“EVALUACIÓN DEL INOCULO MICORRIZAL DEL HONGO (*Boletus edulis*)
EN LA PRODUCCION DE PLANTONES DE PINO (*Pinus radiata D. Don*) EN
ANDAHUAYLAS”

Tesis presentada por la Bachiller en Ciencias Agrarias Yeni Ancco Ñahirima para optar el título profesional de Ingeniero Agropecuario.

ASESORES:

DR. DOMINGO GONZALES GALLEGOS

MSc. SALVADOR QUISPE CHIPANA

ING. LAZARO DE LA CRUZ ZAMORA

Andahuaylas – Perú - 2019
ÍNDICE

<table>
<thead>
<tr>
<th>DEDICATORIA</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMIENTOS</td>
<td>viii</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>ix</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>I. PROBLEMA OBJETO DE ESTUDIO</td>
<td>2</td>
</tr>
<tr>
<td>1.1 PLANTEAMIENTO DEL PROBLEMA</td>
<td>2</td>
</tr>
<tr>
<td>1.2 FORMULACIÓN DEL PROBLEMA</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Problema general</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Problemas específicos</td>
<td>2</td>
</tr>
<tr>
<td>II. OBJETIVOS Y JUSTIFICACIÓN</td>
<td>4</td>
</tr>
<tr>
<td>2.1 OBJETIVOS</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Objetivo general</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Objetivos específicos</td>
<td>4</td>
</tr>
<tr>
<td>2.2 JUSTIFICACIÓN</td>
<td>4</td>
</tr>
<tr>
<td>III. HIPÓTESIS DE LA INVESTIGACIÓN</td>
<td>6</td>
</tr>
<tr>
<td>3.1 HIPÓTESIS GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>3.2 HIPÓTESIS ESPECÍFICA</td>
<td>6</td>
</tr>
<tr>
<td>IV. MARCO TEÓRICO</td>
<td>7</td>
</tr>
<tr>
<td>4.1 ANTECEDENTES DE LA INVESTIGACIÓN</td>
<td>7</td>
</tr>
<tr>
<td>4.2 GENERALIDADES DEL PINO (Pinus radiata)</td>
<td>8</td>
</tr>
<tr>
<td>4.2.1 Origen y ecología del pino</td>
<td>8</td>
</tr>
<tr>
<td>4.2.2 Taxonomía del pino (Pinus radiata D. Don)</td>
<td>9</td>
</tr>
<tr>
<td>4.3 DESCRIPCIÓN BOTÁNICA DEL PINO (Pinus radiata D. Don)</td>
<td>10</td>
</tr>
<tr>
<td>4.3.1 Características morfológicas</td>
<td>10</td>
</tr>
<tr>
<td>4.3.2 Hoja</td>
<td>11</td>
</tr>
<tr>
<td>4.3.3 Flores</td>
<td>11</td>
</tr>
<tr>
<td>4.3.4 Frutos</td>
<td>11</td>
</tr>
<tr>
<td>4.3.5 Semilla</td>
<td>12</td>
</tr>
<tr>
<td>4.3.6 Raíces</td>
<td>12</td>
</tr>
<tr>
<td>4.4 SIEMBRA O ALMACIGADO DEL PINO</td>
<td>12</td>
</tr>
<tr>
<td>4.5 CALIDAD DE LA PLÁNTULA</td>
<td>12</td>
</tr>
<tr>
<td>4.6 CONCEPTO GENERAL DEL HONGOS</td>
<td>13</td>
</tr>
</tbody>
</table>
5.6.2 Análisis Estadístico ... 45
5.6.3 Características de la unidad experimental .. 47

5.7 DESCRIPCIÓN DEL MANEJO EXPERIMENTAL 49
5.7.1 Construcción de las camas de germinación y repique 49
5.7.2 Preparación de sustrato para almacigado ... 49
5.7.3 Almacigado ... 49
5.7.4 Embolsado .. 50
5.7.5 Repique ... 50
5.7.6 Inoculación de las plantas ... 50
5.7.7 Riego y deshierbe ... 51
5.7.8 Control fitosanitario ... 52
5.7.9 Remoción .. 52

5.8 EVALUACIÓN DE LAS VARIABLES AGRONÓMICAS 52
5.8.1 Porcentaje de sobrevivencia ... 52
5.8.2 Crecimiento ... 52
5.8.3 Desarrollo de ectomicorrizas ... 53
5.8.4 Peso seco de la plántula (biomasa) .. 53

VI. RESULTADOS ... 55
6.1 PORCENTAJE DE SUPERVIVENCIA .. 55
6.2 ALTURA DE PLANTA ... 58
6.3 DIÁMETRO DEL TALLO DE LA PLÁNTULA... 63
6.4 NÚMERO DE RAICES .. 68
6.5 NÚMERO DE ECTOMICORRIZAS POR PLANTULA 70
6.6 FORMAS DE ECTOMICORRIZAS POR PLANTULA 78
6.7 PESO SECO PROMEDIO POR PLANTULA (gr) 84

VI. DISCUSION DE RESULTADOS .. 87
7.1 EVALUACIONES DEL PINO (Pinus radiata D. Don) DURANTE LA FASE DE VIVERO .. 87
7.1.1 Porcentaje de sobrevivencia ... 87
7.1.2 Altura de la planta ... 87
7.1.3 Diámetro del tallo de la plántula ... 87
7.1.4 Número de raíces a los 9 meses ... 88
7.1.5 Número de ectomicorrizas ... 88
7.1.6 Formas de ectomicorrizas ... 89
7.1.7 Peso seco promedio por plántula a los 9 meses... 91

VIII. CONCLUSIONES .. 92
IX. RECOMENDACIONES .. 94
X. BIBLIOGRAFÍA .. 95
XI. ANEXO .. 99
ÍNDICE DE CUADROS

Cuadro N° 01: Principales hongos micorríticos en el Perú .. 17
Cuadro N° 02: Tratamientos evaluados ... 45
Cuadro N° 03: Análisis de variancia ... 46
Cuadro N° 04: Características de la unidad experimental................................. 47
Cuadro N° 05: Porcentaje de supervivencia (%) ... 55
Cuadro N° 06: Análisis de varianza para porcentaje de sobrevivencia 56
Cuadro N° 07: Prueba de Tukey al 5% para porcentaje de supervivencia 57
Cuadro N° 08: Altura de las plántulas (cm) .. 58
Cuadro N° 09: Análisis de varianza para altura de la plántula 59
Cuadro N° 10: Prueba de Tukey al 5% para altura de la plántula 59
Cuadro N° 11: Diámetro de tallo (milímetro/plántula) ... 63
Cuadro N° 12: Análisis de varianza para diámetro de tallo 63
Cuadro N° 13: Prueba de Tukey al 5% para diámetro de tallo por plántula 64
Cuadro N° 14: Numero de raíces a los 9 meses (unid/planta) 68
Cuadro N° 15: Análisis de varianza para número de raíces por plántula 68
Cuadro N° 16: Prueba de Tukey al 5% para número de raíces por plántula. 69
Cuadro N° 17: Numero de ectomicorrizas por plántula a los 3 meses 70
Cuadro N° 18: Análisis de varianza para número de ectomicorrizas a los 3 meses 71
Cuadro N° 19: Prueba de Tukey al 5%, número de ectomicorrizas a los 3 meses. 72
Cuadro N° 20: Número de ectomicorrizas (unid/planta) a los 6 meses 73
Cuadro N° 21: Análisis de varianza para número de ectomicorrizas a los 6 meses. 74
Cuadro N° 22: Prueba de Tukey al 5%, número de ectomicorrizas a los 6 meses .. 74
Cuadro N° 23: Número de ectomicorrizas por plántula a los 9 meses 76
Cuadro N° 24: Análisis de varianza para número de ectomicorrizas a los 9 meses 76
Cuadro N° 25: Prueba de Tukey al 5%, número de ectomicorrizas a los 9 meses .. 77
Cuadro N° 26: Porcentaje de ectomicorrizas por plántula a los 3 meses 78
Cuadro N° 27: porcentaje de ectomicorrizas por plántula a los 6 meses 79
Cuadro N° 28: Porcentaje de ectomicorrizas por plántula a los 9 meses 80
Cuadro N° 29: Peso seco de la plántula a los 9 meses. ... 84
Cuadro N° 30: Análisis de varianza para peso seco de la plántula 84
Cuadro N° 31: Coeficiente de variabilidad .. 85
ÍNDICE DE FIGURAS

Figura N° 01: Estructura (Boletus edulis) ... 21
Figura N° 02: Micelio del hongo (seta, espora, micelio y primordios) 22
Figura N° 03: Invasión del micelio en raíz de Angiospermas y Gimnospermas 31
Figura N° 04: Endomicorrizas en corte longitudinal de raíz .. 31
Figura N° 05: Diferencias morfológicas de ectomicorrizas ... 32
Figura N° 06: Ubicación Geográfica del Departamento de Apurímac, Provincia Andahuaylas y Distrito de San Jerónimo (ámbito de estudio) ... 42
Figura N° 07: Ubicación del vivero experimental e institución Agrorural. 42
Figura N° 08: Esquema del diseño experimental .. 48
Figura N° 09: Porcentaje de supervivencia de la plántula ... 57
Figura N° 10: Altura de la plántula con micorriza comercial 60
Figura N° 11: Altura de la plántula con seta del hongo fermentado 61
Figura N° 12: Altura de la plántula con tierra micorrizada .. 61
Figura N° 13: Altura de la plántula testigo (sin inocular) ... 62
Figura N° 14: Altura de la plántula .. 62
Figura N° 15: Diámetro de tallo por plántula con micorriza comercial 65
Figura N° 16: Diámetro del tallo con seta del hongo fermentado 65
Figura N° 17: Diámetro del tallo con tierra micorrizada ... 66
Figura N° 18: Diámetro de tallo sin inocular (testigo) ... 67
Figura N° 19: Diámetro del tallo de la plántula .. 67
Figura N° 20: Número de raíces por plantula ... 70
Figura N° 21: Número de ectomicorrizas por plántula a los 3 meses 72
Figura N° 22: Número de ectomicorrizas a los 6 meses ... 75
Figura N° 23: Número de ectomicorrizas por plantula a los 9 meses 78
Figura N° 24: Porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas con T1 .. 81
Figura N° 25: Porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas con T2 .. 82
Figura N° 26: Porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas con T3 .. 83
Figura N° 27: Peso seco de las plántulas a los 9 meses ... 86
DEDICATORIA

A Dios padre todo poderoso por
darme salud, vida y quien me
guía por el buen camino.

A las dos personas que más quiero en la vida, mis
padres quienes me dieron la oportunidad de venir al
mundo y desde ese momento se han dedicado en
cuerpo y alma a mí persona, este trabajo es de
ustedes en esta se reflejan mi esfuerzo y dedicación,
que tal vez sea poco en comparación de todo lo que
ustedes me han dado, los quiero mucho.

A mis hermanos: Cesar, Sonia,
Yolanda y Jhón, quienes me
apoyaron en todo momento.
AGRADECIMIENTOS

Le doy gracias a Dios por estar conmigo en todo momento, por darme el entendimiento y la paciencia para concluir satisfactoriamente este trabajo.

A la Universidad Nacional de San Antonio Abad del Cusco, Facultad Ciencias Agrarias, Carrera Profesional de Ingeniería Agropecuaria.

A mis asesores DR. Domingo Gonzales Gallego y MSc. Salvador Quispe Chipana quienes me apoyaron en todo momento; al director, plana docente y administrativa, por las orientaciones brindadas durante mi formación profesional.

A mis padres:
A ti mamá te doy las gracias por tu esfuerzo, esmero y dedicación, que siempre has tenido, con el único afán de que cada día sea una mejor persona y logre cada uno de mis sueños.
A ti papa te doy las gracias por ser un ejemplo de lucha, humildad y entrega, por ser mi mejor amigo y cómplice en cada uno de mis sueños.

A la Dirección zonal Agrorural Andahuaylas, por haberme brindado un espacio para ejecutar la investigación y a sus profesionales que me brindaron su apoyo, a Ing. Lázaro De la Cruz Zamora, quien amablemente me ayudó en el desarrollo de esta investigación.

A todos aquellos que de una u otra forma participaron en el desarrollo de esta investigación y me brindaron su verdadera amistad y apoyo incondicional.
RESUMEN

El trabajo de investigación se llevó a cabo en el vivero forestal de la Dirección zonal Agrorural Andahuaylas cuyas coordenadas geográficas son: 18L 0676270, UTM 8489781 y una altitud de 2950 m.s.n.m., con el objetivo “Evaluar el efecto del inóculo micorrizal del hongo (Boletus edulis) en la producción de plantones de pino (Pinus radiata D. Don) en el vivero Tejamolino, distrito de San Jerónimo - Andahuaylas”. La unidad experimental estuvo conformada por 208 plantas. Se empleó el Diseño bloques Completamente al Azar, se realizó el análisis de variancia para las variables: porcentaje de sobrevivencia, altura de planta, diámetro de planta, número de raíces, número de ectomicorrizas, porcentaje de ectomicorrizas y peso seco de la plántula.

En la investigación, el T1 (Micorriza Comercial), alcanzó el mayor porcentaje de sobrevivencia 98,08%, así mismo, a los 270 días, mayor altura de la plántula obtuvo el tratamiento T1 (micorriza comercial), con un promedio de 45,97 centímetros por plántula. En cuanto al diámetro, el tratamiento T1 (micorriza comercial) y T2 (seta del hongo fermentado) obtuvieron los mejores resultados con un promedio de 4.55 y 3.88 milímetros respectivamente. El mayor número de raíces por plántula obtuvo el tratamiento T1 (micorriza comercial), con un promedio de 13,50 raíces por plántula. Respecto al número de ectomicorrizas, a los 270 días, el tratamiento T1 (micorriza comercial) obtuvo un mayor promedio de 677,33 ectomicorrizas por plántula en comparación a los de más tratamientos. Respecto a la forma de ectomicorrizas, a los 270 días, el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (Tierra Micorrizada) con 12,67%; el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 27,09%; así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con micorriza comercial T1 (71,23%). En cuanto a peso seco de la plántula a los 270 días, el tratamiento T1 (micorriza comercial) obtuvo mayor peso 6,75 gramos por plántula.
INTRODUCCIÓN

El paisaje andino, por diversas causas, ha experimentado cambios; el bosque ha sido depredado, en algunos lugares prácticamente ha desaparecido por la indiscriminada tala y quema de especies forestales, dando paso a la agricultura y la ganadera, intensiva en algunos casos y de subsistencia en otros;

Frente a esta realidad se viene ejecutando programas de forestación y reforestación con especies nativas y exóticas (Eucaliptos y pinos particularmente) mereciendo una gran expectativa y atención debido a su capacidad para producir diferentes productos y servicios ambientales, resaltando la producción de madera para cercos, muebles, construcción, etc. y su uso como un medio de conservación del agua y protección de los suelos.

El pino (*Pinus radiata*), es la especie forestal que en los últimos años viene ganando terreno en este proceso, por el doble beneficio que brinda esta especie (madera y producción del hongo comestible *Boletus edulis*). Sin embargo, uno de los principales problemas que afrontan los programas de forestación y reforestación es la falta de plantones de calidad que puedan adaptarse a los rigores edáfico-climáticos de las áreas donde se establecen definitivamente.

Un aspecto de suma importancia de la información existente sobre el uso de los hongos en la alimentación humana y de las diferentes aplicaciones de los hongos micorrízicos del género *Boletus*, en viveros forestales, es su contribución a la absorción de nutrientes, la resistencia que éstas adquieren frente a determinados agentes patógenos y a las condiciones adversas del medio ambiente; esta interesante cualidad hace que se constituyan en una excelente oportunidad para la obtención de productos ecológicos como biocidas y bioles orgánicos, de fácil elaboración y uso por los pequeños productores.

El presente trabajo de investigación pretende evaluar el efecto del inóculo micorrítzicos del hongo (*Boletus edulis*) en condiciones de vivero, de fuente comercial y obtenidos en suelo micorrizado de bosques de pino, para establecer qué fuente mejora la producción de pinos en condiciones de Andahuaylas.
I. PROBLEMA OBJETO DE ESTUDIO

1.1 PLANTEAMIENTO DEL PROBLEMA

La importancia de las ectomicorrizas en la práctica forestal se estableció hace ya mucho tiempo. Por un lado, se demostró que los graves problemas de crecimiento, baja supervivencia de plántulas, disminución de la captación de agua y nutrientes, plantas propensas al ataque de algunas enfermedades fungosas causantes de damping off (necrosis de cuello y raíz) de los plantones de algunos viveros estaban asociados a su errática y escasa micorrización, causada por la baja densidad de propágulos ectomicorrícicos presentes en la planta.

Pardos J., A. (1962), llegó a similares conclusiones estudiando la clorosis que presentaban las plántulas de pino laricio (*Pinus nigra*, var. Austriaca) cultivadas en un vivero de Guadalajara. Observó que la presencia de ectomicorrizas estaba relacionada con la recuperación de las plantas en el segundo año de crecimiento, mientras que las que no llegaban a formar esta simbiosis permanecían cloróticas el 20% de las plantas. En muchos viveros es necesaria la introducción de hongos ectomicorríticos ya que no cuentan con una población natural de hongos adecuada, por lo que se plantea evaluar el efecto del inoculo micorrizal del hongo (*Boletus edulis*) en la producción de plántulas de pino (*Pinus radiata D. Don*).

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 Problema general

¿Cuál es el efecto del inoculo micorrizal del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo-Andahuaylas?

1.2.2 Problemas específicos

- ¿Cuál es el efecto del inóculo micorrizal comercial del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas?
• ¿Cuáles el efecto del inóculo micorrizal de la seta fermentada del hongo (Boletus edulis) en la producción de plantones de pino (Pinus radiata D. Don) en el vivero Tejamolino, distrito de San Jerónimo - Andahuaylas?

• ¿Cuál es el efecto del inóculo de tierra micorrizada del hongo (Boletus edulis) en la producción de plantones de pino (Pinus radiata D. Don) en el vivero Tejamolino, distrito de San Jerónimo - Andahuaylas?
II. OBJETIVOS Y JUSTIFICACIÓN

2.1 OBJETIVOS

2.1.1 Objetivo general

Evaluar el efecto del inóculo micorrizal del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo - Andahuaylas.

2.1.2 Objetivos específicos

- Evaluar el efecto del inóculo micorrizal comercial del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.
- Determinar el efecto del inóculo micorrizal de la seta fermentada del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.
- Evaluar el efecto del inóculo de tierra micorrizada del hongo (*Boletus edulis*) en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.

2.2 JUSTIFICACIÓN.

Los programas de forestación y reforestación en la zona andina, se ejecutan solamente durante el periodo de lluvias (Noviembre – febrero) para aprovechar el agua de lluvias de la estación, dado que el establecimiento de los plantones en campo definitivo se realiza en terrenos de secano, que limitan seriamente su prendimiento y posterior desarrollo en el periodo de estiaje.

Las plantaciones realizadas en los dos últimos meses (enero – febrero) tienen muy poco tiempo (solo el mes de marzo) para establecerse en campo definitivo, último mes de precipitaciones pluviales que va disminuyendo paulatinamente hasta cesar por completo en el mes de abril. Por ello muchas plantaciones realizadas en el último periodo de plantación, no logran superar los rigores climáticos de los meses secos, deviniendo en pérdidas hasta del 60 % de la plantación establecida.
Para garantizar un buen desarrollo de las plántulas en vivero, así como la buena performance en campo definitivo, en los últimos años se han empleado técnicas de producción de plántulas aprovechando los procesos simbióticos de los hongos micorrízicos con plántulas de especies forestales como el pino, entre las técnicas más utilizadas se tiene la micorrización a través de diferentes métodos de inoculación con esporas, suelo micorrizado y con micelios. Sin embargo, existen otras técnicas aún no estudiados como el uso de extractos macerados de estos hongos que pueden tener igual o mejores resultados en el tratamiento de las plántulas.

Entonces es de vital importancia el uso de la micorriza comercial, seta del hongo fermentado y tierra micorrizada por las ventajas que estas tienen tales como: favorece el desarrollo de la parte aérea-sistema radical abundante y bien conformado (raíz principal diferenciada), raíces secundarias abundantes y bien distribuidas (con micorrizas en sus partes terminales), tallo suficientemente lignificado (25-30 cm de altura) y conjunto foliar verde intenso que recubre casi totalidad del tallo.

Cabe su importancia del presente trabajo de investigación, en la medida que contribuya los resultados que se ha obtenido con la inoculación de micorriza comercial seguido de seta del hongo fermentado los cuáles obtuvieron mejores resultados en la producción de plántulas a nivel de vivero.

Con la información obtenida de esta investigación los productores conocerán la mayor parte de los parámetros necesarios para aplicar de forma controlada con los atributos de calidad que permitan obtener resultados satisfactorios.
III. HIPÓTESIS DE LA INVESTIGACIÓN

3.1 HIPÓTESIS GENERAL

La aplicación de los inóculos micorrícticos del hongo (*Boletus edulis*) influye en la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.

3.2 HIPÓTESIS ESPECÍFICA

- **H1**: El efecto del inoculo micorrizal comercial del hongo (*Boletus edulis*) permitirá mejorar la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo-Andahuaylas.
- **H2**: El efecto del inóculo micorrizal de la seta fermentada del hongo (*boletus edulis*) permitirá mejorar la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.
- **H3**: El efecto del inóculo de tierra micorrizada del hongo (*Boletus edulis*) permitirá mejorar la producción de plantones de pino (*Pinus radiata D. Don*) en el vivero Tejamolino, distrito de San Jerónimo – Andahuaylas.
IV. MARCO TEÓRICO

4.1 ANTECEDENTES DE LA INVESTIGACIÓN

A) Internacionales

Chung G., P. (2005), reportó un incremento en el crecimiento de (*Pinus radiata*) producidos en contenedor, inoculados con residuos y humus provenientes del sotobosque de árboles de pino. Este método requiere grandes cantidades de suelo cada año. Una de las más serias desventajas de este tipo de inóculo, es que las semillas, rizomas de malezas y patógenos potenciales, pueden ser transportados de forma accidental hacia el vivero a través del suelo.

Marx, D. (1984). En Australia han tenido éxitos con la inoculación de hongo (*Boletus edulis*) en diversas especies de pino, sobrevivieron y crecieron significativamente mejor que aquellas producidas en viveros sin programas de inoculación en, en el sureste de los Estados Unidos han tenido éxitos similares. (*Boletus edulis*) estimuló el crecimiento de plantas de pino y encino, tanto en la producción del vivero como en las zonas de plantación, particularmente en las áreas con residuos de actividades mineras o en sitios fuertemente erosionados.

Castellano M., A. et al, (1985), en estudio realizado en la estación experimental del Noroeste del pacífico, ha inoculado de manera exitosa siete millones de plantas de pino (*Pinus radiata*) producidas en contenedor, mediante la incorporación de suspensión de esporas del hongo (*Boletus edulis*) a través del sistema de riego. Utilizando el sistema de riego montado en la parte superior de la estructura del invernadero, una cantidad conocida de esporas fue aplicada a bloques de 250,000 plántulas de ocho semanas de edad, durante cinco minutos o menos. El tratamiento consistió en el pre humedecimiento del sustrato durante un minuto, posteriormente la aplicación de esporas durante dos minutos y, finalmente, un humedecimiento adicional durante dos minutos para que las esporas puedan descender dentro de cada cavidad.

Chung G., P. (2005), en su estudio realizado: Incorporación de (*Boletus edulis*) y (*Boletus pinicola*) en plantas de pino radiata en Chile, en Los resultados de la
inoculación realizada en plantas de pino en vivero obtuvo un promedio de 30.5 y 33.2% de raíces micorrizadas con (Boletus edulis).

B) Nacionales

Vergara A., k. (2004), en su estudio realizado en el vivero forestal de la Estación Experimental de la Universidad Nacional del Centro en el distrito de Mantaro, provincia de Jauja, región Junín: “Respuesta del Inóculo Micorrizal del hongo (Scleroderma verrucosum) en la producción de plántulas de pino (Pinus radiata D. Don)”, obtuvo plantas óptimas para el transplante a los 9 meses de edad, destacando las plantas inoculadas esto se vio reflejado en el tamaño, grosor de la planta, robustez, coloración, formación de acículas y un sistema radicular más abundante mientras en las plantas testigo eran delgadas y más pequeñas.

Gómez C., M. (2016), en su tesis Crecimiento de plántulas de pino (Pinus radiata D. Don) bajo la acción del extracto de hongos micorrizicos (Boletus edulis) en condiciones de vivero Chuquibambilla - Grau – Apurímac, menciona que la aplicación de tres proporciones de extracto fresco y macerado, elaborado a partir de la volva, pie y sombrero de hongos micorrizicos (Boletus edulis), tiene efecto positivo en crecimiento y vigorosidad, así como tolerancia y/o resistencia a agentes bióticos y abióticos presentes en el medio donde se desarrollan las plántulas, por tanto, es de vital importancia su uso en la producción masiva de plantas forestales.

C) Locales

A nivel local no existen trabajos de investigación en inóculo micorrizal del hongo (Boletus edulis) en la producción de plantones de pino (Pinus radiata D. Don).

4.2 GENERALIDADES DEL PINO (Pinus radiata)

4.2.1 Origen y ecología del pino

Limache, A. (1985), afirma que el pino (Pinus radiata) oriundo de una zona meridional de california (EEUU) situado a 160 km al sur de San Francisco donde cubre una extensión de 4000 Has. El clima de su hábitat es de tipo mediterráneo muy uniforme, con una precipitación total de 425 a 825 mm anuales con lluvias en invierno y verano. La temperatura media estival es de 21 a 27 ºC el periodo anual libre de heladas es largo, presentándose las más fuertes en meses invernales cuando el árbol
se encuentra en estado de latencia. Añade que no prospera en suelos arcillosos poco profundos ni en los mal drenados; prefiere suelos de textura ligera (arena, franco o franco arenoso), especialmente en aquellos de buena fertilidad.

Fernández M., A. y M. Sarmiento A. (2004), menciona que es llamado comúnmente pino de Monterrey posiblemente es el pino más extensamente plantado en el mundo. Es de crecimiento y su madera es requerida para construcción y para pulpa. La especie fue observada por primera vez por Thomas Coulter en Monterrey en (1830). El nombre científico refiere a las marcas fuertes en las escalas del cono, y el nombre común a la península en la cual crece extensivamente. Otros nombres comunes son pino insigne y pino radiata.

4.2.2 Taxonomía del pino (Pinus radiata D. Don)

Montoya J., M. y M. García M. (2009), señalan que etimológicamente, el nombre de la especie deriva del latín radiatus, lo que significa radiante, brillante; por su elegante porte. Este pino es natural de la región de Monterrey (California), pertenece al Género Pinus, Subgénero Diploxylon, Sección Taeda, Grupo Insignes y Especie (Pinus radiata).

Nombre binomial: *pinus radiata* D. Don

Reino: *Plantae*
División: *Pinophyta*
Clase: *Pinopsida*
Orden: *Pinales*
Familia: *Pinaceae*
Género: *Pinus*
Especie: *Pinus radiata*

4.3 DESCRIPCIÓN BOTÁNICA DEL PINO (*Pinus radiata D. Don*).

4.3.1 Características morfológicas

Limache, A. (1985), menciona que en su lugar de origen alcanza 40 metros de altura y un diámetro de 0.6 a 1.2 metros en un lapso de 80 a 90 años. Plantando en otros lugares donde las condiciones son menos apropiadas alcanza una vida corta.

Montoya J., M. y M. García M. (2009), describen que en densidades normales como en las repoblaciones artificiales, forma a los 40 ó 50 años, copas estrechas y puntiagudas. Luego dejan de crecer en altura y tienden en aplanarse. Si el sitio es de suelo profundo, la altura de los pinos dominantes puede llegar a 40 m, pero en los sitios peores, más expuestos o de suelo superficial, no pasan de 10 m. si el pino ha crecido aislado, como en parques o en masa abiertas, el árbol pierde pronto la guía principal, desarrolla ramas gruesas y largas y forma una copa grande, a una altura variable. Que de no haber poda, puede comenzar próxima al suelo.

Escobar C., O. y J. Rodríguez R. (1993), señalan que es un árbol de talla media a elevada, de aproximadamente 30 metros de altura. La ventaja es que es una especie de crecimiento rápido ya que alcanza un diámetro de tronco de más de 40 pulgadas (1 metro) en 25 o 35 años. Posee una copa aplanada o abovedada en su madurez, con ramas inferiores extendidas. Tronco cónico, recto, con un sistema radicular potente, con raíces laterales bien desarrolladas y muy extendidas. La corteza externa es de color café y apariencia agrietada. La corteza interna de color crema rosácea, segrega una resina transparente. Presenta acículas (hojas) de unos 15 cm de longitud agrupadas en grupos o fascículos de tres. Estróbilos ovoides de 7-14 cm
de longitud agrupados en parejas o verticilos de 3-5 con las escamas externas muy prominentes. El fruto es un cono leñoso, grande, parecido a una piña.

Rodríguez R., et al, (2007), menciona que normalmente presenta un porte en forma cónica, pudiendo alcanzar alturas de hasta 30 metros. Las acículas son largas, miden entre 10 y 15 cm y se agrupan envainadas de tres en tres, característica que lo diferencia fácilmente de otros pinos; son además de color vivo y brillante dando a la copa un aspecto muy denso. Las piñas permanecen sujetas al árbol durante muchos años, conservando en buen estado la semilla.

4.3.2 Hoja

Guido, J. (1984), menciona que las hojas son persistentes, aciculares reunidas en fascículos de 3 a 5 hojas que nacen de un corto eje de tallo llamado braquiplasto, cubierto por escamas membranosos triangulares.

4.3.3 Flores

Guido, J. (1984), menciona que las flores del pino se agrupan en inflorescencias llamadas conos, es una planta monoica, es decir que se encuentran flores femeninas y masculinas en el mismo pie, las flores masculinas o conos portadores de polen son amentiformes, pequeños, de 2-3 cm. Están formados por estambres, o microsporófilos que se disponen en espiral alrededor del eje, portando dos sacos polínicos cada uno. Las flores femeninas son de mayor tamaño que las flores masculinas, se ubican en las ramas superiores, agrupadas o solitarias. Están formados por brácteas dispuestas en espiral alrededor de un eje, formando una inflorescencia llamada estróbilo.

4.3.4 Frutos

Guido, J. (1984), presenta inflorescencias masculinas y femeninas, conos verticilados, sésiles, ovoides, castaños. En la base de cada hoja carpelar, posee 2 óvulos, estróbilos masculinos amentiformes constituidos de numerosas hojas polínicas, cada una de las cuales lleva 2 sacos polínicos. Las piñas maduras permanecen adheridas al árbol durante varios años desprendiendo semillas viables intermitente y abundantemente.
4.3.5 Semilla

Lapulu, P. (1985), menciona que pueden ser de 5 a 7 mm de largo por 3 a 5 mm de ancho con ala estrecha y larga, con 8 cotiledones, puede variar de 5 a 12. Fructifica a los 10 años; puede contener entre 20,000 a 34,000 semillas, con un poder germinativo de 60 a 80% las cuales pueden ser alarmadas durante 3 a 4 años.

4.3.6 Raíces

Guido, J. (1984), presenta un sistema radicular bastante extenso; profundo cuando el suelo lo permite, es robusto y bien distribuido y se desarrolla en forma general en los primeros 50 cm de profundidad. Las raicillas se remontan en la materia orgánica. No tiene raíz principal, salvo en su estado joven.

4.4 SIEMBRA O ALMACIGADO DEL PINO

CONAFOR (2007), menciona que siembra puede realizarse directamente en envases individuales, o por almácigo. Cuando la siembra es directa se sugiere sembrar 2 semillas por envase. Cuando el cultivo parte de almácigos, el repique a los envases se realiza cuando las plántulas alcancen 3 a 4 cm de altura y tengan lo que se conoce como “cabeza de cerillo”, antes de que aparezcan las hojas o acículas primarias. Si no se tiene cuidado, el transplante del semillero al envase puede producir daños severos a la planta, especialmente deformaciones a la raíz. La siembra puede realizarse al aire libre o en invernadero, el uso de este último reporta un adelanto de varias semanas en el desarrollo de la planta, pero a cambio de una deuda temporal en vigor, por lo que la planta debe ser aclimatada antes de su plantación en campo.

4.5 CALIDAD DE LA PLÁNTULA

Castro A., et al, (2000), mencionan que una planta de buena calidad para la repoblación forestal, es aquélla que presenta un buen equilibrio entre la parte aérea y la radical, y que tiene un sistema radical abundante y bien conformado. La parte aérea de la plantita debe estar constituida por un solo tallo suficientemente lignificado y acompañado de un conjunto foliar de color verde intenso que cubra la casi totalidad del tallo. La raíz principal debe estar diferenciada y con raíces secundarias abundantes y bien distribuidas. Las raíces deberían presentar micorrizas en sus partes terminales.
Fernández M., A. y M. Sarmiento A. (2004), mencionan que, en España, el Real Decreto 289/2003, de 7 de marzo, sobre comercialización de los materiales forestales de reproducción recoge las características exigibles a una planta de calidad, para el (*Pinus radiata*) se pueden resumir en las siguientes:

- Equilibrio parte aérea-radical.
- Sistema radical abundante y bien conformado (raíz principal diferenciada).
- Raíces secundarias abundantes y bien distribuidas (con micorrizas en sus partes terminales).
- Tallo suficientemente lignificado (15-25 cm) y conjunto foliar verde intenso que recubra casi totalidad del tallo.

Navarro R., M. et al., (2006), indican que, la calidad morfológica de una planta hace referencia a un conjunto de caracteres, tanto de naturaleza cualitativa como cuantitativa, sobre la forma y estructura de la planta. La morfología de una planta cultivada en contenedor en un vivero forestal es el resultado de las características genéticas de las plantas, las condiciones ambientes del vivero y las prácticas de cultivo empleadas, como la fecha de siembra, la densidad de cultivo, el tipo de contenedor, el grado de sombreo, el régimen de fertilización y riego, las podas aéreas, etc.

4.6 CONCEPTO GENERAL DEL HONGOS

PRONAMACHS (1998), los hongos son plantas que no pueden producir su propio alimento (viven parásitos sobre materia orgánica o en descomposición o parasitas de vegetales), porque son incapaces de convertir la luz del sol en la energía requerida para producir azúcares. Consecuentemente, los hongos deben adquirir sus alimentos de otras plantas incluyendo árboles forestales, algunos hongos son perjudiciales al desarrollo de los árboles.

Rey P., A. (2009), menciona que el término "Hongo" se incluyen a un amplísimo número de organismos (unas 80.000 especies conocidas, aunque se considera que pueden ser más de 1 millón), la mayor parte microscópicos. Son aquellos que en determinados momentos y bajo ciertas condiciones son capaces de formar unas estructuras visibles y con forma definida, con función esporífera.
(producción de esporas) denominadas carpóforos, cuerpos fructíferos o, popularmente, setas. A este tipo de hongos se les denomina Macromicetos (*macro* = grande, visible; *miceto* = hongo).

4.6.1 Hongos micorríticos

PRONAMACHS (1998), menciona que los hongos micorrizales o micorríticos colonizan en las raíces de las plantas, formando extensos hilos fungosos en forma de raíz, llamados hifas. Estas penetran el suelo, incrementando el área de la superficie de absorción. Muchos autores e investigadores indican que estos hongos se desarrollan de preferencia en suelos ácidos y que el pH óptimo varía con las diferentes especies de hongos, a mayor humedad del suelo las micorrizas son más abundantes. Además, se ha comprobado que el desarrollo de las micorrizas varía inversamente con la fertilidad del suelo. Las micorrizas ocurren normalmente en suelos que tienen deficiencia en uno o más minerales.

SEMIABOBIO, (2003), menciona que ha realizado estudios de la flora fungosa micorrítica en la sierra peruana habiendo identificado los hongos y ubicados por departamento las plantaciones donde han recolectado los cuerpos fructíferos como se indica en el Cuadro Nº 01.

A) **Función de los Hongos Micorríticos**

El micelio de los hongos que se encuentran en las raíces micorrizadas desempeña un papel importante en la nutrición. Se explica que este micelio. Al ocupar un mayor volumen del suelo permite a las raíces micorrizadas competir con mayor ventaja por los nutrientes del suelo en relación a los otros microorganismos.

B) **Beneficios de los Hongos Micorríticos**

Martinez., G. y T. Estrada A. (1999), mencionan que las micorrizas favorecen la captación de agua y nutrimentos minerales del suelo, especialmente fosforo y nitrógeno, así como elementos como K, Ca, S, Cu, Si, Mg y Fe; estos elementos son absorbidos por las células fúngicas y traslocadas hasta las raíces de la planta. También proveen a la planta de resistencia a condiciones adversas como las heladas y las sequías; hormonas que estimulan el crecimiento y ramificación de las raíces de
las plantas y protección contra patógenos de hábitos radiculares, actuando como barrera biológica o produciendo antibióticos.

Castellano M., A. y R. Molina (1990), mencionan que las micorrizas benefician la nutrición, el crecimiento y la supervivencia de las plantas de muchas formas. El beneficio más conocido es el incremento en la absorción del agua y los nutrientes minerales, los pelos absorbentes de la raíces de plantas de pino, no podrán obtener el agua y los nutrientes de manera adecuada del suelo, una vez plantadas en campo, hasta que formen asociaciones micorrícticas. Se ha observado que las plantas no micorrizadas presentan retraso en el crecimiento y disminución de su supervivencia, al igual que aquellas que fueron inoculadas con hongos ectomicorrízicos “adaptados al vivero”, una vez plantadas en localidades que requieren de un rápido establecimiento para poder sobrevivir.

El programa de inoculación del vivero deberá tener objetivos claros:

- Incremento notable en la superficie de absorción de los pelos radiculares más la que se produce por la cobertura producida por el hongo.
- Mejoramiento de la absorción iónica y acumulación más eficiente y selectiva, especialmente en el caso del fósforo.
- Solubilizarían de minerales que se encuentran en el suelo, facilitando su absorción por las raíces de las plantas.
- Incremento de la vida útil de las raíces absorbentes; las raíces micorrizadas persisten durante mayor tiempo que las raíces no micorrizadas.
- Resistencia de raíces a infecciones causadas por hongos patógenos, tales como *Phytophthora* spp., *Pythium* spp., *Fusarium* spp. y *Rhizoctonia*, especialmente en coníferas en época de lluvia.
- Incremento de la tolerancia del árbol a las toxinas del suelo (orgánicas e inorgánicas), con valores extremos de acidez del suelo y mayor resistencia a las sequías.
- Incremento del cuello de la raíz o del crecimiento apical, tanto en el vivero como en el terreno.
- Disminución de bajas por transplante o los fallos de germinación en repoblaciones con semillas.
SEMIABOBIO, (2004). Las micorrizas benefician la nutrición, el crecimiento y la supervivencia de las plantas de muchas formas. El beneficio más conocido es el incremento en la absorción del agua y los nutrientes minerales, especialmente el fósforo y nitrógeno.
<table>
<thead>
<tr>
<th>Departamento</th>
<th>Suillus luteus</th>
<th>Boletus granulatus</th>
<th>Boletus edulis</th>
<th>Scleroderma verrucosum</th>
<th>Lycoperdon perlatum</th>
<th>Cyathus olla</th>
<th>Laccaria laccata</th>
<th>Cantharellus cibarius</th>
<th>Thelephora terrestris</th>
<th>Boletus calopus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cajamarca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piura</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Libertad</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancash</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazonas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Martin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pucallpa</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pasco</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lima</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junín</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ayacucho</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ica</td>
<td></td>
</tr>
<tr>
<td>Cusco</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puno</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Arequipa</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Moquegua</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Huánuco</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Apurímac</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.6.2 Características Taxonómicas del Género *Boletus edulis*.

Brundrett M., C. (2004), menciona que una forma característica de identificar las setas es por la estructura y morfología junto con el tipo de esporas que pueden producir. En el caso de las setas con esporas, los dos principales grupos son los Basidiomycetes y los Ascomycetes. La principal diferencia es la forma en que producen microscópicamente sus esporas, en los Basidiomycetes, las esporas se generan externamente en estructuras microscópicas denominadas basidios, mientras que, en los Ascomycetes, las esporas se generan internamente en estructuras en forma de saco denominadas ascas. De acuerdo a estas características y diferentes criterios los micólogos establecen sus propias clasificaciones, más básicas y más fáciles de usar en las que se pueden clasificar las distintas especies tanto de acuerdo a caracteres macroscópicos como microscópicos.

Rey P., A. (2009), menciona que el género *Boletus* está formado de un pie generalmente central, a veces, fibroso, y morfológicamente muy variable, a veces provisto de velo parcial u ornamentaciones tipo costilla, reticulados, granulados o escamosos; de un sombrero bastante regular con cutícula variable de aspecto y estructura, y por último de un himenoforo constituido prevalentemente de tubos, es decir de muchos tubos soldados unos con otros, cada uno revestido en el interior del himenio. Los boletus tienen la siguiente colocación taxonómica:

Reino: Fungi

- División: Eumycota
- Subdivisión: Basidiomycotina
- Clase: Hymenomycetes
- Sub clase: Hymenomycetidae
- Orden: Boletales
- Familia: Boletaceae
- Sub familia: Boletoideae
- Género: *Boletus*
- Especie: *B. edulis*

4.6.3 Características morfológicas del género *Boletus*.

Ardón L., C. (2007), menciona que en el hongo hay que diferenciar dos partes fundamentales: el cuerpo vegetativo y el cuerpo reproductor. El cuerpo
vegetativo, que se encuentra bajo el suelo, está formado por unos filamentos llamados hifas que pueden ser unicelulares (con sucesión de núcleos). Al conjunto de todas las hifas es a lo que se le llama micelio. El micelio es el que se encarga de absorber las substancias minerales del suelo para alimento del hongo. El micelio en realidad es el hongo, ya que la seta (a la que comúnmente se la llama hongo), es su aparato reproductor. Por lo tanto, el carpóforo es la parte que sale al exterior y constituye el tejido fúngico de los hongos superiores, especializado en garantizar la perpetuación de la especie.

Bernat, L. (2007), indica que todos los carpóforos del género *Boletus* están formados por píleo, himenio y pie. El píleo está recubierto por una cutícula de diferente consistencia que la carne del sombrero. La superficie fértil, himenio, está ubicada en la parte inferior del píleo y es tubulosa. Los tubos tanto pueden ser cortos de pocos milímetros o largos de casi 2 cm; pero, normalmente en cualquiera de los 2 casos, los tubos se pueden separar de la carne del píleo. El pie está dispuesto, generalmente en la parte central del píleo y es muy variable en la ornamentación, ya que encontramos especies con superficie lisa y especies con retículo o punteado. La carne acostumbra a ser dura y firme, pero se pudre con facilidad y en muchos casos, azulea en contacto con el aire.

Rubio C., L. (2004), menciona que la espora, es la célula reproductora capaz de germinar y producir otro hongo y la unidad básica estructural del cuerpo vegetativo de los hongos (micelio) es la hifa. Normalmente el cuerpo vegetativo de los hongos está formado por filamentos ramificados y puede distinguirse en el mismo una parte vegetativa que absorbe nutrientes y otra parte reproductiva. El verdadero cuerpo vegetativo del hongo, normalmente está escondido y está formado por una red de hifas en forma de filamentos microscópicos enterrada en el substrato, llamada micelio.

4.6.4 Descripción del *Boletus edulis*.

Bakshii, B. (1974), menciona que es el *Boletus* de mayor talla y peso. Sombrero al principio esférico, después aplanado y convexo. Cutícula lisa, monocolor marrón claro o calabaza, con borde del sombrero (y pie), algo más blanquecino.
Apretando con el dedo recupera la huella. Pie robusto, de color blanco o pardo claro, con fina retícula en la parte superior. Tubos blancos, que amarillean al envejecer.

Campos J., C. y A. Arregui (2010), mencionan que las principales características del hongo (*Boletus edulis*). Los cuales son:

- **Sombrero:** Mide desde 10 hasta 25 cm de diámetro, es muy carnoso. En ocasiones alcanza grandes dimensiones, de hasta 30 cm de diámetro. Al principio es convexo, luego cambia a plano-convexo. Ejemplares muy maduros de *Boletus edulis* el sombrero puede observarse totalmente plano. La cutícula es lisa, de color pardo, a veces viscosa, el color varía mucho, desde el blanco, pasando por avellana hasta pardo claro u oscuro o vinoso debajo de la cutícula. El margen es entero o levemente rugoso, incurvado en su juventud y casi plano en la madurez, de color blanco. La característica que diferencia al *Boletus edulis* del resto es el borde claro.

- **Himenio:** Posee himenio poroso formando un continuo entre el himenio y el pie, no existen laminillas. Los poros del *Boletus edulis* son cerrados y se separan fácilmente, son inmutables tanto al tacto como al corte (no azulean). Su color es predominantemente blanco, pero también pueden encontrarse amarillos y olivas a medida que maduran. Las esporas son de color marrón oliva, se expulsan en grandes masas.

- **Pie:** Puede medir entre 4 y 20 cm de alto x 2 y 10 cm de diámetro de acuerdo a su estado de crecimiento. Es bastante robusto. Se caracteriza por ser estrecho en la parte apical y grueso en su base. Con la madurez se torna más o menos cilíndrico.

- **Carne del cuerpo fructífero:** Es espesa, muy densa y se vuelve esponjosa con la edad, de color blanco hasta pardo-rosada en la parte superior del sombrero, su olor y sabor es muy agradable, algunos lo comparan con el sabor de la avellana.

Cuesta C., J. (2013), indica que la estructura macroscópica básica del hongo (*Boletus edulis*) es:

- **Sombrero:** Desarrolla la forma típica de los "boletus", al principio semiesférico, con el margen rodeando al pie, después convexo. Tiene un diámetro que puede llegar a los 25 o 30 cm y un color marrón claro, pardo,
canela, más oscuro en el centro y frecuentemente difuminado a los bordes, donde llega a ser casi blanco. La cutícula es ligeramente viscosa, sobre todo en tiempo húmedo, característica que pierde con la edad. Su margen es excedente, incurvado que pasa a ser casi plano con su desarrollo.

- **Himenio:** Los tubos son libres y largos, de 10 a 20 mm. según la edad del ejemplar. Fácilmente separables de la carne e inicialmente blancos, pasando a ser con la madurez, amarillos y posteriormente verdes. Sus poros son circulares del mismo color que los tubos. No azulean al roce.

- **Pie:** De 5-20 cm. de largo por 2-8 cm. de diámetro según su estado de crecimiento. Consistente y robusto, frecuentemente más engrosado en la parte media, sobre todo en los ejemplares jóvenes. Está finamente decorado, sobre todo en su parte superior, con una retícula blanca que contrasta con el color avellana del fondo y se difumina en el ápice del pie que es más claro, casi blanco.

- **Carne:** Espesa, blanca, inmutable, tierna. Bajo de la cutícula adquiere un color rojizo. Con la edad adopta una consistencia esponjosa. Olor y sabor muy agradables y característicos, que recuerda ligeramente al de la avellana.

- **Forma:** existen de muchos tipos, pero se suelen asociar a figuras geométricas como cilíndricas, filiformes, fusiformes, etc.

Figura N° 01: Estructura (Boletus edulis)

Fuente: Días cruz, B., 2015
Alonso J., D. (2012), menciona que las principales características de los hongos (*Boletus edulis*) son: 1°. Estructura filamentosa, 2°. Reproducción por esporas y 3°. Nutrición heterótrofa, es decir, a base de la materia orgánica, en descomposición o de otros seres vivos; además, son organismos eucariotas, sin clorofila y con la pared celular con presencia de quitina, características que a continuación se describen:

A. Estructura Filamentosa: Micelio y Carpóforo (seta). Los macromicetos tienen una estructura filamentosa, es decir, están constituidos por filamentos con aspecto de hilos o cordoncillos denominados Hifas. El entramado de todas las hifas que forma el cuerpo de un hongo es lo que llamamos Micelio. El micelio, que generalmente no puede observarse (está inmerso en la tierra, madera, residuos, etc.), crece lenta y continuamente y cuando las condiciones ambientales y nutricionales son adecuadas, dará lugar a un carpóforo o cuerpo fructífero o seta que primero será como una pequeña bola o huevo denominada primordio y que al crecer formará una seta adulta que producirá esporas. La seta, al igual que el micelio, está constituida por hifas.

Figura N° 02: Micelio del hongo (seta, espora, micelio y primordios)

B. Reproducción. El método principal de propagación de los hongos es a través de esporas. La capa de células fértiles que producen las esporas (himenio) se encuentra en los carpóforos o setas en una zona que se denomina **Himenóforo**. En una seta típica con pie, sombrero y láminas, el himenóforo serían precisamente las láminas que hay bajo el sombrero.
(aunque, existen otras formas de himenóforo). En las láminas las esporas se forman en unas pequeñas prolongaciones exteriores de unas células llamadas basidios y a los hongos que tienen basidios se les llama basidiomicetos. En otros hongos las esporas se forman en el interior de unas células con forma cilíndrica o de saco que se llaman ascas y a los hongos que presentan ascas se les denomina ascomicetos. En una seta madura las esporas van cayendo en gran cantidad. El viento, los insectos, la lluvia, etc., las pueden transportar a gran distancia ya que son de tamaño microscópico y de peso ínfimo.

C. Nutrición. Los hongos no tienen clorofila como las plantas y por ello no pueden aprovechar las sales minerales del terreno para fabricar su propia materia orgánica mediante la fotosíntesis como hacen las plantas (autótrofas) y por ello se dice que son organismos heterótrofos, ya que la mayor parte de su alimentación tienen que recibirla en forma de materia orgánica ya fabricada por otros seres. Los hongos simplemente absorben a través de las paredes de sus células la materia orgánica más simple, después de haber degradado la más compleja por medio de la liberación de fermentos o enzimas. Así, podemos clasificar a los hongos por su nutrición en 3 grandes grupos:

- **Saprófitos o saprobios**, es decir, que se nutren a partir de la descomposición de la materia orgánica muerta o inerte.
- **Parásitos**, los hongos que viven a expensas de otros seres vivos, animales, vegetales u otros hongos.
- **Simbiontes**, que se asocian a otros seres vivos sacando provecho de esta asociación ambas partes. La simbiosis más frecuente la desarrollan el micelio de los hongos con las raíces de las plantas, denominándose a esta simbiosis **Micorriza**. Ejemplo de hongo micorrízico: el níscalo (*Lactarius deliciosus*), cuyo micelio se asocia con las raíces de los pinos.
4.7 CONCEPTO DE MICORRIZA.

Molleapaza, E. (1979), define a la micorriza como una estructura que resulta de la asociación simbiótica de hongos bien particulares con las raíces en nuestro caso de árboles forestales, esta asociación que transforma profundamente la biología en las raíces del árbol, se da constantemente en suelos forestales.

Castellano M., A. y R. Molinar (1989), mencionan que la palabra micorriza se refiere a la raíz de una planta o fitobionte más un hongo simbionte asociado que se le puede llamar micobionte, y se considera en un conjunto como un órgano funcionalmente distinto cuya función es la absorción de nutrientes del suelo. Los miembros en esta asociación son del rey fungi (basidiomicetes, Ascomicetes, Quitridiomicetes y Zygomycetes) y la mayoría de las plantas vasculares.

INIAP (2002), menciona que las micorrizas son asociaciones benéficas entre las raíces de las plantas con ciertos hongos del suelo. Estas asociaciones facilitan la absorción de nutrientes del suelo para transportarlos a la planta. Los hongos que forman micorrizas, ingresan rápidamente a las raíces; teniendo un efecto protector sobre organismos que causan enfermedades como: nematodos que forman agallas y hongos causantes de pudriciones. Las micorrizas presentan las siguientes estructuras:

A) Arbúsculos que tienen la forma de un árbol y cuya función principal es el intercambio de nutrientes entre las células del hongo y de la planta.

B) Vesículas que son estructuras en forma de bolsas y actúan como órganos de reserva.

Como todos los hongos, estos se reproducen formando esporas que se presentan como pequeñas bolitas redondas de colores vistosos.

Chung G., P. (2005), menciona que hongos son organismos que, al contrario de las plantas superiores, no poseen clorofila y son incapaces de absorber substancias minerales simples y sintetizar a través de ellas sustancias más complejas, como aminoácidos, proteínas o hidratos de carbono que sirvan para su nutrición y crecimiento. Estas sustancias elaboradas pueden obtenerlas de distintos organismos, ya sea vivos o muertos, distinguiéndose, por tanto, tres formas de obtenerla: saprófitos, a partir de organismos muertos; parásitos, que viven de
organismos vivos causándoles algún grado de perjuicio; y simbióticos, que necesitan la compañía de otro ser vivo, con los que colaboran mutuamente para beneficio de ambas partes.

4.7.1 Historia de las Micorrizas

Garbaye J., et al, (1988), comentan que las micorrizas fueron primeramente descritas por Theodore Hartig en coníferas, pero no investigó su función. Un alemán llamado Frank publicó en 1885 los resultados sobre la relación de la micorriza con el crecimiento de las plantas y el hongo en los bosques; quien a su vez estableció el término de “micorriza”. Melinn y Bjorkman en Suecia, Harley en Gran Bretaña y Hatch & Doak en EEUU han explotado mediante investigaciones la función de las micorrizas en árboles forestales.

Raisman J., y A. Gonzales (2004), menciona que recién en 1900 el francés Bernard puso de manifiesto su importancia estudiando las orquídeas; las primeras que despertaron interés fueron las micorrizas de los árboles forestales, y aunque de las plantas cultivadas comenzaron a estudiarse en 1910, es recién después de los trabajos de Mosse en Inglaterra en 1955 cuando se empieza a reconocer la importancia y la generalidad de esta simbiosis. Importancia de la Simbiosis Micorrizal

Vasco, F. (2003), menciona que el ámbito mundial numerosos autores han demostrado la importancia de la simbiosis ectomicorrízica para el crecimiento, desarrollo y supervivencia de muchas familias de especies forestales, como son las Pinaceas, las cuales no crecen ni se desarrollan normalmente, si su masa radicular no se encuentra infestado por hongos ectomicorrícicos.

Brundrett, M. (2004), describe esta simbiosis como un sistema de absorción que se extiende por el suelo y es capaz de proporcionar agua y nutrientes (nitrógeno y fósforo principalmente) a las plantas, y proteger las raíces contra algunas enfermedades. El hongo por su parte recibe de la planta azúcares provenientes de la fotosíntesis.
4.7.2 Formación de las Micorrizas

Guido, J. (1984), menciona que los suelos que determinan el desarrollo de las micorrizas sobre las raíces de los pinos son los de textura suelta (arenosos) con un alto contenido de materia orgánica descompuesta (humus), buena aireación, donde exista la posibilidad de fácil desarrollo de los hongos. Los hongos requieren suelos de reacción ácida, pH de 4 a 5. El crecimiento es muy pobre en pH mayor o menor, no obstante, existen micorrizas en forma natural en suelos calcáreos, con el hongo (Suillus granulatus). La temperatura óptima para el desarrollo de micorrizas es entre 14 y 30 °C, habiendo hongos que se adaptan a temperaturas bajas y otros a temperaturas altas.

Garbaye J., et al, (1988), comentan que la infección del huésped por las ectomicorrizas empieza en la primavera cuando empieza el crecimiento de la planta. El inóculo consiste de elementos activos como esporas, raíces micorrizadas trozadas, micelio en el suelo y ocasionalmente rizomorfos. Las raíces largas son infectadas primero y las raíces alimenticias cortas son infectadas antes que emerjan del cortex. El número de raíces cortas es casi el doble en las plantas infectados comparadas con las no infectadas y la presencia del hongo retrasa la absorción o pérdida de las raíces cortas. El desarrollo radicular está en relación a la presencia o deficiencia de Nitrógeno, Fósforo y posiblemente Potasio. Si los pinos son bien fertilizados con nutrientes, pocas micorrizas van a desarrollar. Así las plantas en suelo fértil normalmente tienen pocas micorrizas que aquellas en suelos infériles. El desarrollo de las micorrizas puede reducirse con poca cantidad de luz Conococcun graniforme es la más tolerante de las especies que ocurren comúnmente. El pH más favorable para estos hongos está alrededor de 4,0 - 5,5. Diferentes hongos forman micorrizas a diferentes temperaturas y no exigen temperatura óptima. Los suelos demasiado húmedos y secos son dañinos para las micorrizas; C. graniforme es favorable con relación a otros hongos en suelos seco.

PRONAMACHS (1998), señala que la infección micorrizal se inicia a partir de esporas e hifas (propágulos) de los hongos simbiontes en la rizósfera de las raíces. El propágulo es estimulado por los exudados radiculares y crece vegetativamente sobre la superficie de estas raíces, formando el manto fungal. A continuación, las hifas empiezan a desarrollarse intercelularmente en la corteza de la raíz, formando la red
Hartig, la cual puede reemplazar completamente la lámina media entre las células del córtex. La presencia de la asociación micorrizal en las plantas es tan común bajo condiciones naturales de suelo que una planta sin micorrizar es una excepción más que una regla.

4.7.3 Tipos de micorrizas

Marx, D. (1984), menciona que la terminología de estos tipos ha experimentado recientes cambios. Estos tres tipos de micorrizas son los más comúnmente conocidos por los investigadores y especialistas en el estudio de las micorrizas, estas son: ectomicorrizas, endomicorrizas y ecto-endomicorrizas.

A) Ectomicorrizas

PRONAMACHS (1998), manifiesta las ectomicorrizas son las más comunes en los árboles forestales de las regiones templadas especialmente en pinaceas en las coníferas y algunas plantas angiospermas. Suele producirse en raíces secundarias de crecimiento limitado las cuales son rodeadas por un manto fungoso el cual puede tener 60 micrones de espesor, los filamentos de los hongos se introducen entre las células que forman la corteza de la raíz, pero nunca dentro de ellas, formando una estructura que recuerda mucho a una red, se llama RED DE HARTING, además añade que crecen naturalmente en las pinaceas como pinos, abedules, alerces y abetos entre otros.

Zegarra, A. (1981), menciona que la red o manto es a menudo coloreado de blanco o negro, dependiendo de las hifas del hongo involucrado, usualmente es de superficie lisa, aunque puede ser rugosa suelta muchas hifas irradiando hacia el suelo.

Marx, D. (1984), menciona que las ectomicorrizas ocurren naturalmente en raíces secundarias en pino abeto, alerce, eucalipto, haya, abedul, roble, nogal americano y otros árboles en Norteamérica. Las ectomicorrizas pueden distinguirse microscópicamente de las no micorrícticas por su forma hinchada y generalmente son ramificadas. La bifurcación de las raíces puede estar estimulada por otros factores que por la infección del hongo ectomicorrizal. Las ectomicorrizas pueden ser no bifurcadas (monopodiales), Forma de “Y” o bifurcadas, mul-tibifurcadas (coraloide) o de otras formas. Una ectomicorriza monopodial de pino puede tener como medidas de 1 x 2 mm (diámetro y longitud), y una coraloide compleja puede ser de 10 x 15...
mm. Algunas raíces de pino no micorrizadas tienen aproximadamente de 1 a 24 mm. Bajo el microscopio, las hifas de los hongos ectomicorrizales pueden observarse creciendo internamente alrededor de las células corticales primarias de las raíces formando la red de Hartig, de aquí el prefijo “ecto”. Esta red está formada por las finas del hongo, parece reemplazar la lámina media, es una capa normalmente compuesta de pectinas las que cementan las células corticales. Estos hongos no infectan el tejido meristemático o vascular. Las hifas de los simbiontes fungales normalmente rodean las raíces alimenticias en un molde muy apretado ondulado llamado “manto fungoso”. El espesor del manto ectomicorrizal está dado por una o dos hifas o varias docenas de hifas. Las ectomicorrizas pueden ser blancas, marrones, amarillas, negras, azules u otra gama de colores. Todos los colores están aparentemente determinados por el color de las hifas que forma el manto fungoso.

González, R. (1965), describe tres tipos de micorrizas ectotróficas o ectomicorrizas en pinos:

- *Gabe mykorrhiza* (coraloide), la más común en suelos forestales. Está formada por pequeñas raíces ramificadas en forma dicotómica que pueden aparecer aisladas o en grupos.

- *Knollen mykorrhiza* (tuberculada), también abundante en suelos forestales y formada por dictomías reunidas y agrupadas una contra otras que en conjunto asemejan cuerpos tuberculados.

- *Einfach mykorrhiza* (simple), consiste en una corta raíz con la extremidad dilatada, pudiendo ser fina y larga, formando como un nuevo manto.

B) Endomicorrizas

Marx, D. (1984), afirma que los hongos endomicorrizales forman una red floja de hifas en la superficie de las raíces secundarias en lugar de un manto tan fungoso de uso característico de algunas ectomicorrizas. Muchas veces; estos hongos tienen esporas alargadas, conspicuas de paredes delgadas en las raíces, en la rizósfera y algunas veces entre el tejido cortical. Las hifas de los hongos endomicorrizales penetran la pared celular de la epidermis y crecen en las células corticales de las raíces; de allí el prefijo “endo”. Las hifas que infectan las células corticales pueden desarrollar estructuras absorbentes (haustorias) llamadas arbúsculas o vesículas de paredes delgadas esféricas u ovadas. Algunas veces ambas estructuras penetran el
mismo tejido. El término vesícula arbuscular (VA) ha sido utilizado para denotar este tipo de micorriza. Ciertas simbiosis forman estructuras las que anatómicamente son diferentes de la micorriza VA. Como en la ectomicorriza, la infección endomicorrizal no progresa dentro del tejido meristemático o vascular ni la ecto y/o endomicorriza cambian significativamente la apariencia de las raíces alimenticias.

Los hongos que forman endomicorrizas con árboles son principalmente Ficomicetos no producen esporas redondas en formas de mazo o cuerpo fructífero exteriormente. Estos hongos se desparraman al ras del suelo por medio de hifas que crecen de raíz a raíz que son diseminadas de una a otra área por el agua o por medio de animales causando el movimiento del suelo infectado u otros materiales. En ausencia de un huésped, las esporas son capaces de sobrevivir en estado de dormancia durante algunos años en el suelo. Basado en la cantidad de trabajos hechos sobre las endomicorrizas, algunas especies de hongos tienen un amplio rango de huéspedes. Por ejemplo: (Endogone mosseae) forma endomicorrizas con sicamoro, arce, cotton wood, populus amarillo, goma dulce, y algarrobo negro. Este hongo forma endomicorrizas en cultivos agrícolas tales como el algodón, maíz, soya, sorgo y pimienta; y en horticultura como cítricos y duraznos.

PRONAMACHCS (1998), señala que este tipo de micorriza se ha encontrado en cultivos agrícolas económicamente importantes, así como cultivos frutícolas como nogal, manzano, mandarina, naranja y fresa, entre otros, también se presentan en algunos árboles como el arce, olmo y fresno principalmente. Las Hifas penetran el tejido cortical de la raíz y provocan una infección progresiva de las células de la corteza.

C) Ecto-endomicorrizas

Marx, D. (1984), menciona que esta clase de micorriza se ha encontrado en raíces de coníferas, tiene las características de las ecto y las endomicorrizas. La clasificación taxonómica del hongo puede pertenecer a distintos grupos de hongos o ellos pueden ser actualmente ectomicorrizales, los que forman un tipo morfológico diferente de micorrizas. Anatómicamente, las ecto- endomicorrizas pueden o no pueden tener un manto fungoso delgado, pero tienen la red Hartig entre las células corticales. Las hifas generalmente son de diámetro pequeño, penetran las células de la corteza primaria de tal manera que reemplaza ciertos tipos de infección
endomicorrizal. Las ecto-endomicorrizas raramente se hallan en árboles y suelos forestales, pero exclusivamente están conformadas a los pinos en vivero en áreas boscosas o en suelos con condiciones adversas. Los pinos que forman ecto-endomicorrizas en viveros eventualmente, pueden formar ectomicorrizas después que son llevados al campo.

Ruiz, P. (1992), distingue por lo menos cinco tipos de asociaciones micorrínicas; las cuales involucran diferentes clases de hongos y plantas hospederas y distintos patrones morfológicos. Las asociaciones más comunes son:

a) **Micorrizas vesículo-arbusculares (MVA)**, en las que los hongos Zygomicetos producen arbúsculos, hifas y vesículas en las células corticales de la raíz.

b) **Ectomicorrizas** en donde Basidiomicetos y otros hongos forman un manto alrededor de las raíces y una estructura llamada red de hartig entre las células radiculares.

c) **Micorrizas orquídeas**, en donde los hongos producen serpentines de hifas dentro de las raíces (o tallos) de las plantas orquídeas.

d) **Micorrizas ericoides**, donde los serpentines de hifas son producidos en las células exteriores de los pelos radiculares en los Ericales.

e) **Micorrizas arbutoides**; un tipo de endomicorriza asociado con los géneros Arbutus y Monotropa.

PRONAMACHS (1998), menciona que las ecto-endo micorrizas son ecológicamente menos importantes que las otras dos. En la sierra y selva peruana se han encontrado este tipo de micorrizas en eucaliptos y latifoliadas. Manifiesta que es necesario estudiar este tipo de micorrizas en el Perú, sobre todo en plantas nativas de altura como la Queñua y el Colle, entre otras.

Popoff O. y L. Ferraro I. (2007), indican que aproximadamente unas 5.000 especies de hongos con carpóforos (principalmente Basidiomycetes) están asociadas a árboles forestales en regiones boreales y templadas, estableciendo un tipo de micorrizas. Los dos tipos más comunes, más extendidas y más conocidas son las ectomicorrizas y las endomicorrizas. Cada tipo se distingue sobre la base de la relación de las hifas del hongo con las células radiculares del hospedador.

En las ectomicorrizas el micelio invade la raíz sin entrar en el interior de las células, de aquí el nombre de ectomicorrizas.
Figura N° 03: Invasión del micelio en raíz de Angiospermas y Gimnospermas

En las endomicorrizas el micelio invade la raíz, inicialmente es intercelular, pero luego penetra en el interior de las células radicales, desde la rizodermis hasta las células corticales.

Figura N° 04: Endomicorrizas en corte longitudinal de raíz

Fuente: UDES. 2009

Fuente: www.biologia.edu.ar/botanica/tema20/micorrizas.htm
4.7.4 Diferencias Morfológicas de Ectomicorrizas

Grand L., F. y D. Harvey E. (1984), manifiestan que la variación en la ramificación de las ectomicorrizas es considerable. Las ramificaciones pueden variar desde simple monopodial a coraloides, con un número de formas intermedias (Figura Nº 05). Un solo tipo puede o no puede ser una sola combinación hongo-huésped. Además, puede alterar el resultado, sobre todo si se está interesado en una combinación difícil, aun cuando solo se conozca el número de ectomicorrizas y no su identidad (procedimiento comúnmente usado). En la figura Nº 05, la letra E obviamente tiene más volumen, área superficial, puntas ectomicorrizales y presumiblemente más peso que las figuras B, C, y D. Posiblemente la transformación de una raíz corta a una forma de tubérculo puede ser característico de 150 tipos de ectomicorrizas.

Figura Nº 05: Diferencias morfológicas de ectomicorrizas

Dónde:
A: Raíz pequeña sin micorriza
B: Micorriza Simple o Monopodial
C: Micorriza Bifurcada
D: Micorriza Ramificada
E. Micorriza Ramificada o Coraloides.
4.7.5 Factores dañinos a las Micorrizas

PRONAMACHS (1998), indica cinco factores:

a. Reducción de oxígeno del suelo (compactación del suelo, debido al uso indebido de sustratos pesados).

b. Alteración del pH del suelo (uso indebido de fertilizantes o cal, y descuido en chequear el pH del agua usada con algún tratamiento químico).

c. Condiciones del suelo, sometidos principalmente a incendios forestales.

d. Prolongadas inundaciones (suelos compactados en áreas con poco drenaje).

e. Toxicidad química por uso indebido de fertilizantes y herbicidas o introducción de hierbas o grasses que liberan sustancias inhibitorias de sus raíces.

Todas estas condiciones pueden ser fácilmente evitadas si se pone mucha atención al ambiente forestal donde se está trabajando y a los métodos potencialmente dañinos que se están empleando.

4.7.6 Formas de Micorrizar

PRONAMACHCS (1998), indica que las micorrizas se presentan en las raíces bajo dos maneras:

- Al natural, en la mayoría de especies forestales, hierbas y arbustos, cuando están ausentes las micorrizas se observan claros síntomas de debilidad de las plántulas (amarillamiento generalizado). La micorrización natural es lenta y muchas veces el hongo no es el más apropiado para el huésped y para las condiciones del suelo.

- La micorrización artificial se realiza mediante el uso de inóculo vegetativo, el que consiste en la selección y aislamiento de hongos micorríticos y después son propagados como semilla. La micorrización artificial es rápida y selectiva, dando la ventaja de inocular a un hospedero determinado con su hongo micorrítico apropiado.

4.7.7 Micorrización (inoculación).

Martínez S., G. y T. Estrada A. (1999), indican que actualmente en países como Australia, EE. UU y España, la inoculación con hongos micorrizógenos seleccionados para la producción intensiva de plántulas en viveros es una realidad. Así, se ha generado una industria biotecnológica para la producción comercial de
cultivos puros de hongos ectomicorrizógenos como inoculantes para incrementar la sobrevivencia de las plantaciones forestales.

Martínez R., M. (2010), indica que la inoculación de hongos ectomicorrízicos comestibles en plantas forestales se ha utilizado generalmente micelio, mientras que la eficiencia del uso de esporas o esporomas deshidratados como fuente de inóculo ha sido escasamente estudiada. En el presente estudio se inocularon plantas de *Pinus greggii* Engelm y *P. montezumae* Lamb con esporomas deshidratados molidos, solos o combinados, de *Laccaria laccata* y *Hebeloma mesophaeum*. Después de 284 y 392 días, a partir de la inoculación, se registró la primera aparición de esporomas de las especies inoculadas, respectivamente.

Morcillo M., y M. Sánchez (2001), mencionan que algunos viveros forestales emplean como substrato suelos de bosque o de áreas vecinas. Estos aportan esporas de hongos micorrízicos, fragmentos de raíces micorrizadas, etc., que actúan como inóculos de las nuevas plantas. En estos casos, la aparición de micorrizas suele ser errática y sin ningún control. Por otra parte, el empleo de suelos no esterilizados suele significar la aparición de enfermedades de cuello de raíz. Estas suelen convertirse en plagas difíciles de erradicar, menguando notablemente el número de plantas del vivero.

Carrillo, L. (2003), menciona que generalmente los hongos ectomicorrízicos deben incorporarse a las plántulas de árboles y plantas ornamentales, cuando se desarrollan en medios artificiales con vermiculita o arena. La falta de micorrización acarrea problemas en el transplante, excepto en los casos en que el suelo contenga especies fúngicas. Las primeras técnicas de inoculación consistían en el transporte de suelo desde la zona de origen de la plantación al vivero, pero se corría el riesgo de llevar también microorganismos patógenos. Para inocular con cultivos puros, el substrato (suelo, turba) debe ser previamente pasteurizado o fumigado con el fin de disminuir la población fúngica nativa que podría competir con el inóculo.

Chung G., p. (2005), menciona que, aunque la simbiosis entre hongo y planta se encuentra muy extendida en los variados ecosistemas terrestres, los fenómenos de degradación, uso indiscriminado de sustancias químicas, etc., ha planteado la necesidad de actuar de manera sostenible, aplicando técnicas como la micorrización.
inducida, mediante el uso de inóculos micorrízicos. Al respecto, en los viveros de todo el mundo, la micorrización controlada es una operación que cada vez es más habitual, en la cual los viveristas deberán tener claro el destino final de las plantas producidas y poder tratarlas con los elementos fúngicos más adecuados, debido a que, en determinadas condiciones ambientales, algunas especies de hongos son más beneficiosas que otras, logrando que éstos sean más competitivos tanto en vivero como en la plantación.

Aguilar A., S. (2011), menciona que el proceso de micorrización se inicia cuando el hongo, coloniza la raicilla y llega a ser parte integrante de ella, desarrollando un filamento micélico (micelio o conducto extenso compuesto por varias hifas), que, a modo de sistema radical y altamente efectivo, ayuda a la planta a adquirir diversos nutrientes, entre los más importantes el nitrógeno y fósforo, además de proveerle una mayor capacidad de absorción y retención de humedad del suelo por medio de las hifas asociadas. A cambio, el hongo recibe hidratos de carbono (azúcares, almidones, etc.) que necesita para su alimentación, estos hidratos de carbono provienen de la fotosíntesis de la planta, así mismo esta asociación (hongo - raíz) favorece el crecimiento y el desarrollo tanto de la planta como del hongo.

Fernández C., E. (2013), analizó el efecto de los hongos micorrízicos arbusculares sobre el crecimiento y la supervivencia de dos especies de plántulas (*Piper auritum* y *Rollinia jimenezzi*) en la primera etapa en invernadero donde el factor de micorrización produjo diferencias significativas en el peso seco foliar y proporción del área foliar, posteriormente fueron trasplantadas en áreas degradadas derivadas de la selva tropical húmeda destacándose las plantas micorrizadas con diferencias significativas en tres de las variables dasométricas de la planta y aumento la sobrevivencia de las mismas en campo.

4.7.8 Fuentes y Técnicas de Inoculación con Ectomicorrizas

árboles de pino. Este método requiere grandes cantidades de suelo cada año. Una de las más serias desventajas de este tipo de inóculo, es que las semillas, rizomas de malezas y patógenos potenciales, pueden ser transportados de forma accidental hacia el vivero a través del suelo. Otra desventaja es la inconsistencia en la calidad del inóculo, debido a los diferentes momentos y fuentes de abastecimiento de suelo. No se recomienda este método a menos que no existan otras formas de inoculación.

PRONAMACHCS (1998), señala que la mayoría de técnicas utilizan para hongos ectomicorrícticos de la clase basidiomicetos, para inocular plantas de pino destacan las siguientes técnicas.

a. Inoculación mediante suelo de bosque.

Este tipo de inóculo está constituido por suelo o humus colectado de plantaciones establecidas con plantas hospederas de estos hongos ectomicorrícticos y fragmento de raíces micorrizadas que actúan como inóculos para las nuevas plantas a producir. Este método requiere grandes cantidades de suelo, pero es preferido especialmente en los trópicos, porque es de fácil aplicación. Una de las más serias desventajas de este tipo de inóculo, es que las semillas, rizomas de malezas y patógenos potenciales, pueden ser transportados de forma accidental hacia el vivero a través del suelo. Otra desventaja es la inconsistencia en la calidad del inóculo, debido a los diferentes momentos y fuentes de abastecimiento de suelo.

b. Inoculación mediante esporas.

Las esporas o cuerpos de fructificación de algunos hongos macromicetos, Boletales y trufas (y falsas trufas) ectomicorrícticas, proporcionan buen inóculo. Las trufas (Ascomicetos) y las falsas trufas (Basidiomicetos), referidas ambas como trufas de ahora en adelante, resultan excelentes para esto, dado que sus cuerpos reproductores principalmente de tejido que sostiene esporas y sus cuerpos de fructificación pueden ser bastante grandes. Para preparar la inoculación por esporas, los cuerpos reproductores recién recolectados son enjuagados con agua corriente para remover el suelo adherido o la materia orgánica, posteriormente se cortan en pequeños trozos (de 1 a 3 cm3) y finalmente se agrega agua potable a presión por un espacio de 2 a 3 minutos, hasta que las partes queden completamente licuadas. La consistencia final es similar a malteada de chocolate espesa. Las concentraciones de
esporas dentro de la suspensión resultante son determinadas mediante un hemacitómetro (contador de células sanguíneas) y es almacenada bajo refrigeración en completa oscuridad (5º C o 41º F) hasta que vaya a ser usada. Se recomienda utilizar esporas frescas siempre que sea posible, aunque se ha almacenado suspensión de esporas, de diferentes especies del género Rhizopogon hasta por tres años, sin una reducción significativa en la efectividad de la inoculación.

Marx, D. (1991), menciona que, de manera alternativa, las esporas pueden ser aplicadas a las raíces de las plántulas antes de realizar la siembra; aun cuando no se ha utilizado con mucha frecuencia, este método ha demostrado ser más efectivo que el de riego mediante regadera, para la inoculación de cada una de las plantas.

Castellano M., A. et al, (1985), mencionan que las esporas son aplicadas de seis a doce semanas luego de la siembra, ya sea mediante una regadera común o a través del sistema de riego, la mayoría de las esporas de trufas tienen un diámetro menor a 50 μm y puede pasar libremente a través de la mayoría de los filtros y boquillas de riego. La cantidad deseada de esporas es mezclada dentro de una regadera que contiene suficiente agua para cubrir un determinado número o superficie de plantas, la aplicación de esporas dos veces, con una separación de dos o tres semanas, funciona mejor para asegurar una distribución uniforme.

c. Inoculación mediante micelios.

El inóculo vegetativo constituido por micelio de hongos ectomicorríticos ha sido recomendado por varios autores. Lamentablemente varias especies de hongos ectomicorrizales son difíciles de cultivar en medios artificiales. La mayoría de estos hongos necesitan de nutrientes específicos, tales como la tiamina, biotina y carbohidratos. Este tipo de micorrización es considerarlo como el más eficiente, selectivo, y seguro para obtener plántulas de pino robustas, sanas y resistentes a condiciones adversas en el menor tiempo posible en vivero.

Zegarra, A. (1981), menciona que esta técnica consiste en triturar a los cuerpos fructíferos de los hongos micorrizógenos y las esporas se mezclan con la tierra superficial de vivero, el método tiene mayor aplicación cuando se practica siembra directa, esta técnica es usada actualmente en algunos viveros de la Sierra del Perú.
Loroña, A. (1992), recomienda realizar la inoculación del hongo en el momento del trasplante puesto que es el momento apropiado para que la micorriza incremente la capacidad radicular de la plántula y la absorción de nutrientes.

4.8 MANEJO DE PLANTONES DE PINO EN VIVERO

4.8.1 Vivero

Agrorural (2014), indica que el vivero un espacio que cuenta con área de preparación de sustrato, área de germinación donde se instalarán camas de almacigo, y área de crecimiento donde estarán las camas de repique.
Las camas de almácigo deberán tener un metro de ancho con una profundidad de 25 a 30 cm., esto permitirá mejorar manejo del riego y extracción de las plántulas.
El largo dependerá de la cantidad de plantas que se desea producir. Así, por ejemplo, en una cama de 1m x 1m se puede producir entre 2,300 - 2,500 plantitas de pino (*Pinus radiata*).

Las camas de repique son el lugar donde las plantas permanecen desde que salen de las camas de almacigo, hasta tener el tamaño adecuado para plantarlas en el terreno definitivo. El largo de la cama de repique debe ser de 10 m de largo, 1 m de ancho y 20 cm de profundidad con una ligera inclinación para que no se empoce agua durante el riego, así mismo facilite el manejo de las plántulas.
Las camas de repique deben tener una entrada de agua y una salida, la separación, o camino entre las camas deben ser de 60 a 70 cm. de modo que permita el tránsito de las personas y traslado de una carretilla.

4.8.2 Almacigado

Agrorural (2014), indica que el sustrato que se utiliza para almacigo es una mezcla de tierra negra llamada “turba” y arena previamente zarandeado siendo las proporciones recomendadas de 3:1 respectivamente.
La turba es rica en materia orgánica, muy necesario para una buena germinación de la semilla, además ayuda a la conservación de la humedad y temperatura adecuada.
En la cama de germinación se coloca sustrato fino con una profundidad de 12 a 14 cm. seguidamente se hace la desinfección para prevenir el ataque de los hongos que pueden estar en el sustrato preparado.
El almacigado consiste en distribuir la semilla uniformemente sobre la superficie de la cama, para luego cubrir con la misma capa superficial del mismo sustrato. Una vez que se ha terminado de almacigar, se protege todo el espacio con tinglado. El riego de la cama de almacigo debe hacerse todos los días.

4.8.3 Repique

Agrorural (2014), indica que repique es el proceso de sacar las plantas de la cama de almacigo y ponerlas en bolsas de 5”x7” con sustrato, los pinos se repican cuando esta ha eliminado la cascara de la semilla (cabecitas de fosforo), y sus acículas están rectas, las plantitas seleccionadas, cuyas raíces tengan más de 5 a 6 cm. hay que podarlas esto ayudará a que crezcan más raíces laterales. Una a dos horas antes de la extracción, se riega la cama de almacigo. Luego se remueve el sustrato con pala para aflojar la tierra. No se debe jalar las plantitas porque se dañan las raíces. Enseguida se pone en recipiente con agua y barro suelto, cuidando siempre de no exponer por mucho tiempo al sol. Las plantas se introducen hasta el nivel donde se encontraban en el almacigo. Tener cuidado de no doblar las raíces, luego se rellena el hoyo con micorriza y sustrato, presionando ligeramente con los dedos para eliminar los espacios vacíos que pueden quedar. Las micorrizas protegen de las plantas de las sequías y agentes patógenos que occasionan chupadera fungosa, además de brindar otros beneficios a las plantitas de pino repicadas, las micorrizas se encuentran en la tierra de la base de los árboles de pino o podemos comprar y prepararlas.

Limache, A. (1985), añade que para producir plantones de pinos en viveros se debe prestar atención al proceso de micorrización, puesto que esta especie forestal no desarrolla satisfactoriamente cuando carece de la asociación respectiva.

4.8.4 Riego

Agrorural (2014), indica que el riego depende de la época y las condiciones de clima. En tiempo soleado hay más pérdida de humedad que en tiempo nublado, después de terminar de repicar, el riego es diario, (con regadera), durante los primeros 15 días, después de pasados los 15 días, se puede ya regar por inundación. El número de veces que hay que regar y la cantidad de agua necesaria es mayor durante la primera etapa de crecimiento de las plantitas luego el riego se va...
espaciando de acuerdo a los requerimientos de la planta y las condiciones de clima. Dos meses antes del traslado a la plantación el riego es de una vez cada 15 días.

4.8.5 Control de plagas y enfermedades

Guido, J. (1984), menciona que entre las principales enfermedades de la raíz a nivel de vivero se tiene la (Chupadera fungosa), enfermedad muy común en el género Pinus. En el Perú se ha comprobado que los causantes de esta enfermedad, son los hongos Phytophthora sp.; Rhizoctonia solani; Fusarium sp.; Pythium sp. y Dothistroma pini que ocasiona la muerte de las hojas aciculares. Las plantaciones recién establecidas están expuestas a los daños ocasionadas por las condiciones meteorológicas, insectos hongos y virus; así como incendios, animales salvajes y domésticos e inclusive el hombre.

Agrorural (2014), indica que esta actividad se realiza cada vez que notamos presencia de plagas y enfermedades. Para lo cual se realiza una fumigación con pesticidas adecuadas.

4.8.6 Deshierbe

Agrorural (2014), menciona que la mala hierba quita agua y nutrientes a las plantitas. Por esto, es necesario hacer el deshierbe a los 3 o 4 meses de haber realizado el repique, y se repite cada cierto tiempo, cuando vemos que las raíces salen fuera de las bolsas. Previo al deshierbe se riega 1 a 2 horas antes, el deshierbe oportuno y seguro contribuirá al mejor crecimiento de las plantas.

4.8.7 Remoción y selección de plantas

Agrorural (2014), indica que las plantitas producidas en bolsas hay que removerlas para seleccionarlas por tamaño y cortar cualquier raíz que ha salido por los huecos de la bolsa; esto ayudara a hacerlas más fuertes y a endurecerlas. La selección consiste en separar las mejores plantas para obtener forestación homogénea y de buen rendimiento.
V. DISEÑO DE LA INVESTIGACIÓN

5.1 TIPO DE INVESTIGACIÓN

El presente trabajo de investigación está enmarcado dentro del tipo descriptivo – Evaluativo.

5.2 UBICACIÓN DEL EXPERIMENTO

El experimento se realizó en el vivero forestal de la institución “AGRORURAL” ubicado en:

Ubicación geográfica y altitud (coordenadas UTM)
- Coordenada UTM: 8489781 Norte.
- Coordenada UTM: 0676270 Sur.
- Altitud: 2950 m.s.n.m.
- Cuadrante: Zona 18L.

Ubicación hidrográfica
- Cuenca: Valle pampas.
- Sub Cuenca: Valle Chumbao.
- Microcuenca: San Jerónimo.

Ubicación política
- Región: Apurímac.
- Provincia: Andahuaylas.
- Distrito: San Jerónimo.
- Sector: Tejamolino.

5.2.1 Características meteorológicas

Para la medición de las características meteorológicas, se utilizó los reportes de SENAMHI, las cuales se detallan a continuación
- Temperatura Máxima: 20.8 °C
- Temperatura Mínima: 11 °C
- Precipitación Promedio mm: 608
- Velocidad del viento 13h (m/s): 4.1
Figura N° 06: Ubicación Geográfica del Departamento de Apurímac, Provincia Andahuaylas y Distrito de San Jerónimo (ámbito de estudio).

Fuente: ZEE – Apurímac 2012

Figura N° 07: Ubicación del vivero experimental e institución Agrorural.

Fuente: ZEE – Apurímac 2012
5.3 DURACIÓN DE LA INVESTIGACIÓN

La investigación tuvo una duración de 10 meses, iniciándose el 11 de mayo del 2015 y finalizó el 11 de febrero del año 2016, y comprende 2 faces: pre experimental y experimental.

Fase pre experimental: Se realizó del 11 de mayo hasta el día 11 de junio lo cual consistió en almacenamiento de semilla y preparación del área de experimento.

Fase experimental: Tuvo una duración de 9 meses (de 11 de junio del 2015 hasta 11 de marzo del 2016), y comprendió 9 evaluaciones.

5.4 CARACTERÍSTICAS DEL VIVERO

La investigación fue realizada en un vivero tradicional con tres áreas:

a. **Área para preparar el sustrato,** esta sección se utilizó para preparar la mezcla de tierra negra y arena.

b. **Área de germinación,** se instaló las camas de almacigo con las siguientes dimensiones: largo 3.00 m, ancho 1.10 m y profundidad 0.25 m con pasadizo entre camas de 0.50 m. Los taludes perfilados, piso uniforme compactado con una pendiente de 0.1%.

c. **Área de crecimiento,** se instaló las camas de repique con las siguientes dimensiones: largo 3.60 m, ancho 1.10 m y profundidad 0.20 m. con pasadizos entre camas de 0.50 m., los taludes perfilados, una pendiente de 2% a fin de garantizar un buen drenaje.

5.5 MATERIAL EXPERIMENTAL

5.5.1 Material biológico

- 300 g de semillas de pino (*Pinus radiata*)
- Micorrizal comercial de la especie (*Boletus edulis*)
 Tierra micorrizada y seta del hongo (recolectado en el bosque de pino en la comunidad de Lliupapuquio, distrito de San Jerónimo – Andahuaylas.

5.5.2 Material químico

- Lejía
- Fungicidas
5.5.3 **Herramientas.**

- Pico
- Pala
- Repicadores
- Palita jardinera
- Zaranda
- Carretilla
- Flexómetro (5m)
- Repicadores
- Listones de madera de eucalipto para el soporte de malla raschel (2”x2”)
- Malla raschel de 4 m, color verde oscuro con 80% luminosidad por 2 m de ancho.
- Alambre galvanizado Nº 16 para soporte de malla raschel

5.5.4 **Insumos y equipos**

- Arena de rio
- Turba (procedente de cerro en la comunidad de Chullisana en el distrito de San Jerónimo en Andahuaylas usado en el vivero forestal de Tejamolino “AGRORURAL”).
- Mochila pulverizadora
- Vernier
- Regadera
- Recipientes de plástico
- Bolsas de 5x7
- Guantes
- Regla de 50 cm
- Calculadora
- Balanza de precisión
- Computadora portátil
- Libreta de campo
- Horno eléctrico
- Cámara fotográfica.
5.6 METODOLOGÍA DE LA INVESTIGACIÓN

5.6.1 Diseño del campo experimental

Se utilizó el diseño de bloque completamente al azar (DBCA), de 4 tratamientos con 3 repeticiones. Cada cama representa bloque/repetición en un vivero. Las micorrizas (inoculantes) representan los respectivos tratamientos como se muestra en el cuadro Nº03.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Micorriza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Micorriza comercial</td>
<td>Micorriza en polvo del hongo ((Boletus edulis))</td>
</tr>
<tr>
<td>T2</td>
<td>Seta del hongo fermentado</td>
<td>Estracto de setas del hongo ((Boletus edulis))</td>
</tr>
<tr>
<td>T3</td>
<td>Tierra micorrizada</td>
<td>suelo micorrizado con el hongo ((Boletus edulis))</td>
</tr>
<tr>
<td>T4</td>
<td>Testigo</td>
<td>Testigo (sin inocular)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Cada unidad experimental fue conformada por 208 plántulas de pino, asimismo se tomó en cuenta efecto borde como se muestra en la Figura Nº 08. La evaluación se realizó al azar a 15 plántulas de cada repetición para la variable altura y diámetro de la plántula, 2 plántulas de cada repetición para la variable número de raíces y porcentaje de ectomicorrizas y 5 para la variable peso seco de la plántula, del mismo modo cada tratamiento se ha ubicado de manera aleatoria en cada bloque.

5.6.2 Análisis Estadístico

Se realizó el análisis de variancia (ANVA), pruebas de Diferencia Mínima Significación al 5% para las diferencias entre los tratamientos, el modelo de regresión lineal.
El modelo aditivo lineal para el análisis simple del DBCA fue:

\[
Y_{ij} = \mu + \beta j + \tau i + \varepsilon_{ij}
\]

\(i = 1, \ldots, t \quad j = 1, \ldots, b \)
Dónde:
\(\gamma_{ij} \): Observación en el j-ésimo bloque del i-ésimo tratamiento,
\(\mu \): efecto de la media general
\(\beta_j \): efecto del j-ésimo bloque.
\(\tau_i \): efecto de i-ésimo tratamiento.
\(\varepsilon_{ij} \): efecto aleatorio del error

En el cuadro 05 se presenta el cuadro del ANOVA, sus componentes y los cuadros medios esperados para un diseño de bloque completamente al azar.

Cuadro Nº 03: Análisis de variancia

<table>
<thead>
<tr>
<th></th>
<th>G. L</th>
<th>S.C</th>
<th>C.M.</th>
<th>Fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>(t - 1)</td>
<td>((\sum y_i^2/b) - \text{FC})</td>
<td>SCt/glt</td>
<td>CMt/CMe</td>
</tr>
<tr>
<td>Bloques</td>
<td>(b - 1)</td>
<td>((\sum y_j^2/t) - \text{FC})</td>
<td>SCb/glb</td>
<td>CMb/Cme</td>
</tr>
<tr>
<td>Error</td>
<td>((t - 1) (b -1))</td>
<td>SCT – SCt</td>
<td>SCE/gle</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>((t*b) - 1)</td>
<td>(\sum \sum y_{ij}^2 - \text{FC})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6.3 Características de la unidad experimental

Cuadro N° 04: Características de la unidad experimental

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de plantas por bloque</td>
<td>832</td>
</tr>
<tr>
<td>Número de plantas por tratamiento</td>
<td>208</td>
</tr>
<tr>
<td>Número de repeticiones</td>
<td>3</td>
</tr>
<tr>
<td>Número total de plantas</td>
<td>2496</td>
</tr>
<tr>
<td>Área del experimento</td>
<td></td>
</tr>
<tr>
<td>Largo de parcela</td>
<td>4,3m</td>
</tr>
<tr>
<td>Ancho de parcela</td>
<td>3,6m</td>
</tr>
<tr>
<td>Área total de parcela</td>
<td>24,38</td>
</tr>
<tr>
<td>Área neta de la parcela</td>
<td>15,48</td>
</tr>
<tr>
<td>Bloques</td>
<td></td>
</tr>
<tr>
<td>Nº de bloques</td>
<td>3</td>
</tr>
<tr>
<td>Largo de bloque</td>
<td>3,6</td>
</tr>
<tr>
<td>Ancho de bloque</td>
<td>1,1</td>
</tr>
<tr>
<td>Área de cada bloque</td>
<td>3,96</td>
</tr>
<tr>
<td>Tratamientos</td>
<td></td>
</tr>
<tr>
<td>Nº de tratamientos</td>
<td>4</td>
</tr>
<tr>
<td>Largo de tratamiento</td>
<td>1,1</td>
</tr>
<tr>
<td>Ancho de tratamiento</td>
<td>0,9</td>
</tr>
<tr>
<td>Área de tratamiento</td>
<td>0,99</td>
</tr>
<tr>
<td>Número total de tratamiento</td>
<td>12</td>
</tr>
</tbody>
</table>
Figura N° 08: Esquema del diseño experimental
5.7 DESCRIPCIÓN DEL MANEJO EXPERIMENTAL

5.7.1 Construcción de las camas de germinación y repique

El 11 de mayo del 2015, se realizó la instalación de cama del almacigo, esto fue a base de piedra con dimensiones de 4 m de largo x 1.10 m de ancho x 0.30 m de altura. Las camas del repique fueron construidos a base de piedra de dimensiones de 3.6 m de largo x 1.10 m de ancho x 0.20 m de altura. Así mismo, el piso se construyó con una ligera inclinación para que no se empoce el agua durante el riego, finalmente se construyó camino o separación entre las camas de 50 cm de ancho para traslado de sustrato en carretilla.

5.7.2 Preparación de sustrato para almacigado

El 11 de mayo del 2015, se preparó el sustrato mezclando tierra negra y arena previamente zarandeados en una proporción de 3:1 seguidamente se trasladó el sustrato a la cama almaciguera en donde se ha expuesto al sol durante 6 días con la finalidad de eliminar patógenos dañinos que se encuentran en el substrato con el propósito de prevenir del ataque de enfermedades como Rhizoctonia (chupadera fungosa). Luego se procedió con el mezclado uniforme y nivelación del sustrato para el almacigado.

5.7.3 Almacigado

El 12 de mayo del 2015, se dió inicio con el pesado de semillas de pino (*Pinus radiata* D. Don) procedentes de Chile previamente desinfectados. Estas han sido proporcionadas por la institución Agrorural de Andahuaylas. El almacigado se realizó al voleo distribuyendo 300 gr de semilla uniformemente sobre la superficie de la cama para luego cubrir con la capa superficial del mismo sustrato, una vez terminado el almacigado, se cubrió con paja para proteger la semilla de los rayos solares y aves, finalmente se procedió a poner el tinglado a 0.20 m del suelo (con malla rashell). El riego se realizó cada tres días con regadera de gota fina hasta inicios de la germinación de las plántulas.
5.7.4 Embolsado

Del 20 al 28 de mayo del 2015, se ejecutó la preparación de sustrato para embolsado, para lo cual se utilizó turba procedente de un cerro de la comunidad de Chullcuisa del distrito de San Jerónimo, y arena de las orillas del río Pampas provincia de Chincheros en Apurímac, el sustrato se preparó a una proporción 6:1 de turba y arena, un total de 1.7m3 de sustrato. Los componentes fueron pasados por una zaranda de 1cm x 1cm. de igual forma se llenó el sustrato en bolsas de polietileno de 5”x”7 y se enfilaron en forma vertical, dejando espacios libres entre bolsas para circulación del agua durante el riego.

5.7.5 Repique

El 11 de junio del 2015, se realizó el almacigado, previamente a esta operación las plantas fueron retiradas del almácigo con mucho cuidado para no dañar las raíces. Se seleccionó 2496 plantas de la cama del almácigo para los 3 bloques, las más vigorosas y de mayor tamaño (de 5 cm de altura) para ser replicadas. Una vez colocadas en bolsas de polietileno de 5” x 7” de color negro llenadas con sustrato (proporción 6:1) se realizó el repique de las plantas previamente seleccionadas, siguiendo el procedimiento que se describe a continuación:
Primero se humedeció el sustrato de las bolsas con una regadera. La plántula se extrajo del almácigo, luego se colocó con ayuda de un repicador de madera, teniendo cuidado de mantener en forma vertical las raíces tanto principal como secundaria. En seguida se rellenó el hoyo dejado por el repicador en el sustrato. Los procedimientos precisos de repicado fueron diferentes para cada método de inoculación.

5.7.6 Inoculación de las plantas

El 11 de junio del 2015, se realizó la inoculación en tres formas: Por medio de inóculo micorrizal comercial, con seta del hongo fermentada y tierra micorrizado; para lo cual las bolsas conteniendo sustrato se regaron dos días antes del repique.

A) Inoculación con micorriza comercial

En un recipiente se mezcló sustrato con micorriza comercial en una proporción de 4:1 para un total de 624 plantas (3 unidades experimentales ubicadas en diferentes bloques), es decir 12 gr de sustrato y 3 gramos de micorriza comercial (5.03x10^2
esporas/gramo), inmediatamente se procedió con la incorporación de 15 gr de la mezcla (sustrato más micorriza) a cada bolsa con plántula en el momento de repique.

B) Inoculación Micorrizal con seta del hongo fermentado

Para la inoculación con este método se procedió con la recolección del hongo (*Boletus edulis*) en los bosques de pino en la provincia de Andahuaylas, luego se prosiguió con el triturado de setas del hongo para inmediatamente preparar la solución en agua en una proporción de 1:2 respectivamente, este procedimiento se hizo manualmente hasta que se forme como malteado de chocolate, el cual se ha sometido a proceso de fermentación en un ambiente oscuro por 7 días, la inoculación se efectuó incorporando 15 ml de la solución a las raíces de cada plántula para que estas tengan contacto directo con las esporas, cuya concentración según el análisis del laboratorio fue 3.1×10^2 esporas/gramo.

C) Inoculación con tierra Micorrizada

Previo a la inoculación se recolectó tierra micorrizada en bosque de pino en la comunidad de Lliupapuquio del distrito de San Jerónimo y provincia de Andahuaylas. Se realizó el mezclando de tierra micorrizada y sustrato en una proporción de 1:2 es decir 1 carretilla de sustrato y 2 carretilla de tierra micorrizada el cual se ha sometido a proceso de descomposición durante 30 días. La concentración según el análisis del laboratorio fue 10 esporas/gramo. La inoculación se realizó en el momento de repique incorporando 15 gr de mezcla por planta, en total se utilizó 9.36 kg de tierra micorrizada para 624 plántulas.

Cabe indicar que en el área donde se recolectó tierra micorrizada se observó presencia de setas en proceso de descomposición y algunos secos, lugar donde también se recolectó las setas de hongo (*Boletus edulis*).

D) Testigo (Sin Inocular)

Para las plantas testigo se utilizó sustrato (turba más arena 6:1 respectivamente) lo cual ha sido desinfectado sin inocular.

5.7.7 Riego y deshierbe

El riego se realizó inmediatamente después del repique, con agua potable en horas de la mañana y/o la tarde, con el propósito de evitar que las plántulas sufran cualquier stress que pudiera ocasionar el riego con radiaciones solares altas. La
frecuencia fue de tres veces a la semana según las condiciones ambientales de la zona.
El 12 de setiembre del 2015, se realizó el deshierbe a los 3 meses después de haber hecho el repique, y se repitió cada mes hasta los 9 meses.

5.7.8 Control fitosanitario

Se efectuó para la prevención de las plántulas del ataque de enfermedades fungosas que ocasionan la chupadera fungosa, se utilizó el fungicida agrícola TQC 740 PM (parachupadera) en la dosis de 0.10 g. de fungicida en 2000 ml de agua. Se asperjo por única vez a la germinación de las plántulas (a los 25 días después del almacigado). En el periodo de crecimiento (desarrollo), no se aplicó ningún plaguicida para el control de plagas y enfermedades, por cuanto su incidencia no fue representativa.

5.7.9 Remoción

El 11 de marzo del 2016, se realizó la remoción para seleccionar las plantas por tamaño y se prosiguió con el corte de las raíces que salieron por los agujeros de la bolsa; finalmente se llevó a campo definitivo para su instalación.

5.8 EVALUACIÓN DE LAS VARIABLES AGRONÓMICAS

5.8.1 Porcentaje de sobrevivencia

Se evaluó al final, antes de llevar a campo definitivo, mediante el conteo de las plantas que sobrevivieron en cada tratamiento, sobre el total de plantas trasplantadas, llevando los valores a porcentaje.

5.8.2 Crecimiento

a. Altura de plántula

Se eligió al azar 15 plantas por cada unidad experimental y se evaluaron una vez por mes durante 9 meses midiendo la altura del tallo desde el cuello hasta el ápice de la hoja dejando 1 cm de longitud, ubicado en el ápice de los plantones, para lo cual se utilizó una regla de 50 cm.
b. Diámetro del tallo
Las medidas se realizaron en el punto medio entre el cuello de la planta y el ápice principal, a 15 plantas seleccionadas, con un vernier una vez por mes desde el cuarto mes hasta noveno mes.

5.8.3 Desarrollo de ectomicorrizas

a. Número de raíces
Se eligió al azar 6 plantas por cada tratamiento, esta evaluación se realizó cada 3 meses (tercer, sexto, noveno mes, después del repique), se ha elegido esta cantidad de plantas ya que después de cada evaluación las plantas no podían ser repuestas. La variable se expresó en unidad/planta.

b. Número de ectomicorrizas
Se eligió al azar 6 plántulas por cada tratamiento, esta evaluación se realizó cada 3 meses (tercero, sexto, noveno mes, después del repique), se eligió esta cantidad de plantas ya que después de cada evaluación las plantas no podían ser repuestas. Para el conteo de las micorrizas, las bolsas fueron cortadas y las plantas con el sustrato se colocaron en tinas con agua durante 24 horas para soltar el suelo de las raíces y evitar dañar las micorrizas, este conteo se realizó con la ayuda de una lupa de aumento. Con mucho cuidado se retiró el sustrato de cada raíz, primeramente, se ubicó la raíz principal (por el tamaño) y las secundarias fueron separadas (cortadas) para evitar equivocaciones al momento de ubicar las ectomicorrizas luego se procedió con el conteo de ectomicorrizas en cada raíz. Solamente se consideró en el conteo las micorrizas que permanecerán en las raíces, la variable se expresó en número ectomicorrizas.

c. Forma de ectomicorrizas
Estos datos se obtuvieron de las mismas plantas que sirvieron para obtener el número de micorrizas. En este caso se contaron la cantidad de micorrizas monopodiales, bifurcadas, y ramificadas que se encuentran en la raíz, para luego expresarlos en porcentaje/planta.

5.8.4 Peso seco de la plántula (biomasa)
Se eligió al azar 6 plantas de cada tratamiento. Al noveno mes, éstas fueron retiradas del sustrato de la misma forma que para la evaluación de micorrizas, luego
se secaron en el horno del laboratorio de pulpa y papel de la Universidad Nacional de San Antonio Abad del Cusco a una temperatura de 105 °C, se pesó cada una de las plantas secas en una balanza analítica hasta que la medida sea constante. La variable se expresó en gramos/planta.
VI. RESULTADOS

Se efectuaron los análisis de variancia para los variables: Porcentaje de sobrevivencia, Altura de plántula, diámetro de plántula, Número de raíces por plántula, número de ectomicorrizas, porcentaje de ectomicorrizas y peso de la plántula. Los análisis estadísticos fueron realizados usando el programa estadístico Statgraphics y S.A.S.

6.1 PORCENTAJE DE SUPERVIVENCIA

Se realizó el análisis de varianza para la variable porcentaje de sobrevivencia de la plántula mediante la relación del número de plántula instaladas por tratamiento y el número de plantas al finalizar fase de vivero, se obtuvo el porcentaje de sobrevivencia, cuyos valores para cada tratamiento se indican en el Cuadro N° 05, con porcentajes que varían desde 95.58% hasta 98.08% con un promedio de 96.77%.

Cuadro N° 05: Porcentaje de supervivencia (%)

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>Micorrizas</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Micoriza comercial</td>
<td>98.75</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Seta del hongo fermentado</td>
<td>97.50</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Tierra micorrizada</td>
<td>96.50</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Testigo</td>
<td>95.75</td>
</tr>
<tr>
<td>TOTAL DEL BLOQUE</td>
<td></td>
<td></td>
<td>388.5</td>
</tr>
<tr>
<td>PROMEDIO DE BLOQUE</td>
<td></td>
<td></td>
<td>97.13</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

El resultado obtenido en la presente investigación se muestra en el cuadro N° 05, donde el T1 (Micoriza comercial) es el que reporta mayor porcentaje de supervivencia con un promedio de 98.08%, seguido por T2 (Seta del hongo fermentado) que obtuvo un porcentaje de supervivencia promedio de 98.52%, superando a T3 (Tierra micorrizada) quien obtuvo 96.42%, en tanto que, el que obtuvo menor porcentaje de supervivencia es el T4 (Testigo), que obtuvo 95.58%.
Cuadro N° 06: Análisis de varianza para porcentaje de sobrevivencia

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
<th>Ft</th>
<th>Nivel de sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>3</td>
<td>9.93</td>
<td>3.31</td>
<td>40.57</td>
<td>4.76</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>2</td>
<td>0.76</td>
<td>0.38</td>
<td>4.66</td>
<td>5.14</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.49</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro el análisis de variancia, para porcentaje de sobrevivencia, es altamente significativo entre los promedios de los tratamientos, en donde la F calculada es (40.57) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que algunos de los tratamientos son iguales estadísticamente. Además, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es de 0.29%, el mismo que en condiciones de vivero para este tipo de experimento, demuestra confiabilidad de los resultados.

\[
CV = \frac{\sqrt{CMe}}{\bar{x}} \times 100 = \%
\]

\[
CV = \frac{\sqrt{0.08}}{96.77} \times 100 = 0.29\%
\]
Cuadro N° 07: Prueba de Tukey al 5% para porcentaje de supervivencia por plántula

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Micorriza Comercial</td>
<td>98.08</td>
<td>A</td>
</tr>
<tr>
<td>II</td>
<td>Seta de Hongo Fermentado</td>
<td>97.00</td>
<td>B</td>
</tr>
<tr>
<td>III</td>
<td>Tierra Micorrizada</td>
<td>96.42</td>
<td>B</td>
</tr>
<tr>
<td>IV</td>
<td>Testigo</td>
<td>95.58</td>
<td>C</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el Cuadro N° 07. Se observa grupos homogéneos A, B y C para porcentaje de supervivencia de la plántula, estos grupos son estadísticamente diferentes: El tratamiento T1 (micorriza comercial), pertenece al grupo homogéneo A; los tratamientos T2 (seta del hongo fermentado), T3 (Tierra micorrizada), son estadísticamente iguales, perteneciente al grupo homogéneo B; del mismo modo, el tratamiento T4 (testigo), pertenece al grupo homogéneo C.

Así mismo, se observa que el tratamiento T1 (Micorriza comercial) que pertenece al grupo homogéneo A, los plantones de pino (*Pinus radiata D Don*) obtuvieron mayor porcentaje de supervivencia con 98.08 %, mientras que el tratamiento T4 (testigo) perteneciente al grupo homogéneo C, los plantones muestran menor porcentaje de supervivencia 95.58 %.

Figura N° 09: Porcentaje de supervivencia de la plántula
Según la figura N° 09, del porcentaje de supervivencia de la plántula se observa que el mejor tratamiento es T1 (Micorriza comercial) que obtuvo un promedio de 98.08% de supervivencia y el peor tratamiento es el tratamiento T4 (Testigo) que alcanzó un promedio de 95.58 % de supervivencia de los plantones.

6.2 ALTURA DE PLANTA

Se realizó el análisis de variancia para la variable altura de plántula desde el primer mes hasta los 9 meses. Tal como se observa en el cuadro N° 08, donde se muestra los rangos de altura de planta con valores que van desde 31.27 cm hasta 45.97 cm, siendo el promedio general 38.16 cm.

Cuadro N° 08: Altura de la planta a los 9 meses (cm)

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>Micorrizas</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1 Micorriza comercial</td>
<td></td>
<td>45.95</td>
<td>45.83</td>
</tr>
<tr>
<td>2 Seta del hongo fermentado</td>
<td></td>
<td>39.57</td>
<td>39.43</td>
</tr>
<tr>
<td>3 Tierra micorrizada</td>
<td></td>
<td>35.49</td>
<td>36.20</td>
</tr>
<tr>
<td>4 Testigo</td>
<td></td>
<td>30.23</td>
<td>31.56</td>
</tr>
<tr>
<td>TOTAL DEL BLOQUE</td>
<td></td>
<td>151.24</td>
<td>153.02</td>
</tr>
<tr>
<td>PROMEDIO DE BLOQUE</td>
<td></td>
<td>37.81</td>
<td>38.26</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Según los resultados obtenidos en la presente investigación que se muestra en el cuadro N° 09, con el tratamiento T1 (Micorriza Comercial) la planta alcanzo mayor altura con un promedio de 45.97 cm, el tratamiento T2 (Seta del Hongo Fermentado) obtuvo un promedio 39.60 y T3 (Tierra Micorrizada) obtuvieron promedios y 35.80 centímetros, respectivamente; en tanto que, la menor altura de planta alcanzó el tratamiento T4 (sin inocular) con un promedio de 31.27 cm.
Según el cuadro de análisis de variancia, para la altura de planta es altamente significativo entre los promedios de los tratamientos, en donde la F calculada es (525.11) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que algunos de los tratamientos son iguales estadísticamente. Además, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 1.23%, indica que en condiciones de vivero hubo un buen grado de confiabilidad de los resultados.

\[CV = \frac{\sqrt{CM_e}}{\bar{x}} \times 100 = \% \]

\[CV = \frac{\sqrt{0.22}}{38.16} \times 100 = 1.23\% \]

Cuadro N° 10: Prueba de Tukey al 5% para altura de la plántula.

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Micorriza Comercial</td>
<td>45.97</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>Seta de Hongo Fermentado</td>
<td>39.60</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>Tierra Micorrizada</td>
<td>35.80</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>Testigo</td>
<td>31.27</td>
</tr>
</tbody>
</table>
Según el cuadro Nº 10, se observa grupos homogéneos A, B, C y D para altura de la plántula, estos grupos son estadísticamente diferentes: El tratamiento T1 (Micorriza comercial), perteneciente al grupo homogéneo A; el tratamiento T2 (seta del hongo fermentado), al grupo homogéneo B; el tratamiento T3 (Tierra micorrizada), al grupo homogéneo C; y el tratamiento T4 (Testigo), pertenece al grupo homogéneo D.

Así mismo se observa que el tratamiento T1 (Micorriza comercial) que pertenece al grupo homogéneo A, los plantones de pino (*Pinus radiata D. Don*) alcanzaron mayor altura con 45.97 centímetros por planta, mientras que el tratamiento T4 (Testigo) obtuvo menor altura con 31.27 centímetros por planta, perteneciente al grupo homogéneo D.

Figura N° 10: Altura de la plántula con micorriza comercial

Según la figura N° 10, muestra la regresión lineal para altura de plántula, para lo cual se utilizó el registro durante proceso de crecimiento de la plántula (una vez por mes durante 9 meses).

En tratamiento T1 (micorriza comercial), la pendiente de la recta nos indica que, en cada periodo de crecimiento, la altura de plántula aumenta en 5,55 centímetros por plántula. Así mismo, según el R2 que el 98.77 % el tratamiento T1 (micorriza comercial) influye en altura de la plántula y el 1.23% dependen de otros factores que no están incluidos en la presente investigación.
Figura N° 11: Altura de la plántula con seta del hongo fermentado

Fuente: Elaboración propia

En tratamiento T2 (seta del hongo fermentado), la pendiente de la recta nos indica que, en cada periodo de crecimiento, la altura de plántula aumenta en 4.63 centímetros por plántula, así mismo según el R2 que el 97.49% el tratamiento T2 (seta del hongo fermentado) influye en altura de la plántula y el 2.37% dependen de otros factores que no están incluidos en la presente investigación.

Figura N° 12: Altura de la plántula con tierra micorrizada

Fuente: Elaboración propia

En tratamiento T3 (tierra micorrizada), la pendiente de la recta nos indica que, en cada periodo de crecimiento, la altura de plántula aumenta en 4.13 centímetros por plántula. Así mismo según el R2 que el 98.01% el tratamiento T3 (tierra
micorrizada) influye en la altura de la plántula y el 1.99% dependen de otros factores que no están incluidos en la presente investigación.

Figura N° 13: Altura de la plántula testigo (sin inocular)

En tratamiento T4 (testigo), la pendiente de la recta nos indica que, en cada periodo de crecimiento, la altura de plántula aumenta en 3.56 cm. Así mismo según R² que el 97.77% el tratamiento T4 (testigo) influye en altura de la plántula y el 2.23% dependen de otros factores que no están incluidos en la presente investigación.

Figura N° 14: Altura de la plántula

Según la figura N° 14, se observa que el mejor tratamiento es T1 (Micorriza comercial) que alcanzo promedio de 45.97 centímetros por plántula y el peor tratamiento es el T4 (Testigo) que obtuvo un promedio de 31.27 centímetros de altura por planta.
6.3 DIÁMETRO DEL TALLO DE LA PLÁNTULA

Se realizó el análisis de variancia para diámetro del tallo de la plántula a partir de 120 hasta los 270 días después del trasplante (ver cuadro N° 11) y se muestra los rangos de crecimiento con valores que van desde 3.07 milímetros hasta 4.55 milímetros, siendo el promedio general 3.77 milímetros por plántula.

Cuadro N° 11: Diámetro de tallo (milímetro/plántula)

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Micorrizas</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>Micorriza comercial</td>
<td>4.52</td>
<td>4.55</td>
</tr>
<tr>
<td>2</td>
<td>Seta del hongo fermentado</td>
<td>3.86</td>
<td>3.89</td>
</tr>
<tr>
<td>3</td>
<td>Tierra micorrizada</td>
<td>3.54</td>
<td>3.57</td>
</tr>
<tr>
<td>4</td>
<td>Testigo</td>
<td>3.02</td>
<td>3.09</td>
</tr>
<tr>
<td>TOTAL DEL BLOQUE</td>
<td></td>
<td>14.94</td>
<td>15.11</td>
</tr>
<tr>
<td>PROMEDIO DE BLOQUE</td>
<td></td>
<td>3.73</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según los resultados obtenidos en la presente investigación se muestran en el cuadro N° 11, en ello se observa que el mejor tratamiento lo obtuvo el T1 (Micorriza comercial) que alcanzo un promedio de 4.55 milímetros por plántula seguido del tratamiento T2 (Seta del Hongo Fermentado) que obtuvo 3.88 milímetros por plántula; luego el tratamiento T3 (Tierra Micorrizada) obtuvo 3.56 milímetros y el menor diámetro de tallo obtuvo el T4 (Testigo), que alcanzó un promedio de 3.07 mm/plántula.

Cuadro N° 12: Análisis de varianza para diámetro de tallo

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft 0.05</th>
<th>Nivel de Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>3</td>
<td>3.472358</td>
<td>1.157452</td>
<td>5274.47</td>
<td>4.76</td>
<td>**</td>
</tr>
<tr>
<td>Bloque</td>
<td>2</td>
<td>0.006016</td>
<td>0.003008</td>
<td>13.71</td>
<td>5.14</td>
<td>*</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.001316</td>
<td>0.000219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>3.479691</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Según el cuadro de análisis de variancia, para el diámetro del tallo de la plántula, es altamente significativo entre los promedios de los tratamientos, en donde la F calculada es (5274.47) mayor que la F tabulada al (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que algunos de los tratamientos son iguales estadísticamente. Además, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 0.39%, indica que en condiciones de invernadero hubo un buen grado de confiabilidad de los resultados.

\[
CV = \frac{\sqrt{CM_e}}{\bar{x}} \times 100 = \%
\]

\[
CV = \frac{0.000219}{3.77} \times 100 = 0.39\%
\]

Cuadro N° 13: Prueba de Tukey al 5% para diámetro de tallo por plántula.

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Micorriza Comercial</td>
<td>4.55</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>Seta de Hongo Fermentado</td>
<td>3.88</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>Tierra Micorrizada</td>
<td>3.56</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>Testigo</td>
<td>3.07</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro N° 13, se observa los grupos homogéneos A, B, C y D para diámetro del tallo de la plántula, estos grupos son estadísticamente diferentes: El tratamiento T1 (Micorriza comercial), pertenece al grupo homogéneo A; el tratamiento T2 (Seta del hongo fermentado), al grupo homogéneo B; el tratamiento T3 (Tierra micorrizada), al grupo homogéneo C; y el tratamiento T4 (Testigo), al grupo homogéneo D.

Así mismo, se observa que el tratamiento T1 (Micorriza comercial) que pertenece al grupo homogéneo A, las plántulas de pino (*Pinus radiata D Don*) obtuvieron mayor
diámetro de tallo con 4.55 milímetros por plántula, mientras que el tratamiento T4 (testigo) obtuvo menor diámetro de tallo con 3.07 milímetros por plántula el cual pertenece al grupo homogéneo D.

Figura N° 15: Diámetro de tallo por plántula con micorriza comercial

En tratamiento T1 (micorriza comercial), la pendiente de la recta nos indica que, en cada periodo de crecimiento, el diámetro del tallo de la plántula aumenta en 0.44 milímetros por plántula, así mismo según R² que el 99.19% el tratamiento T1 (micorriza comercial) influye en altura de la plántula y el 0.810% dependen de otros factores que no están incluidos en la presente investigación.

Figura N° 16: Diámetro del tallo con seta del hongo fermentado

Fuente: Elaboración propia
En tratamiento T2 (seta del hongo fermentado) la pendiente de la recta nos indica que, en cada periodo de crecimiento, el diámetro del tallo de la plántula aumenta en 0.3409 milímetros por plántula. Así mismo, según el R², el 97.63 % del tratamiento T2 (seta del hongo fermentado) influye en el diámetro del tallo de los plantones de pino y el 2.37% dependen de otros factores que no están incluidos en la presente investigación.

Figura N° 17: Diámetro de tallo con tierra micorrizada

![Figura N° 17: Diámetro de tallo con tierra micorrizada](image)

Fuente: Elaboración propia

En tratamiento T3 (tierra micorrizada) la pendiente de la recta nos indica que, en cada periodo de crecimiento, el diámetro del tallo de la plántula aumenta en 0.27 milímetros por plántula. Así mismo, según el R², el 96.86% del tratamiento T3 (tierra micorrizada) influye en altura de la plántula y el 3.14% dependen de otros factores que no están incluidos en la presente investigación.
En tratamiento T4 (sin inocular) la pendiente de la recta nos indica que, en cada periodo de crecimiento, el diámetro del tallo de la plántula aumenta en 0.20 milímetros por plántula, así mismo, según el R^2, el 93.03% del tratamiento T4 (testigo) influye en altura de la plántula y el 6.97% dependen de otros factores que no están incluidos en la presente investigación.

Según la figura N° 19, se observa que el mejor tratamiento es T1 (Micorriza comercial) que obtuvo un promedio de 4.55 milímetros por planta y el peor tratamiento es el T4 testigo (Sin inocular) que alcanzó un promedio de 3.07 milímetros por planta.
6.4 NÚMERO DE RAÍCES

Se realizó el análisis de variancia para la variable número de raíces/ plántula, a los 270 días después del trasplante, donde se muestra los rangos con valores que van desde 8.67 (unidades/plántula) hasta 13.50 (unidades/plántula), siendo el promedio general 10.79 (unidades/plántula).

Cuadro N° 14: Número de raíces a los 9 meses (unid/planta)

<table>
<thead>
<tr>
<th>N°</th>
<th>Micorrizas</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1</td>
<td>Micorra comercial</td>
<td>15.00</td>
<td>13.00</td>
<td>12.50</td>
</tr>
<tr>
<td>2</td>
<td>Seta del hongo fermentado</td>
<td>10.50</td>
<td>12.00</td>
<td>11.00</td>
</tr>
<tr>
<td>3</td>
<td>Tierra micorrizada</td>
<td>10.00</td>
<td>10.50</td>
<td>9.00</td>
</tr>
<tr>
<td>4</td>
<td>Testigo</td>
<td>8.00</td>
<td>9.50</td>
<td>8.50</td>
</tr>
<tr>
<td>TOTAL DEL BLOQUE</td>
<td>43.50</td>
<td>45.00</td>
<td>41.00</td>
<td>129.50</td>
</tr>
<tr>
<td>PROMEDIO DE BLOQUE</td>
<td>10.88</td>
<td>11.25</td>
<td>10.25</td>
<td>32.38</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los resultados obtenidos en la investigación se muestran en el cuadro N° 14, en ello se observa que el mejor tratamiento lo obtuvo el T1 (Micorra Commercial), con un promedio de 13.50 unidades/plántula, seguido del tratamiento T2 (Micorra comercial) que obtuvo 11.17 unidades/plántula, el tratamiento T3 (Tierra micorrizada) que obtuvo 9.83 unidades/plántula, finalmente el tratamiento T4 (Testigo) obtuvo 8.67 unidades/plántula, siendo el promedio general 10.79 (unidades/plántula).

Cuadro N° 15: Análisis de varianza para número de raíces por planta

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft 0.05</th>
<th>Nivel de Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>3</td>
<td>38.729</td>
<td>12.909</td>
<td>15.62</td>
<td>4.76</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Bloque</td>
<td>2</td>
<td>2.042</td>
<td>1.021</td>
<td>1.24</td>
<td>5.14</td>
<td>Ns</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>4.958</td>
<td>0.826</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>45.729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Según el cuadro N° 15 de análisis de variancia, para el número de raíces por plántula es significativo entre los promedios de los tratamientos, en donde la F calculada es (15.62) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que los tratamientos son iguales estadísticamente. Además, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 8.42%, indica que en condiciones de invernadero hubo un buen grado de confiabilidad de los resultados.

\[CV = \frac{\sqrt{\text{M}e}}{\bar{x}} \times 100 \% \quad CV = \frac{\sqrt{0.826}}{10.79} \times 100 \% = 8.42\% \]

Cuadro N° 16: Prueba de Tukey al 5% para número de raíces por plántula.

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>INOCULOS MICORRÍTICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1</td>
<td>Micorriza Comercial</td>
<td>13.50</td>
<td>A</td>
</tr>
<tr>
<td>II 2</td>
<td>Seta del Hongo Fermentado</td>
<td>11.17</td>
<td>A B</td>
</tr>
<tr>
<td>III 3</td>
<td>Tierra Micorrizada</td>
<td>9.83</td>
<td>B</td>
</tr>
<tr>
<td>IV 4</td>
<td>Testigo</td>
<td>8.67</td>
<td>B</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro N° 16, se observa los grupos homogéneos A y B para número de raíces por plántula, estos grupos son estadísticamente diferentes: Los tratamientos T1 (Micorriza comercial) y T2 (Seta del hongo fermentado) son estadísticamente iguales, perteneciente al grupo homogéneo A; los tratamientos T2 (Seta del hongo fermentado), T3 (Tierra micorrizada) y tratamiento T4 (testigo), son estadísticamente iguales, perteneciente al grupo homogéneo B.

Así mismo, se observa que el tratamiento T1 (Micorriza comercial) perteneciente al grupo homogéneo A, las plántulas obtuvieron mayor número de raíces con 13.50 unidades por plántula, mientras el tratamiento T4 (Testigo) perteneciente al grupo homogéneo B, obtuvieron menor número de raíces con 8.67 unidades por plántula.
Figura N° 20: Número de raíces por planta a los 9 meses

Según la figura N° 20, se observa que el mejor tratamiento es T1 (Micorriza comercial) que alcanzo un promedio de 13.50 unidades por plántula y el peor tratamiento es T4 (Testigo) que alcanzaron un promedio de 8.67 unidades por plántula.

6.5 NÚMERO DE ECTOMICORRIZAS POR PLANTULA

A) Número de ectomicorrizas por plántula a los 3 meses

Se realizó el análisis de variancia para número de ectomicorrizas, se realizó la prueba a los 3 meses. Tal como se observa en el cuadro N° 17 donde se muestra los rangos de desarrollo con valores que van desde 101.33 unidades/plántula hasta 146.67 unidades/plántula, siendo el promedio general 122.25 unidades/plántula.

Cuadro N° 17: Número de ectomicorrizas por plántula a los 3 meses

<table>
<thead>
<tr>
<th>N°</th>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1</td>
<td>Micorriza comercial</td>
<td>121.50</td>
<td>137.50</td>
<td>131.00</td>
</tr>
<tr>
<td>2</td>
<td>Seta del hongo fermentado</td>
<td>144.50</td>
<td>141.50</td>
<td>154.00</td>
</tr>
<tr>
<td>3</td>
<td>Tierra micorrizada</td>
<td>106.00</td>
<td>115.00</td>
<td>112.00</td>
</tr>
<tr>
<td>4</td>
<td>Testigo</td>
<td>100.00</td>
<td>109.00</td>
<td>95.00</td>
</tr>
<tr>
<td></td>
<td>TOTAL DEL BLOQUE</td>
<td>472.00</td>
<td>503.00</td>
<td>492.00</td>
</tr>
<tr>
<td></td>
<td>PROMEDIO DE BLOQUE</td>
<td>118.00</td>
<td>125.75</td>
<td>123.00</td>
</tr>
</tbody>
</table>
Los resultados obtenidos en la investigación se muestra en el cuadro N° 17, en ello se observa que el mejor tratamiento lo obtuvo el T2 (Seta del Hongo Fermentado), que alcanzo mayor número de ectomicorrizas con un promedio de 146.67 Unidades/plántula; seguido del tratamiento T1 (micorriza comercial) que obtuvo 130.00 Unid/plántula; luego el tratamiento T3 (Tierra Micorrizada) obtuvo 111.00 Unid/plántula; finalmente en las plántulas testigo T4 se han encontrado un promedio de 101.33 puntas radiculares monopodiales y bifurcadas de forma micorrítica incipiente es decir con inicios de formación, por lo que no se considera una verdadera micorriza.

Cuadro N° 18: Análisis de varianza para número de ectomicorrizas a 3 meses

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft 0.05</th>
<th>Nivel de Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>3</td>
<td>3.660.916</td>
<td>1.220.305</td>
<td>31.31</td>
<td>4.76</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Bloque</td>
<td>2</td>
<td>123.500</td>
<td>61.750</td>
<td>1.58</td>
<td>5.14</td>
<td>Ns</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>233.833</td>
<td>38.972</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>4.018.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro de análisis de varianza, para el número de ectomicorrizas por plántula es altamente significativo entre los promedios de los tratamientos, en donde la F calculada es (31.31) mayor que la F tabulada (4.76) para un nivel de confianza al 0.05. Por lo tanto, se rechaza la hipótesis nula en que algunos de los tratamientos son iguales estadísticamente. Además, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 5.11%, indica que en condiciones de vivero hubo un buen grado de confiabilidad de los resultados.

\[
CV = \frac{\sqrt{\text{CME}}}{\bar{x}} \times 100 = \% \quad CV = \frac{\sqrt{38.972}}{122.25} \times 100 = 5.11\%
\]
Cuadro N° 19: Prueba de Tukey al 5% para número de ectomicorrizas a los 3 meses.

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Seta de Hongo Fermentado</td>
<td>146.67</td>
<td>A</td>
</tr>
<tr>
<td>II</td>
<td>Micorriza Comercial</td>
<td>130.00</td>
<td>A</td>
</tr>
<tr>
<td>III</td>
<td>Tierra Micorrizada</td>
<td>111.00</td>
<td>B</td>
</tr>
<tr>
<td>IV</td>
<td>Testigo</td>
<td>101.33</td>
<td>B</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro N° 19, se observa los grupos homogéneos A y B para número de ectomicorrizas por plántula, estos grupos son estadísticamente diferentes: Los tratamientos T2 (Seta del hongo fermentado) y T1 (Micorriza comercial) son estadísticamente iguales, perteneciente al grupo homogéneo A; por otro lado, el tratamiento T3 (Tierra micorrizada) y T4 (Testigo) son estadísticamente iguales, perteneciente al grupo homogéneo B.

Así mismo, se observa que el tratamiento T2 (seta del hongo fermentado) perteneciente al grupo homogéneo A, las plántulas de pino (*Pinus radiata D Don*) obtuvieron mayor número de ectomicorrizas con 146.67 unidades por plántula, mientras el tratamiento T4 Testigo (sin inocular) perteneciente al grupo homogéneo B, muestra una media de 101.33 unidades por plántula.

Figura N° 21: Número de ectomicorrizas por plántula a los 3 meses
Según la figura Nº 21, se observa que el mejor tratamiento es T2 (Seta del hongo fermentado) que obtuvo un promedio de 146.67 unidades por plántula y el peor tratamiento es el T4 (Testigo) que alcanzó un promedio de 101.33 unidades por plántula.

B) Número de ectomicorrizas por plántula a los 6 meses

Se realizó el análisis de variancia para número de ectomicorrizas, se efectuó la prueba a los 6 meses. Tal como se observa en el cuadro N° 20 donde se muestra los rangos de emergencia con valores que van desde 340.50 hasta 594.83 unidades/plántula, siendo el promedio general 401.79 unidades/plántula.

Cuadro Nº 20: Número de ectomicorrizas (unid/planta) a los 6 meses

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>Micorrizas</td>
<td>I II III</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Micorriza comercial</td>
<td>594.50</td>
<td>571.50</td>
</tr>
<tr>
<td>2</td>
<td>Seta del hongo fermentado</td>
<td>428.50</td>
<td>423.50</td>
</tr>
<tr>
<td>3</td>
<td>Tierra micorrizada</td>
<td>351.50</td>
<td>325.00</td>
</tr>
<tr>
<td>4</td>
<td>Testigo</td>
<td>242.00</td>
<td>236.50</td>
</tr>
<tr>
<td>TOTAL DEL BLOQUE</td>
<td>1,616.50</td>
<td>1,556.50</td>
<td>1,648.50</td>
</tr>
<tr>
<td>PROMEDIO DE BLOQUE</td>
<td>404.13</td>
<td>389.13</td>
<td>412.13</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los resultados obtenidos en la investigación se muestra en el cuadro Nº 20, en ello se observa que el T1 (Micorriza comercial), alcanzó mayor número de ectomicorrizas con un promedio de 594.83 Unidades/plántula; seguido del tratamiento T2 (Seta del hongo fermentado) que obtuvo 428,67 unidades/plántula; mientras que el tratamiento T3 (Tierra micorrizada) obtuvo un promedio de 340.50 unidades/plántula; finalmente en las plántulas testigo (T4) se han encontrado un promedio de 243,17 puntas radiculares monopodiales y bifurcadas de forma micorrítica incipiente por lo que no se considera una verdadera micorriza.
Según el cuadro N° 21 de análisis de variancia, para número de ectomicorrizas por plántula es altamente significativa entre los promedios de los tratamientos, en donde la F calculada es (719.63) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que los tratamientos son iguales estadísticamente. Asimismo, es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 2.40%, indica que en condiciones de vivero hubo un buen grado de confiabilidad de los resultados.

\[
CV = \frac{\sqrt{CM_e}}{\bar{x}} \times 100 = \%
\]

\[
CV = \frac{\sqrt{92.97}}{401.79} \times 100 = 2.40\%
\]

Cuadro N° 22: Prueba de Tukey al 5% para número de ectomicorrizas a 6 meses
Según el cuadro Nº 22, se observa los grupos homogéneos A, B, C y D para número de ectomicorrizas por plántula, estos son estadísticamente diferentes: El tratamiento T1 (Micorriza comercial), pertenece al grupo homogéneo A, tratamiento T2 (Seta del hongo fermentado), pertenece al grupo homogéneo B, tratamiento T3 (tierra micorrizada), pertenece al grupo homogéneo C y tratamiento T4 testigo (sin inocular). Pertenece al grupo homogéneo D.

Así mismo, se observa que el tratamiento es T1 (Micorriza comercial) perteneciente al grupo homogéneo A, las plántulas de pino (*Pinus radiata D Don*) obtuvieron mayor número de ectomicorrizas con 594.83 unidades por plántula, mientras el tratamiento T4 Testigo (sin inocular) perteneciente al grupo homogéneo D, obtuvo menor número de ectomicorrizas de forma incipiente (no se considera una verdadera micorriza), con una media de 243.17 unidades por planta.

Figura N° 22: Número de ectomicorrizas a los 6 meses

![Gráfico de barras](image)

Según la figura N° 22, se observa que el mejor tratamiento es T1 (Micorriza comercial) que obtuvo un promedio de 594.83 unidades por plántula y el peor tratamiento es el T4 (Testigo) que alcanzo un promedio de 243.17 unidades por plántula.

A) Número de ectomicorrizas por plántula a los 9 meses

Se realizó el análisis de variancia para número de ectomicorrizas, se realizó la prueba a los 9 meses. Tal como se observa en el cuadro N° 23 donde se muestra los rangos de emergencia con valores que van desde 278 hasta 677.33 unidades/plántula, siendo el promedio general 522.08 unidades/plántula.
Los resultados obtenidos en la investigación se muestran en el cuadro Nº 23, en ello se observa que el T1 (Micorriza comercial), alcanzó mayor número de ectomicorrizas con un promedio de 677,33 Unidades/plántula; seguido del tratamiento T2 (Seta del hongo fermentado) que obtuvo 625,50 unidades/plántula; mientras que el tratamiento T3 (Tierra micorrizada) obtuvo un promedio de 507,50 unidades/plántula; finalmente en las plántulas testigo (T4) se han encontrado un promedio de 278,00 puntas radiculares monopodiales de forma micorrítica incipiente (inicios de formación parecidas a micorrizas) por lo que no se considera una verdadera micorriza, por ende no se toma en cuenta los datos de este tratamiento.

Según el cuadro Nº 24 de análisis de variancia, para número de ectomicorrizas por planta es altamente significativo entre los promedios de los tratamientos, en donde la F calculada es (1230.73) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que los tratamientos son iguales. Además, es necesario continuar con la comparación de medias, utilizando la
diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 1.68%, indica que en condiciones de vivero hubo un buen grado de confiabilidad de los resultados.

\[
CV = \frac{\sqrt{CMe}}{\bar{x}} \times 100
\]

\[
CV = \frac{\sqrt{76.85}}{522.08} \times 100 = 1.68\%
\]

Cuadro N° 25: Prueba de Tukey al 5%, número de ectomicorrizas a los 9 meses

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>INOCULOS MICORRÍTICOS</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Micorriza Comercial</td>
<td>677.33</td>
<td>A</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>Seta de Hongo Fermentado</td>
<td>625.50</td>
<td>B</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>Tierra Micorrizada</td>
<td>507.50</td>
<td>C</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>Testigo</td>
<td>278.00</td>
<td>D</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Según el cuadro N° 25, se observa los grupos homogéneos A, B, C y D para número de ectomicorrizas por plántula, estos son estadísticamente diferentes: El tratamiento T1 (Micorriza comercial) pertenece al grupo homogéneo A, tratamiento T2 (Seta del hongo fermentado), pertenece al grupo homogéneo B, tratamiento T3 (tierra micorrizada), pertenece al grupo homogéneo C y tratamiento T4 testigo (sin inocular). Pertenece al grupo homogéneo D.

Así mismo, se observa que el tratamiento es T1 (Micorriza comercial) perteneciente al grupo homogéneo A, las plántulas de pino (*Pinus radiata D. Don*) obtuvieron mayor número de ectomicorrizas con una media de 677.33 unidades por plántula y el peor tratamiento es T4 Testigo (sin inocular) perteneciente al grupo homogéneo D, obtuvo
menor número de ectomicorrizas de forma incipiente, con una media de 278.00 unidades por plántula.

Figura N° 23: Número de ectomicorrizas por planta a los 9 meses

Según la figura N° 23, se observa que el mejor tratamiento es T1 (Micorriza comercial) que obtuvo un promedio de 677.33 unidades por plántula y el peor tratamiento es el T4 (Testigo) que alcanzo un promedio de 278.00 unidades por plántula.

6.6 FORMAS DE ECTOMICORRIZAS POR PLANTULA

Respecto a las formas de ectomicorrizas, se realizaron 3 evaluaciones a los: 3, 6 y 9 meses.

Cuadro N° 26: Porcentaje de ectomicorrizas por plántula a los 3 meses

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MONOPODIALES</th>
<th>BIFURCADAS</th>
<th>RAMIFICADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76,42</td>
<td>21,52</td>
<td>2,06</td>
</tr>
<tr>
<td>2</td>
<td>78,42</td>
<td>17,67</td>
<td>3,91</td>
</tr>
<tr>
<td>3</td>
<td>90,88</td>
<td>7,62</td>
<td>1,50</td>
</tr>
</tbody>
</table>

Los resultados obtenidos en la presente investigación se muestran en el cuadro N° 26, a los 3 meses el mayor porcentaje de ectomicorrizas monopodiales obtuvo el
tratamiento T3 (Tierra Micorrizada) con 90,90%, el menor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T1 (micorriza comercial) con 76,42%. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 21,52%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T3 (tierra micorrizada) con 7,62%. Así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con seta del hongo fermentado T2 (3,91%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 1,50% ectomicorrizas por plántula, los datos de T4 (testigo) no se muestra en el cuadro debido a que no presentan estas formas (bifurcadas y ramificadas), se observó puntas radiculares monopodiales de forma micorrítica incipiente por lo que no se considera una verdadera micorriza, los datos de T4 (testigo) no se muestra en el cuadro debido a que no presentan estas formas (bifurcadas y ramificadas), se observó puntas radiculares monopodiales de forma micorrítica incipiente por lo que no se considera una verdadera micorriza.

Cuadro N° 27: porcentaje de ectomicorrizas por plántula a los 6 meses

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MONOPODIALES</th>
<th>BIFURCADAS</th>
<th>RAMIFICADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31,04</td>
<td>52,25</td>
<td>16,71</td>
</tr>
<tr>
<td>2</td>
<td>25,21</td>
<td>13,62</td>
<td>61,17</td>
</tr>
<tr>
<td>3</td>
<td>56,10</td>
<td>28,34</td>
<td>15,56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los resultados obtenidos en la presente investigación se muestran en el cuadro N° 27, a los 6 meses el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (Tierra Micorrizada) con 56,10%, el menor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T2 (seta del hongo fermentado) con 25,21%. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 52,25%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T2 (seta del hongo fermentado) con 13,62%. Así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con seta del hongo fermentado T2 (61,17%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 15,56% ectomicorrizas por plántula, los datos de T4 (testigo) no
se muestra en el cuadro debido a que no presentan estas formas (bifurcadas y ramificadas), se observó puntas radiculares monopodiales de forma micorrítica incipiente por lo que no se considera una verdadera micorriza.

Cuadro N° 28: Porcentaje de ectomicorrizas por plántula a los 9 meses

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MONOPODIALES</th>
<th>BIFURCADAS</th>
<th>RAMIFICADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,68</td>
<td>27,09</td>
<td>71,23</td>
</tr>
<tr>
<td>2</td>
<td>5,37</td>
<td>26,30</td>
<td>68,33</td>
</tr>
<tr>
<td>3</td>
<td>12,67</td>
<td>21,72</td>
<td>65,62</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los resultados obtenidos en la presente investigación se muestran en el cuadro N° 28, a los 9 meses el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (Tierra Micorrizada) con 12,67%, el menor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T1 (micorriza comercial) con 1,68%. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 27,09%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T3 (tierra micorrizada) con 21,72%. Asimismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con micorriza comercial T1 (71,23%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 65,62% ectomicorrizas por plántula, los datos de T4 (testigo) no se muestran en el cuadro debido a que no presentan estas formas (bifurcadas y ramificadas), se observó puntas radiculares monopodiales de forma micorrítica incipiente por lo que no se considera una verdadera micorriza.
Según la figura N° 24, en la primera evaluación al tercer mes, se observa en el tratamiento T1 con 76.42% de ectomicorrizas monopodiales, el 21.52% de ectomicorrizas bifurcadas y finalmente el 2.06% de ectomicorrizas ramificadas por plántula.

En la segunda evaluación al sexto, se observa un mayor porcentaje de ectomicorrizas bifurcadas que alcanzo 52.25%, el 31.04% de ectomicorrizas monopodiales y finalmente el 16.71% de ectomicorrizas ramificadas por plántula.

En la tercera evaluación al noveno mes, se observa un mayor porcentaje de ectomicorrizas ramificadas que alcanzo 71.23%, el 27.09% de ectomicorrizas bifurcadas, y finalmente el 1.68% de ectomicorrizas monopodiales por plántula.
Figura N° 25: Porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas con T2

Según la figura Nº 25, en la primera evaluación al tercer mes, se observa en el tratamiento T2 con 78.42 % de ectomicorrizas monopodiales, el 17.67% de ectomicorrizas bifurcadas y finalmente el 3.91% de ectomicorrizas ramificadas por plántula.

En la segunda evaluación (al sexto mes), se observa un mayor porcentaje de ectomicorrizas ramificadas que alcanzó 61.17%, el 25.21% de ectomicorrizas monopodiales y finalmente el 13.62 % de ectomicorrizas bifurcadas por plántula.

En la tercera evaluación al noveno mes, se observa un mayor porcentaje de ectomicorrizas ramificadas que alcanzo 68.33%, el 26.30% de ectomicorrizas bifurcadas y finalmente el 5.37% de ectomicorrizas monopodiales por plántula.
Figura N° 26: Porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas con T3

Según la figura N° 26, en la primera evaluación al tercer mes, se observa en el tratamiento T3 con 90.88% de ectomicorrizas monopodiales, el 7.62% de ectomicorrizas bifurcadas y finalmente el 1.50% de ectomicorrizas ramificadas por plántula.

En la segunda evaluación al sexto, se observa un mayor porcentaje de ectomicorrizas monopodiales que alcanzo 56.10%, el 28.34% de ectomicorrizas bifurcadas y finalmente el 15.56% de ectomicorrizas ramificadas por plántula.

En la tercera evaluación al noveno mes, se observa un mayor porcentaje de ectomicorrizas ramificadas que alcanzo 65.62%, el 21.72% de ectomicorrizas bifurcadas, y finalmente el 12.67% de ectomicorrizas monopodiales por plántula.
6.7 PESO SECO PROMEDIO POR PLANTULA (gr).

Se realizó el análisis de varianza para la variable peso seco de la plántula a los 270 días después del trasplante y se muestra los rangos de crecimiento con valores que van desde 3.42 gramos por plántula hasta 6.18, siendo el promedio general 5.25 gramos por plántula.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BLOQUES</th>
<th>TOTAL</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>Micorrizas</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1 Micorriza comercial</td>
<td>6.18</td>
<td>8.04</td>
<td>6.05</td>
</tr>
<tr>
<td>2 Seta del hongo fermentado</td>
<td>6.42</td>
<td>4.63</td>
<td>6.85</td>
</tr>
<tr>
<td>3 Tierra micorrizada</td>
<td>4.38</td>
<td>4.96</td>
<td>5.22</td>
</tr>
<tr>
<td>4 Testigo</td>
<td>3.63</td>
<td>3.50</td>
<td>3.13</td>
</tr>
</tbody>
</table>

PROMEDIO DE BLOQUE: 5.15 5.28 5.31 15.74 5.25

Fuente: Elaboración propia.

Los resultados obtenidos en la presente investigación se muestran en el cuadro Nº 29, donde se observa que el tratamiento T1 (Micorriza Comercial) la plántula alcanzó mayor peso, con un promedio de 6.75 gramos/plántula; seguidos por los tratamientos T2 (Seta del hongo fermentado) y T3 (tierra micorrizada) que obtuvieron un peso promedio de 5.97 y 4.85 gramos/planta respectivamente en tanto que, el menor peso de la plántula obtuvo el tratamiento T4 (testigo) con un promedio de 3.42 gramos.

<table>
<thead>
<tr>
<th>VARIACION</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>18.86</td>
<td>6.29</td>
<td>6.92</td>
<td>4.76</td>
<td>*</td>
</tr>
<tr>
<td>BLOQUE</td>
<td>2</td>
<td>1.21</td>
<td>0.40</td>
<td>0.44</td>
<td>5.14</td>
<td>Ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>6</td>
<td>4.54</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>24.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Según el cuadro N° 30 de análisis de variancia, para peso seco de la plántula es significativo entre los promedios de los tratamientos, en donde la F calculada es (6.92) mayor que la F tabulada (4.76) para un nivel de confianza de 0.05. Por lo tanto, se rechaza la hipótesis nula en que los tratamientos son iguales estadísticamente, Además es necesario continuar con la comparación de medias, utilizando la diferencia significativa de honesta de Tukey para determinar cuál de los promedios de los tratamientos es diferente a los demás.

COEFICIENTE DE VARIABILIDAD

El coeficiente de variabilidad es 18.17%, indica que en condiciones de vivero hubo un buen grado de confiabilidad de los resultados.

\[CV = \frac{\sqrt{\frac{CM_e}{\chi^2}}}{} \times 100 = \% \quad CV = \frac{\sqrt{0.91}}{5.25} \times 100 = 18.17\% \]

Cuadro N° 31: Prueba de Tukey al 5% para peso seco de la plántula.

<table>
<thead>
<tr>
<th>ORDEN DE MERITO</th>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
<th>GRUPOS HOMOGENEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Micorriza Comercial</td>
<td>6.75</td>
<td>A</td>
</tr>
<tr>
<td>II</td>
<td>Seta de Hongo Fermentado</td>
<td>5.97</td>
<td>A B</td>
</tr>
<tr>
<td>III</td>
<td>Tierra Micorrizada</td>
<td>4.85</td>
<td>A B</td>
</tr>
<tr>
<td>IV</td>
<td>Testigo</td>
<td>3.42</td>
<td>B</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según el cuadro N° 31, se observa dos grupos homogéneos A y B para el promedio de peso seco de la plántula: Los tratamientos T1 (Micorriza Comercial), T2 (Seta del Hongo Fermentado) y T3 (Tierra Micorrizada) son estadísticamente iguales, perteneciente al grupo homogéneo A; por otro lado, los tratamientos T2 (Seta del Hongo Fermentado), T3 (Tierra Micorrizada) y T4 (testigo) son estadísticamente iguales, perteneciente al grupo homogéneo B.
Así mismo, se observa el mejor tratamiento es T1 (Micorriza Comercial) perteneciente al grupo homogéneo A, las plántulas de pino (*Pinus radiata D. Don*) obtuvieron mayor número de ectomicorrizas con 6.75 gramos por plántula y el peor tratamiento es el T4 (Testigo) perteneciente al grupo homogéneo B, muestra el menor peso de la plántula con 3.42 gramos por plántula.

Figura Nº 27: Peso seco de las plántulas a los 9 meses

![Diagrama de barras mostrando el peso seco de las plántulas a los 9 meses. Series1, T1: 6.75 gramos, T2: 5.97 gramos, T3: 4.85 gramos, T4: 3.42 gramos.](image)

Fuente: Elaboración propia.

Según la figura Nº 27, se observa que el mejor tratamiento es T1 (Micorriza Comercial) que obtuvo un promedio de 6.75 gramos por plántula y el peor tratamiento es el T4 (Testigo) que obtuvo un promedio de 3.42 gramos por plántula.
VII. DISCUSION DE RESULTADOS

7.1 EVALUACIONES DEL PINO (*Pinus radiata D. Don*) DURANTE LA FASE DE VIVERO.

7.1.1 Porcentaje de sobrevivencia

Según los resultados obtenidos en la presente investigación, el mayor porcentaje de sobrevivencia, obtuvo el tratamiento T1 (Micorriza Comercial) con 98.08%; mientras que, el menor porcentaje de sobrevivencia, obtuvo el tratamiento T4 (sin inocular) con 95.58%. Sin embargo, el promedio general fue de 96.77%.

Según Pacheco (2008), en su investigación “Influencia del sustrato y de la técnica de inoculación en la micorrización de (*Pinus radiata D. Don*) con el hongo ectomicoríxico *Boletus edulis*. Obtuvo 96.3% de sobrevivencia.

Según Chung (2005), evaluó la producción de plántulas de pino (*Pinus radiata*) incorporando hongo (*Boletus edulis*) en condiciones de vivero, en donde obtuvo 97% de sobrevivencia de las plántulas.

7.1.2 Altura de la planta

Según los resultados obtenidos en la presente investigación, con el tratamiento T1 (Micorriza Comercial) la planta alcanzó mayor altura con un promedio de 45.97 cm, en tanto que, la menor altura de planta alcanzó el tratamiento T4 (sin inocular) con un promedio de 31.27 cm.

7.1.3 Diámetro del tallo de la plántula

Según los resultados obtenidos en la presente investigación, el mayor diámetro de tallo obtuvo el tratamiento T1 (micorriza comercial), logrando un promedio de 4.55 milímetros, el menor diámetro de tallo fue para el T4 (Testigo) quien alcanzo un promedio de 3.07 mm.
El promedio general del experimento para diámetro del tallo de la plántula es de 3.77 milímetros, lo cual es inferior a los resultados obtenidos en la investigación de Gómez, (2016), quien obtuvo 2.8 cm.

7.1.4 Número de raíces a los 9 meses

Según los resultados obtenidos de la investigación, con el tratamiento T1 (Micorriza Comercial) la planta alcanzó mayor número de raíces un promedio de 13.00 unid/planta, en tanto que, el menor número de raíces alcanzó el tratamiento T3 (Tierra micorrizada) y T4 (sin inocular), un promedio de 8.83 unid/planta ambos tratamientos. El promedio general del número de raíces fue de 10.04 unid/planta, la que es inferior a los resultados obtenidos en las investigaciones de Vergara (2004) quien obtuvo 11.25 raíces/planta.

7.1.5 Número de ectomicorrizas

A) Número de ectomicorrizas a los 3 meses después del repique

Según los resultados obtenidos en la investigación, con el tratamiento T2 (Seta del Hongo Fermentado) la planta alcanzó mayor número de ectomicorrizas con un promedio de 146.67 ectomicorrizas/planta, en tanto que, el menor número de ectomicorrizas obtuvo el tratamiento T3 (tierra micorrizada) con un promedio de 111.00 ectomicorrizas/planta.

El promedio general del número de ectomicorrizas fue de 121.83 unid/planta, la que es superior a los resultados obtenidos en las investigaciones de Melgarejo (2017) y Vergara (2004), quienes obtuvieron 112.00 unid/planta y 118.00 unid/planta, respectivamente.

B) Número de ectomicorrizas a los 6 meses después del repique

Según los resultados obtenidos en la investigación, con el tratamiento T1 (micorriza comercial) la planta alcanzó mayor número de ectomicorrizas con un promedio de 594.83 ectomicorrizas/planta, en tanto que, el menor número de ectomicorrizas presentó el tratamiento T3 (tierra micorrizada) con un promedio de 340.50 ectomicorrizas/planta.

El promedio general del número de ectomicorrizas fue de 401.79 unid/planta, la que es superior a los resultados obtenidos en las investigaciones de Vergara (2004) quien obtuvo 399 unidades por planta.
C) Número de ectomicorrizas a los 9 meses después del repique

Según los resultados obtenidos en la investigación, con el tratamiento T2 (Seta del Hongo Fermentado) la planta alcanzó mayor número de ectomicorrizas con un promedio de 677.33 ectomicorrizas/planta, en tanto que, el menor número de ectomicorrizas presentó el tratamiento T3 (tierra micorrizada) con un promedio de 507.50 ectomicorrizas/planta.

El promedio general del número de ectomicorrizas fue de 522.08 ectomicorrizas/planta, la que es inferior a los resultados obtenidos en las investigaciones de Vergara (2004) quien obtuvo 608.00 unidades por planta.

Cabe indicar que los datos del tratamiento T4 (testigo), no se toma en cuenta por que no se considera una verdadera micorriza, esta se encuentra de forma incipiente (inicios de formación parecida a micorriza).

7.1.6 Formas de ectomicorrizas

A) Porcentaje de ectomicorrizas monopodiales, bifurcadas y ramificadas a los 90 días.

Según los resultados obtenidos en la investigación, a los 90 días el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (tierra micorrizada) con 90.88%, el menor porcentaje ectomicorrizas monopodiales obtuvo el tratamiento T1 (micorriza comercial) con 76.42% por planta. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 21.52%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T3 (tierra micorrizada) con 7.62%. Así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con seta del hongo fermentado T2 (3.91%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 1.50% ectomicorrizas por plántula.

Los promedios generales, de los porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas fue 81.90%, 15.60% y 2.49% de ectomicorrizas/planta respectivamente., la que es inferior a los resultados obtenidos en las investigaciones de Vergara (2004) quien obtuvo 75.76%, 22.03% y 2.25% de ectomicorrizas monopodiales, bifurcadas y ramificadas respectivamente.
B) Porcentaje de ectomicorrizas monopodiales, bifurcadas y ramificadas a los 180 días.

A los 180 días el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (Tierra Micorrizada) con 56,10%, el menor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T2 (seta del hongo fermentado) con 25,21%. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 52,25%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T2 (seta del hongo fermentado) con 13,62%. Así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con seta del hongo fermentado T2 (61,17%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 15,56% ectomicorrizas por plántula.

Los promedios generales, de los porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas fue 37.45%, 31.40% y 31.14% de unidades/planta respectivamente., la que es inferior a los resultados obtenidos en las investigaciones de Vergara, (2004) quien obtuvo 39.32%, 25.74% y 36.89% de ectomicorrizas monopodiales, bifurcadas y ramificadas respectivamente.

C) Porcentaje de ectomicorrizas monopodiales, bifurcadas ramificadas a los 270 días

A los 270 días el mayor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T3 (Tierra Micorrizada) con 12,67%, el menor porcentaje de ectomicorrizas monopodiales obtuvo el tratamiento T1 (micorriza comercial) con 1,68%. En cambio, el mayor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T1 (micorriza comercial) con 27,09%, el menor porcentaje de ectomicorrizas bifurcadas obtuvo el tratamiento T3 (tierra micorrizada) con 21,72%. Así mismo el mayor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con micorriza comercial T1 (71,23%), y el menor porcentaje de ectomicorrizas ramificadas obtuvo las plántulas inoculadas con tierra micorrizada T3 con 65,62% ectomicorrizas por plántula.

Los promedios generales, de los porcentajes de ectomicorrizas monopodiales, bifurcadas y ramificadas fue 6.57%, 25.03% y 65.39% de ectomicorrizas/planta respectivamente., la que es inferior a los resultados obtenidos en las investigaciones
de Vergara, (2004) quien obtuvo 52.08%, 25.69% y 20.38% de ectomicorrizas monopodiales, bifurcadas y ramificadas unidades por planta respectivamente.

7.1.7 Peso seco promedio por plántula a los 9 meses

Según los resultados obtenidos en la presente investigación, con el tratamiento T1 Micorriza Comercial) la plántula alcanzó mayor peso, con un promedio de 6.75 gramos, en tanto que, el menor peso de la plántula alcanzó el tratamiento T4 (testigo) con un promedio de 3.42 gramos.

VIII. CONCLUSIONES

La evaluación del efecto del inóculo micorrizal del hongo (*Boletus edulis*) en la producción de plántulas de pino (*Pinus radiata D. Don*) se ha llegado a la siguiente conclusión:

- El mayor porcentaje de supervivencia obtuvo, el tratamiento T1 de 98.08%, seguido del tratamiento T2 que obtuvo 97.00%, luego el tratamiento T3 alcanzó 96.42%, finalmente el tratamiento T4 obtuvo 95.58%; el promedio general es de 96.77% de sobrevivencia.
- En altura de la Plántula, a los 270 días después del trasplante, el tratamiento T1 obtuvo un promedio de 45.97 cm, los tratamientos T2 y T3 obtuvieron promedios de 39.60 cm y 35.80 cm, respectivamente; la menor altura de planta obtuvo el T4 con un promedio de 31.27 cm.
- En diámetro del tallo de la plántula a los 270 días, el tratamiento T1 obtuvo un promedio de 4.55 mm; seguido del tratamiento T2 que obtuvo 3.88 mm por plántula; luego el tratamiento T3 obtuvo 3.56 mm, finalmente el tratamiento T4 obtuvo 3.07 mm; el promedio general es de 3.77 mm por plántula.
- En número de raíces por plántula, a los 270 días, el tratamiento T1 que alcanzó un promedio de 13.50 raíces/planta; el tratamiento T2 obtuvo un promedio de 11.17 raíces/planta; el tratamiento T3 obtuvo un promedio de 9.83 raíces/planta; finalmente el tratamiento T4 obtuvo un promedio de 8.67 raíces/planta; el promedio general es de 10.79 raíces por planta.
- En número de ectomicorrizas a los 90 días, el tratamiento T2 obtuvo un promedio de 146.67 ectomicorrizas/planta; seguido del tratamiento T1 que obtuvo 130.00 ectomicorrizas/plántula; luego el tratamiento T3 obtuvo 111.00 ectomicorrizas/plántula; finalmente el tratamiento T4 obtuvo un promedio de 101.33 puntas radiculares monopodiales y bifurcadas de forma micorrítica incipiente, el promedio general es de 122.25 ectomicorrizas por plántula;
- En número de ectomicorrizas por planta a los 180 días, el tratamiento T1 (micorriza comercial) obtuvo un promedio de 594.83 ectomicorrizas/planta; seguido del tratamiento T2 que obtuvo 428,67 ectomicorrizas/planta; mientras que el tratamiento T3 con un promedio de 340.50 ectomicorrizas/plántula; finalmente en las plantas testigo T4 se han encontrado un promedio de 243.17
puntas radiculares monopodiales y bifurcadas de forma micorrítica insipiente, se obtuvo un promedio general de 401.79 ectomicorrizas/plántula.

- En número de ectomicorrizas/plántula a los 270 días, el tratamiento T1 obtuvo un promedio de 677.33 ectomicorrizas/plántula; seguido del tratamiento T2 que obtuvo 625.50 ectomicorrizas/plántula; mientras que el tratamiento T3 obtuvo un promedio de 507.50 ectomicorrizas/plántula; finalmente en las plantas testigo T4 se han encontrado un promedio de 278.00 puntas radiculares monopodiales y bifurcadas de forma micorrítica insipiente, en forma general se obtuvo un promedio de 522.08 ectomicorrizas por plántula.

- Respecto a las formas de ectomicorrizas, se realizaron 3 evaluaciones a los:90 días, 180 días y 270 días.

 A los 90 días, el mayor porcentaje de ectomicorrizas monopodiales, bifurcada y ramificadas obtuvieron los tratamientos T3 con 90.88%, T1 con 21.52% y T2 con 3.91% respectivamente; el menor porcentaje de ectomicorrizas monopodiales, bifurcada y ramificadas obtuvieron los tratamientos T1 con 76.42%, tratamiento T3 con 7,62% y 1.50% ectomicorrizas por plántula respectivamente.

 A los 180 días, el mayor porcentaje de ectomicorrizas monopodiales, bifurcada y ramificadas obtuvieron los tratamientos T3 con 56.10%, T1 con 52.25%, y tratamiento T2 con 61.17% respectivamente; el menor porcentaje de ectomicorrizas monopodiales, bifurcadas y ramificadas obtuvieron los tratamientos T2 con 25,21%, 13,62% y T3 con 15.56% de ectomicorrizas por plántula respectivamente.

 A los 270, días el mayor porcentaje de ectomicorrizas monopodiales, bifurcada y ramificadas obtuvieron los tratamientos T3 con 12.67% T1 con 27.09% y T2 con 71.23%, respectivamente; el menor porcentaje de ectomicorrizas monopodiales, bifurcada y ramificadas obtuvieron los tratamientos T1 con 1.68%, T3 con 21.72% y 65.62% ectomicorrizas/plántula respectivamente.

- En peso seco de la plántula a los 270 días, el tratamiento T1 obtuvo mayor peso 6.75 gramos/plántula; mientras los tratamientos T2, T3 tierra micorrizada obtuvieron un peso promedio de 5.97 y 4.85 gramos/planta respectivamente; finalmente el tratamiento T4 (testigo) obtuvo menor peso de 3.42 gramos/planta.
IX. RECOMENDACIONES

- Se recomienda principalmente el uso de micorriza comercial del hongo (*Boletus edulis*) en la producción de pino (*Pinus radiata* D. Don) para obtener mayor sobrevivencia, crecimiento y vigorosidad de plántulas en vivero.

- Como segunda alternativa se recomienda el uso de extracto fermentado del hongo (*Boletus edulis*), en la producción de pino (*Pinus radiata* D. Don) en vivero.

- Realizar trabajos de micorrización en vivero con hongos micorrizicos de diferentes especies, a fin de determinar comparativamente cuál especie es el de mejor performance en el desarrollo y resistencia de las plántulas.

- Para la recolección de tierra micorrizada, se recomienda primero identificar la planta, topografía de terreno, acceso, textura y estructura de terreno. La extracción no se debe realizar más de 15 cm de profundidad y el material tiene que ser zarandeado para su uso. Se debe extraer tierra micorrizada el mismo día o un día antes de repique, o en caso contrario esta debe ser almacenada en un lugar bajo sombra y mantenerlos húmedo a capacidad de campo no más de 30 días.

- Una vez repicado las plántulas de pino, los riegos deben ser frecuentes. Si las plántulas de pino cuya raíz tiene más de 5cm de tamaño al momento de repique, se recomienda podarlos con la finalidad de mejor manejo, aparición de raíces secundarias y buena formación radicular.
X. BIBLIOGRAFÍA

Popoff O., y L. Ferraro I. 2007. Reino Fungi. Instituto de Botánica del Nordeste
Corrientes. Universidad Nacional del Nordeste, Facultad de Agroindustrias,
Chaco- República Argentina. 39 p.

Pronamachs. 1998. Aspectos fitosanitarios y micorrícticos en viveros forestales en la
del Pronamachs Femap FAO/GCP/033/Net Donación del Gobierno del Reino
de los países Bajos Holanda. Perú. 140 p.

http://wwwbiologia.edu.or/fungi/micorizas.htm

Rey Pazos., A. 2009. Fungos de Galicia y Norte de Lusitania: Definición y Posición
Taxonómica del Boletus. Agrupación Micológica “A ZARROTA” Vigo, Galicia-
España. 31 p.

España. 15 p.

Sociedad Micológica de Madrid. Dpto. de Biología Vegetal (Botánica),

Ruiz, P. 1992. Significado de las micorrizas para la agroforestería en ultizoles de la
Amazonía. Suelos Amazónicos. Publicación del proyecto de suelos tropicales.
INIAA No SA-04. 3 1 p.

Semiabobio, (2004). Resúmen de trabajos sobre micorrizas del Perú y el extranjero

Vasco, F. 2003. Aspectos Biológicos de la Unión Hong-Planta (Micorizas). Boletín de

verrucosum en la producción de plántulas de Pinus radiata D. Don. Tesis Ing.
Foretal. UNALM Lima-Perú. 50-67 p.

Zegarra, A. 1981. Comparativo de diferentes suelos forestales y sustratos para la
producción de plántulas de pinos (Pinus radiata). Tesis Ing. Agron. UNC
Cajamarca-Perú.
XI. ANEXOS

ANEXO Nº 01
COSTO DE PRODUCCION DE PLÁNTULAS DE PINO EN VIVERO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo Unitario S/</th>
<th>costo Total para 2496 plántulas (S/)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTOS FIJOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alquiler de infraestructura (vivero)</td>
<td></td>
<td></td>
<td></td>
<td>100,00</td>
</tr>
<tr>
<td>Alquiler de camas</td>
<td>Unidad</td>
<td>1,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Alquiler de Equipos y Materiales</td>
<td></td>
<td></td>
<td></td>
<td>60,00</td>
</tr>
<tr>
<td>Pala cuchara</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Serrucho</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Carretilla Buggy</td>
<td>Unidad</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Cordel</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Estacas</td>
<td>Unidad</td>
<td>10,00</td>
<td>0,50</td>
<td>5,00</td>
</tr>
<tr>
<td>Pala recta</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Flexómetro</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Pico</td>
<td>Unidad</td>
<td>1,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Rastrello</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Zaranda</td>
<td>Unidad</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Malla raschell</td>
<td>m2</td>
<td>2,00</td>
<td>4,00</td>
<td>8,00</td>
</tr>
<tr>
<td>Mochila pulverizador</td>
<td>Unidad</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Medidor de PH</td>
<td>Unidad</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Balanza Analítica</td>
<td>Unidad</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Vernier</td>
<td>Unidad</td>
<td>1,00</td>
<td>10,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Regadera</td>
<td>Unidad</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Manguera</td>
<td>Unidad</td>
<td>1,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Servicios</td>
<td></td>
<td></td>
<td></td>
<td>81,00</td>
</tr>
<tr>
<td>Agua</td>
<td>Meses</td>
<td>9,00</td>
<td>4,00</td>
<td>36,00</td>
</tr>
<tr>
<td>Responsable del vivero (viverista)</td>
<td>Meses</td>
<td>9,00</td>
<td>5,00</td>
<td>45,00</td>
</tr>
<tr>
<td>Sub Total de costos fijos</td>
<td></td>
<td></td>
<td></td>
<td>241,00</td>
</tr>
<tr>
<td>Item</td>
<td>Unidad</td>
<td>Cantidad</td>
<td>Costo Unitario</td>
<td>Costo total Para 2496 plantas. (S/)</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano de obra no calificada</td>
<td></td>
<td></td>
<td></td>
<td>545,00</td>
</tr>
<tr>
<td>Limpieza de Terreno</td>
<td>Jornal</td>
<td>0,50</td>
<td>40,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Preparación de terreno y nivelación</td>
<td>Jornal</td>
<td>0,50</td>
<td>40,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Construcción de camas de almacenaje y repique</td>
<td>Jornal</td>
<td>1,00</td>
<td>40,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Preparación de substrato para almacenaje</td>
<td>Jornal</td>
<td>1,00</td>
<td>35,00</td>
<td>35,00</td>
</tr>
<tr>
<td>Desinfección de sustrato</td>
<td>Jornal</td>
<td>0,50</td>
<td>25,00</td>
<td>12,50</td>
</tr>
<tr>
<td>Almacenado y construcción de tinglado</td>
<td>Jornal</td>
<td>1,00</td>
<td>40,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Labores culturales en almacenaje</td>
<td>Jornal</td>
<td>0,50</td>
<td>35,00</td>
<td>17,50</td>
</tr>
<tr>
<td>Zarandeo y traslado de sustrato a las camas</td>
<td>Jornal</td>
<td>1,00</td>
<td>40,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Embolsado</td>
<td>Jornal</td>
<td>2,00</td>
<td>40,00</td>
<td>80,00</td>
</tr>
<tr>
<td>Riego y repicado</td>
<td>Jornal</td>
<td>1,50</td>
<td>40,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Riego periódico</td>
<td>Jornal</td>
<td>2,00</td>
<td>30,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Deshierbe permanente</td>
<td>Jornal</td>
<td>1,50</td>
<td>35,00</td>
<td>52,50</td>
</tr>
<tr>
<td>Control fitosanitario</td>
<td>Jornal</td>
<td>0,25</td>
<td>30,00</td>
<td>7,50</td>
</tr>
<tr>
<td>Remoción y selección</td>
<td>Jornal</td>
<td>1,50</td>
<td>40,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Materiales e Insumos</td>
<td></td>
<td></td>
<td></td>
<td>227,10</td>
</tr>
<tr>
<td>Semilla de Pino</td>
<td>Kg</td>
<td>0,25</td>
<td>200,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Fungicida (Benomil)</td>
<td>L</td>
<td>0,02</td>
<td>280,00</td>
<td>5,60</td>
</tr>
<tr>
<td>Desinfectante (lejía)</td>
<td>L</td>
<td>0,13</td>
<td>4,00</td>
<td>0,50</td>
</tr>
<tr>
<td>Micorriza Comercial</td>
<td>Kg</td>
<td>2,00</td>
<td>25,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Tierra micorrizada</td>
<td>Kg</td>
<td>2,50</td>
<td>15,00</td>
<td>37,50</td>
</tr>
<tr>
<td>Seta del hongo Fermentado</td>
<td>Kg</td>
<td>1,00</td>
<td>15,00</td>
<td>15,00</td>
</tr>
<tr>
<td>Bolsas de Polietileno 5 x 7</td>
<td>Millar</td>
<td>2,50</td>
<td>15,00</td>
<td>37,50</td>
</tr>
<tr>
<td>Tierra Negra</td>
<td>m3</td>
<td>2,00</td>
<td>20,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Arena</td>
<td>m3</td>
<td>0,50</td>
<td>50,00</td>
<td>25,00</td>
</tr>
<tr>
<td>Descripción</td>
<td>Unidad</td>
<td>Precio 1</td>
<td>Precio 2</td>
<td>Total</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Guantes quirúrgico</td>
<td>Unidad</td>
<td>12,00</td>
<td>0,20</td>
<td>2,40</td>
</tr>
<tr>
<td>Mascarilla quirúrgica</td>
<td>Unidad</td>
<td>12,00</td>
<td>0,20</td>
<td>2,40</td>
</tr>
<tr>
<td>Paleta de madera</td>
<td>Millar</td>
<td>0,40</td>
<td>15,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Sub Total Costos Variables</td>
<td></td>
<td></td>
<td></td>
<td>772,10</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1013,10</td>
</tr>
<tr>
<td>Costo Total por planta (S/)</td>
<td></td>
<td></td>
<td></td>
<td>0,41</td>
</tr>
</tbody>
</table>
ANEXO Nº 02: RESULTADOS DE ANÁLISIS DE LABORATORIO

Información de la Muestra

Informe de Ensayo N° 1606369 - LMT

Sollicitante: Yени Ancco Nahuirima

Descripción del Objeto Ensayado:

Muestra: 1606369 - Micorriza Comercial

Procedencia: Paucartambo

Tipo de Envase: Botella de plástico

Cantidad de Muestra: 01 muestra x 01 und. x 1000 g. aprox.

Estado y Condición: En buen estado y cerrado

Fecha de Muestreo: 2016 - 03 - 10

Fecha de Recepción: 2016 - 06 - 09

Fecha de Inicio de Ensayo: 2016 - 06 - 24

Fecha de Término de Ensayo: 2016 - 07 - 01

Resultados de Análisis de Laboratorio de Microbiología

<table>
<thead>
<tr>
<th>Análisis Microbiano</th>
<th>Muestra 1606369</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteo de esporas de micorrizas (N/100g)*</td>
<td>5.03x10³</td>
</tr>
</tbody>
</table>

Métodos:

Observaciones:

Informe de ensayo emitido sobre la base de resultados de nuestro laboratorio en muestras proporcionadas por el solicitante.

Prohibida la reprodución total o parcial de este informe, sin nuestra autorización escrita.

Validar el documento: Este documento tiene validez sólo para la muestra descrita.

La Molina, 08 de julio de 2016

DRA. DORIS ZÚÑIGA DÁVILA

Jefe del Laboratorio de Ecología Microbiana y Biotecnología "Marino Tabusso"

Universidad Nacional Agraria La Molina

Teléfono: 6147/800 anexo 274

E-mail: lmt@lamolina.edu.pe

Laboratorio de Ecología Microbiana y Biotecnología "Marino Tabusso"

110
SOLICITANTE: YENI ANCCO ÑAHIJIMA

DESCRIPCIÓN DEL OBJETO ENSAYADO

MUESTRA: 1606368 ZETA DE HONGO FERMENTADO

PROCEDENCIA: Andahuaylas
TIPO DE ENVASE: Bollella de plástico
CANTIDAD DE MUESTRA: 01 muestra x 01 und. x 200 mL aprox.
ESTADO Y CONDICIÓN: En buen estado y cerrado
FECHA DE MUESTREO: 2016 - 06 - 08
FECHA DE RECEPCIÓN: 2016 - 06 - 09
FECHA DE INICIO DE ENSAYO: 2016 - 06 - 24
FECHA DE TÉRMINO DE ENSAYO: 2016 - 07 - 01

RESULTADOS DE ANÁLISIS DE LABORATORIO DE MICROBIOLOGÍA

<table>
<thead>
<tr>
<th>Análisis Microbiológico</th>
<th>Muestra 1606368</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Conteo de esporas de micorrizas (N°/100g)</td>
<td>3.1x10' Esporas/gramo</td>
</tr>
</tbody>
</table>

Métodos:

Observaciones:

Informe de ensayo emitido sobre la base de resultados de nuestro laboratorio en muestras proporcionadas por el solicitante.

Prohibida la reproducción total o parcial de este informe, sin nuestra autorización escrita.

Valido del documento:

Esta documento tiene validez sólo para la muestra descrita.

La Molina, 08 de julio de 2016

DRA. DORIS ZÚÑIGA DÁVILA

Jefe del Laboratorio de Ecología Microbiana y Biotecnología “Marino Tabusso”
Universidad Nacional Agraria La Molina
Teléfono: 6147800 anexo 274
E-mail: irm@alamolina.edu.pe

LABORATORIO DE ECOLOGÍA MICROBIANA Y BIOTECNOLOGÍA "MARINO TABUSSO"
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA
Av. La Molina s/n La Molina - Lima - Perú
Teléfono: 0147800 anexo 274

INFORME DE ENSAYO N° 1606370 - LMT

SOLICITANTE : YENI ANCCO NAHUJIRIMA
DESCRIPCIÓN DEL OBJETO ENSAYADO
MUESTRA : 1606370) TIERRA MICORRIZADA

PROCEDENCIA : Andahuaylas - Apurímac
TIPO DE ENVASE : Botella de plástico
CANTIDAD DE MUESTRA : 01 muestra x 01 und. x 70 g. aprox.
ESTADO Y CONDICIÓN : En buen estado y cerrado
FECHA DE MUESTREO : 2016 - 06 - 08
FECHA DE RECEPCIÓN : 2016 - 06 - 09
FECHA DE INICIO DE ENSAYO : 2016 - 06 - 24
FECHA DE TÉRMINO DE ENSAYO : 2016 - 07 - 01

RESULTADOS DE ANÁLISIS DE LABORATORIO DE MICROBIOLOGÍA

<table>
<thead>
<tr>
<th>Análisis Microbiológico</th>
<th>Muestra 1606370</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteo de esporas de micorrizas (N°/10g)</td>
<td>52 x 10</td>
</tr>
</tbody>
</table>

Métodos:

Observaciones:
Informes de ensayo emitido sobre la base de resultados de nuestro laboratorio en muestras proporcionadas por el solicitante.
Prohibida la reproducción total o parcial de este informe, sin nuestra autorización escrita.
Validar el documento:
Esta document tiene validez sólo para la muestra descrita.

La Molina, 08 de julio de 2016

DRA. DORIS ZÚÑIGA DÁVILA
Jefa del Laboratorio de Ecología Microbién y Biotecnología “Marino Tabuoso”
Universidad Nacional Agraria La Molina
Teléfono: 0147800 anexo 274
E-mail: lmt@lamolina.edu.pe

LABORATORIO DE ECOLOGIA MICROBIEN Y BIOTECNOLOGIA "MARINO TABUSSO"
ANÁLISIS DE SUELOS: CARACTERIZACIÓN

Solicitante: YENI ANCCO NAHUIMA

Departamento: APURÍMAC

Provincia: ANDAHUAYLAS

Distrito: Referencia

Fecha: 02/10/15

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>pH (1:1)</th>
<th>CaCO3 (g/L)</th>
<th>M.O. %</th>
<th>P ppm</th>
<th>K ppm</th>
<th>Analítica Mórbida</th>
<th>Valor Tórtular</th>
<th>Cac.</th>
<th>Mg²⁺</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>Ca²⁺ + Mg²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustrato</td>
<td>5.92</td>
<td>0.10</td>
<td>0.06</td>
<td>13.40</td>
<td>6.4</td>
<td>73</td>
<td>22</td>
<td>5</td>
<td>35.52</td>
<td>4.68</td>
<td>0.65</td>
<td>0.24</td>
</tr>
</tbody>
</table>

A = Arena; F.A = Arena Franca; P.A = Fracso Arenoso; F = Fracso; P.L = Fracso Límico; L = Límico; F.A.L = Fracso Arenoso Límico; F.A. = Arena Fracso; F.A. = Arena Arenoso; F.L. = Fracso Límico; L. = Límico; P.A. = Fracso Arenoso; F. = Fracso; A. = Arena; L. = Límico; Ar = Areia

Jefe del Laboratorio:

Av. La Molina s/n Campus UNALM - Telf.: 614-7800 Arequipa 222 Telefax: 349-5022 - e-mail: labuevo@lamolina.edu.pe
TABLA DE INTERPRETACIÓN

<table>
<thead>
<tr>
<th>Reacción o pH</th>
<th>CLASES TEXTURALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>arena</td>
</tr>
<tr>
<td>A.Fr</td>
<td>arena franca</td>
</tr>
<tr>
<td>F.A</td>
<td>fango arena</td>
</tr>
<tr>
<td>F</td>
<td>fango</td>
</tr>
<tr>
<td>F.L</td>
<td>fango limoso</td>
</tr>
<tr>
<td>L</td>
<td>limosa</td>
</tr>
</tbody>
</table>

Clasificación de Suelo

- A muy ligero salino
- A moderadamente salino
- A. Fr
- A. F
- F
- F. L
- L

Clasificación de Materia Orgánica

- Clasificación
- Fósforo disponible
- Potasio disponible

<table>
<thead>
<tr>
<th>Saturación</th>
<th>Clasificación</th>
<th>Fósforo disponible</th>
<th>Potasio disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td><2.0 ppm</td>
<td>>7.0 ppm</td>
<td><100 ppm</td>
</tr>
<tr>
<td>>2</td>
<td>7.0 - 14.0 ppm</td>
<td>>14.0 ppm</td>
<td>>240 ppm</td>
</tr>
</tbody>
</table>

Clasificación de Relaciones Catiónicas

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>KMg</th>
<th>Ca/Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.2 - 0.3</td>
<td>5 - 5</td>
</tr>
<tr>
<td>Verge. Mg</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>d. dist. K</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>d. dist. Mg</td>
<td>>10</td>
<td></td>
</tr>
</tbody>
</table>

Distribución de Cationes %

- Ca²⁺ = 60 - 76
- Mg²⁺ = 10 - 20
- K⁺ = 3 - 7
- Na⁺ = <15
ANEXO Nº 03: FOTOGRAFÍAS DURANTE LA EJECUCIÓN

FOTO Nº 01: Instalación del vivero, preparación de camas del repique y almacigo, el 11/05/2015.

FOTO Nº 04: Almacigado y protección de la cama de almacigo, se realizó el 11 de mayo del 2015.
FOTO Nº 02: Preparación de sustrato (zarandeo de turba y arena), se ejecutó 11 y 12 de mayo del 2015.

FOTO Nº 03: Embolsado y enfilado en camas de crecimiento, se ejecutó desde 20 hasta 28 de mayo del 2015.
FOTO Nº 05: Recolección de cuerpos fructíferos del hongo (*Boletus edulis*) del bosque, se realizó el 29 de mayo del 2015.

FOTO Nº 06: Recolección de tierra micorrizada del hongo (*Boletus edulis*) del bosque de pino, se realizó el 29 de mayo del 2015.
FOTO Nº 07: Tierra micorrizada y micorriza comercial

FOTO Nº 08: extracción de las plántulas de pino (*Pinus radiata D. Don*) de las camas de almacigo, se realizó el 11 de junio del 2015.
FOTO Nº 09: Repique de las plántulas de pino (*Pinus radiata D. Don*), se realizó el 11 de junio del 2015.

FOTO Nº 10: Inoculación de las plántulas de pino (*Pinus radiata D. Don*) con micorriza comercial. (11/06/15).
FOTO Nº 11: Riego y deshierbe de las plántulas de pino (*Pinus radiata* D. Don).

FOTO Nº 12: Evaluación de altura de la plántula al primer y noveno mes, se realizó desde 11 julio del 2015 hasta 11 de marzo del 2016.
FOTO Nº 13: Evaluación del diámetro de la plántula a los 9 meses inoculado con micorriza comercial.

FOTO Nº 14: Evaluación del diámetro de la plántula a los 9 meses sin inocular.

FOTO Nº 15: Etiquetado y lavado de las plántulas de pino (Pinus radiata D. Don).
FOTO Nº 16: plántulas inoculadas con zeta del hongo fermentado a los 9

FOTO Nº 17: Presencia de micorriza en pino inoculado con hongo (*Boletus edulis*) en micorriza comercial (T1)
FOTO Nº 18: Pesado y secado en horno de pulpa y papel, se realizó el 11 de marzo del 2016.