Adaptación de técnicas de aprendizaje profundo para la restauración digital veloz de pinturas sin registros fotográficos
View/ Open
Date
2024Author
Cavero Manzanares, Guadalupe Verenise
Loayza Condor, Catherine Lizbed
Metadata
Show full item recordAbstract
La tarea de la restauración digital de imágenes (Inpainting) supone una tarea fundamental dentro del campo de la visión computacional. En este trabajo se proponen adaptaciones a técnicas de aprendizaje profundo para la restauración digital de imágenes teniendo como objetivo mejorar la velocidad de ejecución. Luego de considerar un conjunto de técnicas, a partir de los criterios de ejecutabilidad, adaptabilidad, uniformidad y comparabilidad se seleccionan LaMa y EdgeConnect para su posterior adaptación. En la experimentación, se utiliza una base de datos de pinturas clásicas, cada una de las cuales es sometida a una distorsión uniforme y subsiguiente restauración con las técnicas seleccionadas y todas sus adaptaciones propuestas. Finalmente, de acuerdo con el análisis experimental a partir de los datos estadísticos obtenidos, la razón entre la diferencia de tiempo y la diferencia de calidad es de al menos 0.06 (6%), con lo cual hay una mejora del tiempo con relación a la pérdida de calidad. Esta mejora es constante en las técnicas finales seleccionadas, contribuyendo al avance de las aplicaciones de visión por computadora en restauración digital y su posterior uso en la restauración tradicional de pinturas sin registro fotográfico.
Collections
- Tesis [97]