Apertura				Cerr	rada 6	<	0.1 mm 5	0.1	~ 1.0 mm 4	1.0	~ 5.0 mm 1		> 5.0 mr	n O		A1	Roca sana no	o alterada	1	D	D	iaclasa		
JUNTAS	Mugosidad				Muy 0	Cerrada 6	R	ugosa 5	Lig	g. Rugosa 3		Lisa 1		Espejo de	falla 0]	A2	Roca poco	alterada	Ι	F		Falla]	
	Relleno				Lim	ıpla 6	Duro	,<5mm 4	Dur	o, > 5 mm 2	Suave	e,<5mm 2		Suave, >5	mm 0		A3	Roca mod.	Alterada	Ι	FM	Foliació	n met.		
	Intemperizacion				Si	ana 6	Lig	. Intemp. 5	Mod	d. Intemp. 3	Mu	y intemp 1		Descon	p. 0	1	A4	Roca mu	y mala	Ī	MF	M	icrofalla]	
Aguas Su	bterraneas				Si	eco 15	Hu	medo 10		Mojado 7		Goteo 4		Flujo	0		A5	Roca desco	mpuesta	I]	
tructura; (oca volcanica d Carbonatizada(le textura porfí (rodocrosita, ca ca de textura fí	alcita), rodo	nitas y dise	minación de	e sulfuros	pirita y n	ninerales (opacos)	, de textur	a bandea	da.	cloritas.						_		SUPE	RVISOR (GLSA		

Anexo 5: Registro Geomecánico mediante Celdas

VER PLANO Punto de Mapeo Val. Par CASO Mpa	00.250 Wpa 12 00.000Mpa 12 0.500Mpa 2 0.500M	ACTUALIZACIÓN DEL ESTUDIO DE LAB EG_01 RQD 07 1	NERA BATEAS S.A. DEL MODELO GEO ESTABILIDAD LOC ORES SUBTERRÁNI AZIMUT (*): Espaciamiento entre discontinuidades 07 - 20 00 mm 07 - 20 00 mm 08	C. MECÁNICO 3D Y AL Y GLOBAL DE EAS 209 Persistencia	ESTE: NORTE: COTA: REF.: CONDICIO Apertura	UTM_WGS84 194 831 42 RP. 462 NES DE DISCONTI Rugosidad	NADAS 1748 17889 131 19 TOPE NUIDADES Relleno 9 4 0 0 0	FECHA: REALIZADO: Meteorización		/2022	\	RMR 91- 100 81- 90 71- 80 61- 70 51- 60 41- 50 31- 40 21- 30 0 - 20	RMR89 D	DESCRIPCIÓN MUY BUENA "A" MUY BUENA "B" BUENA "A" BUENA "B" REGULAR "A" REGULAR "B" MALA"B" MUY MALA	5 6 7 8 9 10 11 12 13 14 15 15 17 18 19	100 98 95 90 88 85 83 80 78 75 76 68 65 63
RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC Avera for many separation of the man	.: 27.100.250 Wba compression 27	ACTUALIZACIÓN DEL ESTUDIO DE LAB EG_01 RQD 07 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	DEL MODELO GEO ESTABILIDAD LOC ORES SUBTERRÁNI 306.5 m 3200-600 mm 3200-600 mm 460.500 mm 460.500 mm 560 mm 960 mm 970 mm	MECÁNICO 3D Y AL Y GLOBAL DE EAS 209 Persistencia	ESTE: NORTE: COTA: REF.: CONDICIO Apertura	UTM_WGS84 194 831 42 RP. 462 NES DE DISCONTI Rugosidad	748 7889 31 N TOPE NUIDADES Relleno	REALIZADO: Meteorización	N.C. // L. LITOLOGÍA Andesita Agua Subterránea	A // R.CH Orientación Discontinuidad	\	81- 90 71- 80 61- 70 51- 60 41- 50 31- 40 21- 30 0 - 20	RMR89 D	MUY BUENA "B" BUENA "A" BUENA "B" REGULAR "A" MALA"A" MALA"B" MUY MALA	7 8 9 10 11 12 13 14 - 15 15 16 17 18	93 90 88 85 83 80 78 73 73 68 65
RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC RESISTENC Avera for many separation of the man	.: 27.100.250 Wba compression 27	ACTUALIZACIÓN DEL ESTUDIO DE LAB EG_01 RQD 07 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	DEL MODELO GEO ESTABILIDAD LOC ORES SUBTERRÁNI 306.5 m 3200-600 mm 3200-600 mm 460.500 mm 460.500 mm 560 mm 960 mm 970 mm	MECÁNICO 3D Y AL Y GLOBAL DE EAS 209 Persistencia	ESTE: NORTE: COTA: REF.: CONDICIO Apertura	UTM_WGS84 194 831 42 RP. 462 NES DE DISCONTI Rugosidad	748 7889 31 N TOPE NUIDADES Relleno	REALIZADO: Meteorización	N.C. // L. LITOLOGÍA Andesita Agua Subterránea	A // R.CH Orientación Discontinuidad	\	61-70 51-60 41-50 31-40 21-30 0-20	RMR89 D	BUENA "B" REGULAR "A" REGULAR "B" MALA"A" MALA"B" MUYMALA	11 12 13 14 15 16 17 18	88 85 83 80 78 75 75 73 70 68 65 63
Very Manual Control of Manual	.: 27.100.250 Wba compression 27	DEL ESTUDIO DE LAB EG_01 RQD 02 RQD 17 80 18 19 19 19 10 10 10 10 10 10 10	ESTABILIDAD LOCORES SUBTERRÁNI AZIMUT (°): Espaciamiento entre discontinuidades 9 7-00 mm 90 70 70 70 70 70 70 70 70 70 70 70 70 70	ALY GLOBAL DE AS 209 Persistencia	NORTE: COTA: REF.: CONDICIO Apertura	831 42 RP. 462 NES DE DISCONTI Rugosidad	7889 31 IN TOPE NUIDADES Relleno	Meteorización	LITOLOGÍA Andesita Agua Subterránea	Orientación Discontinuidad	\	51- 60 41- 50 31- 40 21- 30 0 - 20	RMR89 D	REGULAR "A" REGULAR "B" MALA"A" MALA"B" MUYMALA	11 12 13 14 15 16 17 18	83 80 78 75 73 70 68 65 63
Resistance Mapeo Punto de Mapeo Val. Parám. 1. > 250 Mpa	σc iistencia a la ompresión 7: 7: 100.220 Wba 2: 100.220 Wba 2: 2: 20.200 Wba 2: 2: 20.22 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 22: 22: 22: 22: 22: 22: 22: 22:	11-90-100% 12-75-90% 13 20-75-90% 14-25-50% 13 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.> 2 m 2.06.2 m 3200.600 mm 3200.600 mm 460.200 mm 5< 60mm 5< 60mm	Persistencia	COTA: REF.: CONDICIO Apertura	42 RP. 462 NES DE DISCONTI Rugosidad	Relieno		Andesita Agua Subterránea	Discontinuidad	\	31- 40 21- 30 0 - 20	RMR89 D	MALA"A" MALA"B" MUYMALA	12 13 14 15 16 17 18 19	80 78 75 73 70 68 65 63
Very Poly Control of C	σc iistencia a la ompresión 7: 7: 100.220 Wba 2: 100.220 Wba 2: 2: 20.200 Wba 2: 2: 20.22 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 22: 22: 22: 22: 22: 22: 22: 22:	190-1009% 2. 75-90% 190-1009% 2. 75-90% 190-1009% 1100-1009%	1.> 2 m 2.0 6.2 m 2.0 6.2 m 3. 20.0 6.0 m 15 15 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Persistencia	REF.: CONDICIO Apertura	RP. 462 NES DE DISCONTI Rugosidad	N TOPE NUIDADES Relieno		Agua Subterránea	Discontinuidad	\	21-30 0-20	RMR89 D	MALA"B" MUYMALA	15 15 17 18 19	75 73 70 68 65 63
Very Poly Control of C	σc iistencia a la ompresión 7: 7: 100.220 Wba 2: 100.220 Wba 2: 2: 20.200 Wba 2: 2: 20.22 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 20 Wba 2: 22: 22: 22: 22: 22: 22: 22: 22: 22:	190-1009% 2. 75-90% 190-1009% 2. 75-90% 190-1009% 1100-1009%	1.> 2 m 2.0 6.2 m 2.0 6.2 m 3. 20.0 6.0 m 15 15 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Persistencia	Apertura CONDICIO	NES DE DISCONTI Rugosidad ∽ ∽ ↔ ○	WO 4 0 0 0 Relleno		Agua Subterránea	Discontinuidad	١		RMR89 D	-	16 17 18 19	73 70 68 65 63
VER PLANO Punto de Mapeo VER PLANO T. > 250 Mapeo T	7. 2. 100.250 Wpa 2. 2. 100.250 Wpa 2. 2. 20. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 20. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. Wpa 2. 25. 25. 25. 25. 25. 25. 25. 25. 25.	190-100% 20 275-90% 17 11 425-50% 8 8 8 5. < 25% 8	1.> 2 m 2.0 6.2 m 2.0 6.2 m 3.2 0.6 6.0 m 10 10 10 10 10 10 10 10 10 10 10 10 10	9 4 2 11 0	Apertura	Rugosidad on HO	8elleno		Subterránea	Discontinuidad	١	/ALORACIÓN	RMR89 D	EL MACIZO ROCOSO	17 18 19	68 65 63
VER PLANO Punto de Mapeo VER PLANO A 1. > 250 Mapeo VER PLANO A 1. > 250 Mapeo A 1. > 250 M	22.100-250 Mpa 12.100-250 Mpa 12.25-50 Mpa 12.25-50 Mpa 12.25-50 Mpa 13.20 Mpa 14.25-50 Mpa	190-100% 20 275-90% 17 11 425-50% 8 8 8 5. < 25% 8	1 > 2 m 2.0.6-2 m 15 congraph 2 0.6-2 m 15 congraph 2 0.6-20 m 16 congraph 2 0.6-200 mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0 0.60mm 8 congraph 2 0 0.60mm 8 congraph 2 0 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8 congraph 2 0.60mm 8	9 4 2 11 0	9 2 4 1 0	9 55 87 0	9 4 7 7 0		Subterránea		\	/ALORACIÓN	RMR89 D	EL MACIZO ROCOSO	19	63
Average of the Mark of	2. 100-250 Wpa 73. 50-100Mpa 71. 25-50 Mpa 5. <25 Mpa	1. 90-100% 2. 75-90% 18 390-75% 5. < 25%	1 2 m 2 0.6-2 m 3 200-600 mm 4 60-200 mm 5 < 60mm	_	F _			6 3 1 0	15 10 7 4 0						20	
RESISTENC Avera for me 400 350 250 200	12 12	13	1 > 2 m 2 0.6-2 m 3 200-600 4 60-200 r 5 < 60mm	# # E E	1 < 0.1 mm - 1.0 mm - 5.0 mm	rg.	E E			0 -2 -5 -10 -12					21 22 23	58 55 53
RESISTENC Avera for me 400 350 300 250 200	12 12	13	10	1< 1 m 21-3 m 33-10 m 410-20 m 5> 20 m	1 Cerrada 0 2 Muy Angosta < 0.1 mi 3 Angosta 0.1 - 1.0 mm 4 Abierta 1.0 - 5.0 mm 5Muy Abierta > 5.0 mm	1 Muy rugosa 2 Rugosa 3 Ligeramente Rugosa 4 Lisa 5 Muy lisa	1 Ninguna 2 Relleno Duro < 5 mm 3 Relleno Duro > 5 mm 4 Relleno Blando < 5 mm 5 Relleno Blando > 5 mm	1 No meteorizada 2 Ligeramente meteorizada 3 Meteorizada 4 Muy meteorizada 5 Descompuesta	1 Seco 2 Húmedo 3 Mojado 4 Goteo 5 Flujo	1 Muy favorable 2 Favorable 3 Regular 4 Desfavorable 5Muy desfavorable	R.M.R.	DESCRIPCIÓN		OBSERVACIONES	24 25 26 27 28 29 30 31 32 33 34 35	50 48 45 43 40 38 35 33 30 28 25 23
RESISTENC Avera for me	12			0	1	5	2	5	10		58				36	20
RESISTENC Avera for me 400 350 300 250 200			10	0	5	5	2	5	10		62		<u>.</u>		37 38	18 15
RESISTENC Avera for me 400 350 300 250 200	12	13	8	1	6	5	6	5	10		66	ω.		Roca fracturada a muy fracturada, buena, ligeramente	39 40	13 10
RESISTENC Avera for me		13	15	0	0	5	0	5	10		60	=	BUENA	meteo rizada, húmeda.	40 41	8
Avera for mo	2	3	20	0	0	1	0	3	7		36		В		42 43	5
Avera for mo											62				44	0
for me	NCIA A LA COMF	PRESIÓN SEGÚN EL M	ARTILLO SCHMIDT			REGISTRO	DE DISCONTINUIDA	DES ESTRUCTURALES								
400 350 300 250 200	erage dispersion o	of strength	*	Desde	Hasta	Tip. De Est.	Buz. (°)	D-Buz. (°)	Fre c.	Observacion	es					
400 350 300 250 200	most rocks - MPa	a :				D	66	178	1							
300 250 200	يئستستست					D	64	179	1					340 ° 16	Face Sec	
200		+	- /// · · ·			D	67	169	1				m 7		: :	
11111		-				D	69	171	1			3	-//	X	Caler	Seally Constitute 525 - 275 275 - 575
Page 150			* · ·			D	71	064	1			200 🗸	(44)		/	25 - 55 54 - 65 52 - 63 28 - 63 28 - 63 28 - 63 28 - 63 28 - 63 28 - 63
bressive strength - 400 800 800 800 800 800 800 800 800 800	1/		\$ 5			D	73	065	1			200		HILLAND	10	25 - 55 54 - 62 62 - 63 62 - 63 62 - 63 63 - 63 68 - 64
90 80 70 80 50 50 50 50 50 50 50 50 50 50 50 50 50			///// · · · · · · · · · · · · · · · · ·			D	70	062	1			390				Certain State Print Section Section States
70 60 50 40			ξ			D	82	312	1						Cart	Sar Distribution Public MENGOCK RES 1.0%
50 John September 50						D	77	318	1						Verter Co.	not (Weighted)
ë 40 H				J1+23m	J1+23m	D	75	320	1			360	-		- 100 E	Projection Street Assista
≥ 111	1 1 1		++	J1+23III	J1+23III	D	82	315	1			200		ATHHE	7 110	
S 30			ation		1	D	60	034	1			240-4	HO		F-130	
ijaxi			orient			D	31	015	1			2	-///	a		
5 20 1 1			e °			F	58	192	1	Venillas de CaCO3		Rpa. 462N	230	160		
15			 									1001	-	200 100 100 110 100		
	4		Ham		1											
10 0 5	5 10 15 20	25 30 35 40 45	50 55 60 4		1											
1	10 20	30 40	50 55 60 W		İ											
	20 3	30 40 50			1											
	Schmid	dt hardness - Type L ham			1											
EFECTO D	DE LA OBIENTA	ACIÓN (RUMBO Y BUZA	MIENTO) DE LAS	LITO	LOGÍA	METEOR	IZACIÓN	TIPO DE ES	TRUCTURA	ESTIMACIÓN DEL	RQD	GRADO		ÍNDICES DE RESISTENCIA "EN	CAMPO"	RANGO (N
		RESPECTO AL EJE DE LA		Andesita	✓	S	Sana	F	Falla			1	La mues	tra es deleznable con golpe firm	ne de la picota.	1.0 - 5.
umbo perp) al eje de la Rumbo	paralelo (//) al eje	Brecha	-	L	Lig. Meteoriz.		Microfalla				La mues	tra se desconcha con dificultad	dusando la	
	NTINUIDADES RI		la excavación	Mineral	-	A	Mod. Meteoriz.	С	Contacto Lit.			2		y expone marcas poco profunda la picota	as con golpe	5.0 - 2
Excavación ha		and a basis of		Otro	_	м	Muy Meteoriz.	Est.	Estratificación	RQD=110-2.5 (Jv)			itra no se raya y no se desconch	na usando la	<u> </u>
buzamient (Buz. 45° - 9	NTINUIDADES RI rpendicular (土) excavación hacia el Excav			Otro1	_	D	Descompuesta		Diaclasas			4		La muestra se rompe con golpe		25 - 5
Muy favoral	ntinuidades Ri rpendicular (⊥) excavación hacia el Excavento	ouzamiento Buz	, Regular	Otro2	-		Sescompuesta		5.0010303			7	La mues	stra se rompe con mas de un go	ipe tirme de la	50 - 10
xcavación cor	NTINUIDADES RI rpendicular (⊥) excavación hacia el Excavento bi - 90°) (Bu	ouzamiento Buz uz. 20° - 45°) (45°-9	rable Ivegulai	Notas:		I	I	ı	1			12	La mues	tra se rompe con varios goipes	Tirmes de la	100 - 25
entido del buza	NTINUIDADES RI rpendicular (⊥) excavación hacia el Excavento bo -90°) (Bu orable F	buzamiento (45°-5 uz. 20° - 45°) Mu Favorable desfavo			lor gris verdosa, tex	tura microporfirític						14	nicota			100-25
(Buz. 45° - 9 Regular	rpendicular (1) excavación hacia el Excavento b - 90°) (Bu orable Frecontra el Excavenus cuamiento se	buzamiento (45°-5 uz. 20° - 45°) Mu Favorable desfavo	5°-90°) independiente del Rumbo											tra no se rompe, solo desprend		1

		-m-									CL		N RMR I	DEL MACIZO ROCOSO	Jv	RQD (%
<u></u>	/ LJEL	JME		REG	ISTRO GEOI	VIECANICO D	E EXCAVACI	ONES _ MET	ODO DE CE	LDAS		RMR		DESCRIPCIÓN	44 55	1000 988 985
MPRE	r A -	1	MINERA BATEAS S	A.C.	LIBLEA	CIÓN EN COORDE	NADAC	FECHA:	27/6	/2022		91- 100 81- 90		M UY BUENA "A" M UY BUENA "B"	6 ⁶ 7 ⁷	985 983
VIPKE	SA:				UBICA	UTM WGS84	NADAS	FECHA:	2//6	/2022		71-80		BUENA "A"	8 ⁸	980
ROYE	TO:			EOMECÁNICO 3D Y DCAL Y GLOBAL DE	ESTE:		1750	REALIZADO:	N.C. // L	.A // R.CH		61-70 51-60		BUENA "B" REGULAR "A"	110	88 ⁵
NOTE	.10.		BORES SUBTERRA		NORTE:		7893		LITOLOGÍA		-	41-50		REGULAR "B"	111 112	883 840
			I SOMES SOBTEMA		COTA:		232		LITOLOGIA		-	31-40 21-30		MALA"A"	113 113 14	78 78 75
STACI	ÓN:	EG_02	AZIMUT (°):	209	REF.:		2N TOPE	†	Andesita			0 - 20		MALA"B" MUYMALA	15	75
Т	σς		Espaciamiento			NES DE DISCONT		<u> </u>		Orientación					15	7 0.
Ė	Resistencia a la	RQD	entre						Agua	Discontinuidad		VAI ORACIÓN	RMR89	DEL MACIZO ROCOSO	1/8 18	65 65
Parám	compresión	NQB	discontinuidade	Persistencia	Apertura	Rugosidad	Relleno	Meteorización	Subterránea	es					19 20 20	60
Val. F	15 12 7 7 2	20 17 13 8 8	20 115 10 8		9 7 7 0	9 2 2 0	9 4 7 7 0	9 2 2 0	115 110 7 4 0	0 -2 -5 -10					24 25 24 24	58 585 555
Punto de Mapeo	1> 250 Mpa 2 100-250 Mpa 3 50-100Mpa 4 25-50 Mpa 5 <25 Mpa	1. 90-100% 2. 75-90% 3. 50-75% 425-50% 5< 25%	1 > 2 m 2 0.6-2 m 3 200-600 mm 4 60-200 mm 5 < 60mm	1.<1m 2.13m 3.3.10m 4.10-20m 5.>20m	1 - Cerrada 0 2 - Muy Angosta < 0.1 mm 3 - Angosta 0.1 - 1.0 mm 4 - Abierta 1.0 - 5.0 mm 5 - Muy Abierta > 5.0 mm	1 Muy rugosa 2 Rugosa 3 Ligeramente Rugosa 4 Lisa 5 Muy lisa	1 Ninguna 2 Relleno Duro < 5 mm 3 Relleno Duro > 5 mm 4 Relleno Blando < 5 mm 5 Relleno Blando > 5 mm	1 No meteorizada 2 Ligeramente meteorizada 3 Meteorizada 4 Muy meteorizada 5 Descompue sta	1 - Seco 2 - Húmedo 3 - Mojado 4 - Goteo 5 - Flujo	1 Muy favorable 2 Favorable 3 Regular 4 Desfavorable 5Muy de sfavorable	R.M.R.	DESCRIPCIÓN		OBSERVACIONES	伊州州州村村村村村市的水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水	的情感是一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大
T	7	13	10	0	1	5	2	5	10		53				387	208
9	7	13	10	0	5	5	2	5	10		57	1	⋖		33/8 3 8 9	185 153
PLANO	7	13	8	1	6	5	6	5	10		61	∢ .	REGULAR	Roca fracturada, regular,	389 340	180 16
VER	7	13	15	0	0	5	0	5	10		55]	Ę	ligeramente meteorizada, húmeda.	461 452	85
ĕ	2	3	20	0	0	1	0	3	7		36	1	Æ		4 <u>4</u> 8 4 <u>3</u> 4	53 30
Ī											57	1			44	0
D E CIC	Average dispersion	of strength	MARTIL O COUNT			REGISTRO	DE DISCONTINUIDA	DES ESTRUCTURALES	S							
	for most rocks - MPa	a		Desde	Hasta	Tip. De Est.	Buz. (°)	D-Buz. (°)	Frec.	Observacion	nes					
35	° coming in its	w T	T VŽŽŽ° 5			D	64	175	1							
30	السال السالسال		- 1 × 3			D	68	168	1]				
25			1//// \$			D	72	065	1							
20						D	83	311	1				310	* * * * * * * * * * * * * * * * * * *	Symbol 1970	
MPa	°IIII/					D	79	317	1			,	00	*	Color	Donally Concert also
€ 10				Ti		D	81	316	1			210		S S		520 - 520 520 - 640 640 - 520 540 - 528
reng		18/18/	3			D	62	035	1			**/		74		5.50 - 6.40 5.40 - 5.40 5.40 - 12.8 12.80 - 12.8 10.80 - 15.3 10.41 - 22.8 22.40 - 23.8 22.40 - 23.8
9 6						D	30	014	1			200		A A A A A A A A A A A A A A A A A A A	70	2140 - 214 2140 - 214 2140 - 215
essi	•					F	88	204	1	Venillas de CaCO3		390			= 50 Marinu Cortou S	ne Danelly 11,17% Debribation Policy
duo.			1 -									276		<i>f</i>	- 10 Cauting	Pul Hala 12%
8 3			tatio	Ver plano	Ver plano							360			100 Texasjir	Marginal Fritzens
niaxi			orien									250		1	110	Properties Staat Angle
⊃ 2			i i									249		· A · · · · · · · · · · · · · · · · · ·		
15			i i i									230		√ 1.m		
10			<u> </u>										20	140		
	10 15 20	25 30 35 40	150 60 4									RR. 462N TOPE	22/	150 150 150		
	10 20	30 40	50 50 60 K											180 170		
	20 Colombia	tt hardness - Type L h	50 60 T	_								1				
			ammer 3 4				1	1				1				
		dt hardness - Type L h					1	1				1				
EFE	CTO DE LA ORIENTA	CIÓN (RUMBO Y BU	ZAMIENTO) DE LAS	LITO	LOGÍA	METEOI	RIZACIÓN	TIPO DE E	STRUCTURA	ESTIMACIÓN DE	L RQD	GRADO	1	ÍNDICES DE RESISTENCIA "EN O	CAMPO"	RANGO
	CONTINUIDADES RE			Andesita	_	S	Sana	F	Falla			1	La mue	stra es deleznable con golpe firm		1.0 -
umbo	perpendicular (⊥)	al eje de la Rum	bo paralelo (//) al ej		-	L	Lig. Meteoriz.	MF	Microfalla	1			La mue	stra se desconcha con dificultad	usando la	
	excavación	-	de la excavación	Mineral	-	A	Mod. Meteoriz.	С	Contacto Lit.	1		2		ı y expone marcas poco profunda e la picota.	s con golpe	5.0 -
		ación hacia el	uz. Buz.	Otro	-	M	Muy Meteoriz.	Est.	Estratificación	RQD=110-2.5	(VL)			e la picota. stra no se rava v no se desconchi	a usando la	<u> </u>
			°-90°) (20°-45°)	Otro1	_	D	Descompuesta	D D	Diaclasas	1		4		i. La muestra se rompe con golpe		25 -
		avorable	Tuy Regular	Otro2	_				0.000	1		7	La mue	stra se rompe con mas de un goi	pe tirme de la	50 - 1
M uv		desta	vorable			1	1	1	1	I.			Dicota La mue	stra se rompe con varios goipes	rirmes de la	100 -
	ion contra el Excava															
Excavac entido d	el buzamiento se	ntido del Buz.	(45°-90°) independiente d Rumbo	-	lor gris verdosa, tex	tura microporfirítio	a. con venillas de o	arbonatos, ligeram	nente alterada			12	nicota	stra no se rompe, solo desprende	onguidos os -	100-7

				-								CLA		N RMR [DEL MACIZO ROCOSO	Jv	RQD (%
	GEC	JI I 71	۲L	-	REG	ISTRO GEON	IECANICO D	E EXCAVAC	ONES _ MÉT	ODO DE CE	LDAS		RMR		DESCRIPCIÓN	4 5	100 98
									T				91-100		MUY BUENA "A"	6	95 93
MPRESA:				IERA BATEAS S.A.		UBICA	CIÓN EN COORDE	NADAS	FECHA:	27/6	/2022		81-90 71-80		MUY BUENA "B" BUENA "A"	8	90
				EL MODELO GEO			UTM_WGS84		REALIZADO:	N.C. // L.	A // R.CH		61-70		BUENA "B"	9 10	88 85
OYECTO:		DEL ESTUDI		STABILIDAD LOC		ESTE:		1756					51-60 41-50		REGULAR "A" REGULAR "B"	11	83
			LABOR	RES SUBTERRÁNE	AS	NORTE:		7898		LITOLOGÍA			31-40		MALA"A"	12 13	80 78
TACIÓN:		EG_03		AZIMUT (°):	231	COTA:	42	233		Andesita			21-30		MALA"B"		. 75
TACIOIT.		EG_05		AZIMOT ().	251	REF.:	RP.	462N		Andesita			0 - 20		MUYMALA	15 16	73 70
	σc			Espaciamiento		CONDICIO	NES DE DISCONTI	NUIDADES		Agua	Orientación					17	68
	stencia a la	RQD		entre	Persistencia	Apertura	Rugosidad	Relleno	Meteorización	Subterránea	Discontinuidad	١	/ALORACIÓN	RMR89	DEL MACIZO ROCOSO	18 19	65 63
	mpresión		c	discontinuidades	Tersistencia	Apertura	Nagosiaaa	Kerreno	Wie te onza cron	Subterrairea	es					20	60 58
15 15	12 7 4 2	20 17 13 8	m	20 15 10 8 8	9 4 7 0	6 4 0	6 3 1 0	9 4 7 7 0	3 3 0	15 10 7 4	0 -2 -5 -10					21 22 23	58 55 53
Punto de Mapeo 1> 250 Mpa	2 100-250 Mpa 3 50-100Mpa 4 25-50 Mpa 5 <25 Mpa	190-100% 275-90% 350-75% 425-50%	5<25%	1> 2 m 20.6-2 m 3200-600 mm 460-200 mm 5< 60mm	1<1 m 21.3 m 33.10 m 410.20 m 5>20 m	1 Cerrada 0 2 Muy Angosta < 0.1 mm 3 Angosta 0.1 - 1.0 mm 4 Abierta 1.0 - 5.0 mm 5Muy Abierta > 5.0 mm	1 Muy rugosa 2 Rugosa 3 Ligeramente Rugosa 4 Lisa 5 Muy lisa	1 Ninguna 2 Relleno Duro < 5 mm 3 Relleno Duro > 5 mm 4 Relleno Blando < 5 mm 5 Relleno Blando > 5 mm	1 No meteorizada 2 Ligeramente meteorizada 3 Meteorizada 4 Muy meteorizada 5 Descompuesta	1 Seco 2 Húmedo 3 Mojado 4 Goteo 5 Flujo	1 Muy favorable 2 Favorable 3 Regular 4 Desfavorable 5Muy desfavorable	R.M.R.	DESCRIPCIÓN		OBSERVACIONES	24 25 26 27 28 29 30 31 32 33 34 35	50 48 45 43 40 38 35 33 30 28 25 23
\neg	12	13		10	0	5	5	0	5	10		60		1		36	20
	12	13		8	0	6	5	6	5	10		65		5.		37	18
-	12	13		10	0	0	5	0	5	10		55	B	<u>.</u>	Roca fracturada, buena,	38 39	15 13
	12	13		15	0	1	5	2	5	10		63	<u> </u>	BUENA	ligeramente meteorizada,	40 41	10 8
	12	13		13	U	1	3	2	3	10		0.5	_	BUE	húmeda.	41 42	8 5
			-						-		-					43	3
									L			61				44	0
SISTENC	CIA A LA COMPI	RESION SEGUN	NELMAF	RTILLO SCHM IDT					DES ESTRUCTURALES								
Aver	rage dispersion of nost rocks - MPa	fstrength			Desde	Hasta	Tip. De Est.	Buz. (°)	D-Buz. (°)	Fre c.	Observacion	ies					
	nost rocks - MPa						D	74	354	1					800 CW CO		
350	للأستستست		TT.				D	86	343	1				340	10 10 10	Specied 1970	
300		+++	-	/// · · · ·			D	81	356	1			520	XX		Color	Density Concertration
250			1/				D	78	360	1			210				100 - 6.00 8.00 - 9.00 9.00 - 12.0 12.00 - 12.0 12.00 - 24.0 12.00 - 24.0 12.00 - 24.0 12.00 - 24.0
200			XII	7			D	40	130	1			m/				630 - 330 330 - 630 830 - 930 930 - 331 1240 - 341 1240 - 341 1240 - 241 2440 - 271
150			11111	- F			D	41	128	1			200		4	no	24.00 · 270 27.00 · 360
ПИ				* *			D	42	135	1			260	-		Mannan Contes Ste	n Density 21.27% stribution Fater
90		18//		Ĭ			D	44	133	1						Counting Co	Tech Mode Total Victors
70				1-1-1			D	78	190	1			276			Torsign it	magitad) 11 (11 from Megiding Monum Sar
50							D	80	176	1	1		260	1		- 100	regarden front-lings
40	1				Ver plano	Ver plano	D	79	181	1	1		250	/	HIH H	110	
			-	ion			D	37	010	1			240	11	HIIHADA X.		
~				ental			D	35	012	1	 		X		110		
20			1	J oie			J	, , ,	012	1	1		1 110		140		
15				Imer.					-		_		RP. 462N	210 200	130		
				Ham				-	 		 	-			190 180 170		
,, 🎑	10 15 20	25 30 35 4	I .	50 55 60				1	-		ļ						
	10 20	30 30	0 15	60 4													
	20 3	30 40	50														
	20 30	- +6 -	50														
		hardness - Type						L	ļ		ļ				,		
	DE LA ORIENTAC				LITOL	OGÍA	METEOF	RIZACIÓN	TIPO DE ES		ESTIMACIÓN DEL	L RQD	GRADO		ÍNDICES DE RESISTENCIA "EN	CAMPO"	RANGO
DISCONT	TINUIDADES RES	SPECTO AL EJE I	DE LAS EX	XCAVACIONES	Andesita	✓	S	Sana	F	Falla	1		1		stra es deleznable con golpe firm		1.0 -
	endicular (⊥) a	al eje de la R		aralelo (//) al eje	Brecha	_	L	Lig. Meteoriz.	MF	Microfalla	j		2		stra se desconcha con dificultad		5.0 -
	excavación		de la	a excavación	Mineral	-	Α	Mod. Meteoriz.	С	Contacto Lit.	DOD 440 2 -	(1.4)			y expone marcas poco profunda la picota.	as con goipe	5.0 -
vación ha		ción hacia el	Buz.	Buz.	Otro	-	М	Muy Meteoriz.	Est.	Estratificación	RQD=110-2.5	(JV)			stra no se raya y no se desconch	na usando la	
uzamient uz. 45° - 9		zamiento . 20° - 45°)	(45°-90°)		Otro1	_	D	Descompuesta	D	Diaclasas	1		4		. La muestra se rompe con golpi		25 -
luy favora		vorable	Muy	Regular	Otro2			Descompuesta		5.0010303			7	La mue:	stra se rompe con mas de un go	ipe tirme de la	50 - 1
avación co		rión contra d	desfavorab	IIH I	Notas:	_		1	ı		ı			Dicota La mue	stra se rompe con varios goipes	tirmes de la	
do del buza	amiento sen	ntido del	Buz. (45°-9	90°) independiente del Rumbo		n venillas de carbona	000						12	nicota			100 - 2
Buz. 45° - 9	90°) buz	zamient o			noca andesita, cor	i verillas de cardona	.03.						15		stra no se rompe, solo desprend	le esquirlas con	>25
Regular		favorable		Regular											firmes de la picota.		

			_								CL/		N RMR I	DEL MACIZO ROCOSO	Jv	RQD (9
<i>₹</i>) LJEL	JME	L	REG	ISTRO GEOI	MECANICO D	DE EXCAVACI	ONES _ MET	ODO DE CE	LDAS		RMR		DESCRIPCIÓN	4 5	100 98
<u>`</u>					ı						l	91-100		MUY BUENA "A"	6	95 93
MPRES	A:		MINERA BATEAS		UBICA	CIÓN EN COORDE	NADAS	FECHA:	27/6	/2022		81-90 71-80		MUY BUENA "B" BUENA "A"	8	90
	_			EOMECÁNICO 3D Y		UTM_WGS84		REALIZADO:	N.C. // L	.A // R.CH		61-70		BUENA "B"	9 10	88 85
ROYEC	TO:			OCAL Y GLOBAL DE	ESTE:		4766			• •	ļ	51-60 41-50		REGULAR "A" REGULAR "B"	11	83
		LA	BORES SUBTERR	ANEAS	NORTE:		7910		LITOLOGÍA		1	31-40		MALA"A"	12 13	80 78
TACIĆ	N·	EG_04	AZIMUT (°)	230	COTA:		234		Andesita			21-30		MALA"B"	14	75
171010	•••	20_01	7.2	250	REF.:	RP.	462		7111005710			0 - 20		MUYMALA	15 16	73 70
. L	σς		Espaciamient)	CONDICIO	NES DE DISCONT	INUIDADES		Agua	Orientación					17	68
R	esistencia a la	RQD	entre	Persistencia	Apertura	Rugosidad	Relleno	Meteorización	Subterránea	Discontinuidad		VALORACIÓN	RMR89	DEL MACIZO ROCOSO	18 19	65 63
2	compresión		discontinuidad	es Persistencia	Apertura	Rugosiuau	Kellello	Weteonzacion	Subtellallea	es					20	60
val.	15 12 7 4 2	20 17 13 8	20 15 10 8	9 4 7 1 0	6 5 4 0	6 3 1 0	6 2 2 0	6 5 3 0	15 10 7 4	0 -2 -5 -10					21 22	58 55
Punto de Mapeo	1> 250 Mpa 2100-250 Mpa 350-100Mpa 425-50 Mpa 5<25 Mpa	190-100% 275-90% 350-75% 425-50% 5<25%	1> 2 m 20.6-2 m 3200-600 mm 460-200 mm	1. < 1 m 2. 1.3 m 3. 3.10 m 4. 10-20 m 5. > 20 m	1 Cerrada 0 2 Muy Angosta < 0.1 mm 3 Angosta 0.1 - 1.0 mm 4 Abierta 1.0 - 5.0 mm 5Muy Abierta > 5.0 mm	1 Muy rugosa 2 Rugosa 3 Ligeramente Rugosa 4 Lisa 5 Muy lisa	1 Ninguna 2 Relleno Duro < 5 mm 3 Relleno Duro > 5 mm 4 Relleno Blando < 5 mm 5 Relleno Blando > 5 mm	1 No meteorizada 2 Ligeramente meteorizada 3 Meteorizada 4 Muy meteorizada 5 Descompuesta	1 Seco 2 Húme do 3 Mojado 4 Gote o 5 Flujo	1 Muy favorable 2 Favorable 3 Regular 4 Desfavorable 5Muy desfavorable	R.M.R.	DESCRIPCIÓN		OBSERVACIONES	23 24 25 26 27 29 30 31 32 33 34 35	53 50 48 45 43 40 38 35 33 30 28 25 23
\neg	7	8	10	0	0	5	0	5	10		45				36	20
, –	7	8	10	2	6	5	6	5	10		59	Ì	<u></u>		37 38	18 15
	7	8	10	1	0	5	0	5	10		46	∢		Roca muy fracturada, regular,	39	13
	7	8	10	1	4	5	2	5	10		52	=	REGULAR	ligeramente meteo rizada,	40 41	10 8
: -	,	-	10	-	<u> </u>	,	-		10		32	-	8	húmeda.	42	5
-			+					ļ			51	ł	~		43	3
FOICE		DEOIÓN OFOIÓN FI	MARTILLO SCHMI	_		DECICEDO	DE DISCONTINUUDA	L DES ESTRUCTURALES			51				44	0
			M A R I ILLO SCHM IL	_	1							}				
	Average dispersion of for most rocks - MPa	fstrength		Desde	Hasta	Tip. De Est.	Buz. (°)	D-Buz. (°)	Frec.	Observacion	nes	<u> </u>				
	2 2 2 2			-		D	62	215	1							
350	لأستستست		1 1/2			D	76	232	1					350 ⁰ 16		
300		++++		1		D	71	227	1				330		Species 19PO	
250			1	1		D	68	221	1			\$20			Color	Density Concentry E.St 1. 2.31 - 1.
						D	63	061	1			***		***************************************		9.58 - 5 15.6 - 6 4.60 - 6 9.30 - 2 11.38 - 1 11.60 - 9 16.10 - 9 16.10 - 9
150				CI .		D	64	067	1			***		, , , , , , , , , , , , , , , , , , ,		21,80 - 2 31,50 - 2
100	III/		*////// :			D	61	065	1			200		The state of the s	Car	reaur data Poly Victor
90		- AMM				D	87	320	1			260 -			= 00 Contact to	minimum minimum Circle Size 10%
70 60						D	86	326	1			270 -			-90 Vector Court (Pick Plade Polic Victor (Marghael) 11 111 from
50						D	84	323	1			360			90 Vector Court () Vector Securit () Vector Securit ()	Woodeng Hornard
40				Ver plano	Ver plano	D	36	118	1				10	HHHHH	9000	registree South And
30			tion			D	61	112	1	1		200		HILLHADA T	LIG.	
,0			ental			D	44	120	1	1		240	7	7120		
20		+	r orie				77	120	<u> </u>			7				
15			il lie				1	+	1	1		220	X	140		
			Ham			-	-	-	-	-		RP. 462N	200	190 180 170 160		
10	5 10 15 20	25 30 35 40	5 50 55 60			-		1		1		1		2002 (SEA) 1/60°		
	10 20	30 0	150 60 4					1	-	1		ł				
	20 1	30 40	50 55 60 K	1				-		ļ		1				
	20 30	40 !	· · · · ·	1								1				
		hardness - Type L h					L	ļ]	ļ			,			,
	TO DE LA ORIENTAC				LOGÍA		RIZACIÓN		TRUCTURA	ESTIMACIÓN DE	L RQD	GRADO	1	ÍNDICES DE RESISTENCIA "EN	CAMPO"	RANGO
OISC	ONTINUIDADES RE	SPECTO AL EJE DE L	AS EXCAVACIONES	Andesita	√	S	Sana	F	Falla]		1		stra es deleznable con golpe firm		1.0
bo	erpendicular (⊥) a		bo paralelo (//) al e	je Brecha	-	L	Lig. Meteoriz.	MF	Microfalla			2		stra se desconcha con dificultad		5.0
	excavación		de la excavación	Mineral	_	Α	Mod. Meteoriz.	С	Contacto Lit.	005 110 5	0.3	2	firme de	a y expone marcas poco profunda e la picota.	is con goipe	5.0
		ción hacia el E	uz. Buz.	Otro	-	М	Muy Meteoriz.	Est.	Estratificación	RQD=110-2.5	(1v)			estra no se raya y no se desconch	a usando la	
		zamiento (45	°-90°) (20°-45°)	Otro1	-	D	Descompuesta	D	Diaclasas	1		4		ı. La muestra se rompe con golpe		25 -
	,	vorable	Tuy Regular	Otro2	<u> </u>			 		1		7	La mue	stra se rompe con mas de un goi	pe tirme de la	50 -
		desfa	vorable Regular	OLIUZ	_	1	1	1	I	1		· '	picota.			50-
M uy f	n contra el Excavac	ción contra el p	(450,000 :- : : : : : : : : : : : : : : : : :	Notas:					•			12	La mue	stra se rompe con varios goipes	tirmes de la	100
Muy f avacio do de	buzamiento ser	ción contra el Buz. ntido del zamiento	(45°-90°) independiente Rumbo		n venillas de calcita	v venillas de nirita	silicificada modo	rada a media. ligoro	mente alterada			12	DICOTA.	estra se rompe con varios goipes estra no se rompe, solo desprend		100 -

Anexo 6: Base de datos parcial de los valores del registro Geomecánico

BHID	FROM	ТО	LENGTH	RMR	X	Y	Z
SAMIE17_M_100	0	6.4	6.4	60	194305.662	8317720.49	4499.1195
SAMIE17_M_100	6.4	10.1	3.7	48	194307.641	8317716.73	4496.38383
SAMIE17_M_100	10.1	51.7	41.6	60	194316.521	8317699.89	4484.11393
SAMIE17_M_100	51.7	55.6	3.9	46	194325.44	8317682.97	4471.78985
SAMIE17_M_100	55.6	58.9	3.3	35	194326.852	8317680.3	4469.83967
SAMIE17_M_100	58.9	65	6.1	40	194328.694	8317676.8	4467.2936
SAMIE17_M_100	65	69.05	4.05	40	194330.684	8317673.03	4464.54438
SAMIE17_M_100	69.05	96.3	27.25	46	194336.819	8317661.39	4456.0665
SAMIE17_M_100	96.3	110.9	14.6	35	194345.023	8317645.83	4444.73106
SAMIE17_M_101	0	14.6	14.6	50	195344.085	8318729.78	4524.83697
SAMIE17_M_101	14.6	15.6	1	32	195343.069	8318724.93	4530.86218
SAMIE17_M_101	15.6	43.7	28.1	57	195341.174	8318715.89	4542.1015
SAMIE17_M_101	43.7	46.9	3.2	32	195339.136	8318706.16	4554.19053
SAMIE17_M_101	46.9	62.5	15.6	57	195337.912	8318700.32	4561.45167
SAMIE17_M_101	62.5	67.4	4.9	52	195336.577	8318693.95	4569.36941
SAMIE17_M_101	67.4	89.8	22.4	60	195334.799	8318685.47	4579.91351
SAMIE17_M_102	0	37.3	37.3	57	194312.206	8317719.66	4494.64849
SAMIE17_M_102	37.3	47.1	9.8	60	194326.227	8317702.5	4486.67367
SAMIE17_M_102	47.1	61.1	14	60	194333.312	8317693.83	4482.64394
SAMIE17_M_102	61.1	69.6	8.5	38	194340.01	8317685.63	4478.83431
SAMIE17_M_102	69.6	78.8	9.2	40	194345.279	8317679.19	4475.83741
SAMIE17_M_102	78.8	92	13.2	46	194351.947	8317671.03	4472.04471
SAMIE17_M_103	0	11.3	11.3	40	195352.993	8318731.96	4515.46268
SAMIE17_M_103	11.3	83.4	72.1	46	195388.487	8318713.31	4504.09655
SAMIE17_M_103	83.4	90.4	7	46	195421.038	8318693.36	4493.7534
SAMIE17_M_103	90.4	117.5	27.1	46	195434.978	8318684.44	4489.66133
SAMIE17_M_103	117.5	119.3	1.8	32	195446.769	8318676.76	4486.37995
SAMIE17_M_103	119.3	130.4	11.1	35	195452.025	8318673.29	4484.96925
SAMIE17_M_103	130.4	162.05	31.65	46	195469.434	8318661.79	4480.32464
SAMIE17_M_103	162.05	185.4	23.35	60	195491.831	8318646.99	4474.34913
SAMIE17_M_104	0	31.53	31.53	52	194372.436	8317791.11	4496.0154
SAMIE17_M_104	31.53	70.5	38.97	56	194375.738	8317758.98	4481.94668
SAMIE17_M_104	70.55	89.85	19.3	56	194377.216	8317732.36	4470.07102
SAMIE17_M_104	89.85	97.3	7.45	57	194377.63	8317720.15	4464.61078
SAMIE17_M_104	97.3	98.9	1.6	32	194377.767	8317716.02	4462.77351
SAMIE17_M_104	98.9	103.8	4.9	35	194377.865	8317713.05	4461.45704
SAMIE17_M_104	103.8	105.2	1.4	32	194377.959	8317710.17	4460.18358
SAMIE17_M_104	105.2	113.9	8.7	46	194378.109	8317705.55	4458.14711

SAMIEIT M. 104 113.9 124.9 111 52 194378.396 8317696.54 4454.19312 SAMIEIT M. 104 124.9 155.75 10.885 48 194378.708 8317690.52 4449.83564 SAMIEI P. 104 135.75 159.05 23.3 50 194379.18 8317530.89 4744.33566 SAMIEI P. 20 12.5 13.95 1.45 48 19498.209 8317534.17 4768.2651 SAMIEI P. 20 13.95 1.45 48 19498.403 8317534.07 4767.092 SAMIEI P. 20 15.94 18.55 2.61 33 194984.03 8317534.02 4762.4092 SAMIEI P. 20 22.59 23.45 0.86 25 194981.90 8317534.03 4760.4092 SAMIEI P. 20 23.45 25.63 2.81 50 194981.90 8317540.12 4750.4092 SAMIEI P. 20 25.63 2.81 50 194981.90 8317540.23 4750.7201 SAMIEI P. 20 28.67 3.07 2.52		1						1
SAMIEI7_M_104 135.75 159.05 23.3 50 194379.18 8317670.85 4443.0842 SAMIEI9_20 0 12.5 12.5 0 194987.246 8317530.89 4774,33566 SAMIEI9_20 12.5 13.95 1.45 48 194985.209 8317534.97 4767.094 SAMIEI9_20 15.94 18.95 2.61 53 194984.036 8317534.97 4767.094 SAMIEI9_20 18.55 22.59 4.04 46 194983.05 8317537.62 4762.4092 SAMIEI9_20 22.59 23.45 0.86 25 194981.305 8317539.49 4759.1027 SAMIEI9_20 25.63 26.13 0.5 25 194981.515 8317540.12 4759.1027 SAMIEI9_20 26.63 26.13 0.5 25 194981.515 8317540.12 4759.79675 SAMIEI9_20 26.73 30.76 2.09 27 194980.35 8317541.92 4754.79275 SAMIEI9_20 30.76 38.45	SAMIE17_M_104	113.9	124.9	11	52	194378.396	8317696.54	4454.19312
SAMIE19_20 0 12.5 12.5 0 194987.246 8317530.89 4774.33566 SAMIE19_20 12.5 13.95 1.45 48 194985.209 8317534.17 4768.52651 SAMIE19_20 15.94 18.55 2.61 53 194984.036 8317534.97 4767.048 SAMIE19_20 15.94 18.55 2.61 53 194984.036 8317534.07 4762.4092 SAMIE19_20 18.55 22.59 4.04 46 194982.35 8317538.77 4760.36871 SAMIE19_20 23.45 25.63 2.18 50 194981.90 8317539.49 4759.10267 SAMIE19_20 25.63 26.13 0.5 25 194981.90 8317540.12 4757.08675 SAMIE19_20 26.61 38.45 7.69 22 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 38.45 7.69 52 194980.395 8317544.22 4750.7201 SAMIE19_20 34.3 45.92	SAMIE17_M_104	124.9	135.75	10.85	48	194378.708	8317686.52	4449.83564
SAMIE19_20 12.5 13.95 1.45 48 194985.209 8317534.17 4768.52651 SAMIE19_20 13.95 15.94 1.99 28 194984.707 8317534.97 4767.094 SAMIE19_20 15.94 18.55 2.61 53 194984.036 8317536.06 4762.4092 SAMIE19_20 22.59 23.45 0.86 25 194982.036 8317537.62 4762.4092 SAMIE19_20 23.45 25.63 2.18 50 194981.906 8317534.91 4769.036871 SAMIE19_20 25.63 26.13 0.5 25 194981.915 8317540.12 4759.10277 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.12 4757.92675 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317547.22 4754.79275 SAMIE19_20 38.45 40.3 1.85 33 194977.574 8317547.72 4744.51951 SAMIE19_20 45.92 24.66 </td <td>SAMIE17_M_104</td> <td>135.75</td> <td>159.05</td> <td>23.3</td> <td>50</td> <td>194379.18</td> <td>8317670.85</td> <td>4443.0842</td>	SAMIE17_M_104	135.75	159.05	23.3	50	194379.18	8317670.85	4443.0842
SAMIE19_20 13.95 15.94 1.99 28 194984.707 8317534.97 4767.094 SAMIE19_20 15.94 18.55 2.61 53 194984.036 8317536.06 4765.17844 SAMIE19_20 18.55 22.59 4.04 46 194982.35 8317537.62 4762.4092 SAMIE19_20 22.59 23.45 5.63 2.18 50 194981.906 8317537.72 4760.36871 SAMIE19_20 25.63 26.13 0.5 25 194981.916 8317540.23 4759.10277 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 30.76 38.45 7.69 52 194980.395 8317541.92 4754.79275 SAMIE19_20 38.45 40.3 1.85 33 194976.793 8317544.22 4750.7201 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 45.92	SAMIE19_20	0	12.5	12.5	0	194987.246	8317530.89	4774.33566
SAMIE19_20 15.94 18.55 2.61 53 194984.036 8317536.06 4765.17844 SAMIE19_20 18.55 22.59 4.04 46 194983.065 8317537.62 4762.4092 SAMIE19_20 22.59 23.45 0.86 25 194981.906 8317539.49 4759.10277 SAMIE19_20 25.63 26.13 0.5 25 194981.915 8317540.21 4757.90675 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 3.09 22 194978.967 8317540.22 4750.7201 SAMIE19_20 38.45 7.69 52 194978.967 8317540.22 4750.7201 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317540.24 4745.1951 SAMIE19_20 45.92 46.6 0.68 44 194975.564 <td>SAMIE19_20</td> <td>12.5</td> <td>13.95</td> <td>1.45</td> <td>48</td> <td>194985.209</td> <td>8317534.17</td> <td>4768.52651</td>	SAMIE19_20	12.5	13.95	1.45	48	194985.209	8317534.17	4768.52651
SAMIE19_20 18.55 22.59 4.04 46 194983.065 8317537.62 4762.4092 SAMIE19_20 22.59 23.45 0.86 25 194981.906 8317538.77 4760.36871 SAMIE19_20 25.63 26.13 0.5 25 194981.515 8317540.12 4759.10277 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 30.76 32.09 27 194980.395 8317541.22 4750.7201 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 38.45 40.3 1.85 33 194977.574 8317540.46 476.474739 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317540.42 474.51951 SAMIE19_20 45.92 46.6 0.68 44 194975.594 8317540.44 4741.9191 SAMIE19_20 45.92 46.6 0.68	SAMIE19_20	13.95	15.94	1.99	28	194984.707	8317534.97	4767.094
SAMIE19_20 22.59 23.45 0.86 25 194982.35 8317538.77 4760.36871 SAMIE19_20 23.45 25.63 2.18 50 194981.906 8317539.49 4759.10277 SAMIE19_20 25.63 26.13 0.5 25 194981.916 8317540.12 4757.98675 SAMIE19_20 26.13 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 28.67 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 38.45 40.3 1.85 33 194977.574 8317546.46 4746.74739 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317540.72 4744.51951 SAMIE19_20 45.9 46.6 0.68 44 194975.564 8317540.74 4741.01319 SAMIE19_20 45.0 52.65 6.05 45 194976.89 8317550.72 4721.3334 SAMIE19_20 71.76 73.67 19.11	SAMIE19_20	15.94	18.55	2.61	53	194984.036	8317536.06	4765.17844
SAMIE19_20 23.45 25.63 2.18 50 194981.906 8317539.49 4759.10277 SAMIE19_20 25.63 26.13 0.5 25 194981.515 8317540.12 4757.98675 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 30.76 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.564 8317549.04 4742.17919 SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.7 4741.01319 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317549.7 4741.01319 SAMIE19_20 71.76 73.67 <td>SAMIE19_20</td> <td>18.55</td> <td>22.59</td> <td>4.04</td> <td>46</td> <td>194983.065</td> <td>8317537.62</td> <td>4762.4092</td>	SAMIE19_20	18.55	22.59	4.04	46	194983.065	8317537.62	4762.4092
SAMIE19_20 25.63 26.13 0.5 25 194981.515 8317540.12 4757.98675 SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 30.76 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.973 8317549.04 4742.17919 SAMIE19_20 46.6 52.65 6.05 44 194975.564 8317549.04 4742.17919 SAMIE19_20 46.6 52.65 6.05 45 194975.564 8317549.74 4741.01319 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 73.67 1.91	SAMIE19_20	22.59	23.45	0.86	25	194982.35	8317538.77	4760.36871
SAMIE19_20 26.13 28.67 2.54 49 194981.071 8317540.83 4756.72081 SAMIE19_20 28.67 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.22 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194976.793 8317549.04 4742.17919 SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.74 4741.01319 SAMIE19_20 45.65 52.65 6.05 45 194974.582 8317557.2 4727.73334 SAMIE19_20 71.76 73.67 1.91 56 194974.582 8317557.2 4727.73334 SAMIE19_20 73.67 1.91 56 194974.582 8317562.14 4718.9805 SAMIE19_20 73.67 83.13 9.46	SAMIE19_20	23.45	25.63	2.18	50	194981.906	8317539.49	4759.10277
SAMIE19_20 28.67 30.76 2.09 27 194980.395 8317541.92 4754.79275 SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 38.45 40.3 1.85 33 194976.793 8317546.46 4746.74739 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.973 8317549.04 4742.17919 SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.07 4741.01319 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317551.28 4738.21064 SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317562.14 4718.98065 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 86.49 91.9	SAMIE19_20	25.63	26.13	0.5	25	194981.515	8317540.12	4757.98675
SAMIE19_20 30.76 38.45 7.69 52 194978.967 8317544.22 4750.7201 SAMIE19_20 38.45 40.3 1.85 33 194977.574 8317546.46 4746.74739 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.504 8317549.04 4742.17919 SAMIE19_20 46.6 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 73.67 1.91 56 194967.84 8317562.14 4718.28005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317567.83 4708.9068 SAMIE19_20 83.13 86.49 3.36 48 194963.028 8317569.89 4705.25462 SAMIE19_20 95.84 97.63 1.79	SAMIE19_20	26.13	28.67	2.54	49	194981.071	8317540.83	4756.72081
SAMIE19_20 38.45 40.3 1.85 33 194977.574 8317546.46 4746.74739 SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.564 8317549.04 4742.17919 SAMIE19_20 46.6 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 86.49 91.9 5.41 45 194963.02 83.1756.83 4708.9068 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 97.63 102.08 4.45	SAMIE19_20	28.67	30.76	2.09	27	194980.395	8317541.92	4754.79275
SAMIE19_20 40.3 43.8 3.5 36 194976.793 8317547.72 4744.51951 SAMIE19_20 43.8 45.92 2.12 39 194975.973 8317549.04 4742.17919 SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.74 4741.01319 SAMIE19_20 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 73.67 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317567.83 4708.9068 SAMIE19_20 86.49 91.9 5.41 45 194966.08 8317567.83 4708.9068 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 97.63 102.08 4.45	SAMIE19_20	30.76	38.45	7.69	52	194978.967	8317544.22	4750.7201
SAMIE19_20 43.8 45.92 2.12 39 194975.973 8317549.04 4742.17919 SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.7 4741.01319 SAMIE19_20 46.6 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317557.2 4727.73334 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 83.13 86.49 3.36 48 194964.309 8317567.83 4708.9066 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317576.83 4708.9066 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317577.09 4701.36103 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4698.7949 SAMIE19_20 105.4 107.55	SAMIE19_20	38.45	40.3	1.85	33	194977.574	8317546.46	4746.74739
SAMIE19_20 45.92 46.6 0.68 44 194975.564 8317549.7 4741.01319 SAMIE19_20 46.6 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 83.13 86.49 3.36 48 194964.309 8317567.83 4708.90668 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 97.63 102.08 4.45 52 194950.827 8317574.9 4698.7949 SAMIE19_20 105.4 107.55 <td>SAMIE19_20</td> <td>40.3</td> <td>43.8</td> <td>3.5</td> <td>36</td> <td>194976.793</td> <td>8317547.72</td> <td>4744.51951</td>	SAMIE19_20	40.3	43.8	3.5	36	194976.793	8317547.72	4744.51951
SAMIE19_20 46.6 52.65 6.05 45 194974.582 8317551.28 4738.21064 SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317567.83 4708.90668 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317574.9 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4698.7749 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 </td <td>SAMIE19_20</td> <td>43.8</td> <td>45.92</td> <td>2.12</td> <td>39</td> <td>194975.973</td> <td>8317549.04</td> <td>4742.17919</td>	SAMIE19_20	43.8	45.92	2.12	39	194975.973	8317549.04	4742.17919
SAMIE19_20 52.65 71.76 19.11 57 194970.909 8317557.2 4727.73334 SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 102.08 105.4 3.32 39 194955.983 8317578.01 4690.8794 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4	SAMIE19_20	45.92	46.6	0.68	44	194975.564	8317549.7	4741.01319
SAMIE19_20 71.76 73.67 1.91 56 194967.84 8317562.14 4718.98005 SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 83.13 86.49 3.36 48 194964.309 8317567.83 4708.90668 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317574.9 4696.3764 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.983 831758.01 4690.86291 SAMIE19_20 109.4 122.3 </td <td>SAMIE19_20</td> <td>46.6</td> <td>52.65</td> <td>6.05</td> <td>45</td> <td>194974.582</td> <td>8317551.28</td> <td>4738.21064</td>	SAMIE19_20	46.6	52.65	6.05	45	194974.582	8317551.28	4738.21064
SAMIE19_20 73.67 83.13 9.46 53 194966.18 8317564.81 4714.24528 SAMIE19_20 83.13 86.49 3.36 48 194964.309 8317567.83 4708.90668 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 123.84 125.	SAMIE19_20	52.65	71.76	19.11	57	194970.909	8317557.2	4727.73334
SAMIE19_20 83.13 86.49 3.36 48 194964.309 8317567.83 4708.90668 SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317585.82 4677.0417 SAMIE19_20 123.84 125	SAMIE19_20	71.76	73.67	1.91	56	194967.84	8317562.14	4718.98005
SAMIE19_20 86.49 91.9 5.41 45 194963.028 8317569.89 4705.25462 SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317576.73 4693.14076 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 107.5 2.15 41 194957.998 8317578.01 4689.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 123.84 1.54 37 194955.138 8317586.57 4677.0417 SAMIE19_20 123.84 125.49 1.65 1	SAMIE19_20	73.67	83.13	9.46	53	194966.18	8317564.81	4714.24528
SAMIE19_20 91.9 95.84 3.94 43 194961.663 8317572.09 4701.36103 SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.399 8317578.01 4690.86291 SAMIE19_20 109.4 122.3 12.9 37 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 131.45 137.2	SAMIE19_20	83.13	86.49	3.36	48	194964.309	8317567.83	4708.90668
SAMIE19_20 95.84 97.63 1.79 27 194960.827 8317573.43 4698.9749 SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 <	SAMIE19_20	86.49	91.9	5.41	45	194963.028	8317569.89	4705.25462
SAMIE19_20 97.63 102.08 4.45 52 194959.916 8317574.9 4696.3764 SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 141.6 149.1	SAMIE19_20	91.9	95.84	3.94	43	194961.663	8317572.09	4701.36103
SAMIE19_20 102.08 105.4 3.32 39 194958.782 8317576.73 4693.14076 SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 <td< td=""><td>SAMIE19_20</td><td>95.84</td><td>97.63</td><td>1.79</td><td>27</td><td>194960.827</td><td>8317573.43</td><td>4698.9749</td></td<>	SAMIE19_20	95.84	97.63	1.79	27	194960.827	8317573.43	4698.9749
SAMIE19_20 105.4 107.55 2.15 41 194957.983 8317578.01 4690.86291 SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1	SAMIE19_20	97.63	102.08	4.45	52	194959.916	8317574.9	4696.3764
SAMIE19_20 107.55 109.4 1.85 31 194957.399 8317578.95 4689.1972 SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317589.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 141.6 149.1 7.5 38 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317598.82 4654.00914 SAMIE19_20 149.1	SAMIE19_20	102.08	105.4	3.32	39	194958.782	8317576.73	4693.14076
SAMIE19_20 109.4 122.3 12.9 37 194955.246 8317582.42 4683.05491 SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317590.38 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	105.4	107.55	2.15	41	194957.983	8317578.01	4690.86291
SAMIE19_20 122.3 123.84 1.54 37 194953.138 8317585.82 4677.0417 SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	107.55	109.4	1.85	31	194957.399	8317578.95	4689.1972
SAMIE19_20 123.84 125.49 1.65 19 194952.672 8317586.57 4675.7133 SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	109.4	122.3	12.9	37	194955.246	8317582.42	4683.05491
SAMIE19_20 125.49 130.04 4.55 22 194951.767 8317588.02 4673.13146 SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	122.3	123.84	1.54	37	194953.138	8317585.82	4677.0417
SAMIE19_20 130.04 131.45 1.41 30 194950.897 8317589.43 4670.64955 SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	123.84	125.49	1.65	19	194952.672	8317586.57	4675.7133
SAMIE19_20 131.45 137.2 5.75 41 194949.852 8317591.11 4667.66794 SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	125.49	130.04	4.55	22	194951.767	8317588.02	4673.13146
SAMIE19_20 137.2 141.6 4.4 45 194948.37 8317593.5 4663.4412 SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	130.04	131.45	1.41	30	194950.897	8317589.43	4670.64955
SAMIE19_20 141.6 149.1 7.5 38 194946.633 8317596.29 4658.48573 SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	131.45	137.2	5.75	41	194949.852	8317591.11	4667.66794
SAMIE19_20 149.1 152.35 3.25 50 194945.063 8317598.82 4654.00914 SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	137.2	141.6	4.4	45	194948.37	8317593.5	4663.4412
SAMIE19_20 152.35 155.73 3.38 40 194944.096 8317600.38 4651.24823	SAMIE19_20	141.6	149.1	7.5	38	194946.633	8317596.29	4658.48573
	SAMIE19_20	149.1	152.35	3.25	50	194945.063	8317598.82	4654.00914
SAMIE19_20 155.73 157.65 1.92 30 194943.322 8317601.63 4649.04117	SAMIE19_20	152.35	155.73	3.38	40	194944.096	8317600.38	4651.24823
	SAMIE19_20	155.73	157.65	1.92	30	194943.322	8317601.63	4649.04117

	1						1
SAMIE19_20	157.65	161	3.35	51	194942.553	8317602.87	4646.8466
SAMIE19_20	161	171.41	10.41	56	194940.544	8317606.1	4641.11656
SAMIE19_20	171.41	173.76	2.35	48	194938.681	8317609.1	4635.80296
SAMIE19_20	173.76	179.14	5.38	57	194937.553	8317610.92	4632.58398
SAMIE19_20	179.14	182.32	3.18	57	194936.303	8317612.93	4629.01936
SAMIE19_20	182.32	185	2.68	53	194935.447	8317614.31	4626.5791
SAMIE19_20	185	187.75	2.75	51	194934.655	8317615.58	4624.31791
SAMIE19_20	187.75	200.64	12.89	55	194932.372	8317619.26	4617.80499
SAMIE19_20	200.64	228.57	27.93	54	194926.412	8317628.86	4600.80645
SAMIE19_20	228.57	240.08	11.51	55	194920.655	8317638.13	4584.38257
SAMIE19_20	240.08	242.75	2.67	55	194918.585	8317641.47	4578.47764
SAMIE19_20	242.75	249.65	6.9	55	194917.188	8317643.72	4574.49244
SAMIE19_20	249.65	249.95	0.3	55	194916.137	8317645.41	4571.49416
SAMIE19_20	249.95	257.68	7.73	56	194914.964	8317647.3	4568.15026
SAMIE19_20	257.68	275.24	17.56	49	194911.272	8317653.24	4557.61882
SAMIE19_20	275.24	303.65	28.41	52	194904.561	8317664.05	4538.47568
SAMIE19_20	303.65	319.68	16.03	61	194898.074	8317674.5	4519.96967
SAMIE19_20	319.68	329.45	9.77	56	194894.307	8317680.56	4509.22586
SAMIE19_20	329.45	358.31	28.86	63	194888.668	8317689.65	4493.1393
SAMIE19_20	358.31	367.42	9.11	66	194883.125	8317698.57	4477.32757
SAMIE19_20	367.42	377.19	9.77	63	194880.369	8317703.01	4469.46543
SAMIE19_20	377.19	387.3	10.11	66	194877.467	8317707.69	4461.18687
SAMIE19_20	387.3	397.45	10.15	66	194874.509	8317712.45	4452.75006
SAMIE19_20	397.45	411.25	13.8	66	194871.013	8317718.08	4442.77664
SAMIE19_20	411.25	417.25	6	66	194868.122	8317722.74	4434.53139
SAMIE19_20	417.25	425.1	7.85	57	194866.1	8317725.99	4428.76387
SAMIE19_20	425.1	437.1	12	52	194863.202	8317730.66	4420.4978
SAMIE19_20	437.1	440.39	3.29	53	194860.97	8317734.25	4414.13064
SAMIE19_20	440.39	462.66	22.27	59	194857.239	8317740.26	4403.48677
SAMIE19_20	462.66	478.9	16.24	63	194851.617	8317749.32	4387.45017
SAMIE19_20	478.9	482.04	3.14	66	194848.788	8317753.87	4379.37982
SAMIE19_20	482.04	491.65	9.61	66	194846.926	8317756.87	4374.07038
SAMIE19_20	491.65	494.44	2.79	51	194845.116	8317759.79	4368.90668
SAMIE19_20	494.44	502.35	7.91	61	194843.554	8317762.3	4364.45092
SAMIE19_20	502.35	507.41	5.06	61	194841.661	8317765.35	4359.04986
SAMIE19_20	507.41	515.25	7.84	49	194839.778	8317768.39	4353.67796
SAMIE19_20	515.25	519.21	3.96	60	194838.055	8317771.16	4348.76412
SAMIE19_20	519.21	525.7	6.49	55	194836.529	8317773.62	4344.41246
SAMIE19_20	525.7	529.9	4.2	55	194834.969	8317776.13	4339.96086
SAMIE19_20	529.9	535.72	5.82	52	194833.506	8317778.49	4335.78826
SAMIE19_20	535.72	538.55	2.83	49	194832.243	8317780.52	4332.18617

							1
SAMIE19_20	538.55	542.61	4.06	54	194831.237	8317782.14	4329.31699
SAMIE19_20	542.61	552.65	10.04	55	194829.179	8317785.45	4323.44537
SAMIE19_20	552.65	562.15	9.5	54	194826.326	8317790.05	4315.30839
SAMIE19_20	562.15	568.1	5.95	55	194824.071	8317793.68	4308.8746
SAMIE19_20	568.1	578.16	10.06	51	194821.734	8317797.45	4302.2076
SAMIE19_20	578.16	587.3	9.14	44	194818.931	8317801.96	4294.21221
SAMIE19_20	587.3	593.15	5.85	43	194816.743	8317805.48	4287.96997
SAMIE19_20	593.15	593.54	0.39	0	194815.832	8317806.95	4285.37147
SAMIE19_20	593.54	609.05	15.51	46	194813.51	8317810.69	4278.75028
SAMIE19_20	609.05	622.05	13	48	194809.348	8317817.39	4266.87795
SAMIE19_20	622.05	631.6	9.55	46	194806.056	8317822.69	4257.48753
SAMIE19_20	631.6	636.95	5.35	53	194803.881	8317826.2	4251.28277
SAMIE22_1	0	3.5	3.5	62	194981.437	8317707.52	4302.92693
SAMIE22_1	3.5	10.8	7.3	64	194977.079	8317707.55	4299.73918
SAMIE22_1	10.8	14.2	3.4	62	194972.761	8317707.58	4296.58095
SAMIE22_1	14.2	18.3	4.1	64	194969.734	8317707.61	4294.36724
SAMIE22_1	18.3	23	4.7	44	194966.182	8317707.63	4291.76981
SAMIE22_1	23	26.8	3.8	59	194962.752	8317707.66	4289.26093
SAMIE22_1	26.8	30.9	4.1	59	194959.564	8317707.68	4286.92915
SAMIE22_1	30.9	44.78	13.88	64	194952.308	8317707.73	4281.62214
SAMIE22_1	44.78	45.1	0.32	22	194946.577	8317707.78	4277.43084
SAMIE22_1	45.1	51.35	6.25	67	194943.925	8317707.8	4275.49163
SAMIE22_1	51.35	68.87	17.52	67	194934.333	8317707.87	4268.47563
SAMIE22_1	68.87	84.13	15.26	59	194921.103	8317707.96	4258.80022
SAMIE22_1	84.13	85.55	1.42	47	194914.372	8317708.01	4253.87692
SAMIE22_1	85.55	114.05	28.5	58	194902.297	8317708.1	4245.04567
SAMIE22_1	114.05	118.45	4.4	43	194889.019	8317708.2	4235.33484
SAMIE22_1	118.45	151.9	33.45	53	194873.744	8317708.31	4224.16296
SAMIE22_1	151.9	153	1.1	49	194859.801	8317708.41	4213.96511
SAMIE22_1	153	161.55	8.55	59	194855.906	8317708.44	4211.1168
SAMIE22_1	161.55	168.9	7.35	50	194849.49	8317708.49	4206.42373
SAMIE22_1	168.9	173.4	4.5	53	194844.707	8317708.52	4202.92606
SAMIE22_1	173.4	178	4.6	43	194841.035	8317708.55	4200.24008
SAMIE22_1	178	181.1	3.1	48	194837.927	8317708.57	4197.96733
SAMIE22_1	181.1	185	3.9	56	194835.102	8317708.59	4195.9012
SAMIE22_1	185	194.1	9.1	51	194829.856	8317708.63	4192.0641
SAMIE22_1	194.1	195.4	1.3	35	194825.659	8317708.66	4188.99441
SAMIE22_1	195.4	200.6	5.2	51	194823.035	8317708.68	4187.07586
SAMIE22_1	200.6	204.7	4.1	43	194819.282	8317708.71	4184.33085
SAMIE22_1	204.7	210.45	5.75	51	194815.307	8317708.74	4181.42351
SAMIE22_1	210.45	216.9	6.45	49	194810.383	8317708.77	4177.82253

SAMIE22 I 229.4 236.8 7.4 54 194794.705 8317708.89 4166.35549 SAMIE22 I 236.8 243.49 6.69 62 194789.018 8317708.93 4162.19666 SAMIE22 I 243.49 246.4 2.91 65 194782.92 8317708.99 4157.3676 SAMIE22 I 249 250.75 1.75 58 194781.165 8317708.99 4157.3676 SAMIE22 IO 0 48.9 48.9 41 195660.575 8318451.45 4665.48209 SAMIE22 IO 49.6 51.1 1.5 52 195648.394 8318462.72 4645.5662 SAMIE22 IO 51.1 52.6 1.5 51 195647.336 8318465.37 4644.1276 SAMIE22 IO 55.6 58.1 2.5 52 195645.393 8318465.34 4632.5802 SAMIE22 IO 55.6 58.1 2.5 52 195645.393 8318465.44 4640.562 SAMIE22 IO 56.6 58.1 2.5								
SAMIE22 I 236.8 243.49 6.69 62 194789.018 8317708.93 4162.19666 SAMIE22 I 243.49 246.4 2.91 62 194785.144 8317708.99 4159.3631 SAMIE22 I 246.4 249 250.75 58 194781.165 8317708.99 4156.4528 SAMIE22 IO 0 48.9 48.9 41 195660.575 8318451.45 4665.48209 SAMIE22 IO 48.9 49.6 0.7 51 195648.954 8318462.24 466.41204 SAMIE22 IO 49.6 51.1 1.5 52 195648.939 8318462.72 4645.5662 SAMIE22 IO 52.6 55.6 3 52 195648.682 8318463.37 4644.4126 SAMIE22 IO 55.6 58.1 2.5 52 195648.393 818465.54 4640.568 SAMIE22 IO 55.6 58.1 2.5 52 195642.769 8318466.7 4640.8262 SAMIE22 IO 66.1 67.1 3.1	SAMIE22_1	216.9	229.4	12.5	55	194802.736		
SAMIE22 1 243.49 246.4 2.91 62 194785.144 8317708.96 4159.3631 SAMIE22 1 246.4 249 2.6 56 194782.92 8317708.98 4157.3676 SAMIE22 10 0 48.9 48.9 41 195660.575 8318451.45 4665.48209 SAMIE22 10 48.9 44.9 0.7 51 195648.934 8318462.24 4664.41204 SAMIE22 10 49.6 51.1 1.5 52 195648.439 8318462.72 4645.5662 SAMIE22 10 51.1 52.6 1.5 51 195647.36 8318465.37 4644.41204 SAMIE22 10 55.6 55.1 2.5 52 195645.393 8318466.74 4640.568 SAMIE22 10 55.6 58.1 2.5 52 195644.352 8318466.74 4638.53027 SAMIE22 10 60.9 64 3.1 52 195641.317 8318467.98 4636.26186 SAMIE22 10 67.1 70.2 3.1	_							
SAMIE22_1 246.4 249 2.6 56 194782.92 8317708.98 4157.73676 SAMIE22_10 249 250.75 1.75 58 194781.165 8317708.99 4156.4528 SAMIE22_10 0 48.9 48.9 41 195605.575 8318451.45 4665.4224 SAMIE22_10 49.6 51.1 1.5 52 195648.594 8318462.24 4645.4204 SAMIE22_10 51.1 52.6 1.5 51 195647.736 8318463.37 4644.41276 SAMIE22_10 55.6 58.1 2.5 52 195646.682 8318464.35 4642.68262 SAMIE22_10 55.6 58.1 2.5 52 195646.682 8318465.54 4640.5687 SAMIE22_10 60.9 64 3.1 52 195641.512 8318466.7 4638.53027 SAMIE22_10 67.1 70.2 3.1 52 195641.512 8318470.48 4631.49435 SAMIE22_10 76.4 77.6 1.2								
SAMIE22_1 249 250.75 1.75 58 194781.165 8317708.99 4156.4528 SAMIE22_10 0 48.9 48.9 41 195660.575 8318451.45 4665.48209 SAMIE22_10 48.9 49.6 0.7 51 195648.954 8318462.24 4646.41204 SAMIE22_10 51.1 52.6 51.5 51 195648.393 8318462.72 4645.68262 SAMIE22_10 52.6 55.6 3 52 195646.682 8318464.35 4644.0268 SAMIE22_10 55.6 58.1 2.5 52 195645.393 8318466.7 4630.568 SAMIE22_10 60.9 64 3.1 52 195641.317 8318466.7 4630.38027 SAMIE22_10 67.1 70.2 3.1 52 195641.317 8318466.7 4630.38027 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.98 4631.49435 SAMIE22_10 70.2 73.3 3.1 <	SAMIE22_1	243.49	246.4		62	194785.144		
SAMIE22_10 0 48.9 48.9 41 195660.575 8318451.45 4665.48209 SAMIE22_10 48.9 49.6 0.7 51 195648.954 8318462.24 4646.41204 SAMIE22_10 49.6 51.1 1.5 52 195648.934 8318462.27 4645.5662 SAMIE22_10 51.1 52.6 1.5 51 195647.736 8318463.37 4644.41276 SAMIE22_10 55.6 58.1 2.5 52 195646.682 8318465.34 4642.6826 SAMIE22_10 58.1 60.9 2.8 52 195641.393 8318465.34 4640.568 SAMIE22_10 60.9 64 3.1 52 195642.769 8318470.78 4636.26186 SAMIE22_10 67.1 70.2 3.1 52 195642.769 8318470.68 4631.49435 SAMIE22_10 67.1 70.2 3.1 52 195635.952 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2	SAMIE22_1	246.4	249	2.6	56	194782.92	8317708.98	4157.73676
SAMIE22_10 48.9 49.6 0.7 51 195648.954 8318462.24 4646.41204 SAMIE22_10 49.6 51.1 1.5 52 195648.439 8318462.72 4645.5662 SAMIE22_10 51.1 52.6 1.5 51 195646.736 8318463.37 4644.41276 SAMIE22_10 55.6 55.6 3 52 195646.393 8318465.54 4640.568 SAMIE22_10 55.6 58.1 2.5 52 195642.393 8318465.54 4640.568 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4636.26186 SAMIE22_10 64 67.1 3.1 52 195641.317 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195631.394 8318470.08 4631.49435 SAMIE22_10 76.4 77.6 3.1 52 195638.412 8318473.37 4625.20584 SAMIE22_10 76.4 77.6 1.2 <t< td=""><td>SAMIE22_1</td><td>249</td><td>250.75</td><td>1.75</td><td>58</td><td>194781.165</td><td>8317708.99</td><td>4156.4528</td></t<>	SAMIE22_1	249	250.75	1.75	58	194781.165	8317708.99	4156.4528
SAMIE22_10 49.6 51.1 1.5 52 195648.439 8318462.72 4645.5662 SAMIE22_10 51.1 52.6 1.5 51 195647.736 8318463.37 4644.41276 SAMIE22_10 52.6 55.6 3 52 195645.393 8318465.35 4642.68262 SAMIE22_10 58.1 60.9 2.8 52 195644.152 8318466.7 4638.3027 SAMIE22_10 60.9 64 3.1 52 195641.317 8318466.7 4638.3027 SAMIE22_10 64 67.1 3.1 52 195641.317 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.6 70.6 3.1 52 195638.412 8318473.71 4625.07359 SAMIE22_10 77.6 79.6 2	SAMIE22_10	0	48.9	48.9	41	195660.575	8318451.45	4665.48209
SAMIE22_10 51.1 52.6 1.5 51 195647.736 8318463.37 4644.41276 SAMIE22_10 52.6 55.6 3 52 195646.682 8318464.35 4642.68262 SAMIE22_10 55.6 58.1 2.5 52 195645.393 8318465.54 4640.568 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4638.53027 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4636.26186 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318469.33 4633.8781 SAMIE22_10 70.2 73.3 3.1 52 195638.412 8318470.68 4631.49435 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318473.37 4626.72684 SAMIE22_10 76.6 77.6 1.2 51 195635.952 8318473.31 4623.84326 SAMIE22_10 77.6 79.6 2 <	SAMIE22_10	48.9	49.6	0.7	51	195648.954	8318462.24	4646.41204
SAMIE22_10 52.6 55.6 3 52 195646.682 8318464.35 4642.68262 SAMIE22_10 55.6 58.1 2.5 52 195645.393 8318465.54 4640.568 SAMIE22_10 58.1 60.9 2.8 52 195642.769 8318466.7 4638.53027 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4630.26186 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195638.412 8318472.02 4629.11059 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318473.37 4626.72684 SAMIE22_10 77.6 79.6 2 51 195635.952 8318473.37 4625.07359 SAMIE22_10 77.6 79.6 2 51 195635.202 8318475 4623.84326 SAMIE22_10 82.6 85.6 3 52	SAMIE22_10	49.6	51.1	1.5	52	195648.439	8318462.72	4645.5662
SAMIE22_10 55.6 58.1 2.5 52 195645.393 8318465.54 4640.568 SAMIE22_10 58.1 60.9 2.8 52 195644.152 8318466.7 4638.53027 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4636.26186 SAMIE22_10 64 67.1 3.1 52 195634.137 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195638.952 8318472.02 4629.11059 SAMIE22_10 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318473.43 4625.72684 SAMIE22_10 79.6 82.6 3 51 195634.031 8318473.43 4629.20288 SAMIE22_10 82.6 85.6 3 <t< td=""><td>SAMIE22_10</td><td>51.1</td><td>52.6</td><td>1.5</td><td>51</td><td>195647.736</td><td>8318463.37</td><td>4644.41276</td></t<>	SAMIE22_10	51.1	52.6	1.5	51	195647.736	8318463.37	4644.41276
SAMIE22_10 58.1 60.9 2.8 52 195644.152 8318466.7 4638.53027 SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4636.26186 SAMIE22_10 64 67.1 3.1 52 195641.317 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318475.43 4623.84326 SAMIE22_10 79.6 82.6 3 51 195635.202 8318475.74 4619.61402 SAMIE22_10 85.6 88.6 3 52 195631.219 8318476.09 4621.3040 SAMIE22_10 86.6 91.6	SAMIE22_10	52.6	55.6	3	52	195646.682	8318464.35	4642.68262
SAMIE22_10 60.9 64 3.1 52 195642.769 8318467.98 4636.26186 SAMIE22_10 64 67.1 3.1 52 195641.317 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195639.864 8318472.02 4629.11059 SAMIE22_10 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318474.31 4622.07359 SAMIE22_10 77.6 79.6 2 51 195635.902 8318475 4623.84326 SAMIE22_10 82.6 3 52 195631.219 8318476.09 4621.92088 SAMIE22_10 82.6 85.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 19563	SAMIE22_10	55.6	58.1	2.5	52	195645.393	8318465.54	4640.568
SAMIE22_10 64 67.1 3.1 52 195641.317 8318469.33 4633.8781 SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195638.412 8318472.02 4629.11059 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318473.37 4626.72684 SAMIE22_10 77.6 79.6 2 51 195635.952 8318474.31 4625.07359 SAMIE22_10 77.6 79.6 2 51 195635.902 8318475.4 4623.84326 SAMIE22_10 79.6 82.6 3 51 195634.031 8318476.09 4621.92088 SAMIE22_10 85.6 85.6 3 52 195634.031 8318475.4 4617.30716 SAMIE22_10 85.6 88.6 3 52 195629.814 8318478.7 4617.30716 SAMIE22_10 91.6 94 2.4 51 </td <td>SAMIE22_10</td> <td>58.1</td> <td>60.9</td> <td>2.8</td> <td>52</td> <td>195644.152</td> <td>8318466.7</td> <td>4638.53027</td>	SAMIE22_10	58.1	60.9	2.8	52	195644.152	8318466.7	4638.53027
SAMIE22_10 67.1 70.2 3.1 52 195639.864 8318470.68 4631.49435 SAMIE22_10 70.2 73.3 3.1 52 195638.412 8318472.02 4629.11059 SAMIE22_10 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318474.31 4625.07359 SAMIE22_10 77.6 79.6 2 51 195635.902 831847.31 4625.07359 SAMIE22_10 79.6 82.6 3 51 195634.031 8318476.09 4621.92088 SAMIE22_10 85.6 85.6 3 52 195632.625 8318478.7 4617.30716 SAMIE22_10 85.6 88.6 3 52 195632.625 8318478.7 4617.30716 SAMIE22_10 85.6 88.6 3 52 195623.69 8318481.18 4612.92412 SAMIE22_10 91.6 94 2.4 51	SAMIE22_10	60.9	64	3.1	52	195642.769	8318467.98	4636.26186
SAMIE22_10 70.2 73.3 3.1 52 195638.412 8318472.02 4629.11059 SAMIE22_10 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318474.31 4625.07359 SAMIE22_10 77.6 79.6 2 51 195635.202 8318476.09 4621.92088 SAMIE22_10 82.6 85.6 3 52 195634.031 8318476.09 4621.92088 SAMIE22_10 85.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE22_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 96.6 98.2 1.6 5	SAMIE22_10	64	67.1	3.1	52	195641.317	8318469.33	4633.8781
SAMIE22_10 73.3 76.4 3.1 52 195636.959 8318473.37 4626.72684 SAMIE22_10 76.4 77.6 1.2 51 195635.952 8318474.31 4625.07359 SAMIE22_10 77.6 79.6 2 51 195635.202 8318475 4623.84326 SAMIE22_10 82.6 85.6 3 51 195634.031 8318476.09 4621.92088 SAMIE22_10 82.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE22_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 98.2 99.1 0.9 50 <td>SAMIE22_10</td> <td>67.1</td> <td>70.2</td> <td>3.1</td> <td>52</td> <td>195639.864</td> <td>8318470.68</td> <td>4631.49435</td>	SAMIE22_10	67.1	70.2	3.1	52	195639.864	8318470.68	4631.49435
SAMIE2_10 76.4 77.6 1.2 51 195635.952 8318474.31 4625.07359 SAMIE2_10 77.6 79.6 2 51 195635.202 8318475 4623.84326 SAMIE2_10 79.6 82.6 3 51 195634.031 8318476.09 4621.92088 SAMIE2_10 82.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE2_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE2_10 88.6 91.6 3 52 195629.814 8318478.7 4617.30716 SAMIE2_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195628.549 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50	SAMIE22_10	70.2	73.3	3.1	52	195638.412	8318472.02	4629.11059
SAMIE22_10 77.6 79.6 2 51 195635.202 8318475 4623.84326 SAMIE22_10 79.6 82.6 3 51 195634.031 8318476.09 4621.92088 SAMIE22_10 82.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE22_10 85.6 88.6 3 52 195623.1219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94.6 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195625.803 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 100.5 10.4 1.9 51	SAMIE22_10	73.3	76.4	3.1	52	195636.959	8318473.37	4626.72684
SAMIE22_10 79.6 82.6 3 51 195634.031 8318476.09 4621.92088 SAMIE22_10 82.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE22_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.92 4607.54145 SAMIE22_10 100.5 102.4 1.9 <t< td=""><td>SAMIE22_10</td><td>76.4</td><td>77.6</td><td>1.2</td><td>51</td><td>195635.952</td><td>8318474.31</td><td>4625.07359</td></t<>	SAMIE22_10	76.4	77.6	1.2	51	195635.952	8318474.31	4625.07359
SAMIE22_10 82.6 85.6 3 52 195632.625 8318477.4 4619.61402 SAMIE22_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 103.6 105.2 1.6	SAMIE22_10	77.6	79.6	2	51	195635.202	8318475	4623.84326
SAMIE22_10 85.6 88.6 3 52 195631.219 8318478.7 4617.30716 SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 103.6 105.2 1.6 52 195623.769 8318485.62 4605.0808 SAMIE22_10 105.2 107.6 2.4	SAMIE22_10	79.6	82.6	3	51	195634.031	8318476.09	4621.92088
SAMIE22_10 88.6 91.6 3 52 195629.814 8318480.01 4615.0003 SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195623.769 8318484.94 4606.27268 SAMIE22_10 103.6 105.2 1.6 52 195623.769 8318485.62 4605.0808 SAMIE22_10 105.2 107.6 2.4 51 195623.713 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 <td>SAMIE22_10</td> <td>82.6</td> <td>85.6</td> <td>3</td> <td>52</td> <td>195632.625</td> <td>8318477.4</td> <td>4619.61402</td>	SAMIE22_10	82.6	85.6	3	52	195632.625	8318477.4	4619.61402
SAMIE22_10 91.6 94 2.4 51 195628.549 8318481.18 4612.92412 SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195621.497 8318487.1 4602.46636 SAMIE22_10 108.1 109.5 1.	SAMIE22_10	85.6	88.6	3	52	195631.219	8318478.7	4617.30716
SAMIE22_10 94 96.6 2.6 52 195627.377 8318482.27 4611.00174 SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 109.5 112.6 <t< td=""><td>SAMIE22_10</td><td>88.6</td><td>91.6</td><td>3</td><td>52</td><td>195629.814</td><td>8318480.01</td><td>4615.0003</td></t<>	SAMIE22_10	88.6	91.6	3	52	195629.814	8318480.01	4615.0003
SAMIE22_10 96.6 98.2 1.6 52 195626.393 8318483.18 4609.38694 SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195623.769 8318484.94 4606.27268 SAMIE22_10 103.6 105.2 1.6 52 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.1 4600.62087 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318489.12 4598.89072 SAMIE22_10 112.6 115.7	SAMIE22_10	91.6	94	2.4	51	195628.549	8318481.18	4612.92412
SAMIE22_10 98.2 99.1 0.9 50 195625.807 8318483.72 4608.42574 SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318487.1 4602.46636 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.1 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1	SAMIE22_10	94	96.6	2.6	52	195627.377	8318482.27	4611.00174
SAMIE22_10 99.1 100.5 1.4 51 195625.269 8318484.22 4607.54145 SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 118.1 119.6	SAMIE22_10	96.6	98.2	1.6	52	195626.393	8318483.18	4609.38694
SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5	SAMIE22_10	98.2	99.1	0.9	50	195625.807	8318483.72	4608.42574
SAMIE22_10 100.5 102.4 1.9 51 195624.495 8318484.94 4606.27268 SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.7 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5	SAMIE22_10	99.1	100.5	1.4	51	195625.269	8318484.22	4607.54145
SAMIE22_10 102.4 103.6 1.2 51 195623.769 8318485.62 4605.0808 SAMIE22_10 103.6 105.2 1.6 52 195623.113 8318486.23 4604.00426 SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195615.78 8318492.51 4592.89289 SAMIE22_10 119.6 120.5	SAMIE22_10	100.5		1.9	51			4606.27268
SAMIE22_10 105.2 107.6 2.4 51 195622.176 8318487.1 4602.46636 SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	102.4	103.6	1.2	51	195623.769	8318485.62	4605.0808
SAMIE22_10 107.6 108.1 0.5 51 195621.497 8318487.73 4601.35137 SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	103.6	105.2	1.6	52	195623.113	8318486.23	4604.00426
SAMIE22_10 108.1 109.5 1.4 51 195621.052 8318488.14 4600.62087 SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	105.2	107.6	2.4	51	195622.176	8318487.1	4602.46636
SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	107.6	108.1	0.5	51	195621.497	8318487.73	4601.35137
SAMIE22_10 109.5 112.6 3.1 52 195619.997 8318489.12 4598.89072 SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	108.1	109.5	1.4	51			4600.62087
SAMIE22_10 112.6 115.7 3.1 52 195618.545 8318490.47 4596.50697 SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	109.5	112.6	3.1	52		8318489.12	4598.89072
SAMIE22_10 115.7 118.1 2.4 51 195617.256 8318491.66 4594.39234 SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10	112.6		3.1	52	195618.545	8318490.47	4596.50697
SAMIE22_10 118.1 119.6 1.5 51 195616.343 8318492.51 4592.89289 SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10				51		8318491.66	4594.39234
SAMIE22_10 119.6 120.5 0.9 52 195615.78 8318493.03 4591.97014	SAMIE22_10				51			4592.89289
	SAMIE22_10	119.6	120.5	0.9	52	195615.78	8318493.03	4591.97014
	SAMIE22_10	120.5	121.4	0.9	51	195615.359	8318493.42	

		Ţ					,
SAMIE22_10	121.4	124.5	3.1	52	195614.421	8318494.29	4589.74018
SAMIE22_10	124.5	127.6	3.1	52	195612.969	8318495.64	4587.35642
SAMIE22_10	127.6	130.6	3	52	195611.54	8318496.97	4585.01111
SAMIE22_10	130.6	133.6	3	52	195610.134	8318498.27	4582.70425
SAMIE22_10	133.6	136.6	3	52	195608.728	8318499.58	4580.39739
SAMIE22_10	136.6	139.4	2.8	52	195607.37	8318500.84	4578.16743
SAMIE22_10	139.4	142.5	3.1	52	195605.987	8318502.12	4575.89901
SAMIE22_10	142.5	145.6	3.1	52	195604.535	8318503.47	4573.51526
SAMIE22_10	145.6	147.5	1.9	51	195603.363	8318504.56	4571.59288
SAMIE22_10	147.5	150.6	3.1	52	195602.192	8318505.64	4569.67049
SAMIE22_10	150.6	153.7	3.1	52	195600.739	8318506.99	4567.28674
SAMIE22_10	153.7	156	2.3	51	195599.474	8318508.17	4565.21056
SAMIE22_10	156	157.6	1.6	51	195598.561	8318509.02	4563.7111
SAMIE22_10	157.6	160.6	3	52	195597.483	8318510.02	4561.94251
SAMIE22_10	160.6	163.6	3	52	195596.077	8318511.32	4559.63565
SAMIE22_10	163.6	166.6	3	52	195594.672	8318512.63	4557.32879
SAMIE22_10	166.6	168.4	1.8	52	195593.547	8318513.67	4555.4833
SAMIE22_10	168.4	171.4	3	52	195592.422	8318514.71	4553.63781
SAMIE22_10	171.4	174.5	3.1	52	195590.993	8318516.04	4551.29251
SAMIE22_10	174.5	177.6	3.1	52	195589.541	8318517.39	4548.90875
SAMIE22_10	177.6	180.7	3.1	52	195588.088	8318518.74	4546.52499
SAMIE22_10	180.7	183.8	3.1	52	195586.636	8318520.08	4544.14124
SAMIE22_10	183.8	186.9	3.1	52	195585.183	8318521.43	4541.75748
SAMIE22_10	186.9	190	3.1	52	195583.731	8318522.78	4539.37373
SAMIE22_10	190	193.1	3.1	52	195582.278	8318524.13	4536.98997
SAMIE22_10	193.1	196.2	3.1	52	195580.826	8318525.48	4534.60622
SAMIE22_10	196.2	199.3	3.1	52	195579.373	8318526.83	4532.22246
SAMIE22_10	199.3	200.6	1.3	52	195578.342	8318527.78	4530.53076
SAMIE22_10	200.6	201.7	1.1	51	195577.78	8318528.3	4529.60802
SAMIE22_10	201.7	202.2	0.5	51	195577.405	8318528.65	4528.99286
SAMIE22_10	202.2	203.9	1.7	52	195576.89	8318529.13	4528.14701
SAMIE22_10	203.9	205.4	1.5	52	195576.14	8318529.83	4526.91668
SAMIE22_10	205.4	208.5	3.1	52	195575.062	8318530.83	4525.14809
SAMIE22_10	208.5	210.1	1.6	52	195573.961	8318531.85	4523.34105
SAMIE22_10	210.1	211.6	1.5	52	195573.235	8318532.52	4522.14917
SAMIE22_10	211.6	214.6	3	52	195572.181	8318533.5	4520.41903
SAMIE22_10	214.6	217	2.4	51	195570.915	8318534.68	4518.34285
SAMIE22_10	217	220.1	3.1	52	195569.627	8318535.87	4516.22823
SAMIE22_10	220.1	223.2	3.1	52	195568.174	8318537.22	4513.84447
SAMIE22_10	223.2	225.6	2.4	52	195566.886	8318538.42	4511.72985
SAMIE22 10	225.6	226.8	1.2	52	195566.042	8318539.2	4510.34574

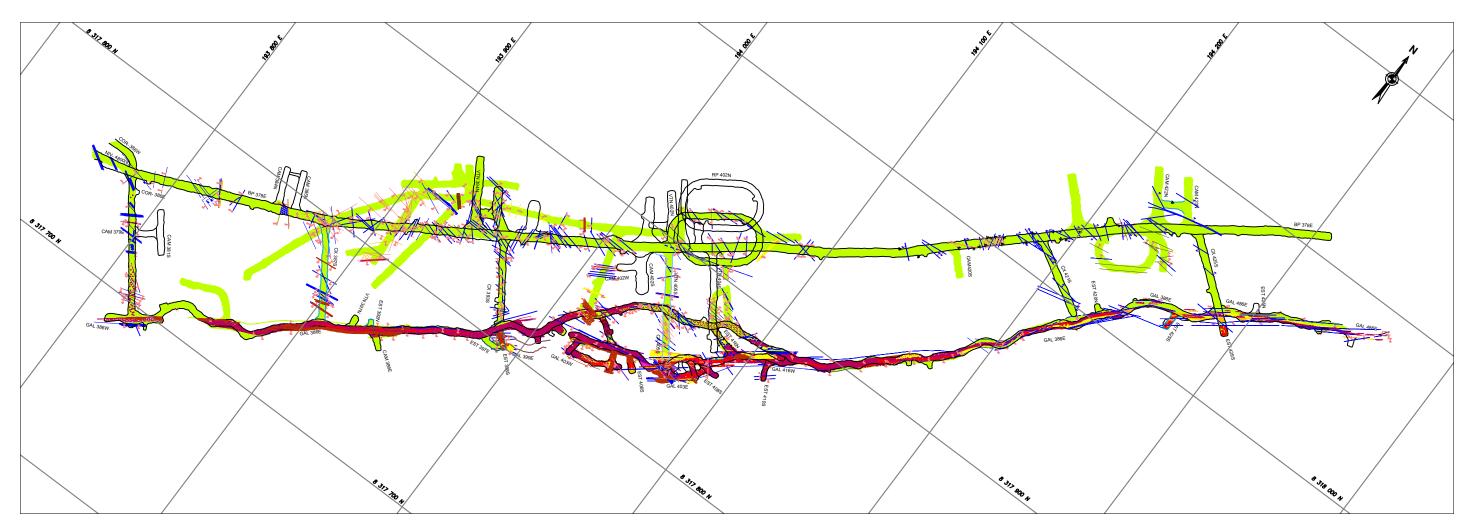
SAMIE22_10 226.8 227.7 0.9 51 195565.55 8318539.66 4509.58333 SAMIE22_10 227.7 228.5 0.8 51 195565.152 8318540.34 4508.88472 SAMIE22_10 229.8 230.6 0.8 50 195564.168 8318540.34 4507.26992 SAMIE22_10 230.6 231.5 0.9 50 195563.47 8318541.31 4506.61631 SAMIE22_10 231.5 232.4 0.9 51 195562.88 8318541.74 4505.92425 SAMIE22_10 232.5 233.9 0.4 52 195562.88 8318542.46 4504.57858 SAMIE22_10 233.5 233.9 0.4 52 195562.938 8318542.92 4503.77118 SAMIE22_10 235.6 234.6 3 52 195562.938 8318542.94 4501.57838 SAMIE22_10 235.6 234.6 3 52 195559.293 8318543.94 4501.96444 SAMIE22_10 244.6 3 <td< th=""><th></th><th>T</th><th></th><th></th><th></th><th>T</th><th></th><th>, , , , , , , , , , , , , , , , , , , ,</th></td<>		T				T		, , , , , , , , , , , , , , , , , , , ,
SAMIE22_10 228.5 229.8 1.3 52 195564.66 8318540.48 4508.07732 SAMIE22_10 229.8 230.6 0.8 50 195564.168 8318540.94 4507.26992 SAMIE22_10 230.6 231.5 0.9 50 195563.348 8318541.31 4506.61631 SAMIE22_10 233.4 233.5 1.1 51 195562.88 8318542.14 4505.1553 SAMIE22_10 233.5 233.9 0.4 52 195562.036 8318542.44 4504.57858 SAMIE22_10 233.6 233.6 1.7 52 195562.036 8318542.44 4904.5728 SAMIE22_10 233.6 241.6 3 52 195556.035 831854.94 4501.96414 SAMIE22_10 233.6 241.6 3 52 195556.035 831854.24 499.65728 SAMIE22_10 244.6 247.6 3 52 195556.124 831854.52 4499.65728 SAMIE22_10 245.6 247.6 3	SAMIE22_10	226.8	227.7	0.9	51	195565.55	8318539.66	4509.53833
SAMIE22_10 229.8 230.6 0.8 50 195564.168 8318540.94 4507.26992 SAMIE22_10 230.6 231.5 0.9 50 195563.77 8318541.31 4506.61631 SAMIE22_10 231.5 232.4 0.9 51 195562.88 8318541.47 4505.9246 SAMIE22_10 233.5 233.9 0.4 52 195562.88 8318542.46 4504.57858 SAMIE22_10 233.6 238.6 1.7 52 195562.88 8318542.92 4503.77118 SAMIE22_10 235.6 238.6 3 52 195560.93 8318543.94 4501.96418 SAMIE22_10 235.6 241.6 3 52 195559.59 8318545.52 4499.50728 SAMIE22_10 244.6 247.6 3 52 195559.50 8318542.84 4499.04578 SAMIE22_10 246.6 247.6 3 52 195559.50 8318542.94 4490.4974504 SAMIE22_10 256.6 253.6 3<	SAMIE22_10	227.7	228.5	0.8	51	195565.152	8318540.03	4508.88472
SAMIE22_10 230.6 231.5 0.9 50 195563.77 8318541.31 4506.61631 SAMIE22_10 231.5 232.4 0.9 51 195563.348 8318541.7 4505.92425 SAMIE22_10 233.5 233.9 0.4 52 195562.288 8318542.14 4505.1553 SAMIE22_10 233.9 235.6 1.7 52 195562.036 8318542.46 4504.57858 SAMIE22_10 235.6 238.6 3 52 195560.935 8318543.94 4501.9614 SAMIE22_10 238.6 241.6 3 52 195550.298 8318543.94 4501.9614 SAMIE22_10 241.6 244.6 3 52 195555.124 8318546.55 4497.37504 SAMIE22_10 241.6 247.6 3 52 195556.128 8318540.51 4495.0436 SAMIE22_10 247.6 250.6 3 52 195556.718 8318540.52 4495.0436 SAMIE22_10 250.6 253.6 3 <td>SAMIE22_10</td> <td>228.5</td> <td>229.8</td> <td>1.3</td> <td>52</td> <td>195564.66</td> <td>8318540.48</td> <td>4508.07732</td>	SAMIE22_10	228.5	229.8	1.3	52	195564.66	8318540.48	4508.07732
SAMIE22_10 231.5 232.4 0.9 51 195563.348 8318541.7 4505.92425 SAMIE22_10 232.4 233.5 1.1 51 195562.88 8318542.14 4505.1553 SAMIE22_10 233.5 233.9 0.4 52 195562.208 8318542.24 4504.7588 SAMIE22_10 233.6 233.6 1.7 52 195560.035 8318542.92 4501.76141 SAMIE22_10 238.6 241.6 3 52 195560.035 8318543.94 4501.96141 SAMIE22_10 241.6 244.6 3 52 195559.599 8318547.85 4499.6728 SAMIE22_10 244.6 247.6 3 52 195550.718 8318540.55 4497.35042 SAMIE22_10 247.6 250.6 3 52 195553.107 8318540.55 4497.35042 SAMIE22_10 256.6 253.6 3 52 195554.07 8318554.05 4490.42948 SAMIE22_10 256.6 259.4 2.8	SAMIE22_10	229.8	230.6	0.8	50	195564.168	8318540.94	4507.26992
SAMIE22_10 232.4 233.5 1.1 51 195562.88 8318542.14 4505.1553 SAMIE22_10 233.5 233.9 0.4 52 195562.528 8318542.46 4504.57858 SAMIE22_10 233.6 238.6 1.7 52 195560.935 8318542.92 4501.77118 SAMIE22_10 238.6 241.6 3 52 195559.529 8318543.94 4501.96414 SAMIE22_10 234.6 244.6 3 52 195559.529 8318545.24 4499.65728 SAMIE22_10 244.6 247.6 3 52 195555.312 8318547.85 4497.35042 SAMIE22_10 247.6 250.6 3 52 195555.312 8318547.85 4495.04356 SAMIE22_10 250.6 253.6 3 52 195555.307 8318550.46 4490.492.7367 SAMIE22_10 250.6 259.4 2.8 52 195551.402 8318551.77 4488.12294 SAMIE22_10 260.1 260.6	SAMIE22_10	230.6	231.5	0.9	50	195563.77	8318541.31	4506.61631
SAMIE22_10 233.5 233.9 0.4 52 195562.528 8318542.46 4504.57858 SAMIE22_10 233.9 235.6 1.7 52 195562.036 8318542.92 4503.77118 SAMIE22_10 235.6 238.6 3 52 195550.325 8318543.94 4501.96414 SAMIE22_10 241.6 244.6 3 52 195555.129 8318545.24 4499.575042 SAMIE22_10 244.6 247.6 3 52 195555.118 8318547.85 4499.35042 SAMIE22_10 244.6 247.6 3 52 195555.118 8318547.85 4499.35042 SAMIE22_10 250.6 253.6 3 52 195555.312 8318549.16 4492.7367 SAMIE22_10 250.6 253.6 3 52 195555.312 8318550.46 4490.42984 SAMIE22_10 256.6 259.4 2.8 52 195551.142 8318550.46 4490.42984 SAMIE22_10 260.1 260.6 <th< td=""><td>SAMIE22_10</td><td>231.5</td><td>232.4</td><td>0.9</td><td>51</td><td>195563.348</td><td>8318541.7</td><td>4505.92425</td></th<>	SAMIE22_10	231.5	232.4	0.9	51	195563.348	8318541.7	4505.92425
SAMIE22_10 233.9 235.6 1.7 52 195562.036 8318542.92 4503.77118 SAMIE22_10 235.6 238.6 3 52 195560.935 8318543.94 4501.96414 SAMIE22_10 238.6 241.6 3 52 195558.124 8318545.24 4499.65728 SAMIE22_10 244.6 247.6 3 52 195556.718 8318547.85 4495.04356 SAMIE22_10 244.6 250.6 3 52 195555.312 8318547.85 4495.04356 SAMIE22_10 250.6 253.6 3 52 195553.307 8318550.46 4492.7367 SAMIE22_10 250.6 259.4 2.8 52 195551.142 8318550.46 4490.42984 SAMIE22_10 250.6 259.4 2.8 52 195551.321 8318551.77 4488.12298 SAMIE22_10 260.1 260.1 0.7 50 19550.322 8318553.03 4484.08598 SAMIE22_10 260.5 262.4 <th< td=""><td>SAMIE22_10</td><td>232.4</td><td>233.5</td><td>1.1</td><td>51</td><td>195562.88</td><td>8318542.14</td><td>4505.1553</td></th<>	SAMIE22_10	232.4	233.5	1.1	51	195562.88	8318542.14	4505.1553
SAMIE22_10 235.6 238.6 3 52 195560.935 8318543.94 4501.96414 SAMIE22_10 238.6 241.6 3 52 19559.529 8318545.24 4499.65728 SAMIE22_10 241.6 244.6 3 52 195558.124 8318545.24 4499.65728 SAMIE22_10 244.6 247.6 3 52 195556.718 8318547.85 4495.04356 SAMIE22_10 247.6 250.6 3 52 195555.312 8318540.16 4492.7367 SAMIE22_10 250.6 253.6 3 52 195553.907 8318550.46 4490.42984 SAMIE22_10 256.6 259.4 2.8 52 195551.142 8318551.07 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195550.322 8318553.03 4485.89302 SAMIE2_10 260.1 260.6 0.5 52 195550.322 8318554.05 4484.08598 SAMIE2_10 260.1 260.6 0.5	SAMIE22_10	233.5	233.9	0.4	52	195562.528	8318542.46	4504.57858
SAMIE22_10 238.6 241.6 3 52 195559.529 8318545.24 4499.65728 SAMIE22_10 241.6 244.6 3 52 195558.124 8318546.55 4497.35042 SAMIE22_10 244.6 247.6 3 52 195556.718 8318547.85 4495.04356 SAMIE22_10 250.6 253.6 3 52 195553.907 831850.46 4492.7367 SAMIE22_10 253.6 256.6 3 52 195553.907 8318550.46 4490.42984 SAMIE22_10 255.6 259.4 2.8 52 195551.142 8318553.03 4485.89302 SAMIE22_10 256.6 259.4 2.8 52 195550.041 8318554.05 4484.8879302 SAMIE22_10 260.1 260.6 0.5 52 195550.041 8318554.55 4484.88798 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4481.31774 SAMIE22_10 265.5 268.2 <	SAMIE22_10	233.9	235.6	1.7	52	195562.036	8318542.92	4503.77118
SAMIE22_10 241.6 244.6 3 52 195558.124 8318546.55 4497.35042 SAMIE22_10 244.6 247.6 3 52 195556.718 8318547.85 4495.04356 SAMIE22_10 247.6 250.6 3 52 195555.312 8318549.16 4492.7367 SAMIE22_10 250.6 253.6 3 52 195555.312 8318550.46 4490.42984 SAMIE22_10 256.6 259.4 2.8 52 195551.142 8318553.03 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195550.321 8318553.03 4488.12298 SAMIE22_10 260.1 260.6 0.5 52 195550.041 8318553.07 4484.54735 SAMIE22_10 260.6 0.5 52 195549.502 8318554.55 4483.20168 SAMIE22_10 260.6 262.4 1.8 52 19544.54 8318556.84 4470.0878 SAMIE22_10 262.5 268.2 2.7 5	SAMIE22_10	235.6	238.6	3	52	195560.935	8318543.94	4501.96414
SAMIE22_10 244.6 247.6 3 52 195556.718 8318547.85 4495.04356 SAMIE22_10 247.6 250.6 3 52 195555.312 8318549.16 4492.7367 SAMIE22_10 250.6 253.6 3 52 195553.907 8318550.46 4490.42984 SAMIE22_10 253.6 256.6 3 52 195552.501 8318551.77 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195550.322 8318553.03 4485.89302 SAMIE22_10 260.1 260.6 0.5 52 195550.322 8318554.05 4484.08598 SAMIE22_10 260.1 260.6 0.5 52 195549.502 8318554.05 4448.08598 SAMIE22_10 266.2 262.4 1.8 52 195549.502 8318554.05 4447.08598 SAMIE22_10 266.5 268.2 2.7 52 195548.364 8318556.88 4477.39608 SAMIE22_10 268.2 269.9	SAMIE22_10	238.6	241.6	3	52	195559.529	8318545.24	4499.65728
SAMIE22_10 247.6 250.6 3 52 195555.312 8318549.16 4492.7367 SAMIE22_10 250.6 253.6 3 52 195553.907 8318550.46 4490.42984 SAMIE22_10 253.6 256.6 3 52 195552.501 8318551.77 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195550.322 8318553.03 4485.89302 SAMIE22_10 260.1 260.6 0.5 52 195550.322 8318554.05 4484.08598 SAMIE22_10 260.6 0.5 52 195549.502 8318554.05 4484.08598 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.05 4481.08598 SAMIE22_10 266.5 3.1 52 195549.502 8318554.05 44481.81774 SAMIE22_10 266.5 268.2 2.7 52 195544.354 8318556.88 4479.0878 SAMIE22_10 268.2 269.9 1.7 51 <th< td=""><td>SAMIE22_10</td><td>241.6</td><td>244.6</td><td>3</td><td>52</td><td>195558.124</td><td>8318546.55</td><td>4497.35042</td></th<>	SAMIE22_10	241.6	244.6	3	52	195558.124	8318546.55	4497.35042
SAMIE22_10 250.6 253.6 3 52 195553.907 8318550.46 4490.42984 SAMIE22_10 253.6 256.6 3 52 195552.501 8318551.77 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195551.142 8318553.03 4485.89302 SAMIE22_10 250.1 260.6 0.5 52 195550.322 8318553.79 4484.54735 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.05 4484.08598 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE22_10 265.5 268.2 2.7 52 195548.354 8318556.88 4479.08778 SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318556.18 4477.59078 SAMIE22_10 275.5 27.6	SAMIE22_10	244.6	247.6	3	52	195556.718	8318547.85	4495.04356
SAMIE22_10 253.6 256.6 3 52 195552.501 8318551.77 4488.12298 SAMIE22_10 256.6 259.4 2.8 52 195551.142 8318553.03 4485.89302 SAMIE22_10 259.4 260.1 0.7 50 195550.322 8318553.79 4484.54735 SAMIE22_10 260.1 260.6 0.5 52 195550.021 8318554.05 4484.08598 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE22_10 262.4 265.5 3.1 52 195548.354 8318555.62 4481.31774 SAMIE22_10 265.5 268.2 2.7 52 195548.354 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318556.88 4477.39608 SAMIE22_10 273 275.5 2.5 52 195543.98 8318560.1 4471.39608 SAMIE22_10 275.5 277.6	SAMIE22_10	247.6	250.6	3	52	195555.312	8318549.16	4492.7367
SAMIE2_10 256.6 259.4 2.8 52 195551.142 8318553.03 4485.89302 SAMIE2_10 259.4 260.1 0.7 50 195550.322 8318553.79 4484.54735 SAMIE2_10 260.1 260.6 0.5 52 195550.041 8318554.05 4484.08598 SAMIE2_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE2_10 262.4 265.5 3.1 52 195548.354 8318555.62 4481.31774 SAMIE2_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE2_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE2_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE2_10 275.5 277.6 2.1 52 195542.55 8318561.1 4471.62893 SAMIE2_10 280.6 283.6 3<	SAMIE22_10	250.6	253.6	3	52	195553.907	8318550.46	4490.42984
SAMIE22_10 259.4 260.1 0.7 50 195550.322 8318553.79 4484.54735 SAMIE22_10 260.1 260.6 0.5 52 195550.041 8318554.05 4484.08598 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.5059 SAMIE22_10 269.9 273 3.1 52 195544.84 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 277.6 280.6 3 52 195542.45 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3	SAMIE22_10	253.6	256.6	3	52	195552.501	8318551.77	4488.12298
SAMIE22_10 260.1 260.6 0.5 52 195550.041 8318554.05 4484.08598 SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE22_10 262.4 265.5 3.1 52 195548.354 8318555.62 4481.31774 SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195546.995 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4471.62893 SAMIE22_10 275.5 277.6 2.1 52 195541.256 8318561.1 4471.62893 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 <	SAMIE22_10	256.6	259.4	2.8	52	195551.142	8318553.03	4485.89302
SAMIE22_10 260.6 262.4 1.8 52 195549.502 8318554.55 4483.20168 SAMIE22_10 262.4 265.5 3.1 52 195548.354 831855.62 4481.31774 SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 275.5 2.76 2.1 52 195542.45 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 277.6 280.6 3 52 195542.45 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 286.6 289.6 3 </td <td>SAMIE22_10</td> <td>259.4</td> <td>260.1</td> <td>0.7</td> <td>50</td> <td>195550.322</td> <td>8318553.79</td> <td>4484.54735</td>	SAMIE22_10	259.4	260.1	0.7	50	195550.322	8318553.79	4484.54735
SAMIE22_10 262.4 265.5 3.1 52 195548.354 8318555.62 4481.31774 SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 280.6 3 52 195534.25 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 286.6 289.6 3 52 195537.039 8318561.2 4465.05438 SAMIE22_10 289.6 292.6 3 52	SAMIE22_10	260.1	260.6	0.5	52	195550.041	8318554.05	4484.08598
SAMIE22_10 265.5 268.2 2.7 52 195546.995 8318556.88 4479.08778 SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 280.6 3 52 195534.25 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195538.444 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 295.6 295.6 3 52	SAMIE22_10	260.6	262.4	1.8	52	195549.502	8318554.55	4483.20168
SAMIE22_10 268.2 269.9 1.7 51 195545.965 8318557.84 4477.39608 SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 280.6 3 52 195541.256 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 286.6 289.6 3 52 195539.85 8318566.12 4467.36124 SAMIE22_10 289.6 292.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 292.6 295.6 3 52	SAMIE22_10	262.4	265.5	3.1	52	195548.354	8318555.62	4481.31774
SAMIE22_10 269.9 273 3.1 52 195544.84 8318558.88 4475.55059 SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 277.6 280.6 3 52 195534.25 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195539.85 8318566.12 4462.74752 SAMIE22_10 286.6 289.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3	SAMIE22_10	265.5	268.2	2.7	52	195546.995	8318556.88	4479.08778
SAMIE22_10 273 275.5 2.5 52 195543.528 8318560.1 4473.39752 SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 277.6 280.6 3 52 195541.256 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195539.85 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195537.039 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195531.533 8318570.04 4455.82694 SAMIE22_10 301.1 302.7 1.6	SAMIE22_10	268.2	269.9	1.7	51	195545.965	8318557.84	4477.39608
SAMIE22_10 275.5 277.6 2.1 52 195542.45 8318561.1 4471.62893 SAMIE22_10 277.6 280.6 3 52 195541.256 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195538.444 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195530.572 8318571.23 4453.71232 SAMIE22_10 302.7 304.6 1.9 <td>SAMIE22_10</td> <td>269.9</td> <td>273</td> <td>3.1</td> <td>52</td> <td>195544.84</td> <td>8318558.88</td> <td>4475.55059</td>	SAMIE22_10	269.9	273	3.1	52	195544.84	8318558.88	4475.55059
SAMIE22_10 277.6 280.6 3 52 195541.256 8318562.21 4469.6681 SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195538.444 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 296.6 301.1 2.5 52 195531.533 8318571.23 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.12 4452.13596 SAMIE22_10 304.6 307.2 2.6<	SAMIE22_10	273	275.5	2.5	52	195543.528	8318560.1	4473.39752
SAMIE22_10 280.6 283.6 3 52 195539.85 8318563.51 4467.36124 SAMIE22_10 283.6 286.6 3 52 195538.444 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195532.821 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195531.533 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3	SAMIE22_10	275.5	277.6	2.1	52	195542.45	8318561.1	4471.62893
SAMIE22_10 283.6 286.6 3 52 195538.444 8318564.82 4465.05438 SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 <td< td=""><td>SAMIE22_10</td><td>277.6</td><td>280.6</td><td>3</td><td>52</td><td>195541.256</td><td>8318562.21</td><td>4469.6681</td></td<>	SAMIE22_10	277.6	280.6	3	52	195541.256	8318562.21	4469.6681
SAMIE22_10 286.6 289.6 3 52 195537.039 8318566.12 4462.74752 SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 <t< td=""><td>SAMIE22_10</td><td>280.6</td><td>283.6</td><td>3</td><td>52</td><td>195539.85</td><td>8318563.51</td><td>4467.36124</td></t<>	SAMIE22_10	280.6	283.6	3	52	195539.85	8318563.51	4467.36124
SAMIE22_10 289.6 292.6 3 52 195535.633 8318567.43 4460.44066 SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 31.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	283.6	286.6	3	52	195538.444	8318564.82	4465.05438
SAMIE22_10 292.6 295.6 3 52 195534.227 8318568.73 4458.1338 SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	286.6	289.6	3	52	195537.039	8318566.12	4462.74752
SAMIE22_10 295.6 298.6 3 52 195532.821 8318570.04 4455.82694 SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	289.6	292.6	3	52	195535.633	8318567.43	4460.44066
SAMIE22_10 298.6 301.1 2.5 52 195531.533 8318571.23 4453.71232 SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	292.6	295.6	3	52	195534.227	8318568.73	4458.1338
SAMIE22_10 301.1 302.7 1.6 52 195530.572 8318572.12 4452.13596 SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	295.6	298.6	3	52	195532.821	8318570.04	4455.82694
SAMIE22_10 302.7 304.6 1.9 52 195529.752 8318572.88 4450.79029 SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	298.6	301.1	2.5	52	195531.533	8318571.23	4453.71232
SAMIE22_10 304.6 307.2 2.6 52 195528.698 8318573.86 4449.06015 SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	301.1	302.7	1.6	52	195530.572	8318572.12	4452.13596
SAMIE22_10 307.2 310.3 3.1 52 195527.363 8318575.1 4446.86863 SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	302.7	304.6	1.9	52	195529.752	8318572.88	4450.79029
SAMIE22_10 310.3 313.4 3.1 52 195525.91 8318576.45 4444.48487 SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	304.6	307.2	2.6	52	195528.698	8318573.86	4449.06015
SAMIE22_10 313.4 316.5 3.1 52 195524.458 8318577.8 4442.10112	SAMIE22_10	307.2	310.3	3.1	52	195527.363	8318575.1	4446.86863
	SAMIE22_10	310.3	313.4	3.1	52	195525.91	8318576.45	4444.48487
SAMIE22_10 316.5 319.6 3.1 52 195523.005 8318579.15 4439.71736	SAMIE22_10	313.4	316.5	3.1	52	195524.458	8318577.8	4442.10112
	SAMIE22_10	316.5	319.6	3.1	52	195523.005	8318579.15	4439.71736

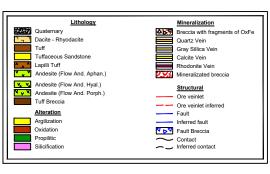
SAMIE22_10 320.4 321.9 1.5 52 195521.553 8318580.5 4437.333 SAMIE22_10 321.9 325 3.1 52 195520.475 8318581.5 4435.563 SAMIE22_10 325 327.7 2.7 52 195519.116 8318582.76 4433.333 SAMIE22_10 330.5 330.5 2.8 52 195517.828 8318583.95 4431.220 SAMIE22_10 330.5 333.6 3.1 52 195516.445 8318585.24 4428.952 SAMIE22_10 336.7 338.9 2.2 51 195513.025 8318586.58 4426.568 SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.33 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318588.95 4422.37 SAMIE22_10 343.2 343.8 0.6 49 195511.643 8318590.59 4421.07 SAMIE22_10 343.2 343.8 0.6								
SAMIE22_10 321.9 325 3.1 52_195520.475 8318581.5 4435.565 SAMIE22_10 325 327.7 2.7 52_195519.116 8318582.76 4433.333 SAMIE22_10 327.7 330.5 2.8 52_195517.828 8318583.95 4431.220 SAMIE22_10 330.5 333.6 3.1 52_195516.445 8318585.24 4428.952 SAMIE22_10 333.6 336.7 3.1 52_195514.993 8318585.24 4428.952 SAMIE22_10 336.7 338.9 2.2 51_195513.751 8318587.74 4424.530 SAMIE22_10 338.9 339.8 0.9 50_195513.025 8318588.41 4423.33 SAMIE22_10 341.4 1.6 52_195512.439 8318588.95 4422.37 SAMIE22_10 341.4 343.2 1.8 36_195511.643 8318589.69 4421.07 SAMIE22_10 343.8 344.9 1.1 51_195510.682 8318590.22 4420.14 SAMIE22_10 344.9 346	SAMIE22_10	319.6	320.4	0.8	50	195522.091	8318580	4438.2179
SAMIE22_10 325 327.7 2.7 52 195519.116 8318582.76 4433.33 SAMIE22_10 327.7 330.5 2.8 52 195517.828 8318583.95 4431.22 SAMIE22_10 330.5 333.6 3.1 52 195516.445 8318585.24 4428.95 SAMIE22_10 336.7 338.9 2.2 51 195513.751 8318587.74 4424.530 SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.33 SAMIE22_10 339.8 341.4 1.6 52 195511.025 8318588.95 4422.37 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318589.69 4421.07 SAMIE22_10 343.8 344.9 1.1 51 195511.08 8318590.22 4420.12 SAMIE22_10 344.9 346 1.1 50 195510.682 8318591.33 4418.18 SAMIE22_10 346.1 354 7.9 <th< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	_							
SAMIE22_10 327.7 330.5 2.8 52 195517.828 8318583.95 4431.220 SAMIE22_10 330.5 333.6 3.1 52 195516.445 8318585.24 4428.952 SAMIE22_10 333.6 336.7 3.1 52 195514.993 8318586.58 4426.566 SAMIE22_10 336.7 338.9 2.2 51 195513.751 8318587.74 4424.530 SAMIE22_10 339.8 341.4 1.6 52 195512.439 8318588.41 4423.333 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318589.69 4421.070 SAMIE22_10 343.8 344.9 1.1 51 195511.08 8318590.59 4420.14 SAMIE22_10 344.9 346 1.1 50 195510.682 8318590.59 4419.492 SAMIE22_10 346.1 354 7.9 37 195509.885 8318591.33 4418.186 SAMIE22_10 354 358.15 4.15								4435.56502
SAMIE22_10 330.5 333.6 3.1 52 195516.445 8318585.24 4428.95 SAMIE22_10 333.6 336.7 3.1 52 195514.993 8318586.58 4426.56 SAMIE22_10 336.7 338.9 2.2 51 195513.751 8318587.74 4424.53 SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.33 SAMIE22_10 341.4 1.6 52 195512.439 8318588.95 4422.37 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318590.99 4421.07 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.49 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346.3 346.1 0.1 52 195509.885 8318591.33 4418.146 SAMIE22_10 354.358.15 4.15 4.5 195509.885 </td <td>SAMIE22_10</td> <td></td> <td>327.7</td> <td></td> <td></td> <td>195519.116</td> <td></td> <td>4433.33505</td>	SAMIE22_10		327.7			195519.116		4433.33505
SAMIE22_10 333.6 336.7 3.1 52 195514.993 8318586.58 4426.566 SAMIE22_10 336.7 338.9 2.2 51 195513.751 8318587.74 4424.536 SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.338 SAMIE22_10 341.4 1.6 52 195512.439 8318589.69 4422.37 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318590.22 4420.12 SAMIE22_10 343.2 343.8 0.6 49 195511.0682 8318590.22 4420.12 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.49 SAMIE22_10 344.9 346 1.1 50 195510.682 8318590.59 4419.49 SAMIE22_10 346.1 346.1 0.1 52 195500.885 8318591.33 4418.186 SAMIE22_10 358.15 358.15 4.15 45	SAMIE22_10	327.7	330.5	2.8	52	195517.828	8318583.95	4431.22043
SAMIE22_10 336.7 338.9 2.2 51 195513.751 8318587.74 4424.530 SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.333 SAMIE22_10 339.8 341.4 1.6 52 195512.439 8318588.95 4422.377 SAMIE22_10 341.4 343.2 1.8 36 195511.043 8318589.69 4421.070 SAMIE22_10 343.2 343.8 0.6 49 195511.08 8318590.22 4420.12 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.493 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.116 SAMIE22_10 358.15 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 359.9 364.99 5.09 <td>SAMIE22_10</td> <td>330.5</td> <td>333.6</td> <td>3.1</td> <td>52</td> <td>195516.445</td> <td>8318585.24</td> <td>4428.95202</td>	SAMIE22_10	330.5	333.6	3.1	52	195516.445	8318585.24	4428.95202
SAMIE22_10 338.9 339.8 0.9 50 195513.025 8318588.41 4423.33 SAMIE22_10 339.8 341.4 1.6 52 195512.439 8318588.95 4422.37 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318589.69 4421.070 SAMIE22_10 343.8 344.9 1.1 51 195511.08 8318590.22 4420.14 SAMIE22_10 344.9 346 1.1 50 195510.167 8318590.59 4419.492 SAMIE22_10 346.1 346.1 0.1 52 195509.885 8318591.33 4418.648 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.116 SAMIE22_10 354.3 358.15 4.15 45 195505.188 8318596.97 4408.20 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 364.99 364.99 5.09	SAMIE22_10	333.6	336.7	3.1	52	195514.993	8318586.58	4426.56826
SAMIE22_10 339.8 341.4 1.6 52 195512.439 8318588.95 4422.37 SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318589.69 4421.070 SAMIE22_10 343.2 343.8 0.6 49 195511.08 8318590.22 4420.14 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.493 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.110 SAMIE22_10 354 358.15 4.15 45 195505.188 8318596.97 4408.20 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4405.579 SAMIE22_10 364.99 367.55 2.56	SAMIE22_10	336.7	338.9	2.2	51	195513.751	8318587.74	4424.53053
SAMIE22_10 341.4 343.2 1.8 36 195511.643 8318589.69 4421.070 SAMIE22_10 343.2 343.8 0.6 49 195511.08 8318590.22 4420.14 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.492 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.110 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 354.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 367.55 377.2 9.65 45	SAMIE22_10	338.9	339.8	0.9	50	195513.025	8318588.41	4423.33866
SAMIE22_10 343.2 343.8 0.6 49 195511.08 8318590.22 4420.14 SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.492 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.110 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4405.579 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 380.4 2.15 </td <td>SAMIE22_10</td> <td>339.8</td> <td>341.4</td> <td>1.6</td> <td>52</td> <td>195512.439</td> <td>8318588.95</td> <td>4422.37746</td>	SAMIE22_10	339.8	341.4	1.6	52	195512.439	8318588.95	4422.37746
SAMIE22_10 343.8 344.9 1.1 51 195510.682 8318590.59 4419.492 SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.110 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318605.1 4393.836 SAMIE22_10 378.25 380.4 2.1	SAMIE22_10	341.4	343.2	1.8	36	195511.643	8318589.69	4421.07024
SAMIE22_10 344.9 346 1.1 50 195510.167 8318591.06 4418.648 SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.116 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.	SAMIE22_10	343.2	343.8	0.6	49	195511.08	8318590.22	4420.1475
SAMIE22_10 346 346.1 0.1 52 195509.885 8318591.33 4418.186 SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.116 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 380.4 2.15 41 195495.044 8318605.1 4393.836 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318605.8 4392.599 SAMIE22_10 382.7 384.74	SAMIE22_10	343.8	344.9	1.1	51	195510.682	8318590.59	4419.49389
SAMIE22_10 346.1 354 7.9 37 195508.011 8318593.07 4415.110 SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.1 4393.836 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2	SAMIE22_10	344.9	346	1.1	50	195510.167	8318591.06	4418.64804
SAMIE22_10 354 358.15 4.15 45 195505.188 8318595.69 4410.477 SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 1.05 22 195495.044 8318605.1 4393.830 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 <	SAMIE22_10	346	346.1	0.1	52	195509.885	8318591.33	4418.18667
SAMIE22_10 358.15 359.9 1.75 48 195503.806 8318596.97 4408.20 SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318608.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9	SAMIE22_10	346.1	354	7.9	37	195508.011	8318593.07	4415.11085
SAMIE22_10 359.9 364.99 5.09 48 195502.203 8318598.46 4405.579 SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 378.25 1.05 22 195495.044 8318605.1 4393.836 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.7 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 385.7 54 <t< td=""><td>SAMIE22_10</td><td>354</td><td>358.15</td><td>4.15</td><td>45</td><td>195505.188</td><td>8318595.69</td><td>4410.47791</td></t<>	SAMIE22_10	354	358.15	4.15	45	195505.188	8318595.69	4410.47791
SAMIE22_10 364.99 367.55 2.56 40 195500.411 8318600.12 4402.638 SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 377.2 378.25 1.05 22 195495.044 8318605.1 4393.830 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.851	SAMIE22_10	358.15	359.9	1.75	48	195503.806	8318596.97	4408.2095
SAMIE22_10 367.55 377.2 9.65 45 195497.551 8318602.77 4397.943 SAMIE22_10 377.2 378.25 1.05 22 195495.044 8318605.1 4393.830 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	359.9	364.99	5.09	48	195502.203	8318598.46	4405.57968
SAMIE22_10 377.2 378.25 1.05 22 195495.044 8318605.1 4393.830 SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	364.99	367.55	2.56	40	195500.411	8318600.12	4402.63843
SAMIE22_10 378.25 380.4 2.15 41 195494.294 8318605.8 4392.599 SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	367.55	377.2	9.65	45	195497.551	8318602.77	4397.94397
SAMIE22_10 380.4 382.7 2.3 45 195493.251 8318606.77 4390.888 SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	377.2	378.25	1.05	22	195495.044	8318605.1	4393.83007
SAMIE22_10 382.7 384.74 2.04 49 195492.235 8318607.71 4389.220 SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	378.25	380.4	2.15	41	195494.294	8318605.8	4392.59974
SAMIE22_10 384.74 385.2 0.46 51 195491.649 8318608.25 4388.2 SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	380.4	382.7	2.3	45	195493.251	8318606.77	4390.88882
SAMIE22_10 385.2 385.7 0.5 10 195491.424 8318608.46 4387.88 SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.85	SAMIE22_10	382.7	384.74	2.04	49	195492.235	8318607.71	4389.22019
SAMIE22_10 385.7 387.9 2.2 54 195490.792 8318609.05 4386.853	SAMIE22_10	384.74	385.2	0.46	51	195491.649	8318608.25	4388.259
	SAMIE22_10	385.2	385.7	0.5	10	195491.424	8318608.46	4387.8899
SAMIE22_10 387.9 389.2 1.3 54 195489.972 8318609.81 4385.506	SAMIE22_10	385.7	387.9	2.2	54	195490.792	8318609.05	4386.85182
	SAMIE22_10	387.9	389.2	1.3	54	195489.972	8318609.81	4385.50615
SAMIE22_10 389.2 394.6 5.4 50 195488.402 8318611.27 4382.930	SAMIE22_10	389.2	394.6	5.4	50	195488.402	8318611.27	4382.93015
SAMIE22_10 394.6 396.6 2 50 195486.668 8318612.88 4380.085	SAMIE22_10	394.6	396.6	2	50	195486.668	8318612.88	4380.08503
SAMIE22_10 396.6 400.6 4 50 195485.263 8318614.18 4377.778	SAMIE22_10	396.6	400.6	4	50	195485.263	8318614.18	4377.77817
SAMIE22_10 400.6 401.6 1 52 195484.091 8318615.27 4375.855	SAMIE22_10	400.6	401.6	1	52	195484.091	8318615.27	4375.85578
SAMIE22_10 401.6 404.6 3 50 195483.154 8318616.14 4374.317	SAMIE22_10	401.6	404.6	3	50	195483.154	8318616.14	4374.31787
SAMIE22_10 404.6 405.9 1.3 49 195482.147 8318617.07 4372.664	SAMIE22_10	404.6	405.9	1.3	49	195482.147	8318617.07	4372.66463
								4371.04982
								4365.16733
								4360.09224
								4353.37927
								4346.72783

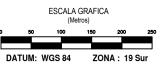
	T T						I
SAMIE22_10	443.5	444.5	1	50	195463.99	8318633.93	4342.86768
SAMIE22_10	444.5	447.75	3.25	50	195462.994	8318634.85	4341.23365
SAMIE22_10	447.75	449.8	2.05	46	195461.752	8318636	4339.19593
SAMIE22_10	449.8	450.7	0.9	10	195461.061	8318636.64	4338.06172
SAMIE22_10	450.7	453.3	2.6	44	195460.241	8318637.41	4336.71605
SAMIE22_10	453.3	456.1	2.8	44	195458.976	8318638.58	4334.63988
SAMIE22_10	456.1	461.7	5.6	46	195457.008	8318640.41	4331.41027
SAMIE22_10	461.7	463.3	1.6	43	195455.321	8318641.97	4328.64204
SAMIE22_10	463.3	465.9	2.6	43	195454.337	8318642.89	4327.02724
SAMIE22_10	465.9	470.45	4.55	53	195452.662	8318644.44	4324.27823
SAMIE22_10	470.45	474.3	3.85	48	195450.694	8318646.27	4321.04863
SAMIE22_10	474.3	476.5	2.2	53	195449.277	8318647.58	4318.72254
SAMIE22_10	476.5	482.4	5.9	58	195447.379	8318649.34	4315.60828
SAMIE22_10	482.4	489.2	6.8	53	195444.404	8318652.11	4310.72543
SAMIE22_10	489.2	494.6	5.4	58	195441.546	8318654.76	4306.03481
LD_17_10	0	26.46	26.46	65	195088.901	8318625.45	4656.61233
LD_17_10	26.46	42.34	15.88	55	195107.945	8318616.57	4659.19231
LD_17_10	42.34	51.66	9.32	65	195119.279	8318611.28	4660.72786
LD_17_10	51.66	51.98	0.32	35	195123.615	8318609.26	4661.31527
LD_17_10	51.98	52.35	0.37	25	195123.925	8318609.12	4661.35731
LD_17_10	52.35	54.57	2.22	45	195125.09	8318608.58	4661.51514
LD_17_10	54.57	57.64	3.07	55	195127.469	8318607.47	4661.83748
LD_17_10	57.64	59.4	1.76	45	195129.642	8318606.45	4662.13179
LD_17_10	59.4	62.24	2.84	55	195131.711	8318605.49	4662.41209
LD_17_10	62.24	62.61	0.37	45	195133.155	8318604.81	4662.60769
LD_17_10	62.61	63.14	0.53	35	195133.559	8318604.63	4662.66253
LD_17_10	63.14	63.46	0.32	45	195133.942	8318604.45	4662.71433
LD_17_10	63.46	64.31	0.85	55	195134.468	8318604.2	4662.78562
LD_17_11	0	2	2	65	193946.372	8317574.08	4585.87813
LD_17_11	2	5	3	55	193947.301	8317571.78	4585.57346
LD_17_11	5	9	4	45	193948.603	8317568.56	4585.14691
LD_17_11	9	10.5	1.5	35	193949.625	8317566.03	4584.81177
LD_17_11	10.5	10.8	0.3	25	193949.96	8317565.2	4584.70209
LD_17_11	10.8	11.6	0.8	35	193950.164	8317564.69	4584.63506
LD_17_11	11.6	12.8	1.2	45	193950.536	8317563.77	4584.51319
LD_17_11	12.8	16.94	4.14	35	193951.529	8317561.32	4584.1878
LD_17_11	16.94	17.44	0.5	25	193952.391	8317559.18	4583.90507
LD_17_11	17.44	18.44	1	35	193952.67	8317558.49	4583.81366
LD_17_11	18.44	19.94	1.5	25	193953.135	8317557.34	4583.66133
LD_17_11	19.94	20.64	0.7	45	193953.544	8317556.33	4583.52727
LD_17_11	20.64	22.64	2	55	193954.046	8317555.09	4583.36275
					•		

							1
LD_17_12	0	2	2	65	193959.375	8317574.07	4586
LD_17_12	2	4	2	55	193960.124	8317572.22	4586
LD_17_12	4	9	5	45	193961.435	8317568.97	4586
LD_17_12	9	10.3	1.3	35	193962.615	8317566.05	4586
LD_17_12	10.3	10.35	0.05	25	193962.868	8317565.43	4586
LD_17_12	10.35	11.15	0.8	35	193963.027	8317565.03	4586
LD_17_12	11.15	12.85	1.7	45	193963.495	8317563.87	4586
LD_17_12	12.85	13.71	0.86	35	193963.975	8317562.69	4586
LD_17_12	13.71	14.71	1	25	193964.323	8317561.82	4586
LD_17_12	14.71	15.21	0.5	35	193964.604	8317561.13	4586
LD_17_12	15.21	18.71	3.5	45	193965.353	8317559.27	4586
LD_17_12	18.71	21.71	3	55	193966.571	8317556.26	4586
LD_17_13	0	0.8	0.8	65	193935.15	8317566.63	4586
LD_17_13	0.8	2.8	2	55	193935.674	8317565.33	4586
LD_17_13	2.8	5.8	3	45	193936.611	8317563.01	4586
LD_17_13	5.8	5.9	0.1	25	193937.191	8317561.58	4586
LD_17_13	5.9	7.9	2	35	193937.585	8317560.6	4586
LD_17_13	7.9	9.4	1.5	25	193938.24	8317558.98	4586
LD_17_13	9.4	11.7	2.3	35	193938.952	8317557.22	4586
LD_17_13	11.7	12.2	0.5	25	193939.477	8317555.92	4586
LD_17_13	12.2	13.2	1	35	193939.758	8317555.22	4586
LD_17_13	13.2	13.4	0.2	25	193939.982	8317554.67	4586
LD_17_13	13.4	15.4	2	35	193940.394	8317553.65	4586
LD_17_13	15.4	15.45	0.05	25	193940.778	8317552.7	4586
LD_17_13	15.45	20.35	4.9	45	193941.705	8317550.4	4586
LD_17_13	20.35	22.35	2	55	193942.998	8317547.2	4586
LD_17_13	22.35	23.85	1.5	65	193943.653	8317545.58	4586
LD_17_14	0	2	2	65	195708	8318935	4514
LD_17_14	2	3.5	1.5	45	195708	8318933.25	4514
LD_17_14	3.5	4.3	0.8	35	195708	8318932.1	4514
LD_17_14	4.3	6.35	2.05	65	195708	8318930.68	4514
LD_17_14	6.35	7.35	1	35	195708	8318929.15	4514
LD_17_14	7.35	8.85	1.5	45	195708	8318927.9	4514
LD_17_14	8.85	9.25	0.4	35	195708	8318926.95	4514
LD_17_14	9.25	9.4	0.15	25	195708	8318926.68	4514
LD_17_14	9.4	14.4	5	45	195708	8318924.1	4514
LD_17_14	14.4	16.4	2	65	195708	8318920.6	4514
LD_17_15	0	11	11	55	195711.821	8318922.04	4509
LD_17_15	11	12.36	1.36	45	195716.114	8318917.6	4509
LD_17_15	12.36	13.16	0.8	55	195716.864	8318916.82	4509
LD_17_15	13.16	18.16	5	65	195718.878		4509
-							

					•		
LD_17_15	18.16	19.12	0.96	55	195720.948	8318912.59	4509
LD_17_15	19.12	19.52	0.4	45	195721.421	8318912.1	4509
LD_17_15	19.52	23.18	3.66	55	195722.831	8318910.64	4509
EG_19_13	78.5	89.5	11	48	194704.24	8317726.87	4361.7268
EG_19_14	0	7	7	53	195175.855	8318622.69	4566.80733
EG_19_14	7	12	5	34	195178.268	8318617.26	4567.69419
EG_19_14	12	39	27	53	195184.705	8318602.81	4570.05914
EG_19_14	39	43	4	25	195190.94	8318588.8	4572.35019
EG_19_14	43	49	6	35	195192.951	8318584.29	4573.08923
EG_19_14	49	57.5	8.5	25	195195.868	8318577.74	4574.16085
EG_19_14	57.5	60.5	3	24	195198.181	8318572.54	4575.01076
EG_19_14	60.5	64.5	4	16	195199.589	8318569.38	4575.52809
EG_19_14	64.5	66	1.5	32	195200.695	8318566.89	4575.93456
EG_19_15	0	2.5	2.5	41	195234.296	8318632.7	4572.43724
EG_19_15	2.5	12.5	10	38	195229.171	8318636.15	4571.51343
EG_19_15	12.5	20.5	8	40	195221.792	8318641.13	4570.18314
EG_19_15	20.5	66.5	46	54	195199.654	8318656.06	4566.19229
EG_19_16	0	26	26	48	195499.159	8318720.88	4539.02528
EG_19_16	26	52	26	48	195483.197	8318700.45	4537.07583
EG_19_16	52	91	39	38	195463.244	8318674.92	4534.63902
EG_19_17	0	5	5	57	195563.984	8318815.4	4528.37815
EG_22_01	0	4.79	4.79	62	194746.876	8317886.89	4231
EG_22_02	0	4.75	4.75	57	194748.672	8317891.03	4232
EG_22_03	0	7.46	7.46	61	194753.143	8317895.6	4233
EG_22_04	0	18.38	18.38	51	194764.089	8317918.99	4234
EG_22_05	0	13.25	13.25	53	194757.155	8317932.52	4236
EG_22_06	0	2.32	2.32	66	194763.985	8317930.44	4236
EG_22_07	0	2.08	2.08	48	194762.449	8317928.12	4236
EG_22_10	0	5.48	5.48	66	194821.366	8317935.76	4242
EG_22_11	0	9.31	9.31	44	195497.382	8318916.07	4460
EG_22_12	0	22.36	22.36	33	195497.312	8318934.04	4460
EG_22_13	0	8.62	8.62	40	195518.043	8318948.84	4460
EG_22_14	0	1.87	1.87	40	195523.199	8318953.48	4460
EG_22_15	0	5.97	5.97	51	195502.537	8318939.56	4460
EG_22_16	0	0.9	0.9	63	194906.248	8318073.48	4416.04
EG_22_17	0	7.53	7.53	52	194903.762	8318070.29	4416.02
EG_22_18	0	6.54	6.54	56	194909.096	8318075.41	4416.22
EG_22_19	0	6.08	6.08	56	194879.846		4420.9015
EG_22_19a	0	5.03	5.03	56	194877.245	8318098.52	4421.8929
EG_22_20	0	2.42	2.42	62	194841.498	8318094.59	4427.4402
<u>-</u>	3						


Anexo 7: Resultados de laboratorio


	RESUME	N DE RESULTAD	OOS: ENSAYOS I	DE MECÁNIC.	A DE RO	CAS EN	LABOR	ATORI	O _ GL	SA _ MI	NA BATEA	.S*
PROYECTO	ENSAYO	PROPIEDADES FÍSICAS	COMPRESIÓN UNIAXIAL	CARGA PUNTUAL	COF DIRE			IPRESIO			TANTES STICAS	TRACCIÓN INDIRECTA
PRO	NORMA	ASTM-2216-02	ASTM-D2938	ASTM- D5731	ASTM-		AST	M-2664	-95	ASTN	И-D3148	ASTM- D3967
	PROPIEDADES	√(KN/m3)	σ (Mpa)	σ (Mpa)	c (Mpa)	f(°)	c (Mpa)	f(°)	mi	E (Gpa)	v (poisson)	σt(Mpa)
	CÓDIGO				В	LOQUE	ES					
	M-01	23.10	91.63	-	-	-	98.67	58.64	35.49	32.17	0.12	-
\vdash	M-02	25.33	101.22	-	-	-	98.00	58.10	34.85	26.88	0.12	-
-220468/LMR/iTEST	M-03	25.56	58.14	-	-	-	116.62	57.79	31.33	31.96	0.17	-
/iT	M-04	26.92	236.26	-	-	ı	203.48	59.12	30.51	37.02	0.13	-
A	M-05	25.73	30.50	-	-	ı	43.23	53.15	31.10	25.51	0.14	-
F	M-06	25.62	69.32	-	-	ı	115.89	53.03	20.80	29.80	0.13	-
168	M-07	31.28	162.89	-	-	ı	162.27	51.18	16.51	38.14	0.12	-
707	M-08	24.82	84.83	-	-	-	93.53	56.53	30.51	15.31	0.15	-
7-2	M-09	25.14	78.67	-	-	ı	65.00	53.96	26.45	26.24	0.13	-
GLSA 2022	M-10	26.95	158.89	-	-	-	129.13	55.63	25.08	40.05	0.15	-
					S	ONDAJI	ES					
S	ANIS 046817 M-01	26.33	110.88		-	-	-	-	-	-	-	-
EA	ANIM 089921 M-02	-	45.65	-	-	-	-	-	-	-	-	-
 	ANIS 052517 M-03	26.24	105.92	-	-	-	-	-	-	-	-	-
MINERA BATEAS	ANIM 090121 M-04	25.80	47.85	-	-	-	-	-	-	-	-	-
RA	ANIM 082221 M-05	25.03	109.18		-	-	-	-	-	-	-	-
	ANIM 082221 M-05	-	104.41	-	-	-	-	-	-	-	-	-
	ANIM 086321 M-06	25.33	29.14		-	-	-	-	-	-	-	-
	ANIM 090722 M-07	25.56	112.12	-	-	-	-	-	-	-	-	-
	ANIM 090922 M-08	25.76	159.59	-	-	-	-	-	-	-	-	-
	ANIM 090922 M-08	-	136.00	-	-	-	-	-	-	ı	-	-


N°123/LM R/UNI 2021		BLOQUES										
	BP480	25.71	42.80	58.30	-	-	53.21	46.86	15.80	6.02	0.31	-
	BYPASS 480E	25.89	94.80	115.70	-	-	107.19	51.77	19.06	10.11	0.28	-
	CA490S	26.04	150.10	135.70	-	-	141.11	56.19	25.70	14.22	0.26	-
GLSA-190024- 190026/LMR/iTEST 2019	VTN 565-NV10	33.83	239.71	233.49	-	-	33.50	58.39	27.51	43.70	0.16	26.28
	VTN 527-NV12	30.76	155.87	163.92	-	-	24.83	53.01	26.26	34.73	0.18	15.51
	M01	-	48.20	-	-	-	-	-	-	-	-	-
	M02	-	88.40	-	-	-	-	-	-	-	-	-
	M03	-	262.48	-	-	-	ı	-	-	ı	-	-
	M04	-	271.16	-	-	-	ı	-	-	ı	-	-
	C-CT	25.27	28.71	33.15	-	-	13.25	38.47	19.80	10.96	0.24	-
	N-CT	24.79	30.42	42.27	-	-	14.61	34.39	11.31	11.26	0.24	-
	N-CP	24.44	56.02	46.37	-	-	15.37	34.92	11.10	13.31	0.23	-
	A-CT	-	108.69	-	-	-	ı	-	-	24.27	0.21	-
	A-CP	25.65	99.39	68.60	-	-	20.69	32.25	7.08	23.04	0.21	-
	C-MIN	-	54.83	-	-	-	-	-	-	-	-	-
	N-MIN	-	45.11	-	-	-	-	-	-	-	-	-
GLSA/ UNI 2017	N1-R	25.75	84.90	-	92.00	29.58	12.31	54.23	25.66	10.15	0.27	10.80
	N2-N1	32.30	140.50	-	107.00	29.72	23.02	57.13	26.72	30.69	0.19	10.10
	N3-J	24.60	-	-	-	-	13.23	52.50	23.07	16.98	0.24	-
	N4-S	24.79	133.70	-	-	-	-	-	-	17.52	0.22	-
	N5-CT	30.97	157.10	-	-	-	20.28	58.83	31.83	33.28	0.17	8.20
	N6-CP	27.17	-	126.00	-	-	13.30	51.91	22.52	13.58	0.25	-
	N7-N	26.06	156.70	-	-	-	21.54	58.23	29.82	26.38	0.20	15.00
	N8-CP	26.02	-	215.20	-	-	21.51	55.63	25.15	-	-	-
	N9-J	25.74	-	160.20	-	-	8.97	48.81	19.53	-	-	-
	N10-T	25.13	-	51.40	-	-	-	-	-	6.73	0.31	-
	N11-L	25.93	-	135.30	-	-	-	-	-	24.41	0.22	-
	N12-NP	25.34	-	181.20	-	-	-	-	-	18.77	0.24	-
	N13-CT	26.32	-	148.30	-	-	-	-	-	24.38	0.21	-
	N14-R	25.18	-	121.20	-	-	16.96	53.15	22.55	15.30	0.27	-

Nota: * Resultados de ensayos realizados en el Laboratorio de Mecánica de Rocas "UNI/GLSA".

PLANO GEOLÓGICO - ESTRUCTURAL

Demonterante de Coelenía	PROY.:		MINERA BATEAS S.A.C.		ESC.:	1:2000
Departamento de Geología	TOP.:	Planeamiento	- 1VIII VET IV (B) (1 E) (3 S S S S S S S S S S S S S S S S S S			Julio 2021
	GEOL.:	Dpt. Geologia	Unidad Caylloma: VETA ANIMAS - ANIMAS NE		FECHA: SUBCOD	
Minera	DIB.:	Modelamiento	SECCION LONGITUDINAL			.:
Bateas Compania de Fortuna Silver Mines Inc.	REV.:	M. Flores Z.		_		l 01
Compania de Fortuna Silver Mines inc.	APRO.:	J. Quispe A.		AÑO 2022		

Anexo 8: Base de datos parcial de las estructuras (Diaclasas y Fallas)

DATA ESTRUCTURAL DIACLASAS							
	DIP	Dip Direction	TIPO	OBSERVACIÓN			
Nv 6	84	195	D	CAJA PISO			
Nv 6	44	166	D	CAJA PISO			
Nv 6	74	278	D	CAJA PISO			
Nv 6	72	224	D	CAJA PISO			
Nv 6	80	133	D	CAJA PISO			
Nv 6	42	211	D	CAJA PISO			
Nv 6	87	128	D	CAJA PISO			
Nv 6	28	294	D	CAJA PISO			
Nv 6	39	164	D	CAJA PISO			
Nv 6	46	172	D	CAJA PISO			
Nv 6	36	255	D	CAJA PISO			
Nv 6	38	164	D	CAJA PISO			
Nv 6	60	263	D	CAJA PISO			
Nv 6	78	196	D	CAJA PISO			
Nv 6	75	196	D	CAJA PISO			
Nv 6	75	358	D	CAJA PISO			
Nv 6	73	358	D	CAJA PISO			
Nv 6	76	091	D	CAJA PISO			
Nv 6	88	221	D	CAJA PISO			
Nv 6	60	036	D	CAJA PISO			
Nv 6	60	036	D	CAJA PISO			
Nv 6	35	215	D	CAJA PISO			
Nv 6	68	212	D	CAJA PISO			
Nv 6	70	212	D	CAJA PISO			
Nv 6	74	259	D	CAJA PISO			
Nv 6	64	031	D	CAJA PISO			
Nv 6	55	245	D	CAJA PISO			
Nv 6	52	162	D	CAJA PISO			
Nv 6	48	156	D	CAJA PISO			
Nv 6	40	154	D	CAJA PISO			
Nv 6	54	165	D	CAJA PISO			
Nv 6	60	165	D	CAJA PISO			
Nv 6	36	172	D	CAJA PISO			
Nv 6	75	204	D	CAJA PISO			
Nv 6	70	204	D	CAJA PISO			
Nv 6	45	175	D	CAJA PISO			
Nv 6	56	176	D	CAJA PISO			

DATA ESTRUCTURAL FALLAS								
DIP	Dip Direction	TIPO	OBSERVACIÓN					
43	285	F	CAJA PISO					
64	239	F	CAJA PISO					
49	246	F	CAJA PISO					
48	246	F	CAJA PISO					
70	202	F	CAJA PISO					
68	015	F	CAJA PISO					
55	236	F	CAJA PISO					
70	015	F	CAJA PISO					
81	106	F	CAJA PISO					
41	239	F	CAJA PISO					
65	263	F	CAJA PISO					
68	282	F	CAJA PISO					
62	263	F	CAJA PISO					
45	248	F	CAJA PISO					
25	248	F	CAJA PISO					
58	232	F	CAJA PISO					
65	232	F	CAJA PISO					
80	327	F	CAJA PISO					
64	028	F	CAJA PISO					
30	257	F	CAJA PISO					
72	215	F	CAJA PISO					
75	135	F	CAJA PISO					
81	221	F	CAJA PISO					
52	351	F	CAJA PISO					
85	182	F	CAJA PISO					
60	229	F	CAJA PISO					
42	229	F	CAJA PISO					
64	122	F	CAJA PISO					
25	185	F	CAJA PISO					
28	218	F	CAJA PISO					
44	218	F	CAJA PISO					
40	208	F	CAJA PISO					
26	208	F	CAJA PISO					
36	271	F	CAJA PISO					
46	271	F	CAJA PISO					
43	271	F	CAJA PISO					