UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERÍA GEOLÓGICA, MINAS Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

"PROPUESTA DE DISEÑO DE PERFORACIÓN Y VOLADURA PARA OPTIMIZAR LOS COSTOS EN LA CONSTRUCCIÓN DEL BY PASS 260 NV-1470 EN LA UNIDAD MINERA LA SOLEDAD S.A.C – CHALHUANE - AREQUIPA"

PRESENTADO POR:

BR. KEVYN CRUZ MAMANI

PARA OPTAR AL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

ASESOR:

ING. JUAN FRANCISCO MELENDEZ NINA

CUSCO - PERU

2019

DEDICATORIA

A Dios.

Por tener unidad a mi familia, por darme la fe la fortaleza, la salud y la sabiduría que fueron totalmente indispensable para lograr mí objetivo.

A mis padres.

Clemente y vicentina, son el mejor ejemplo gracias por la vida y por todo a mis hermanas Yovana, Karina y mi cuñado Octavio. Quienes en todo momento son mi fuente de esmero y superación, las misma que han hecho posible el logro de un nuevo objetivo en mi vida.

A mis tíos.

Avelino, Placido y Pedro por estar orgulloso de mi, y por apoyo incondicional

AGRADECIMIENTO

A Dios.

A mis Padres y Hermanos.

A quienes les debo mi vida, les agradezco por su cariño, compresión, paciencia e infinito apoyo

que me han brindado a lo largo de toda esta etapa para culminar mi carrera profesional.

A la Universidad Nacional de San Antonio Abad del cusco.

Especialmente a la Escuela Profesional de Ingeniería de Minas de quien estaré eternamente

agradecido por formado profesionalmente y ser un pilar de conocimiento y sabiduría en el

desarrollo de mi carrera.

A mis Maestros.

Gracias por su tiempo, por su apoyo, así como por la sabiduría que me transmitieron en el

desarrollo de mi formación profesional.

A la Empresa Minera la Soledad S.A.C.

Por brindarme una oportunidad grandiosa para forjar este camino, en especial al Ing. Juan

Moran Quispe y Ing. Carlos Loza Fernández, grandes profesionales quienes me brindaron la

oportunidad de realizar mi tesis y por su apoyo incondicional durante este periodo.

Kevyn Cruz Mamani

III

INTRODUCCIÓN

El presente trabajo de investigación con denominación "Propuesta de diseño de perforación y voladura para optimizar los costos en la construcción del Bypass 260 NV 1470 en la unidad minería la Soledad S.A.C – Challhuane - Arequipa", mediante el cual seguido se demostrara que un diseño adecuado de perforación y voladura, determinado una carga explosiva adecuada para situación o condición del macizo rocoso reducirá los costos, mejorar la eficiencia de la voladura en cuanto a los avances lineales.

Para mejor estructuración del trabajo, se ha divido en los siguientes capítulos.

En el capítulo I, Problemática de la investigación, se identifica el problema, se formula los problemas, objetivos se justifica el estudio, se plantea las hipótesis y las variables del estudio a analizar.

En el capítulo II, se hace mención los aspectos generales de ámbito del estudio, descripción de geología y operación mina

En el capítulo III, trata del marco teórico conceptual de la investigación, donde se aprecia primero los antecedentes y luego la información teórica relevante sobre las variables de estudio.

En el capítulo IV, parámetros actuales de diseño de perforación y voladura y costos en la construcción del bypass 260

En el capítulo V, propuesta de diseño de perforación y voladura para optimizar los costos en la construcción del Bypass 260 y análisis de resultados

Al final se complementa con la conclusión, recomendaciones, referencia bibliográfica y los respectivos anexos del presente trabajo de investigación.

RESUMEN

La presente tesis de investigación "Propuesta de diseño de perforación y voladura para optimizar los costos en la construcción del By pass 260 NV – 1470 en la Unidad Minera la Soledad S.A.C – Chalhuane – Arequipa", tiene como objetivo establecer el diseño más óptimo en las operaciones de perforación y voladura para optimizar los costos en la ejecución de By pass 260.

Se tiene que los costos unitarios de perforación y voladura son muy elevados por tener una inadecuada diseño de perforación y voladura, que no se ajusta a las características del macizo rocoso, por ello se utiliza demasiada carga explosiva en los taladros, teniendo como consecuencia mala fragmentación.

Para obtener los resultados óptimos se realizó los cálculos de perforación y voladura con diferentes diseños de malla de perforación, llegando a los siguientes resultados antes se ha utilizado 39 taladros de longitud de 6 pies , arranque quemado de 5 alivios como un consumo de explosivo de 21.07 kg/disparo y un avance lineal de 1.44 m, con costo de 399.83 US\$/disparo y actualmente se utiliza 33 taladros con arranque cilindro 4 alivios con un consumo de explosivo de 17.27 kg/disparo y un avance lineal de 1.55 m, con un costo de 348.52 US\$/disparo.

ÍNDICE GENERAL

DEDICATORIA	II
AGRADECIMIENTO	III
INTRODUCCIÓN	IV
RESUMEN	V
CAPITULO I	1
ASPECTOS DE LA INVESTIGACIÓN	1
1.1. Planteamiento del Problema	1
1.2. Formulación del problema	2
1.2.1. Problema general	2
1.2.2. Problemas específicos	2
1.3. Objetivos de la investigación	2
1.3.1. Objetivo general	2
1.3.2. Objetivos específicos	2
1.4. Justificación	3
1.5. Hipótesis	3
1.5.1. Hipótesis general	3
1.5.2. Hipótesis específicas	3
1.6. Variables e indicadores	4
1.7. Metodología	5
1.7.1. Tipo de Investigación	5
1.7.2. Población y Muestra	5
1.7.2.1. Población	5
1.7.2.2. Muestra	5
1.7.3. Recolección de Datos	5
1.7.3.1. Técnicas	5

1.7.3.2. Instrumento	6
1.7.4. Procesamiento y Análisis de Resultado	6
CAPITULO II	7
INFORMACIÓN DEL ÁREA DE ESTUDIO	7
2.1. Generalidades	7
2.1.1. Ubicación geográfica	7
2.1.2. Accesibilidad	8
2.1.3. Clima	8
2.1.4. Recursos Naturales	9
2.2. Marco Geológico y Mineralización	9
2.2.1. Geología Regional	9
2.2.2. Geología local	12
2.2.3. Geología Económica	13
2.2.3.1. Control de mineralización	14
2.2.3.2. Alteración hidrotermal	14
2.2.3.3. Reserva de Mineral	15
2.3. Operaciones mina	15
2.3.1. Capacidad de Producción	15
2.3.2. Métodos de explotación	16
2.3.3. Ciclo de minado	17
2.3.3.1. Perforación	17
2.3.3.2. Voladura	18
2.3.3.3. Ventilación	19
2.3.3.4. Desate de Roca	20
2.3.3.5. Limpieza	21
2336 Acarreo	22

2.3.3.7. Sostenimiento	22
CAPITULO III	24
MARCO TEÓRICO	24
3.1. Antecedentes de investigación	24
3.1.1. Antecedentes nacionales	24
3.1.2. Antecedentes locales	25
3.2. Marco conceptual	26
3.2.1. Consideraciones Geomecánicas para el Diseño de Perforación y volado	ura26
3.2.1.1. Clasificación Geomecánica de Bieniawski	26
3.2.1.1.1. Resistencia compresiva de la roca	27
3.2.1.1.2. Índice de la Calidad de la roca (RQD)	28
3.2.1.1.3. Espaciamiento de juntas	29
3.2.1.1.4. Condiciones de Discontinuidades	29
3.2.1.1.5. Corrección por Orientación	32
3.2.1.2. Índice de fuerza geológica (GSI)	34
3.2.1.3. Propuesta de Ashby (1997)	36
3.2.1.3.1. Adaptación de los índices GSI, RMR Y RQD en la ejecu	ción de
Ashby 36	
3.2.1.3.2. La ecuación de ASHBY	37
3.2.1.4. Constante de roca sueca "propuesto por langerfors	37
3.2.2. Parámetros de perforación	37
3.2.2.1. Tipo de Perforación	38
3.2.2.1.1. Perforación por Percusión	38
3.2.2.1.2. Perforación por Rotación	39
3.2.2.1.3. Perforación por Rota percusión	39
3.2.2.2. Accesorios de Perforación	42
3.2.3. Diseño de Malla de Perforación en minería subterránea	43

3.2.3.1. Sección de labor
3.2.3.2. Trazo de arranque
3.2.3.3. Distribución y denominación de taladros
3.2.3.4. Condiciones de Perforación
3.2.3.5. Error y defecto en la Perforación
3.2.4. Costo de perforación
3.2.5. Parámetros de voladura
3.2.5.1. Propiedades de los explosivos
3.2.5.2. Selección de explosivos
3.2.5.3. Explosivos y Accesorios utilizados
3.2.5.4. Diseño de carga
3.2.5.5. Análisis de fragmentación
3.2.5.6. Costo de voladura
3.2.6. Tipo de Costo
3.2.6.1. Costos fijos
3.2.6.2. Costos variables
3.2.6.3. Costos totales
3.2.6.4. Costo unitario
3.2.7. Tiros Fallados
3.2.7.1. Tiros soplados
3.2.7.2. Tiros cortados
3.2.7.3. Taladros anillados
CAPÍTULO IV70
PARÁMETROS ACTUALES DE DISEÑO DE PERFORACIÓN Y VOLADURA Y
COSTOS EN LA CONSTRUCCIÓN DEL BY PASS 26070
4.1. Diseño de Bypass 260
4.2. Perforación

4.3.	Voladura	74
4.4.	Costo de construcción del Bypass 260	80
4.5.	Cuadro de resumen de costo de perforación y voladura de Bypass 260	88
4.6.	Costo de limpieza y acarreo	88
4.7.	Cuadro de resumen de costos de construcción del bypass 260	90
CAPITU	ULO V	91
PROPU	ESTA DE DISEÑO DE PERFORACIÓN Y VOLADURA PARA OPTIMIZ	ZAR
LOS COST	TOS EN LA CONSTRUCCIÓN DEL BYPASS 260	91
5.1.	Descripción de construcción de Bypass 260 NV-1470	91
5.1.1.	Evaluación geomecánica	91
5.1.2.	Cálculo de perforación optimizado	98
5.1.3.	Cálculo de voladura optimizado	99
5.1.4.	Costo de construcción de bypass optimizado	105
5.1.5.	Resumen de costos de perforación y voladura optimizado	113
5.1.6.	Costo de carguío y acarreo	114
5.1.7.	Resumen de costos de construcción del Bypass 260	115
5.2.	Análisis de resultados	115
5.2.1.	Resultados comparativos de perforación	115
5.2.2.	Resultados comparativos de voladura	118
5.2.3.	Resultados comparativos de costo de perforación y voladura	120
5.2.4.	Resultados comparativos de costo de construcción de Bypass 260	122
5.2.5.	Resultados comparativos de construcción de Bypass 260	124
CONCL	LUSIONES	125
RECOM	MENDACIONES	126
REFER	ENCIAS BIBLIOGRÁFICAS	127
ANIEWO		120

ÍNDICE DE TABLAS

	Tabla 1: Cuadro de variables independientes y dependientes	4
	Tabla 2: Coordenadas UTM	7
	Tabla 3: Cuadro de reservas	15
	Tabla 4: Interpretaciones de los valores de RMR	26
	Tabla 5: Cohesión y el Angulo de fricción interna del Macizo Rocoso	27
	Tabla 6: Resistencia Compresión de la Roca y su valoración	28
	Tabla 7: Espaciamiento de discontinuidades y su valoración	29
	Tabla 8: Apertura de Discontinuidades y su valoración	30
	Tabla 9: Persistencia de discontinuidades y su valoración	30
	Tabla 10: Rugosidad y su valoración	31
	Tabla 11: Relleno de discontinuidades y su valoración	31
	Tabla 12: Alteración de discontinuidades y su valoración	31
	Tabla 13: Valoración de presencia de agua	32
	Tabla 14: Determinación de los buzamientos con respecto al efecto relativo	con
re	elación al eje de la obra	33
	Tabla 15: Calidad del macizo rocoso	33
	Tabla 16: <i>Tipo de roca</i>	44
	Tabla 17: Característica técnica	59
	Tabla 18: Especificaciones técnicas de carmex	60
	Tabla 19: Especificaciones técnicas de mecha rápida	61
	Tabla 20: Cuadro de distribución de taladros	72
	Tabla 21: Control de tiempo de perforación de 4 pies	72
	Tabla N ⁰ 22: Control de tiempo de perforación de 6 pies	73
	Tabla 23: Resumen de tiempos total de perforación	73

Tabla 24: Reporte de operación Bypass 260	74
Tabla 25: Resumen de perforación y voladura anterior	79
Tabla 26: Cuadro de porcentaje de beneficio social	80
Tabla 27: Costo de mano de obra	81
Tabla 28: Costo de materiales de perforación	83
Tabla 29: Costo de materiales y herramientas	85
Tabla 30: Costo de explosivos	86
Tabla 31: Costo de implemento de seguridad	88
Tabla 32: Resumen de costos de perforación y voladura	88
Tabla 33: Control de tiempo de limpieza y acarreo	89
Tabla 34: Cuadro de costo de limpieza y acarreo	89
Tabla 35: Resumen de costo total actual	90
Tabla 36: Ensayo de compresión simple de la muestra de Bypass 260	92
Tabla 37: Cálculo de RMR según Bieniawski 89	94
Tabla 38: Cuadro de reporte del RQD y RMR	95
Tabla 39: <i>Tipo de roca</i>	96
Tabla 40: Cuadro de distribución de taladros optimizado	97
Tabla 41: Control de tiempo de perforación de 4 pies optimizado	98
Tabla 42: Control de tiempo de perforación de 6 pies optimizado	98
Tabla 43: Resumen de tiempos total de perforación optimizado	99
Tabla 44: Reporte de operación optimizado de Bypass 260	99
Tabla 45: Resumen de perforación y voladura optimizado	104
Tabla 46: Cuadro de porcentaje de beneficio social	105
Tabla 47: Costo de mano de obra optimizado	106
Tabla 48: Costo de materiales de perforación optimizado	107

Tabla 49: Costo de materiales y herramientas optimizado	110
Tabla 50: Costo de explosivos optimizado	111
Tabla 51: Costo de implemento de seguridad optimizado	113
Tabla 52: Resume de costos de perforación y voladura optimizado	113
Tabla 53: Control de tiempo de carguío y acarreo	114
Tabla 54: Costo de carguío y acarreo	114
Tabla 55: Cuadro de costo de construcción del Bypass 260	115
Tabla 56: Distribución de taladros anterior	116
Tabla 57: Distribución de taladros optimizado	116
Tabla 58: Comparación de Distribución de taladros	117
Tabla 59: Comparación de tiempo de perforación actual y optimizada	118
Tabla 60: Datos de parámetros de voladura actual	118
Tabla 61: Datos de parámetros de voladura optimizada	119
Tabla 62: Datos de parámetros de voladura actual y optimizada	119
Tabla 63: Costo de perforación y voladura anterior	120
Tabla 64: Costo de perforación y voladura optimizada	121
Tabla 65: Resultado de comparativo de costo perforación y voladura	121
Tabla 66: Cuadro de costo de construcción anterior	122
Tabla 67: Cuadro de costo de construcción optimo	122
Tabla 68: Cuadro de comparación de costo de Bypass 260	122
Tabla 69: Cuadro de parámetros de construcción de Rypass 260	124

ÍNDICE DE FIGURAS

Figura 1: Ubicación Unidad Minera la Soledad – Chalhuan	8
Figura 2: Plano Geológico Minera La Soledad – Chalhuane	11
Figura 3: Geología local de la Unidad Minera la Soledad – Chalhuane	13
Figura 4: Esquema de Explotación	17
Figura 5: Componentes de máquina perforadora	18
Figura 6: Encebado de dinamita	19
Figura 7: Ventilación natural	20
Figura 8: Barretillas	21
Figura 9: Pala Neumatica EIMCO- 12B	21
Figura 10: Locomotora	22
Figura 11: Elementos del cuadro	23
Figura 12: Índice de Resistencia geológica (GSI)	35
Figura 13: Frecuencia de fracturamiento y consumo especifico de explosivo	36
Figura 14: Perforación por percusión	38
Figura 15: Perforación por rotación	39
Figura 16: Perforación por rota percusión	40
Figura 17: Acciones básicas en la perforación rotopercusion	42
Figura 18: Brocas de perforación	42
Figura 19: Sección de Bypass 260	43
Figura 20: Tipo de corte quemado	45
Figura 21: Formación de la cavidad de un frente	45
Figura 22: Denominación de los taladros	47
Figura 23: Insuficiente número de taladros de alivio	50
Figura 24: Desviación en el paralelismo	50

Figura 25: Espaciamiento irregular entre taladros
Figura 26: Irregular Longitud de taladros
Figura 27: Intercepciones de taladros
Figura 28: Sobre carga excesiva
Figura 29: Influencia del diámetro de la carga sobre la velocidad de detonación55
Figura 30: Selección de explosivos en función de las propiedades geomecánicas de57
Figura 31: Carmex ensamblado
Figura 32: Mecha rápida de ignición
Figura 33: Efecto de proceso de detonación
Figura 34: diseño de malla de perforación
Figura 35: Datos ingresados al software para el cálculo de RQD93
Figura 36: Datos ingresados al Software Geotable
Figura 37: Diseño de la nueva malla de perforación optimizado
Figura 38: Resultados comparativos de distribución de taladros
Figura 39: Resultados comparativos de parámetros de voladura actual y optimizad120
Figura 40: Costo de perforación actual
Figura 41:Resultado de construcción de Bypass 260

CAPITULO I

ASPECTOS DE LA INVESTIGACIÓN

1.1. Planteamiento del Problema

La Minera la soledad, viene ejecutando By Pass 260 en el nivel 1470 m.s.n.m. Durante su etapa inicial se encontró deficiencias en los resultados de avances lineales a consecuencia de que constantemente quedaban taladros cargados que no explosionaban que también se los llaman tiros cortados y soplados, inadecuado diseño de malla de perforación con demasiado número de taladros y con burden y espaciamiento inadecuados a su vez no llevaban un buen paralelismo de los taladros por falta de guiadores todas estas deficiencias han implicado a elevados costos en perforación, también otro de los problemas observados fue la excesiva distribución de explosivos en la voladura ocasionando elevados costos en la voladura.

Como consecuencias de estas deficiencias que se presentan en el frente de labores de desarrollo y preparación, se ha afrontado altos costos en perforación y voladura surgió la

necesidad de diseñar la nueva malla de perforación de acuerdo a los cálculos teóricos y a las características geomecánicas de la roca que se presente en la ejecución de labores de avance, el diseño de la malla permitirá determinar el número adecuado de taladros, y consumo de explosivos apropiados por disparo que incidirá en la reducción de costos en las operaciones.

1.2. Formulación del problema

1.2.1. Problema general

 ¿Cuáles son los factores que incidirán en la operación de perforación y voladura para optimizar los costos en la ejecución del by pass 260 Nv1470 en la unidad minera la soledad S.A.C?

1.2.2. Problemas específicos

- ¿Cuál es el diseño adecuado de malla de perforación para optimizar los costos en la construcción del by pass 260 Nv-1470 en la unidad Minera la Soledad S.A.C.?
- ¿Cuál es la carga explosiva adecuada para optimizar los costos en la construcción de by pass 260 Nv- 1470 en la unidad Minera la Soledad S.A.C.?

1.3. Objetivos de la investigación

1.3.1. Objetivo general

 Establecer el diseño más óptimo en las operaciones de perforación y voladura para optimizar los costos en la ejecución del by pass 260 NV – 1470 en la unidad minera la soledad S.A.C.

1.3.2. Objetivos específicos

- Diseñar la malla adecuada de perforación para optimizar los costos en la construcción del by pass 260 NV – 1470 en la unidad minera la soledad S.A.C.
- Determinar la carga explosiva adecuado para optimizar los costos en la construcción del by pass 260 NV - 1470 en la unidad minera la soledad S.A.C.

_

1.4. Justificación

La zona en estudio posee gran potencial de reservas auríferas para su explotación y profundizar las labores de desarrollo para explotar las reservas minerales y obtener mayor rentabilidad del yacimiento minero a bajos costos de perforación y voladura, con el diseño de una malla adecuada de perforación y selección de la carga explosiva a utilizar, según las características del macizo rocoso.

El proyecto de investigación se justifica plenamente en su ejecución y es de mucha importancia, que servirá como modelo para realizar las operaciones de perforación y voladura en labor by pass 260, que servirá como guía para los estudiantes de la escuela profesionales de ingeniería de minas.

1.5. Hipótesis

1.5.1. Hipótesis general

 Con el establecimiento de los estándares operacionales más adecuados en la operación de perforación y voladura se optimizará los costos en la ejecución del by pass 260 NV – 1470 en la unidad minera la soledad S.A.C.

1.5.2. Hipótesis específicas

- Diseñando la malla adecuada de perforación se optimizarán los costos de perforación en la construcción del by pass 260 NV – 1470 en la unidad minera la soledad S.A.C.
- Determinando la carga explosiva adecuada se optimizará los costos de voladura en la construcción del by pass 260 NV – 1470 en la unidad minera la soledad S.A.C.

1.6. Variables e indicadores

Tabla 1: Cuadro de variables independientes y dependientes

Variables	Indicador	Escala de
		medición
Dependiente (VD)		
construcción de by pass	• costo	• US\$/m
260	• tiempo de	• Meses
	ejecución	
Independiente (VI)		
Macizo rocoso	• Calidad de macizo	• RQD,RMR,
	rocoso	GSI
Diseño de perforación	• N de taladros	 Metros
	• Burden	• Metros
	• Espaciamiento	• Metros
Diseño de voladura	Cantidad de carga	• Kg/disparo
Costos unitarios	• Costo de	• US\$/TM
	perforación	
	Costo de voladura	• US\$/TM

Fuente: Elaboración propio

1.7. Metodología

1.7.1. Tipo de Investigación

La investigación será de tipo descriptivo, mediante el cual se realizará una explicación detallada de la situación actual en los parámetros de perforación y voladura costo en la ejecución del by pass 260 NV – 1470 en la Unidad Minera La Soledad.

Por otra parte, el estudio será de tipo aplicativo, de causa y efecto, donde la causa es el diseño de la malla de perforación y el cálculo del tipo de carga explosiva para la voladura; y su efecto será los resultados que se tienen después de la voladura, así determinar si el diseño es aceptable y con esto establecer que en el proceso se reducirá los costos en la ejecución del by pass 260 por la Unidad Minera La Soledad

1.7.2. Población y Muestra

1.7.2.1. Población

La población para este trabajo de investigación está constituida por las labores de perforación y voladura de la Unidad Minera La Soledad.

1.7.2.2. Muestra

La muestra para nuestra investigación está constituida por el by pass 260 Nv 1470 de la Unidad Minera La Soledad.

1.7.3. Recolección de Datos

1.7.3.1. Técnicas

Es indispensable determinar las técnicas que se van aplicar, como datos de campo, observaciones y mediciones, tesis bibliográficas, trabajos inéditos para determinar los resultados de la operación y voladura en by pass 260 de la Unidad Minera La Soledad.

1.7.3.2. Instrumento

Los instrumentos a utilizar para el estudio serán formato de avance por guardia, reporte diario de operación por guardia.

Formato de avances por guardia.

- Los avances lineales obtenidos en metros por cada guardia.
- Consumo de explosivos por cada guardia.

Reporte diario de operación por guardia.

- Número de taladros.
- Cantidad de explosivos utilizados.
- Metros lineales de avance por guardia.

1.7.4. Procesamiento y Análisis de Resultado

Los datos observados y medidos se procesarán estadísticamente y se sacarán el promedio general de las medidas de los metros lineales de avance, número de taladros, cantidad de dinamitas y los costos totales empleados en la anterior malla de perforación y voladura, para lo cual utilizaremos herramientas de informáticas como, Microsoft Excel, Autocad Civil 3D, Geotable.

Reporte diario de operación

- Explosivo utilizado.
- Número de taladros.
- Avance lineal.
- Volumen y tonelaje obtenido.

CAPITULO II

INFORMACIÓN DEL ÁREA DE ESTUDIO

2.1. Generalidades

2.1.1. Ubicación geográfica

Minera La Soledad S.A.C – Chalhuane, opera dos unidades mineras Sangre de Toro y Buenos Aires, se encuentra ubicada en la región Arequipa, provincia de Condesuyos, distrito de Andaray a 326 km por carretera al Nor Oeste de la ciudad de Arequipa, Perú.

Tabla 2: Coordenadas UTM

Coordenada	Coordenada	
Norte	Este	
8238535	721951	

Fuente: Departamento de topografía Minera la soledad S.A.C

Fuente: Elaboración propia

Figura 1: Ubicación Unidad Minera la Soledad - Chalhuane

2.1.2. Accesibilidad

Accesos hacia Minera La soledad S.A.C. – Chalhuane es por la carretera en dos tramos, mitad asfaltada y otra mitad carretera afirmada. Se puede acceder tanto por la ruta Arequipa – Aplao – Chuquibamba - Alpacay –San Juan de Churunga - Chalhuane o por la ruta Arequipa – Ocoña – San Juan de Churunga - Chalhuane. La distancia promedio es de 326 km y se demora entre 6 a 7 horas de viaje desde Arequipa en camioneta.

2.1.3. Clima

El clima de la mina es característico de una zona árida, desértica cercana a la costa. Existentes precipitaciones muy bajas y solo entre los meses de diciembre a febrero, por lo general se tiene una temperatura promedio anual de 25 °c, lo cual hace una zona de trabajo agradable.

2.1.4. Recursos Naturales

La unidad minera se encuentra ubicada a una altura promedio de 1400 a 1800 msnm. La superficie topográfica es generalmente plana, rodeada de cerros no muy altos. La zona es bastante árida y seca por lo que la vegetación es escasa.

2.2. Marco Geológico y Mineralización

2.2.1. Geología Regional

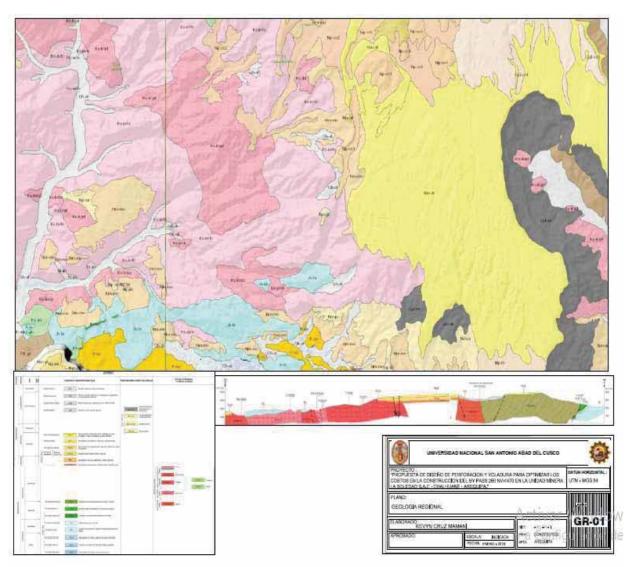
El área Chalhuane encierra un sistema pórfido Cu – vetas Au el cual esta metalogeneticamente ubicado en la bien conocida Franja Aurífera Regional Nazca – Ocoña. Deposito aurífero es epitermal, mesotermal y está rodeado de minas cercanas auríferas como San Juan de Churunga que ha producido ya cerca de un millón de onzas y la mina Alpacay cuya producción histórica está por encima de 15 mil onzas.

Este proyecto está cubierto por 3,893 Ha en las cuales ocurre un agregado de aproximadamente 4 km de vetas con clavos mineralizados de alta ley. Las vetas como Buenos Aires y española, ocupan el halo externo del sistema porfiritico, mientras que las vetas Sangre de Toro y Judith ocurren dentro de las rocas granodioritacas. Otras vetas como veta Ubaldina, El Viento, Victoria y Sangre de Toro 1 ocurren en rocas porfiriticas, alejadas del halo principal de alteración del pórfido. La veta Santa Rosa también ocurre dentro de las rocas granodioritas y porfiriticas.

La veta Buenos Aires, con 2 km de afloramientos, es la estructura más larga en el área seguida por un conjunto de vetas angostas entre las que destacan las vetas Sangre de Toro (700 m) que es sin embargo la más rica en oro de este depósito, otro como El Viento (200 m), Santa Rosa (300 m). Judith, Ubaldina, Jollpa, Sangre de Toro 1, Victoria y La Española tiene una exposición menor.

Las rocas sedimentarias corresponden a las rocas más antiguas, afloran en la parte sur con rumbo variado con tendencia E-W, buzamiento 37 ° Sur y como remanentes pequeños en algunas quebradas, litológicamente compuesto por lutitas, areniscas y cuarcitas, pertenecientes a la parte superior del Grupo Yura del Gretaceo inferior. Todos alojados en el cuadrángulo de Chuquibamba de la carta geológica del Perú.

Los intrusivos plutónicos son mayormente granodioritas — tonalitas. Ampliamente expuestas en la parte N-E del área de estudio, en la zona Chalhuane, quebrada San José y sector La Soledad, la litología compuesta mayormente por granodioritas de grano medio feneriticas con facies que gradan a tonalitas. Se observa también intrusivos menores de pequeños stocks de microgranito, diques de aplita, pegmatitas y lamprofidos. Se le asigna una edad terciario inferior.


En la parte oeste de la zona de estudio aflora Dioritas – monzonitas compuestos por plagioclasas en aproximadamente 60 %, minerales oscuros como bióticas, horrenda, piroxenas en un 35 %, escaso cuarzo < 5%, grada a monzodiorita en algunos sectores las dioritas presentan una textura de grano fino a medio con aparente coloración verdosa.

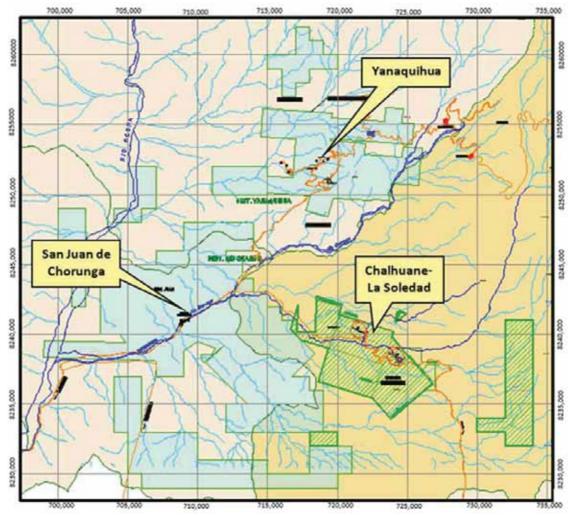
En la zona de Buenos Aires, parte de la quebrada Chalhuane y Soledad afloran un pórfido Dioritico en forma circular, corresponde a dioritas de grano medio de grueso y se encuentra fuertemente argilizado con presencia de hematitas – limonitas, esta diorita se encuentra cortada por diques dioriticos más recientes y también apliticos.

Las rocas volcánicas se presentan como pequeños afloramientos aislados, con techos recubiertos a las unidades precedentes especialmente sobre las rocas plutónicas, principalmente en la parte N NW y S SE, litológicamente constituida por tufos riolíticos — daciticas con presencia de fenocristales de biotitas y vidrio volcánicos, de color marron claro — rojizo. Presenta un grado de compactación variable y textura homogénea, con disyunción angular. Se correlaciona con los volcánicos cerca de la edad plioceno inferior medio.

Los depósitos aluviales se encuentra a lo largo de la quebrada Chalhuane, Chojonque, Esbilla, San Jose, estas quebradas muestran un fuerte dinamismo en la época de lluvias, produciendo constantes huaycos en época de lluvia.

En el marco tectónico, se puede determinar dos principales sistemas de fracturamiento las fallas regionales o grandes lineamientos con rumbo N30°W y con tendencia a E-W.

Fuente: Departamento de geología Unidad Minera la Soledad


Figura 2: Plano Geológico Minera La Soledad – Chalhuane

2.2.2. Geología local

Los depósitos de minera La Soledad – Chalhuane ocurren dentro de la franja mineralizada aurífera conocida Nazca – Ocoña, la cual hospeda un grupo de minas y proyectos auríferos de vetas angostas y con alto valor aurífero, estos depósitos ocurren frecuentemente dentro de las unidades rocosas de batolito de la costa, los depósitos son de naturaleza epitermal, muestra una historia compleja de actividad ígnea, tectonismo y actividad hidrotermal. Las rocas ígneas como diorita, monzonitas y granodioritas han sido intruidos por diques apliticas y lamprofidos. Las vetas son de relleno de fracturas o fallas de rumbo N60°- 70°W y muestran cuando menos 2 épocas de mineralización, una con cuarzo – pirita.

Se observa que en la zona de estudio existe alteración hidrotermal en las rocas encajonantes.

La zona de Chalhuane esta hospedada en rocas granodioritas, porfiricas dioriticas, rocas metamórfizadas, la mineralización no está concentrada en un solo clavo sino que va acompañada de lazos simoides que en algunos tramos se une a la estructura principal, en la cual aumenta su potencial y ley.

Fuente. Departamento de Geología de la Unidad minera la soledad - Chalhuane

Figura 3: Geología local de la Unidad Minera la Soledad – Chalhuane

2.2.3. Geología Económica

Localmente en la unidad La Soledad existen numerosas vetas como son: El Viento, Chalhuane, Esperanza y la veta Buenos Aires son de importancia y que han sido trabajadas en años anteriores.

2.2.3.1. Control de mineralización

- A. Control de alteración: la alteración argilica con presencia de hematita limonitita cuya característica es la persistente coloración marron claro rojizo, es un buen indicador para ubicar vetas con valores de oro. La silicificación y una moderada cloritización que presenta una coloración verdosa, evidencia actividad hidrotermal cercana a los canales de mineralización.
- B. Control mineralógico: en Chalhuane como otros yacimientos de la franja Nazca –Ocoña el oro se asocia directamente a la mineralización diseminada de Cu- Au, además también ocurren estas de oro de diferentes potencias.
- C. Control estructural: en lo estructural se tiene un fracturamiento menor que sirvieron de receptáculo de mineralización de oro, con rumbo N55°W hasta E-W y con buzamientos 64° 85° norte, estas son angostas y algunas con longitud que llegan hasta 2 km. Las fracturas con rumbos NE son de corta longitud y poco relleno mineral.

2.2.3.2. Alteración hidrotermal

Los cuerpos mineralizados de origen hidrotermal suelen localizarse entre las rocas que experimentaron alteración hidrotermal en el proceso de formación de menas, los mismos se hallan rodeados de aureolas con mineralización diseminado que disminuye poco a poco en su periferia. Debido a esto los cuerpos mineralizados de los yacimientos hidrotermales a menudo no tienen límites evidentes y se contornean según los datos del muestreo en base del contenido mínimo de componentes valiosos, establecido en la mena.

En el lugar existe una leve alteración hidrotermal que imprime a las rocas granodioritas y fuerte oxidación hematizada, la veta Sangre de Toro ocurre en

granodiorita y muestra dos etapas de mineralización, siendo la ultima la que encierra valores importantes de oro.

2.2.3.3. Reserva de Mineral

Las otras vetas como el Viento, Santa Rosa y Ubaldina presentan clavos entre 80 y 150 metros de largo y de profundidad aun en exploración.

Tabla 3: Cuadro de reservas

	RESERVAS				
CATEGORÍA	TMS	Pot (m)	Ley (g/t Au)	Au (Oz)	Au (Kg)
Reserva Probada	56,500	0.45	15.10	27,427	853
Reserva Probable	14,232	0.45	17.06	7,808	243
TOTAL DE RESERVAS	70,731	0.45	15.49	35,235	1,096
			RECURSOS		
CATEGORÍA	TMS	Pot (m)	RECURSOS Ley (g/t Au)	Au (Oz)	Au (Kg)
CATEGORÍA Recurso Medido	TMS 32,165	Pot (m) 0.42		Au (Oz) 2,729	Au (Kg) 85
			Ley (g/t Au)		
Recurso Medido	32,165	0.42	Ley (g/t Au) 2.64	2,729	

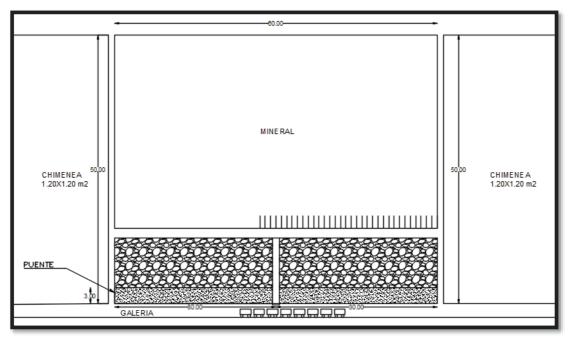
Fuente: Departamento de Planeamiento Mina

2.3. Operaciones mina

2.3.1. Capacidad de Producción

La producción de la mina es 50 tm por día, provenientes exclusivamente de interior mina de las zonas Buenos aires y El viento.

Las reservas minerales estimadas por Minera la Soledad – Chalhuane es de 70731 TMS. Sin embargo, existen targets de exploración importante tanto en las zonas de operación actual como en la zona norte de la mina a través de nuevas estructuras que podrían lograr un incremento de recursos y posteriormente reservas minerales para Unidad.


El % de dilución aplicado a toda la mina es de 20% en función a la experiencia operativa de la mina, sin embargo, este podría ser ajustado o mejorado definiendo un % de dilución en función de un diseño de labor, que considere un ancho de minado de explotación.

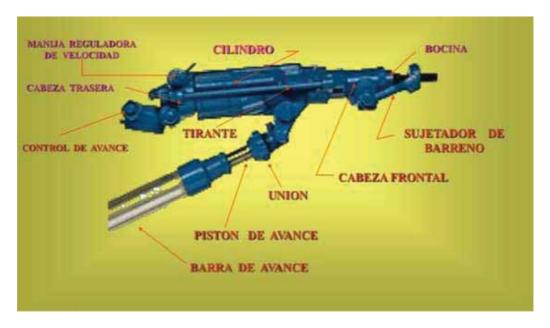
2.3.2. Métodos de explotación

El método de minado aplicado en la explotación de las dos zonas de minera La Soledad – Chalhuane es el de corte y relleno ascendente convencional con perforación vertical, siendo la capacidad de producción de la mina es 50 tm por día.

El minado convencional se lleva a cabo usando perforadoras manuales Jack – leg en las zonas donde trabaja la empresa especializada (Adgeminco) la cual se encarga al 100% de las operaciones mineras. La limpieza de mineral es manual, se realiza con carretilla, el relleno de los tajos es con material esteril proveniente de las rocas encajonantes o también del material clasificado como desmonte dentro de la misma estructura mineralizada y que se deja como relleno después de volar y limpiar el mineral, esta metodología se denomina "circando veta".

El sostenimiento de la roca encajonante es con puntal de madera u de manera puntal debido a que la roca encajonante es competente.

Fuente: Elaboración propio


Figura 4: Esquema de Explotación

2.3.3. Ciclo de minado

2.3.3.1. Perforación

La perforación en labores de desarrollo y preparación se realiza con perforadoras Jack-Leg marca RNP y SECO - 250, barrenos de 3, 4 y 6 pies, diámetro de broca 36mm, con una sección de 2.10x2.40 m2

La perforación en labores de explotación se realiza en realce, se realiza con YT29-CHINAS, barrenos de 3 y 4 pies, diámetro de broca 36 mm, el número de taladros a perforar es de acuerdo a la medida de la sección.

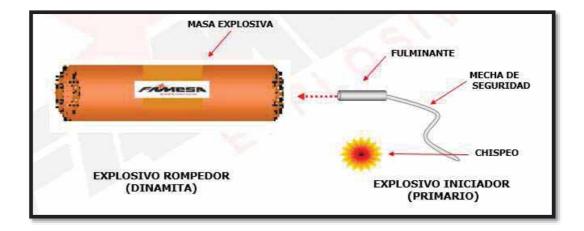

Fuente: Manual de RNP

Figura 5: Componentes de máquina perforadora

2.3.3.2. Voladura

De acuerdo con los criterios de la mecánica de rotura, la voladura de roca es un proceso tridimensional, en el cual las presiones generadas por explosivos confinados dentro de taladros perforados en la roca, originan una zona de alta concentración de energía que produce dos efectos dinámicos: fragmentación y desplazamiento. (Vega & Murillo, 1990).

La voladura actual en labores de preparación y desarrollo se utilizan los explosivos dinaminta semexa 65% utilizados como arranque en roca semidura y semexa 80% como arranque en roca dura con dimensiones 7x7/8" y con un peso de 0.082 kg/cartucho. El carguío de los explosivos depende de cada elemento de la malla de perforación, se utilizan como accesorios de voladura, mecha de seguridad (carmex), mecha rápida (ignitacord).

Fuente: Manual de Exsa 2019

Figura 6: Encebado de dinamita

2.3.3.3. Ventilación

la ventilación se tiene un circuito principal independiente para cada zona de la mina, la ventilación ingresa por las galerías principales de forma natural.

Generalmente los tajos y labores lineales en construcción son más necesarias para ventilar obligatoriamente. Como complemento de la ventilación se tiene al aire comprimido. A continuación, se da pasos a seguir para mantener la labor ventilado.

- En cuanto se llega a la labor se debe verificar la valvula de aire comprimido para constatar que el área de trabajo se ventile durante el tiempo de boleo.
- La guardia saliente debe proporcionar el área de trabajo ventilada dejando la llave de aire comprimido abierta después de disparo.
- La manguera de aire comprimido debe estar lo más cercano posible del frente y en sentido de avance de la labor.

- Una vez que se ha ventilado la labor, se debe mantener la manguera de aire abierta
 a media llave con el fin de mantener un área ventilada cuando se remueva el
 material.
- Se debe tener bastante cuidado de no ingresar a las labores abandonadas, debido a
 que en su interior se puede encontrar concentración de gases toxicos de distintos
 orígenes.

Fuente; Minera La Soledad

Figura 7: Ventilación natural

2.3.3.4. Desate de Roca

El desatado de rocas se realiza de manera manual. con barretillas de 4, 6, y 8 pies y siguiendo los PETS (Procedimiento Escrito de Trabajo Seguro) para desatado de rocas.

Fuente: Elaboración propio

Figura 8: Barretillas

2.3.3.5. Limpieza

Para la limpieza del frente se usa pala neumática EIMCO-12B con una capacidad de cuchara de 0.12 yd3 necesitándose para un trabajo adecuado una altura mínima de 2.10m.

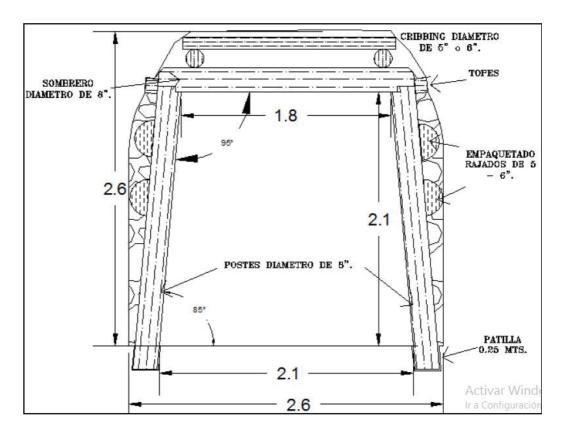
La limpieza de mineral en los tajos de explotación se realiza mediante carretillas tipo buggy, este mineral es depositado en las tolvas con anillo instaladas en el centro del tajo.

Fuente: Elaboración propio

Figura 9: Pala Neumatica EIMCO- 12B

2.3.3.6. Acarreo

El transporte de mineral, así como el desmonte se hace con locomotora eléctricas Clayton y carros mineros U-35 capacidad de 1.5 tm.



Fuente: Elaboración propio

Figura 10: Locomotora

2.3.3.7. Sostenimiento

El sostenimiento es una de las operaciones unitarias más importantes, ya que de ésta depende la seguridad de las personas y de los equipos que trabajan en las diferentes labores subterráneas.

Fuente: Operación Mina

Figura 11: Elementos del cuadro

CAPITULO III

MARCO TEÓRICO

3.1. Antecedentes de investigación

3.1.1. Antecedentes nacionales

- Cháhuares S.C. (2013), en su tesis: "Nuevo diseño de Malla para Mejorar la perforación y voladura en Proyecto de exploración y Desarrollo –Mina el Cofre", presentado a la Facultad de Ingeniería de Minas, de la Universidad Nacional del Altiplano Puno; en su conclusión final menciona con la nueva malla de perforación se logró disminuir de 41 taladros a 36 taladros, y que también se logró disminuir la carga explosiva de 18 kg/disparo a 15.1 kg/disparo y que por ende los costos también disminuyen en un total de 7.68 US\$/disparo (Chahuares, 2012).
- Rodríguez R. H. (2011), en su tesis "Mejoramiento de las Operaciones Unitarias en Labores de Desarrollo en Minería Subterránea Convesional Unidad Minera el Cofre" presentado a la Facultad de Ingeniería de Minas, de la Universidad Nacional del Altiplano Puno. En su conclusión nos indica la importancia del diseño de malla de

perforación y mejorar la práctica de la voladura. Buscar un avance lineal efectiva, buena fragmentación de la roca para facilitar la limpieza de mineral y/o material detrítico (Rodriguez, 2011).

• Flores M. R. (2013), en su tesis: "Optimización de los costos operativos de las operaciones unitarias de perforación y voladura en la C.M Chambi – Mina Rinconada", presente a la Facultad de Ingeniería de Minas, de la Universidad Nacional del Altiplano Puno. En su conclusión: el cuadro de diferencia de costos: con barrenos de 4 pies el costo anterior es de 812.27 US\$/disparo. Y al final se obtuvo 722.35 US\$/disparo y con una eficiencia lineal de perforación de 1.16 m/disparo, a lo era anteriormente de 1.04 m/disparo y con los barrenos de 5 pies es 881.81 US\$/disparo. Anteriormente y al finalizar se obtuvo un 791.81 US\$/disparo y con una eficiencia lineal de perforación anterior de 1.44 m/ disparo de lo que era anteriormente de 1.30 US\$/disparo. (Flores, 2013).

3.1.2. Antecedentes locales

Morales C. y Huaranca O. (2017), de la Universidad Nacional de San Antonio Abad del Cusco "", teniendo como problema principal ¿Cómo influye el control y diseño eficiente, de la labores de preparación, desarrollo y explotación en la unidad de producción Zona Lurdes: Consorcio Minero Horizonte?, llega a la conclusión principal de que el número de taladro fueron calculados con fórmulas matemáticas, tomando en cuenta los parámetros de macizo rocoso, por ende, se redujo el número de taladros para labores de avance de 46 taladros (4 taladros de alivio con diámetro de 102 mm) pasando a 43 taladros (3 alivios con diámetro 102 mm en arranque y 4 taladros con diámetro 45 mm en corona); en labores de explotación se reduce de 30 a 27 taladros/disparo (Caricia & Huaranca, 2017).

3.2. Marco conceptual

3.2.1. Consideraciones Geomecánicas para el Diseño de Perforación y voladura

3.2.1.1. Clasificación Geomecánica de Bieniawski

El sistema de clasificación Rock Mass Rating o sistema RMR fue desarrollado por Z. T. Bieniawski durante los años 1972 - 1973, y ha sido modificado entre los años 1976 y 1979, en base a más de 300 casos reales de túneles, cavernas, taludes y cimentaciones. El RMR se obtiene como de unas puntuaciones que corresponden a valores de cada uno de los seis enumerados estos parámetros. El valor del RMR oscila entre 0% y 100%, y es mayor cuando mejor es la calidad de la roca. Bieniawski distingue cinco tipos o clase de roca según el valor de RMR:

Tabla 4: Interpretaciones de los valores de RMR

Clase l	RMR > 80	Roca muy buema
Clase II	80 < RMR < 60	Roca buena
Clase III	60 < RMR < 40	Roca media
Clase IV	40 < RMR < 20	Roca mala
Clase V	RMR < 20	Roca muy mala

Fuente: Bieniawski, 1989

Gallardo Contreras (2013) da a conocer que la roca se clasifica en 6 categorías. En cada categoría se estiman los valores de la cohesión y el ángulo de fricción interna del macizo rocoso.

Tabla 5: Cohesión y el Angulo de fricción interna del Macizo Rocoso

Clase	Calidad	RMR (%)	Cohesion (Kpa)	Angulo de friccion (°)
I	Muy buena	81 - 100	> 400	> 45
II	Buena	61 - 80	300 - 400	35 - 45
III	Regular	41 - 60	200 - 300	25 - 35
IV	Mala	21 - 40	100 - 200	15 - 25
\mathbf{V}	Muy mala	0 - 20	< 100	< 15

Fuente: Tesis Cimentaciones en Roca de Gallardo Contreras, 2013

A continuación, se definen y valoran cada uno de los 6 factores que intervienen en la clasificación.

3.2.1.1.1. Resistencia compresiva de la roca

Según Belandria y Bongiorno (2012), "la resistencia compresiva "σc" de una roca se puede determinar por cuatro procedimientos".

Primer procedimiento

Estimación de la Resistencia Compresiva mediante el martillo Schmidt de Dureza.

Segundo procedimiento

Determinación de la Resistencia Compresiva mediante el Ensayo de Carga Puntual "Franklin".

Tercer procedimiento

Determinación de la Resistencia Compresiva mediante el Ensayo de Compresión Simple y/o Uniaxial.

Cuarto procedimiento

Determinación de la Resistencia Compresiva mediante el Ensayo de Compresión Triaxial.

Tabla 6: Resistencia Compresión de la Roca y su valoración

Descripcion	Resistencia a la compresion simple (Mpa)	Ensayo de carga puntual	Valoracion
Extremadamente dura	> 250	> 10	15
Muy dura	100 - 200	4 - 10	12
Dura	50 -100	2 - 4	7
Moderadamente dura	25 - 50	1 - 2	4
Blanda	5 -25	< 1	2
Muy blanda	1 - 5	< 1	1

Fuente: Grupo de investigación en geología aplicada

3.2.1.1.2. Índice de la Calidad de la roca (RQD)

Según Bieniawski, Z. T. (1989), Para determinar el RQD (Rock Quality Designation) en el campo y /o zona de estudio de una operación minera, existen hoy en día tres procedimientos de cálculo, en función de número de fisuras, número de trozos por testigo y número de fisuras por metro cúbico.

Cálculo del RQD en función del número de fisuras, por metro lineal determinadas al realizar el levantamiento litológico-estructural en el área y/o zona predeterminada de la operación minera.

$$RQD = 100 * e^{-0.1*\lambda} * (0.10 * \lambda + 1)$$
 Ec. 3.1

Siendo:

$$\lambda = \frac{N^{\circ} Fisuras}{Longitud}$$
 Ec. 3.2

Para el cálculo del parámetro de (RQD) en el programa de Geotable se puede calcular mediante tres alternativas como: testigos, juntas por metro lineal y juntas por metro cubico.

3.2.1.1.3. Espaciamiento de juntas

Según Bieniawski, Z. T. (1989), Se ha comprobado que el espaciamiento de juntas tiene gran influencia sobre la estructura del macizo rocoso. La resistencia del macizo rocoso va disminuyendo según va aumentando el número de juntas, siendo el espaciado de las juntas el factor más influyente en esta disminución de resistencia. Así resulta que un material rocoso de alta resistencia de 100 a 200 MPa, que esté muy fracturado con un espaciamiento de juntas de 5 cm, corresponde a un macizo rocoso débil.

A continuación, se presenta la clasificación de Deere de los macizos rocosos. En lo referente al espaciamiento de juntas, que es la que recomienda utilizar en la clasificación geomecánica de Bieniawski.

Tabla 7: Espaciamiento de discontinuidades y su valoración

Descripcion Espacimiento	Espacio de juntas	Tipo de Maciso Rocoso	Valoracion
Muy separado	> 2 m	Solido	20
Separadas	0.6 - 2 m	Masivo	15
Moderamente	200 - 600 mm	En bloques	10
Juntas	60 - 200 mm	Fracturas	8
Muy juntas	< 60 mm	Machados	5

Fuente: Grupo de investigación en geología aplicada

3.2.1.1.4. Condiciones de Discontinuidades

En este apartado se tienen en cuenta los siguientes parámetros:

- Apertura.
- Persistencia de discontinuidades.
- Rugosidad.
- Relleno.

• Alteración

A. Apertura

La apertura de las juntas es un criterio para descripción cuantitativa de un macizo rocoso.

Tabla 8: Apertura de Discontinuidades y su valoración

	Descripcion	Separacion de las caras	Valoracion
1	Abierta	> 5 mm	0
2	Moderadamente abierta	1 - 5 mm	1
3	Cerrada	0.1 - 1 mm	4
4	Muy cerrada	< 0.1 mm	5
5	Ninguna	0	6

Fuente: Grupo de investigación en geología aplicada

B. Persistencia de discontinuidades

El tamaño de las juntas influye en la importancia que el material rocoso y la separación de las juntas tienen en el comportamiento del macizo rocoso.

Tabla 9: Persistencia de discontinuidades y su valoración

Grado	Descripcion	Continuidad	Valoracion
1	Muy baja	< 1 m	6
2	Baja	1 -3 m	4
3	Media	3 - 10 m	2
4	Alta	10 - 20 m	1
5	Muy alta	> 20 m	0

Fuente: Grupo de investigación en Geologia Aplicada

C. Rugosidad

Tabla 10: Rugosidad y su valoración

Grado	Descripcion	Valoracion
1	Muy rugosa	6
2	Rugosa	5
3	Ligeramente rugosa	3
4	Lisa	1
5	Plana (espejo de falla)	0

Fuente: Grupo de investigación en geología aplicada

D. Relleno

Tabla 11: Relleno de discontinuidades y su valoración

Grado	Descripcion	Valoracion
1	Blando > 5 mm	0
2	Blando < 5 mm	2
3	Dura $> 5 \text{ mm}$	2
4	Dura < 5 mm	4
5	Ninguno	6

Fuente: Grupo de investigación de geología aplicada

E. Alteración

Tabla 12: Alteración de discontinuidades y su valoración

Grado	Descripcion	Valoracion
1	Descompuesta	0
2	Muy alterada	1
3	Moderamente alterada	3
4	Ligeramente alterada	5
5	No alterada	6

Fuente: Grupo de investigación de geología aplicada

F. Presencia de agua

El efecto del agua tiene especial importancia en los macizos rocosos diaclasados. Se tendrá en cuenta el flujo agua en el macizo rocoso.

Tabla 13: Valoración de presencia de agua

Caudal por 10 m de tunel	Descripcion	Valoracion
Nulo	Seco	15
< 10 Lt/ min	Ligeramente humedo	10
10 - 125 Lt /min	Humedo	7
25 - 125 Lt/ min	Goteado	4
125 Lt/ min	Fluyente	0

Fuente: Grupo de investigación en geología aplicada

3.2.1.1.5. Corrección por Orientación

Al momento de considerar los efectos de la orientación de las discontinuidades para la clasificación del macizo rocoso, con vistas a la construcción de una excavación subterránea y una labor minera superficial, es suficiente considerar si las orientaciones del rumbo y del buzamiento son más o menos favorables con relación a la labor minera que se va ejecutar.

Tabla 14: Determinación de los buzamientos con respecto al efecto relativo con relación al eje de la obra

Descr	ipcion	Calificacion	Buz.	Valoracion
	Excav. Con el	Muy favorable	45° - 90°	0
Direccion	buzamineto	Favorable	20° - 45°	-2
perpinicular al	Excav. Contra	Medio	45° - 90°	-5
eje de la obra	el buzamiento	Desfavorable	20° - 45°	-10
Direccion		Muy desfavorable	45° - 90°	-12
paralela al eje		ivitay desiavorable	45 - 70	-12
de la obra		Medio	20° - 45°	-5
Cualquier				
direccion		Desfavorable	0° - 20 °	-10

Fuente: Grupo de investigación en geología aplicada

Tabla 15: Calidad del macizo rocoso

Clase	Calidad	RMR
I	Muy buena	81 -100
II	Buena	61 - 80
III	Regular	41 - 60
IV	Mala	21 - 40
V	Muy mala	0 - 20

Fuente: Grupo de investigación en geología aplicada

Según Sedano, J y Quispe, Y. (2012), el RMR permite la obtención de la cohesión y ángulo de fricción, parámetros resistentes del criterio de Mohr-Coulomb. En las siguientes ecuaciones se muestran las relaciones entre RMR y los parámetros resistentes.

$$\phi = 5 + \frac{RMR}{2}$$
 Ec. 3.3

Donde:

 ϕ = Angulo de friccion

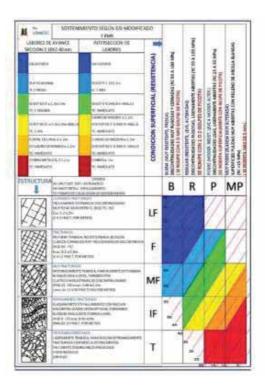
3.2.1.2. Índice de fuerza geológica (GSI)

Según Hoek, (1995) presentados el índice de fuerza geológico, más completo a su criterio de falla de la roca generalizado y la manera de estimar los parámetros s, a y mb. Este GSI estima la reducción de la fuerza de la masa rocosa para diversas condiciones geológicas. Se muestra a tres maneras diferentes de calcular el GSI. (Ramírez Uyanguren & Alejano, 2004.

A. Usando el grado de la masa rocosa para masas de roca de una mejor calidad

Para relacionarlo el GSI y el RMR89 de Bieniawski, el RMR (1989) debe ser mayor a 23, entonces el GSI=RMR-5, para esto se asignó un valor de 15 al parámetro que representa al agua y de cero al de orientación de discontinuidades. (Belandria & Bongiorno, 2012)

$$GSI = RMR - 5$$
 EC. 3.4 (a)

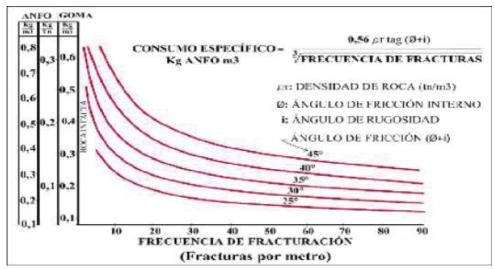

B. Usando el sistema Q

Desarrollado por Barton, N., Lien, R., and Lunde, J. (1988) para estimar el valor de GSI utilizando esta clasificación geomecánica, se deben usar el RQD (Rock Quality Designation), el número del sistema de juntas (Jn), el número de la rugosidad de las Juntas (Jr) y el número de alteración de las Junta (Ja), el factor de reducción de agua en la junta se reduce (Jw) y el factor de la reducción de tensión (SRF) se deben fijar a 1, calculándose el índice de calidad tunelera modificada (Q') a partir de: (Belandria & Bongiorno, 2012). Para todos los valores Q:

$$GSI = 9lnQ + 44$$
 Ec. 3.4 (b)

C. Usando su propia clasificación GSI (Indice de resistencia geologica)

Según Ramírez Uyanguren & Alejano (2004)"la clasificación GSI se basa en una observación cuidadosa del macizo rocoso y, por consiguiente, es esencialmente cualitativa. Este índice incorpora la estructura de este y las características geomecánicas de las superficies de discontinuidades existentes en él y se obtiene a partir de un examen visual del macizo rocoso en afloramientos y sondeos. El GSI combina los dos aspectos fundamentales del comportamiento de los macizos rocosos, es decir: su fracturación, o sea, el tamaño y forma de los bloques, y la resistencia al corte de las discontinuidades (Ramírez , Uyanguren , & Alejano, 2004)



Fuente: área de geología de mina

Figura 12: Índice de Resistencia geológica (GSI)

3.2.1.3. Propuesta de Ashby (1997)

Ashby en el año 1977 hizo un intento por considerar las discontinuidades estructurales en el sistema de diseño de las voladuras, la ecuación relaciona la frecuencia de fracturas y la resistencia al cizallamiento de estas con el consumo específico de explosivo.

Fuente: Manual de perforación y voladura. López Jimeno, 2003

Figura 13: Frecuencia de fracturamiento y consumo especifico de explosivo

3.2.1.3.1. Adaptación de los índices GSI, RMR Y RQD en la ejecución de Ashby

La propuesta de Ashby correlaciona parámetros geomecánicas que en esta investigación hemos modificado algunos términos para el uso directo de índices RMR, GSI y RQD que en la actualidad estos indicadores son parte de la geomecánica moderna, pues el de estos índices es universal en toda minería nacional como internacional y además de usarse para ejecutar obras subterráneas.

3.2.1.3.2. La ecuación de ASHBY

$$C.E = \frac{0.56*\rho r * \tan(\frac{GSI+15}{2})}{\sqrt[3]{\frac{115-RQD}{3.3}}}$$
 Ec. 3.5

Donde:

C.E: Consumo especifico de explosivo

pr: Densidad de roca dato del departamento de geología

GSI: Según datos del departamento de geología

RQD: Según datos del departamento de geología

3.2.1.4. Constante de roca sueca "propuesto por langerfors

Sedano, J y Quispe, Y. (2012) la constante de roca "c" se calcula de acuerdo con la ecuación:

$$C = 0.8784(C.E) + 0.0052$$
 Ec. 3.6

Donde:

C: Factor de roca Suecia

C.E: Consumo especifico de explosivos en el arranque

3.2.2. Parámetros de perforación

El principio de la perforación es efectuar golpes continuos con filos cortantes en un extremo de mayor dureza que la roca; y en el otro extremo es golpeado y girado en forma continua, de tal manera que cada golpe produce un corte en la roca en diferente posición, el resultado final será la perforación de un taladro cuyo diámetro será igual al diámetro del filo cortante usado (Lopez & Pernia, 2003).

3.2.2.1. Tipo de Perforación

3.2.2.1.1. Perforación por Percusión

Según Artigas y María (2011), el componente fundamental de la perforadora es el pistón, el cual empujando hacia adelante golpea la culata de la barra, de modo que la energía cinética del pistón se transmite desde el martillo hasta el elemento de corte de la barra de perforación a través del varillaje, en forma de onda de choque. El desplazamiento de onda se realiza a alta velocidad y la forma depende de las características del diseño de pistón. La onda de choque se desplaza hasta alcanzar la broca o elemento de corte de la barra de perforación, una parte de la energía se transforma en trabajo haciendo penetrar el útil y el resto se refleja y retrocede a través del varillaje, produciendo calor y desgaste de las roscas. La medición de la eficiencia en la transmisión de la energía es muy difícil y depende de varios factores, tales como: el tipo de roca, la forma y dimensiones del pistón, las características del varillaje, el diseño de la broca, etc.

Fuente: Manual práctico de Exsa 2019

Figura 14: Perforación por percusión

3.2.2.1.2. Perforación por Rotación

Según López y Pernía (2003), la perforación por rotación realiza dos acciones básicas por medio de la broca a la roca: empuje axial y torque; la energía se transmite a la broca a través de un tubo de perforación que gira y presiona las brocas contra las rocas. Los elementos cortantes de las brocas generan una presión sobre la roca que llega a producir la rotura de la misma, tiene como misión hacer que la broca actué sobre distintos puntos de la roca en el fondo del barreno (Lopez & Pernia, 2003).

Fuente: Manual práctico de Exsa 2019

Figura 15: Perforación por rotación

3.2.2.1.3. Perforación por Rota percusión

El principio de perforación de estos equipos se basa en el impacto de una pieza de acero (pistón) que golpea a un útil (barra) que a su vez transmite la energía al fondo del barreno por medio de un elemento final (broca). Los equipos rotopercutivos se

clasifican en dos grandes grupos según donde se encuentre colocado el martillo: (Lopez & Pernia, 2003).

La perforación por rotopercusión se basa en la combinación de las siguientes acciones: percusión y rotación. La percusión se basa en los impactos producidos por el golpeteo del pistón originan unas ondas de choque que se transmiten a la broca a través del varillaje (en el martillo en cabeza) o directamente sobre ella (en el martillo de fondo). Mientras que la rotación consiste en hacer girar la broca para que los impactos se produzcan sobre la roca en distintas posiciones (Lopez & Pernia, 2003).

Fuente: Manual práctico de Exsa 2019

Figura 16: Perforación por rota percusión

Martillo en cabeza. En estas perforadoras dos de las acciones básicas, rotación y percusión, se producen fuera del barreno, transmitiéndose a través de una espiga y del

varillaje hasta la broca de perforación. Los martillos pueden ser de accionamiento

neumático o hidráulico.

Martillo en fondo. La percusión se realiza directamente sobre la broca de

perforación, mientras que la rotación se efectúa en el exterior del barreno. El

accionamiento del pistón se lleva a cabo neumáticamente mientras que la rotación

puede ser neumática o hidráulica.

Las ventajas principales, que presentan la perforación rotopercutivos son:

• Es aplicable a todos los tipos de rocas, desde blandas a duras.

La gama de diámetros de perforación es amplia.

Los equipos son versátiles, pues se adaptan bien a diferentes trabajos.

Necesitan un solo hombre para su manejo y operación.

El mantenimiento es fácil y rápido.

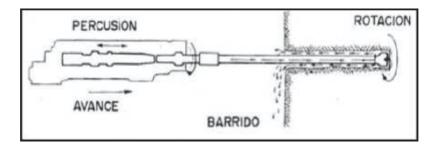
• El precio de adquisición no es elevado.

Percusión: Los impactos producidos por el golpeteo del pistón originan unas ondas

de choque que se transmiten a la broca a través del varillaje (en el martillo en cabeza)

o directamente sobre ella (en el martillo en fondo).

Rotación: Con este movimiento se hace girar la broca para que los impactos se


produzcan sobre la roca en distintas posiciones.

Empuje: Para mantener en contacto el útil de perforación con la roca se ejerce un

empuje sobre la sarta de perforación.

Barrido: El fluido de barrido permite extraer el detritus del fondo del barreno.

41

Fuente: Manual de perforación y voladura Lopez Jimeno 2003

Figura 17: Acciones básicas en la perforación roto percusión

3.2.2.2. Accesorios de Perforación

Brocas: Son las herramientas cortantes, generalmente de acero altamente resistente al impacto, reforzados en sus filos con insertos o botones de material muy duro resistentes a la abrasión (Carburo de tungsteno).

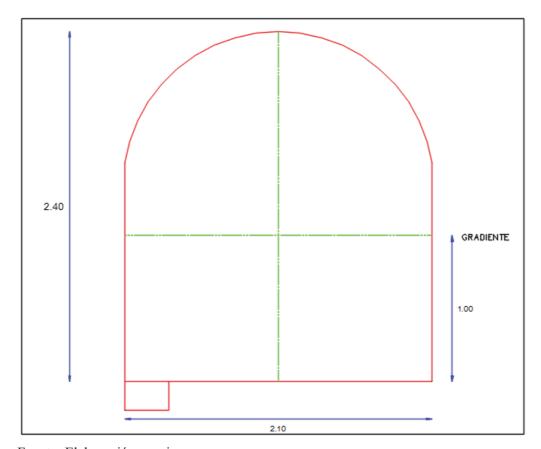

Fuente: Elaboración propia

Figura 18: Brocas de perforación

Barras o Barrenos: Son varillas o tubos de acero que transmiten el impacto del martillo a la broca, ubicada en uno de sus extremos, las barras pueden ser tubulares, hexagonales, rígidas etc. y su acoplamiento de rosca corrida, cono roscado, cono de embone liso, etc. (Lopez & Pernia, 2003).

3.2.3. Diseño de Malla de Perforación en minería subterránea

3.2.3.1. Sección de labor

Fuente: Elaboración propio

Figura 19: Sección de Bypass 260

a) Sección del By pass 260

$$Area = \frac{\pi * (r)^2}{2} + H * B$$

Donde:

H: Ancho de labor

B: Altura de labor

Ec. 3.7

b) Numero de taladros

$$N^{\circ} Tal. = \left(\frac{P}{Dt}\right) + k * s$$

Donde:

P: Perímetro de la sección

Dt: Distancia entre taladros de la circunferencia

K : coeficiente o factor de roca

S: sección

Tabla 16: Tipo de roca

Tipo de roca	Dt	k
Roca Dura	0.5	2
Roca Media	0.6	1.5
Roca Blanda	0.7	1

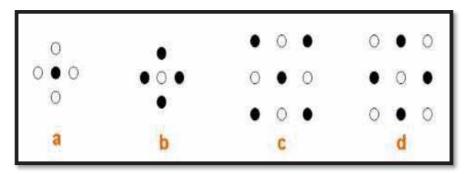
Fuente: Manual de voladura Exsa -2001

c) Perímetro de sección

$$P = 4 * \sqrt{S}$$

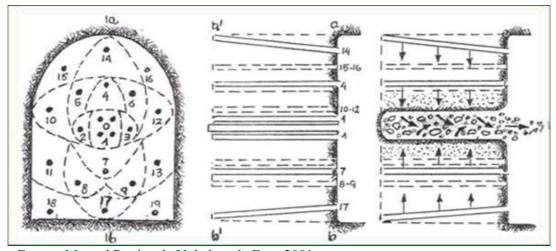
Ec. 3.9

Donde:


P: perímetro

S: Sección

3.2.3.2. Trazo de arranque


El principio de la palabra voladura de frentes reside, por tanto, en la apertura de una cavidad inicial, denominada corte, cuele o arranque, destinada a crear una segunda cara libre de gran superficie para facilitar la subsiguiente rotura del resto de la sección, de modo que

los taladros del núcleo y de la periferia pueden trabajar destrozando la roca en dirección hacia dicha cavidad.

Fuente: Manual práctico de exsa 2001

Figura 20: Tipo de corte quemado

Fuente: Manual Partico de Voladura de Exsa 2001

Figura 21: Formación de la cavidad de un frente

Los métodos de corte corresponden a las formas de efectuar el disparo en primera fase para crear la cavidad de corte, que comprenden cortes con taladros en ángulo o cortes en diagonal y cortes con taladros en paralelo.

3.2.3.3. Distribución y denominación de taladros

El trazo o diagrama de distribución de taladros y de la secuencia de salida de estos presenta numerosas alternativas, de acuerdo con la naturaleza de la roca y a las características del equipo perforador, llegando en ciertos casos a ser bastante complejo. Los taladros se distribuirán en forma concéntrica, con los del corte o arranque en el área central de la voladura, siendo su denominación como sigue.

a. Taladros de arranque

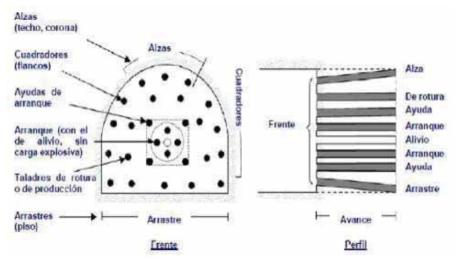
La función del arranque es formar la primera cavidad en el frente cerrado de una galería, creando así una segunda cara libre para la salida de los demás taladros, transformándose en un banco anular. El arranque requiere en promedio 1.3 a 1.5 veces más de carga por taladro para desplazar el material triturado, disminuyendo en proporción las cargas en los cuadradores y alzas (que son los que menos trabajan, ya que actúan por desplome). (Fernández Sotelo, 2012) (EXSA, 2002).

b. Taladros de ayuda

Son los taladros que rodean a los de arranque y forman las salidas hacia la cavidad inicial de acuerdo con las dimensiones del frente varían en número y distribución comprendiendo

a las primeras ayudas (contracueles), segunda y terceras ayudas (taladros de destrozo o franqueo). Salen en segundo término.

c. Taladros cuadradores


Son taladros laterales (hastiales) que forman los flancos del túnel.

d. Taladros de corona

Son los que dan forma al techo o bóveda del túnel. También se les denomina taladros de la corona en voladura de recorte o smooth blasting se disparan juntos alzas y cuadradores, en forma instantánea y al final de toda la ronda.

e. Taladros de arrastre o piso

Son los que corresponden al piso del túnel o galería se disparan al final de toda la ronda.

Fuente: Manual Practico de Voladura Exsa 2001

Figura 22: Denominación de los taladros

3.2.3.4. Condiciones de Perforación

Para conseguir una voladura eficiente la perforación es tan importante como la selección del explosivo, por lo que este trabajo debe efectuarse con buen criterio y cuidado.

Normalmente la calidad de los taladros a ser perforados está determinada por cuatro condiciones: diámetro, longitud, rectitud y estabilidad (EXSA, 2002).

A. Diámetro

Depende del tipo de aplicación en que el taladro será utilizado. Como regla general, el de "menor diámetro factible" será el más adecuado y económico de realizar (Exsa, 2002).

B. Longitud

Influye mucho en la elección de la capacidad del equipo perforador y naturalmente en el avance del disparo (profundidad del taladro). (EXSA, 2002).

C. Rectitud

Varía con el tipo de roca, método de perforación y características del equipo perforador. Deben tener la mayor rectitud y alineamiento para que el explosivo sea apropiadamente distribuido.

En la mayoría de los trazos de perforación el paralelismo entre taladros es de vital importancia para la interacción de las cargas explosivas en toda la voladura. (Exsa,2002).

D. Estabilidad

Los taladros deben mantenerse abiertos hasta el momento de su empleo. En terrenos sueltos tienden a desmoronarse por lo que puede ser necesario revestirlos interiormente con tubos especiales para poderlos cargar (casing) o hacer otro taladro adyacente al obturado. (EXSA, 2002).

E. Velocidad de la penetración y barrido

La velocidad de penetración no solamente depende de la aplicación de fuerza; también

depende del barro o limpieza de los detritos del taladro con aire comprimido y/o con agua

a presión.

La lubricación del sistema varillaje-broca es fundamental, ya que cada máquina tiene su

propio sistema, sea con agua, aire o ambos, con pulverización o nebulización de aceite. La

dureza y agresividad de la roca son factores importantes para determinar qué medio de

perforación emplear: rotación simple o roto percusión.

F. Condiciones geológicas

Estructura: Es la forma de presentación de las rocas y está en relación con su origen

y formación (macizo, estratos, etc.).

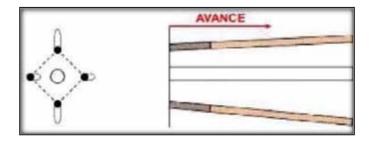
Grado de fisuramiénto: Indica la intensidad y amplitud del fracturamiento natural

de las rocas. Son importantes la orientación (rumbo y buzamiento) de los sistemas de

fisuras y el espaciamiento entre ellos, así como la apertura y los tipos de relleno en las

discontinuidades.

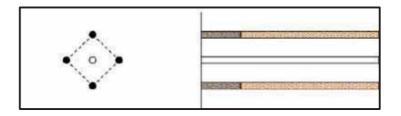
Presencia de agua: Define incluso el tipo de explosivo a utilizar


Error y defecto en la Perforación

Exsa (2002), indica que los errores más significativos, especialmente que afectan al

arranque del disparo tenemos.

49


a. En arranques Insuficiente diámetro o número de taladros de alivio

Fuente: Exsa 2003

Figura 23: Insuficiente número de taladros de alivio

b. Desviaciones en el paralelismo. En este caso el burden no se mantiene uniforme, resulta mayor al fondo lo que afecta al fracturamiento y al avance. Este problema es determinante en los arranques y en la periferia (techos) de túneles y galerías.

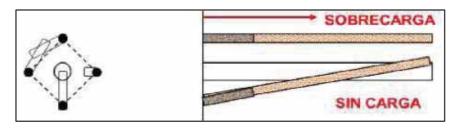
Fuente: Exsa 2003

Figura 24: Desviación en el paralelismo

c. Espaciamientos irregulares entre taladros. Propician fragmentación gruesa o soplo del explosivo.

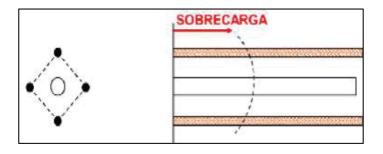
Fuente: Exsa 2003

Figura 25: Espaciamiento irregular entre taladros


d. La irregular longitud de taladros. Influye en el avance (especialmente si el de alivio es muy corto) y también determina una nueva cara muy irregular.

Fuente: Exsa 2003

Figura 26: Irregular Longitud de taladros


e. Intercepción de taladros. Afecta a la distribución de la carga explosiva en el cuerpo de la roca a romper.

Fuente: Exsa 2003

Figura 27: Intercepciones de taladros

f. Mayor número de taladros que los necesarios o diámetros muy grandes; pueden determinar sobrecarga, que golpeará a la roca circundante.

Fuente: Exsa 2003

Figura 28: Sobre carga excesiva

3.2.4. Costo de perforación

Tipo de accesorios de perforación:

- a) Broca, barrenos integrales
- b) Barras de extensión o tubos de perforación
- c) Adaptadores de culata
- d) Acoples
- e) Materiales de afilado de brocas
- f) Primero se determina el consumo especifico en (unid/TM) de cada accesorio de perforación.

De acuerdo al tipo de roca de perforarse, se considera su vida útil correspondiente.

El costo de cada accesorio de perforación (en US\$/TM), se obtiene multiplicando su específico (unid/TM) por su respectivo precio unitario (sin I.G.V).

3.2.5. Parámetros de voladura

3.2.5.1. Propiedades de los explosivos

Un explosivo es una sustancia que genera una liberación violenta de energía contenida cuando es expuesta a un choque de calor o fricción, de los cuales sufre una repentina transformación, generando de forma inmediata gas, temperatura y presión, dando como resultado el aumento de su volumen hasta 10 o 15 mil veces su tamaño original. (Calvin, 2000)

a) Sensibilidad

Es la característica que tiene un explosivo para propagar la reacción a todo lo largo de la carga, esta puede ser medida al determinar el diámetro crítico de un explosivo. Por otro lado, la sensibilidad se puede expresar cómo la distancia máxima de separación (en centímetros) entre un cartucho cebado (iniciador) y uno sin cebar (receptor), donde la transferencia de la detonación ocurrirá.

b) Resistencia al agua

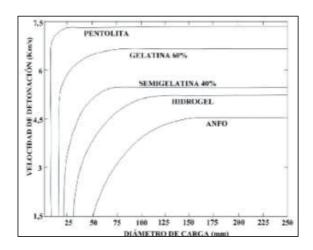
Es la habilidad para resistir una prolongada exposición al agua sin perder sus características explosivas, esta resistencia se expresa en función del tiempo (horas) que el explosivo puede estar sumergido en agua y después aun pueda ser detonado manteniendo su potencia, velocidad, y simpatía. Varía de acuerdo con la composición del explosivo y generalmente en el caso de las dinamitas y gelatinas, está vinculada a la mayor proporción de nitroglicerina o aditivos que contengan, este último son más resistentes.

c) Humo

La detonación de todo explosivo produce vapor de agua, nitrógeno, dióxido de carbono, y eventualmente, sólidos y líquidos. El monóxido de carbono y los óxidos de

nitrógeno son los gases principales que se consideran en la catalogación de gases tóxicos. Al conjunto de todos esos productos resultantes se los designa como humos.

d) Flamabilidad


Es la característica que tiene un explosivo para iniciar la reacción con facilidad a partir de una chispa, flama o fuego. Existen explosivos que explotan debido a una chispa mientras que otros pueden ser quemados y no detonan.

e) Resistencia a la temperatura

El desempeño de los explosivos puede ser afectado si se almacenan bajo temperaturas extremas, arriba de los 32.2 °C muchos compuestos se descomponen lentamente con desprendimientos de gases, aumentando poco a poco hasta que se produce una deflagración; mientras que con una temperatura inferior a 8 °C los explosivos que contienen nitroglicerina tienden a congelarse.

f) Velocidad de detonación

Es la velocidad a la que la onda de detonación se propaga a través del explosivo, es el parámetro que define el ritmo de liberación de energía; también se la puede definir como la velocidad con que viaja la onda a lo largo de una columna explosiva, sea al aire libre o en confinamiento dentro de un taladro de voladura. Esta velocidad tiene un rango que va de 1524 a 7620 m/s en los productos explosivos. La velocidad de detonación puede usarse como una herramienta para determinar la eficiencia de una reacción explosiva en el uso práctico.

Fuente: Manual de perforación y voladura Lopez Jimeno

Figura 29: Influencia del diámetro de la carga sobre la velocidad de detonación

g) Presión de detonación

Esta característica se obtiene de manera casi instantánea como resultado del movimiento de la onda de choque a través del explosivo; está en función de la densidad y del cuadrado de la velocidad de detonación.

Los explosivos comerciales tienen una presión de detonación que varía entre 500 y 1,500 MPa. En rocas duras y competentes la fragmentación se realiza con mayor facilidad si se usa explosivos de alta presión de detonación, por la directa relación que existe entre esta variable y los mecanismos de rotura de la roca.

h) Densidad

La densidad de los explosivos varía entre 0.80 y 1.60 gr/cm3, y al igual que la velocidad de detonación cuanto mayor es, más intenso es el efecto rompedor que genera. En los agentes explosivos la densidad puede ser un factor crítico, pues si es muy baja se vuelven sensibles al cordón detonante que los comienza a iniciar antes de la detonación del cebo, o si es muy alta pueden hacerse insensibles y no detonar.

i) Potencia

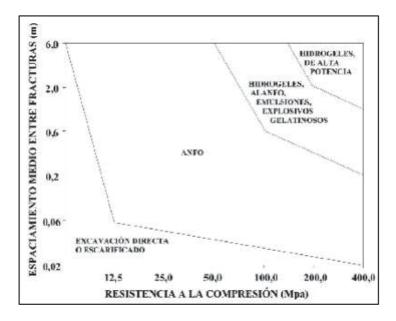
Se refiere al contenido de energía de un explosivo que a su vez es la medida de la fuerza que puede desarrollar y su habilidad para hacer un trabajo. La potencia ha sido clasificada por varios fabricantes sobre la base de un peso o volumen igual, y comúnmente se les denomina potencia en peso y potencia en volumen.

3.2.5.2. Selección de explosivos

La elección adecuada del tipo de explosivo forma parte importante del diseño de voladura y por consiguiente del producto final a obtener. Los criterios más utilizados para una buena elección del explosivo son: precio del explosivo, diámetro de carga, características geomecánicas de la masa rocosa, volumen de roca a volar, presencia de agua en los barrenos, condiciones de seguridad, atmósferas explosivas y problemas de suministro.

a) Precio de los explosivos

Hay que elegir el explosivo más adecuado con el que se es capaz de realizar un trabajo determinado.


No hay que olvidar que el objetivo de las voladuras es realizar el arranque con un costo mínimo, la perforación en rocas duras es una operación muy costosa se puede llegar a compensar con la utilización de explosivos de costos mínimos y más potentes

b) Diámetro de carga

Cuando se utilizan explosivos con una velocidad de detonación que varía con el diámetro, como es el caso del ANFO, hay que tomar en cuenta que con barrenos de diámetro inferior a 50 mm es preferible, a pesar del mayor precio, emplear hidrogeles o dinamitas encartuchadas.

c) Características de roca

Las propiedades geomecánicas del macizo rocoso son el grupo más importante, no sólo por su influencia directa en los resultados de las voladuras sino por su interrelación con otras variables de diseño.

Fuente: Manual de perforación y voladura López Jimeno, 2003

Figura 30: Selección de explosivos en función de las propiedades geomecánicas de los macizos rocosos (Brady y Brown, 1985)

d) Volumen de la roca a volar

Los volúmenes de excavación y ritmos de trabajo marcan el consumo de explosivos dentro de las operaciones de arranque.

En obras de mayor volumen las cantidades de explosivo se pueden llegar a aconsejar su utilización a granel con esto posibilitan la carga mecanizada y así se reducir los costos de mano de obra.

$$\frac{\text{volumen}}{\text{disparo}} = S_t * L_f$$
 Ec. 3.10

Donde:

St : Sección de labor (m2)

Lf: longitud de taladro (m)

e) Condición atmosférica

Las bajas temperaturas influyen en los explosivos que contienen nitroglicerina, ya que tienden a congelarse a temperaturas inferiores a 80 C. Las altas temperaturas también generan inconvenientes que hacen el manejo del explosivo peligroso como es el caso de la exudación.

f) Presencia de agua

Si la afluencia de agua a los taladros impide el desagüe, se pueden utilizar explosivos como los hidrogeles y emulsiones a granel. Si la presencia de agua es pequeña, el Anfo triturado se encartuchará dentro de fundas de plástico, alcanzándose densidades próximas a 1.1 g/cm3; el cebado deberá ser axial.

3.2.5.3. Explosivos y Accesorios utilizados

A. Semexa 80%, 65%

Dinamita desarrollada para minimizar los costos de chancado, así como los asociados a la realización de voladuras secundarias en terrenos de roca semidura a dura al proporcionar una buena fragmentación del macizo rocoso. Es ideal para el carguío de taladros en terrenos fracturados que presenten dificultad gracias a su excelente simpatía y sensibilidad que contribuyen a reducir los tiempos de manipulación y carguío del explosivo. (EXSA., 2017)

Recomendaciones de uso:

- Aplicable para voladura de roca semidura.
- Recomendado en taladros de arranque, producción y arrastre.
- Para iniciar, utilizar detonador N° 8 como mínimo.

- No abrir o amasar los cartuchos.
- Para consideraciones de seguridad en su manipulación y almacenamiento, consultar hoja de seguridad.

Tabla 17: Característica técnica

Especificaciones Tecnicas	Unidades	Semexa 80 %	Semexa 65 %
Densidad	g/cm3	1.18 ± 3 %	1.12 ± 3 %
Velocidad de detonacion *	m/s	4500	4200
Presion de detonacion	kbar	86	70
Energia	kcal/kg	1000	950
Volumen normal de gases	1/kg	916	932
Potencia relativa por peso (RWS anfo)	%	110	104
Potencia relativa por volumen (RBS anfo)	%	160	144
Resistencia al agua	hora	12	6
Categoria de humo		1	1
Vida util	meses	18	18

Fuente: Exsa 2017

B. Carmex

El carmex ha sido concebido y desarrollado como un seguro y eficiente sistema de iniciación para efectuar voladuras convencionales.

El carmex está compuesto por los siguientes componentes: un fulminante común nº 8, un tramo de mecha de seguridad, un conector para mecha rápida y un block de sujeción, que viene a ser un seguro de plástico, cuya función es asegurar la mecha rápida al conector para mecha rápida (Exsa., 2017).

Fuente: Exsa 2017

Figura 31: Carmex ensamblado

Tabla 18: Especificaciones técnicas de carmex

DEL FULMINATE COMUN	CARMEX
Diametro del fulminate (mm)	6.3
Longitud del fulminante (mm)	45
DE LA MECHA DE SEGURIDAD	
Color de recubrimiento plastico	Verde
Nucleo de polvora (g/m)	6
Tiempo de combustion	150 a 165
Longitud de mecha (mm)	50
Diametro externo (mm)	5.2
CARACTERISCAS TECNICAS DE CONECTOR	
Diametro del conector (mm)	6.3
Longitud de conector (mm)	45
Ancho de renura (mm)	24
Carga de pirotecnico (g)	0.5
Altura de carga (mm)	12
DEL BLOCK DE SUJECION	
Diametro de block de sujecion (mm)	10
Longitud total (mm)	14
Color del block de sujecion	Anaranjado
Material	Plastico

Fuente: famesa explosivos

C. Mecha Rápida

La Mecha Rápida es uno de los componentes del sistema tradicional de voladura. Este accesorio se usa complementariamente con la mecha de seguridad de determinada longitud, en cuyos extremos se encuentran fijados el fulminante simple y el conector de ignición.

En el momento de efectuar el circuito de conexión la Mecha Rápida se introduce en la ranura de los conectores y se asegura con el respectivo collar plástico incorporado. En estas condiciones la Mecha Rápida está lista para ser activada por medio de la llama de un fósforo u otro agente externo.

Fuente: Exsa 2017

Figura 32: Mecha rápida de ignición

Tabla 19: Especificaciones técnicas de mecha rápida

A	Z-18
Color de la mecha rapida	Rojo
Material de la cobertura exterior	Plastico
Tiempo de combustion a.n.m (s/m)	35
Diametro externo(mm)	2
Peso total (g/m)	Min 6.0

Fuente: Famesa explosivos

3.2.5.4. Diseño de carga

• Factor de carga: Cantidad de explosivo por disparo sobre cantidad de material en volumen se expresa en kg/m3

factor de carga =
$$\frac{\text{kg/disparo}}{Area*Lf}$$
 Ec. 3.11

donde:

Factor de carga : kg/m3

Area : m2

Lf : Longitud de perforacion

• Factor de potencia: Relación empírica entre la cantidad de explosivo en peso sobre cantidad de material roto en peso se expresa en kg/tm

factor de potencia =
$$\frac{\text{kg/disparo}}{\text{Tonelado roto}}$$
 Ec. 3.12

donde:

Factor de potencia : kg/TM

kg/disparo : Cantidad de explosivo en kilos por taladro

Tonelada roto : Tonelada roto por disparo (TM)

• Factor de carga lineal: cantidad de explosivo en peso cargado en un taladro por una longitud de taladro, se expresa kg/m.

factor de carga lineal =
$$\frac{\text{kg/disparo}}{L_f}$$
 Ec. 3.13

donde:

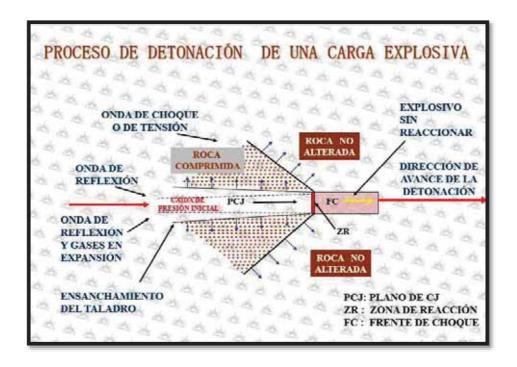
factor de carga lineal : kg/m

kg/disparo : Cantidad de explosivo en kilos por taladro

Lf : Longitud de taladro (m)

3.2.5.5. Análisis de fragmentación

El análisis granulométrico es una operación a escala laboratorio que determina el tamaño de las partículas y su distribución de una muestra de mineral conformada por granos mineralizados de diversos tamaños, las distintas proporciones separadas indican el grado de finura de dicha muestra, tal grado esta expresado en porcentaje en peso retenido en determinada malla. (López, 2003).


a) Proceso de fracturamiento

La fragmentación de rocas por voladura comprende a la acción de un explosivo y a la consecuente respuesta de la masa de roca circundante, involucrando factores de tiempo, energía termodinámica, ondas de presión, mecánica de rocas y otros, en un rápido y complejo mecanismo de interacción. Este mecanismo aún no está plenamente definido, existiendo varias teorías que tratan de explicarlo entre las que mencionamos a (Bonilla, 2013).

- Teoría de reflexión (ondas de tensión reflejadas en una cara libre).
- Teoría de expansión de los gases.
- Teoría de ruptura flexural (por expansión de gases).
- Teoría de torque (torsión) o de cizallamiento.
- Teoría de energía de los frentes de onda de compresión y tensión.
- Teoría de liberación súbita de cargas.
- Teoría de nucleación de fracturas en fallas y discontinuidades.

Algunas teorías que comprueban en ciertas condiciones de trabajo mientras que en otras condiciones no responden, por lo que aún no se consideran concluyentes. Una explicación sencilla, comúnmente aceptada estima que el proceso ocurre en varias etapas o fases que se desarrollan casi simultáneamente en un tiempo extremadamente corto, de pocos milisegundos, durante el cual ocurre la completa detonación de una carga confinada, comprendiendo desde el inicio de la fragmentación hasta el total desplazamiento del material volado, estas etapas son:

- Detonación del explosivo y generación de la onda de choque.
- Transferencia de la onda de choque a la masa de la roca iniciando su agrietamiento.
- Generación y expansión de gases a alta presión y temperatura que provocan el fracturamiento y movimiento de la roca.
- Desplazamiento de la masa de roca triturada para formar la pila de escombros o detritos.

Fuente: Manual Práctico de Voladura exsa 2001

Figura 33: Efecto de proceso de detonación

b) El Modelo de KUZ-RAM

La mayor parte de esta información ha sido adaptada de las publicaciones hechas por Cunningham (1983, 1987). Una relación entre el tamaño medio del fragmento y la energía aplicada a la voladura por unidad de volumen de la roca (carga específica) ha sido desarrollada por Kuznetsov (1973) en función del tipo de roca. Su ecuación es la siguiente: (Leiva Torres, 2007)

Influencia de la optimización de la fragmentación de roca en la rentabilidad de las operaciones.

3.2.5.6. Costo de voladura

Se determinan de acuerdo a las siguientes especificaciones:

Tipos de materiales de voladura

a) Explosivos primarios (dinamita, ANFO, Emulsión, etc.)

- b) Accesorios de voladura (iniciador, guía de seguridad, cordón detonante, retardo de superficie, etc.)
- c) Materiales de protección de voladura.
 - Primero se determina el consumo especifico (en unid/TM) de cada explosivo y
 accesorios de voladura, de acuerdo al diseño de voladura calculando
 previamente.
 - El costo de cada explosivo o accesorio de voladura (en US\$/TM), se obtiene multiplicando su consumo especifico por su respectivo precio unitario (sin I.G.V). (Clemente, 2009)

3.2.6. Tipo de Costo

El costo o coste es el valor monetario de los consumos de factores que supone el ejercicio de una actividad económica destinada a la producción de un bien, servicio o actividad.

3.2.6.1.Costos fijos

También conocidos como costos indirectos, son aquellos que no varían con el volumen de producción pero varían en cuanto a capacidad y tamaño de planta son.

- Costos de administración
- Costos financieros
- Amortización y depreciación
- Impuesto
- Mano de obra indirecta

3.2.6.2. Costos variables

Llamado también costos directos son aquellos que están en función de producción y/o

ventas en un momento. Pueden ser progresivo proporcional con respecto a volumen de

producción y son.

Mano de obra directa

• Materiales e insumos (explosivos, neumáticos, energía, etc.)

• Transporte

Costo de perforación

Costo de voladura

• Costo de carguío

• Costo de transporte

• Costo de servicio – administración

Se tiene también un costo de depreciación de los equipos mineros.

3.2.6.3. Costos totales

Son denominados también como costos de producción total, refleja el monto de

desembolsos efectuados en la producción de bienes y servicios.

CT = CF + CV * Q Ec. 3.14

CT: Costo total

CF: Costo fijo

CV: Costo variable

Q : Nivel de producción

67

3.2.6.4. Costo unitario

Es costo por producir una unidad, y se expresan por el cociente de costo total y la cantidad

producida.

 $CU = \frac{CT}{Q} = \frac{dCT}{dQ}$ Ec. 3.15

CU: Costo unitario

CT: Costo total

CF: Costo fijo

CV: Costo variable

Q : Nivel de producción

3.2.7. Tiros Fallados

3.2.7.1. Tiros soplados

Es un tiro que sale sin fuerza, no hay rotura ni empuje adecuado del material. El explosivo

es expulsado del taladro o simplemente deflagra sin llegar a detonar. Generalmente ocurre

por mala dosificación de la carga o mala selección del explosivo respecto a la dureza de la

roca, mal atacado, falta de potencia del iniciador, falta del taco inerte o uso del explosivo

húmedo.

3.2.7.2. Tiros cortados

Es un tiro que no sale por falla de cualquiera de los elementos principales: iniciador, guía

o explosivo y es muy peligroso porque en algunas ocasiones no se puede visualizar en el

frente a simple vista, para inspeccionar bien el frente y constatar que no exista tiros

cortados después de la voladura se tiene que lavar bien el frente con agua a presión. Si se

encuentra alguno deben ser eliminados inmediatamente, para poder continuar con el

trabajo.

68

3.2.7.3. Taladros anillados

Los taladros anillados son aquellos taladros que en el momento de detonar no logran romper toda la longitud del taladro, solamente rompe la longitud de la carga explosiva o la longitud que ha sido cargado quedándose la parte de la cara del frente intacta como un cascaron de roca y que en el fondo la roca ha sido fragmentada pero no desplazada.

CAPÍTULO IV

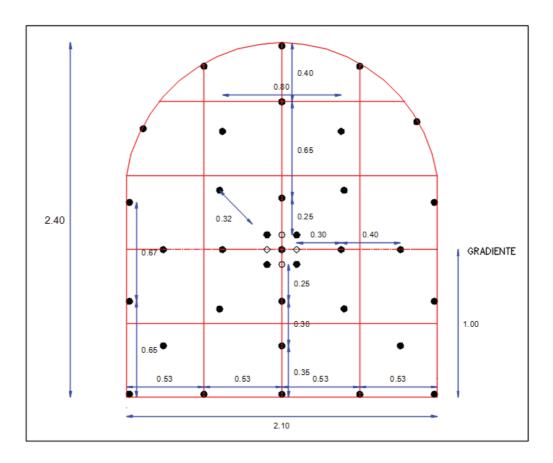
PARÁMETROS ACTUALES DE DISEÑO DE PERFORACIÓN Y VOLADURA Y COSTOS EN LA CONSTRUCCIÓN DEL BY PASS 260

4.1. Diseño de Bypass 260

Datos del campo:

Densidad de la roca 2.75 TM/m3

Sección de bypass 2.10 m x 2.40 m


Longitud de barreno 6 pies

Broca 38 mm

Total, de tiempo por taladro 00:04:24 h:mm: ss

Numero de taladro 39 taladros/disparo

Avance por disparo 1.44 m/disparo

Fuente: Elaboración propio

Figura 34: diseño de malla de perforación

• Área de frente

Area (1) =
$$\frac{\pi}{2} * (r)^2$$

Area (1) =
$$\frac{\pi}{2}$$
 * (1.05)²

Area
$$(1) = 1.73 \text{ m}2$$

Area (2) =
$$a * (h - r)$$

Area
$$(2) = 2.10 * (2.40 - 1.73)$$

Area
$$(2) = 2.84 \text{ m}2$$

Area total = Area (1) + Area (2)

Area total = 1.73 m2 + 2.84 m2

Area total = 4.57 m^2

Tabla 20: Cuadro de distribución de taladros

Distribucion de taladros	N° Tala	adros
Distribucion de talauros	cargados	vacios
Arranque	5	4
Ay. de arranque	4	
Arrastres	5	
Cuadradores	4	
Ay. de cuadradores	4	
produccion	8	
Corona	5	
Sub total	35	
Total	39	

Fuente: Elaboración propio

4.2. Perforación

• Control de tiempo de perforación con barreno de 4 pies y broca 38 mm

Tabla 21: Control de tiempo de perforación de 4 pies

Taladros	N° Taladros	Tiempo perf/taladro (h:min:s)	Tiempo total de perforacion	
Arranque	9	00:03:25	00:30:45	
Ay. De arranque	4	00:02:44	00:10:56	
Arrastre	5	00:02:19	00:11:35	
Cuadradores	4	00:02:08	00:08:32	
Ay. De cudradores	4	00:02:35	00:10:20	
Produccion	8	00:02:55	00:23:20	
corona	5	00:02:51	00:14:15	
	39	00:02:42	1:49:43	

Fuente: Elaboración propio

• Control de tiempo de perforación con barreno de 6 pies y broca 38 mm

Tabla N^0 22: Control de tiempo de perforación de 6 pies

Taladros	N° Taladros	Tiempo perf/taladro (h:min:s)	Tiempo total de perforacion	
Arranque	9	00:01:42	00:15:18	
Ay. De arranque	4	00:01:33	00:06:12	
Arrastre	5	00:01:38	00:08:10	
Cuadradores	4	00:01:25	00:05:40	
Ay. De cudradores	4	00:01:53	00:07:32	
Produccion	8	00:01:39	00:13:12	
corona	5	00:02:01	00:10:05	
	39	00:01:42	1:06:09	

Fuente: Elaboración propio

• Resumen de tiempo de perforación

Tabla 23: Resumen de tiempos total de perforación

Cuadro de resumen de tiempo	N° de taladros	Tiempo Productivos
Tiempo total de perforacion de barreno de 4 pies	39	1:49:43
Tiempo total de perforacion de barreno de 6 pies	39	1:06:09
Total		2:55:52

Fuente: Elaboración propio

• Tiempo promedio de perforación por taladro

tiempo de perforacion por taladro = 00h02min42s + 00h01min42s tiempo de perforacion por taladro = 00:04:24 min/taladro

• Tiempo efectivo de perforación

$$\frac{\text{Tiempo total}}{\text{taladro}} = 00:04:24 \frac{\text{min}}{\text{taladro}} * \frac{1\text{hora}}{60 \text{ minutos}}$$

$$\frac{\text{Tiempo total}}{\text{taladro}} = 0.0733 \frac{\text{horas}}{\text{taladro}}$$

• Tiempo de perforación por frente

$$\frac{Tiempo total}{frente} = 0.0733 \frac{horas}{taladro} * 39 \frac{taladros}{frente}$$

$$\frac{\text{Tiempo total}}{\text{frente}} = 02:55:52 \text{ horas/frente}$$

4.3. Voladura

Tabla 24: Reporte de operación Bypass 260

ZONA_	NIVEL	FASE	VETA	LABOR	SECC.	PROG. MES	EJEC. MTS	CUMPL.	N° DE DISP	Eficiencia
ZONA	INI VI	TASE			LADUK	(Anch ▼	(Mt)	EJEC. MIR	% 🔻	N DE DISI
S	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	42.45	71%	28	1.52
Z	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	13.61	23%	10	1.36
	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	12.30	21%	8	1.44
B	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	30.24	50%	21	1.44
		TOTAL AVA	NCES BUENOS	AIRES		240.00	98.60	41%	67	1.44

Fuente: Operación mina la soledad

• Eficiencia total de perforación

eficiencia perf. =
$$\frac{\text{longitud de taladro}}{\text{longitud de barremo}} * 100 \%$$

eficiencia perf. =
$$\frac{1.71 \text{ m}}{1.82 \text{ m}} * 100 \%$$

eficiencia perf. = 94 %

• Eficiencia total de voladura

eficiencia voladura
$$=$$
 $\frac{\text{longitud de avance}}{\text{longitud de taladro}} * 100 \%$

eficiencia voladura
$$=\frac{1.44 \text{ m}}{1.71 \text{ m}} * 100 \%$$

eficiencia voladura = 84 %

• Avance efectivo por disparo

$$\frac{\text{avance}}{\text{disparo}} = \text{longitud de taladro} * \text{eff. voladura}$$

$$\frac{\text{Avance}}{\text{disparo}} = 1.71 * 0.84$$

$$\frac{\text{Avance}}{\text{disparo}} = 1.44 \text{ m}$$

• Numero de cartuchos por taladro

Según la relación de longitud de carga del taco en un taladro perforado se tiene

N° de cartuchos =
$$\frac{\frac{2}{3} * L}{Le * 0.80}$$

Donde:

N° de cartuchos = total de cartuchos por taladro (unidades)

L = Longitud del taladro perforado (m)

Le = Longitud del cartucho (m)

80% = Porcentaje de confinamiento al ser atacado

N° de cartuchos =
$$\frac{\frac{2}{3} * L}{Le * 0.80}$$

$$N^{\circ}$$
 de cartuchos = $\frac{\frac{2}{3} * 1.71}{0.2 * 0.80}$

N° de cartuchos = 7 cartuchos/taladro

• Numero de cartuchos por disparo

$$N^{\circ} de \frac{cartuchos}{disparo} = N^{\circ} \frac{cartuchos}{taladro} * N^{\circ} \frac{taladros}{disparo}$$

$$N^{\circ}$$
 de $\frac{\text{cartuchos}}{\text{disparo}} = 7 \frac{\text{cartuchos}}{\text{taladro}} * 35 \frac{\text{taladros}}{\text{disparo}}$

$$N^{\circ}$$
 de $\frac{\text{cartuchos}}{\text{disparo}} = 245 \text{ cartuchos/disparo}$

• Cantidad de carga por disparo

Se utilizan semexa 80 % = 0.086 kg/cartucho

$$\frac{\text{kg}}{\text{disparo}}$$
 = Peso de cartucho * N° cartuchos/disparo

$$\frac{\text{kg}}{\text{disparo}} = 0.086 \frac{\text{kg}}{\text{cartucho}} * 245 \frac{\text{cartuchos}}{\text{disparo}}$$

$$\frac{\text{kg}}{\text{disparo}} = 21.07 \text{ kg/disparo}$$

• Cantidad de carga por taladro

$$\frac{\text{kg}}{\text{taladro}} = \frac{\text{kg/disparo}}{\text{N}^{\circ} \text{ de taladros cargados}}$$

$$\frac{\text{kg}}{\text{taladro}} = \frac{21.07 \text{ kg/disparo}}{35 \text{ taladros cargados}}$$

$$\frac{\text{kg}}{\text{taladro}} = 0.602 \text{ kg/taladro}$$

• Volumen roto

Volumen = Area * longitud de disparo

Volumen = 4.57 m2 * 1.44 m

Volumen = 6.58 m3

• Tonelada roto

TM = Volumen roto * Peso especifico

$$TM = 6.58 \text{ m}3 * 2.7 \text{ tm/m}3$$

$$TM = 17.77 TM/disparo$$

• Factor de carga (kg/m3)

$$FC = \frac{\frac{cantidad\ de\ carga}{disparo}}{\frac{Volumen\ roto}{}}$$

$$FC = \frac{21.07 \frac{kg}{disparo}}{6.58 \text{ m3}}$$

$$FC = 3.20 \text{ kg/m}3$$

• Factor de potencia (kg/tm)

$$Fp = \frac{\frac{cantidad\ de\ carga}{disparo}}{\frac{Tonelada\ roto}{}}$$

$$FC = \frac{21.07 \frac{kg}{disparo}}{17.77 \text{ TM}}$$

$$FC = 1.19 \text{ kg/TM}$$

• Factor de carga lineal

$$Fc = \frac{\frac{cantidad\ de\ carga}{disparo}}{\frac{metro\ lineal}{}}$$

$$Fc = \frac{21.07 \frac{kg}{disparo}}{1.44 \text{ m}}$$

$$Fc = 14.63 \text{ kg/m}$$

Tabla 25: Resumen de perforación y voladura anterior

Parametros obtenidos en perforacion y voladura					
Descripcion	unidad de medida				
Seccion	2.10m x 2.40m				
Densidad de roca	2.75 tm/m3				
N° de taladros perforados	39 taladros				
N° de taladros cargados	35 taladros				
Longitud de barreno	6 pies				
Longitud de barreno	4 pies				
Broca	38 mm				
Area	4.57 m ²				
Tiempo de perforacion por taladro	4 min/taladro				
Tiempo de perforacion por frente	02:55:52 h:mm:ss				
eficiencia de peforacion	94%				
Eficiencia de voladura	84%				
Avance por disparo	1.44 m				
Peso de semexa 80%	0.086 kg/cartucho				
N° de cartucho por taladro	7 cartuchos/taladro				
N° de cartucho por disparo	245 cartuchos/disparo				
Cantidad de carga por disparo	21.07 kg/disparo				
Cantidad de carga por taladro	0.602 kg/taladro				
Volumen roto	6.58 m3				
Tonelada roto	17.77 TM				
Factor de carga	3.20 kg/m3				
Factor de potencia	1.19 kg/tm				
Factor de carga lineal	14.63 kg/m				

Fuente: Elaboración propio

4.4. Costo de construcción del Bypass 260

a) Costo de mano de obra

Tabla 26: Cuadro de porcentaje de beneficio social

				APORTA	CIONES DEL EMPLEA	DOR			
DESCRIPCION	COSTO ACUMULADO	ESSALUD	S.C.T.R. PENSION	S.C.T.R. SALUD	SEGURO VIDA LEY	AFP. COMP.	C.T.S	TOTAL	TOTAL ANUAL
	AGOMICEADO	9.00%	7.73%	0.80%	1.13%	2.00%	12.77%	APORTES	ANOAL
DIAS EFECTIVOS	274.00	24.66	21.18	2.19	3.10	5.48	35.00	91.61	365.61
DOMINGOS	51.00	4.59	3.94	0.41	0.58	1.02		10.54	61.54
FERIA DOS	10.00	0.90	0.77	0.08	0.11	0.20		2.07	12.07
VACACIONES	30.00	2.70	2.32	0.24	0.34	0.60		6.20	36.20
ASIG. FAMILIAR	13.50	1.22	1.04	0.11	0.15	0.27		2.79	16.29
DESCANSO MEDIO	0.00	0.00	0.00	0.00	0.00	0.00		0.00	-
GRATIFICACIONES	60.00	5.40	4.64	0.48	0.68	1.20		12.40	72.40
									-
TOTAL ANUAL	_	39.47	33.90	3.51	4.96	8.77	35.00	125.59	564.09

TO POR TAREA =	_	TOTAL ANUAL	_	2.0587	
TO FOR TARLA -	-	DIAS EFECTIVOS TRABAJADOS	=	2.0507	

COSTO DE LOS				
BENEFICIOS	=	OSTO POR TAREA - JORNAL BASIC	=	1.05874
SOCIALES				

PORCENTAJE DE BENEFICIOS SOCIALES OBREROS SOCAVON = 105.87%

Fuente: Departamento de administración la Soledad S.A.C

• Perforista

$$(\frac{18.18 \text{ US}\$.}{\text{disparo}} * 1.0587 + \frac{18.18 \text{ US}\$.}{\text{disparo}}) * \frac{\text{disparo}}{1.44 \text{ m}} = \frac{25.99 \text{ US}\$.}{\text{m}}$$

• Ayudante de perforista

$$\left(\frac{16.67 \text{ US}\$}{\text{disparo}} * 1.0587 + \frac{16.67 \text{ US}\$}{\text{disparo}}\right) * \frac{\text{disparo}}{1.44 \text{ m}} = \frac{23.83 \text{ US}\$}{\text{m}}$$

• Carreros – lamperos

$$(\frac{15.15 \text{ US\$.}}{\text{disparo}} * 1.0587 + \frac{15.15 \text{ US\$.}}{\text{disparo}}) * \frac{\text{disparo}}{1.44 \text{ m}} = \frac{21.66 \text{ US\$.}}{\text{m}}$$

Tabla 27: Costo de mano de obra

MANO DE OBRA	PREC. US\$	105.870%	Costo Unit.	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Perforista-Palero	18.18	19.247	37.427	1.00	37.43	2.11	25.99
Ayudante perforista	16.67	17.649	34.319	1.00	34.32	1.93	23.83
Carreros-Lamperos	15.15	16.039	31.189	1.00	31.19	1.76	21.66
COSTO DEMANO DE OF	BRA	63.06%		3.00	102.94	5.79	71.48

Fuente: Elaboración propio

b) Costo de materiales de perforadora

• Perforadora

$$\frac{3860.61 \text{ US\$.}}{M} \times \frac{M}{80000 \text{ P. P}} \times 6 \text{ pies } \times \frac{39 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 7.84 \frac{\text{US\$.}}{\text{m}}$$

• Mantenimiento – reparación 10 %

$$\frac{3860.61 \text{ US\$.}}{M} \times \frac{M}{80000 \text{ P. P}} \times 0.10 \times 6 \text{ pies x} \quad \frac{39 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.78 \frac{US\$.}{m}$$

Barra cónico 4 pies

$$\frac{83.64 \text{ US\$.}}{\text{M}} \times \frac{\text{M}}{1000 \text{P. P}} \times 44.22 \text{ m} \times \times \frac{\text{disparo}}{1.44 \text{ m}} = 2.57 \frac{\text{US\$.}}{\text{m}}$$

• Barra cónico 6 pies

$$\frac{96.36 \text{ US\$.}}{\text{M}} \times \frac{\text{M}}{1000 \text{ P. P}} \times (66.33 - 44.22) \text{mx} \frac{\text{disparo}}{1.44 \text{ m}} = 1.48 \frac{\text{US\$.}}{\text{m}}$$

• Broca 38 mm

$$\frac{22.73 \text{ US\$.}}{\text{M}} \times \frac{\text{M}}{500 \text{ P. P}} \times 6 \text{ pies } \times \frac{39 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{m}} = 7.39 \frac{\text{US\$.}}{\text{m}}$$

• Aceite de perforación

$$\frac{4.55 \text{ US}\$.}{\text{galon}} \times \frac{0.25 \text{ galones}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.79 \frac{\text{US}\$.}{\text{m}}$$

• Manguera de 1" (30 m)

$$\frac{1.58 \text{ US}\$.}{\text{m}} \times \frac{1}{120 \text{ disparos}} \times 30 \text{mx} \frac{\text{disparo}}{1.44 \text{ m}} = 0.27 \frac{\text{US}\$.}{\text{m}}$$

• Manguera de 1/2 " (30 m)

$$\frac{1.15 \text{ US\$.}}{\text{m}} \times \frac{1}{120 \text{ disparo}} \times 30 \text{ m} \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.20 \frac{\text{US\$.}}{\text{m}}$$

• Aire comprimido

Tiempo de perforación por taladro: 4 min/taladro

$$\frac{00:04:24 \text{ minutos}}{\text{taladro}} \times \frac{1 \text{ hora}}{60 \text{ minutos}} = 0.0733 \text{ horas/taladro}$$

$$\frac{20.21 \text{ US\$.}}{\text{hora}} \times \frac{0.0733 \text{ horas}}{\text{taladro}} \times \frac{39 \text{ taladros}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 39.96 \frac{\text{US\$.}}{\text{m}}$$

Tabla 28: Costo de materiales de perforación

PERFORACION	Unidad	Precio US\$	VIDA UTIL	Costo Unit.	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Perforadora	M/pie	3,860.61	80,000	0.0483	234.00	11.292	0.636	7.842
Manteni-Reparac 10%	M/pie	386.06	80,000	0.0048	234.00	1.129	0.064	0.784
Barra conico 4'	U/pie	83.64	1000	0.0836	44.22	3.699	0.208	2.568
Barra conico 6'	U/pie	96.36	1000	0.0964	22.11	2.131	0.120	1.480
Broca de boton 38"	U/pie	22.730	500	0.0455	234.00	10.638	0.599	7.387
Aceite de perforación	Gln./pie	4.550	1	4.5500	0.25	1.138	0.064	0.790
Manguera de 1"tramo	30Mt/pie	1.580	120	0.0132	30.00	0.395	0.022	0.274
Manguera de 1/2" tramo	30Mt/pie	1.15	120	0.0096	30.00	0.288	0.016	0.200
Aire comprimido		20.21	0.073	1.4753	39.00	57.538	3.238	39.957
COSTO DE PERFORACION 88.246 4.967 61.28								61.28

Fuente: Elaboración propio

c) Costo de herramienta y materiales

• Llave stilson de 8"

$$\frac{37.54}{\text{und}} \times \frac{1 \text{und}}{360 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.07 \frac{\text{US}}{m}$$

• Llave francesa de 8"

$$\frac{36.97 \text{ US}\$}{\text{und}} \times \frac{1 \text{ und}}{360 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.07 \frac{\text{US}\$}{\text{m}}$$

• Barretilla 4', 5', 6'

$$\frac{45.45 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{120 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.78 \frac{\text{US}\$}{\text{m}}$$

• Atacador

$$\frac{3.50 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{60 \text{ dias}} \times 5 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.20 \frac{\text{US}\$}{\text{m}}$$

• Cucharilla

$$\frac{2.33 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{60 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.05 \frac{\text{US}\$}{\text{m}}$$

• Pico de punta

$$\frac{7.20 \text{ US\$}}{\text{und}} \times \frac{1 \text{und}}{90 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.11 \frac{\text{US\$}}{\text{m}}$$

Pala

$$\frac{11.36 \text{ US\$}}{\text{und}} \times \frac{1 \text{und}}{90 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.18 \frac{\text{US\$}}{\text{m}}$$

• Comba de 12 libras

$$\frac{12.12 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{120 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{m}} = 0.07 \frac{\text{US}\$}{\text{m}}$$

• Comba de 6 libras

$$\frac{8.48 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{120 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.05 \frac{\text{US}\$}{\text{m}}$$

• Saca barreno

$$\frac{2.33 \text{ US\$.}}{\text{und}} \times \frac{1 \text{und}}{200 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.01 \frac{\text{US\$.}}{\text{m}}$$

• Alambre N° 16

$$\frac{1.97 \text{ US}\$}{\text{kg}} \times \frac{1 \text{kg}}{5 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.27 \frac{\text{US}\$}{\text{m}}$$

Tabla 29: Costo de materiales y herramientas

MATERIALES Y HERRAMIENTAS	Unidad	Precio US\$	VIDA UTIL	C. Unit. US\$/dia	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Llave Stilson de 8"	U/día	37.54	360	0.104	1.000	0.104	0.006	0.072
Llave fancesa de 8"	U/día	36.97	360	0.103	1.000	0.103	0.006	0.071
Barretilla de 4',5' y 6'	U/día	45.45	120	0.379	3.000	1.136	0.064	0.789
Atacador	U/día	3.50	60	0.058	5.000	0.292	0.016	0.203
Cucharilla	U/día	2.33	60	0.039	2.000	0.078	0.004	0.054
Pico de punta y pala	U/día	7.20	90	0.080	2.000	0.160	0.009	0.111
Lampa	U/día	11.36	90	0.126	2.000	0.252	0.014	0.175
Comba 12 Lbs	U/día	12.12	120	0.101	1.000	0.101	0.006	0.070
Comba 6 Lbs	U/día	8.48	120	0.071	1.000	0.071	0.004	0.049
Saca barreno	U/día	2.33	200	0.012	1.000	0.012	0.001	0.008
Alambre Nº. 16	K/día	1.97	5	0.394	1.000	0.394	0.022	0.274
COSTO DE HERRAMIENTAS 2.702 0.152 1.88								1.88

Fuente: Elaboración propio

d) Costo de voladura

• Dinamita Semexa 80 %

$$\frac{0.67 \text{ US\$.}}{\text{unidad}} \times \frac{245 \text{ unidad}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 113.99 \frac{\text{US\$.}}{\text{m}}$$

• Mecha Rapida z-18

$$\frac{0.74 \text{ US\$.}}{\text{m}} \times \frac{8\text{m}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 4.11 \frac{\text{US\$.}}{\text{m}}$$

• Carmex 7'

$$\frac{0.90 \text{ US\$.}}{\text{unidad}} \times \frac{35 \text{ unidad}}{\text{disparo}} \times \frac{\text{disparo}}{1.44 \text{ m}} = 121.88 \frac{\text{US\$.}}{\text{m}}$$

Tabla 30: Costo de explosivos

EXPLOSIVO	Unidad	Percio US\$	cantidad	Costo Unit.	US\$/TM	Parcial (US\$/m.)
Semexa 80 %	Unidad	0.67	245	164.15	9.24	113.99
Carmex 7"	Unidad	0.90	35	31.50	1.77	21.88
Mecha Rapida	mts.	0.74	8	5.92	0.33	4.11
C0ST0 DE VO LADUR	A			201.57	11.34	139.98

Fuente: Elaboración propio

e) Costo de implementó de seguridad

• Ropa de jebe

$$\frac{27.27.}{\text{und}} \times \frac{\text{und}}{100 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.38 \frac{\text{US}\$.}{\text{m}}$$

• Bota de jebe

$$\frac{17.58 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{90 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.41 \frac{\text{US}\$.}{\text{m}}$$

• Guantes de cuero

$$\frac{3.03 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{15 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{m}} = 0.42 \frac{\text{US}\$.}{\text{m}}$$

• Mameluco

$$\frac{18.18 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{180 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.21 \frac{\text{US}\$.}{\text{m}}$$

• Protector

$$\frac{13.64 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.08 \frac{\text{US}\$.}{\text{m}}$$

• Respirador

$$\frac{21.21 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{180 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.25 \frac{\text{US\$.}}{\text{m}}$$

• Filtro de respirador

$$\frac{7.27 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{20 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.76 \frac{\text{US}\$.}{\text{m}}$$

• Correa de seguridad

$$\frac{6.06 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{m}} = 0.04 \frac{\text{US}\$.}{\text{m}}$$

• Barbiquejo

$$\frac{1.51 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.01 \frac{\text{US}\$.}{\text{m}}$$

• Tapón de oído

$$\frac{1.15 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{60 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.05 \frac{\text{US\$.}}{\text{m}}$$

Tafilete

$$\frac{4.55 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.03 \frac{\text{US}\$.}{\text{m}}$$

• Lentes

$$\frac{4.55 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{60 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.16 \frac{\text{US}\$.}{\text{m}}$$

• Lámpara minera

$$\frac{45.45 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und} \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.26 \frac{\text{US\$.}}{\text{m}}$$

Tabla 31: Costo de implemento de seguridad

IMPLEMENTOS DE SEGURIDAD	Unidad	Precio US\$	VIDA UTIL	Costo Unit. US\$	Cantidad	Precio/disp.	US\$/TM	Parcial (US\$/m.)
Ropa de jebe	J/día	27.27	100	0.27	2.00	0.55	0.03	0.379
Botas de jebe	Par/día	17.58	90	0.20	3.000	0.59	0.03	0.407
Guantes e cuero	Par/día	3.03	15	0.20	3.000	0.61	0.03	0.421
Mameluco	U/día	18.18	180	0.10	3.000	0.30	0.02	0.210
Protector	U/día	13.64	360	0.04	3.000	0.11	0.01	0.079
Respirador	U/día	21.21	180	0.12	3.000	0.35	0.02	0.245
Filtro de respirador	U/día	7.27	20	0.36	3.000	1.09	0.06	0.757
Correa de seguridad	U/día	6.06	360	0.02	3.000	0.05	0.00	0.035
Barbiquejo	U/día	1.51	360	0.00	3.000	0.01	0.00	0.009
Tapón de oídos	U/día	1.51	60	0.03	3.000	0.08	0.00	0.052
Tafilete	U/día	4.55	360	0.01	3.000	0.04	0.00	0.026
Lentes	U/día	4.55	60	0.08	3.000	0.23	0.01	0.158
Lampara minera	U/dia	45.45	360	0.13	3.000	0.38	0.02	0.263
COSTO DE IMPLEMENTO DE SEGURIDAD 4.38 0.25 3.04								

Fuente: Elaboración propio

4.5. Cuadro de resumen de costo de perforación y voladura de Bypass 260

Tabla 32: Resumen de costos de perforación y voladura

DESCRIPCION	US\$ /DISPARO	US\$ / TM	US\$ /M
COSTO DE MANO DE OBRA	102.94	5.79	71.48
COSTO DE PERFORACION	88.25	4.97	61.28
COSTO DE HERRAMIENTAS	2.70	0.15	1.88
C0ST0 DE VOLADURA	201.57	11.34	139.98
COSTO DE IMPLEMENTO DE SEGURIDAI	4.38	0.25	3.04
COSTO TOTAL	399.83	22.50	277.66

Fuente: Elaboración propio

4.6. Costo de limpieza y acarreo

Datos:

Capacidad de carro U-35 1.5 tm

Capacidad pala neumática B-12

Locomotora eléctrica

Tonelada a extraer 17.77 tm

Tiempo de carguío/carro 00:07:51 h:mm: ss.

Tiempo de acarreo 00:15:08 h:mm: ss

Tabla 33: Control de tiempo de limpieza y acarreo

N° de viajes	N° de viajes N° de carros		Tiempo de acarreo (h:mm:ss)	Tiempo total por viaje (h:mm:ss)	
	1	00:08:01			
1	2	00:07:00	00:16:00	00:48:01	
1	3	00:09:00	00.10.00	00.46.01	
	4	00:08:00			
	5	00:07:12			
2	6	00:08:05	00:15:12	00:46:01	
2	7	00:07:16	00:13:12		
	8	00:08:16			
	9	00:09:00			
2	10	00:07:13	00.15.12	00.46.27	
3	11	00:08:11	00:15:13	00:46:37	
	12	00:07:00			
	Tiempo Promedio	00:07:51	00:15:28	02:20:39	

Fuente: Elaboración propio

Tabla 34: Cuadro de costo de limpieza y acarreo

Discripcion	cantidad	US\$	105.87%	US\$/hora	horas	US\$ /disparo	US\$/TM	US\$/m
Palero	1.00	18.18	37.43	3.74	2.35	8.80	0.49	6.11
Carr Tub.(3er Hombre	1.00	16.67	34.32	3.43	2.35	8.06	0.45	5.60
Motorista	1.00	18.18	37.43	3.74	2.35	8.80	0.49	6.11
Ayudante Motorista	1.00	16.67	34.32	3.43	2.35	8.06	0.45	5.60
	33.72	1.90	23.42					
Discripcion	unidad	US\$	vida util	incide ncia	horas	US\$ /disparo	US\$/TM	US\$/m
Pala Neumática	Glb	14545.45	500000.00	0.03	2.35	0.07	0.004	0.05
Locomotora	Glb	14545.45	500000.00	0.03	2.35	0.07	0.004	0.05
Tubería de Aire	30 Mts	1.58	120.00	0.01	2.35	0.03	0.002	0.02
Aire comprimido	US\$ /hora	20.21	2.35	8.60	1.60	13.76	0.774	9.56
Fluido Eléctrico	US\$ /hora	14.82	2.35	6.31	0.75	4.73	0.266	3.28
		Costo de	equipos y mater	ilaes US\$ Por dis	paro	18.66	1.05	12.96
	C	52.38	2.95	36.37				

Fuente: Elaboración propio

4.7. Cuadro de resumen de costos de construcción del bypass 260

Tabla 35: Resumen de costo total actual

Descripcion	US\$./ disparo	US\$ /TM	US\$/m
Perforacion y voladura	399.83	22.5	277.66
Limpieza de desmonte	52.38	2.95	36.37
Costo total anterio	452.21	25.45	314.03

Fuente: Elaboración propio

CAPITULO V

PROPUESTA DE DISEÑO DE PERFORACIÓN Y VOLADURA PARA OPTIMIZAR LOS COSTOS EN LA CONSTRUCCIÓN DEL BYPASS 260

5.1. Descripción de construcción de Bypass 260 NV-1470

Esta labor está ubicada en el nivel 1470 m.s.n.m. en la Unidad Minera la Soledad S.A.C. por la dimensión del frente se ha visto por conveniente avanzar de manera convencional usando perforadores manual Jack leg y barreno de 6 pies, de esta manera se puede dar el cumplimiento al programa de avance lineal propuesta por la Compañía. El objetivo de la construcción de Bypass 260 es para extraer mineral y desmonte de las labores que se encuentra en niveles inferiores.

5.1.1. Evaluación geomecánica

En toda trayectoria se observa características de la diorita, se toma como muestra.

Tabla 36: Ensayo de compresión simple de la muestra de Bypass 260

Diametro Promedio (cm)	Longitud Promedio (cm)	Carga (kgf)	Resistencia a la Compresion Simple Promedio (kg/cm2)	Resistencia a la Compresion Simple Promedio (MPA)
5.5	11	39200	1634.29	160.16

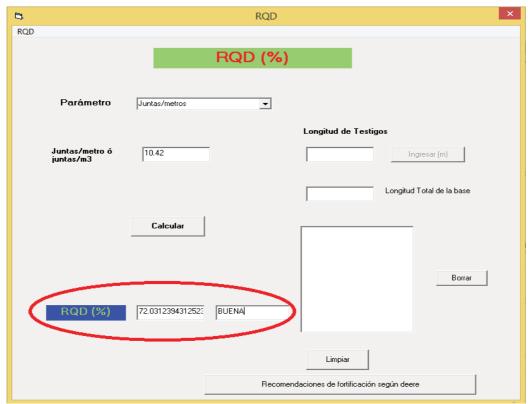
Fuente: Laboratorio de Geomecánica de carrera profesional de ingeniería de minas

(UNSA, Arequipa)

a) Cálculo de parámetro Índice de calidad de roca (RQD)

Se contabilizo 521 discontinuidades en 50 m lineales en Bypass 260, para encontrar el RQD utilizaremos la siguiente ecuación.

$$RQD = 100 * e^{-0.1*\lambda} * (0.10 * \lambda + 1)$$


$$\lambda = \frac{N^{\circ} \text{ de fisuras}}{\text{longitud}}$$

$$\lambda = \frac{521}{50}$$

$$\lambda = 10.42$$

$$RQD = 100 * e^{-0.1*\lambda} * (0.10 * \lambda + 1)$$

$$RQD = 100 * e^{-0.1*10.42} * (0.10 * 10.42 + 1)$$

Fuente: Geomecánica Geotable (www.IMUNT.PICZO.COM)

Figura 35: Datos ingresados al software para el cálculo de RQD

b) Calculo Rock Mass Rating (RMR)

Con los datos del campo, encontraremos RMR

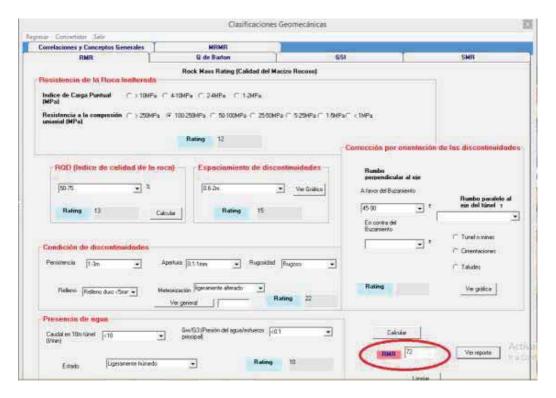
Tabla 37: Cálculo de RMR según Bieniawski 89

Parámetros			ESCALA D	E VALORE	S				
Resistencia	Carga Puntual	80 kg/cm²	40-80	kg/cm²	20-40 kg/cm²	10-20 kg/cm²		10 kg/cm²	
de la roca	A Compresión	2000	1000 -	- 2000	500 - 1000	250 - 500	100-250	30-100	oct-30
intacta	Simple	Kg/cm²	Kg/e	cm²	Kg/cm²	kg/cm²	kg/cm²	kg/cm²	Kg/cm²
V A	LOR	15	1	2	7	4	2	1	0
R. C).D.	90-100%	75-9	90%	50-75%	25-50%		25%	
V A	LOR	20	1	7	10	8		3	
Espaciado	Espaciado de Juntas		1 - 3	3 m	0.3 - 1 m	50-300 mm	50 mm		
V A	VALOR		2	25	20	10	5		
		Muy rugosas	Ligera	mente	Ligeramente	Espejo de falla			
		sin continuidad	rugosa < 1 mm.		rugosa < 1 mm.	o relleno de	relleno blando de espesor		
Condición	n de Juntas	cerradas,	de sepa	aración	de separación	espesor < 5m	< 5mm. ó abiertas <5 mm.		
		Paredes de	Paredes de		Paredes de	ó abiertos 1-5m	fisuras continuas		
		roca dura	roca dura		roca suave	FisurasContinua			
V A	LOR	25	2	.0	12	6		0	
	Cant. Infiltracion								
	10 m. de túnel	Nin	guna		25 litros/min	25-125 litros/m	>125 lit	tros/min.	
Aguas	Presión de agua								
Subterráneas	Esfuer. principal	Ce	ero		0.0-0.2	0.2-0.5		0.5	
	Situación				Solo húmedo	Ligera presión			
	General	Totalmen	te Seco		agua insterst.	de agua	Serios problemas de agua		
	VALOR	1	0		7	4	0		

Fuente: Clasificación de Bieniawski

Sumandos los valores encontrados en la tabla de Bieniawski

RMR =12+10+25+20+10


RMR= 77 %

Determinamos corrección por orientación según a la tabla Nº 14

45 $^{\circ}$ favorable.

RMR = 77 - 5

RMR = 72 %

Fuente: Geomecánica Geotable (www.IMUNT.PICZO.com)

Figura 36: Datos ingresados al Software Geotable

c) Calcular índice resistencia geología (GSI)

Para relacionarlo el GSI y el RMR de Biniawski (1989) debe ser mayor a 23 entonces

$$GSI = RMR - 5$$
$$GSI = 72 - 5$$

$$GSI = 67$$

Tabla 38: Cuadro de reporte del RQD y RMR

Discripcion	Valor total		Tipo de roca	Clasificacion de macizo rocoso		
RQD	72.03	%	Roca buena	II		
RMR	72	%	Roca buena	II		
GSI	67 9	%				

d) Área de Bypass 260

$$Area = \frac{\pi * (r)^{2}}{2} + H * B$$

$$Area = \frac{\pi * (1.05)^{2}}{2} + 2.10 * 1.35$$

$$Area = 4.57 \text{ m}2$$

e)
$$N^{\circ} Tal. = \left(\frac{P}{Dt}\right) + k * s$$

Tabla 39: Tipo de roca

Tipo de roca	Dt	k
Roca Dura	0.5	2
Roca Media	0.6	1.5
Roca Blanda	0.7	1

Fuente: Manual de voladura Exsa -2001

Perímetro de sección

$$P = 4 * \sqrt{S}$$

$$P = 4 * \sqrt{4.57}$$

$$P = 8.55 \text{ m}$$

•
$$N^{\circ} Tal. = \left(\frac{P}{Dt}\right) + k * s$$

$$N^{\circ} Tal. = \left(\frac{8.55}{0.5}\right) + 2 * 4.57$$

$$N^{\circ} Tal. = 26.24 \text{ taladros}$$

 N° de taladros total = 26 taladros + 7 taladros de arranque

 N° de taladro total = 33 taladros

Figura 37: Diseño de la nueva malla de perforación optimizado

Tabla 40: Cuadro de distribución de taladros optimizado

Distribucion de taladros	Nº Taladros			
	cargados	vacios		
Arranque	3	4		
Ay. de arranque	4			
Arrastres	4			
Cuadradores	4			
Ay. de cuadradores	4			
produccion	7			
Corona	3			
Sub total	29			
Total	33			

5.1.2. Cálculo de perforación optimizado

• Control de tiempo de perforación con barreno de 4 pies y broca 38 mm

Tabla 41: Control de tiempo de perforación de 4 pies optimizado

Taladros	N° Taladros	Tiempo perf/taladro (h:min:s)	Tiempo total de perforacion
Arranque	7	00:03:32	00:24:44
Ay. De arranque	4	00:02:44	00:10:56
Arrastre	4	00:02:19	00:09:16
Cuadradores	4	00:02:08	00:08:32
Ay. De cudradores	4	00:02:35	00:10:20
Produccion	7	00:02:35	00:18:05
corona	3	00:02:55	00:08:45
	33	00:02:41	1:30:38

Fuente: Elaboración propio

• Control de tiempo de perforación con barreno de 6 pies y broca 38 mm

Tabla 42: Control de tiempo de perforación de 6 pies optimizado

Taladros	N° Taladros	Tiempo perf/taladro (h:min:s)	Tiempo total de perforacion	
Arranque	7	00:01:43	00:12:01	
Ay. De arranque	4	00:01:33	00:06:12	
Arrastre	4	00:01:36	00:06:24	
Cuadradores	4	00:01:20	00:05:20	
Ay. De cudradores	4	00:01:53	00:07:32	
Produccion	7	00:01:39	00:11:33	
corona	3	00:01:01	00:03:03	
	33	00:01:32	0:52:05	

• Resumen de tiempo de perforación

Tabla 43: Resumen de tiempos total de perforación optimizado

Cuadro de resumen de tiempo	N° de taladros		Tiempo Productivos
Tiempo total de perforacion de barreno de 4 pies		33	1:30:38
Tiempo total de perforacion de barreno de 6 pies		33	0:52:05
Total			2:22:43

Fuente: Elaboración propio

• Tiempo promedio de perforación por taladro

tiempo de perforacion por taladro = 00h02min41s + 00h01min32s tiempo de perforacion por taladro = 0:04:13 min/taladro

• Tiempo efectivo de perforación

$$\frac{\text{Tiempo total}}{\text{taladro}} = 00:04:13 \frac{\text{min}}{\text{taladro}} * \frac{1 \text{hora}}{60 \text{ minutos}}$$

$$\frac{\text{Tiempo total}}{\text{taladro}} = 0.0703 \frac{\text{horas}}{\text{taladro}}$$

• Tiempo de perforación del frente

$$\frac{\text{Tiempo total}}{\text{frente}} = 0.0703 \frac{\text{horas}}{\text{taladro}} * 33 \text{ taladros/frente}$$

$$\frac{\text{Tiempo total}}{\text{frente}} = 2:22:43 \text{ horas}$$

5.1.3. Cálculo de voladura optimizado

Tabla 44: Reporte de operación optimizado de Bypass 260

ZONA_	NIVEL	FASE	VETA _	LABOR _	SECC.	PROG. MES	EJEC. MTS	CUMPL.	Nº DE DISP	Eficiencia
ZOIN	T(11)1	TASE	VLIA	LABOR	(Anch ▼	(Mt)	EJEC. WITE	% -	N DE DIS	m/ disparc ▼
SO S	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	24.24	40%	16	1.52
e n	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	24.12	40%	16	1.55
ue air	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	49.60	83%	31	1.60
Bu	1470	DESARROLLO	BUENOS AIRES	BY 260	7x8	60	22.40	37%	14	1.55
		TOTAL AVA	NCES BUENOS	AIRES		240.00	120.36	50%	77	1.55

Fuente: Operación mina la soledad

• Eficiencia total de perforación

eficiencia perf. =
$$\frac{\text{longitud de taladro}}{\text{longitud de barremo}} * 100 \%$$

eficiencia perf. =
$$\frac{1.71 \text{ m}}{1.82 \text{ m}} * 100 \%$$

• Eficiencia total de voladura

eficiencia voladura
$$=$$
 $\frac{\text{longitud de avance}}{\text{longitud de taladro}} * 100 \%$

eficiencia voladura
$$=$$
 $\frac{1.55 \text{ m}}{1.71 \text{ m}} * 100 \%$

• Avance efectivo por disparo

$$\frac{\text{avance}}{\text{disparo}} = \text{longitud de taladro} * \text{eff. voladura}$$

$$\frac{\text{Avance}}{\text{disparo}} = 1.71 * 0.9064$$

$$\frac{\text{Avance}}{\text{disparo}} = 1.55 \text{ m}$$

• Numero de cartuchos por taladro

Según la relación de longitud de carga del taco en un taladro perforado se tiene

N° de cartuchos =
$$\frac{\frac{2}{3} * L}{Le * 0.80}$$

Donde:

N° de cartuchos = total de cartuchos por taladro (unidades)

L = Longitud del taladro perforado (m)

Le = Longitud del cartucho (m)

80% = Porcentaje de confinamiento al ser atacado

N° de cartuchos =
$$\frac{\frac{2}{3} * L}{Le * 0.80}$$

N° de cartuchos =
$$\frac{\frac{2}{3} * 1.71}{0.2 * 0.80}$$

N° de cartuchos = 7 cartuchos/taladro

• Numero de cartuchos por disparo

$$N^{\circ} de \frac{cartuchos}{disparo} = N^{\circ} \frac{cartuchos}{taladro} * N^{\circ} \frac{taladros}{disparo}$$

$$N^{\circ}$$
 de $\frac{\text{cartuchos}}{\text{disparo}} = 7 \frac{\text{cartuchos}}{\text{taladro}} * 29 \frac{\text{taladros}}{\text{disparo}}$

$$N^{\circ}$$
 de $\frac{\text{cartuchos}}{\text{disparo}} = 210 \text{ cartuchos/disparo}$

• Cantidad de carga por disparo

Se utilizan explosivos

Semexa 80 % = 0.086 kg/cartucho

Semexa 65 % = 0.081 kg/cartucho

$$\frac{\text{kg}}{\text{disparo}}$$
 = Peso de cartucho * N° cartuchos/disparo

semexa 80 %
$$\frac{\text{kg}}{\text{disparo}} = 0.086 \frac{\text{kg}}{\text{cartucho}} * 181 \frac{\text{cartuchos}}{\text{disparo}}$$

semexa 80 %
$$\frac{\text{kg}}{\text{disparo}} = 15.57 \text{ kg/disparo}$$

semexa 65 %
$$\frac{\text{kg}}{\text{disparo}} = 0.081 \frac{\text{kg}}{\text{cartucho}} * 21 \frac{\text{cartuchos}}{\text{disparo}}$$

semexa 65 %
$$\frac{\text{kg}}{\text{disparo}} = 1.70 \text{ kg/disparo}$$

$$\frac{\text{kg}}{\text{disparo}}$$
 = semexa 80% + semexa 65 %

$$\frac{\text{kg}}{\text{disparo}} = 15.57 \frac{\text{kg}}{\text{disparo}} + \frac{1.70 \text{ kg}}{\text{disparo}}$$

$$\frac{\text{kg}}{\text{disparo}} = 17.27 \text{ kg/disparo}$$

• Cantidad de carga por taladro

$$\frac{kg}{taladro} = \frac{kg/disparo}{N^{\circ} de taladros cargados}$$

$$\frac{kg}{taladro} = \frac{17.27kg/disparo}{29 taladros cargados}$$

$$\frac{kg}{taladro} = 0.60 kg/taladro$$

Volumen roto

Volumen =
$$4.57 \text{ m2} * 1.55 \text{ m}$$

Tonelada roto

$$TM = 7.08 \text{ m}3/\text{disparo} * 2.7 \text{ tm/m}3$$

$$TM = 19.12 TM/disparo$$

Factor de carga (kg/m3)

$$FC = \frac{\frac{cantidad\ de\ carga}{disparo}}{Volumen\ roto}$$

$$FC = \frac{17.27 \frac{\text{kg}}{\text{disparo}}}{7.08 \text{ m}3}$$

$$FC = 2.44 \text{ kg/m}$$

Factor de potencia (kg/tm)

$$Fp = \frac{\frac{cantidad\ de\ carga}{disparo}}{\frac{Tonelada\ roto}{}}$$

$$Fp = \frac{\text{disparo}}{\text{Topelada roto}}$$

$$FC = \frac{17.27 \frac{\text{kg}}{\text{disparo}}}{19.12 \text{ TM}}$$

$$FC = 0.90 \text{ kg/TM}$$

• Factor de carga lineal

$$Fc = \frac{\frac{cantidad\ de\ carga}{disparo}}{metro\ lineal}$$

$$Fc = \frac{17.27 \frac{kg}{disparo}}{1.55 \text{ m}}$$

Fc = 11.14 kg/m

Tabla 45: Resumen de perforación y voladura optimizado

Parametros obtenidos en perforacion	•
Descripcion	unidad de medida
Seccion	2.10m x 2.40m
Densidad de roca	2.75 tm/m3
N° de taladros perforados	33 taladros
N° de taladros cargados	29 taladros
Longitud de barreno	6 pies
Longitud de barreno	4 pies
Broca	38 mm
Area	4.57 m ²
Tiempo de perforacion por taladro	4.13 min/taladro
Tiempo de perforacion por frente	2:22:43 h:mm:ss
eficiencia de peforacion	94%
Eficiencia de voladura	91%
Avance por disparo	1.55
Peso de semexa 80%	0.086 kg/cartucho
Peso de semexa 65%	0.081 kg/cartucho
N° de cartuchos por taladro	7 cartuchos/taladro
N° de cartuchos por disparo (semexa 80%)	182 cartuchos/disparo
N° de cartuchos por disparo (semexa 65%)	21 cartuchos/disparo
Cantidad de carga por disparo	17.27 kg/disparo
Cantidad de carga por taladro	0.60 kg/taladro
Volumen roto	7.08 m3
Tonelada roto	19.12 TM
Factor de carga	2.44 kg/m3
Factor de potencia	0.90 kg/tm
Factor de carga lineal	11.14 kg/m

5.1.4. Costo de construcción de bypass optimizado

a) Costo de mano de obra

Tabla 46: Cuadro de porcentaje de beneficio social

		APORTACIONES DEL EMPLEADOR							
DESCRIPCION	COSTO ACUMULADO	ESSALUD	S.C.T.R. PENSION	S.C.T.R. SALUD	SEGURO VIDA LEY	AFP. COMP.	C.T.S	TOTAL	TOTAL ANUAL
	ACOMICEADO	9.00%	7.73%	0.80%	1.13%	2.00%	12.77%	APORTES	ANOAL
DIAS EFECTIVOS	274.00	24.66	21.18	2.19	3.10	5.48	35.00	91.61	365.61
DOMINGOS	51.00	4.59	3.94	0.41	0.58	1.02		10.54	61.54
FERIADOS	10.00	0.90	0.77	0.08	0.11	0.20		2.07	12.07
VACACIONES	30.00	2.70	2.32	0.24	0.34	0.60		6.20	36.20
ASIG. FAMILIAR	13.50	1.22	1.04	0.11	0.15	0.27		2.79	16.29
DESCANSO MEDIO	0.00	0.00	0.00	0.00	0.00	0.00		0.00	-
GRATIFICACIONES	60.00	5.40	4.64	0.48	0.68	1.20		12.40	72.40
									-
TOTAL ANUAL		39.47	33.90	3.51	4.96	8.77	35.00	125.59	564.09

=	TOTAL ANUAL	=	2.0587	
	DIAS EFECTIVOS TRABAJADOS			
=	OSTO POR TAREA - JORNAL BASIC	=	1.05874	
	=	= DIAS EFECTIVOS TRABAJADOS	= DIAS EFECTIVOS TRABAJADOS	

105.87% Fuente: Departamento de administración la Soledad S.A.C

Perforista

PORCENTAJE DE BENEFICIOS SOCIALES OBREROS SOCAVON =

$$(\frac{18.18 \, \textit{US}\$.}{\text{disparo}} * 1.0587 + \frac{18.18 \, \textit{US}\$.}{\text{disparo}}) * \frac{\text{disparo}}{1.55 \, \text{m}} = \frac{24.15 \, \textit{US}\$.}{\text{m}}$$

Ayudante de perforista

$$(\frac{16.67US\$.}{disparo} * 1.0587 + \frac{16.67US\$.}{disparo}) * \frac{disparo}{1.55 m} = \frac{22.14US\$.}{m}$$

Carreros – lamperos

$$(\frac{15.15 \text{ US\$.}}{\text{disparo}} * 1.0587 + \frac{15.15 \text{ US\$.}}{\text{disparo}}) * \frac{\text{disparo}}{1.55 \text{m}} = \frac{20.12 \text{ US\$.}}{\text{m}}$$

Tabla 47: Costo de mano de obra optimizado

DESCRIPCION	PREC. US\$	105.870%	Costo Unit.	Cantidad	US\$/disp. U	S\$/TM	Parcial (US\$/m.)
Perforista-Palero	18.18	19.247	37.427	1.00	37.43	1.96	24.15
Ayudante perforista	16.67	17.649	34.319	1.00	34.32	1.79	22.14
Carreros-Lamperos	15.15	16.039	31.189	1.00	31.19	1.63	20.12
COSTO DE MANO DE OBR	RA.	63.06%		3.00	102.94	5.38	66.41

b) Costo de materiales de perforación

Perforadora

$$\frac{3860.61US\$}{M} \times \frac{M}{80000 \text{ P. P}} \times 6 \text{ pies } \times \frac{33 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 6.17 \frac{\text{US\$}}{\text{m}}$$

• Mantenimiento – reparación 10 %

$$\frac{3860.61 \text{ US\$.}}{M} \times \frac{M}{80000 \text{ P. P}} \times 0.10 \times 6 \text{ pies } \times \frac{33 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.62 \frac{\text{US\$.}}{\text{m}}$$

• Barra cónico 4 pies

$$\frac{83.64 \text{ US}\$.}{M} \times \frac{M}{1000 \text{ P. P}} \times 37.82 \text{ m } \times \frac{\text{disparo}}{1.44 \text{ m}} = 2.04 \frac{\text{US}\$.}{\text{m}}$$

• Barra cónico 6 pies

$$\frac{96.36 \text{ US\$.}}{\text{M}} \times \frac{\text{M}}{1000 \text{ P. P}} \times (56.73 - 37.82) \text{mx} \frac{\text{disparo}}{1.55 \text{ m}} = 1.18 \frac{\text{US\$.}}{\text{m}}$$

Broca 38 mm

$$\frac{22.73 \text{ US\$.}}{\text{M}} \times \frac{\text{M}}{500 \text{ P.P}} \times 6 \text{ pies } \times \frac{33 \text{ taldros}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{m}} = 5.80 \frac{\text{US\$.}}{\text{m}}$$

• Aceite de perforación

$$\frac{4.55 \text{ US\$.}}{\text{galon}} \times \frac{0.25 \text{ galones}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{m}} = 0.73 \quad \frac{\text{US\$.}}{\text{m}}$$

• Manguera de 1" (30 m)

$$\frac{1.58 \text{ US}\$.}{\text{m}} \times \frac{1}{120 \text{ disparos}} \times 30 \text{mx} \frac{\text{disparo}}{1.55 \text{ m}} = 0.26 \frac{\text{US}\$.}{\text{m}}$$

• Manguera de 1/2 " (30 m)

$$\frac{1.15 \text{ US}\$.}{\text{m}} \times \frac{1}{120 \text{ disparo}} \times 30 \text{ m} \times \frac{\text{disparo}}{1.44 \text{ m}} = 0.19 \frac{\text{US}\$.}{\text{m}}$$

• Aire comprimido

Tiempo de perforación por taladro: 4 min/taladro

$$\frac{00:04:24 \text{ minutos}}{\text{taladro}} \times \frac{1 \text{ hora}}{60 \text{ minutos}} = 0.0703 \text{ horas/taladro}$$

$$\frac{20.21 \text{ US\$.}}{\text{hora}} \times \frac{0.0703 \text{ horas}}{\text{taladro}} \times \frac{33 \text{ taladros}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 30.12 \frac{\text{US\$.}}{\text{m}}$$

Tabla 48: Costo de materiales de perforación optimizado

PERFO RACIO N	Unidad	Precio US\$	VIDA UTIL	Costo Unit.	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Perforadora	M/pie	3,860.61	80,000	0.0483	198.00	9.555	0.500	6.165
Manteni-Reparac 10%	M/pie	386.06	80,000	0.0048	198.00	0.956	0.050	0.616
Barra conico 4'	U/pie	83.64	1000	0.0836	37.82	3.163	0.165	2.041
Barra conico 6'	U/pie	96.36	1000	0.0964	18.92	1.823	0.095	1.176
Broca de boton 38"	U/pie	22.730	500	0.0455	198.00	9.001	0.471	5.807
Aceite de perforación	Gln./pie	4.550	1	4.5500	0.25	1.138	0.059	0.734
Manguera de 1"tramo	30Mt/pie	1.580	120	0.0132	30.00	0.395	0.021	0.255
Manguera de 1/2" tramo	30Mt/pie	1.15	120	0.0096	30.00	0.288	0.015	0.185
Aire comprimido	US\$/hora	20.21	0.07	1.4147	33.00	46.685	2.441	30.119
COSTO DE PERFORA	CION					73.003	3.817	47.10

c) Costo de materiales y herramientas

• Llave stilson de 8"

$$\frac{37.54 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{360 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.07 \frac{\text{US}\$}{\text{m}}$$

• Llave francesa de 8"

$$\frac{36.97 \text{ US\$}}{\text{und}} \times \frac{1 \text{und}}{360 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.07 \frac{\text{US\$}}{\text{m}}$$

• Barretilla 4', 5', 6'

$$\frac{45.45 \text{ US\$.}}{\text{und}} \times \frac{1 \text{und}}{120 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{m}} = 0.73 \frac{\text{US\$.}}{\text{m}}$$

Atacador

$$\frac{3.50 \text{ US}\$.}{\text{und}} \times \frac{1 \text{und}}{60 \text{ dias}} \times 5 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.19 \frac{\text{US}\$.}{\text{m}}$$

• Cucharilla

$$\frac{2.33 \text{ US}\$}{\text{und}} \times \frac{1 \text{ und}}{60 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.55 \text{m}} = 0.05 \frac{\text{US}\$}{\text{m}}$$

• Pico de punta

$$\frac{7.20 \text{ US\$}}{\text{und}} \times \frac{1 \text{ und}}{90 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.10 \frac{\text{US\$}}{\text{m}}$$

• Pala

$$\frac{11.36 \text{ US\$}}{\text{und}} \times \frac{1 \text{und}}{90 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.16 \frac{\text{US\$}}{\text{m}}$$

• Comba de 12 libras

$$\frac{12.12 \text{ US}\$}{\text{und}} \times \frac{1 \text{ und}}{120 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{m}} = 0.07 \frac{\text{US}\$}{\text{m}}$$

• Comba de 6 libras

$$\frac{8.48 \text{ US}\$}{\text{und}} \times \frac{1 \text{und}}{120 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.05 \frac{\text{US}\$}{\text{m}}$$

Saca barreno

$$\frac{2.33 \text{ US\$.}}{\text{und}} \times \frac{1 \text{und}}{200 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.01 \frac{\text{US\$.}}{\text{m}}$$

• Alambre N° 16

$$\frac{1.97 \text{ US}\$}{\text{kg}} \times \frac{1 \text{kg}}{5 \text{ dias}} \times 1 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.25 \frac{\text{US}\$}{\text{m}}$$

Tabla 49: Costo de materiales y herramientas optimizado

MATERIALES Y HERRAMIENTAS	Unidad	Precio US\$	VIDA UTIL	C. Unit. US\$/dia	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Llave Stilson de 8"	U/día	37.54	360	0.104	1.000	0.104	0.005	0.067
Llave fancesa de 8"	U/día	36.97	360	0.103	1.000	0.103	0.005	0.066
Barretilla de 4',5' y 6'	U/día	45.45	120	0.379	3.000	1.136	0.059	0.733
Atacador	U/día	3.50	60	0.058	5.000	0.292	0.015	0.188
Cucharilla	U/día	2.33	60	0.039	2.000	0.078	0.004	0.050
Pico de punta y pala	U/día	7.20	90	0.080	2.000	0.160	0.008	0.103
Lampa	U/día	11.36	90	0.126	2.000	0.252	0.013	0.163
Comba 12 Lbs	U/día	12.12	120	0.101	1.000	0.101	0.005	0.065
Comba 6 Lbs	U/día	8.48	120	0.071	1.000	0.071	0.004	0.046
Saca barreno	U/día	2.33	200	0.012	1.000	0.012	0.001	0.008
Alambre Nº. 16	K/día	1.97	5	0.394	1.000	0.394	0.021	0.254
COSTO DE HERRAMI	ENTAS					2.702	0.141	1.74

d) Costo de voladura

• Dinamita Semexa 80 %

$$\frac{0.67 \text{ US}\$.}{\text{unidad}} \times \frac{182 \text{ unidad}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 78.67 \frac{\text{US}\$.}{\text{m}}$$

• Dinamita Semexa 65 %

$$\frac{0.62 \text{ US\$.}}{\text{unidad}} \times \frac{21 \text{ unidad}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 8.40 \frac{\text{US\$.}}{\text{m}}$$

• Mecha Rapida z-18

$$\frac{0.74 \text{ US\$.}}{\text{m}} \times \frac{6\text{m}}{\text{disparo}} \times \frac{\text{disparo}}{1.55 \text{ m}} = 2.86 \frac{\text{US\$.}}{\text{m}}$$

• Carmex 7'

$$\frac{0.90US\$.}{unidad} \times \frac{29 \text{ unidad}}{disparo} \times \frac{disparo}{1.55 \text{ m}} = 16.84 \frac{US\$.}{m}$$

Tabla 50: Costo de explosivos optimizado

EXPLOSIVO	Unidad	Percio US\$	cantidad	Costo Unit.	US\$/TM	Parcial (US\$/m.)
Semexa 80 %	Unidad	0.67	182	121.94	6.38	78.67
Semexa 65%	Unidad	0.62	21	13.02	0.68	8.40
Carmex 7"	Unidad	0.90	29	26.10	1.36	16.84
Mecha Rapida	mts.	0.74	6	4.44	0.23	2.86
COSTO DE VOLAD	URA			165.50	8.65	106.77

e) Costo de implementos de seguridad

• Ropa de jebe

$$\frac{27.27 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{100 \text{ dias}} \times 2 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.35 \frac{\text{US}\$.}{\text{m}}$$

• Bota de jebe

$$\frac{17.58 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{90 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.38 \frac{\text{US}\$.}{\text{m}}$$

• Guantes de cuero

$$\frac{3.03 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{15 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{m}} = 0.39 \frac{\text{US\$.}}{\text{m}}$$

• Mameluco

$$\frac{18.18 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{180 \text{ dias}} \times 3 \text{ und} \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.20 \frac{\text{US\$.}}{\text{m}}$$

Protector

$$\frac{13.64 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.07 \frac{\text{US}\$.}{\text{m}}$$

Respirador

$$\frac{21.21 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{180 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.23 \frac{\text{US\$.}}{\text{m}}$$

• Filtro de respirador

$$\frac{7.27 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{20 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.70 \frac{\text{US}\$.}{\text{m}}$$

• Correa de seguridad

$$\frac{6.06.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{m}} = 0.03 \frac{\text{US}\$.}{\text{m}}$$

• Barbiquejo

$$\frac{1.51 \text{ US\$.}}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.01 \frac{\text{US\$.}}{\text{m}}$$

• Tapón de oído

$$\frac{1.51 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{60 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.05 \frac{\text{US}\$.}{\text{m}}$$

• Tafilete

$$\frac{4.55 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{und} \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.02 \frac{\text{US}\$.}{\text{m}}$$

Lentes

$$\frac{4.55}{\text{und}} \times \frac{\text{und}}{60 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.15 \frac{\text{US\$}}{\text{m}}$$

• Lámpara minera

$$\frac{45.45 \text{ US}\$.}{\text{und}} \times \frac{\text{und}}{360 \text{ dias}} \times 3 \text{ und } \times \frac{\text{disparo}}{1.55 \text{ m}} = 0.24 \frac{\text{US}\$.}{\text{m}}$$

Tabla 51: Costo de implemento de seguridad optimizado

IMPLEMENTOS DE SEGURIDAD	Unidad	Precio US\$	VIDA UTIL	Costo Unit. US\$	Cantidad	US\$/disp.	US\$/TM	Parcial (US\$/m.)
Ropa de jebe	J/día	27.27	100	0.27	2.00	•		0.352
Botas de jebe	Par/día	17.58	90	0.20	3.000	0.59	0.03	0.378
Guantes e cuero	Par/día	3.03	15	0.20	3.000	0.61	0.03	0.391
Mameluco	U/día	18.18	180	0.10	3.000	0.30	0.02	0.195
Protector	U/día	13.64	360	0.04	3.000	0.11	0.01	0.073
Respirador	U/día	21.21	180	0.12	3.000	0.35	0.02	0.228
iltro de respirador	U/día	7.27	20	0.36	3.000	1.09	0.06	0.704
Correa de seguridad	U/día	6.06	360	0.02	3.000	0.05	0.00	0.033
Barbiquejo	U/día	1.51	360	0.00	3.000	0.01	0.00	0.008
apón de oídos	U/día	1.51	60	0.03	3.000	0.08	0.00	0.049
`afilete	U/día	4.55	360	0.01	3.000	0.04	0.00	0.024
entes	U/día	4.55	60	0.08	3.000	0.23	0.01	0.147
ampara minera	U/dia	45.45	360	0.13	3.000	0.38	0.02	0.244
COSTO DE IMPLEMENTO DE SEGURIDAD 4.38 0.23 2.83								

5.1.5. Resumen de costos de perforación y voladura optimizado

Tabla 52: Resume de costos de perforación y voladura optimizado

DESCRIPCION	US\$/DISPARO	US\$/TM	US\$/M
COSTO DE MANO DE OBRA	102.94	5.38	66.41
COSTO DE PERFORACION	73.003	3.817	47.10
COSTO DE HERRAMIENTAS	2.702	0.141	1.74
C0ST0 DE VOLADURA	165.50	8.65	106.77
COSTO DE IMPLEMENTO DE SEGURIDAD	4.38	0.23	2.83
COSTO TOTAL S/.	348.52	18.22	224.85

5.1.6. Costo de carguío y acarreo

Tabla 53: Control de tiempo de carguío y acarreo

	Tiempo de	Tiempo de	Tiempo total
N° de carros	carguio	acarreo	por viaje
	(h:mm:ss)	(h:mm:ss)	(h:mm:ss)
1	00:08:01		
2	00:07:00		
3	00:09:00	00:16:13	00:56:26
4	00:08:12		
5	00:80:00		
6	00:07:12		
7	00:08:05		
8	00:07:16	00:15:12	00:54:12
9	00:08:11		
10	00:08:16		
11	00:09:00		
12	00:07:13	00:15:13	00:37:38
13	00:06:12		
Tiempo Promedio	00:07:49	00:15:33	02:28:16

Fuente: Elaboración propio

Tabla 54: Costo de carguío y acarreo

Discripcion	cantidad	US\$	105.87%	US\$ /hora	horas	US\$/disparo	US\$/TM	US\$/m
Palero	1.00	18.18	37.43	3.74	2.47	9.24	0.48	5.96
Carr Tub.(3er Hombre)	1.00	16.67	34.32	3.43	2.47	8.48	0.44	5.47
Motorista	1.00	18.18	37.43	3.74	2.47	9.24	0.48	5.96
Ayudante Motorista	1.00	16.67	34.32	3.43	2.47	8.48	0.44	5.47
	Costo de mano de obra US\$ Por disaparo 35.44							22.87
Discripcion	unidad	US\$	vida util	incide ncia	horas	US\$ /disparo	US\$/TM	US\$/m
Pala Neumática	Glb	14545.45	500000.00	0.03	2.47	0.07	0.004	0.05
Locomotora	Glb	14545.45	500000.00	0.03	2.47	0.07	0.004	0.05
Tubería de Aire	30 Mts	1.58	120.00	0.01	2.47	0.03	0.002	0.02
Aire comprimido	S/hora	20.21	1.70	11.89	2.47	29.36	1.536	18.94
Fluido Eléctrico	S/hora	14.82	0.78	19.00	2.47	46.93	2.454	30.28
		Costo de e	quipos y mate	rilaes US\$ Por o	lis paro	76.47	4.00	49.34
	Costo por disparo 111.91							72.20

5.1.7. Resumen de costos de construcción del Bypass 260

Tabla 55: Cuadro de costo de construcción del Bypass 260

Descripcion	US\$. / disparo	US\$/TM	US\$/m
Perforacion y voladura	348.52	18.22	224.85
Limpieza de desmonte	111.91	5.85	72.2
Costo total optimo	460.43	24.07	297.05

Fuente: Elaboración propio

5.2. Análisis de resultados

La optimización de perforación y voladura se ha realizado en Bypass 260 en nivel 1470 de la Unidad minera La Soledad y esto deberá cumplirse para optimización de los costos operativos y garantizar un ambiente de trabajo seguro para el personal.

5.2.1. Resultados comparativos de perforación

• Malla de perforación anterior

En el diseño de la malla de perforación anterior en el desarrollo de Bypass 260 no se consideran las características del macizo rocoso.

En esta malla de perforación se utilizado 39 taladros con corte quemado de los cuales 4son de alivio, taladros de 6 pies (ver Tabla N° 57)

Tabla 56: Distribución de taladros anterior

Distribucion de taladros	Nº Taladros			
Distribucion de talauros	cargados	vacios		
Arranque	5	4		
Ay. de arranque	4			
Arrastres	5			
Cuadradores	4			
Ay. de cuadradores	4			
produccion	8			
Corona	5			
Sub total	35			
Total	39			

Malla de perforación optimizado

Para diseñar la nueva malla de perforación en desarrollo de Bypass 260 se realizado los cálculos considerando las características geológicas y geomecanicas del macizo rocoso, se ha determinado 33 taladro perforados de los cuales 7 taladros de arranque y 4 de alivio (ver Tabla N° 57)

Tabla 57: Distribución de taladros optimizado

Distribucion de taladros	Nº Taladros			
	cargados	vacios		
Arranque	3	4		
Ay. de arranque	4			
Arrastres	4			
Cuadradores	4			
Ay. de cuadradores	4			
produccion	7			
Corona	3			
Sub total	29			
Total	33			

Tabla 58: Comparación de Distribución de taladros

Distribucion de taladros	N° de taladros anterior	N° de taladros optimizados	
Arranque	9	7	
Ay. de arranque	4	4	
Arrastres	5	4	
Cuadradores	4	4	
Ay. de cuadradores	4	4	
produccion	8	7	
Corona	5	3	
Total	39	33	

Figura 38: Resultados comparativos de distribución de taladros

• Tiempo de perforación

Tabla 59: Comparación de tiempo de perforación actual y optimizada

Descripcion	Tiempo actual	Tiempo optimizada
Tiempo de perforacion por taladro	4.24 min/taladro	4.13 min/taladro
Tiempo de perforacion por frente	02:55:52 h:mm:ss	02:22:43 h:mm:ss

Fuente: Elaboración propio

5.2.2. Resultados comparativos de voladura

• Carga explosiva actual

En la voladura anterior se ha utilizado solo semexa 80 % debido ala mala distribución y carguío a los taladros (ver Tabla N° 60)

Tabla 60: Datos de parámetros de voladura actual

Parametros obtenidos	voladura
Descripcion	unidad de medida
Peso de semexa 80%	0.086 kg/cartucho
N° de cartucho por taladro	7 cartuchos/taladro
N° de cartucho por disparo	245 cartuchos/disparo
Cantidad de carga por disparo	21.07 kg/disparo
Cantidad de carga por taladro	0.602 kg/taladro
Volumen roto	6.58 m3
Tonelada roto	17.77 TM
Factor de carga	3.20 kg/m3
Factor de potencia	1.19 kg/tm
Factor de carga lineal	14.63 kg/m

Fuente: Elaboración propio

Carga explosiva optimizada

Según características geológicas y geomecánicas del macizo rocoso se ha seleccionado el explosivo semexa 80 % y semexa 65 % los resultados muestran en la tabla N° 61.

Tabla 61: Datos de parámetros de voladura optimizada

Parametros obtenido	os voladura optimizada
Descripcion	unidad de medida
Peso de semexa 80%	0.086 kg/cartucho
Peso de semexa 65%	0.081 kg/cartucho
N° de cartuchos por taladro	7 cartuchos/taladro
N° de cartuchos por disparo (semexa 80%)	182 cartuchos/disparo
N° de cartuchos por disparo (semexa 65%)	21 cartuchos/disparo
Cantidad de carga por disparo	17.27 kg/disparo
Cantidad de carga por taladro	0.60 kg/taladro
Volumen roto	7.08 m3
Tonelada roto	19.12 TM
Factor de carga	2.44 kg/m3
Factor de potencia	0.90 kg/tm
Factor de carga lineal	11.14 kg/m

Tabla 62: Datos de parámetros de voladura actual y optimizada

Parametros obtenidos vo	oladura actual y optimizada		
Descripcion	Anterior	Optimizada	Unidad
Peso de semexa 80%	0.086	0.086	kg/cartucho
Peso de semexa 65%	0	0.081	kg/cartucho
N° de cartuchos por taladro	7	7	cartuchos/taladro
N° de cartuchos por disparo (semexa 80%)	245	182	cartuchos/disparo
N° de cartuchos por disparo (semexa 65%)	0	21	cartuchos/disparo
Cantidad de carga por disparo	21.07	17.07	kg/disparo
Cantidad de carga por taladro	0.602	0.6	kg/taladro
Volumen roto	6.58	7.08	m3
Tonelada roto	17.77	19.12	TM
Factor de carga	3.2	2.44	kg/m3
Factor de potencia	1.19	0.9	kg/tm
Factor de carga lineal	14.63	11.14	kg/m

Figura 39: Resultados comparativos de parámetros de voladura actual y optimizada

5.2.3. Resultados comparativos de costo de perforación y voladura

Costo de perforación y voladura anterior

Tabla 63: Costo de perforación y voladura anterior

DESCRIPCION	US\$/DISPARO	US\$/TM	US\$/M
COSTO DE MANO DE OBRA	102.94	5.79	71.48
COSTO DE PERFORACION	88.25	4.97	61.28
COSTO DE HERRAMIENTAS	2.70	0.15	1.88
C0ST0 DE VOLADURA	201.57	11.34	139.98
COSTO DE IMPLEMENTO DE SEGURIDAD	4.38	0.25	3.04
COSTO TOTAL	399.84	22.50	277.66

• Costo de perforación y voladura optimizado

Tabla 64: Costo de perforación y voladura optimizada

DESCRIPCION	US\$/DISPARO	US\$/TM	US\$/M
COSTO DE MANO DE OBRA	102.94	5.38	66.41
COSTO DE PERFORACION	73.00	3.82	47.10
COSTO DE HERRAMIENTAS	2.70	0.14	1.74
C0ST0 DE VOLADURA	165.50	8.65	106.77
COSTO DE IMPLEMENTO DE SEGURIDAD	4.38	0.23	2.83
COSTO TOTAL	348.52	18.22	224.85

Fuente: Elaboración propio

Tabla 65: Resultado de comparativo de costo perforación y voladura

DESCRIPCION	ANTERIOR			OPTIMIZADO			DIFERENCIA		
DESCRIPCION	US\$/DISPARO	US\$/TM	S/./M	US\$/DISPARO	US\$/TM	S/./M	US\$/DISP.	US\$/TM	US\$/M
COSTO DE MANO DE OBRA	102.94	5.79	71.48	102.94	5.38	66.41	0.00	0.41	5.07
COSTO DE PERFORACION	88.25	4.97	61.28	73.00	3.82	47.10	15.25	1.15	14.18
COSTO DE HERRAMIENTAS	2.70	0.15	1.88	2.70	0.14	1.74	0.00	0.01	0.14
C0ST0 DE VOLADURA	201.57	11.34	139.98	165.50	8.65	106.77	36.07	2.69	33.21
COSTO DE IMPLEMENTO DE SEGURIDAD	4.38	0.25	3.04	4.38	0.23	2.83	0.00	0.02	0.21
COSTO TOTAL	399.84	22.50	277.66	348.52	18.22	224.85	51.32	4.28	52.81

Fuente: Elaboración propio

Figura 40: Costo de perforación actual

5.2.4. Resultados comparativos de costo de construcción de Bypass 260

• Costo de construcción anterior

Tabla 66: Cuadro de costo de construcción anterior

DESCRIPCION	US\$/TM	US\$/M
Costo de perforacion y voladura	22.5	277.66
Costo de limpieza de desmonte	2.95	36.37
Costo total	25.45	314.03

Fuente: Elaboración propio

Costo de construcción optimo

Tabla 67: Cuadro de costo de construcción optimo

DESCRIPCION	US\$/TM	US\$/M
Costo de perforacion y voladura	18.22	224.85
Costo de limpieza de desmonte	5.85	72.2
Costo total	24.07	297.05

Fuente: Elaboración propio

Tabla 68: Cuadro de comparación de costo de Bypass 260

DESCRIPCION	ANTE	ANTERIOR		ACTUAL		ENCIA
DESCRIPCION	US\$/TM	US\$/M	US\$/TM	US\$/M	US\$/TM	US\$/M
Costo de Construccion de Bypass 260	25.45	314.03	24.07	297.05	1.38	16.98

Figura 41: Resultado de construcción de Bypass 260

5.2.5. Resultados comparativos de construcción de Bypass 260

Tabla 69: Cuadro de parámetros de construcción de Bypass 260

Descripcion	Anterior	Prouesto	unidad
Seccion	2.10x2.40	2.10x2.40	m2
Densidad de roca	2.75	2.75	TM/m3
N° de taladros perforados	39	33	taladros
N° de taladros cargados	35	29	taladros
Longitud de barreno	6	6	pies
Longitud de barreno	4	4	pies
Broca	38	38	mm
Area	4.57	4.57	m2
Tiempo de perforacion por taladro	00:04:24	00:04:13	h:mm:ss
Tiempo de perforacion por frente	02:55:52	02:22:43	h:mm:ss
eficiencia de peforacion	94	94	%
Eficiencia de voladura	84	91	%
Avance por disparo	1.44	1.55	m
Peso de semexa 80%	0.086	0.086	kg/cartucho
Peso de semexa 65%		0.081	kg/cartucho
N° de cartuchos por taladro	7	7	cartuchos/ taladro
N° de cartuchos por disparo (semexa 80%)	245	182	cartuchos/disparo
N° de cartuchos por disparo (semexa 65%)		21	cartuchos/disparo
Cantidad de carga por disparo	21.07	17.27	kg/disparo
Cantidad de carga por taladro	0.602	0.6	Kg/taladro
Volumen roto	6.58	7.08	m3
Tonelada roto	17.77	19.12	TM
Factor de carga	3.2	2.44	kg/m3
Factor de potencia	1.19	0.9	kg/tm
Factor de carga lineal	14.63	11.14	kg/m
Costo perforacion y voladura por disparo	399.83	348.52	US\$/disparo
Costo perforacion y voladura por tonelada	22.5	18.22	US\$/TM
costo peroforacion y voladura por metro	277.66	224.85	US\$/m
costo de contruccion de By pass 260 por tonelada	25.45	24.07	US\$/TM
costo de contruccion de By pass 260 por metro	314.03	297.05	US\$/m

CONCLUSIONES

- Utilizando el nuevo diseño de malla de perforación en el frente de desarrollo del Bypass
 260 los taladros se han reducido de 39 a 33 taladros perforados con 6 pies con una diferencia de 6 taladros, se cambia el arranque de 9 taladros a 7 taladros.
- El avance lineal de 1.44 m/disparo con el anterior se ha mejorado con el propuesto a
 1.55 m/disparo, se concluye que la eficiencia aumentado en 7%.
- 3. En la voladura del frente Bypass 260 NV 1470 se redujo el factor de carga de 3.2 kg/m3 a 2.44 kg/m3, igualmente factor de potencia de 1.19 kg/tm a 0.90 kg/tm y consumo de explosivo de 21.07 kg/disparo a 17.27 kg/disparo.
- 4. Según la evaluación de las operaciones unitarias, el costo unitario de perforación y voladura 399.83 US\$ /disparo, con el propuesto se optimiza a 348.52 US\$ /disparo, concluimos que con el diseño propuesto ahorramos 51.32 US\$ / disparo.

RECOMENDACIONES

- Realizar los controles geomecánicas periódico para tener datos actualizados y conocer el comportamiento de macizo rocoso.
- Para el diseño de malla de perforación y voladura se debe marcar el frente distribuir bien los taladros y alivio según el nuevo diseño de malla y se obtendrá un buen avance lineal.
- 3. Se debe cumplir los parámetros de diseño de perforación y voladura, de carguío de taladros y buen confinamiento para obtener una buena fragmentación de macizo rocoso y optimizar los costos de perforación y voladura en la construcción de By pass 260.
- 4. Se recomienda una constante capacitación y supervisión al personal de perforación y voladura para conseguir una eficiencia óptima.

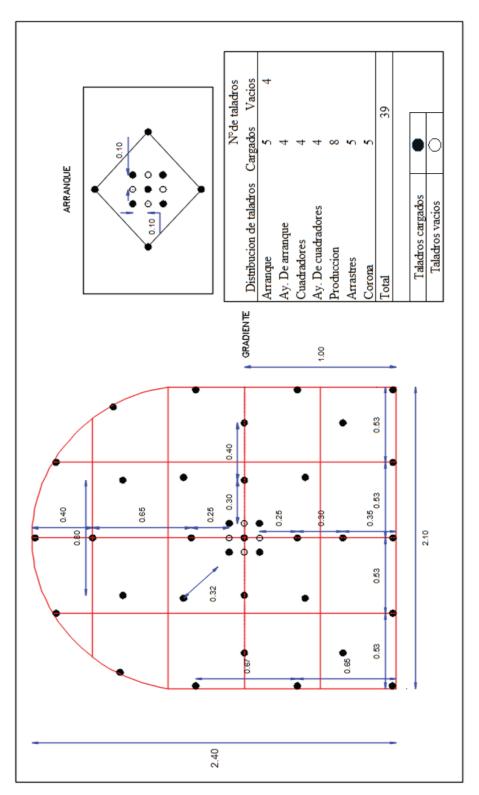
REFERENCIAS BIBLIOGRÁFICAS

- Bonilla, R. (2013). Fracturación de Rocas.
- Calvin, J. K. (2000). Diseño de voladura. Mexico.
- Caricia, M., & Huaranca, O. (15 de Diciembre de 2017). Optimización de la voladura en la unidad de producción zona Lurdes: Consorcio Minero Horizonte S.A Parcoy La Libertad. Cusco, Peru.
- Castilla J, Herrera H. J. (2013). Perforación y voladura de rocas en minería.
- Chahuares, F. C. (23 de Junio de 2012). *Nuevo diseño de la malla para mejorar la perforación* y voladura en proyectos de explotación y desarrollo, Mina EL COFRE. Puno Perú:
- Chambi A. (2011). Optimización de perforación y voladura en la ejecución de la rampa 740 unidad VINCHOS VOLCAN S. A. A. Puno: Universidad Nacional del Altiplano Puno. Universidad Nacional del Altiplano. Puno, Peru .
- Clemente, Y. T. (2009). Analsis de costo de operacion en mineria subterranea e evaluacion de proyectos mineros . Mexico.
- EXSA. (2002). Manual práctico de voladura de rocas. Peru: Edición Especial Peru.
- Famesa explosivos (2018). Catálogos de explosivos y accesorios
- Flores, M. R. (23 de Agosto de 2013). Optimización de los costos operativos de las operaciones unitarias de perforación y voladura en la C.M Chambi Mina Rinconada. Puno, Peru.
- Lopez, J., & Pernia, L. (2003). *Manual de perforación y voladura de rocas. Madrid España:* Instituto Geologico Minero de España. España: Instituto geologico Minero de España.
- Minera la soledad S.A.C (2016). Informe técnico de geología
- Ramírez, P., Uyanguren, W., & Alejano, M. (2004). Indice de resistencia geologica.

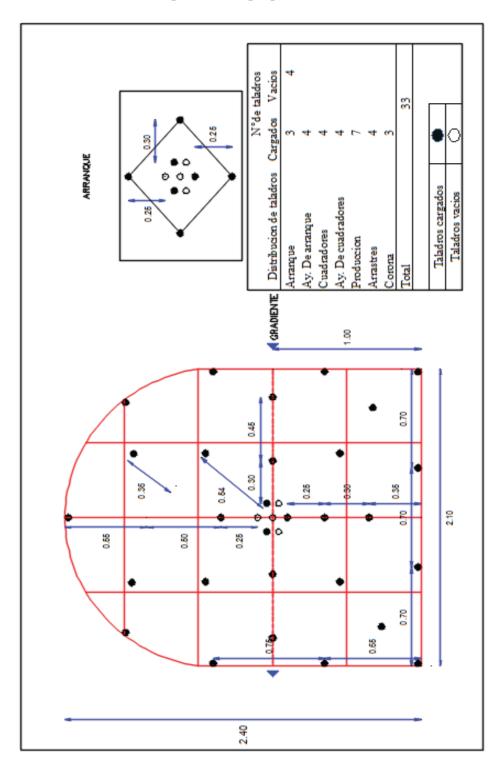
Rodriguez, R. H. (30 de setiembre de 2011). *Mejoramiento de las Operaciones Unitarias en Labores de Desarrollo en Minería Subterránea Convesional – Unidad Minera el Cofre*. Puno , Peru.

Vega, L., & Murillo, J. (1990). Perforacion y voladura para operaciones mineras . Bolivia.

ANEXOS

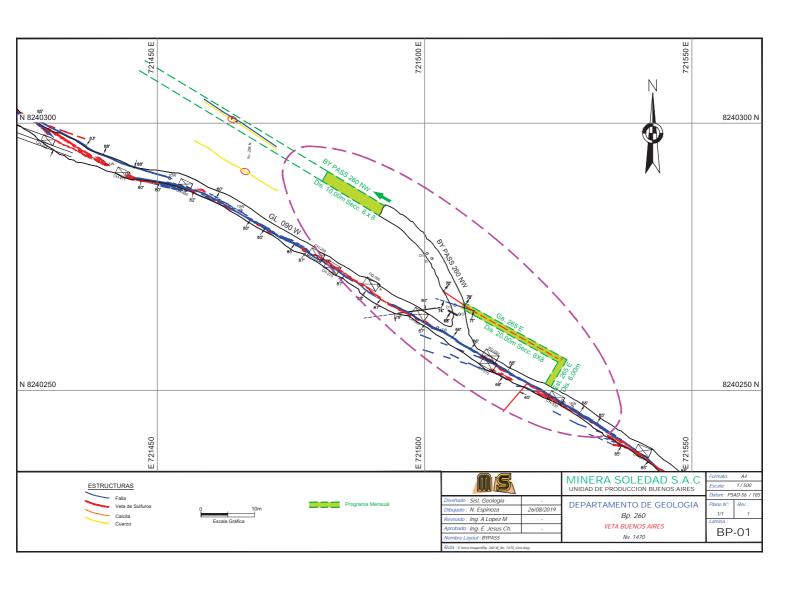

Anexo 01: Costo de construcción de Bypass 260 anterior

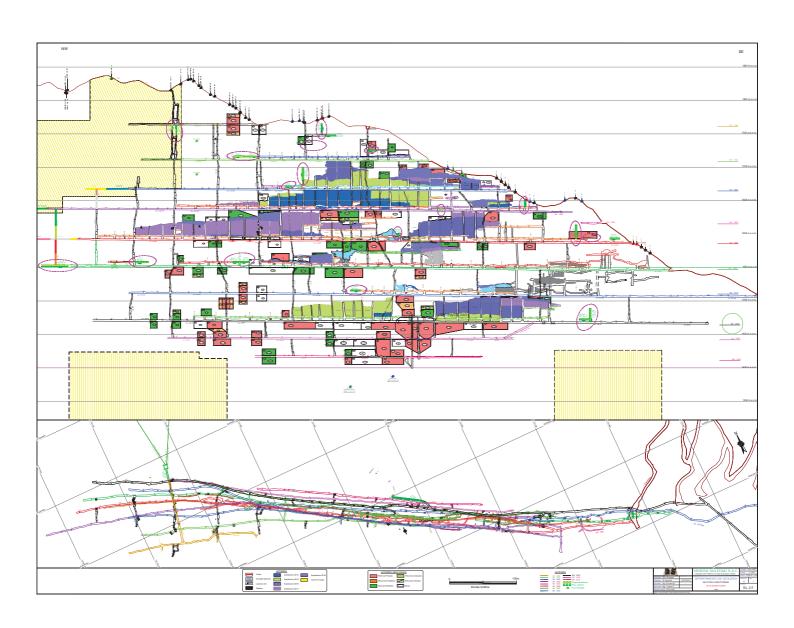
Perforista-Palero			Limnie	za con Pala N	Jeumatica v C	arro Minero			
BYPASS Factor de Cargo 3.56 tong. Barroom 5.000 5.	PARAMETROS:		ыпріе	Lu voii Faid l'			0.3048	EFICIENCIA POR DISP	ARO
Per		BY PASS	Factor de Caro	3,56		рю аппъ.	0.5040	83.77%	1.44
Para Para Para Para Para Para Para Par						6	6	N° tal-perf	39
STORE ST	reaM²:	4.57		3.3			1.83	N° tal-carg	35
Part	ipo de roca:	Dura	Carmex 7"	35	long. Perfor:			din/tal	7.0
reforistar-Palero 18.18 19.247 37.427 1.00 1.00 17.649 34.319 1.00	•	QUEMADO	Mecha Rapida	8		1.72	1.44	volumen (M3)	6.58
Section Sec	MANO DE OBRA	PRE	C. US\$	105.870%	Costo Unit.	Cantidad	US\$/disp.	Parcial (US	\$/m.)
15.15 16.039 31.189 1.00 1.	erforista-Palero	1	8.18	19.247	37.427	1.00	37.43	25.99	
STO DEMANO DEDMA	yudante perforista	1	6.67	17.649	34.319	1.00	34.32	23.83	
PREPARATION Unidad Precio USS VIDA UTIL Costo Unit Cantidad Unit Cantidar Mirpie 3.860.61 80,000 0.0483 234.00	arreros-Lamperos	1	5.15	16.039	31.189	1.00	31.19	21.66	
erforadora M/pic 3,860.61 80,000 0.0483 234.00 lanteni-Reparace 10% M/pic 386.06 80,000 0.0048 234.00 arrar aconico 4' U/pic 836.64 80,000 0.0048 234.00 larrar aconico 4' U/pic 96.36 1000 0.0964 222.11 roca de boton 38" U/pic 96.36 1000 0.0964 222.11 roca de boton 38" U/pic 22.730 500 0.0455 234.00 larrar aconico 6' U/pic 96.36 1000 0.0964 222.11 roca de boton 38" U/pic 22.730 500 0.0455 234.00 larrar aconico 6' U/pic 1.550 10 4.550 0.032 30.00 languar de 1'tramo 30Mt/pic 1.580 120 0.0032 30.00 languar de 1'tramo 30Mt/pic 1.15 120 0.0096 30.00 larger de 1'tramo 30Mt/pic 1.100 1.000 larger de 1'tramo 4'.5' y 6' U/dia 37.54 360 0.104 1.000 larger de 1'tramo 4'.5' y 6' U/dia 37.54 360 0.104 1.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.038 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.008 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 60 0.008 2.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 0.00 1 3.50 0.00 1 3.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 0.00 1 3.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 0.00 1 3.000 larger de 1'tramo 4'.5' y 6' U/dia 3.50 0.00 1 3.000 larger de 1'dia 4.5 4.5 5 3.00 0.00 1 3.000 larger de 1'dia 4.5 4.5 5 3.	OSTO DE MANO DE	OBRA		63.06%		3.00	102.94	71.48	
arra conico 4' Upie 83.6.0 80,000 0.0048 234.00 arra conico 6' Upie 83.6.4 1000 0.03636 44.22 arra conico 6' Upie 96.36 1000 0.0964 22.11 arra conico 6' Upie 22.730 500 0.0455 234.00 0.025 arra conico 6' Gln/pie 4.550 11 4.550 0.025 234.00 arra conico 6' Gln/pie 4.550 11 4.550 0.025 33.00 arra conico 6' Cln/pie 1.580 120 0.0132 30.00 arra conico 10' Cln/pie 1.580 120 0.0996 30.00 arra conico 10' Cln/pie 1.15 120 0.010 31 1.000 arra conico 10' Cln/pie 1.000 1.00	ERFO RACIO N	Unidad	Precio US\$	VIDA UTIL	Costo Unit.	Cantidad	US\$/disp.	Parcial (US	\$/m.)
arra conico 4' U/pie 96.36 1000 0.0836 44.22 11 arra conico 6' U/pie 96.36 1000 0.0964 22.11 arra conico 6' U/pie 96.36 1000 0.0964 22.11 arra conico 6' U/pie 96.36 1000 0.0964 22.11 arra conico 6' U/pie 96.36 1000 0.0965 234.00 0.025 languara de 1'tramo 30Mt/pie 1.580 12 0.0132 30.00 languara de 1'tramo 30Mt/pie 1.158 120 0.0996 30.00 ire comprimido 8'/hora 20.21 0.073 1.4753 39.00 DOSTO DE PERFORACION MATRIALES V IMMARIALES V IMMARIA Precio USS VIDA UIII. US/dia Cantidad US lave fancesa de 8" U/dia 37.54 360 0.104 1.000 lave fancesa de 8" U/dia 36.97 360 0.103 1.000 arretilla de 4',5' y 6' U/dia 36.97 360 0.0103 1.000 arretilla de 4',5' y 6' U/dia 36.97 360 0.003 2.000 iredador U/dia 33.50 60 0.058 5.000 iredador U/dia 33.50 60 0.058 2.000 iredador U/dia 33.50 60 0.058 2.000 iredador U/dia 11.36 90 0.126 2.000 iredador U/dia 11.36 90 0.080 2.000 iredador U/dia 11.36 90 0.080 2.000 iredador U/dia 11.36 90 0.091 2.000 iredador U/dia 11.36 90 0.092 2.000 iredador U/dia 2.33 2.00 0.012 1.000 iredador U/dia 2.33 2.00 0.012 1.000 iredador U/dia 2.33 2.00 0.012 2.000 iredador U/dia 3.000 ireda	erforadora	M/pie	3,860.61	80,000	0.0483	234.00	11.292	7.842	
arra conico 6' U/pie 96.36 1000 0.0964 22.11 roca de hoton 38" U/pie 22.730 500 0.0455 234.00 ceite de perforación Gln./pie 1.550 1 4.5500 0.0455 234.00 ceite de perforación Gln./pie 1.550 1 4.5500 0.0455 234.00 ceite de perforación Gln./pie 1.550 1 4.5500 0.0455 30.00 1.25 languera de l/2" tramo 30Mt/pie 1.15 120 0.0096 30.00 languera de l/2" tramo 30Mt/pie 1.15 120 0.0096 30.00 languera de l/2" tramo 30Mt/pie 1.15 120 0.073 1.4753 39.00 lo OSTO DE PERFORACION MATRIALES Y BERRAMIENTAS U/día 37.54 360 0.104 1.000 lawe feancesa de 8" U/día 37.54 360 0.103 1.000 arrettilla de 4',5' y 6' U/día 36.97 360 0.103 1.000 arrettilla de 4',5' y 6' U/día 35.00 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ianteni-Reparac 10%	M/pie	386.06	80,000	0.0048	234.00	1.129	0.784	
Control of the Perforación Control of the	arra conico 4'	U/pie	83.64	1000	0.0836	44.22	3.699	2.568	
Cerite de perforación Gin./pie 4.550 1 4.550 3.00 3		U/pie	96.36		0.0964		2.131	1.480	
Anguera de l'tramo 30Mt/pie 1.580 1.20 0.0132 30.00 1.00	roca de boton 38"	U/pie	22.730	500	0.0455	234.00	10.638	7.387	
Section Sect	=						1.138	0.790	
MATERIALES Unidad Precio US VIDA UTIL USS/dia Cantidad Castidada	· ·	-					0.395	0.274	
MATERIALES V	-						0.288	0.200	
MATERIALES Y Unidad Precio USS VIDA UTIL USS/dia Cantidad US ave Stilson de 8" U/dia 37.54 360 0.104 1.000 ave fancesa de 8" U/dia 36.97 360 0.103 1.000 arretilla de 4",5" y 6" U/dia 45.45 120 0.379 3.000 tacador U/dia 3.50 60 0.058 5.000 tacador U/dia 2.33 60 0.039 2.000 tacador U/dia 7.20 90 0.080 2.000 tacador U/dia 11.36 90 0.126 2.000 tacador U/dia 11.36 90 0.126 2.000 tacador U/dia 12.12 120 0.101 1.000 tacador U/dia 12.12 120 0.101 1.000 tacador U/dia 8.48 120 0.071 1.000 tacador U/dia 1.97 5 0.394 1.000 tacador U/dia 1.97 5 0.394 1.000 tacador U/dia 0.67 245 164.15 tacador U/dia 0.67 245 164.15 tacador U/dia 0.67 245 164.15 tacador U/dia 0.90 35 31.50 tacador U/dia 0.67 245 164.15 tacador U/dia 0.90 35 31.50 tacador U/dia 0.90 35 31.50 tacador U/dia 0.90 0.27 2.00 tacador U/dia 27.27 100 0.27 2.00 tacador U/dia 27.27 100 0.27 2.00 tacador U/dia 18.18 180 0.10 3.000 tacador U/dia 21.21 180 0.12 3.000 tacador U/dia 21.21 180 0.12 3.000 tacador U/dia 4.55 360 0.01 3.000 tacador U/dia 4.55 360 0.0	•		20.21	0.073	1.4753	39.00	57.538	39.957	
HERRAMIENTAS		CION			C U-:4		88.246	61.28	
ave Srilson de 8" U/dia 37.54 360 0.104 1.000 ave fancesa de 8" U/dia 36.97 360 0.103 1.000 ave fancesa de 8" U/dia 36.97 360 0.103 1.000 ave fancesa de 8" U/dia 45.45 120 0.379 3.000 acacdor U/dia 3.50 60 0.058 5.000 decador U/dia 3.50 60 0.058 5.000 acacdor U/dia 2.33 60 0.039 2.000 ampa U/dia 7.20 90 0.080 2.000 ampa U/dia 11.36 90 0.126 2.000 ampa U/dia 11.36 90 0.126 2.000 ampa U/dia 12.12 120 0.101 1.000 aca barreno U/dia 8.48 120 0.071 1.000 aca barreno U/dia 2.33 200 0.012 1.000 aca barreno U/dia 2.33 200 0.012 1.000 aca barreno U/dia 2.33 200 0.012 1.000 aca barreno U/dia 1.97 5 0.394 1.000 OSTO DE HERRAMIENTAS PUOSIVO Unidad Percio USS cantidad Costo Unit. mexa 80 % Unidad 0.67 245 164.15 armex 7" Unidad 0.90 35 31.50 acade		Unidad	Precio US\$	VIDA UTIL		Cantidad	US\$/disp.	Parcial (US	\$/m.)
Arretilla de 4',5' y 6' U/dia 45,45 120 0,379 3,000 decador U/dia 3,50 60 0,058 5,000 decador U/dia 3,50 60 0,039 2,000 decador U/dia 2,33 60 0,039 2,000 decador U/dia 11,36 90 0,126 2,000 decador U/dia 11,36 90 0,126 2,000 decador U/dia 11,36 90 0,126 2,000 decador U/dia 12,12 120 0,101 1,000 decador U/dia 8,48 120 0,071 1,000 decador U/dia 1,97 5 0,394 1,000 decador U/dia 1,97 5 0,394 1,000 decador U/dia 1,97 5 0,394 1,000 decador U/dia 0,00 355 31,50 decador U/dia 0,00 355 0 decador U/dia 0,00 355 0 decador U/dia 0,00 355 0 decador U/dia 0,00 4 3,50 decador U/dia 0,00 4 3,000 decador U/dia 1,758 90 0,20 3,000 decador U/dia 1,818 1,818 1,80 0,10 3,000 decador U/dia 1,364 3,60 0,04 3,000 decador U/dia 1,364 3,60 0,04 3,000 decador U/dia 1,364 3,60 0,04 3,000 decador U/dia 1,364 3,60 0,00 3,000 decador U/dia 1,51 3,60 0,00 3,000 decador U/dia 4,55 3,60 0,01 3,000 decador U/dia	ave Stilson de 8"	U/día			0.104		0.104	0.072	. ,
Acador U/dia 3.50 60 0.058 5.000 Acharilla U/dia 2.33 60 0.039 2.000 Acharilla U/dia 2.33 60 0.039 2.000 Acharilla U/dia 7.20 90 0.080 2.000 Acharilla U/dia 11.36 90 0.126 2.000 Acharilla U/dia 11.36 90 0.126 2.000 Acharilla U/dia 12.12 120 0.101 1.000 Acharilla Elbs U/dia 8.48 120 0.071 1.000 Acharilla Elbs U/dia 2.33 200 0.012 1.000 Acharilla Elbs U/dia 1.97 5 0.394 1.000 Acharilla Elbs U/dia 1.97 5 0.394 1.000 Acharilla Elbs U/dia 0.67 245 164.15 Elbs U/dia 0.67 245 164.15 Elbs U/dia 0.90 35 31.50 Echa Rapida mts. 0.74 8 5.92 Elbs U/dia 27.27 100 0.27 2.00 Elbs Elbs U/dia 27.27 100 0.27 2.00 Elbs Elbs Elbs U/dia 17.58 90 0.20 3.000 Elbs E	ave fancesa de 8"	U/día	36.97	360	0.103	1.000	0.103	0.071	
Comparing Comp	arretilla de 4',5' y 6'	U/día	45.45	120	0.379	3.000	1.136	0.789	
Comparignment Comparignmen	tacador	U/día	3.50	60	0.058	5.000	0.292	0.203	
Mampa	ucharilla	U/día	2.33	60	0.039	2.000	0.078	0.054	
Description 12 Lbs U/dia 12.12 120 0.101 1.000	ico de punta y pala	U/día	7.20	90	0.080	2.000	0.160	0.111	
Marcha of Lbs U/dia 8.48 120 0.071 1.000	ampa	U/día	11.36	90	0.126	2.000	0.252	0.175	
Continue	omba 12 Lbs	U/día	12.12	120	0.101	1.000	0.101	0.070	
Control Cont	omba 6 Lbs	U/día	8.48	120	0.071	1.000	0.071	0.049	
Name	ica barreno	U/día	2.33	200	0.012	1.000	0.012	0.008	
NELOSIVO Unidad Percio USS Cantidad Costo Unit.	lambre Nº. 16	K/día	1.97	5	0.394	1.000	0.394	0.274	
Marie Mari	OSTO DE HERRAMIE	NTAS					2.702	1.88	
rmex 7" Unidad 0.90 35 31.50 ccha Rapida mts. 0.74 8 5.92 ccha Rapida mts. 0.74 5.92 ccha Rapida Cha Rapida ccha R								Parcial (US	\$/m .)
Separation Method Precious								113.99	
Note								21.88	
MPLEMENTOS DE SEGURIDAD Unidad Precio USS VIDA UTIL Costo Unit. USS Cantidad Precio USS Cantidad Costo Unit. USS Costo Unit. USS Cantidad Costo Unit. Uss C	-	mts.	0.74		8			4.11	
SEGURIDAD Unidad Precio USS VIDA UTIL USS Cantidad Propade jebe Opa de jebe J/dia 27.27 100 0.27 2.00 otas de jebe Par/dia 17.58 90 0.20 3.000 nantes e cuero Par/dia 3.03 15 0.20 3.000 nameluco U/dia 18.18 180 0.10 3.000 oretector U/dia 13.64 360 0.04 3.000 ospirador U/dia 21.21 180 0.12 3.000 orrea de seguridad U/dia 7.27 20 0.36 3.000 orrea de seguridad U/dia 1.51 360 0.02 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 affelte U/dia 4.55 360 0.01 3.000 umpara minera U/dia 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD 3.000 </td <td></td> <td></td> <td></td> <td></td> <td>Costo Unit.</td> <td>201.57</td> <td></td> <td>139.98</td> <td></td>					Costo Unit.	201.57		139.98	
tass de jebe Par/dia 17.58 90 0.20 3.000 antes e cuero Par/dia 3.03 15 0.20 3.000 antes e cuero Par/dia 3.03 15 0.20 3.000 armeluco U/dia 18.18 180 0.10 3.000 otector U/dia 13.64 360 0.04 3.000 espirador U/dia 21.21 180 0.12 3.000 ltro de respirador U/dia 7.27 20 0.36 3.000 otre de seguridad U/dia 6.06 360 0.02 3.000 orrea de seguridad U/dia 1.51 360 0.00 3.000 arbiento de oidos U/dia 1.51 360 0.00 3.000 arbiento de oidos U/dia 1.51 60 0.03 3.000 arbiente U/dia 4.55 360 0.01 3.000 arbientes U/dia 4.55 360 0.01 3.000 arbientes U/dia 4.55 360 0.01 3.000 arbientes U/dia 4.55 360 0.13 3.000 arbientes U/dia 4.545 360 0.13 3.000 arbientes U/dia 4.55 360 0.13 3.000 arbientes U/dia 4.55 360 0.13 3.000 arbientes U/dia 4.545 360 0.13 3.000 arbientes U/dia 4.55 360 0.13 3.000 arbientes U/dia 4.545 360 0.13 3.000 arbientes U/dia 4.55 360 0.13 3.000 arbientes U/dia 4.545 360		Unidad	Precio US\$	VIDA UTIL		Cantidad	Precio/disp.	Parcial (US	\$/m.)
mantes cuero Par/dia 3.03 15 0.20 3.000 ameluco U/dia 18.18 180 0.10 3.000 retector U/dia 13.64 360 0.04 3.000 respirador U/dia 21.21 180 0.12 3.000 tlro de respirador U/dia 7.27 20 0.36 3.000 orrea de seguridad U/dia 6.06 360 0.02 3.000 urbiquejo U/dia 1.51 360 0.00 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 artilete U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 60 0.08 3.000 OSTO DE IMPLEMIENTO DE SEGURIDAD	opa de jebe	J/día	27.27	100	0.27	2.00	0.55	0.379	
ameluco U/dia 18.18 180 0.10 3.000 otector U/dia 13.64 360 0.04 3.000 espirador U/dia 21.21 180 0.12 3.000 ltro de respirador U/dia 7.27 20 0.36 3.000 otector U/dia 6.06 360 0.02 3.000 otector U/dia 1.51 360 0.00 3.000 orbiquejo U/dia 1.51 360 0.00 3.000 orbiquejo U/dia 1.51 60 0.03 3.000 orbiquejo U/dia 1.51 60 0.03 3.000 orbiquejo U/dia 4.55 360 0.01 3.000 orbitete U/dia 4.545 360 0.13 3.000 orbitete U/dia 4.545 360 orbitete U/dia 4.545 0rbitete U/dia	-						0.59	0.407	
Variable							0.61	0.421	
sspirador U/dia 21.21 180 0.12 3.000 dro de respirador U/dia 7.27 20 0.36 3.000 orrea de seguridad U/dia 6.06 360 0.02 3.000 arbiquejo U/dia 1.51 360 0.00 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 affelte U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 360 0.01 3.000 mapara minera U/dia 4.55 360 0.08 3.000 mapara minera U/dia 45.45 360 0.13 3.000 mapara minera U/dia 45.45 360 0.13 3.000 orrea de seguridad V/dia 45.45 360 0.13 3.000 mapara minera U/dia 45.45 360 0.13 3.000 orrea de seguridad V/dia 45.45 360 orrea de seguridad V/dia 45.45 360 orrea de seguridad V/dia 45.45 360 orrea de seguridad V/dia 45.45 0.13 orrea de seguridad V/dia 45.							0.30	0.210	
Itro de respirador U/dia 7.27 20 0.36 3.000 orrea de seguridad U/dia 6.06 360 0.02 3.000 arbiquejo U/dia 1.51 360 0.00 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 afilete U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 60 0.08 3.000 ampara minera U/dia 4.55 360 0.13 3.000 costo DE IMPLEMENTO DE SEGURIDAD							0.11	0.079	
orrea de seguridad U/dia 6.06 360 0.02 3.000 arbiquejo U/dia 1.51 360 0.00 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 afilete U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 60 0.08 3.000 ampara minera U/dia 45.45 360 0.13 3.000 costo DE IMPLEMENTO DE SEGURIDAD	-						0.35	0.245	
arbiquejo U/dia 1.51 360 0.00 3.000 apón de oídos U/dia 1.51 60 0.03 3.000 afilete U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 60 0.08 3.000 ampara minera U/dia 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD	•						1.09	0.757	
apón de oídos U/día 1.51 60 0.03 3.000 afilete U/día 4.55 360 0.01 3.000 entes U/día 4.55 60 0.08 3.000 ampara minera U/día 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD							0.05	0.035	
Affilete U/dia 4.55 360 0.01 3.000 entes U/dia 4.55 60 0.08 3.000 entes U/dia 4.55 60 0.08 3.000 entes U/dia 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD							0.01	0.009	
entes U/dia 4.55 60 0.08 3.000 ampara minera U/dia 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD OSTOS DIRECTOS	-						0.08	0.052	
mpara minera U/dia 45.45 360 0.13 3.000 OSTO DE IMPLEMENTO DE SEGURIDAD OSTOS DIRECTOS							0.04	0.026	
OSTO DE IMPLEMENTO DE SEGURIDAD OSTOS DIRECTOS							0.23	0.158	
OSTOS DIRECTOS	•			360	0.13	3.000	0.38	0.263	
	OS TO DE IMPLEMEN	10 DE SEGURI	IDAD				4.38	3.04	
	OSTOS DIPECTOS						399.83	277.66	
15.070			15.0%				33.03 33.03	41.65	
ilidad 10.0%								27.77	


Anexo 02: Costo de construcción de Bypass 260 optimizada

	CALCI	JLO DE COSTO				ROCA DURA		
D. I. D. I.		Limpie	za con Pala N	leumatica y C				
PARAMETROS:				conversión	pie a mts.	0.3048	EFICIENCIA POR DISI	
Labor:	BY PASS	Factor de Carga		long. Barreno:			90.16%	1.55
Sección:	2.10X2.40	Total dinam 80%		pies	6	6	N° tal-perf	33
Area M²:	4.57	dólar	3.3	mts	1.83	1.83	N° tal-carg	29
lipo de roca:	Dura	Carmex 7"	32	long. Perfor:			din/tal	7.0
Corte:	QUEMADO	Mecha Rapida	6	94%	1.72	1.55	volumen (M³)	7.08
DESCRIPCION		C. US\$	105.870%	Costo Unit.	Cantidad	US\$/disp.	Parcial (US	
Perforista-Palero	1	8.18	19.247	37.427	1.00	37.43	24.15	
Ayudante perforista	1	6.67	17.649	34.319	1.00	34.32	22.14	
Carreros-Lamperos	1	5.15	16.039	31.189	1.00	31.19	20.12	
COSTO DE MANO DE O	OBRA		63.06%		3.00	102.94	66.41	
PERFORACION	Unidad	Precio US\$	VIDA UTIL	Costo Unit.	Cantidad	US\$/disp.	Parcial (US	
erforadora	M/pie	3,860.61	80,000	0.0483	198.00	9.555	6.165	
Ianteni-Reparac 10%	M/pie	386.06	80,000	0.0048	198.00	0.956	0.616	
Barra conico 4'	U/pie	83.64	1000	0.0836	37.82	3.163	2.041	
Barra conico 6'	U/pie	96.36	1000	0.0964	18.92	1.823	1.176	
roca de boton 38"	U/pie	22.730	500	0.0455	198.00	9.001	5.807	
ceite de perforación	Gln./pie	4.550	1	4.5500	0.25	1.138	0.734	
languera de 1"tramo	30Mt/pie	1.580	120	0.0132	30.00	0.395	0.255	
Manguera de 1/2" tramo	30Mt/pie	1.15	120	0.0096	30.00	0.288	0.185	
Lire comprimido	S/./hora	20.21	0.07	1.4147	33.00	46.685	30.119	9
OSTO DE PERFORAC	ION					73.003	47.10	
MATERIALES Y HERRAMIENTAS	Unidad	Precio US\$	VIDA UTIL	C. Unit. US\$/dia	Cantidad	US\$/disp.	Parcial (US	S\$/m.)
lave Stilson de 8"	U/día	37.54	360	0.104	1.000	0.104	0.067	
lave fancesa de 8"	U/día	36.97	360	0.103	1.000	0.103	0.066	
arretilla de 4',5' y 6'	U/día	45.45	120	0.379	3.000	1.136	0.733	
tacador	U/día	3.50	60	0.058	5.000	0.292	0.188	
Cucharilla	U/día	2.33	60	0.039	2.000	0.078	0.050	
ico de punta y pala	U/día	7.20	90	0.080	2.000	0.160	0.103	
ampa	U/día	11.36	90	0.126	2.000	0.252	0.163	
Comba 12 Lbs	U/día	12.12	120	0.120	1.000	0.232	0.065	
Comba 6 Lbs	U/día	8.48	120	0.101	1.000	0.101	0.046	
aca barreno	U/día	2.33	200	0.071	1.000	0.071	0.040	
Alambre Nº. 16	K/día	1.97	5	0.394	1.000	0.394	0.254	
COSTO DE HERRAMIE		1.97	,	0.334	1.000	2.702	1.74	
XPLOSIVO	Unidad	Percio US\$		cantidad	Costo Unit.	2.702	Parcial (US	\$\$/m)
emexa 80 %	Unidad	0.67		182	121.94		78.67	
emexa 65%	Unidad			21	13.02			
armex 7"	Unidad	0.62		29	26.10		8.40 16.84	
Techa Rapida	mts.	0.74		6	4.44		2.86	,
OSTO DE VOLADURA				Costo Unit.	165.50		106.7	/
IMPLEMENTOS DE SEGURIDAD	Unidad	Precio US\$	VIDA UTIL	Costo Unit. US\$	Cantidad	US\$/disp.	Parcial (US	S\$/m .)
opa de jebe	J/día	27.27	100	0.27	2.00	0.55	0.352	
otas de jebe	Par/día	17.58	90	0.20	3.000	0.59	0.378	
-		100	,,,		200		0.391	
uantes e cuero	Par/día	3.03	15	0.20	3.000	0.61		
		3.03 18.18	15 180	0.20	3.000 3.000	0.61	0.195	
Iameluco	U/día	18.18	180	0.10	3.000	0.30		
Mameluco rotector	U/día U/día	18.18 13.64	180 360	0.10 0.04	3.000 3.000	0.30 0.11	0.073	
Mameluco Protector tespirador	U/día U/día U/día	18.18 13.64 21.21	180 360 180	0.10 0.04 0.12	3.000 3.000 3.000	0.30 0.11 0.35	0.073 0.228	
Aameluco rotector espirador iltro de respirador	U/día U/día U/día U/día	18.18 13.64 21.21 7.27	180 360 180 20	0.10 0.04 0.12 0.36	3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09	0.073 0.228 0.704	
fameluco rotector espirador iltro de respirador orrea de seguridad	U/día U/día U/día U/día U/día	18.18 13.64 21.21 7.27 6.06	180 360 180 20 360	0.10 0.04 0.12 0.36 0.02	3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05	0.073 0.228 0.704 0.033	
fameluco rotector despirador iltro de respirador forrea de seguridad sarbiquejo	U/día U/día U/día U/día U/día U/día	18.18 13.64 21.21 7.27 6.06 1.51	180 360 180 20 360	0.10 0.04 0.12 0.36 0.02	3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05	0.073 0.228 0.704 0.033 0.008	
fameluco rotector espirador iltro de respirador orrea de seguridad arbiquejo apón de oídos	U/día U/día U/día U/día U/día U/día U/día	18.18 13.64 21.21 7.27 6.06 1.51	180 360 180 20 360 360	0.10 0.04 0.12 0.36 0.02 0.00	3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01	0.073 0.228 0.704 0.033 0.008 0.049	
fameluco rotector espirador iltro de respirador orrea de seguridad arbiquejo apón de oídos afilete	U/dia U/dia U/dia U/dia U/dia U/dia U/dia U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51	180 360 180 20 360 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03	3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08	0.073 0.228 0.704 0.033 0.008 0.049	
fameluco rotector cespirador iltro de respirador correa de seguridad tarbiquejo apón de oídos afilete entes	U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51 4.55	180 360 180 20 360 360 60 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03 0.01	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08 0.04	0.073 0.228 0.704 0.033 0.008 0.049 0.024	
Auntes e cuero Mameluco Protector Respirador Filtro de respirador Correa de seguridad Barbiquejo Fapón de oidos Fafilete Lentes Lampara minera COSTO DE IMPLEMEN	U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51 4.55 4.55	180 360 180 20 360 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03	3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08	0.073 0.228 0.704 0.033 0.008 0.049	
Mameluco Protector Respirador Filtro de respirador Correa de seguridad Barbiquejo Fapón de oídos Fafilete Lentes Lampara minera	U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51 4.55 4.55	180 360 180 20 360 360 60 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03 0.01	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08 0.04 0.23 0.38	0.073 0.228 0.704 0.033 0.008 0.049 0.024 0.147 0.244	
Aameluco Protector Respirador Pitro de respirador Porrea de seguridad Barbiquejo Fapón de oídos Fafilete Lentes Lampara minera LOSTO DE IMPLEMENT	U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51 4.55 4.55 45.45	180 360 180 20 360 360 60 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03 0.01	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08 0.04 0.23	0.073 0.228 0.704 0.033 0.008 0.049 0.024 0.147 0.244 2.83	
Mameluco Protector Respirador Filtro de respirador Correa de seguridad Barbiquejo Fapón de oídos Fafilete Lentes Lampara minera	U/dia	18.18 13.64 21.21 7.27 6.06 1.51 1.51 4.55 4.55	180 360 180 20 360 360 60 360 60	0.10 0.04 0.12 0.36 0.02 0.00 0.03 0.01	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	0.30 0.11 0.35 1.09 0.05 0.01 0.08 0.04 0.23 0.38	0.073 0.228 0.704 0.033 0.008 0.049 0.024 0.147 0.244	

Anexo 3: Malla de perforación anterior




Anexo 04: Malla de perforación propuesta

Anexo 04: Plano de By pass 260 Nv – 1470

Anexo 05: Plano general Unidad Minera la Soledad S.A.C

