UNIVERSIDAD NACIONAL DE SAN ANTONIO
ABAD DEL CUSCO
FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TÍTULO:
“DETERMINACIÓN DE LA DENSIDAD Y RESISTENCIA CON ULTRASONIDO Y TRIAXIAL PARA CONCRETOS $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 CON AGREGADOS DE LA CANTERA DE CUNYAC”

Presentado por:
Bach. CALLAYMARA AYQUIPA, Rita
Bach. NAVARRO CONCHA, Euler Abad

Dictaminantes:
M. Sc. Ing. SERRANO FLORES, José Francisco
Ing. CRUZ TELLO, Jorge Iván
Ing. HOLGADO ESCALANTE, Guido Eulogio

Tesis presentada para Optar al Título Profesional de Ingeniero Civil

CUSCO, JULIO 2019.
Dedicatoria

A Dios, por guiarme y protegerme en mi camino y por
darme muchas bendiciones.

A mis padres Rómulo y Paulina, a mis hermanos
Rosmery, Rocío y Rhandy, por apoyarme, comprenderme y
alentarme en mi lucha por seguir adelante.

A mi abuelito Estéfano y demás familiares, quienes de
alguna forma contribuyeron en mi desarrollo.

Rita.

A Dios, por darme muchas bendiciones y las
fuerzas para seguir adelante.

A mi madre, quien está a mi lado como un ángel,
cuidándome e incentivándome para lograr mis
objetivos.

A mi hijo, por ser mi motor y mi motivo.

Euler.
Agradecimientos

A nuestros docentes de la Escuela Profesional de Ingeniería Civil por brindarnos sus conocimientos en su labor de docencia, a los amigos y compañeros por su apoyo constante a lo largo de nuestra vida universitaria y desarrollo de la tesis.

Rita y Euler.
Índice de contenido

1. CAPÍTULO I ..1

PLANTEAMIENTO DEL PROBLEMA ...1

1.1 Identificación del problema ..1

1.2 Formulación del problema ..3

1.2.1 Problema General ..3

1.2.2 Problema Específico. ...3

1.3 Justificación e importancia del problema ..3

1.4 Limitaciones y viabilidad de la investigación ..4

1.5 Objetivos de la investigación ..5

1.5.1 Objetivos generales ..5

1.5.2 Objetivos específicos ..5

1.6 Formulación de hipótesis ..6

2. CAPÍTULO II ..7

MARCO TEÓRICO ..7

2.1 Antecedentes del estudio ...7

2.1 Bases teóricas científicas ..11

2.1.1 El concreto ..11

2.1.2 Ultrasonido ..22

2.1.3 Tensión triaxial ..26
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

2.1.4 Ensayos en el concreto

3. CAPÍTULO III METODOLOGIA DE LA INVESTIGACION

3.1 Alcance de investigación

3.2 Identificación de variables de investigación

3.2.1 Variables independientes

3.2.2 Variables dependientes

3.3 Indicadores de las variables en estudio

3.4 Diseño de la investigación

3.5 Población

3.5.1 Universo o población

3.5.2 Ámbito geográfico

3.6 Muestra

3.6.1 Tipo de muestra

3.6.2 Determinación del tamaño de la muestra

3.7 Enfoque de investigación

3.8 Técnicas de recolección de datos

4. CAPÍTULO IV ESTUDIO DE AGREGADOS Y DISEÑO DE MEZCLAS

4.1 Agregados

4.1.1 Aspectos generales de la cantera de Cunyac

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler Abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

4.1.2 Propiedades de los agregados ... 56

4.1.3 Resultados de ensayos a los agregados ... 75

4.2 Diseño de mezclas .. 89

4.2.1 Método del Agregado global .. 89

4.2.2 Diseño de mezclas para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² –huso 67 (testigos cilíndricos de 4” x 8”) ... 90

4.2.3 Diseño de mezclas para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² –huso 8 (testigos cilíndricos de 2” x 4”) ... 170

5. CAPÍTULO V .. 232

ELABORACIÓN Y ENSAYO DE ESPECÍMENES .. 232

5.1 Elaboración de especímenes .. 232

5.1.1 Procedimiento de elaboración .. 232

5.1.2 Calidad de moldes ... 233

5.1.3 Codificación de los especímenes ... 234

5.1.4 Curado de concreto ... 234

5.2 Ensayos de especímenes .. 234

5.2.1 Ensayo de Pulso ultrasónico ... 234

5.2.2 Ensayo de compresión ... 236

6. CAPÍTULO VI .. 246

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS .. 246
6.1 Análisis estadístico de resultados de velocidad y resistencia de muestras cilíndricas de 4”x8”-huso 67……246

6.2 Análisis estadístico de resultados de velocidad y densidad de muestras cilíndricas de 4”x8”-huso 67 ………249

6.3 Análisis estadístico de resultados de velocidad y resistencia de muestras cilíndricas de 2”x4”-huso 8……251

6.4 Análisis estadístico de resultados de velocidad y densidad de muestras cilíndricas de 2”x4”-huso 8 ………253

6.5 Análisis estadístico de resultados de resistencia obtenida con velocidad de pulso y resistencia triaxial de muestras cilíndricas de 2”x4”-huso 8……254

6.6 Análisis estadístico de porcentajes residuales ……
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler Abad
Índice de tablas

Tabla 1 Materias primas y sus proporciones del Cemento Portland.................................13
Tabla 2 Porcentajes típicos en que intervienen los óxidos en el cemento portland13
Tabla 3 Límites permisibles para agua de mezcla y curado...14
Tabla 4 Límites para la curva granulométrica del agregado fino......................................16
Tabla 5 Requisitos granulométricos del agregado grueso..18
Tabla 6 Relación de peso específico y Resistencia a la compresión.................................21
Tabla 7 Capacidad de recipientes..31
Tabla 8 Tolerancia del tiempo permisible para rotura de concretos39
Tabla 9 Relación Longitud Diámetro y sus Factores de corrección41
Tabla 10 Tamaño de muestras para análisis granulométrico y de calidad..........................58
Tabla 11 Cantidad mínima de muestras para ensayo ...59
Tabla 12 Cantidad mínima de muestras para ensayo ...65
Tabla 13 Cantidad de muestras para ensayo ..67
Tabla 14 Cantidad mínima de muestras para ensayo ...69
Tabla 15 Capacidad de la medida ..72
Tabla 16 Carga abrasiva...74
Tabla 17 Granulometría de la muestra de agregado para ensayo74
Tabla 18 Compacidad del agregado global para testigos cilíndricos de 2”x4”......................91
Tabla 19 Asentamiento para diferentes estructuras..92
Tabla 20 Tabla de resistencia requerida...92
Tabla 21 Requerimientos aproximados de agua de mezclado y de contenido de aire para
diferentes valores de asentamiento y tamaños máximos de agregados..........................93
Tabla 22 Contenido de aire atrapado por m3 de concreto. ... 93
Tabla 23 Resistencia requerida y la relación agua-cemento .. 94
Tabla 24 Resistencia Requerida con desviación estándar... 103
Tabla 25 Diámetro de varilla y número de varillados por capa. .. 233
Tabla 26 Tolerancias para tiempo de rotura... 236
Índice de tablas elaboradas

Tabla elaborada 1 Análisis granulométrico del agregado grueso de Cunyac por tamizado-huso 67 (MC 4″x8″) ... 76
Tabla elaborada 2 Análisis granulométrico del agregado grueso corregido de Cunyac - huso 67 (MC 4″x8″) ... 77
Tabla elaborada 3 Análisis granulométrico del agregado fino de Cunyac por tamizado 78
Tabla elaborada 4 Análisis granulométrico del agregado fino de Cunyac por tamizado corregido .. 79
Tabla elaborada 5 Granulometría del agregado global (A.G. huso67 y A.F.) 80
Tabla elaborada 6 Cantidad de material fino que pasa por el tamiz N° 200 - Agregado grueso .. 81
Tabla elaborada 7 Cantidad de material fino que pasa por el tamiz N° 200 - Agregado fino .81
Tabla elaborada 8 Contenido de humedad del agregado grueso huso 67 81
Tabla elaborada 9 Contenido de humedad del agregado fino ... 82
Tabla elaborada 10 Ensayo de abrasión de los ángeles ... 82
Tabla elaborada 11 Gravedad específica y absorción del agregado grueso (MTC E 2016-2000) ... 82
Tabla elaborada 12 Gravedad específica y absorción del agregado fino (MTC E 2016-2000) ... 83
Tabla elaborada 13 Peso unitario suelto del agregado grueso-huso 67 83
Tabla elaborada 14 Peso unitario compactado del agregado grueso-huso 67 84
Tabla elaborada 15 Peso unitario suelto del agregado fino .. 84
Tabla elaborada 16 Peso unitario compactado del agregado fino 84
Tabla elaborada 17 Análisis granulométrico del agregado grueso de Cunyac por tamizado-huso 8 .. 85
Tabla elaborada 18 Análisis granulométrico del agregado global(A.G. huso 8 y A.F.)........ 86
Tabla elaborada 19 Cantidad de material fino que pasa por el tamiz N° 200 del agregado grueso-huso 8 .. 87
Tabla elaborada 20 Contenido de humedad del agregado grueso- huso 8 87
Tabla elaborada 21 Abrasión de los ángeles del agregado grueso - huso 8.................... 87
Tabla elaborada 22 Gravedad específica y absorción de agregado grueso-huso8 (MTC E 2016-200) ... 88
Tabla elaborada 23 Peso unitario suelto del agregado grueso-huso 8 88
Tabla elaborada 24 Peso unitario compactado de agregado grueso-huso 8.................. 88
Tabla elaborada 25 Combinación de diferentes porcentajes de agregado grueso y fino para la máxima compacidad por peso unitario ... 90
Tabla elaborada 26 Combinación de diferentes porcentajes de agregado grueso y fino para la máxima compacidad por peso unitario .. 171
Tabla elaborada 27 Resumen de dosificaciones para diseños de mezclas inicial con corrección por asentamiento y densidad de 140, 175, 210, 280 y 350 kg/cm2- huso 67 230
Tabla elaborada 28 Resumen de dosificaciones para diseños de mezclas inicial con corrección por asentamiento y densidad de 140, 175, 210, 280 y 350 kg/cm2- Huso 8 230
Tabla elaborada 29 Resumen de dosificaciones para diseño de mezclas final con corrección por asentamiento y densidad para concretos f'c= 140, 175, 210, 280 y 350 kg/cm2 230
Tabla elaborada 30 Resumen de dosificaciones de diseños de mezclas final con corrección por asentamiento y densidad para concretos f'c=140,175,210,280 y 250 kg/cm2 231
Tabla elaborada 31 Número de especímenes cilíndricos de 4”x8” sometidos a ensayo de velocidad de pulso ultrasónico y compresión simple .. 237

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler Abad
Tabla elaborada 32 Número de especímenes cilíndricos de 2”x4” sometidos a ensayo de pulso untrasónico y compresión simple .. 238
Tabla elaborada 33 Número de especímenes cilíndricos de 2”x4” sometidos a ensayo de pulso untrasónico y compresión triaxial .. 238
Tabla elaborada 34 Cuadro resumen de compresión y velocidad ultrasónica promedio de muestras cilíndricas de 4”x8”- huso 67 .. 239
Tabla elaborada 35 Cuadro resumen de densidad y velocidad de pulso ultrasónico para muestras cilíndricas de 4”x8” (huso 67) .. 241
Tabla elaborada 36 Cuadro Resumen Velocidad-densidad-huso 67 .. 241
Tabla elaborada 37 Resumen de Resultados de Velocidad y resistencia, f’c=140 kg/cm2 a 28 días -M.C. 2”x4”-huso 8 .. 242
Tabla elaborada 38 Resumen de Resultados de Velocidad y resistencia, f’c=175 kg/cm2 a 28 días -M.C. 2”x4”-huso 8 .. 242
Tabla elaborada 39 Resumen de Resultados de Velocidad y resistencia, f’c=210 kg/cm2 a 28 días -M.C. 2”x4”-huso 8 .. 243
Tabla elaborada 40 Resumen de Resultados de Velocidad y resistencia, f’c=280 kg/cm2 a 28 días-M.C. 2”x4”-huso8 .. 243
Tabla elaborada 41 Resumen de Resultados de Velocidad y resistencia, f’c=280 kg/cm2 a 28 días-M.C. 2”x4”-huso 8 .. 244
Tabla elaborada 42 Resumen de Resultados de Velocidad y Densidad a 28 días – M.C. 2”x4”-huso 67 .. 245
Tabla elaborada 43 Resultados de compresión triaxial a 28 días- M.C. de 2”x4”-huso 8 .. 245
Tabla elaborada 44 Coeficientes de determinación para diferentes modelos de regresión, Velocidad de pulso ultrasónico-resistencia a la compresión, M.C. 4”x8” .. 246
Tabla elaborada 45 Coeficientes de determinación para diferentes modelos de regresión, Velocidad-Densidad, M.C. 4”x8” .. 249
Tabla elaborada 46 Coeficientes de determinación para Resistencia versus Velocidad de pulso, Huso 8 .. 251
Tabla elaborada 47 Coeficientes de determinación para diferentes modelos de regresión, Velocidad-Densidad, M.C. 2”x4” .. 253
Tabla elaborada 48 Esfuerzos máximos triaxiales para muestras cilíndricas de 2”x4” – Huso 8 .. 254
Tabla elaborada 49 Porcentajes residuales para Ecuación cúbica Resistencia-Velocidad, grupo G4 – Huso 67 .. 255
Tabla elaborada 50 Porcentajes Residuales para Ecuación cúbica Resistencia-Velocidad, grupo G5-Huso 67 .. 256
Tabla elaborada 51 Porcentajes residuales para Ecuación cúbica Resistencia – Velocidad, grupo G7, huso 67 .. 257
Tabla elaborada 52 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D2 – Huso 67 .. 258
Tabla elaborada 54 Porcentajes residuales de la Ecuación cúbica Densidad- Velocidad, grupo D5- Huso 67 (con promedios únicos) .. 259
Tabla elaborada 55 Porcentajes residuales de la ecuación cúbica Densidad-Velocidad, grupo D5 – Huso 67 (con promedios parciales) .. 260
Tabla elaborada 56 Porcentajes residuales para ecuación exponencial Resistencia- Velocidad, grupo G4’- Huso 8 (resist. Diseño 140 y 175 kg/cm2) .. 261
Tabla elaborada 57 Porcentajes residuales para ecuación exponencial Resistencia Velocidad, grupo G4’ – Huso 8. (Resist. Diseño 210 y 280 kg/cm2) .. 262
Tabla elaborada 58 Porcentajes residuales para ecuación exponencial Resistencia – Velocidad, grupo G6′- Huso 8. (Resist. Diseño 140 y 175 kg/cm2) ...263
Tabla elaborada 59 Porcentajes Residuales para Ecuación exponencial Resistencia – Velocidad, grupo G6′ – Huso 8. (Resist. Diseño 210 y 280 kg/cm2) ..264
Tabla elaborada 60 Porcentajes residuales para ecuación exponencial Resistencia – Velocidad, grupo G6′ – Huso 8. (Resist. Diseño 350 kg/cm2) ..265
Tabla elaborada 61 Porcentajes residuales de la Ecuación cúbica Densidad- Velocidad, huso 8. (promedios únicos) ...266
Tabla elaborada 62 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D1′ – Huso 8. (Resist. Diseño 140 y 175 kg/cm2) ...266
Tabla elaborada 63 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D1′ – Huso 8. (Resist. Diseño 210 y 280 kg/cm2) ...267
Tabla elaborada 64 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D1′ – Huso 8. (Resist. Diseño 350 kg/cm2) ...268
Tabla elaborada 65 Resumen de porcentajes residuales para ecuación Resistencia- Velocidad - Huso 67 ..269
Tabla elaborada 66 Resumen de porcentajes residuales para ecuación Densidad – Velocidad, Huso 67 ..270
Tabla elaborada 67 Resumen de porcentajes residuales para ecuación Resistencia- Velocidad, huso 8 ..270
Tabla elaborada 68 Resumen de porcentajes residuales para ecuación Densidad – Velocidad, huso 8 ..270
Tabla elaborada 69 Datos de velocidad, densidad y resistencia promedio para husos 67 y 8 ..271
Tabla elaborada 70 Coeficientes de determinación para ecuación Resistencia – Velocidad para distintos modelos de regresión, huso 67 y huso 8...271
Tabla elaborada 71 Coeficientes de correlación para diferentes modelos de regresión de ecuación Densidad – Velocidad, huso 67 y huso 8...273
Tabla elaborada 72 Porcentajes Residuales para ecuación Densidad – Velocidad, grupo Huso 67 y Huso 8. ...273
Tabla elaborada 73 Costo Hora Hombre del Cusco (Vigente del 01 de Junio del 2018 al 31 de mayo del 2019)...275
Tabla elaborada 74 Costos reales de los materiales para elaboración de concreto275
Tabla elaborada 75 Análisis de Costos Unitarios de la Partida Zapatas de f’c= 140 kg/cm2 ..276
Tabla elaborada 76 Análisis de Costos Unitarios de la Partida Zapatas de f’c= 175 kg/cm2 ..276
Tabla elaborada 77 Análisis de Costos Unitarios de la Partida Columnas de f’c=210 kg/cm2 ..277
Tabla elaborada 78 Análisis de Costos Unitarios de la partida Columnas de f’c= 280 kg/cm2 ..277
Tabla elaborada 79 Análisis de Costos Unitarios de la Partida Placas f’c=350 kg/cm2.....278
Tabla elaborada 80 Cuadro resumen del Análisis de Costos Unitarios de las Partidas278
Tabla elaborada 81 Costos reales de los ensayos necesarios para la investigación........280
Tabla elaborada 82 Costo unitario de la partida Prueba de calidad del concreto (Compresión simple)..280
Tabla elaborada 83 Costo Unitario de la partida Prueba de Calidad del concreto no destructivo (Ensayo ultrasónico) ..281
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Tabla elaborada 84 Análisis de Costo Unitario de la partida prueba de calidad del concreto (compresión triaxial) ..281

Tabla elaborada 85 Resumen de los Costos Unitarios de partidas de calidad del concreto 282

Tabla elaborada 86 Diseño de mezclas final corregido para f’c=210 kg/cm²-huso 67320

Tabla elaborada 87 Cuadro resumen de diseño de mezclas inicial para f’c=280 kg/cm² - huso 67- Muestras cilíndricas de 4”x8”...322
Índice de gráficos

Gráfica 1 Curva granulométrica del agregado grueso de cunyac - huso 67.(mc 4”x8”)...........76
Gráfica 2 Curva granulométrica del agregado grueso de cunyac corregido-huso 67
(MC 4”x8”) ..77
Gráfica 3 Curva granulométrica del agregado fino de Cunyac..78
Gráfica 4 Curva granulométrica del agregado fino de Cunyac corregido79
Gráfica 5 Curva granulométrica del agregado global Cunyac (A.G. huso 67 y A.F.)...........80
Gráfica 6 Curva granulométrica del agregado grueso-huso 8 ...85
Gráfica 7 Curva granulométrica del agregado global (A.G. huso 8 y A.F.).........................86
Gráfica 8 Compacidad del agregado global para testigos cilíndricos de 2”x4”171
Gráfica 9 Cuadro comparativo de la evolución de la resistencia a compresión del concreto de resistencias de diseño f’c=140, 175, 210, 280 y 350 kg/cm2 a los 7, 14, 21 y 28 días de edad, huso 67 (M.C. 4”X8”)...240
Gráfica 10 Cuadro comparativo de la evolución de la Resistencia a la compresión versus velocidad de pulso ultrasónico para resistencias de diseño f´c=140, 175, 210, 280 y 350 kg/cm2 huso 67 (M.C. 4”x8”)...240
Gráfica 11 Curvas de tendencia para Resistencia versus Velocidad de pulso, grupo G4– Huso 67..247
Gráfica 12 Curvas de tendencia para Resistencia versus Velocidad de pulso, grupo G5- Huso 67..248
Gráfica 13 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G7- Huso 67..248
Gráfica 14 Curvas de tendencia para Densidad versus Velocidad de pulso, grupo D2, Huso 67
Gráfica 15 Curvas de tendencia para Densidad versus Velocidad de pulso, grupo D5, huso 67
Gráfica 16 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G4’- Huso 8
Gráfica 17 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G6’- Huso 8
Gráfica 18 Curvas de tendencia para Velocidad versus Densidad – Huso 8
Gráfica 19 Líneas de tendencia para ecuación Resistencia- Velocidad (huso 67 y huso8)
Gráfica 20 Porcentajes residuales de ecuación cúbica Resistencia-Velocidad, huso 67 y huso 8
Gráfica 21 Curvas de Tendencia para ecuación Densidad-Velocidad, huso 67 y huso 8
Gráfica 22 Costos por m3 de concreto para diferentes elementos
Gráfica 23 Comparación de costos unitarios de Compresión simple y ensayo ultrasónico.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler Abad
Índice de imágenes

Imagen 1 Disposición de los transductores ... 24
Imagen 2 Modo de ejecución con transductores ... 25
Imagen 3 Forma de onda del ultrasonido ... 25
Imagen 4 Ubicación de la Cantera de Cunyac ... 54
Imagen 5 Ensayo de peso unitario de agregado grueso ... 392
Imagen 6 Análisis granulométrico de agregado grueso .. 392
Imagen 7 Peso específico del agregado grueso .. 393
Imagen 8 Tamizado para corrección de agregado .. 393
Imagen 9 Vaciado de muestras cilíndricas de 4”x8” ... 394
Imagen 10 Medición del slump 3-4 pulg ... 394
Imagen 11 Curado de los muestras cilíndricas de 4”x8” ... 395
Imagen 12 Ensayo de pulso de velocidad de pulso ultrasónico a muestras cilíndricas de 4”x8” ... 395
Imagen 13 Transporte de muestras cilíndricas al laboratorio para su rotura 396
Imagen 14 Ensayo a compresión simple de muestras cilíndricas de 4”x8” 396
Imagen 15 Ensayo de pulso ultrasónico de muestras cilíndricas de 2”x4” 397
Imagen 16 Ensayo a compresión simple de muestras cilíndricas de 2”x4” 397
Imagen 17 Ensayo triaxial a muestras cilíndricas de 2”x4” 398
Imagen 18 Ensayo triaxial ... 398
Imagen 19 Desarrollo del ensayo triaxial a muestras cilíndricas de diámetro= 2” y altura=4”, con acompañamiento del docente asesor Ing. Guido Eulogio Holgado Escalante 399
RESUMEN

Esta tesis de investigación experimental consiste en hallar ecuaciones matemáticas que relacionen, por una parte, la velocidad ultrasónica con la resistencia a compresión del concreto y por otra, la velocidad ultrasónica con la densidad del concreto, con sus respectivos porcentajes de error, que validen la utilización del equipo de ultrasonido del laboratorio de concreto y mecánica de suelos de la Escuela Profesional de Ingeniería Civil, de la Universidad Nacional de San Antonio abad del Cusco, de tal manera que dichas ecuaciones puedan ser utilizadas en nuestro medio y con concretos elaborados con los agregados utilizados en la investigación, para la obtención de la resistencia a compresión y la densidad mediante la velocidad de pulso ultrasónico.

SUMMARY

This experimental research thesis consists in finding mathematical equations that relate, on the one hand, the ultrasonic velocity with the compressive strength of the concrete and on the other, the ultrasonic velocity with the density of the concrete, with their respective error percentages, which validate the use of the ultrasound equipment of the laboratory of concrete and soil mechanics of the Professional School of Civil Engineering, of the National University of San Antonio abad of Cusco, so that these equations can be used in our environment and with concretes elaborated with the aggregates used in research, to obtain compressive strength and density by means of ultrasonic pulse velocity.
1.1 Identificación del problema

El sector de la construcción es un eje fundamental para el desarrollo de nuestro país, tanto cultural como económico, ya que a través de la construcción se dota de infraestructura a los demás sectores, es por ello que se hace necesario tener un conocimiento más profundo de los diversos aspectos que implica la actividad de la construcción civil. En nuestro país lamentablemente no es un campo desarrollado ni muy bien investigado.

Uno de los aspectos importantes dentro de la construcción es la calidad del concreto hidráulico que se utiliza en los diferentes tipos de obras, dicha calidad depende directamente de los materiales utilizados y de los procesos constructivos seguidos en su elaboración, pero todo ello no tendría sentido si los equipos e instrumentos de medición de las propiedades del concreto, no reflejaran resultados confiables.

La importancia de la validación de los equipos de ingeniería es crucial en la toma de decisiones sobre la calidad del concreto, ya que de no ser válidos los datos, podría hacernos incurrir en error a la hora de aceptar o rechazar una obra.

Normalmente el ensayo utilizado para determinar la resistencia del concreto hidráulico es mediante el ensayo de resistencia a la compresión, más éste es un método que requiere de la elaboración de testigos y de la disposición de tiempo, además que es medido en laboratorio, lo que evidentemente es inevitable ya que dicho ensayo nos
muestra en forma directa la rotura del concreto. Por lo que la idea de esta investigación no es descartar el ensayo de resistencia a la compresión, sino mostrar una alternativa para la determinación de la densidad y la resistencia de concretos mediante la utilización del equipo de ultrasonido.

Particularmente, este estudio se enfoca en hacer una correlación entre los resultados obtenidos de resistencia a la compresión mediante el ensayo de compresión simple, los módulos de compresión, tensión y tracción obtenidos mediante el ensayo triaxial y las velocidades de ultrasonido en el concreto obtenidas a partir del tiempo de recorrido del sonido que nos da el equipo de ultrasonido en los concretos de $f'_c= 140, 175, 210, 280$ y 350 kg/cm^2. Todos estos ensayos se harán a diferentes edades del concreto, siendo éstas 7, 14, 21 y 28 días, con lo cual conseguiremos ecuaciones de tendencia que reflejen el comportamiento del concreto y de esta forma validar la utilización del equipo de ultrasonido en la obtención de resistencias y densidades en concretos.

La utilización del equipo de ultrasonido en la determinación de densidad y resistencia de concretos podría resultar ventajoso ya que podría ser utilizado en forma alternativa al ensayo de resistencia a la compresión, con lo cual se tendría un ahorro de tiempo significativo, además que se evita la destrucción del concreto y que básicamente es una prueba in situ.

Para la elaboración del concreto se utilizarán agregados de la cantera de Cunyac, ya que un punto de la investigación radica en el tipo de agregado a utilizar, debido a que la velocidad ultrasónica varía de acuerdo a la densidad del agregado, lo cual también permitirá conocer la calidad de los agregados de dicha cantera.
1.2 Formulación del problema

1.2.1 Problema General

- ¿Cómo determinar la densidad y resistencia de concretos hidráulicos con \(f'c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac utilizando el equipo de ultrasonido y triaxial?

1.2.2 Problema Específico.

- ¿Cómo plantear ecuaciones de tendencia que reflejen el comportamiento del concreto hidráulico de \(f'c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac, en la medición de su resistencia y densidad mediante ultrasonido?
- ¿Cómo caracterizar el comportamiento de los agregados de la cantera de Cunyac en la densidad y resistencia del concreto hidráulico con \(f'c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\).medidos con equipo de ultrasonido?
- ¿En qué medida incrementa la resistencia a la compresión del concreto de \(f'c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac, bajo confinamiento triaxial?

1.3 Justificación e importancia del problema

Las razones que fundamentan la realización del estudio son:

- Documentar y establecer los patrones de comportamiento del concreto hidráulico con el ensayo ultrasónico para determinar la densidad y la resistencia de dichos concretos con un grado de confiabilidad aceptable.
• Conocer las propiedades físicas y mecánicas de los agregados de la cantera de Cunyac y su influencia en la densidad y resistencia el concreto medidos con ultrasonido.

• Reducir los tiempos de evaluación de calidad de concretos sin necesidad de roturar dichos concretos.

• Contribuir a la conservación del medio ambiente evitando la generación de desperdicio de concreto hidráulico producto de la rotura de testigos.

• Simular las condiciones reales de un concreto que se encuentra bajo confinamiento.

1.4 Limitaciones y viabilidad de la investigación

Limitaciones:

• Los resultados de la investigación estarán limitados a la determinación de la densidad y resistencia de concretos de \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de Cunyac, utilizando el equipo de ultrasonido y mediante estos resultados plantear ecuaciones de tendencia que reflejen el comportamiento de dichos concretos.

Viabilidad:

• La escuela profesional de Ingeniería Civil cuenta con el equipo de ultrasonido y el equipo de triaxial de rocas.

• La determinación de la densidad y resistencia de concretos hidráulicos se basan en las normas:
1.5 Objetivos de la investigación

1.5.1 Objetivos generales

- Validar la utilización del equipo de ultrasonido y equipo triaxial en la determinación de la densidad y la resistencia de concretos hidráulicos de $f'c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac.

1.5.2 Objetivos específicos

- Plantear ecuaciones de tendencia que reflejen el comportamiento del concreto hidráulico con $f'c=140, 175, 210, 280$ y 350 kg/cm² en la medición de la densidad y resistencia a la compresión mediante ultrasonido

- Caracterizar el comportamiento de los agregados de la cantera de Cunyac en la densidad y resistencia del concreto hidráulico de $f'c=140, 175, 210, 280$ y 350 kg/cm², medidos con ultrasonido.
Establecer el incremento de la resistencia a la compresión del concreto hidráulico de $\gamma_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac, bajo confinamiento triaxial.

1.6 Formulación de hipótesis

Planteado las ecuaciones de tendencia que reflejen el comportamiento del concreto hidráulico con $\gamma_c= 140, 175, 210, 280$ y 350 kg/cm2, se verificará la validez del ensayo ultrasónico en la determinación de la densidad y resistencia de concreto hidráulico a los 7, 14, 21 y 28 días de curado con un grado de confiabilidad aceptable.

La resistencia a la compresión del concreto de $\gamma_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac, incrementará bajo condiciones de confinamiento.
2. CAPÍTULO II
MARCO TEÓRICO

2.1 Antecedentes del estudio

Tesis: “Estudio experimental para determinar patrones de correlación entre la resistencia a compresión y la velocidad de pulso ultrasónico en concreto simple”, presentado por los bachilleres Gabriela Valencia Elguera y Miguel Ángel Ibarra Navarro, para optar al título de Ingeniero Civil en la Pontificia Universidad Católica del Perú.

Cuyas conclusiones son:

- Se comprueba que la influencia del TMN del agregado grueso en la Velocidad de Pulso Ultrasónico se manifiesta directamente proporcional al tamaño del agregado, es decir, para un mismo valor de Resistencia a Compresión se tiene mayor Velocidad de Pulso Ultrasónico en un concreto con Huso 57 (TMN 1”) respecto de uno con Huso 67 (TMN 3/4”); lo cual confirma una de las hipótesis de la presente investigación.

- Se comprueba que la influencia de la relación Agua/Cemento en la Velocidad de Pulso Ultrasónico es inversamente proporcional, es decir para una misma edad se tiene mayor Velocidad de Pulso Ultrasónico en un concreto con A/C = 0.5 respecto de uno con A/C = 0.9; lo cual confirma otra de las hipótesis de la presente investigación.

- Entre los modelos de aproximación estadística estudiados, el de mayor éxito, para representar los patrones de comportamiento de concretos con características similares a los del estudio, resultó ser el modelo de aproximación Cúbica. Su efectividad, medida por el error en la estimación de la Resistencia a Compresión (Porcentaje
Residual) en base a la medición de la Velocidad de Pulso Ultrasónico, se detalla como sigue:

➢ En base a datos obtenidos en Laboratorio (condiciones controladas), el error resulta alrededor de +/-14%, al trabajar con concretos elaborados con el TMN 1” de agregado grueso, equivalente al Huso 57, aplicando la siguiente expresión:

\[R=2.782 \times 10^2 + 6.347 \times 10^{-1}(V-4488.33) + 1.132 \times 10^{-2}(V-4488.33)^2 - 1.468 \times 10^{-6}(V-4488.33)^3 \]

➢ En base a datos obtenidos en Laboratorio (condiciones controladas), el error resulta alrededor de +/-21%, al trabajar con concretos elaborados con el TMN 3/4” de agregado grueso, equivalente al Huso 67, aplicando la siguiente expresión:

\[R=2.407 \times 10^2 + 5.129 \times 10^{-1}(V-4223.33) + 4.115 \times 10^{-2}(V-4223.33)^2 - 4.567 \times 10^{-6}(V-4223.33)^3 \]

Tesis: “Estudio Experimental del comportamiento del hormigón confinado sometido a compresión”, presentado por Carlos Aire Untiveros para optar al grado de Doctor en la Universidad Politécnica de Catalunya, Barcelona – España, 2002

Cuyas conclusiones son:

- Se ha comprobado que el hormigón de baja resistencia es más dúctil bajo confinamiento, en comparación con el hormigón de alta resistencia. Y en general, el confinamiento aumenta la resistencia a la compresión del hormigón, así como su capacidad de deformación, mejorando su ductilidad. El efecto de la presión de confinamiento, en términos de incremento de resistencia y deformación, es mayor en el hormigón de baja resistencia.
- En el hormigón de baja resistencia H30, la resistencia del hormigón confinado se incrementó 4 veces la resistencia del hormigón sin confinar para una presión de confinamiento de 35 MPa, equivalente a un nivel de confinamiento de 1.0. En el hormigón de alta resistencia H70, el incremento fue de 3 veces la resistencia del hormigón sin confinar para 50 MPa de presión de confinamiento, equivalente a un nivel de confinamiento de 0.70, mientras que en el caso del hormigón de alta resistencia HE70 fue de 3.6 veces la resistencia del hormigón sin confinar para una presión de confinamiento de 50 MPa, equivalente a un nivel de confinamiento de 0.85.

- Se pueden alcanzar muy altas resistencias, cuando un hormigón es confinado, y mantener aún un nivel importante de deformación bajo carga. En el caso del hormigón de baja resistencia se alcanzó una resistencia máxima del orden de 150 MPa; y para los hormigones de alta resistencia, del orden de 200 MPa.

- La deformación máxima, correspondiente a la tensión máxima, registrada en los ensayos confinados, fue muy superior a aquella del hormigón sin confinar. En el caso del hormigón de baja resistencia H30, la deformación máxima registrada fue 18 veces la del hormigón sin confinar, para un nivel de confinamiento de 1.0. En los casos de los hormigones de alta resistencia H70 y HE70, fueron de casi 10 y 9 veces la deformación máxima del hormigón sin confinar, para niveles de confinamiento de 0.70 y 0.85, respectivamente.

- La ductilidad de los hormigones confinados calculada mediante valores que relacionan áreas bajo la curva tensión-deformación axial se incrementa con el incremento de la presión hidrostática de confinamiento.
Tesis: “Influencia del agregado en la resistencia a la compresión del concreto”,
presentado por el Br. Aguirre Carrasco Enrique y el Br. Dueñas Dueñas Henry Augusto para optar al título profesional de ingeniero civil en la Universidad Nacional de San Antonio Abad del Cusco. Cusco 2001

Cuyas conclusiones son:

- La resistencia a compresión del concreto encontrada en cada una de las canteras en estudio, presenta un crecimiento ascendente, demostrando que las cuatro canteras son buenas para ser utilizadas como agregados para concretos, pero existen diferencias en la evolución para alcanzar la resistencia deseada, en los primeros 7 días, los especímenes alcanzan resistencias en el orden del 71.16%, el valor más alto el cual corresponde a la cantera de Zurite, hasta el el orden del 66.68%, el más bajo valor correspondiente a la cantera de Pisaq, esta diferencia va creciendo a medida que madura el concreto, parte de un 4.48% a los 7 días para luego llegar a un 8.56% de diferencia a los 60 días, esto refleja que los agregados de superficie rugosa tienen mejor comportamiento debido a su mejor adherencia con la pasta, esta conclusión se basa a los promedios de los valores de las pruebas realizadas en laboratorio de cada una de las canteras.

Tesis: “Estudio comparativo de la resistencia de los concretos empleando los cementos comerciales en Cusco”, presentado por el Br. Fernández Montero Kevin V. y el Br. Velarde Acarapi, Gustavo para optar al título profesional de Ingeniero Civil.

Cuyas conclusiones son:

- Diseño de mezclas con el método ACI – 211 con piedra chancada
Se registran en los resúmenes por tanda dadas en el acápate 4.1.12 que el peso específico del cemento influye en la cantidad del agregado fino.

El diseño de mezclas aplicable a los cementos tipo I y tipo HE, mientras que para el cemento tipo IP se requiere hacer un reajuste para poder llegar a la resistencia de diseño.

La corrección por absorción y humedad influyen de manera considerable en la cantidad de agua final.

- Fraguado y curado

El concreto fabricado con cemento tipo IP tiene mayor exudación, está influenciada por la finura del cemento.

2.1 Bases teóricas científicas

2.1.1 El concreto

El concreto viene a ser un material indispensable en la construcción moderna, un material que es ampliamente estudiado en el mundo y al cual todavía no se le ha encontrado un sustituto que pueda superar las bondades que ofrece éste, por ello se define:

“El concreto es un material de construcción inventado y fabricado por el hombre a partir de una combinación adecuadamente dosificada y convenientemente mezclada de cemento portland, agua y agregado fino y grueso; mezcla a la que se podrían añadir aditivos, adiciones y fibra.” (Rivva López, 2012, pág. 10).
2.1.1.1 Componentes del concreto

De la misma definición de concreto se desprende los componentes del dicho material, puesto que sin ellos no sería concebido como tal.

“La tecnología del Concreto moderna define para este material cuatro componentes: cemento, agua, agregados y aditivos como elementos activos y el aire como elemento pasivo”. (Pasquel Carbajal, 1998, pág. 13).

En la actualidad se considera a los aditivos como un componente adicional que está demostrando sus ventajas a nivel de economía, tiempo y rendimientos ya que mejora algunas propiedades del concreto como son: la trabajabilidad, la resistencia y la durabilidad.

1.1.1.2.1 El cemento

“Es un aglomerante hidrófilo, resultante de la calcinación de rocas calizas, areniscas y arcillas, de manera de obtener un polvo muy fino que en presencia de agua endurece adquiriendo propiedades resistentes y adherentes” (Pasquel Carbajal, 1998, pág. 17)

“El cemento es el componente más importante y activo del concreto, por lo que su adecuada selección y empleo son fundamentales para obtener, en una forma económica, las propiedades deseadas en una mezcla dada. Pertenece al grupo de los denominados aglomerados hidráulicos que endurecen mezclados con el agua y resisten a la acción de esta.” (Rivva López, 2012, pág. 11).

“Material pulverizado que por adición de una cantidad conveniente de agua forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire,
quedan excluidas las cales hidráulicas, las cales aéreas y yesos.” (RNE-NORMA E-060, 2004)

Las materias primas para la fabricación del cemento y las proporciones generales, son:

<table>
<thead>
<tr>
<th>Componente químico</th>
<th>Procedencia usual</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% Óxido de calcio (CaO)</td>
<td>Rocas calizas</td>
</tr>
<tr>
<td>95% Óxido de sílice (SiO₂)</td>
<td>Areniscas</td>
</tr>
<tr>
<td>95% Óxido de aluminio (Al₂O₃)</td>
<td>Arcillas</td>
</tr>
<tr>
<td>95% Óxido de fierro (Fe₂O₃)</td>
<td>Arcillas, mineral de hierro, pirita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5% Óxidos de magnesio, sodio</th>
<th>Minerales varios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potasio, titanio, azufre</td>
<td></td>
</tr>
<tr>
<td>Fósforo y manganeso</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Tópicos de Tecnología del Concreto, Enrique Pasquel Carbajal

A continuación, se detallan los porcentajes típicos de los óxidos en el cemento portland.

<table>
<thead>
<tr>
<th>Óxido componente</th>
<th>Porcentaje típico</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>61% - 67%</td>
<td>C</td>
</tr>
<tr>
<td>SiO₂</td>
<td>20% - 27%</td>
<td>S</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4% - 7%</td>
<td>A</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2% - 4%</td>
<td>F</td>
</tr>
<tr>
<td>SO₃</td>
<td>1% - 3%</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1% - 5%</td>
<td></td>
</tr>
<tr>
<td>K₂O y Na₂O</td>
<td>0.25% - 1.5%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Tópicos de Tecnología del Concreto, Enrique Pasquel Carbajal

El cemento, que normalmente se utiliza en nuestro país, es el Portland normal, que la NTP lo considera como los cementos tipo I, II y V y el cemento compuesto tipo IP. El tipo IP, es el que tiene mayor preferencia en la localidad del Cusco.

El cemento tipo IP se le ha añadido puzolana en un porcentaje que oscila entre el 15% y 40% del peso total (Pasquel Carbajal, 1998, pág. 38).
1.1.1.2 El agua

“El agua es el elemento indispensable para la hidratación del cemento y el desarrollo de sus propiedades, por lo tanto, este componente debe cumplir ciertos requisitos para llevar a cabo su función en la combinación química, sin ocasionar problemas colaterales si tiene ciertas sustancias que pueden dañar al concreto.” (Pasquet Carbajal, 1998, pág. 17).

El agua tiene tres funciones principales:

A. Hidratar al cemento, de tal forma que produzca su reacción química.
B. Facilitar la trabajabilidad de la mezcla
C. Generar vacíos, en porcentaje suficiente, de tal forma que se produzca la hidratación del cemento.

El agua de mezcla debe estar limpia y libre de impurezas, de tal forma que no produzca perjuicios en el concreto, estas impurezas pueden ser: aceites, ácidos, álcalis o materias orgánicas, su PH no es inferior a 7.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Límite permisible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólidos en suspensión</td>
<td>5000 p.p.m. máximo</td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>3 p.p.m. máximo</td>
</tr>
<tr>
<td>Alcalinidad (NaHCO3)</td>
<td>1000 p.p.m. máximo</td>
</tr>
<tr>
<td>Sulfato (Ión SO4)</td>
<td>600 p.p.m. máximo</td>
</tr>
<tr>
<td>Cloruros (Ión Cl)</td>
<td>1000 p.p.m. máximo</td>
</tr>
<tr>
<td>Ph</td>
<td>5 a 8</td>
</tr>
</tbody>
</table>

Fuente: Según la norma ITINTEC 339.088

1.1.1.2.3 El agregado

“Se definen los agregados como los elementos inertes del concreto que son aglomerados por la pasta de cemento para formar la estructura resistente. Ocupan
alrededor de las $\frac{3}{4}$ partes del volumen total, luego la calidad de estos tiene una importancia primordial en el producto final.” (Pasquel Carbajal, 1998, pág. 69).

A Clasificación de los agregados

- **Agregados naturales**

 Son aquellos agregados que están formados gracias a los procesos geológicos naturales, y a los que han sido sometidos durante miles de años. Estos agregados son extraídos, seleccionados y procesados para su utilización en la producción del concreto (Pasquel Carbajal, 1998).

- **Agregados artificiales**

 Son aquellos agregados que están formados mediante un proceso de transformación de materiales naturales, los cuales proveen productos secundarios que con un tratamiento adicional se pueden emplear en la producción de concreto (Pasquel Carbajal, 1998).

 Algunos agregados que pertenecen a esta clasificación, son la escoria de altos hornos, la arcilla horneada, el concreto reciclado, la microsílice, etc (Pasquel Carbajal, 1998).

B Por su gradación

- **Agregado fino**

 “Se considera como agregado fino a aquel comprendido entre las mallas N° 4 y N° 200 y proviene de arenas naturales o de la trituración de las rocas, gravas, escorias siderúrgicas u otras fuentes aprobadas por la supervisión. El porcentaje de arena de trituración no podrá constituir más del 30% del agregado fino. El agregado
fino no deberá presentar reactividad potencial (álcali-sílice y/o álcari-carbonato), con los hidróxidos alcalinos de la pasta” (Rivva López, 2012, pág. 12).

La siguiente tabla, muestra la curva granulométrica para agregado fino.

Tabla 4 Límites para la curva granulométrica del agregado fino

<table>
<thead>
<tr>
<th>Tamiz</th>
<th>Porcentaje que pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 ”</td>
<td>100</td>
</tr>
<tr>
<td>N° 4</td>
<td>95 – 100</td>
</tr>
<tr>
<td>N° 8</td>
<td>80 – 100</td>
</tr>
<tr>
<td>N° 16</td>
<td>50 – 85</td>
</tr>
<tr>
<td>N° 30</td>
<td>25 – 60</td>
</tr>
<tr>
<td>N° 50</td>
<td>05 – 30</td>
</tr>
<tr>
<td>N° 100</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>

Fuente: NTP 400.037

- **Agregado grueso**

 “Como agregado grueso se considera a aquel material granular cuyas fracciones están comprendidas entre el tamiz de 2” y el tamiz N° 4 y proviene de gravas naturales o de la trituración de rocas, gravas o fuentes aprobadas por la supervisión.” (Rivva López, 2012, pág. 12).

 Se considera que el agregado grueso debe ser limpio, de caras angulares o semiangulares, duro compacto y resistente, de textura preferentemente rugosa, debiendo estar libre de partículas escamosas, materia orgánica u otras sustancias dañinas (Rivva López, 2012).

 Según Rivva López, en su libro Ataques al Concreto, El tamaño nominal del agregado grueso no deberá ser mayor, de lo que a continuación se indica:

 ✓ Un quinto de la menor dimensión entre caras de encofrados; o

 ✓ Un tercio del peralte de las losas; o
✓ Tres cuartos del espacio libre mínimo entre barras individuales de refuerzo, paquetes de barras, tendones o ductos de refuerzo
Tabla 5 Requisitos granulométricos del agregado grueso

<table>
<thead>
<tr>
<th>HUSO</th>
<th>TMN²</th>
<th>REQUISITOS GRANULOMÉTRICOS DEL AGREGADO GRUESO</th>
<th>PORCENTAJE QUE PASA POR LOS TAMICES NORMALIZADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>pulgadas</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>90 a 37.5</td>
<td>3 1/2 a 1 1/2</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>63 a 37.5</td>
<td>2 3/4 a 1 1/2</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>50 a 25.0</td>
<td>2 a 1</td>
<td>---</td>
</tr>
<tr>
<td>357</td>
<td>50 a 4.75</td>
<td>2 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>37.5 a 19.0</td>
<td>1 1/2 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>457</td>
<td>37.5 a 4.75</td>
<td>1 1/2 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>25.0 a 9.5</td>
<td>1 a 1/2</td>
<td>---</td>
</tr>
<tr>
<td>56</td>
<td>25.0 a 9.5</td>
<td>1 a 3/8</td>
<td>---</td>
</tr>
<tr>
<td>57</td>
<td>25.0 a 4.75</td>
<td>1 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>19.0 a 9.5</td>
<td>1/2 a 3/8</td>
<td>---</td>
</tr>
<tr>
<td>67</td>
<td>19.0 a 4.75</td>
<td>1/2 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>12.5 a 4.75</td>
<td>1/2 a N⁴</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>9.5 a 2.36</td>
<td>3/8 a N⁸</td>
<td>---</td>
</tr>
<tr>
<td>89</td>
<td>9.5 a 1.18</td>
<td>3/8 a N¹⁶</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>4.75 a 1.18</td>
<td>N⁴ a N¹⁶</td>
<td>---</td>
</tr>
</tbody>
</table>

Fuente: Norma ASTM C33
C Por su densidad

“Entendiendo densidad como la gravedad específica, es decir el peso entre el volumen de sólidos referido a la densidad del agua, se acostumbra clasificarlos en normales con Ge= 2.5 a 2.75, ligeros con Ge < 2.5 y pesados con Ge > 2.75, cada uno de ellos marca comportamientos diversos en relación al concreto, habiéndose establecido técnicas y métodos de diseño y uso para cada caso” (Pasquel Carbajal, 1998, pág. 72).

2.1.1.2 Propiedades del concreto

2.1.1.2.1 La Trabajabilidad

“Es la facilidad que presenta el concreto fresco para ser mezclado, transportado, colocado, compactado y acabado sin segregación alguna.” (Abanto Castillo, 2017, pág. 49).

Según Abanto Castillo, en su libro Tecnología del Concreto, La Trabajabilidad depende de los siguientes factores

- Contenido de agua en la mezcla
- Proporciones de los agregados
- Cantidad de cemento, la Trabajabilidad del concreto aumenta con el contenido del cemento y con la fineza de éste.
- Aditivos.
- Forma y tamaño de los encofrados y el método de compactación.
2.1.1.2.2 La consistencia

“Está definida por el grado de humedecimiento de la mezcla, depende principalmente de la cantidad de agua usada.” (Abanto Castillo, 2017, pág. 50).

La trabajabilidad se mide con el ensayo de consistencia o “Slump test”, en la cual hay que vaciar una muestra de concreto en un molde troncocónico estandarizado y medir el revenimiento después de sacar el molde. Dicho molde, tiene como características principales, sus bases paralelas con diámetros 4 y 8 pulgadas y una altura de 12 pulgadas, la cual se trabaja para el compactado del concreto, con una barra de acero liso de 5/8” y de 24 pulgadas de longitud.

A. Según Abanto Castillo, el procedimiento de ensayo de consistencia

- El molde se coloca sobre una superficie plana y humedecida, manteniéndose inmóvil pisando las aletas. Seguidamente se vierte una capa de concreto hasta un tercio de volumen. Se apisona con la varilla, aplicando 25 golpes, distribuidos uniformemente.
- En seguida se colocan otras dos capas con el mismo procedimiento a un tercio del volumen y consolidando, de manera que la barra penetre en la inmediata inferior.
- La tercera capa se deberá llenar en exceso, para luego enrasar al término de la consolidación. Lleno y enrasado el molde, se levanta lenta y cuidadosamente en dirección vertical.
- El concreto moldeado fresco se asentará, la diferencia entre la altura edl molde y a altura de la mezcla fresca se denomina Slump.
• Se estima que desde el inicio de la operación hasta el término no deben transcurrir más de 2 minutos de los cuales el proceso de desmolde no toma más de 5 segundos.

2.1.1.2.3 La resistencia

“Capacidad de asimilar la aplicación de fuerzas de compresión, corte, tracción y flexión. Normalmente se mide por medio de la resistencia en compresión, para lo cual se necesita ensayar testigos cilíndricos o cúbicos de tamaño adecuado al equipo de ensayo, que se perforan o cortan de una muestra lo suficientemente grande.” (Pasquel Carbajal, 1998, pág. 78).

La resistencia a compresión del concreto es inversamente proporcional a la porosidad y la absorción y directamente proporcional al peso específico.

El peso específico de los agregados determina en gran medida la resistencia del concreto.

Tabla 6 Relación de peso específico y Resistencia a la compresión

<table>
<thead>
<tr>
<th>Peso específico de agregado</th>
<th>Resistencia del concreto</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 – 2.7 gr/cm³</td>
<td>750 – 1200 kg/cm²</td>
</tr>
<tr>
<td>1.6 – 2.5 gr/cm³</td>
<td>200 – 750 kg/cm²</td>
</tr>
</tbody>
</table>

Fuente: Tópicos de Tecnología del Concreto, Enrique Pasquel Carbajal

2.1.1.2.4 La permeabilidad y hermeticidad

“La hermeticidad se define como la capacidad de concreto de retener el agua sin escapes visibles y la permeabilidad se refiere a la capacidad del concreto de resistir la penetración de agua u otras sustancias (líquido, gas, iones, etc). Ésta está asociada a su vulnerabilidad al ataque de muchas sustancias que lo pueden deteriorar.” (Abanto Castillo, 2017, pág. 49).
2.1.1.2.5 La Durabilidad

“La durabilidad es la capacidad que tiene el concreto para resistir en forma satisfactoria las condiciones de servicio a las que estará expuesto, una vez colocado en la estructura, tales como clima, ataques químicos o cualquier otro proceso” (Abanto Castillo, 2017, pág. 48).

Según Abanto Castillo, los factores que influyen en la durabilidad del concreto, son:

- Las condiciones ambientales: aire, agua, suelos, gases, congelación, humedecimiento y secado, sustancias disueltas en el agua o sustancias dañinas en contacto directo.
- La calidad de los materiales utilizados en la elaboración (cemento, agregados, agua)
- Condiciones de servicio.
- Una vez que una estructura de concreto entra en funcionamiento, paralelamente debe iniciarse la etapa de mantenimiento.

2.1.2 Ultrasonido

2.1.2.1 Definición

El ultrasonido son aquellas ondas acústicas en las que su frecuencia está por encima de lo que el oído humano puede oir, vale decir, frecuencias por encima de los 20 000 Hz.

“La naturaleza ultrasónica es debido a que tienen frecuencias altas y longitud de onda cortas, apropiadas para el ensayo de los materiales, para inspeccionar el interior de las piezas que ofrecen una trayectoria continua a la propagación de las ondas sonoras. Para generar onda ultrasónica, se utiliza un transductor piezoeléctrico que convierte las señales eléctricas en señales sonoras, y viceversa. El transductor consiste en un cristal (de cuarzo) piezoeléctrico insertado en un alojamiento a prueba de agua, que facilita su conexión eléctrica a un generador o transmisor-receptor de pulsos (modo pulso/eco); en el modo
de transmisión, se aplica al cristal un pulso de energía eléctrica de corta duración y alto voltaje, provocando que cambie rápidamente su configuración geométrica, deformándose, y emita un pulso de energía acústica (onda) de alta frecuencia” (Santos De La Cruz, Cancino Vera, Yenque Dedos, Ramirez Morales, & Palomino Pérez, 2005, pág. 26).

Se conoce que algunos insectos y mamíferos, tales como los delfines y los murciélagos son capaces de producir y distinguir los ultrasonidos, ya que lo utilizan de forma parecida a los radares para su orientación, emitiendo ondas tan altas que “rebotan” fácilmente en todos los objetos alrededor de ellos, lo que les permite crear una imagen de lo que está a su alrededor para poder orientarse fácilmente.

2.1.2.2 Historia

El ultrasonido fue descubierto por el biólogo italiano Lazzaro Spallanzani en el siglo XVIII, quien descubre que los murciélagos utilizaban este tipo de ondas sonoras para su orientación y para atrapar a sus presas.

En el siglo XIX, El físico y matemático austriaco Christian Andreas Doppler, realiza experimentos novedosos, llamándolo el "Efecto Doppler" el cual consistía en observar ciertas propiedades de la luz en movimiento, que eran aplicables a las ondas del Ultrasonido; se desarrolla el silbato de Galton y del diapasón, que eran capaces de producir este tipo de sonidos.

En el siglo XX el físico francés P. Langevin y el Dr. C. Chilowsky lograron desarrollar el primer generador ultrasónico por medio de un piezoeléctrico; el científico ruso S. Y. Sokolov propuso el uso del ultrasonido como mecanismo válido para la inspección industrial, particularmente para la búsqueda de defectos.
El ultrasonido en el concreto fue desarrollado por primera vez en Canadá por Leslie y Cheesman entre 1945 y 1949, así como también en Gran Bretaña por Jones y Gatfield, de forma muy independiente.

2.1.2.3 Medida de la velocidad de pulso

La velocidad de los pulsos de ultrasonido que viajan en un material sólido depende de la Densidad y las características elásticas del material. La calidad de algunos Materiales se relaciona a veces con su tisura elástica, entonces la medida de la velocidad del pulso de ultrasonido en tales materiales a menudo indicará su calidad, así como determinará sus características elásticas.

2.1.2.4 Disposición de los transductores

Se usan tres disposiciones de transductores, estos son de forma directa, semidirecta e indirecta o superficial.

Imagen 1 Disposición de los transductores

Fuente: Manual de Operación de Pundit Lab, Instrumento ultrasónico

Es conveniente usar la forma directa, ya que, esta disposición de los transductores garantiza la máxima transmisión de señales entre los transductores. La disposición semidirecta es menos sensible que la directa pero más sensible que la disposición indirecta. La longitud de recorrido es la distancia entre los centros de los transductores.

El procedimiento de medición estándar será.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac

Esquema 1 Procedimiento de medición estándar

Imagen 2 Modo de ejecución con transductores

Imagen 3 Forma de onda del ultrasonido

Fuente: Manual de operaciones de Pundit Lab, Instrumento Ultrasónico.
2.1.3 Tensión triaxial

Este ensayo representa las condiciones del especímen insitu, sometidas a esfuerzos confinantes, mediante la aplicación de presión hidráulica uniforme alrededor de la probeta. Permite determinar la envolvente o línea de resistencia del material ensayado, a partir de la que se obtienen los valores de sus parámetros resistentes cohesión C y fricción φ.

“En los ensayos triaxiales, la aplicación de la presión de confinamiento a la probeta implica requisitos rigurosos sobre la capacidad de carga y rigidez de la máquina de ensayo, aún para hormigones con resistencias dentro del rango normal. Estos requisitos llegan a ser más pronunciados con resistencias a compresión más elevadas. Por esta razón, la mayoría del trabajo experimental se relaciona con hormigón de resistencia normal.” (Aire Untiveros, Estudio Experimental del Comportamiento del Hormigón sometido a Compresión, 2002).

Diversos estudios de compresión triaxial a especímenes de concreto han sido realizados y la mayoría de éstos, utilizando probetas cúbicas de dimensiones inferiores a 10 cm y con resistencias a compresión simple que oscilan entre 50 a 300 kg/cm2 con presiones de confinamiento bajos.

2.1.4 Ensayos en el concreto

2.1.4.1 Ensayos en el concreto en estado fresco.

1.4.1.2.1 Ensayo para medición de asentamiento ASTM C143

A. Definición

Este método de ensayo determina el revenimiento de un concreto de cemento hidráulico plástico, en la que una muestra de concreto recién mezclado se coloca y compacta mediante varillado en un molde conformado como un tronco de cono. El
molde se levanta, y se permite que el concreto descienda. La distancia vertical entre la posición original y la posición desplazada del centro de la cara superior del concreto se mide y se informa como el asentamiento del concreto.

Este método de ensayo se considera aplicable a concreto plástico que contiene agregado grueso con tamaño hasta de 1 ½ pulg. (37.5 mm).

Concretos que tienen revenimientos menores de ½ pulg. (13 mm) pueden no ser adecuadamente plásticos y concretos que tienen revenimientos mayores de 9 pulg. (230 mm) puede no ser adecuadamente cohesivo para que este ensayo tenga significado.

B. Aparatos

- Moldes

El espécimen de ensayo será formado en un molde metálico, tendrá la forma en la superficie lateral de un cono truncado con una base de 8 pulg. (203 mm) de diámetro, en la parte superior 4 pulg. (102 mm) de diámetro y una altura de 12 pulg. (305 mm). La base y la parte superior serán abiertas y paralelas una respecto a la otra y en ángulo recto con el eje del cono. El molde estará provisto con piezas para el pie y agarraderos y provisto de sujetadores convenientemente dispuestos para que pueda quitarse completamente sin mover el molde.

- Apisonador

El apisonador será una varilla de acero recta y lisa de 5/8 pulg. (16 mm) de diámetro y aproximadamente 24 pulg. (600 mm) de longitud, teniendo un extremo redondeado de tipo semiesférico con diámetro de 5/8 pulg.

C. Muestra

La muestra de concreto de la cual se harán los especímenes, será representativa de la revolta.
D. Procedimiento

- Humedecer el molde y colocarlo sobre una superficie plana, húmeda y no absorbente (rígida). Será sujetado por el operador firmemente en su lugar durante el llenado, colocándose sobre las dos piezas para pie.

- Se llenará inmediatamente el molde en tres capas, cada una de aproximadamente un tercio del volumen del molde. Nota 2 – Un tercio del volumen del molde se llena a una altura de 2 5/8 pulg. (67 mm); dos tercios del volumen se llenan a una altura de 6 1/8 pulg. (155 mm).

- Apisone cada capa con 25 golpes de la varilla. Distribuya uniformemente los golpes sobre la sección de cada capa.

- Para la capa inferior será necesario inclinar la varilla ligeramente y hacer aproximadamente la mitad de los golpes cerca del perímetro y luego avanzar espiralmente con golpes verticales hacia el centro. Apisone la capa inferior en todo su espesor.

- Apisone la segunda capa y la capa superior, cada una a través de su espesor, de tal manera que los golpes penetren ligeramente en la capa inferior. Al llenar y apisonar la capa superior, acumular el concreto sobre el molde antes de iniciar el apisonado. Si de la operación de apisonado, el concreto se asienta bajo el borde superior del molde, añadir concreto para mantener un exceso sobre ese borde todo el tiempo.

- Después que la última capa ha sido apisonada, alisar la superficie de concreto por medio de un movimiento de rodar la varilla.

- Inmediatamente remover el molde del concreto, levantándolo cuidadosamente en dirección vertical. Levante el molde una distancia de 12 pulg. (300 mm) en
5 + - 2 segundos mediante un movimiento uniforme hacia arriba, sin movimiento lateral o torsional.

- El ensayo completo desde el inicio del llenado hasta la remoción del molde, deberá hacerse sin interrupción y terminarse en un lapso de tiempo de 2 1/2.
- Medir inmediatamente el revenimiento, determinando la diferencia vertical entre el borde del molde y el centro original desplazado de la cara superior del espécimen.

D. Informe

Registre el revenimiento en términos de pulgadas (milímetros) con una precisión de ¼ pulg. (6 mm) de hundimiento del espécimen durante el ensayo como sigue:

Revenimiento = 12 pulgadas de altura después del asentamiento

E. Desviación

Desviación – Este método de ensayo no tiene desviación puesto que el revenimiento es definido únicamente en términos de este método de ensayo.

1.4.1.2.2 Método de Ensayo Estándar para Densidad (Peso Unitario), Volumen y Contenido de Aire (Método Gravimétrico) en una Mezcla de Concreto ASTM C 138 – 01 AASHTO No.: T 121

A. Definición

Este método de ensayo cubre la determinación de la densidad en mezclas de concreto fresco y proporciona fórmulas para calcular el volumen producido, contenido de cemento y contenido de aire del concreto. El peso unitario es la masa por unidad de volumen.

Es calculado con la siguiente ecuación: \(T = \frac{M}{V} \)
Donde:

T = Densidad teórica del concreto con base a aire libre

M = Masa total de todo el material de la revoltura, lb o kg

V = Volumen absoluto total de los ingredientes componentes de la revoltura

B. Aparatos

- **Balanza**

 Una balanza o báscula con precisión de 0.1 lb (45 g) o dentro del 0.3% de la carga de ensayo, la que sea mayor.

- **Varilla de Apisonado**

 Una varilla de acero redonda, con un diámetro de 5/8” (16 mm) y aproximadamente 24” (600 mm) de longitud, con uno de los extremos redondeados en forma de media esfera.

- **Vibrador interno**

 Los vibradores internos pueden ser de flecha rígida o flexible, de preferencia accionados por motor eléctrico. La frecuencia de vibración debe ser de 7000 vibraciones por minuto o mayor cuando este en uso. El diámetro externo o la dimensión lateral del elemento que vibra, será de al menos 0.75” (19 mm) y no mayor que 1.50” (38 mm). La longitud del vástago será al menos 24” (600 mm).

- **Recipiente para medir**

 Un recipiente cilíndrico de acero u otro metal adecuado. La capacidad mínima del recipiente medidor estará de acuerdo con los siguientes requisitos, basado en el tamaño nominal del agregado en el concreto a ser ensayado.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

Tabla 7 Capacidad de recipientes

<table>
<thead>
<tr>
<th>Tamaño máximo nominal de los agregados</th>
<th>Capacidad del recipiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulgadas</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>1 1/2</td>
<td>37.5</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>4 1/2</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: ASTM C138

- **Placa de enrasado**

 Una placa metálica rectangular, plana y de al menos $\frac{1}{4}''$ (6 mm) de espesor o una placa de vidrio o acrílico de al menos $\frac{1}{2}''$ (12 mm) de espesor, con una longitud y ancho de al menos 2” (50 mm) mayor que el diámetro del medidor con el cual se use. Los bordes de la placa deberán ser rectos y lisos con una tolerancia de $\frac{1}{16}''$ (2 mm).

- **Mazo**

 Un mazo (con cabeza de hule o cuero) que tenga una masa de 1.25 - 0.50 lb (600 - 200 g) para usarse con recipiente de 0.5 pie3 (14 L) o menor, y un mazo teniendo una masa de 2.25 - 0.50 lb (1000 - 200 g) para usarse con medidores mayores de 0.5 pie3.

C. Procedimiento

- Apisone concretos con revenimiento mayor de 3” (75 mm). Apisone o vibre concretos con revenimiento de 1 a 3” (25 a 75 mm). Consolide concretos con un revenimiento menor de 1” por vibración.

- Coloque el concreto en el recipiente en tres capas de aproximadamente igual volumen. Apisone cada capa con 25 golpes de varilla cuando son usados recipientes de 0.5 pie3 (14 L) o menores, y con 50 golpes cuando se usen...
recipientes de 1 pie³ (28 L), y un golpe por cada 3 pulg² (20 cm²) de superficie para recipientes más grandes.

- Apisone la capa del fondo en su profundidad total sin golpear con fuerza el fondo del recipiente. Distribuya los golpes uniformemente sobre la superficie de cada capa. Para las dos capas superiores penetre aproximadamente 1” (25 mm) en la capa inferior. Después de apisonar cada capa, golpee suavemente los lados del recipiente de 10 a 15 veces con el mazo adecuado para cerrar huecos que haya dejado la varilla de apisonamiento y liberar burbujas de aire atrapadas. Añada la última capa evitando sobrellevar el recipiente.

- Llene y vibre el recipiente en dos capas aproximadamente iguales. Vierta todo el concreto para cada capa antes de iniciar la vibración de la misma. Inserte el vibrador en tres puntos diferentes de cada capa. Al compactar la capa del fondo no permita que el vibrador descanse o toque el fondo o los lados del recipiente. Al compactar la capa superior, el vibrador debe penetrar la capa inferior aproximadamente 1” (25 mm). Tenga cuidado de sacar el vibrador de modo que no quede aire atrapado en la muestra. La duración requerida de vibración dependerá de la consistencia del concreto y de la efectividad del vibrador.

- Al completar la consolidación del concreto el recipiente no debe contener un sustancial exceso o deficiencia de concreto. Un exceso de concreto de aproximadamente 1/8” (3 mm) por encima del borde del recipiente es lo óptimo. Se puede agregar una cantidad pequeña de concreto si es necesario.

- La remoción y aplanado se logra mejor presionando la placa de perfilado sobre la superficie del recipiente cubriendo aproximadamente dos terceras partes de esta y retirando la placa con movimiento a manera de serrucho sobre el área
cubierta. Luego coloque la placa en el borde superior del recipiente, cubriendo los dos tercios originales y avance con presión vertical y movimiento de aserrado sobre toda la superficie.

- Después del enraízamiento limpie todo el concreto del exterior del recipiente y determine la masa del concreto y recipiente.

D. Cálculos

- **Densidad (Peso Unitario)**

 Calcule la masa neta del concreto en libras o kilogramos restando la masa del recipiente de la masa del recipiente lleno de concreto. Calcule la densidad, dividiendo la masa neta de concreto por el volumen del recipiente.

 Como sigue:

 \[
 D = \frac{(M_c - M_m)}{V_m}
 \]

 Donde:

 D= Densidad (peso unitario) del concreto, kg/m\(^3\)

 Mc= Masa de la medida llena de concreto, kg

 Mm= Masa de la medida, kg

 Vm= Volumen de la medida

- **Volumen**

 Calcule el volumen como sigue:

 \[
 Y = \frac{M}{D}
 \]

 Donde:

 Y= Volumen del concreto producido por revoltura, m\(^3\)

 M= Masa total de todo el material de la revoltura, kg
D= Densidad (peso unitario) del concreto kg/m³

- **Volumen relativo**

 El volumen relativo es la relación entre el volumen actual de concreto obtenido respecto al volumen diseñado para una revoltera.

 Calculado como sigue:

 \[R_y = \frac{Y}{Y_d} \]

 Donde:

 \(R_y \) = Volumen relativo.

 \(Y \) = Volumen del concreto producido por revoltera, m³

 \(Y_d \) = volumen de concreto para el cual la mezcla fue diseñada para producir, m³.

 Un valor de \(R_y \) mayor que 1.00 indica exceso de concreto producido, en cambio un valor menor que esto indica que la mezcla se queda corta respecto al volumen diseñado.

- **Contenido de cemento**

 Calcule el contenido de cemento actual como sigue:

 \[C = \frac{C_b}{Y} \]

 Donde:

 \(C \) = contenido de cemento actual kg/m³

 \(C_b \) = Masa de cemento en la revoltera, kg

 \(Y \) = Volumen del concreto producido por revoltera, m³

- **Contenido de aire**

 Calcule el contenido de aire como sigue:
A = \frac{[(Y - V)]}{Y} \times 100

Donde:

A = Contenido de aire (porcentaje de vacíos) en el concreto
Y = Volumen del concreto producido por revoltura, m³
V = Volumen absoluto total de los componentes de la revoltura, m³

- Tendencia

Este método de ensayo no tiene tendencia debido a que la densidad es definida solamente en términos de este método de ensayo.

2.1.4.2 Ensayos en el concreto en estado endurecido

2.4.1.2.1 Método de Ensayo Estándar para Esfuerzo de Compresión en Especímenes Cilíndricos de Concreto ASTM C 39 / C 39M – 01

A. Definición

Este método de ensayo determina la resistencia a compresión de especímenes cilíndricos de concreto tales como cilindros moldeados y núcleos taladrados. Está limitado al concreto que tenga un peso unitario mayor de 50 lb/pie³ (800 Kg/m³).

Este método de ensayo consiste en aplicar una carga axial de compresión al cilindro moldeado o núcleo a una razón que está dentro del rango prescrito antes de que la falla ocurra. El esfuerzo de compresión del espécimen es calculado dividiendo la carga máxima obtenida durante el ensayo por el área de la sección transversal del espécimen.

Los valores obtenidos dependerán del tamaño y forma del espécimen, revoltura, procedimiento de mezclado, los métodos de muestreo, moldeo, fabricación y edad, temperatura y condiciones de humedad durante el curado.
Los resultados de este método de ensayo son usados como una base para el control de calidad de las operaciones de proporcionamiento, mezclado y colocación del concreto; determinación de concordancia con las especificaciones; control para evaluación de la efectividad de los aditivos y usos similares.

B. Aparatos

- **Máquina de Ensayo**

La máquina de ensayo será de un tipo que tenga suficiente capacidad y capaz de proporcionar la razón de carga prescrita.

Se requiere la verificación de la calibración de las máquinas de ensayo bajo las siguientes condiciones:

- Después de transcurrir un intervalo de 18 meses máximo, desde la verificación, pero preferiblemente después de un intervalo de 12 meses.
- En la instalación original o reubicación de la máquina.
- Inmediatamente después de hacer una reparación o ajuste, que afecte la operación del sistema aplicando fuerza de la maquina o el valor desplegado en el sistema indicador de carga, excepto para el ajuste a cero que compensa para la masa del bloque de carga, o espécimen o ambos.
- Cuando hay una razón para dudar de la precisión de los resultados, sin considerar el intervalo de tiempo desde la última verificación.

El diseño de la maquina puede incluir las siguientes características:

- La máquina puede ser operada con energía y aplicará la carga continuamente, más bien que intermitentemente y sin choque. Si esta tiene solamente una razón de carga, puede estar provista de medios
suplementarios para cargar a una razón apropiada para verificación. Estos medios suplementarios de carga pueden ser operados con energía o manualmente.

✓ El espacio provisto para el ensayo de especímenes será grande, suficiente para acomodar en la posición requerida, un dispositivo de calibración elástico, el cual será de suficiente capacidad para cubrir el rango de carga potencial de la máquina de ensayo.

La precisión de la máquina de ensayo estará de acuerdo con las siguientes provisiones:

✓ El porcentaje de error para las cargas con el rango de uso propuesto para la máquina de ensayo no deberá exceder a 1.0 % de la carga indicada.

✓ La carga de ensayo indicada por la máquina de ensayo y la carga aplicada calculada de las lecturas del dispositivo de verificación, deberán ser registradas en cada punto de prueba.

✓ Calcule el error, E, y el porcentaje de error, Ep, para cada punto de esa información como sigue:

\[
E = A - B \\
Ep = \frac{(A-B)}{B} \times 100
\]

Donde:

A = carga, lbf (KN) indicado por la máquina que se está verificando.

B = carga aplicada, lbf (KN) determinado por el dispositivo de calibración.

La máquina de ensayo estará equipada con dos bloques de carga de acero, con caras endurecidas, una de las cuales es un bloque con asiento esférico y se apoyará en la parte superior del espécimen, y la otra será un bloque sólido en el
cual descansará el espécimen. Las caras de carga de los bloques deberán tener una dimensión mínima al menos 3 % mayor que el diámetro del espécimen a ser ensayado.

El bloque de carga inferior cumplirá con los siguientes requisitos:

✓ La cara superior e inferior deberán ser paralelas una a la otra. Sus dimensiones horizontales serán al menos 3 % mayores que el diámetro del espécimen a ensayar.

✓ El bloque de carga inferior será de al menos 1 pulg. (25 mm) de espesor cuando nuevo, y al menos 0.9 pulg. (22.5 mm) de espesor después de algunas operaciones.

- **Indicador de Carga**

Si la carga de una máquina de compresión usada en ensayos de concreto es registrada en un dial, este deberá estar provisto con una escala graduada que pueda ser leída con una precisión de 0.1 % de la carga total.

Cada dial será equipado con un ajustador a cero que está localizado fuera del cuerpo y fácilmente accesible en la parte frontal de la maquina donde se observa la marca de cero y el indicador del dial. Cada dial deberá estar equipado con un dispositivo compatible que pueda ser ajustado todo el tiempo, el cual indicará con una precisión del 1 % la carga máxima aplicada al espécimen.

- **Especímenes**

Los especímenes no serán ensayados si el diámetro individual de algún cilindro difiere de cualquier otro diámetro del mismo cilindro por más del 2 %.

El diámetro usado para calcular el área de la sección transversal del espécimen de ensayo deberá ser determinada cercana a 0.01 pulg. (0.25 mm)
promediando dos diámetros medidos en ángulo recto uno respecto al otro alrededor de la media altura del espécimen.

- **Procedimiento**

Los ensayos de compresión en especímenes curados húmedos, serán hechos tan pronto como sea practicable, después de removerlos del almacenamiento húmedo.

Todos los especímenes para una edad de ensayo dada, serán rotos con la tolerancia de tiempo permisible prescritos a continuación:

Tabla 8 Tolerancia del tiempo permisible para rotura de concretos

<table>
<thead>
<tr>
<th>Edad del concreto</th>
<th>Tolerancia permitida</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 horas</td>
<td>+0.5 horas ó 2.1%</td>
</tr>
<tr>
<td>3 días</td>
<td>2 horas ó 2.8%</td>
</tr>
<tr>
<td>7 días</td>
<td>6 horas ó 3.6%</td>
</tr>
<tr>
<td>28 días</td>
<td>20 horas ó 3%</td>
</tr>
<tr>
<td>90 días</td>
<td>2 días ó 2.2%</td>
</tr>
</tbody>
</table>

Fuente: ASTM C 39

Se sigue los siguientes pasos:

- Coloque la placa inferior, con su cara endurecida hacia arriba, sobre la mesa o bloque de la máquina de ensayo, directamente debajo del bloque de carga con asiento esférico. Limpie las superficies de carga de los bloques superior e inferior y del espécimen de ensayo y coloque éste en el bloque de carga inferior. Cuidadosamente alínee el eje del espécimen con el centro de carga del bloque con asiento esférico.

- Antes de ensayar el espécimen, verifique que el indicador de carga está en cero. En casos donde el indicador no esté en cero, ajuste el indicador.
Como el bloque con asiento esférico es llevado a colocarse sobre el especímen, girar lentamente su porción móvil con la mano, para obtener un contacto uniforme.

✓ Aplique la carga continuamente y sin impacto.

✓ Para las máquinas de ensayo de tipo tornillo, el movimiento del cabezal viajará a una razón de aproximadamente 0.05 pulg. (1 mm)/min cuando la maquina está corriendo libre. Para maquinas operadas hidráulicamente, la carga deberá ser aplicada a una razón de movimiento (medida de la placa sobre la sección del cabezal) correspondiendo a una razón de carga en el especímen dentro del rango de 20 a 50 psi/seg. (0.15 a 0.35 MPa/s).

✓ La razón de movimiento designada deberá mantenerse al menos durante la última mitad de la fase de carga prevista del ciclo de ensayo. Durante la aplicación de la primera mitad de la fase de carga prevista, será permitida una razón de carga mayor, siempre que ésta se controle para evitar cargas por impacto. No efectúe ajustes en la razón de movimiento de la placa en ningún momento, cuando el especímen esta en fluencia rápida e inmediatamente antes de la falla.

✓ Aplique la carga hasta que el especímen falle y anote la carga máxima soportada por el especímen durante el ensayo. Note el tipo de falla y apariencia del concreto.

- Cálculos

✓ Calcule el esfuerzo de compresión del especímen dividiendo la carga máxima soportada por el especímen durante el ensayo por el área de la
sección transversal promedio determinada, exprese el resultado con una aproximación de 10 psi (0.1 MPa).

✓ Si la relación longitud a diámetro del espécimen es menor que 1.8 corrija el resultado obtenido, multiplicando por el apropiado factor de corrección mostrado en la siguiente tabla:

<table>
<thead>
<tr>
<th>L/D</th>
<th>1.75</th>
<th>1.5</th>
<th>1.25</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Fuente: ASTM C39

Estos factores de corrección se aplican a concreto de peso ligero, pesando entre 100 y 120 lb/pie³ (1600 a 1920 Kg./m³) y a concreto de peso normal. Son aplicables a concreto seco o remojado al momento del ensayo.

- **Informe**
 - ✓ Número de identificación.
 - ✓ Diámetro (y longitud si esta fuera del rango 1.8D a 2.2D), en pulg. (mm).
 - ✓ Área de la sección transversal, en pulg.² o cm².
 - ✓ Carga máxima, en lbf o (KN).
 - ✓ Esfuerzo de compresión calculado con aproximación de 10 psi (0.1 MPa).
 - ✓ Tipo de fractura, si es diferente del cono usual.
 - ✓ Defectos en el espécimen o en el cabeceado.
 - ✓ Edad del espécimen.
2.4.1.2.2 ASTM C-597 Método de ensayo estándar para velocidad de pulso del concreto

A. Definición

Es el ensayo que cubre la determinación de la velocidad de propagación de pulso de ondas de esfuerzo longitudinal a través del concreto.

Los pulsos de ondas de esfuerzo longitudinal son generados por un transductor electro-acústico que es mantenido en contacto con una superficie de concreto bajo prueba. Después de atravesar el concreto, los pulsos son recibidos y convertidos en energía eléctrica por un segundo transductor colocado a una distancia L del transductor transmisor. El tiempo de transito T es medido electrónicamente. La velocidad del pulso V es calculada dividiendo L entre T.

B. Relación velocidad ultrasónica-densidad – propiedades elásticas del concreto

La velocidad de pulso, V, de ondas longitudinales de esfuerzo en una masa de concreto es relativa a sus propiedades elásticas y su densidad de acuerdo con la siguiente relación:

\[V = \sqrt{\frac{E(1-\mu)}{\rho(1+\mu)(1-2\mu)}} \]

Donde:

\(E \) = módulo de elasticidad dinámico
\(\mu \) = Relación de Poisson dinámica
\(\rho \) = Densidad
C. Consideraciones

- Este método de ensayo se aplica para juzgar la uniformidad y calidad relativa del concreto, para indicar la presencia de vacíos y grietas, y para evaluar la efectividad de la reparación de las grietas. También es aplicable para indicar cambios en las propiedades del concreto, y en el análisis de estructuras, para estimar la severidad de deterioro o agrietamiento.

- El grado de saturación del concreto afecta la velocidad de pulso, y este factor puede ser considerado cuando se evalúan los resultados del ensayo. La velocidad de pulso en concreto saturado puede ser un 5% mayor que en concreto seco.

- La velocidad de pulso es independiente de la dimensión del objeto ensayado proporcionando ondas reflejadas desde los límites que no complican la determinación del tiempo de arribo del pulso transmitido directamente.

- Las longitudes de onda de las vibraciones son iguales a la velocidad de pulso dividida por las frecuencias de vibración.

- La exactitud de la medición depende de la habilidad del operador para determinar precisa-mente la distancia entre los transductores y del equipo para medir precisamente el tiempo de transito del pulso.

- La fuerza de señal recibida y la medición del tiempo de tránsito son afectados por el acoplamiento de los transductores a las superficies de concreto. Suficiente agente de acoplamiento y presión debe ser aplicada a los transductores para asegurar tiempo de transito estable.

- La fuerza de la señal recibida también es afectada por la longitud de viaje y por la presencia y grado de agrietamiento o deterioro en el concreto ensayado.
El equipo de ensayo disponible actualmente limita longitudes de aproximadamente 50mm (2 pulg) mínima y 15 m (50 pies) máxima, dependiendo en parte de la frecuencia e intensidad de la señal generada.

El límite superior de la longitud de recorrido depende en parte de las condiciones superficiales y en parte de las características interiores del concreto bajo investigación.

Un preamplificador en el transductor receptor puede ser usado para incrementar la longitud máxima de recorrido que puede ser ensayada.

La longitud de recorrido máxima es obtenida usando transductores de frecuencia resonante relativamente bajas (10 a 20 KHz) para minimizar la atenuación de la señal en el concreto.

Para longitudes de recorrido menores, donde la pérdida de la señal no es factor gobernante es preferible usar frecuencias resonantes de 50 KHz o más para alcanzar mediciones más precisas del tiempo de tránsito y alcanzar una mayor sensibilidad.

La velocidad de pulso en el acero puede ser arriba del doble que en el concreto, las medidas de velocidad de pulso en la vecindad del acero en concreto reforzado, puede ser mayor que en concreto no reforzado de la misma composición.

Donde sea posible, evitar mediciones cerradas en acero paralelo a la dirección de propagación del pulso.
D. Equipo

Consiste en un generador de pulso, un par de transductores (transmisor y receptor), un amplificador, un circuito medidor de tiempo, una pantalla (display) de tiempo y cables conectores.

- **Generador de Pulso y Transductor Transmisor**

 El generador de pulso consiste en circuitos para generar pulsos de voltaje. El transductor para transformar esos pulsos electrónicos en ondas explosivas de energía mecánica tendrá una frecuencia resonante en el rango de 20 a 100 kHz. El generador de pulso deberá producir pulsos repetitivos a una razón no menor de 3 pulsos por segundo.

- **Transductor Receptor y Amplificador**

 El transductor receptor es similar al transductor transmisor. El voltaje generado por este será amplificado tanto como sea necesario para producir pulsos disparados al circuito medidor de tiempo. El amplificador tendrá una respuesta uniforme entre media y tres veces la frecuencia resonante del transductor receptor.

- **Circuito Medidor de Tiempo**

 El circuito medidor de tiempo y el pulso disparador asociado provee una total resolución de medición de tiempo de al menos 1 μs. La medición del tiempo es iniciada por un voltaje disparador desde el generador de pulso y el circuito medidor de tiempo es operado en la frecuencia de repetición del generador de pulso. El circuito medidor de tiempo proporciona una señal de salida cuando el pulso receptor es detectado y esta señal de salida debe ser usada para determinar el tiempo de transito reflejado en la unidad de pantalla (display).
El circuito medidor de tiempo no será sensible a la temperatura de operación en el rango de 0 a 40°C y cambios de voltaje en la fuente de energía de ± 15%.

- **Unidad de Pantalla (Display)**

 Dos tipos de unidades de pantalla están disponibles. Las unidades modernas usan un contador de tiempo a intervalos y una pantalla digital de lectura directa del tiempo de tránsito. Las unidades viejas usan un tubo de rayos catódicos (CRT) en el cual los pulsos transmitidos y recibidos son exhibidos como deflexiones de la traza con relación a un tiempo de escala establecido.

- **Barra de Referencia**

 Es una barra de metal u otro material durable para el cual el tiempo de transito de ondas longitudinales es conocido. El tiempo de transito será marcado permanentemente en la barra de referencia.

- **Cables de Conexión**

 Donde las medidas de velocidad de pulso, en estructuras largas, requieren el uso de cables de interconexión largos, se usará el cable de tipo coaxial de baja capacidad, protegido.

E. Agente de Acoplamiento

Un material viscoso (tal como aceite, vaselina, gelatina soluble en agua, hule moldeable o grasa) para asegurar eficiente transferencia de energía entre el concreto y los transductores. La función del agente de acoplamiento es eliminar aire entre las superficies de contacto de los transductores y el concreto. El agua es un aceptable agente de acoplamiento cuando se estanca en la superficie, o para ensayos bajo el agua.
F. Procedimiento

- **Chequeo Funcional de Equipos y Ajuste de tiempo Cero**

 ✓ Verifique que el equipo está operando adecuadamente y efectúe un ajuste de tiempo cero. Aplique agente de acoplamiento a los extremos de la barra de referencia, y presione los transductores firmemente contra los extremos de la barra hasta que un tiempo de tránsito estable aparece en la pantalla.

 ✓ Ajuste la referencia cero hasta que el tiempo de tránsito coincida con el valor marcado en la barra. Para algunos instrumentos, el ajuste a cero es hecho mediante la aplicación de agente de acoplamiento y presionando las caras de los transductores juntos. Estos instrumentos usan un microprocesador para registrar este tiempo retrasado, el cual es automáticamente sustraído del tiempo de tránsito en mediciones subsecuentes. Para cada instrumento mida el tiempo de tránsito a través de las barras de referencia para verificar que la adecuada corrección de tiempo cero ha sido hecha. Chequee el ajuste a cero en un horario base durante la operación continua del instrumento, y cada vez que un transductor o cable de conexión sea cambiado.

- **Determinación del Tiempo de Transito:**

 ✓ Localice el transductor directamente opuesto al otro. Porque el ancho del destello de los pulsos vibracionales emitidos por los transductores es largo, es permitible medir tiempos de tránsito a través de las esquinas de una estructura, pero con alguna pérdida de sensibilidad y precisión.
✓ Aplique un apropiado agente de acoplamiento (tal como agua, aceite, vaselina, grasa, hule moldeable, u otro material viscoso) a las caras del transductor o a la superficie de ensayo, o a ambos. Presione las caras de los transductores firmemente contra la superficie del concreto hasta que un tiempo de tránsito estable aparezca en la pantalla y mida el tiempo de tránsito.

✓ Determine la distancia en línea recta entre centros de las caras de los transductores.

G. Cálculos

Calcule la velocidad de pulso como sigue:

\[V = \frac{L}{T} \]

Donde:

\[V = \text{velocidad de pulso (m/s o pies/s)} \]
\[L = \text{distancia entre transductores (m o pies)} \]
\[T = \text{tiempo de tránsito efectivo} \]

H. Informe

Anote la siguiente información:

- Localización del ensayo o identificación del espécimen
- Localización de transductores
- Distancia entre centros de las caras de los transductores, reportados con una precisión de al menos 0.5 %.
- Tiempo de tránsito, reportado con una precisión de al menos 0.5 % del mismo Tt.
- Velocidad de pulso reportada al más cercano 10 m/s
I. Tendencia

La tendencia de este método de ensayo no ha sido determinada.
3. CAPÍTULO III

METODOLOGIA DE LA INVESTIGACION

3.1 Alcance de investigación

Se utilizará el tipo de investigación correlacional ya que se realizará una asociación de variables mediante un patrón predecible.

3.2 Identificación de variables de investigación

La variable será la característica o aspecto que se desea medir o estudiar:

3.2.1 Variables independientes:

- Tamaño máximo nominal de los agregados de la cantera de Oropesa.
- Relación a/c

3.2.2 Variables dependientes:

- Densidad y resistencia del concreto.
- Velocidad de pulso ultrasónico.
- Compresión, tracción y tensión del ensayo triaxial del concreto.

3.3 Indicadores de las variables en estudio

- Fuerza de compresión que soporta los testigos de concreto.
- Número de ondas que atraviesa los testigos con el ensayo ultrasónico.
- Fuerza de compresión
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

- Asentamiento inicial.
- Contenido de aire.
- Tiempo de curado de la probeta.

3.4 Diseño de la investigación

Debido a que el objetivo de la investigación es Validar la utilización del equipo de ultrasonido en la determinación de la densidad y la resistencia de concretos de $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac a los 7, 14, 21 y 28 días de tiempo de curado, se realizará una investigación experimental; se trata de elaborar testigos de concreto de resistencias ya mencionadas y realizar el ensayo de resistencia a la compresión, así como también realizar los ensayos ultrasónicos y triaxiales con cuyos datos se hará una comparación y su respectiva correlación para finalmente lograr hallar ecuaciones de tendencia que reflejen el comportamiento de dichos concretos.

3.5 Población

3.5.1 Universo o población

Elementos de concreto hidráulico con resistencias $f'_c=140, 175, 210, 280$ y 350 kg/cm².

3.5.2 Ámbito geográfico

El ámbito en el cual se desarrolla la investigación es la ciudad del Cusco, debido a que se cuenta con instrumentos que requerirá la investigación.
3.6 Muestra

3.6.1 Tipo de muestra

Los elementos de estudio de la muestra serán de tipo no probabilístico o dirigido (no aleatorio).

3.6.2 Determinación del tamaño de la muestra

Se utilizará quince testigos cilíndricos de 4”x8” (huso 67), por cada resistencia de diseño de $f_c= 140, 175, 210, 280$ y 350 kg/cm² y por cada tiempo de curado, 7, 14, 21 y 28 días, a los cuales primero se ensayará la velocidad de pulso ultrasónico y luego el ensayo de compresión simple; también se utilizará quince testigos cilíndricos de 2”x4” (huso 8) por cada resistencia de diseño de $f_c= 140, 175, 210, 280$ y 350 kg/cm² y para un tiempo de curado de 28 días, a los cuales se ensayará la velocidad de pulso ultrasónico y luego el ensayo de compresión simple. Y por último también se utilizó tres testigos de 2”x4” (huso 8), por cada resistencia de diseño de $f_c=140, 175, 210, 280$ y 350 kg/cm² y para un tiempo de curado de 28 días, a los cuales se ensayará la velocidad de pulso ultrasónico y luego el ensayo triaxial.

3.7 Enfoque de investigación

La investigación, se centrará en un análisis con el uso del método descriptivo, analítico y correlacional.
3.8 Técnicas de recolección de datos.

Para establecer la cantidad de testigos a ensayar se usará el muestreo intencional o de conveniencia que es un método de muestreo estadístico no probabilístico con instrumentos de recolección de datos y con la técnica del fichaje.
4. CAPÍTULO IV

ESTUDIO DE AGREGADOS Y DISEÑO DE MEZCLAS

4.1 Agregados

4.1.1 Aspectos generales de la cantera de Cunyac

4.1.1.1 Ubicación de la cantera de Cunyac

La cantera de Cunyac está ubicado en la región del Cusco, en el trayecto Cusco – Abancay, aproximadamente a 69 km de la ciudad del Cusco.

El agregado fue extraído de las playas del río Apurímac, específicamente de la cantera de la Hacienda Monterrico, perteneciente a la familia Segovia, que aproximadamente está a 3 km después del puente Cunyac.

Imagen 4 Ubicación de la Cantera de Cunyac

Fuente: Elaboración propia
4.1.1.2 Características de la cantera de Cunyac

De esta cantera se extrae material de origen Sedimentario, el cual se forma a partir de los restos de materiales de rocas formadas anteriormente sobre la superficie de la tierra, pasando por alteraciones y erosiones de las rocas por efecto de los cambios climáticos tales como la irradiación solar, los hielos y las lluvias, este agregado presenta grava y arena. La grava esencialmente está compuesta por cantos rodados de cuarzo, areniscas cuarzosas, riolitas, y caliza, los que se catalogan como buenos materiales de construcción que pueden ser empleados en concreto. Las arenas existentes se encuentran limpias o tienen muy poca cantidad de limos, arcillas, se observa la presencia de cuarzos, presenta un color muy variado. Según estudios anteriores mostramos el siguiente cuadro del análisis químico de la cantera en el cual se observa que la suma final no llega al 100% debido a la disolución de la muestra por ataque del reactivo a la muestra analizada.

Según la carta geológica esta cantera está ubicada en las coordenadas UTM 8499 S y 760 E, y observando en la geología del cuadrángulo Abancay (28-q) nos da una clasificación Q-al, siendo esta perteneciente a la edad cuaternaria en formaciones y eventos geo-históricos aluviales de origen sedimentario.

El agregado de Cunyac se encuentra en conos aluviales, éstos a lo largo del río Apurímac originados por riachuelos que desembocan en ambas orillas del mencionado río. También, asociadas a estos conos aluviales, frecuentemente se encuentran depósitos de terrazas. Los aluviones están compuestos por guijarros más o menos redondeados según la distancia del transporte. Los cantos están envueltos en una matriz de arena y limo. El tamaño de los elementos varía según los lugares. Los conos pueden presentar cantos de gran tamaño llegando hasta dos metros de diámetro (cono aluvial en la desembocadura de la Quebrada Alluninca en
el río Matara, hoja de Abancay). Sin embargo, alejándose del cono se ve la variación de los guijarros hacia un tamaño mucho más pequeño y se aprecia a la vez una mejor clasificación.

El agregado que se extrajo es el que comúnmente conocemos como hormigón, compuesto por canto rodado y arena, para lo cual se utilizó una malla de 1” de diámetro, con la cual realizamos el zarandeo correspondiente.

4.1.2 Propiedades de los agregados

4.1.2.1 Muestreo para Materiales de Construcción (MTC E 201 – 2000) NTP 400.010 y ASTM D 75

1.2.1.4.1 Objetivo

- Reúne los procedimientos para la toma de muestras de roca, escoria, grava, gravilla y arena, que son utilizados como materiales de construcción.
- El muestreo contempla los siguientes fines:
 ✓ Investigación preliminar de las fuentes de suministro de materiales.
 ✓ Aceptación o rechazo de las fuentes y control de producción en ellas.
 ✓ Inspección de los materiales en la obra y control de operación de los materiales durante el trabajo.

1.2.1.4.2 Requisitos generales

- Muestras confiables. Las muestras que se van a ensayar para determinar la calidad del material, serán obtenidas de productos terminados.
- Inspección. Todo material será inspeccionado con el fin de determinar variaciones apreciables del mismo.
1.2.1.4.3 Materiales y equipo utilizado

- Camión.
- Sacos.
- Arpilleras.
- Palas.
- Malla de 1” de diámetro
- Malla de 3/8” de diámetro
- Tarimas de madera.

1.2.1.4.4 Procedimientos de muestreo

- Muestreo tomado de depósitos apilados para luego ser de transportado en camión, el cual será usado como muestras representativas del total.
- El agregado será depositado sobre arpilleras plásticas, para evitar la contaminación por contacto con el suelo.
- Las muestras son guardadas en saquillos, para la mejor maniobrabilidad en laboratorio.
- Los saquillos son ubicados próximos al laboratorio de suelos de la escuela de profesional de ingeniería civil, sobre tarimas y cubiertos con arpilleras plásticas para el mantenimiento constante de la humedad.
- El número de muestras y cantidad individuales depende fundamentalmente del objeto y del tamaño del agregado.
- Se muestra el tamaño de muestras para análisis granulométrico y de calidad en la siguiente tabla:
Tabla 10 Tamaño de muestras para análisis granulométrico y de calidad

<table>
<thead>
<tr>
<th>Máximo tamaño nominal de agregados</th>
<th>Peso mínimo aproximado de muestras de campo kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agregado fino</td>
<td></td>
</tr>
<tr>
<td>2,36 mm (N° 8)</td>
<td>10 (25)</td>
</tr>
<tr>
<td>4,75 mm (N° 4)</td>
<td>10 (25)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td></td>
</tr>
<tr>
<td>9,5 mm (3/8”)</td>
<td>10 (25)</td>
</tr>
<tr>
<td>12,5 mm (1/2”)</td>
<td>15 (35)</td>
</tr>
<tr>
<td>19,0 mm (3/4”)</td>
<td>25 (55)</td>
</tr>
<tr>
<td>25,0 mm (1”)</td>
<td>50 (110)</td>
</tr>
<tr>
<td>37,5 mm (1 1/2”)</td>
<td>75 (165)</td>
</tr>
<tr>
<td>50,0 mm (2”)</td>
<td>100 (250)</td>
</tr>
<tr>
<td>63,0 mm (2 1/2”)</td>
<td>125 (275)</td>
</tr>
<tr>
<td>75,0 mm (3”)</td>
<td>150 (330)</td>
</tr>
<tr>
<td>90,0 mm (3 1/2”)</td>
<td>175 (385)</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

4.1.2.2 Cantidad de material fino que pasa por el tamiz N° 200 (MTC E 202 – 2000) y ASTM C117

2.2.1.4.1 Objetivo

Describe el procedimiento para determinar, por lavado, la cantidad de material fino que pasa el tamiz de 75 mm (No. 200) en un agregado.

Durante el ensayo se separan de la superficie del agregado, por lavado, las partículas que pasan el tamiz de 75 mm (No. 200), tales como: arcillas, agregados muy finos, y materiales solubles en el agua.

2.2.1.4.2 Aparatos

- Balanza, con sensibilidad de por lo menos 0,1% del peso de la muestra que se va a ensayar.
- Dos tamices, siendo el menor de 75 mm (No. 200) y el otro de 1,18 mm (No. 16).
Recipientes. Una vasija de tamaño suficiente para mantener la muestra cubierta con agua y que permita una agitación vigorosa sin pérdida de ninguna partícula o del agua.

Estufa, de tamaño adecuado y capaz de mantener una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F).

2.2.1.4.3 Muestra de ensayo

Tómese la muestra de agregado de acuerdo con los procedimientos descritos en la norma MTC E201-2000.

Redúzcase la muestra por cuarteo, hasta un tamaño suficiente, de acuerdo con el tamaño máximo del material, si va a ser sometida a tamizado en seco. En caso contrario, la muestra no será menor que la indicada en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tamaño nominal máximo de tamices</th>
<th>Peso mínimo aprox. De la muestra en gramos (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,75 mm (N° 4) o menos</td>
<td>300</td>
</tr>
<tr>
<td>9,5 mm (3/8”)</td>
<td>1000</td>
</tr>
<tr>
<td>19,0 mm (3/4”)</td>
<td>2500</td>
</tr>
<tr>
<td>37,5 mm (1 ½) o mayor</td>
<td>5000</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

2.2.1.4.4 Procedimiento

- Séquese la muestra de ensayo, hasta peso constante, a una temperatura que no exceda los 110 ± 05 °C (230 ± 09 °F) y pésese con una precisión de 0,1%.
- Después de secada y pesada, colóquese la muestra de ensayo en el recipiente y agréguese suficiente cantidad de agua para cubrirla. Agítese vigorosamente el contenido del recipiente y de inmediato viértase sobre el juego de tamices armado. Se considera satisfactorio el uso de una cuchara grande para agitar la muestra en el agua.
• Agítese con suficiente vigor para lograr la separación total de todas las partículas más finas que el tamiz de 75 mm (No. 200) y provocar la suspensión del material fino, de manera que pueda ser removido por decantación del agua de lavado. Es conveniente tener el cuidado necesario para no arrastrar las partículas más gruesas. Repítase esta operación hasta que el agua de lavado salga completamente limpia.

• Devuélvase todo el material retenido en el juego de tamices a la muestra lavada. Séquese el agregado lavado hasta obtener un peso constante, a una temperatura que no exceda de 110° ± 05 °C (230° ± 09 °F) y pésese con una aproximación de 0,1% del peso de la muestra.

2.2.1.4.5 Cálculos

Calcúlese la cantidad de material que pasa el tamiz de 75 mm (No. 200), por lavado, de la siguiente forma:

\[A = \frac{(B - C)}{B} \times 100 \]

Siendo:

A = Porcentaje del material fino que pasa el tamiz de 75 mm (No. 200) por lavado.

B = Peso original de la muestra seca, en gramos.

C = Peso de la muestra seca, después de lavada, en gramos

4.1.2.3 Gravedad específica y Absorción de los agregados finos MTC E 205 – 2000 y ASTM C128

3.2.1.4.1 Objetivo

• Determinar el peso específico seco, peso específico saturado con superficie seca, el peso específico aparente y la absorción después de 24 horas de sumergido en agua el agregado fino.
3.2.1.4.2 Definiciones

- Volúmenes aparentes, en un sólido permeable, si se incluye en su volumen la parte de vacíos accesibles al agua en las condiciones que se establezcan.
- Volumenes nominales., s en un sólido permeable, si se excluye en su volumen la parte de vacíos accesibles al agua en las condiciones que se establezcan "nominal".
- Peso específico aparente, en un sólido permeable se define a la relación entre el peso al aire del sólido y el peso de agua correspondiente a su volumen aparente.
- Peso específico nominal, en un sólido permeable se define a la relación entre el peso al aire del sólido y el peso de agua correspondiente a su volumen nominal.

3.2.1.4.3 Aparatos

- Balanza, con sensibilidad de por lo menos 0,1% del peso de la muestra que se va a ensayar.
- Matraz aforado o picnómetro, en el que se puede introducir la totalidad de la muestra y capaz de apreciar volúmenes con una exactitud de ± 0,1 cm³. Su capacidad hasta el enrase será, como mínimo, un 50 por ciento mayor que el volumen ocupado por la muestra.
- Molde cónico. Un tronco de cono recto, construido con una chapa metálica de 0,8 mm de espesor como mínimo, y de 40 ± 3 mm de diámetro interior en su base menor, 90 ± 3 mm de diámetro interior en una base mayor y 75 ± 3 mm de altura.
- Varilla para apisonado, metálica, recta, con un peso de 340 ± 15 g y terminada por uno de sus extremos en una superficie circular plana para el apisonado, de 25 ± 3 mm de diámetro.
- Bandejas metálicas, de tamaño apropiado.
3.2.1.4.4 Procedimiento

- Horno que proporcione una corriente de aire caliente de velocidad moderada.

- Se usará el material que pase el tamiz 4,75 mm (N° 4), el cual estará libre de material ajeno al agregado, y por cuarteo se usará aproximadamente 1 kg de este material para este ensayo, el cual es llevado al horno durante 24 ± 04 horas, a una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F), para luego que pase a enfriar al aire a la temperatura ambiente durante 1 a 3 horas. A continuación, se cubre la muestra completamente con agua y se la deja así sumergida durante 24 ± 04 horas.

- Decantar el agua cuidadosamente, evitando la perdida de finos, el agregado sobrante será extendido uniformemente sobre la bandeja metálica, para luego desecarlo por medio del aire caliente mientras se remueve el agregado para la mejor distribución del calor, con el fin de obtener agregado seco superficialmente y saturado internamente, este paso es extenso, ya que se busca una consistencia en la que pueda fluir.

- Cuando se crea habiendo llegado al punto de seco superficialmente, llevar el agregado dentro del molde cónico apoyándolo en la base de mayor diámetro sobre una superficie no absorbente, usando un cucharón a través de un embudo hasta llenar el molde cónico, a continuación se apisonará ligeramente con 25 golpes de la varilla usando el extremo circular plano, finalmente se levanta el molde cónico suavemente, si no se ve desmoronamiento continuar con el desecado del agregado, repetir este paso hasta obtener el primer desmoronamiento.

- Con el primer desmoronamiento, obtener 500 g de este agregado llevarlo dentro del piconómetro, previamente tarado, llenar el piconómetro con agua hasta el 90% de su capacidad, a continuación, usando la máquina de vacío retirar todas las burbujas de aire
del agregado, en este transcurso se puede agitar para mejorar los resultados, al finalizar
se llenar con agua hasta llegar al 100% del picnómetro, pesar agua, muestra y agua.

- El agregado es sacado a un envase metálico para decantar el agua cuidadosamente para
 evitar la pérdida de finos, luego secar la muestra durante 24 ± 4 horas, a una temperatura
 constante y uniforme de 110° ± 05 °C (230 ± 09 °F), finalmente determinar el peso
 seco.

3.2.1.4.5 Cálculos

Calcúlese el peso específico y absorción de agregados de la siguiente forma:

\[
peso\ especifico\ aparente = \frac{A}{B + S - C}
\]

\[
peso\ especifico\ aparente\ (s.\ s.s.) = \frac{A}{B + S - C}
\]

\[
peso\ especifico\ nominal = \frac{A}{B + A - C}
\]

Absorción = \(\frac{S - A}{A}\) x 100

S.S.S. = saturado con Superficie Seca

Siendo:

A = Peso al aire de la muestra desecada, en gramos.

B = Peso del picnómetro aforado lleno de agua, en gramos.

C = Peso total del picnómetro aforado con la muestra y lleno de agua, en gramos.

S = Peso de la muestra saturada, con superficie seca en gramos
4.1.2.4 Gravedad Específica y Absorción de Agregados Gruesos (MTC E 206 – 2000) y ASTM C127

4.2.1.4.1 Objetivo

Determinar el peso específico seco, peso específico saturado con superficie seca, el peso específico aparente y la absorción después de 24 horas de sumergido en agua el agregado grueso.

4.2.1.4.2 Definiciones

- Volúmenes aparentes, en un sólido permeable, si se incluye en su volumen la parte de vacíos accesibles al agua en las condiciones que se establezcan.
- Volumenes nominales., s en un sólido permeable, si se excluye en su volumen la parte de vacíos accesibles al agua en las condiciones que se establezcan "nominal".
- Peso específico aparente, en un sólido permeable se define a la relación entre el peso al aire del sólido y el peso de agua correspondiente a su volumen aparente.
- Peso específico nominal, en un sólido permeable se define a la relación entre el peso al aire del sólido y el peso de agua correspondiente a su volumen nominal.

4.2.1.4.3 Aparatos

- Balanza, con sensibilidad de por lo menos 0.1% del peso de la muestra que se va a ensayar.
- Canastilla metálica, hecha de malla cuadrada de 3 mm, de base y altura semejantes, con capacidad de 4 a 7 dm3 para agregado de tamaño máximo nominal inferior a 38 mm (1 ½”).
Dispositivo de suspensión, capaz de suspender la canastilla con el agregado de la balanza.

4.2.1.4.4 Procedimiento

Se usará el material que se retiene en el tamiz 4,75 mm (N° 4), el cual estará libre de material ajeno al agregado, y por cuarteo se usará la cantidad mínima mostrada en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tamaño máximo nominal (mm)</th>
<th>Cantidad mínima de muestra (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 12,5</td>
<td>2</td>
</tr>
<tr>
<td>19,0</td>
<td>3</td>
</tr>
<tr>
<td>25,0</td>
<td>4</td>
</tr>
<tr>
<td>37,5</td>
<td>5</td>
</tr>
<tr>
<td>50,0</td>
<td>8</td>
</tr>
<tr>
<td>63,0</td>
<td>12</td>
</tr>
<tr>
<td>75,0</td>
<td>18</td>
</tr>
<tr>
<td>90,0</td>
<td>25</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

Se sigue los siguientes pasos:

- La muestra se seca en el horno durante 24 ± 04 horas, a una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F), para luego que pase a enfriar al aire a la temperatura ambiente durante 1 a 3 horas. A continuación, se cubre la muestra completamente con agua y se la deja así sumergida durante 24 ± 04 horas.
- El agregado es sacado del agua para ser secado con un piño absorbente de gran tamaño, secar el agregado superficialmente de manera uniforme, determinar el peso de la muestra saturada superficialmente seca (S.S.S.).
- A continuación, llevar el agregado dentro de la canastilla metálica para determinar el peso sumergido, tener cuidado en incluir aire en la canastilla, determinar el peso sumergido.
• La muestra se seca en el horno durante 24 ± 04 horas, a una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F), para luego que pase a enfriar al aire a la temperatura ambiente durante 1 a 3 horas, determinar el peso seco.

4.2.1.4.5 Cálculos

Calcúlese el peso específico y absorción de agregados de la siguiente forma:

\[Peso\ específico\ aparente = \frac{A}{B - C} \]

\[Peso\ específico\ aparente (S. S. S.) = \frac{A}{B - C} \]

\[Peso\ específico\ nominal = \frac{A}{A - C} \]

\[Absorción = \frac{B - A}{A} \times 100 \]

S. S. S. = saturado con Superficie Seca

Siendo:

A = Peso al aire de la muestra seca, en gramos.

B = Peso al aire de la muestra saturada con superficie seca, en gramos.

C = Peso sumergido en agua de la saturada, en gramos.

S = Peso de la muestra saturada, con superficie seca.

4.1.2.5 Método de Ensayo para Determinar el Contenido de Humedad MTC E 108 – 2000 y ASTM D2216

5.2.1.4.1 Objetivo

• Se refiere al procedimiento que se debe seguir para realizar el ensayo para determinar el contenido de humedad de un suelo.
5.2.1.4.2 Aparatos

- Balanza, de capacidad conveniente y con las siguientes aproximaciones: de 0,01 g para muestras de menos de 200 g de 0,1 g para muestras de más de 200 g.
- Envases metálicos para evitar cambios de peso debido al enfriamiento o calentamiento del mismo.
- Utensilios para manipulación de recipientes, se requiere el uso de guantes para mover y manipular los recipientes calientes después de que se hayan secado.
- Otros utensilios, se requiere el empleo de cucharon o espátulas.

5.2.1.4.3 Procedimiento

- Por cuarteo se obtendrá la cantidad mínima representativa de la muestra total mostrada en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tamaño máximo de las partículas de la muestra</th>
<th>Peso mínimo recomendado de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” (50,0 mm)</td>
<td>1000</td>
</tr>
<tr>
<td>N° 4 (12.5 mm)</td>
<td>300</td>
</tr>
<tr>
<td>N° 40 (0.420 mm)</td>
<td>10 a 50</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

- Las muestras son pesadas antes de ser llevadas al horno, donde seca durante 24 ± 4 horas, a una temperatura constante de 110° ± 05 °C (230 ± 09 °F), para finalmente enfriarlo al aire a la temperatura ambiente durante 1 a 3 horas, continuación se pesa.

5.2.1.4.4 Cálculos

Calcúlese el contenido de humedad:

\[W\% = 100 \times \frac{\text{peso de agua}}{\text{peso muestra seca}} \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

\[W\% = 100 \times \frac{(P_1 - P_2)}{P_2} \]

Siendo:

W= Contenido de humedad

P_1 = Peso de la muestra húmeda antes del ensayo.

P_2 = Peso de la muestra seca después del ensayo

4.1.2.6 Análisis granulométrico de Agregados Gruesos y Finos (MTC E 204 – 2000) y ASTM C136

6.2.1.4.1 Objetivo

- Determinar cuantitativamente la cantidad de partículas de agregados gruesos y finos que atraviesan o se retienen en tamices de abertura cuadrada, ordenadas sucesivamente de manera conveniente.

6.2.1.4.2 Aparatos

- Balanza, con sensibilidad de por lo menos 0,1% del peso de la muestra que se va a ensayar.
- Tamices, seleccionados de acuerdo con las especificaciones del material que va a ser ensayado.
- Estufa, de tamaño adecuado y capaz de mantener una temperatura constante y uniforme de 110° ± 05 °C ($230 ± 09 ^\circ$F).
6.2.1.4.3 Muestra

- Las muestras son obtenidas por cuarteo manual, el cual tanto para la granulometría para agregado grueso y fino debe de contener suficiente humedad para evitar pérdida de finos y segregación.

- Agregado fino, la cantidad mínima de muestra para el ensayo será de 300 g.

- Agregado grueso, la cantidad mínima de muestra para el ensayo se obtendrá de la siguiente tabla:

<table>
<thead>
<tr>
<th>Máximo tamaño nominal con aberturas cuadradas</th>
<th>Peso mínimo de la muestra de ensayo (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Pulg.</td>
</tr>
<tr>
<td>9.5</td>
<td>3/8</td>
</tr>
<tr>
<td>12.5</td>
<td>1/2</td>
</tr>
<tr>
<td>19</td>
<td>3/4</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>37.5</td>
<td>1 1/2</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>2 1/2</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>90</td>
<td>3 1/2</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>112</td>
<td>1/2</td>
</tr>
<tr>
<td>125</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

6.2.1.4.4 Preparación de la muestra

Lavar la muestra, secarla durante 24 ± 4 horas, a una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F).
6.2.1.4.5 Procedimiento

- Seleccionar los tamices de acuerdo con las especificaciones del material que va a ser ensayado. Ordenar de forma descendente al tamaño de la apertura cuadrada los tamices seleccionados para el ensayo.
- Se utiliza el tamizado manual, debido al mejor control y confiabilidad de resultados.
- Al realizar el tamizado manual se debe de realizar durante un periodo adecuado, para luego realizar el tamizado manual de manera individual, durante un minuto, colocando la tapa y un fondo que ajuste de tal manera que no deje holgaduras y por tanto evitar la pérdida de partículas, para lo cual se debe de golpear secamente los lados del tamiz.
- Las muestras tomadas fueron únicamente usadas solamente una vez, además se debe tener en cuenta que todas partículas del agregado tengan la oportunidad de estar en contacto con las mallas de los tamices, lo cual está vinculado a la cantidad de agregado usado en este ensayo.

6.2.1.4.6 Cálculos

- Calcúlese el porcentaje que pasa, el porcentaje total retenido, o el porcentaje de las fracciones de varios tamaños, con base en el peso total de la muestra inicial seca.
- El módulo de fineza se calculará como la división de la suma de los porcentajes retenidos acumulados en las siguientes mallas: 150 μm (Nº 100), 300μm (Nº 50), 600 μm (Nº 30), 1,18 mm (Nº 16), 2,36 mm (Nº 8), 4,75 mm (Nº 4), 9,5 mm (3/8”), 19,0mm (3/4”), 37,5 mm (1 ½”) y mayores, siendo el incremento en la relación de 1 a 2.
4.1.2.7 Peso unitario suelto y compactado de los agregados (MTC E 203 – 2000) y ASTM C29

7.2.1.4.1 Objetivo

- Establecer el método para determinar el peso unitario suelto y compactado de los agregados, ya sean finos, gruesos o una mezcla de ambos.

7.2.1.4.2 Aparatos

- Balanza, con sensibilidad de por lo menos 0,1% del peso de la muestra que se va a ensayar.
- Varilla compactadora, de acero, cilíndrica, un extremo debe ser semiesférico, de 16 mm (5/8") de diámetro, con una longitud aproximada de 600 mm (24") usado con agregado grueso y de 10 mm (3/8") de diámetro, con una longitud aproximada de 300 mm (12") usado con agregado fino.
- Cucharon metálico, semicircular, para la manipulación del agregado.
- Recipientes metálicos, cilíndricos (proctor), con el fondo y bordes pulidos, planos y suficientemente rígidos, para no deformarse bajo duras condiciones de trabajo. La capacidad del recipiente utilizado en el ensayo, depende del tamaño máximo de las partículas del agregado que se va a medir, de acuerdo con los límites establecidos en la siguiente tabla:
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

7.2.1.4.3 Peso Unitario Compactado del Agregado.

Método del apisonado. Usado para agregados con tamaño nominal menor o igual que 37,5 mm (1 ½”).

A. Procedimiento

- El agregado es colocado en tres capas uniformes en el proctor por medio de un cucharon.
- Cada capa es nivelada y apisonada con la varilla por 25 golpes, distribuidas en cada capa, usando el extremo semiesférico de la varilla.
- El apisonado con varilla en la primera capa no debe llegar a tocar la base del próctor.
- Habiendo colmado el proctor con agregado, se enrasa con la varilla la superficie del próctor, de tal manera que esté nivelada.

7.2.1.4.4 Peso Unitario Suelto del Agregado

Usado para determinar el volumen del agregado y vacíos dentro de un volumen conocido.

A. Procedimiento

- El agregado es colocado de manera continua en el próctor por medio de un cucharon.
• Habiendo colmado el próctor con agregado, se enrasa con la varilla la superficie del próctor, de tal manera que esté nivelada.

7.2.1.4.5 Cálculos

Calcúlese el peso unitario suelto y compactado de la siguiente forma:

\[P_u = \frac{P_a}{V_p} \]

Siendo:

Pa = Diferencia del peso de la muestra más el proctor menos el peso proctor (kg).

Vp = Volumen del proctor utilizado (m3).

Pu = Peso unitario suelto o compactado (kg/m3).

4.1.2.8 Abrasión los Ángeles (LA) al desgaste de los agregados de tamaños menores de 37.5 (1 ½”). MTC E 207 – 2000 y ASTM C131

8.2.1.4.1 Objetivo

• Se refiere al procedimiento que se debe seguir para realizar el ensayo de desgaste de los agregados gruesos hasta de 37.5 mm (1 ½”) por medio de la máquina de Los Ángeles.

• El método se emplea para determinar la resistencia al desgaste de agregados naturales o triturados, empleando la citada máquina con una carga abrasiva.

8.2.1.4.2 Aparatos

• Balanza, con sensibilidad de por lo menos 0,1% del peso de la muestra ensayada.

• Tamices. seleccionados de acuerdo con las especificaciones del material ensayado.

• Máquina de Los Ángeles, la máquina para el ensayo.
- Carga abrasiva, formada por las esferas de acero de fundición de diámetro 46,38 mm (1 13/16") y 47,63 mm (1 7/8") y peso comprendido entre 390 g y 445 g. La carga abrasiva dependerá de la granulometría de ensayo, según de muestra en la siguiente tabla:

<table>
<thead>
<tr>
<th>Granulometría de ensayo</th>
<th>Número de esferas</th>
<th>Peso total (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>5000 ± 25</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4584 ± 25</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>3330 ± 20</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>2500 ± 15</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM 2000)

8.2.1.4.3 Procedimiento

- Lavar la muestra, secarla durante 24 ± 4 horas, a una temperatura constante y uniforme de 110° ± 05 °C (230 ± 09 °F).
- Tamizar el agregado hasta obtener lo necesario según la granulometría del agregado, según la siguiente tabla:

<table>
<thead>
<tr>
<th>Medida del tamiz (abertura cuadrada)</th>
<th>Masa de tamaño indico (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Que pasa</td>
<td>Retenido sobre</td>
</tr>
<tr>
<td>37,5 mm (1 ½")</td>
<td>25,0 mm (1")</td>
</tr>
<tr>
<td>25,0 mm (1")</td>
<td>19,0 mm (3/4")</td>
</tr>
<tr>
<td>19,0 mm (3/4")</td>
<td>12,5 mm (1/2")</td>
</tr>
<tr>
<td>12,5 mm (1/2")</td>
<td>9,5 mm (3/8")</td>
</tr>
<tr>
<td>9,5 mm (3/8")</td>
<td>6,3 mm (1 ¼")</td>
</tr>
<tr>
<td>6,3 mm (1 ¼")</td>
<td>4,75 mm Nº 4</td>
</tr>
<tr>
<td>4,75 mm Nº 4</td>
<td>2,36 mm Nº 8</td>
</tr>
<tr>
<td>TOTALES</td>
<td>5000±10</td>
</tr>
</tbody>
</table>

Fuente: Manual de ensayo de materiales (EM2000)
La muestra y la carga abrasiva serán puestas dentro de la máquina de los Ángeles, el tambor de este girará a una velocidad de 30 y 33 rpm, siendo 500 el número total de vueltas, culminado el ensayo tamizarlo a través del tamiz n° 12(1,70 mm), luego se tamiza el agregado que pasa en la malla No12, se empleara el agregado total retenido en el tamiz No 12, se lava y seca durante 24 ± 4 horas, a una temperatura constante de 110° ± 05 °C (230 ± 09 °F), para finalmente enfriarlo al aire a la temperatura ambiente durante 1 a 3 horas, continuación se pesa.

8.2.1.4.4 Cálculos

Calcúlese el coeficiente de desgaste de los Ángeles, como el porcentaje de desgaste:

$$\% \text{ Desgaste} = 100 \times \frac{(P_1 - P_2)}{P_1}$$

Siendo:

P1 = Peso de la muestra seca antes del ensayo.

P2 = Peso de la muestra seca después del ensayo.

4.1.3 Resultados de ensayos a los agregados

4.1.3.1 Resultados de ensayos a los agregados para muestras cilíndricas de 4”x8”

Los resultados de cada uno de los ensayos que se realizaron al agregado grueso del huso 67 y al agregado fino, se detallan a continuación:
1.3.1.4.1 Granulometría del agregado grueso – huso 67

Tabla elaborada 1 Análisis granulométrico del agregado grueso de Cunyac por tamizado-huso 67 (MC 4”x8”)

<table>
<thead>
<tr>
<th>Tamaño tamiz</th>
<th>Abertura (mm)</th>
<th>Peso ret. (gr)</th>
<th>Peso ret. Corregido</th>
<th>% retenido</th>
<th>% retenido acum.</th>
<th>% que pasa</th>
<th>Límites astm c-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3”</td>
<td>76.10</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2”</td>
<td>50.00</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>37.50</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>25.00</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.00</td>
<td>244.73</td>
<td>244.76</td>
<td>4.89</td>
<td>95.11</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.50</td>
<td>3836.89</td>
<td>3836.92</td>
<td>76.72</td>
<td>18.39</td>
<td>55</td>
<td>77.5</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.50</td>
<td>849.84</td>
<td>849.87</td>
<td>16.99</td>
<td>1.39</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td># 04</td>
<td>4.75</td>
<td>67.93</td>
<td>67.96</td>
<td>1.36</td>
<td>0.03</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td># 08</td>
<td>2.36</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>99.97</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>cazuela</td>
<td>0.00</td>
<td>1.64</td>
<td>1.64</td>
<td>0.03</td>
<td>100.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5001.03</td>
<td>5001.15</td>
<td>100.00</td>
<td>Modulo de finura</td>
<td>7.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 1 Curva granulométrica del agregado grueso de cunyac - huso 67 (mc 4”x8”)

Fuente: Elaboración propia
Tabla elaborada 2 Análisis granulométrico del agregado grueso corregido de Cunyac - huso 67 (MC 4”x8”)

<table>
<thead>
<tr>
<th>Tamaño tamiz</th>
<th>Abertura (mm)</th>
<th>Peso ret. (gr)</th>
<th>Corrección de muestra (gr)</th>
<th>Peso ret. Corregido (gr)</th>
<th>% retenido</th>
<th>% reten. Acum.</th>
<th>% que pasa</th>
<th>Límites astm c-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3”</td>
<td>76.10</td>
<td>0</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2”</td>
<td>50.00</td>
<td>0</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>37.50</td>
<td>0</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>25.00</td>
<td>0</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.00</td>
<td>244.73</td>
<td>244.73</td>
<td>244.75</td>
<td>4.89</td>
<td>95.11</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.50</td>
<td>1836.89</td>
<td>1836.89</td>
<td>1836.91</td>
<td>36.73</td>
<td>58.38</td>
<td>55</td>
<td>77.5</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.50</td>
<td>1599.84</td>
<td>1599.84</td>
<td>1599.86</td>
<td>31.99</td>
<td>26.39</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td># 04</td>
<td>4.75</td>
<td>67.93</td>
<td>1267.93</td>
<td>1267.95</td>
<td>25.35</td>
<td>98.97</td>
<td>1.03</td>
<td>0</td>
</tr>
<tr>
<td>#08</td>
<td>2.36</td>
<td>50.00</td>
<td>50.02</td>
<td>50.02</td>
<td>1.00</td>
<td>99.97</td>
<td>0.03</td>
<td>5</td>
</tr>
<tr>
<td>cazuela</td>
<td>0.00</td>
<td>1.64</td>
<td>1.64</td>
<td>1.64</td>
<td>0.03</td>
<td>100.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5001.03</td>
<td>5001.03</td>
<td>5001.15</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 2 Curva granulométrica del agregado grueso de cunyac corregido-huso 67 (MC 4”x8”)

Fuente: Elaboración propia
1.3.1.4.2 Granulometría del agregado fino

Tabla elaborada 3 Análisis granulométrico del agregado fino de Cunyac por tamizado

<table>
<thead>
<tr>
<th>Tamaño del tamiz</th>
<th>Abertura (mm)</th>
<th>Peso retenido (gr)</th>
<th>Peso retenido corregido</th>
<th>Porcentaje retenido</th>
<th>Porcentaje retenido acumulado</th>
<th>Porcentaje que pasa</th>
<th>LÍMITES ASTM C-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>9.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100 100</td>
</tr>
<tr>
<td># 04</td>
<td>4.750</td>
<td>270.90</td>
<td>270.96</td>
<td>18.17</td>
<td>18.17</td>
<td>81.83</td>
<td>95 100</td>
</tr>
<tr>
<td># 08</td>
<td>2.360</td>
<td>148.98</td>
<td>149.04</td>
<td>10.00</td>
<td>28.17</td>
<td>71.83</td>
<td>80 100</td>
</tr>
<tr>
<td>#16</td>
<td>1.180</td>
<td>171.84</td>
<td>171.90</td>
<td>11.53</td>
<td>39.70</td>
<td>60.30</td>
<td>50 85</td>
</tr>
<tr>
<td>#30</td>
<td>0.600</td>
<td>340.36</td>
<td>340.42</td>
<td>22.83</td>
<td>62.53</td>
<td>37.47</td>
<td>25 60</td>
</tr>
<tr>
<td>#50</td>
<td>0.300</td>
<td>444.85</td>
<td>444.91</td>
<td>29.84</td>
<td>92.37</td>
<td>7.63</td>
<td>5 30</td>
</tr>
<tr>
<td>#100</td>
<td>0.150</td>
<td>67.75</td>
<td>67.81</td>
<td>4.55</td>
<td>96.92</td>
<td>3.08</td>
<td>0 10</td>
</tr>
<tr>
<td>#200</td>
<td>0.075</td>
<td>40.25</td>
<td>40.31</td>
<td>2.70</td>
<td>99.62</td>
<td>0.38</td>
<td>0 10</td>
</tr>
<tr>
<td>Cazuela</td>
<td>0.000</td>
<td>5.67</td>
<td>5.67</td>
<td>0.38</td>
<td>100.00</td>
<td>0.00</td>
<td>0 0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1490.60</td>
<td>1491.00</td>
<td>100.00</td>
<td>Modulo de finura</td>
<td>3.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 3 Curva granulométrica del agregado fino de Cunyac

Fuente: Elaboración propia
Tabla elaborada 4 Análisis granulométrico del agregado fino de Cunyac por tamizado corregido

<table>
<thead>
<tr>
<th>Tamaño del tamiz</th>
<th>Abertura (mm)</th>
<th>Peso retenido (gr)</th>
<th>Muestra corregida</th>
<th>Peso corregido (gr)</th>
<th>Porcentaje retenido</th>
<th>Porcentaje retenido acumulado</th>
<th>Porcentaje que pasa</th>
<th>LÍMITES ASTM C-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8''</td>
<td>9.500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td># 04</td>
<td>4.750</td>
<td>270.90</td>
<td>30.90</td>
<td>30.96</td>
<td>2.08</td>
<td>2.08</td>
<td>97.92</td>
<td>95</td>
</tr>
<tr>
<td># 08</td>
<td>2.360</td>
<td>148.98</td>
<td>218.98</td>
<td>219.04</td>
<td>14.69</td>
<td>16.77</td>
<td>83.23</td>
<td>80</td>
</tr>
<tr>
<td>#16</td>
<td>1.180</td>
<td>171.84</td>
<td>221.84</td>
<td>221.90</td>
<td>14.88</td>
<td>31.65</td>
<td>68.35</td>
<td>50</td>
</tr>
<tr>
<td>#30</td>
<td>0.600</td>
<td>340.36</td>
<td>390.36</td>
<td>390.42</td>
<td>26.18</td>
<td>57.83</td>
<td>42.17</td>
<td>25</td>
</tr>
<tr>
<td>#50</td>
<td>0.300</td>
<td>444.85</td>
<td>480.00</td>
<td>480.06</td>
<td>32.20</td>
<td>90.03</td>
<td>9.97</td>
<td>5</td>
</tr>
<tr>
<td>#100</td>
<td>0.150</td>
<td>67.75</td>
<td>102.60</td>
<td>102.66</td>
<td>6.89</td>
<td>96.92</td>
<td>3.08</td>
<td>0</td>
</tr>
<tr>
<td>#200</td>
<td>0.075</td>
<td>40.25</td>
<td>40.25</td>
<td>40.31</td>
<td>2.70</td>
<td>99.62</td>
<td>0.38</td>
<td>0</td>
</tr>
<tr>
<td>Cazuela</td>
<td>0.000</td>
<td>5.67</td>
<td>5.67</td>
<td>5.67</td>
<td>0.38</td>
<td>100.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1490.60</td>
<td>1490.6</td>
<td>1491.00</td>
<td>100.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 4 Curva granulométrica del agregado fino de Cunyac corregido

Fuente: Elaboración propia
1.3.1.4.3 Granulometría global (agregado grueso huso 67 y agregado fino)

<table>
<thead>
<tr>
<th>Tamiz</th>
<th>Abertura en mm</th>
<th>Porcentaje retenido grueso</th>
<th>Peso retenido grueso</th>
<th>Porcentaje retenido fino</th>
<th>Peso retenido fino</th>
<th>Granulometría agregado global</th>
<th>Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>50.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>37.500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1"</td>
<td>25.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>3/4"</td>
<td>19.000</td>
<td>4.89</td>
<td>2.54</td>
<td>0.00</td>
<td>0.00</td>
<td>2.54</td>
<td>97.46</td>
</tr>
<tr>
<td>1/2"</td>
<td>12.500</td>
<td>36.73</td>
<td>19.10</td>
<td>0.00</td>
<td>0.00</td>
<td>19.10</td>
<td>78.36</td>
</tr>
<tr>
<td>3/8"</td>
<td>9.500</td>
<td>31.99</td>
<td>16.63</td>
<td>0.00</td>
<td>0.00</td>
<td>16.63</td>
<td>61.72</td>
</tr>
<tr>
<td>N°4</td>
<td>4.750</td>
<td>25.35</td>
<td>13.18</td>
<td>1.00</td>
<td>2.08</td>
<td>14.18</td>
<td>47.54</td>
</tr>
<tr>
<td>N°8</td>
<td>2.360</td>
<td>1.00</td>
<td>0.52</td>
<td>14.69</td>
<td>7.05</td>
<td>7.57</td>
<td>39.97</td>
</tr>
<tr>
<td>N°16</td>
<td>1.180</td>
<td>0.00</td>
<td>0.00</td>
<td>14.88</td>
<td>7.14</td>
<td>7.14</td>
<td>32.83</td>
</tr>
<tr>
<td>N°30</td>
<td>0.600</td>
<td>0.00</td>
<td>0.00</td>
<td>26.18</td>
<td>12.57</td>
<td>12.57</td>
<td>20.26</td>
</tr>
<tr>
<td>N°50</td>
<td>0.300</td>
<td>0.00</td>
<td>0.00</td>
<td>32.20</td>
<td>15.45</td>
<td>15.45</td>
<td>95.20</td>
</tr>
<tr>
<td>N°100</td>
<td>0.150</td>
<td>0.00</td>
<td>0.00</td>
<td>6.89</td>
<td>3.30</td>
<td>3.30</td>
<td>1.50</td>
</tr>
<tr>
<td>N°200</td>
<td>0.075</td>
<td>0.00</td>
<td>0.00</td>
<td>2.70</td>
<td>1.30</td>
<td>1.30</td>
<td>0.20</td>
</tr>
<tr>
<td>cazuela</td>
<td>0.00</td>
<td>0.00</td>
<td>0.38</td>
<td>0.18</td>
<td>0.18</td>
<td>100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TOTAL 100 MF 4.94

Fuente: Elaboración propia

Gráfica 5 Curva granulométrica del agregado global Cunyac (A.G. huso 67 y A.F.)

Fuente: Elaboración propia
1.3.1.4.4 Cantidad de material fino que pasa la malla 200

Tabla elaborada 6 Cantidad de material fino que pasa por el tamiz N° 200 - Agregado grueso

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>MUESTRA 01</th>
<th>MUESTRA 02</th>
<th>MUESTRA 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso original de la muestra seca (gr)</td>
<td>2522.16</td>
<td>2505.93</td>
<td>2515.06</td>
</tr>
<tr>
<td>Peso de la muestra seca, después de ser lavada (gr)</td>
<td>2516.68</td>
<td>2502.55</td>
<td>2509.9</td>
</tr>
<tr>
<td>Material fino que pasa por el tamiz N° 200 (%)</td>
<td>0.22%</td>
<td>0.13%</td>
<td>0.21%</td>
</tr>
<tr>
<td>Material fino que pasa por el tamiz N° 200 (%) promedio</td>
<td></td>
<td>0.19%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 7 Cantidad de material fino que pasa por el tamiz N° 200 - Agregado fino

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>MUESTRA 01</th>
<th>MUESTRA 02</th>
<th>MUESTRA 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso original de la muestra seca (gr)</td>
<td>335.43</td>
<td>337.45</td>
<td>329.79</td>
</tr>
<tr>
<td>Peso de la muestra seca, después de ser lavada (gr)</td>
<td>333.69</td>
<td>336.22</td>
<td>328.15</td>
</tr>
<tr>
<td>Material fino que pasa por el tamiz N° 200 (%)</td>
<td>0.52%</td>
<td>0.36%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Material fino que pasa por el tamiz N° 200 (%) promedio</td>
<td></td>
<td>0.46%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

1.3.1.4.5 Contenido de humedad de los agregados

Tabla elaborada 8 Contenido de humedad del agregado grueso huso

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1</th>
<th>Muestra 2</th>
<th>Muestra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso agregado grueso natural</td>
<td>528.51</td>
<td>592.74</td>
<td>620.59</td>
</tr>
<tr>
<td>Peso agregado grueso seco</td>
<td>525.99</td>
<td>589.45</td>
<td>617.43</td>
</tr>
<tr>
<td>Contenido de humedad parcial</td>
<td>0.479</td>
<td>0.56</td>
<td>0.51</td>
</tr>
<tr>
<td>Contenido de humedad promedio</td>
<td></td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Tabla elaborada 9 Contenido de humedad del agregado fino

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1</th>
<th>Muestra 2</th>
<th>Muestra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso agregado fino natural</td>
<td>280.55</td>
<td>278.64</td>
<td>295.96</td>
</tr>
<tr>
<td>Peso agregado fino seco</td>
<td>278.26</td>
<td>276.5</td>
<td>293.68</td>
</tr>
<tr>
<td>Contenido de humedad parcial</td>
<td>0.82</td>
<td>0.77</td>
<td>0.78</td>
</tr>
<tr>
<td>Contenido de humedad</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

1.3.1.4.6 Ensayo de abrasión de los ángeles

Tabla elaborada 10 Ensayo de abrasión de los ángeles

<table>
<thead>
<tr>
<th>Gradación B</th>
<th>Muestra 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco antes del ensayo</td>
<td>5002.04</td>
</tr>
<tr>
<td>Peso seco después del ensayo</td>
<td>4103.08</td>
</tr>
<tr>
<td>% DE DESGASTE =((P1-P2)/P1) X 100</td>
<td>17.97%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

1.3.1.4.7 Gravedad específica y absorción de los agregados

Tabla elaborada 11 Gravedad específica y absorción del agregado grueso (MTC E 2016-2000)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1</th>
<th>Muestra 2</th>
<th>Muestra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A= Peso al aire de la muestra seca</td>
<td>3496.47</td>
<td>3491.42</td>
<td>3495.54</td>
</tr>
<tr>
<td>B= Peso en el aire de la muestra saturada con superficie seca</td>
<td>3519.24</td>
<td>3516.04</td>
<td>3517.80</td>
</tr>
<tr>
<td>C= Peso sumergido en agua de la muestra saturada</td>
<td>2225.14</td>
<td>2218.50</td>
<td>2219.00</td>
</tr>
<tr>
<td>Peso específico aparente =A/(B-C)</td>
<td>2.70</td>
<td>2.69</td>
<td>2.69</td>
</tr>
<tr>
<td>Peso específico aparente (S.S.S.) =B/(B-C)</td>
<td>2.72</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>Peso específico nominal=A/(A-C)</td>
<td>2.75</td>
<td>2.74</td>
<td>2.74</td>
</tr>
<tr>
<td>Absorción=(B-A)/Ax100</td>
<td>0.65</td>
<td>0.71</td>
<td>0.64</td>
</tr>
<tr>
<td>Peso específico aparente promedio =A/(B-C)</td>
<td>2.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico aparente (S.S.S.) promedio =B/(B-C)</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico nominal promedio=A/(A-C)</td>
<td>2.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorción promedio=(B-A)/Ax100</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla elaborada 12 Gravedad específica y absorción del agregado fino (MTC E 2016-2000)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1</th>
<th>Muestra 2</th>
<th>Muestra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A= Peso al aire de la muestra seca</td>
<td>253.53</td>
<td>247.5</td>
<td>248</td>
</tr>
<tr>
<td>B= Peso del pignómetro aforado lleno de agua</td>
<td>684.54</td>
<td>684.89</td>
<td>684.45</td>
</tr>
<tr>
<td>C= Peso del picnómetro aforado con muestra y lleno de agua</td>
<td>842.84</td>
<td>842.07</td>
<td>841.48</td>
</tr>
<tr>
<td>S= Peso de la muestra saturada con superficie seca</td>
<td>256.89</td>
<td>250.65</td>
<td>251.25</td>
</tr>
<tr>
<td>Peso específico aparente =A/(B+S-C)</td>
<td>2.57</td>
<td>2.65</td>
<td>2.63</td>
</tr>
<tr>
<td>Peso específico aparente (S.S.S.) =A/(B+S-C)</td>
<td>2.57</td>
<td>2.57</td>
<td>2.57</td>
</tr>
<tr>
<td>Peso específico nominal=A/(B+A-C)</td>
<td>2.66</td>
<td>2.74</td>
<td>2.73</td>
</tr>
<tr>
<td>Absorción=(S-A)/Ax100</td>
<td>1.33</td>
<td>1.27</td>
<td>1.31</td>
</tr>
<tr>
<td>Peso específico aparente promedio =A/(B+S-C)</td>
<td>2.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico aparente (S.S.S.) promedio =B/(B-C)</td>
<td>2.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico nominal promedio=A/(B+A-C)</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorción promedio=(S-A)/Ax100</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

1.3.1.4.8 Peso unitario de los agregados

Tabla elaborada 13 Peso unitario suelto del agregado grueso-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa= Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>3.421</td>
<td>3.446</td>
<td>3.427</td>
</tr>
<tr>
<td>Vp= Volumen del proctor utilizado</td>
<td>0.002124</td>
<td>0.002124</td>
<td>0.002124</td>
</tr>
<tr>
<td>PUS=Peso unitario suelto=Pa/Vp</td>
<td>1610.700</td>
<td>1622.470</td>
<td>1613.530</td>
</tr>
<tr>
<td>Promedio</td>
<td>1615.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

Tabla elaborada 14 Peso unitario compactado del agregado grueso-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a = Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>3.684</td>
<td>3.705</td>
<td>3.692</td>
</tr>
<tr>
<td>V_p = Volumen del proctor utilizado</td>
<td>0.002124</td>
<td>0.002124</td>
<td>0.002124</td>
</tr>
<tr>
<td>P_{US} = Peso unitario suelto $= P_a/V_p$</td>
<td>1734.620</td>
<td>1744.370</td>
<td>1738.340</td>
</tr>
<tr>
<td>Promedio</td>
<td>1739.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 15 Peso unitario suelto del agregado fino

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a = Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>1.554</td>
<td>1.550</td>
<td>1.565</td>
</tr>
<tr>
<td>V_p = Volumen del proctor utilizado</td>
<td>0.000944</td>
<td>0.000944</td>
<td>0.000944</td>
</tr>
<tr>
<td>P_{US} = Peso unitario suelto $= P_a/V_p$</td>
<td>1646.040</td>
<td>1641.850</td>
<td>1657.480</td>
</tr>
<tr>
<td>Promedio</td>
<td>1648.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 16 Peso unitario compactado del agregado fino

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a = Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>1.685</td>
<td>1.684</td>
<td>1.681</td>
</tr>
<tr>
<td>V_p = Volumen del proctor utilizado</td>
<td>0.000944</td>
<td>0.000944</td>
<td>0.000944</td>
</tr>
<tr>
<td>P_{US} = Peso unitario suelto $= P_a/V_p$</td>
<td>1781.42</td>
<td>1783.75</td>
<td>1780.26</td>
</tr>
<tr>
<td>Promedio</td>
<td>1781.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

4.1.3.2 Resultados de ensayos a los agregados para muestras cilíndricas de 2”x4”

Los ensayos que se detallan a continuación, son los realizados al agregado grueso de huso 8, ya que el agregado fino es el mismo y se detalló en el ítem anterior.
2.3.1.4.1 Granulometría del agregado grueso – huso 8

Tabla elaborada 17 Análisis granulométrico del agregado grueso de Cunyac por tamizado-huso 8

Peso de muestra ensayada 2000 gr

<table>
<thead>
<tr>
<th>Tamaño tamiz</th>
<th>Abertura (mm)</th>
<th>Peso ret. (gr)</th>
<th>Peso ret. Corregido (gr)</th>
<th>% retenido</th>
<th>% reten. Acum.</th>
<th>% que pasa</th>
<th>Límites astm c-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3”</td>
<td>76.10</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2”</td>
<td>50.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>37.50</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>25.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.50</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.50</td>
<td>200</td>
<td>199.75</td>
<td>9.99</td>
<td>9.99</td>
<td>90.01</td>
<td>85</td>
</tr>
<tr>
<td># 04</td>
<td>4.75</td>
<td>1500</td>
<td>1499.75</td>
<td>74.99</td>
<td>84.98</td>
<td>15.03</td>
<td>10</td>
</tr>
<tr>
<td># 08</td>
<td>2.36</td>
<td>300</td>
<td>299.75</td>
<td>14.99</td>
<td>99.96</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td># 16</td>
<td>1.18</td>
<td>0</td>
<td>0.25</td>
<td>0.01</td>
<td>99.95</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>cazuela</td>
<td>0.00</td>
<td>1</td>
<td>1.00</td>
<td>0.05</td>
<td>100.00</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 2001.00 2000.00 100.00 Modulo de finura 5.95

Fuente: Elaboración propia

Gráfica 6 Curva granulométrica del agregado grueso-huso 8

Fuente: Elaboración propia
2.3.1.4.2 Granulometría del agregado global

Tabla elaborada 18 Análisis granulométrico del agregado global (A.G. huso 8 y A.F.)

<table>
<thead>
<tr>
<th>Tamiz</th>
<th>Abertura (mm)</th>
<th>% ret grueso</th>
<th>Peso ret. grueso x50%</th>
<th>% ret. fino</th>
<th>Peso ret. Fino x 50%</th>
<th>Granulometría agregado global</th>
<th>Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% ret. gris</td>
<td></td>
<td></td>
<td></td>
<td>% ret. grueso global</td>
<td>% Retenido acumulado</td>
</tr>
<tr>
<td>2”</td>
<td>50.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>37.500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1”</td>
<td>25.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.500</td>
<td>9.98</td>
<td>4.99</td>
<td>0.00</td>
<td>0.00</td>
<td>4.99</td>
<td>4.99</td>
</tr>
<tr>
<td>N°4</td>
<td>4.750</td>
<td>74.98</td>
<td>37.49</td>
<td>2.08</td>
<td>1.04</td>
<td>38.53</td>
<td>43.52</td>
</tr>
<tr>
<td>N°8</td>
<td>2.360</td>
<td>14.98</td>
<td>7.49</td>
<td>14.69</td>
<td>7.35</td>
<td>14.84</td>
<td>58.36</td>
</tr>
<tr>
<td>N°16</td>
<td>1.180</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N°30</td>
<td>0.600</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>13.09</td>
<td>13.09</td>
</tr>
<tr>
<td>N° 50</td>
<td>0.300</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>32.20</td>
<td>16.10</td>
</tr>
<tr>
<td>N° 100</td>
<td>0.150</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.89</td>
<td>3.44</td>
</tr>
<tr>
<td>N°200</td>
<td>0.075</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.70</td>
<td>1.35</td>
</tr>
<tr>
<td>cazuela</td>
<td>0.00</td>
<td>0.00</td>
<td>0.38</td>
<td>0.19</td>
<td>0.19</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

TOTAL: 100.00

Modulo de finura 4.45

Fuente: Elaboración propia

Gráfica 7 Curva granulométrica del agregado global (A.G. huso 8 y A.F.)

Fuente: Elaboración propia
2.3.1.4.3 Material fino que pasa por la malla N° 200

Tabla elaborada 19 Cantidad de material fino que pasa por el tamiz N° 200 del agregado grueso-huso 8

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>MUESTRA 01</th>
<th>MUESTRA 02</th>
<th>MUESTRA 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso original de la muestra seca (gr)</td>
<td>1010.09</td>
<td>1005.32</td>
<td>1020.56</td>
</tr>
<tr>
<td>Peso de la muestra seca, después de ser lavada (gr)</td>
<td>1007.65</td>
<td>1003.01</td>
<td>1016.84</td>
</tr>
<tr>
<td>Material fino que pasa por el tamiz N° 200 (%)</td>
<td>0.24%</td>
<td>0.23%</td>
<td>0.36%</td>
</tr>
</tbody>
</table>

Material fino que pasa por el tamiz N° 200 (%) promedio: 0.28%

Fuente: Elaboración propia

2.3.1.4.4 Contenido de humedad

Tabla elaborada 20 Contenido de humedad del agregado grueso- huso 8

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>MUESTRA 1</th>
<th>MUESTRA 2</th>
<th>MUESTRA 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso agregado grueso natural</td>
<td>320.98</td>
<td>310.99</td>
<td>309.99</td>
</tr>
<tr>
<td>Peso agregado grueso seco</td>
<td>319.27</td>
<td>309.61</td>
<td>308.49</td>
</tr>
<tr>
<td>Contenido de humedad parcial</td>
<td>0.54</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>Contenido de humedad</td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

2.3.1.4.5 Ensayo de abrasión de los ángeles

Tabla elaborada 21 Abrasión de los ángeles del agregado grueso - huso 8

<table>
<thead>
<tr>
<th>GRADACIÓN C, 8 ESFERAS</th>
<th>MUESTRA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco antes del ensayo</td>
<td>5008.43</td>
</tr>
<tr>
<td>Peso seco después del ensayo</td>
<td>4090.25</td>
</tr>
<tr>
<td>% DE DESGASTE=((P1-P2)/P1)X100</td>
<td>18.33%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
2.3.1.4.6 Gravedad específica y absorción de agregados

Tabla elaborada 22 Gravedad específica y absorción de agregado grueso-huso8 (MTC E 2016-200)

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>MUESTRA 1</th>
<th>MUESTRA 2</th>
<th>MUESTRA 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A= Peso al aire de la muestra seca</td>
<td>2437.7</td>
<td>2469.9</td>
<td>2327.2</td>
</tr>
<tr>
<td>B= Peso en el aire de la muestra saturada con superficie seca</td>
<td>2460.2</td>
<td>2492.1</td>
<td>2348.9</td>
</tr>
<tr>
<td>C= Peso sumergido en agua de la muestra saturada</td>
<td>1538.9</td>
<td>1558.5</td>
<td>1468.9</td>
</tr>
<tr>
<td>Peso específico aparente =A/(B-C)</td>
<td>2.65</td>
<td>2.65</td>
<td>2.64</td>
</tr>
<tr>
<td>Peso específico aparente (S.S.S.) =B/(B-C)</td>
<td>2.67</td>
<td>2.67</td>
<td>2.67</td>
</tr>
<tr>
<td>Peso específico nominal=A/(A-C)</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>Absorción=(B-A)/Ax100</td>
<td>0.92</td>
<td>0.90</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

2.3.1.4.7 Peso unitario suelto y compactado de agregado grueso

Tabla elaborada 23 Peso unitario suelto del agregado grueso-huso 8

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa= Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>3.460</td>
<td>3.452</td>
<td>3.455</td>
</tr>
<tr>
<td>Vp= Volumen del proctor utilizado</td>
<td>0.002124</td>
<td>0.002124</td>
<td>0.002124</td>
</tr>
<tr>
<td>PUS=Peso unitario suelto=Pa/Vp</td>
<td>1629.00</td>
<td>1625.24</td>
<td>1626.65</td>
</tr>
</tbody>
</table>

Promedio | 1626.96 |

Fuente: Elaboración propia

Tabla elaborada 24 Peso unitario compactado de agregado grueso-huso 8

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Muestra 1 (kg)</th>
<th>Muestra 2 (kg)</th>
<th>Muestra 3 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa= Diferencia del peso de la muestra más proctor menos peso proctor</td>
<td>3.716</td>
<td>3.721</td>
<td>3.718</td>
</tr>
<tr>
<td>Vp= Volumen del proctor utilizado</td>
<td>0.002124</td>
<td>0.002124</td>
<td>0.002124</td>
</tr>
<tr>
<td>PUS=Peso unitario suelto=Pa/Vp</td>
<td>1749.53</td>
<td>1751.88</td>
<td>1750.47</td>
</tr>
</tbody>
</table>

Promedio | 1750.63 |

Fuente: Elaboración propia
4.2 Diseño de mezclas

Uno de los métodos de diseño de mezclas más utilizados, es el método del ACI, más en esta investigación se utilizó el método del agregado global, ya que se ha visto muchas experiencias en las que ha dado buenos resultados, debido a que este método considera el máximo peso unitario compactado de los agregados, que le da mayor densidad al concreto.

Una vez concluido los diferentes ensayos de laboratorio para los agregados, como son: el contenido de humedad, el peso específico de masa, el peso unitario suelto y compactado y el módulo de finura, se procesó los resultados y se procedió a la elaboración del diseño de mezclas.

4.2.1 Método del Agregado global

El método consiste en optimizar sistemáticamente la proporción de agregado fino y grueso como un solo material (agregado global), dirigido a:

a) Controlar la trabajabilidad de la mezcla de concreto.

b) Obtener la máxima compacidad de la combinación de agregados mediante ensayos de laboratorio.

Para la adición de agua se debe tener en cuenta la durabilidad, según los códigos de diseño del ACI y Eurocódigos que son similares y por resistencia de acuerdo a la relación de Abrams (a/c).
4.2.2 Diseño de mezclas para concretos $f'_c = 140, 175, 210, 280$ y 350 kg/cm^2 –huso 67 (testigos cilíndricos de 4” x 8”)

Para el diseño de mezclas de $f'_c=140,175,210,280$ y 350 kg/cm^2, se utilizó agregado grueso de tamaño máximo de 1” y tamaño máximo nominal de 3/4” (huso 67), el agregado fino, pasante la malla 3/8. Considerando que los testigos cilíndricos son de 4” x 8”.

La investigación consideró la máxima compacidad de los agregados, para lo cual se determinó el máximo peso unitario compactado del agregado global mediante la combinación del agregado grueso y fino a diferentes porcentajes.

El siguiente cuadro muestra las diferentes combinaciones en porcentaje de agregado grueso y fino.

<table>
<thead>
<tr>
<th>Porcentaje de agregado grueso</th>
<th>Porcentaje de agregado fino</th>
<th>Peso del próctor más agregado global (kg)</th>
<th>Peso del próctor sin collarín</th>
<th>Volumen del próctor</th>
<th>Peso de agregado</th>
<th>Peso unitario compactado</th>
</tr>
</thead>
<tbody>
<tr>
<td>36%</td>
<td>64%</td>
<td>10.7973</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.24</td>
<td>1994.94</td>
</tr>
<tr>
<td>42%</td>
<td>58%</td>
<td>10.8204</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.26</td>
<td>2005.82</td>
</tr>
<tr>
<td>46%</td>
<td>54%</td>
<td>10.8367</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.28</td>
<td>2013.49</td>
</tr>
<tr>
<td>48%</td>
<td>52%</td>
<td>10.8445</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.28</td>
<td>2017.17</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>10.8504</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2019.94</td>
</tr>
<tr>
<td>52%</td>
<td>48%</td>
<td>10.8602</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.30</td>
<td>2024.56</td>
</tr>
<tr>
<td>54%</td>
<td>46%</td>
<td>10.8527</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2021.03</td>
</tr>
<tr>
<td>56%</td>
<td>44%</td>
<td>10.8464</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2018.06</td>
</tr>
<tr>
<td>58%</td>
<td>42%</td>
<td>10.8450</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.28</td>
<td>2017.40</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>10.8300</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.27</td>
<td>2010.34</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

De este ensayo, se desprende que el mayor peso unitario compactado de agregado global resulta de la combinación del 48% de arena y el 52% de agregado grueso, cuyos datos se utilizaron en el diseño de mezclas.

4.2.2.1 Diseño de mezclas inicial para concreto f’c= 140 kg/cm² –huso 67

Se siguieron los siguientes pasos para el diseño de mezclas mediante el método del agregado global para una resistencia especificada de f’c=140 kg/cm².

a) Resistencia especificada y selección del asentamiento

De acuerdo a la consistencia, se utiliza las mezclas plásticas, mediante la siguiente tabla:
La resistencia especificada es $f'_c=140 \text{ kg/cm}^2$, la cual puede ser utilizada en falsas zapatas, cimientos corridos con adición de piedra grande, etc. por lo que el asentamiento que se utiliza es de 3”.

b) Determinación de la resistencia requerida

<table>
<thead>
<tr>
<th>Resistencia especificada</th>
<th>Resistencia requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'_c \leq 210$</td>
<td>$f'_{cr} = f'_c + 70$</td>
</tr>
<tr>
<td>$210 < f'_c \leq 350$</td>
<td>$f'_{cr} = f'_c + 85$</td>
</tr>
<tr>
<td>$f'_c > 350$</td>
<td>$f'_{cr} = 1.10*f'_c+50$</td>
</tr>
</tbody>
</table>

Fuente: Diseño de mezclas, Ing. Enrique Rivva López

La resistencia especificada es $f'_c=140 \text{ kg/cm}^2$ y éste es menor a 210 kg/cm2, entonces la fórmula que se utiliza para la resistencia requerida, es: $f'_{cr} = f'_c + 70$

$F'_{cr} = 140 + 70 = 210 \text{ kg/cm}^2$

c) Determinación de la cantidad de agua de mezcla

Para lo cual es necesario conocer el asentamiento, que en este caso es 3”, así como el tamaño máximo nominal del agregado grueso, que en este caso es 3/4”.

De acuerdo a la siguiente tabla.
Tabla 21 Requerimientos aproximados de agua de mezclado y de contenido de aire para diferentes valores de asentamiento y tamaños máximos de agregados.

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3/8”</th>
<th>½”</th>
<th>¼”</th>
<th>1”</th>
<th>1 ½”</th>
<th>2”</th>
<th>3”</th>
<th>6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” a 2”</td>
<td>207</td>
<td>199</td>
<td>190</td>
<td>179</td>
<td>166</td>
<td>154</td>
<td>130</td>
<td>113</td>
</tr>
<tr>
<td>3” a 4”</td>
<td>228</td>
<td>216</td>
<td>205</td>
<td>193</td>
<td>181</td>
<td>169</td>
<td>145</td>
<td>124</td>
</tr>
<tr>
<td>6” a 7”</td>
<td>243</td>
<td>228</td>
<td>216</td>
<td>202</td>
<td>190</td>
<td>178</td>
<td>160</td>
<td>--</td>
</tr>
</tbody>
</table>

Concreto con aire incorporado

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3/8”</th>
<th>½”</th>
<th>¼”</th>
<th>1”</th>
<th>1 ½”</th>
<th>2”</th>
<th>3”</th>
<th>6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” a 2”</td>
<td>181</td>
<td>175</td>
<td>168</td>
<td>160</td>
<td>150</td>
<td>142</td>
<td>122</td>
<td>107</td>
</tr>
<tr>
<td>3” a 4”</td>
<td>202</td>
<td>193</td>
<td>184</td>
<td>175</td>
<td>165</td>
<td>157</td>
<td>133</td>
<td>119</td>
</tr>
<tr>
<td>6” a 7”</td>
<td>216</td>
<td>205</td>
<td>197</td>
<td>184</td>
<td>174</td>
<td>166</td>
<td>154</td>
<td>--</td>
</tr>
</tbody>
</table>

Fuente: Diseño de mezclas, Enrique Riva López

Por consiguiente, la cantidad de agua para diseño es de 205 lit/m³.

d) **Determinación del contenido de aire**

Para la determinación del aire atrapado se considera el tamaño máximo nominal de la piedra y se utiliza el siguiente cuadro.

Tabla 22 Contenido de aire atrapado por m³ de concreto.

<table>
<thead>
<tr>
<th>Tamaño nominal máximo</th>
<th>Aire atrapado</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8”</td>
<td>3.0%</td>
</tr>
<tr>
<td>½”</td>
<td>2.5%</td>
</tr>
<tr>
<td>¼”</td>
<td>2.0%</td>
</tr>
<tr>
<td>1”</td>
<td>1.5%</td>
</tr>
<tr>
<td>1 ½”</td>
<td>1.0%</td>
</tr>
<tr>
<td>2”</td>
<td>0.5%</td>
</tr>
<tr>
<td>3”</td>
<td>0.3%</td>
</tr>
<tr>
<td>6”</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Fuente: Diseño de mezclas, Enrique Riva López

Por consiguiente, el aire atrapado es de 2%.
e) Selección de la relación agua/cemento (a/c)

Para la selección de la relación agua/cemento, se necesita la resistencia requerida f'_{cr}, que para este diseño de mezclas es $f'_{cr}=210 \text{ kg/cm}^2$, seleccionamos la relación a/c del siguiente cuadro:

<table>
<thead>
<tr>
<th>f'_{cr}</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>0.38</td>
</tr>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
<tr>
<td>300</td>
<td>0.54</td>
</tr>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
<tr>
<td>150</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Fuente: Diseño de mezclas, Enrique Rivva lópez

Se observa que $f'_{cr}=210 \text{ kg/cm}^2$, es un valor que está entre 200 kg/cm2 y 250 kg/cm2, para lo cual es necesario realizar una interpolación, en la que resulta 0.674.

\[
\frac{210 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69}
\]

\[
x = 0.674
\]

f) Cantidad de cemento

\[
c = \frac{\text{agua}}{a/c} = \frac{205}{0.674} = 304.15 \text{ kg}
\]

g) Cantidad de arena y piedra

Para hallar la cantidad de arena y piedra, es necesario tomar en consideración si el concreto a diseñar es convencional o requerirá de algún aditivo, más para esta
investigación sólo es convencional, por lo que sus componentes son el cemento, agua, arena, piedra y aire.

Cuadro explicativo 1 Cantidad de arena y piedra f'c=140 kg/cm²

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso específico</th>
<th>Volumen</th>
<th>Distrib. de volum. faltante</th>
<th>Peso unitario sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS (kg)</td>
<td>Pe (kg/m³)</td>
<td>V(m³)</td>
<td>WUS (m³)</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>2850.00</td>
<td>0.107</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>x</td>
<td>2617.57</td>
<td>0.321</td>
<td>2.76</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>y</td>
<td>2689.35</td>
<td>0.347</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.000</td>
<td>0.332</td>
<td>0.668</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso seco del cemento se conoce, como también la cantidad de agua y el porcentaje de aire, las cuales ocupan un volumen, pero de la arena y la piedra son incógnitas, “x” e “y” respectivamente.

Los pesos específicos de los componentes del concreto son conocidos, por lo que se puede conocer el volumen del cemento y del agua, y del aire de acuerdo a tabla, de la siguiente forma:

\[v = \frac{\text{peso seco}}{\text{peso específico}} \]

\[V_{cemento} = \frac{304.15}{2850} = 0.107 \]

\[V_{agua} = \frac{205}{1000} = 0.205 \]

\[V_{aire} = 2\% = 0.020 \]

El volumen parcial, es:
Dicha determinación es de la densidad y resistencia con ultrasonido y triaxial para concretos f’c = 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac.

La fórmula de cálculo es:

\[V_{parcial} = 0.107 + 0.205 + 0.020 = 0.332 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.332 = 0.668 \]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[V_{arena} = 0.668 \times 48\% = 0.321 \]
\[V_{piedra} = 0.668 \times 52\% = 0.347 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]
\[x = \text{peso seco arena} = 2617.57 \times 0.321 = 840.24 \]
\[y = \text{peso seco piedra} = 2689.35 \times 0.347 = 933.20 \]

Cuadro explicativo 2 Calcular volúmenes y peso unitario seco.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>2850.00</td>
<td>0.107</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>Arena</td>
<td>840.24</td>
<td>2617.57</td>
<td>0.321</td>
<td></td>
<td>2.76</td>
</tr>
<tr>
<td>Piedra</td>
<td>933.20</td>
<td>2689.35</td>
<td>0.347</td>
<td></td>
<td>3.07</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.00</td>
<td></td>
<td>0.332</td>
<td>0.668</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WUS_{cemento} = \frac{304.15}{304.15} = 1 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = \) 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

\[
WUS_{\text{agua}} = \frac{205}{304.15} = 0.67
\]

\[
WU_{\text{arena}} = \frac{840.24}{304.15} = 2.76
\]

\[
WUS_{\text{piedra}} = \frac{933.20}{304.15} = 3.07
\]

h) Corrección por humedad y absorción

La corrección por humedad y absorción de la piedra y la arena modifica la cantidad de agua previsto en estado seco, ésta puede aumentar o disminuir.

Cuadro explicativo 3 Corrección por humedad de agregados, peso unitario y volumen en obra \(f'c = 140 \) kg/cm².

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>210.59</td>
<td>0.69</td>
<td>29.33</td>
<td>29.33</td>
</tr>
<tr>
<td>Arena</td>
<td>846.88</td>
<td>2.78</td>
<td>118.15</td>
<td>2.53</td>
</tr>
<tr>
<td>Piedra</td>
<td>938.06</td>
<td>3.08</td>
<td>130.90</td>
<td>2.86</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.68</td>
<td>7.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso del cemento en obra es el mismo, no varía.

Peso del cemento = 304.15 kg.

La cantidad de agua final, está dado por la siguiente fórmula:

\[
Acorreg = A_{\text{diseno}} - \left[P_{\text{secarena}} \times \frac{(H_{\text{arena}} - a_{\text{absarena}})}{100} + P_{\text{secpiedra}} \times \frac{(H_{\text{piedra}} - a_{\text{abspiedra}})}{100}\right]
\]

\[
Acorreg = 205 - \left[840.24 \times \frac{(0.79 - 1.30)}{100} + 933.2 \times \frac{(0.52 - 0.66)}{100}\right] = 210.59
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula
Peso húmedo arena en kg

\[= \text{Peso seco arena en kg} \times (1 + \text{humedad de arena en \%}) \]

\[\text{Peso húmedo arena en kg} = 840.24 \times (1 + 0.0079) = 846.88 \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo piedra en kg} = \text{Peso seco piedra en kg} \times (1 + \text{humedad de piedra en \%}) \]

\[\text{peso húmedo piedra en kg} = 933.20 \times (1 + 0.0052) = 938.06 \]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUOCemento = \frac{304.15}{304.15} = 1 \]

\[WUOagua = \frac{210.59}{304.15} = 0.69 \]

\[WUOarena = \frac{846.88}{304.15} = 2.78 \]

\[WUOpiedra = \frac{938.06}{304.15} = 3.08 \]

Peso unitario en obra por bolsa de cemento (WUO x 42.5)

En obra, para las tandas de concreto normalmente se referencia con la bolsa de cemento cuyo peso es 42.5 kg, por lo cual hacemos el siguiente cálculo:

\[WUOCemento \times 42.5 = 1 \times 42.5 = 42.5 \]

\[WUOagua \times 42.5 = 0.69 \times 42.5 = 29.33 \]

\[WUOarena \times 42.5 = 2.78 \times 42.5 = 118.15 \]

\[WUOpiedra \times 42.5 = 3.08 \times 42.5 = 130.90 \]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie³
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyae

- En el caso del agua, es manejable la unidad con la que se trabaja, 29.33 lit

- El volumen de la arena en obra en pies3, es:

$$\frac{WUO\text{arena}}{PUS\text{arena}} \times 35.31 = \frac{118.15}{1648.46} \times 35.31 = 2.53 \text{ pie}^3$$

- El volumen en obra en pies3 de la piedra

$$\frac{WUO\text{piedra}}{PUS\text{piedra}} \times 35.31 = \frac{130.90}{1615.57} \times 35.31 = 2.86 \text{ pie}^3$$

Cuadro explicativo 4 Dosificación para diseño de mezclas inicial $f'c=140$ kg/cm2

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
<th>Lit / bols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.53</td>
<td>2.86</td>
<td>29.33</td>
<td>0.69</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

i) Mezcla de prueba

El diseño de mezclas es una aproximación de las cantidades de cada componente a considerar en la elaboración del concreto, es por ello que, es necesario realizar las mezclas de prueba.

Para la mezcla de prueba, se hizo los siguientes cálculos:

Cuadro explicativo 5 Cálculo de mezcla de prueba inicial $f'c=140$ kg/cm2

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb</td>
<td>19.60</td>
<td>kg</td>
</tr>
<tr>
<td>Factor $F = \frac{Wtb}{WUOtotal}$</td>
<td>2.60</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se elaboró 04 briquetas de prueba y se consideró un peso aproximado de 4.90 kg por cada uno, lo que hizo un peso total de 19.60 kg.

Se trabajó con un factor F, que es igual a:

$$F = \frac{peso total de briquetas}{peso unitario en obra total} = \frac{19.60}{7.55} = 2.60$$
Entonces, los pesos de cada componente del concreto de la mezcla de prueba, resulta:

Cuadro explicativo 6 Cantidades de componentes para mezcla de prueba

<table>
<thead>
<tr>
<th>Descripción</th>
<th>mezcla de prueba WUO*F (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>2.60</td>
</tr>
<tr>
<td>Agua</td>
<td>1.79</td>
</tr>
<tr>
<td>Arena</td>
<td>7.23</td>
</tr>
<tr>
<td>Piedra</td>
<td>8.01</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración

\[
WUO_{\text{cemento}} \times F = 1 \times 2.60 = 2.60
\]

\[
WUO_{\text{agua}} \times F = 0.69 \times 2.60 = 1.79
\]

\[
WUO_{\text{cemento}} \times F = 2.78 \times 2.60 = 7.23
\]

\[
WUO_{\text{cemento}} \times F = 3.08 \times 2.60 = 8.01
\]

El cuadro resumen, se muestra en el ANEXO B1

4.2.2.2 Corrección de diseño de mezclas inicial f’c=140 kg/cm² - huso 67 por asentamiento y densidad

Después de elaborar las briquetas de prueba, se observó que la cantidad de agua de diseño excedió al necesario para lograr un asentamiento de 3” a 4”, lo que obligó a replantear el diseño de mezclas, modificando la cantidad de agua de diseño.

Cuadro explicativo 7 Cálculo en seco del diseño inicial de f’c=140 kg/cm²-huso67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en seco WS (kg)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>0.67</td>
</tr>
<tr>
<td>Arena</td>
<td>840.24</td>
<td>2.76</td>
</tr>
<tr>
<td>Piedra</td>
<td>933.20</td>
<td>3.07</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2282.59</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
La densidad teórica del concreto es de 2282.59 kg/m3, de acuerdo al cuadro anterior.

Según el cálculo del diseño de mezclas inicial se tiene:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra WO</th>
<th>WUO*F Para 19.60 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>2.60</td>
</tr>
<tr>
<td>Agua</td>
<td>210.59</td>
<td>1.79</td>
</tr>
<tr>
<td>Arena</td>
<td>846.88</td>
<td>7.23</td>
</tr>
<tr>
<td>Piedra</td>
<td>938.06</td>
<td>8.01</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.68</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Al preparar la mezcla de prueba sobró 0.151 lit. de agua para un asentamiento de 3” a 4”.

La densidad real medida después de la elaboración de la mezcla de prueba es 2363.84 kg/m3

\[
Rendimiento\ de\ la\ mezcla = \frac{2.60 + 1.79 - 0.151 + 7.23 + 8.01}{2363.84} = 0.00824\ m^3
\]

\[
Agua\ corregida = \frac{1.79 + 0.04 + 0.01 - 0.151}{0.00824} = 204.98\ lit
\]

\[
cemento\ corregido = \frac{204.98}{0.67} = 305.94\ kg
\]

\[
Piedra\ húmeda\ corregida = \frac{8.01}{0.00824} = 972.09\ kg
\]

\[
Piedra\ seca\ corregida = \frac{972.09}{1.0052} = 967.06\ kg
\]

\[
Piedra\ saturada\ corregida = 967.06 \times 1.0066 = 973.44\ kg
\]

\[
Arena\ saturada\ corregida = 2363.84 - 204.98 - 305.94 - 967.06 = 879.48\ kg
\]
Arena seca corregida = \frac{879.48}{1.013} = 868.19 kg

Entonces las proporciones corregidas por asentamiento y densidad son:

Cuadro explicativo 9 Dosificación en seco de diseño de mezclas inicial corregido de f'c=140 kg/cm² – huso 67

<table>
<thead>
<tr>
<th>Material</th>
<th>CEMENTO</th>
<th>AGUA</th>
<th>ARENA SECA</th>
<th>PIEDRA SECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litros</td>
<td>305.94</td>
<td>204.98</td>
<td>868.19</td>
<td>967.06</td>
</tr>
<tr>
<td>Relación</td>
<td>1.00</td>
<td>0.67</td>
<td>2.84</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 10 Dosificación en húmedo de diseño de mezclas inicial corregido de f'c=140 kg/cm² – huso 67

<table>
<thead>
<tr>
<th>Material</th>
<th>CEMENTO</th>
<th>AGUA</th>
<th>ARENA HÚMEDA</th>
<th>PIEDRA HÚMEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litros</td>
<td>305.94</td>
<td>210.76</td>
<td>875.05</td>
<td>972.09</td>
</tr>
<tr>
<td>Relación</td>
<td>1</td>
<td>0.69</td>
<td>2.86</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B2

4.2.2.3 Diseño de mezclas final para concretos f'c= 140 kg/cm² – huso 67

Los pasos a seguir en el diseño de mezclas son los mismos que se mostraron en el diseño de mezclas inicial, con la diferencia de que la resistencia requerida se obtiene mediante fórmulas que consideran la desviación estándar obtenida a partir ensayos de compresión simple hechos a testigos cilíndricos que se elaboraron con el diseño de mezclas inicial corregido.

Los ensayos de compresión simple que se realizaron para la obtención de la desviación estándar, se muestran en el ANEXO A1.

Con el valor de la desviación estándar Ss=13.88 se determina la resistencia requerida

a) **Resistencia especificada y selección del asentamiento**

De acuerdo a la tabla 19 el asentamiento es de 3”

b) **Determinación de la resistencia requerida**

Para la determinación de la resistencia requerida se utiliza la siguiente tabla
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyae

Tabla 24 Resistencia Requerida con desviación estándar

<table>
<thead>
<tr>
<th>Resistencia especificada $F'c$ (kg/cm2)</th>
<th>Resistencia requerida $F'cr$(kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usar el mayor valor obtenido entre las ecuaciones 1 y 2</td>
</tr>
<tr>
<td>$f'c \leq 350$</td>
<td>$f'cr = f'c + 1.34 \times Ss$</td>
</tr>
<tr>
<td></td>
<td>$f'cr = f'c + 2.33 \times Ss - 35$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$f'c > 350$</td>
<td>Usar el mayor valor obtenido entre las ecuaciones 1 y 3</td>
</tr>
<tr>
<td></td>
<td>$f'cr = f'c + 1.34 \times Ss$</td>
</tr>
<tr>
<td></td>
<td>$f'cr = 0.90 \times f'c + 2.33 \times Ss$</td>
</tr>
<tr>
<td>$F'c > 350$</td>
<td>$F'cr=1.10*f'c+50$</td>
</tr>
</tbody>
</table>

Fuente: RNE. Norma E 060

La resistencia especificada del diseño de mezclas es $f'c=140$ kg/cm2 y éste es menor a 350 kg/cm2, entonces se utiliza las fórmulas (1) y (2), de las cuales se selecciona el mayor valor resultante.

$$f'cr = f'c + 1.34 \times Ss = 140 + 1.34 \times 13.88 = 158.60$$

$$f'cr = f'c + 2.33 \times Ss - 35 = 140 + 2.33 \times 13.88 = 137.34$$

El mayor valor resultante de la resistencia requerida es 158.60 kg/cm2

c) **Determinación de la cantidad de agua de mezcla**

De acuerdo a la tabla 21, la cantidad de agua es 205 lit/m3

d) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es 2%

e) **Selección de la relación agua/cemento (a/c)**

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
<tr>
<td>158.60</td>
<td>x</td>
</tr>
<tr>
<td>150</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

\[
\frac{158.60 - 150}{200 - 150} = \frac{x - 0.79}{0.69 - 0.79}
\]
\[x = 0.773\]

f) Cantidad de cemento

\[c = \frac{agua}{a/c} = \frac{205}{0.773} = 265.20 \text{ kg}\]

g) Cantidad de arena y piedra

\[v = \frac{peso \text{ seco}}{peso \text{ específico}}\]

\[V_{\text{cemento}} = \frac{265.20}{2850} = 0.093\]

\[V_{\text{agua}} = \frac{205}{1000} = 0.205\]

\[V_{\text{aire}} = 2\% = 0.020\]

El volumen parcial, es:

\[V_{\text{parcial}} = 0.093 + 0.205 + 0.020 = 0.318\]

El volumen faltante, es:

\[V_{\text{faltante}} = 1 - 0.318 = 0.682\]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[V_{\text{arena}} = 0.682 \times 48\% = 0.327\]

\[V_{\text{piedra}} = 0.682 \times 52\% = 0.355\]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \text{ seco} = peso \text{ específico} \times \text{ volumen}\]

\[x = peso \text{ seco arena} = 2617.57 \times 0.327 = 855.95\]

\[y = peso \text{ seco piedra} = 2689.35 \times 0.355 = 954.72\]
El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{\text{cemento}} = \frac{265.20}{265.20} = 1
\]

\[
WUS_{\text{sagua}} = \frac{205}{265.20} = 0.77
\]

\[
WU_{\text{arena}} = \frac{855.95}{265.20} = 3.23
\]

\[
WUS_{\text{piedra}} = \frac{954.72}{265.20} = 3.60
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
A_{\text{correg}} = A_{\text{diseno}} - \left[P_{\text{seco arena}} \times \frac{\text{Humaren} - \text{absaren}}{100} + P_{\text{secpiedra}} \times \frac{\text{Humpied} - \text{abspied}}{100} \right]
\]

\[
A_{\text{correg}} = 205 - \left[855.95 x \frac{0.79 - 1.30}{100} + 954.72 x \frac{0.52 - 0.66}{100} \right] = 210.70
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ arena \ en \ kg
\]

\[
= Peso \ seco \ arena \ en \ kg \times (1 + \text{humedad \ de \ arena \ en } \%)
\]

\[
Peso \ húmedo \ arena \ en \ kg = 855.95 \times (1 + 0.0079) = 862.71
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ piedra \ en \ kg
\]

\[
= Peso \ seco \ piedra \ en \ kg \times (1 + \text{humedad \ de \ piedra \ en } \%)
\]

\[
peso \ húmedo \ piedra \ en \ kg = 954.72 \times (1 + 0.0052) = 959.68
\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WUO_{\text{cemento}} = \frac{265.20}{265.20} = 1
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac

\[
WUO_a = \frac{210.70}{265.20} = 0.79
\]

\[
WUO_o = \frac{862.71}{265.20} = 3.25
\]

\[
WUO_p = \frac{959.68}{265.20} = 3.62
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie3
- En el caso del agua, es manejable la unidad con la que se trabaja, 33.58 lit
- El volumen de la arena en obra en pies\(^3\), es:
 \[
 \frac{WUO_o x 42.5}{PUS_o} x 35.31 = \frac{138.13}{1648.46} x 35.31 = 2.96 \text{ pie}^3
 \]
- El volumen en obra en pies\(^3\) de la piedra
 \[
 \frac{WUO_p x 42.5}{PUS_p} x 35.31 = \frac{153.85}{1615.57} x 35.31 = 3.36 \text{ pie}^3
 \]

Cuadro explicativo 11 Dosificación para diseño de mezclas inicial \(f'c = 140 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.96</td>
<td>3.36</td>
<td>33.58</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B3

4.2.2.4 Corrección de diseño de mezclas final \(f'c = 140 \text{ kg/cm}^2 \)– huso 67 por asentamiento y densidad

a) Sobra agua

Agua sobrante 0.18 lit
b) Peso del próctor

Peso próctor= 6.58 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.58 kg.

d) Volumen del próctor

Vol próctor = 0.002124

e) Densidad teórica

Densidad teórica= 2280.86 kg/m3

f) Densidad real

\[
Densidad \text{ real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]

\[
Densidad \text{ real} = \frac{11.58 - 6.58}{0.002124} = 2354.05 \text{ kg/m}^3
\]

g) Rendimiento

\[
Rendimiento = \frac{2.26 + 1.79 + 7.35 + 8.18 - 0.18}{2354.05} = 0.00824
\]

h) Agua corregida

\[
Agua \text{ corregida} = \frac{1.79 + 0.037 + 0.011 - 0.18}{0.00824} = 201.21 \text{ lit}
\]

i) Cemento corregido

\[
cemento \text{ corregido} = \frac{201.21}{0.77} = 261.31 \text{ kg}
\]

j) Piedra húmeda corregida

\[
Piedra \text{ húmeda corregida} = \frac{8.18}{0.00824} = 992.72 \text{ kg}
\]
k) Piedra seca corregida

\[\text{Piedra seca corregida} = \frac{992.72}{1.0052} = 987.58 \text{ kg} \]

l) Piedra saturada corregida

\[\text{Piedra saturada corregida} = 987.58 \times 1.0066 = 994.10 \text{ kg} \]

m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2354.05 - 201.21 - 261.31 - 994.10 = 897.43 \text{ kg} \]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{897.43}{1.013} = 885.91 \text{ kg} \]

Cuadro explicativo 12 Dosificación en seco de diseño de mezclas final corregido de \(f'c=140 \text{ kg/cm}^2 \) – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>261.31</td>
<td>201.21</td>
<td>885.91</td>
<td>987.58</td>
</tr>
<tr>
<td>1.00</td>
<td>0.77</td>
<td>3.39</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 13 Dosificación en húmedo de diseño de mezclas final corregido de \(f'c=140 \text{ kg/cm}^2 \) – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>261.31</td>
<td>207.11</td>
<td>892.91</td>
<td>992.72</td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
<td>3.42</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B4
4.2.2.5 Diseño de mezclas inicial para concretos $f'c= 175 \text{ kg/cm}^2$ – huso 67 (muestras cilíndricas de 4”x8”)

Se siguió los siguientes pasos para el diseño de mezclas mediante el método del agregado global para $f'c=175 \text{ kg/cm}^2$

a) **Resistencia especificada y selección del asentamiento**

La resistencia especificada es de 175 kg/cm2

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) **Determinación de la resistencia requerida**

De acuerdo a la tabla 20, como la resistencia especificada es $f'c=175 \text{ kg/cm}^2$ y éste es menor a 210 kg/cm2, entonces se utilizó la siguiente fórmula para el cálculo de la resistencia requerida: $f'cr= f'c +70$

$$F'cr=175 + 70 = 245 \text{ kg/cm}^2$$

c) **Determinación de la cantidad de agua de mezcla**

De acuerdo a la tabla 21, como el asentamiento, que en este caso es 3” a 4” y el tamaño máximo nominal del agregado grueso, que en este caso es 3/4”.

Por consiguiente, la cantidad de agua para diseño es de 205 lit/m3.

d) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es de 2%

e) **Selección de la relación agua/cemento (a/c)**

Para la selección de la relación agua/cemento, se necesita la resistencia requerida $f'cr$, que para este diseño de mezclas es $f'cr=245 \text{ kg/cm}^2$, seleccionamos la relación a/c de la tabla 23.

Se observa que $f'cr=245 \text{ kg/cm}^2$, es un valor que está entre 200 kg/cm2 y 250 kg/cm2, para lo cual es necesario realizar una interpolación, en la que resulta 0.618.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>f'_c</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>245</td>
<td>x</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
245 - 200 &= x - 0.69 \\
250 - 200 &= 0.61 - 0.69 \\
\frac{245 - 200}{250 - 200} &= \frac{x - 0.69}{0.61 - 0.69} \\
x &= 0.618
\end{align*}
\]

f) **Cantidad de cemento**

\[c = \frac{agua}{a/c} = \frac{205}{0.618} = 331.72 \text{ kg}\]

g) **Cantidad de arena y piedra**

Para hallar la cantidad de arena y piedra, es necesario tomar en consideración si el concreto a diseñar es convencional o requerirá de algún aditivo, más para esta investigación sólo es convencional, por lo que sus componentes son el cemento, agua, arena, piedra y aire.

Cuadro explicativo 14 Cantidad de arena y piedra.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso específico</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>Pe (kg/m³)</td>
</tr>
<tr>
<td>Cemento</td>
<td>331.72</td>
<td>2850.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>Arena</td>
<td>X</td>
<td>2617.57</td>
</tr>
<tr>
<td>Piedra</td>
<td>Y</td>
<td>2689.35</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.341</td>
<td>0.659</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
El peso seco del cemento se conoce, como también la cantidad de agua y el porcentaje de aire, las cuales ocuparán un volumen. En el caso de la arena y la piedra son incógnitas, “x” e “y” respectivamente.

Los pesos específicos de los componentes son conocidos, entonces se puede conocer el volumen del cemento, del agua y del aire, de la siguiente forma:

\[
V_c = \frac{peso \ seco}{peso \ especifico}
\]

\[
V_cemento = \frac{331.72}{2850} = 0.116 \ m^3
\]

\[
V_agua = \frac{205}{1000} = 0.205 \ m^3
\]

\[
V_aire = 2\% = 0.020 \ m^3
\]

El volumen parcial, es:

\[
V_{parcial} = 0.116 + 0.205 + 0.020 = 0.341 \ m^3
\]

El volumen faltante, es:

\[
V_{faltante} = 1 - 0.341 = 0.659 \ m^3
\]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[
V_{arena} = 0.659 \times 48\% = 0.316 \ m^3
\]

\[
V_{piedra} = 0.659 \times 52\% = 0.343 \ m^3
\]

Una vez conocido el volumen de la arena y la piedra, recién se puede conocer el peso seco de éstas.

\[
peso \ seco = peso \ especifico \times volumen
\]

\[
x = peso \ seco \ arena = 2617.57 \times 0.316 = 827.15 \ kg
\]

\[
y = peso \ seco \ piedra = 2689.35 \times 0.343 = 922.45 \ kg
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

Cuadro explicativo 15 Cálculo de peso unitario seco

<table>
<thead>
<tr>
<th>escripción</th>
<th>Peso seco (kg)</th>
<th>Peso específico (kg/m3)</th>
<th>Volumen existente V(m3)</th>
<th>Distrib. volum. faltante (m3)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>331.72</td>
<td>2850.00</td>
<td>0.116</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>Arena</td>
<td>827.15</td>
<td>2617.57</td>
<td>0.316</td>
<td>2.49</td>
<td>2.78</td>
</tr>
<tr>
<td>Piedra</td>
<td>922.45</td>
<td>2689.35</td>
<td>0.343</td>
<td>2.78</td>
<td>2.78</td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.341</td>
<td>0.659</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

$$WUScemento = \frac{331.72}{331.72} = 1$$

$$WUSagua = \frac{205}{331.72} = 0.62$$

$$WUarena = \frac{827.15}{331.72} = 2.49$$

$$WUSpiedra = \frac{922.45}{331.72} = 2.78$$

h) Corrección por humedad y absorción

La corrección por humedad y absorción de la piedra y la arena modifica la cantidad de agua previsto en estado seco, ésta puede aumentar o disminuir.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

Cuadro explicativo 16 Corrección por humedad y absorción de agregados.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>331.72</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>210.55</td>
<td>0.63</td>
<td>26.78</td>
<td>26.78</td>
</tr>
<tr>
<td>Arena</td>
<td>833.69</td>
<td>2.51</td>
<td>106.68</td>
<td>2.29</td>
</tr>
<tr>
<td>Piedra</td>
<td>927.21</td>
<td>2.80</td>
<td>119.00</td>
<td>2.60</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente:

El peso del cemento en obra es el mismo, no varía.

Peso del cemento=331.72 kg

La cantidad de agua final está dada por la siguiente fórmula:

$$A_{correg} = A_{diseno} - \left[P_{seco\text{arena}} \times \frac{(Humared - absaren)}{100} + P_{seco\text{piedra}} \times \frac{(Humipped - abspeed)}{100} \right]$$

$$A_{correg} = 205 - \left[827.15 \times \frac{(0.79 - 1.30)}{100} + 922.45 \times \frac{(0.52 - 0.66)}{100} \right] = 210.55 \text{ lit}$$

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

$$Peso \ húmedo\ arena \ en\ kg = Peso\ seco\ arena \ en\ kg \times (1 + \ humedad\ de\ arena\ en\ %)$$

$$Peso \ húmedo\ arena \ en\ kg = 827.15 \times (1 + 0.0079) = 833.69 \ kg$$

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

$$Peso \ húmedo\ piedra \ en\ kg = Peso\ seco\ piedra \ en\ kg \times (1 + \ humedad\ de\ piedra\ en\ %)$$

$$peso \ húmedo\ piedra \ en\ kg = 922.45 \times (1 + 0.0052) = 927.21 \ kg$$

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

$WUO_{cemento} = \frac{331.72}{331.72} = 1$

$WUO_{agua} = \frac{210.59}{331.72} = 0.63$

$WUO_{arena} = \frac{833.69}{331.72} = 2.51$

$WUO_{piedra} = \frac{927.21}{331.72} = 2.80$

Peso unitario en obra por bolsa de cemento ($WUO \times 42.5$)

En obra, para las tandas de concreto normalmente se referencia con la bolsa de cemento cuyo peso es 42.5 kg, por lo cual hacemos el siguiente cálculo:

$WUO_{cemento} \times 42.5 = 1 \times 42.5 = 42.5$

$WUO_{agua} \times 42.5 = 0.63 \times 42.5 = 26.78$

$WUO_{arena} \times 42.5 = 2.51 \times 42.5 = 106.68$

$WUO_{piedra} \times 42.5 = 2.80 \times 42.5 = 119.00$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

1 bolsa de cemento = 1 pie3

En el caso del agua, es manejable la unidad con la que se trabajó, 26.78 lit/bol.

El volumen en obra en pies3 de la arena

$\frac{WUO_{arena} \times 42.5}{PUS_{arena}} \times 35.31 = \frac{106.68}{1648.46} \times 35.31 = 2.29$ pie3

El volumen en obra en pies3 de la arena

$\frac{WUO_{piedra} \times 42.5}{PUS_{piedra}} \times 35.31 = \frac{119.00}{1615.57} \times 35.31 = 2.60$ pie3

La dosificación, es:
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac”

Cuadro explicativo 17 Dosificación de diseño de mezclas inicial de f'c=175 kg/cm2-huso

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90</td>
<td></td>
<td></td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

i) Mezcla de prueba

El diseño de mezclas es una aproximación de las cantidades de cada componente a considerar en la elaboración del concreto, es por ello que es necesario realizar las mezclas de prueba. Para la mezcla de prueba, debemos hacer los siguientes cálculos:

Cuadro explicativo 18 cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>CÁLCULO PARA MEZCLA DE PRUEBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se elaboró 04 briquetas de prueba y se consideró un peso aproximado de 4.90 kg por cada uno, lo cual hizo un peso total de 19.60 kg.

Se trabajó con un factor F, que es igual a:

\[
F = \frac{peso \ total \ de \ briquetas}{peso \ unitario \ en \ obra \ total} = \frac{19.60}{6.94} = 2.82
\]

Entonces el peso de cada componente para la mezcla de prueba resulta:

Cuadro explicativo 19 Cantidades de componentes para mezcla de prueba f'c=175 kg/cm2

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WUO*F</td>
</tr>
<tr>
<td>Cemento</td>
<td>2.82</td>
</tr>
<tr>
<td>Agua</td>
<td>1.78</td>
</tr>
<tr>
<td>Arena</td>
<td>7.08</td>
</tr>
<tr>
<td>Piedra</td>
<td>7.90</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $\text{f'}c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyae

\[
WUO\text{cemento } x \ F = 1 \times 2.82 = 2.82
\]

\[
WUO\text{agua } x \ F = 0.63 \times 2.82 = 1.78
\]

\[
WUO\text{cemento } x \ F = 2.51 \times 2.82 = 7.08
\]

\[
WUO\text{cemento } x \ F = 2.80 \times 2.07 = 7.90
\]

El cuadro resumen, se muestra en el ANEXO B5

4.2.2.6 Corrección de diseño de mezclas inicial $\text{f'}c=175 \text{ kg/cm2}$ por asentamiento y densidad (testigos cilíndricos 4”x8”)

Después elaborar las briquetas de prueba se observó que la cantidad de agua de diseño excedió al necesario para lograr un asentamiento de 3” a 4”, lo que obligó a replantear el diseño de mezclas, modificando la cantidad de agua de diseño.

Cuadro explicativo 20 Cálculo en seco del diseño inicial de $\text{f'}c=175 \text{ kg/m2}$

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso unitario seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
</tr>
<tr>
<td>Cemento</td>
<td>331.72</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>0.62</td>
</tr>
<tr>
<td>Arena</td>
<td>827.15</td>
<td>2.49</td>
</tr>
<tr>
<td>Piedra</td>
<td>922.45</td>
<td>2.78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2286.32</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La densidad teórica del concreto es de 2286.32 kg/m³, de acuerdo al cuadro anterior.

Según el cálculo del diseño de mezclas inicial, se tiene lo siguiente:
Al preparar la mezcla de prueba sobró 0.142 lit de agua para un asentamiento de 3” a 4”.

La densidad real medida después de la elaboración de la mezcla de prueba es 2368.55 kg/m³

\[
Rendimiento\ de\ la\ mezcla = \frac{2.82 + 1.78 - 0.142 + 7.08 + 7.90}{2368.55} = 0.00821\ m³
\]

\[
Agua\ corregida = \frac{1.78 + 0.04 + 0.01 - 0.142}{0.00821} = 205.6\ lit
\]

\[
cemento\ corregido = \frac{205.6}{0.62} = 331.61\ kg
\]

\[
Piedra\ húmeda\ corregida = \frac{7.90}{0.00821} = 962.24\ kg
\]

\[
Piedra\ seca\ corregida = \frac{962.24}{1.0052} = 957.3\ kg
\]

\[
Piedra\ saturada\ corregida = 957.3 \times 1.0066 = 963.61\ kg
\]

\[
Arena\ saturada\ corregida = 2368.55 - 205.6 - 331.61 - 963.61 = 867.73\ kg
\]

\[
Arena\ seca\ corregida = \frac{867.73}{1.013} = 856.57\ kg
\]

Entonces las proporciones corregidas por asentamiento y densidad son:
Cuadro explicativo 22 Dosificación en seco de diseño de mezclas inicial corregido de f'c=175 kg/cm2 - huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>331.61</td>
<td>205.6</td>
<td>856.57</td>
<td>957.3</td>
</tr>
<tr>
<td>1</td>
<td>0.62</td>
<td>2.58</td>
<td>2.89</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 23 Dosificación en húmedo de diseño de mezclas inicial corregido de f'c=175 kg/cm2.- huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>331.61</td>
<td>211.35</td>
<td>863.35</td>
<td>962.24</td>
</tr>
<tr>
<td>1</td>
<td>0.64</td>
<td>2.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B6

4.2.2.7 Diseño de mezclas final para concretos f’c= 175 kg/cm2 – huso 67

Los pasos a seguir en el diseño de mezclas son los mismos que se mostraron en el diseño de mezclas inicial f’c=175 kg/cm2, con la diferencia de que la resistencia requerida se obtiene mediante fórmulas que consideran la desviación estándar obtenida a partir ensayos de compresión simple hechos a testigos cilíndricos que se elaboraron con el diseño de mezclas inicial.

Los resultados de los ensayos a compresión simple para la determinación de la desviación estándar a testigos cilíndricos de 4”x8” se muestran en el ANEXO A2.

La desviación estándar es, Ss=14.01., que se utilizará en la determinación de la resistencia requerida.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3”
b) **Determinación de la resistencia requerida**

De acuerdo a la tabla 24, como la resistencia especificada del diseño de mezclas es $f'c=175$ kg/cm2 y éste es menor a 350 kg/cm2, entonces se utiliza las fórmulas (1) y (2), de las cuales seleccionaremos el mayor valor resultante.

\[
f'cr = f'c + 1.34 Ss = 175 + 1.34 \times 14.1 = 193.77
\]

\[
f'cr = f'c + 2.33 Ss - 35 = 175 + 2.33 \times 14.01 = 172.64
\]

El mayor valor resultante de la resistencia requerida es 193.77 kg/cm2.

c) **Determinación de la cantidad de agua de mezcla**

De acuerdo a la tabla 21, la cantidad de agua es 205 lit/m3.

d) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es 2%.

e) **Selección de la relación agua/cemento (a/c)**

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

\[
\begin{array}{c|c}
\text{f'cr} & \text{a/c} \\
250 & 0.61 \\
193.77 & x \\
200 & 0.69
\end{array}
\]

\[
\frac{193.77 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69} \Rightarrow x = 0.700
\]

f) **Cantidad de cemento**

\[
c = \frac{\text{agua}}{a/c} = \frac{205}{0.700} = 292.87 \text{ kg}
\]

g) **Cantidad de arena y piedra**

\[
v = \frac{\text{peso seco}}{\text{peso específico}}
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyac

$V_{cemento} = \frac{292.87}{2850} = 0.103$

$V_{agua} = \frac{205}{1000} = 0.205$

$V_{aire} = 2\% = 0.020$

El volumen parcial, es:

$V_{parcial} = 0.103 + 0.205 + 0.020 = 0.328$

El volumen faltante, es:

$V_{faltante} = 1 - 0.328 = 0.672$

El volumen faltante se distribuye en el 52\% para la piedra y el 48\% para la arena

$V_{arena} = 0.672 \times 48\% = 0.323$

$V_{piedra} = 0.672 \times 52\% = 0.349$

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

$peso \ seco = peso \ específico \times \ volumen$

$x = peso \ seco \ arena = 2617.57 \times 0.323 = 845.48$

$y = peso \ seco \ piedra = 2689.35 \times 0.349 = 938.58$

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

$WUS_{cemento} = \frac{292.87}{292.87} = 1$

$WUS_{agua} = \frac{205}{292.87} = 0.70$

$WUS_{arena} = \frac{845.48}{292.87} = 2.89$

$WUS_{piedra} = \frac{938.58}{292.87} = 3.20$
h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

$$A_{correg} = A_{diseno} - \left[P_{secoarena} \frac{(H_{aren} - a_{aren})}{100} + P_{secopiedra} \frac{(H_{piedra} - a_{piedra})}{100} \right]$$

$$A_{correg} = 205 - \left[845.48 \times \frac{(0.79 - 1.30)}{100} + 938.58 \times \frac{(0.52 - 0.66)}{100} \right] = 210.66 \text{ lit}$$

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

$$Peso \text{ húmedo arena en kg} = Peso \text{ seco arena en kg} \times (1 + \text{humedad de arena en %})$$

$$Peso \text{ húmedo arena en kg} = 845.48 \times (1 + 0.0079) = 852.17$$

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

$$Peso \text{ húmedo piedra en kg} = Peso \text{ seco piedra en kg} \times (1 + \text{humedad de piedra en %})$$

$$peso \text{ húmedo piedra en kg} = 938.58 \times (1 + 0.0052) = 943.43$$

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

$$WUO_{cemento} = \frac{292.87}{292.87} = 1$$

$$WUO_{agua} = \frac{210.66}{292.87} = 0.72$$

$$WUO_{arena} = \frac{852.17}{292.87} = 2.91$$

$$WUO_{piedra} = \frac{943.43}{292.87} = 3.22$$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie³
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

- En el caso del agua, es manejable la unidad con la que se trabaja, 30.60 lit

- El volumen de la arena en obra en pies³, es:

\[
\frac{W_{UO \text{arena}} \times 42.5}{P_{US \text{arena}}} \times 35.31 = \frac{123.68}{1648.46} \times 35.31 = 2.65 \text{ pie}^3
\]

- El volumen en obra en pies³ de la piedra

\[
\frac{W_{UO \text{piedra}} \times 42.5}{P_{US \text{piedra}}} \times 35.31 = \frac{136.68}{1615.57} \times 35.31 = 2.99 \text{ pie}^3
\]

Cuadro explicativo 24 Dosificación de diseño de mezclas final f’c=175 kg/cm²

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.65</td>
<td>2.99</td>
<td>30.60</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B7

4.2.2.8 Corrección de diseño de mezclas final f’c= 175 kg/cm² – huso 67 por asentamiento y densidad.

a) **Sobra agua**

Agua sobrante 0.172 lit

b) **Peso del proctor**

Peso próctor= 6.58 kg

c) **Peso del concreto más próctor**

Peso concreto + próctor=11.59 kg.

d) **Volumen del proctor**

Vol proct= 0.002124 m³

e) **Densidad teórica**

Densidad teórica= 2281.93 kg/m³
f) Densidad real

\[Densidad\ real = \frac{peso\ concreto\ más\ próctor - peso\ del\ próctor}{volumen\ del\ próctor} \]

\[Densidad\ real = \frac{11.59 - 6.5602}{0.002124} = 2368.08\ kg/m^3 \]

g) Rendimiento

\[Rendimiento = \frac{2.50 + 1.80 + 7.28 + 8.05 - 0.172}{2368.08} = 0.00822 \]

h) Agua corregida

\[Agua\ corregida = \frac{1.80 + 0.037 + 0.011 - 0.172}{0.00822} = 203.89\ lit \]

i) Cemento corregido

\[cemento\ corregido = \frac{203.89}{0.70} = 291.27\ kg \]

j) Piedra húmeda corregida

\[Piedra\ húmeda\ corregida = \frac{8.05}{0.00822} = 979.32\ kg \]

k) Piedra seca corregida

\[Piedra\ seca\ corregida = \frac{979.32}{1.0052} = 974.29\ kg \]

l) Piedra saturada corregida

\[Piedra\ saturada\ corregida = 974.29 \times 1.0066 = 980.71\ kg \]

m) Arena saturada corregida

\[Arena\ saturada\ corregida = 2368.08 - 203.89 - 291.27 - 980.71 = 892.21\ kg \]
n) Arena seca corregida

\[
\text{Arena seca corregida} = \frac{892.21}{1.013} = 880.74 \text{ kg}
\]

Cuadro explicativo 25 Dosificación en seco de diseño de mezclas final corregido de } f'c=175 \text{ kg/cm}^2

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>291.27</td>
<td>203.89</td>
<td>880.74</td>
<td>974.29</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.7</td>
<td>3.02</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 26 Dosificación en húmedo de diseño de mezclas final corregido de } f'c=175 \text{ kg/cm}^2 – huso 67

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>291.27</td>
<td>209.78</td>
<td>887.71</td>
<td>979.32</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.72</td>
<td>3.05</td>
<td>3.36</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B8

4.2.2.9 Diseño de mezclas inicial para } f'c=210 \text{ kg/cm}^2 \text{ (testigos cilíndricos de 4”x8”)}

Se siguió los siguientes pasos para el diseño de mezclas mediante el método del agregado global para } f'c=210 \text{ kg/cm}^2.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 20, como la resistencia especificada para el diseño de mezclas es } f'c=210 \text{ kg/cm}^2, \text{ por consiguiente, la fórmula que se utiliza para la resistencia requerida, es: } f'cr=f'c+85

\[
F’cr=210 + 85 = 295 \text{ kg/cm}^2
\]
c) **Determinación de la cantidad de agua de mezcla**

Para lo cual es necesario conocer el asentamiento, que en este caso es 3” a 4”, así como el tamaño máximo nominal del agregado grueso, que en nuestro caso es 3/4”.

De acuerdo a la tabla 21, la cantidad de agua para diseño es de 205 lit/m3

d) **Determinación del contenido de aire**

Para la determinación del aire atrapado se considera el tamaño máximo nominal de la piedra.

De acuerdo a la tabla 22, el aire atrapado es de 2%

e) **Selección de la relación agua/cemento (a/c)**

Para la selección de la relación agua/cemento, se necesita la resistencia requerida f’cr, que para este diseño de mezclas es f’cr=295 kg/cm2.

De acuerdo a la tabla 23, se observa que f’cr=295 kg/cm2, es un valor que está entre 250 kg/cm2 y 300 kg/cm2, para lo cual es necesario realizar una interpolación, en la que resulta 0.547.

\[
\begin{array}{c|c}
\text{f’cr} & \text{a/c} \\
300 & 0.54 \\
295 & x \\
250 & 0.61 \\
\end{array}
\]

\[
\frac{295 - 250}{300 - 250} = \frac{x - 0.61}{0.54 - 0.61}
\]

\[
x = 0.547
\]

f) **Cantidad de cemento**

\[
c = \frac{\text{agua}}{a/c} = \frac{205}{0.547} = 374.77 \text{ kg}
\]
g) Cantidad de arena y piedra

Para hallar la cantidad de arena y piedra, es necesario tomar en consideración si el concreto a diseñar es convencional o requerirá de algún aditivo, más para esta investigación sólo es convencional, por lo que sus componentes son el cemento, agua, arena, piedra y aire.

Cuadro explicativo 27 Cantidad de arena y piedra \(f'c=210 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (kg)</th>
<th>Peso específico (kg/m³)</th>
<th>Volumen existente (V) (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>374.77</td>
<td>2850.00</td>
<td>0.131</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>Arena</td>
<td>X</td>
<td>2617.57</td>
<td>0.309</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>Y</td>
<td>2689.35</td>
<td>0.335</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.356</td>
<td>0.644</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso seco del cemento se conoce, como también la cantidad de agua y el porcentaje de aire, las cuales ocuparán un volumen, pero de la arena y la piedra son incógnitas, “x” e “y” respectivamente.

Los pesos específicos de los componentes del concreto son conocidos, por lo que se puede conocer el volumen del cemento y del agua, y del aire de acuerdo a tabla, de la siguiente forma:

\[
V = \frac{peso \ seco}{peso \ específico}
\]

\[
V_{cemento} = \frac{374.77}{2850} = 0.131
\]

\[
V_{agua} = \frac{205}{1000} = 0.205
\]
Vaire = 2% = 0.020

El volumen parcial, es:

\[V_{parcial} = 0.131 + 0.205 + 0.020 = 0.356 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.356 = 0.644 \]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[V_{arena} = 0.644 \times 48\% = 0.309 \]
\[V_{piedra} = 0.644 \times 52\% = 0.335 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \, seco = peso \, específico \times volumen \]
\[x = peso \, seco \, arena = 2617.57 \times 0.309 = 808.83 \]
\[y = peso \, seco \, piedra = 2689.35 \times 0.335 = 900.93 \]

Cuadro explicativo 28 Calculo de volúmenes y peso unitario seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso específico</th>
<th>Volumen</th>
<th>Volumen existente</th>
<th>Distrib. de volum. faltante</th>
<th>Peso unitario seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS (kg)</td>
<td>Pe (kg/m³)</td>
<td>V (m³)</td>
<td>WUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>374.77</td>
<td>2850.00</td>
<td>0.131</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>Arena</td>
<td>808.83</td>
<td>2617.57</td>
<td>0.309</td>
<td></td>
<td></td>
<td>2.16</td>
</tr>
<tr>
<td>Piedra</td>
<td>900.93</td>
<td>2689.35</td>
<td>0.335</td>
<td></td>
<td></td>
<td>2.40</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.356</td>
<td>0.644</td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Fuente:

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

\[
WUS_{\text{cemento}} = \frac{374.77}{374.77} = 1
\]

\[
WUS_{\text{agua}} = \frac{205}{374.77} = 0.55
\]

\[
WU_{\text{arena}} = \frac{808.83}{374.77} = 2.16
\]

\[
WUS_{\text{piedra}} = \frac{900.93}{374.77} = 2.40
\]

h) Corrección por humedad y absorción

La corrección por humedad y absorción de la piedra y la arena modifica la cantidad de agua previsto en estado seco, ésta puede aumentar o disminuir.

Cuadro explicativo 29 Corrección por humedad de agregados, peso unitario y volumen en obra $f'_c=210$ kg/cm2.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en obra</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td></td>
<td>374.77</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td>210.42</td>
<td>0.56</td>
<td>23.80</td>
<td>23.80</td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td>815.23</td>
<td>2.18</td>
<td>92.65</td>
<td>1.98</td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td>905.58</td>
<td>2.42</td>
<td>102.85</td>
<td>2.25</td>
</tr>
<tr>
<td>Aire</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>6.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso del cemento en obra es el mismo, no varía

Peso del cemento=374.77 kg

La cantidad de agua final está dada por la siguiente fórmula:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

\[
A_{corr} = Adiseño - \left[P_{secó arena} \times \frac{(Humaren - absaren)}{100} + P_{secó piedra} \times \frac{(Humped - abspeed)}{100} \right]
\]

\[
A_{corr} = 205 - \left[808.83 \times \frac{(0.79 - 1.30)}{100} + 900.93 \times \frac{(0.52 - 0.66)}{100} \right] = 210.42
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[Peso \ húmedo \ arena \ en \ kg = Peso \ seco \ arena \ en \ kg \times (1 + humedad \ de \ arena \ en \ %)\]

\[Peso \ húmedo \ arena \ en \ kg = 808.83 \times (1 + 0.0079) = 815.23\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[Peso \ húmedo \ piedra \ en \ kg = Peso \ seco \ piedra \ en \ kg \times (1 + humedad \ de \ piedra \ en \ %)\]

\[peso \ húmedo \ piedra \ en \ kg = 900.93 \times (1 + 0.0052) = 905.58\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUO_{cemento} = \frac{374.77}{374.77} = 1\]

\[WUO_{agua} = \frac{210.42}{374.77} = 0.56\]

\[WUO_{arena} = \frac{815.23}{374.77} = 2.18\]

\[WUO_{piedra} = \frac{905.58}{374.77} = 2.42\]

Peso unitario en obra por bolsa de cemento (WUO x 42.5)

En obra, para las tandas de concreto normalmente se referencia con la bolsa de cemento cuyo peso es 42.5 kg, por lo cual hacemos el siguiente cálculo:

\[WUO_{cemento} \times 42.5 = 1 \times 42.5 = 42.5\]

\[WUO_{agua} \times 42.5 = 0.56 \times 42.5 = 23.80\]

\[WUO_{arena} \times 42.5 = 2.18 \times 42.5 = 92.65\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyac

$WUOpiedra \times 42.5 = 2.42 \times 42.5 = 102.85$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

1 bolsa de cemento = 1 pie3

En el caso del agua, es manejable la unidad con la que estamos trabajando, 23.80 lit/bols.

El volumen en obra en pies3 de la arena

$$\frac{WUO\text{arena} \times 42.5}{PUS\text{arena}} \times 35.31 = \frac{92.65}{1648.46} \times 35.31 = 1.98 \text{ pie}^3$$

El volumen en obra en pies3 de la arena

$$\frac{WUOpiedra \times 42.5}{PUSpiedra} \times 35.31 = \frac{102.85}{1615.57} \times 35.31 = 2.25 \text{ pie}^3$$

La dosificación, es:

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.98</td>
<td>2.25</td>
<td>23.80</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

i) **Mezcla de prueba**

Este diseño de mezclas es una aproximación de las cantidades de cada componente a considerar en la elaboración del concreto, es por ello que es necesario realizar las mezclas de prueba. Para la mezcla de prueba, debemos hacer los siguientes cálculos:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas $Wtb=$</td>
<td>19.60</td>
<td>kg</td>
</tr>
<tr>
<td>Factor $F = Wtb/WUO$</td>
<td>3.18</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Se elaboró 04 briquetas de prueba y se consideró un peso aproximado de 4.90 kg por cada uno, haciendo un peso total de 19.60 kg.

Se trabaja con un factor F, que es igual a:

$$F = \frac{\text{peso total de briquetas}}{\text{peso unitario en obra total}} = \frac{19.60}{6.16} = 3.18$$

Entonces la mezcla de prueba resulta:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>3.18</td>
</tr>
<tr>
<td>Agua</td>
<td>1.78</td>
</tr>
<tr>
<td>Arena</td>
<td>6.93</td>
</tr>
<tr>
<td>Piedra</td>
<td>7.70</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
</tr>
</tbody>
</table>

Cuadro explicativo 32 Cantidad de componentes para mezcla de prueba

Fuente: Elaboración propia

$\text{WUOcemento x F} = 1 \times 3.18 = 3.18$

$\text{WUOagua x F} = 0.56 \times 3.18 = 1.78$

$\text{WUOarena x F} = 2.18 \times 3.18 = 6.93$

$\text{WUOpiedra x F} = 2.42 \times 3.18 = 7.70$

El cuadro resumen, se muestra en el ANEXO B9

4.2.2.10 **Corrección de diseño de mezclas inicial $f_c=210$ kg/cm2 – huso 67 por asentamiento y densidad.**

Después de elaborar las briquetas de prueba se observó que la cantidad de agua de diseño excede al necesario para lograr un asentamiento de 3” a 4”, lo que obligó a replantear el diseño de mezclas, modificando la cantidad de agua de diseño.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

Cuadro explicativo 33 Cálculo en seco del diseño inicial de f’c=210 kg/cm²-huso67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
</tr>
<tr>
<td>Cemento</td>
<td>374.77</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>0.55</td>
</tr>
<tr>
<td>Arena</td>
<td>808.83</td>
<td>2.16</td>
</tr>
<tr>
<td>Piedra</td>
<td>900.93</td>
<td>2.40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2289.53</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La densidad teórica del concreto es de 2289.53 kg/m³, de acuerdo al cuadro anterior.

Según el cálculo del diseño de mezclas inicial se tiene lo siguiente

Cuadro explicativo 34 Medidas de los componentes de mezcla de prueba inicial de f’c=140 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso en obra</td>
<td>WUO*F</td>
</tr>
<tr>
<td></td>
<td>WO</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>374.77</td>
<td>3.18</td>
</tr>
<tr>
<td>Agua</td>
<td>210.42</td>
<td>1.78</td>
</tr>
<tr>
<td>Arena</td>
<td>815.23</td>
<td>6.93</td>
</tr>
<tr>
<td>Piedra</td>
<td>905.58</td>
<td>7.70</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2306.00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Después de elaborarla mezcla de prueba sobró 0.14 lit de agua para un asentamiento de 3” a 4”.

La densidad real medida después de la elaboración de la mezcla de prueba es 2372 kg/m³

\[\text{Rendimiento de la mezcla} = \frac{3.18 + 1.78 - 0.14 + 6.93 + 7.70}{2372.79} = 0.0082 \text{ m}^3 \]

\[\text{Agua corregida} = \frac{1.78 + 0.04 + 0.01 - 0.14}{0.0082} = 206.10 \text{ lit} \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyae

\[\text{cemento corregido} = \frac{206.10}{0.55} = 374.73 \text{ kg} \]

\[\text{Piedra húmeda corregida} = \frac{7.70}{0.0082} = 939.02 \text{ kg} \]

\[\text{Piedra seca corregida} = \frac{939.02}{1.0052} = 934.20 \text{ kg} \]

\[\text{Piedra saturada corregida} = 934.20 \times 1.0066 = 940.35 \text{ kg} \]

\[\text{Arena saturada corregida} = 2372.79 - 206.10 - 374.73 - 940.35 = 851.61 \text{ kg} \]

\[\text{Arena seca corregida} = \frac{851.61}{1.013} = 840.66 \text{ kg} \]

Entonces las proporciones corregidas por asentamiento y densidad son:

Cuadro explicativo 35 Dosificación en seco de diseño de mezclas inicial corregido de $f'c=210 \text{ kg/cm}^2$ – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>374.73</td>
<td>206.1</td>
<td>840.66</td>
<td>934.2</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>2.24</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 36 Dosificación en húmedo de diseño de mezclas inicial corregido de $f'c=210 \text{ kg/cm}^2$ – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>374.73</td>
<td>211.73</td>
<td>847.31</td>
<td>939.02</td>
</tr>
<tr>
<td>1</td>
<td>0.57</td>
<td>2.26</td>
<td>2.51</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B10

4.2.2.11 Diseño de mezclas final para concretos $f'c= 210 \text{ kg/cm}^2$ – huso 67

Los pasos a seguir en el diseño de mezclas son los mismos que se mostraron en el diseño de mezclas inicial $f'c=210 \text{ kg/cm}^2$, con la diferencia de que la resistencia requerida se obtiene mediante fórmulas que consideran la desviación estándar obtenida a partir ensayos de
compresión simple hechos a testigos cilíndricos que se elaboraron con el diseño de mezclas inicial.

Los ensayos de compresión simple que se realizaron para la obtención de la desviación estándar, se muestran en el ANEXO A3

Con el valor de la desviación estándar Ss=13.18 se determina la resistencia requerida.

a) **Resistencia especificada y selección del asentamiento**

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) **Determinación de la resistencia requerida**

De acuerdo a la tabla 24, como la resistencia especificada del diseño de mezclas es f’c=210 kg/cm2 y éste es menor a 350 kg/cm2, entonces se utiliza las fórmulas (1) y (2), de las cuales seleccionaremos el mayor valor resultante.

\[
f'cr = f'c + 1.34 Ss = 210 + 1.34 \times 13.18 = 227.66
\]

\[
f'cr = f'c + 2.33 Ss - 35 = 210 + 2.33 \times 13.18 - 35 = 205.71
\]

El mayor valor resultante de la resistencia requerida es 227.66 Kg/cm2

i) **Determinación de la cantidad de agua de mezcla**

De acuerdo a la tabla 21, la cantidad de agua es 205 lit/m3

j) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es 2%

k) **Selección de la relación agua/cemento (a/c)**

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

<table>
<thead>
<tr>
<th>f’cr</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>227.66</td>
<td>x</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

\[\frac{227.66 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69} \]
\[x = 0.646 \]

1) Cantidad de cemento

\[c = \frac{aguas}{a/c} = \frac{205}{0.646} = 317.34 \text{ kg} \]

m) Cantidad de arena y piedra

\[v = \frac{peso seco}{peso específico} \]
\[V_{cemento} = \frac{317.34}{2850} = 0.111 \]
\[V_{agua} = \frac{205}{1000} = 0.205 \]
\[V_{aire} = 2\% = 0.020 \]

El volumen parcial, es:
\[V_{parcial} = 0.111 + 0.205 + 0.020 = 0.336 \]

El volumen faltante, es:
\[V_{faltante} = 1 - 0.336 = 0.664 \]

El volumen faltante se distribuye en el 52\% para la piedra y el 48\% para la arena
\[V_{arena} = 0.664 \times 48\% = 0.319 \]
\[V_{piedra} = 0.664 \times 52\% = 0.345 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \text{ seco} = peso \text{ específico} \times volumen \]
\[x = peso \text{ seco arena} = 2617.57 \times 0.319 = 835.00 \]
\[y = peso \text{ seco piedra} = 2689.35 \times 0.345 = 927.83 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
n) **Corrección por humedad y absorción**

La cantidad de agua final, está dado por la siguiente fórmula:

\[A_{correg} = A_{diseno} - \left[P_{seco\ arena} \cdot \left(\frac{H_{aren} - \text{abs}\ aren}{100} \right) + P_{seco\ piedra} \cdot \left(\frac{H_{pied} - \text{abs}\ piedra}{100} \right) \right] \]

\[A_{correg} = 205 - \left[835.00 \times \left(\frac{0.79 - 1.30}{100} \right) + 927.83 \times \left(\frac{0.52 - 0.66}{100} \right) \right] = 210.59 \]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo arena en kg} = Peso\ seco\ arena\ en\ kg \times (1 + \text{humedad de arena} \text{ en \%}) \]

\[\text{Peso húmedo arena en kg} = 835.00 \times (1 + 0.0079) = 841.61 \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo piedra en kg} = Peso\ seco\ piedra\ en\ kg \times (1 + \text{humedad de piedra} \text{ en \%}) \]

\[\text{peso húmedo piedra en kg} = 927.83 \times (1 + 0.0052) = 932.62 \]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUOCemento = \frac{317.34}{317.34} = 1 \]

\[WUOagua = \frac{210.59}{317.34} = 0.66 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c=140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de cunyac

\[
W_{UOarena} = \frac{841.61}{317.34} = 2.65
\]

\[
W_{UOpiedra} = \frac{932.62}{317.34} = 2.94
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie\(^3\)
- En el caso del agua, es manejable la unidad con la que se trabaja, 28.05 lit
- El volumen de la arena en obra en pies\(^3\), es:
 \[
 \frac{W_{UOarena} \times 42.5}{PUSarena} \times 35.31 = \frac{112.63}{1648.46} \times 35.31 = 2.41 \text{ pie}^3
 \]
- El volumen en obra en pies\(^3\) de la piedra
 \[
 \frac{W_{UOpiedra} \times 42.5}{PUSpiedra} \times 35.31 = \frac{124.95}{1615.57} \times 35.31 = 2.73 \text{ pie}^3
 \]

Cuadro explicativo 37 Dosificación de diseño de mezcla final \(f'c=210 \) kg/cm\(^2\) huso 67

<table>
<thead>
<tr>
<th>Componente</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>1.00</td>
<td>2.41</td>
<td>2.73</td>
<td>28.05</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B11

4.2.2.12 Corrección de diseño de mezclas final \(f'c=210 \) kg/cm\(^2\) por asentamiento y densidad (testigos cilíndricos 4”x8”)

a) **Sobra agua**

Agua sobrante 0.146 lit

b) **Peso del proctor**

Peso próctor= 6.5602 kg

c) **Peso del concreto más próctor**

Peso concreto + próctor=11.602 kg.
d) **Volumen del proctor**

Vol proctor = 0.002124

e) **Densidad teórica**

Densidad teorica = 2285.17 kg/m³

f) **Densidad real**

\[
Densidad\ real = \frac{\text{peso concreto más prócto} - \text{peso del prócto}}{\text{volumen del prócto}}
\]

\[
Densidad\ real = \frac{11.602 - 6.5602}{0.002124} = 2373.73 \text{ kg/m}³
\]

g) **Rendimiento**

\[
Rendimiento = \frac{2.70 + 1.78 + 7.16 + 7.94 - 0.146}{2373.73} = 0.00819
\]

h) **Agua corregida**

\[
Agua\ corregida = \frac{1.78 + 0.036 + 0.011 - 0.146}{0.00824} = 205.25 \text{ lit}
\]

i) **Cemento corregido**

\[
cemento\ corregido = \frac{205.25}{0.65} = 315.77 \text{ kg}
\]

j) **Piedra húmeda corregida**

\[
Piedra\ húmeda\ corregida = \frac{7.94}{0.00819} = 969.47 \text{ kg}
\]

k) **Piedra seca corregida**

\[
Piedra\ seca\ corregida = \frac{969.47}{1.0052} = 964.49 \text{ kg}
\]

l) **Piedra saturada corregida**

\[
Piedra\ saturada\ corregida = 964.49 \times 1.0066 = 970.84 \text{ kg}
\]
m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2373.73 - 205.25 - 315.77 - 970.84 \]
\[= 881.87 \text{ kg} \]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{881.87}{1.013} = 870.53 \text{ kg} \]

Cuadro explicativo 38 Dosificación en seco de diseño de mezclas final f’c=210 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento (kg)</th>
<th>Agua (kg)</th>
<th>Arena seca corregida (kg)</th>
<th>Piedra seca (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.77</td>
<td>205.25</td>
<td>870.53</td>
<td>964.49</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
<td>2.76</td>
<td>3.05</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 39 Dosificación húmeda diseño de mezclas final f’c=210 kg/cm²

<table>
<thead>
<tr>
<th>Cemento (kg)</th>
<th>Agua (kg)</th>
<th>Arena húmeda corregida (kg)</th>
<th>Piedra húmeda (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.77</td>
<td>211.08</td>
<td>877.42</td>
<td>969.47</td>
</tr>
<tr>
<td>1</td>
<td>0.67</td>
<td>2.78</td>
<td>3.07</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B12

4.2.2.13 Diseño de mezclas inicial para concretos f’c= 280 kg/cm²-huso 67 (muestras cilíndricas de 4”x8”)

Se siguió los siguientes pasos para el diseño de mezclas mediante el método del agregado global para f’c=280 kg/cm²

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 18, se trabaja con un asentamiento de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 19, como la resistencia especificada es f’c=280 kg/cm² y éste está entre 210 y 350 kg/cm², entonces se utiliza f’cr= f’c +85

\[F'cr = 280 + 85 = 365 \text{ kg/cm}^2 \]
c) **Determinación de la cantidad de agua de mezcla**

Para lo cual es necesario conocer el asentamiento, que en este caso es 3” a 4”, así como el tamaño máximo nominal del agregado grueso, que en este caso es 3/4”.

De acuerdo a la tabla 20, la cantidad de agua para diseño es de 205 lit/m3

d) **Determinación del contenido de aire**

Para la determinación del aire atrapado se considera el tamaño máximo nominal de la piedra.

De acuerdo a la tabla 21, el aire atrapado es de 2%

e) **Selección de la relación agua/cemento (a/c)**

Para la selección de la relación agua/cemento, se necesita la resistencia requerida \(f_{cr} \), que para este diseño de mezclas es \(f_{cr}=365 \) kg/cm².

De acuerdo a la tabla 22, se observa que \(f_{cr}=365 \) kg/cm², es un valor que está entre 350 kg/cm² y 400 kg/cm², para lo cual es necesario realizar una interpolación, en la que resulta 0.455.

<table>
<thead>
<tr>
<th>(f_{cr})</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>365</td>
<td>x</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

\[
\frac{365 - 350}{400 - 350} = \frac{x - 0.47}{0.42 - 0.47} \\
\]

\[
x = 0.455
\]

f) **Cantidad de cemento**

\[
c = \frac{agua}{a/c} = \frac{205}{0.455} = 450.55 \text{ kg}
\]
g) Cantidad de arena y piedra

Para hallar la cantidad de arena y piedra, es necesario tomar en consideración si el concreto a diseñar es convencional o requerirá de algún aditivo, más para esta investigación sólo es convencional, por lo que sus componentes son el cemento, agua, arena, piedra y aire.

Cuadro explicativo 40 Cantidad de arena y piedra \(f'_c = 280 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>2850.00</td>
<td>0.158</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>Arena</td>
<td>(x)</td>
<td>2617.57</td>
<td>0.296</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>(y)</td>
<td>2689.35</td>
<td>0.321</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.383</td>
<td>0.617</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso seco del cemento se conoce, como también la cantidad de agua y el porcentaje de aire, las cuales ocupan un volumen. En el caso de la arena y la piedra son incógnitas, “\(x \)” e “\(y \)” respectivamente.

Los pesos específicos de los componentes son conocidos, por lo que se puede conocer el volumen del cemento, del agua y del aire, de la siguiente forma:

\[
v = \frac{\text{peso seco}}{\text{peso específico}}
\]

\[
V_{\text{cemento}} = \frac{450.55}{2850} = 0.158
\]

\[
V_{\text{agua}} = \frac{205}{1000} = 0.205
\]
El volumen parcial, es:

\[V_{\text{parcial}} = 0.158 + 0.205 + 0.020 = 0.383 \]

El volumen faltante, es:

\[V_{\text{faltante}} = 1 - 0.383 = 0.617 \]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[V_{\text{arena}} = 0.617 \times 48\% = 0.296 \]

\[V_{\text{piedra}} = 0.617 \times 52\% = 0.321 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]

\[x = \text{peso seco arena} = 2617.57 \times 0.296 = 774.80 \]

\[y = \text{peso seco piedra} = 2689.35 \times 0.321 = 863.28 \]

Cuadro explicativo 41 Calculo de volúmenes y peso unitario seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (kg)</th>
<th>Peso específico (kg/m³)</th>
<th>Volumen existente (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>2850.00</td>
<td>0.158</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>Arena</td>
<td>774.80</td>
<td>2617.57</td>
<td>0.296</td>
<td></td>
<td>1.72</td>
</tr>
<tr>
<td>Piedra</td>
<td>863.28</td>
<td>2689.35</td>
<td>0.321</td>
<td></td>
<td>1.92</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.383</td>
<td>0.617</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{\text{cemento}} = \frac{450.55}{450.55} = 1
\]

\[
WUS_{\text{agua}} = \frac{205}{450.55} = 0.45
\]

\[
WU_{\text{arena}} = \frac{774.80}{450.55} = 1.72
\]

\[
WUS_{\text{piedra}} = \frac{863.28}{450.55} = 1.92
\]

h) Corrección por humedad y absorción

La corrección por humedad y absorción de la piedra y la arena modifica la cantidad de agua previsto en estado seco, ésta puede aumentar o disminuir.

Cuadro explicativo 42 Corrección por humedad de agregados, peso unitario y volumen en obra f’c=280 kg/cm².

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>210.16</td>
<td>0.47</td>
<td>19.98</td>
<td>19.98</td>
</tr>
<tr>
<td>Arena</td>
<td>780.92</td>
<td>1.73</td>
<td>73.53</td>
<td>1.58</td>
</tr>
<tr>
<td>Piedra</td>
<td>867.77</td>
<td>1.93</td>
<td>82.03</td>
<td>1.79</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso del cemento en obra es el mismo, no varía

Peso del cemento=450.55 kg.

La cantidad de agua final está dada por la siguiente fórmula:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

\[A_{correg} = Adiseño - \left[P_{secoarena} \frac{(Humaren - absaren)}{100} + P_{secopiedra} \frac{(Humpied - abs pied)}{100} \right] \]

\[A_{correg} = 205 - \left[774.80 \times \frac{(0.79 - 1.30)}{100} + 863.28 \times \frac{(0.52 - 0.66)}{100} \right] = 210.16 \text{ lit} \]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[Peso \text{ húmedo arena en kg} = Peso \text{ seco arena en kg} \times (1 + humedad \text{ de arena en %}) \]

\[Peso \text{ húmedo arena en kg} = 774.80 \times (1 + 0.0079) = 780.92 \text{ kg} \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[Peso \text{ húmedo piedra en kg} = Peso \text{ seco piedra en kg} \times (1 + humedad \text{ de piedra en %}) \]

\[Peso \text{ húmedo piedra en kg} = 863.28 \times (1 + 0.0052) = 867.77 \text{ kg} \]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUO_{cemento} = \frac{450.55}{450.55} = 1 \]

\[WUO_{agua} = \frac{210.16}{450.55} = 0.47 \]

\[WUO_{arena} = \frac{780.92}{450.55} = 1.73 \]

\[WUO_{piedra} = \frac{867.77}{450.55} = 1.93 \]

Peso unitario en obra por bolsa de cemento ($WUO \times 42.5$)

En obra, para las tandas de concreto normalmente se referencia con la bolsa de cemento cuyo peso es 42.5 kg, por lo cual hacemos el siguiente cálculo:

\[WUO_{cemento} \times 42.5 = 1 \times 42.5 = 42.5 \]

\[WUO_{agua} \times 42.5 = 0.47 \times 42.5 = 19.98 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac

$WUO_{arena} \times 42.5 = 1.73 \times 42.5 = 73.53$

$WUO_{piedra} \times 42.5 = 1.93 \times 42.5 = 82.03$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

1 bolsa de cemento = 1pie³

En el caso del agua, es manejable la unidad con la que se está trabajando, 19.98 lit

El volumen en obra en pies³ de la arena

$$\frac{WUO_{arena} \times 42.5}{PUS_{arena}} \times 35.31 = \frac{73.53}{1648.46} \times 35.31 = 1.58 \text{ pie}^3$$

El volumen en obra en pies³ de la piedra

$$\frac{WUO_{piedra} \times 42.5}{PUS_{piedra}} \times 35.31 = \frac{82.03}{1615.57} \times 35.31 = 1.79 \text{ pie}^3$$

La dosificación, es:

Cuadro explicativo 43 Dosificación para diseño de mezclas inicial $f'c=280$ kg/cm²

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.98</td>
<td>2.25</td>
<td>23.80</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

i) **Mezcla de prueba**

El diseño de mezclas es una aproximación de las cantidades de cada componente a considerar en la elaboración del concreto, es por ello que es necesario realizar las mezclas de prueba.

Para la mezcla de prueba, se debe hacer los siguientes cálculos:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2 \) con agregados de la cantera de Cunyac

Cuadro explicativo 44 Cálculo de mezcla de prueba inicial \(f'c = 280 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas</td>
<td>19.60</td>
<td>kg</td>
</tr>
<tr>
<td>Factor (F = \frac{W_{tb}}{W_{UO}})</td>
<td>3.82</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se elaboró 04 briquetas de prueba y se consideró un peso aproximado de 4.90 kg por cada uno, haciendo un peso total de 19.60 kg.

Se trabaja con un factor \(F \), que es igual a:

\[
F = \frac{\text{peso total de briquetas}}{\text{peso unitario en obra total}} = \frac{19.60}{5.13} = 3.82
\]

Entonces la mezcla de prueba resulta:

Cuadro explicativo 45 Cantidades de componentes para mezcla de prueba

<table>
<thead>
<tr>
<th>Mezcla de prueba</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>3.82</td>
</tr>
<tr>
<td>Agua</td>
<td>1.80</td>
</tr>
<tr>
<td>Arena</td>
<td>6.61</td>
</tr>
<tr>
<td>Piedra</td>
<td>7.37</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente:

\[
WUO_{\text{cemento}} \times F = 1 \times 3.82 = 3.82
\]

\[
WUO_{\text{agua}} \times F = 0.47 \times 3.82 = 1.80
\]

\[
WUO_{\text{arena}} \times F = 1.73 \times 3.82 = 6.61
\]

\[
WUO_{\text{piedra}} \times F = 1.93 \times 3.82 = 7.37
\]

El cuadro resumen, se muestra en el ANEXO B13
4.2.2.14 Corrección de diseño de mezclas inicial \(f'c=280 \) kg/cm\(^2\) por asentamiento y densidad (testigos cilíndricos 4” x 8”)

Después elaborar las briquetas de prueba se observó que la cantidad de agua de diseño excedió al necesario para lograr un asentamiento de 3” a 4”, lo que obligó a replantear el diseño de mezclas, modificando la cantidad de agua de diseño.

Cuadro explicativo 46 Cálculo en seco del diseño inicial de \(f'c=280 \) kg/cm\(^2\)-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (WS)</th>
<th>Peso unitario seco (WUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>0.45</td>
</tr>
<tr>
<td>Arena</td>
<td>774.80</td>
<td>1.72</td>
</tr>
<tr>
<td>Piedra</td>
<td>863.28</td>
<td>1.92</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2293.63</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La densidad teórica del concreto es de 2293.63 kg/m\(^3\), de acuerdo al cuadro anterior.

Según el cálculo del diseño de mezclas inicial se tiene lo siguiente

Cuadro explicativo 47 Medidas de los componentes de mezcla de prueba inicial de \(f'c=280 \) kg/cm\(^2\)-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra (WO)</th>
<th>WUO*F Para 19.60 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>3.82</td>
</tr>
<tr>
<td>Agua</td>
<td>210.16</td>
<td>1.80</td>
</tr>
<tr>
<td>Arena</td>
<td>780.92</td>
<td>6.61</td>
</tr>
<tr>
<td>Piedra</td>
<td>867.77</td>
<td>7.37</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2309.40</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Al preparar la mezcla de prueba faltó 0.10 lit de agua para un asentamiento de 3” a 4”.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
La densidad real medida después de la elaboración de la mezcla de prueba es 2357.72 kg/m³.

\[
Rendimiento de la mezcla = \frac{3.82 + 1.80 + 0.30 + 6.61 + 7.37}{2357.72} = 0.00836 \text{ m}^3
\]

\[
Agua corregida = \frac{1.80 + 0.03 + 0.01 + 0.30}{0.00836} = 232.06 \text{ lit}
\]

\[
cemento corregido = \frac{232.06}{0.45} = 515.69 \text{ kg}
\]

\[
Piedra húmeda corregida = \frac{7.37}{0.00836} = 881.58 \text{ kg}
\]

\[
Piedra seca corregida = \frac{881.58}{1.0052} = 877.02 \text{ kg}
\]

\[
Piedra saturada corregida = 877.02 \times 1.0066 = 882.81 \text{ kg}
\]

\[
Arena saturada corregida = 2357.72 - 232.06 - 515.69 - 882.81 = 727.16 \text{ kg}
\]

\[
Arena seca corregida = \frac{727.16}{1.013} = 717.83 \text{ kg}
\]

Entonces las proporciones corregidas por asentamiento y densidad son:

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.69</td>
<td>232.06</td>
<td>717.83</td>
<td>877.02</td>
</tr>
<tr>
<td>1</td>
<td>0.45</td>
<td>1.39</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.69</td>
<td>236.95</td>
<td>723.5</td>
<td>881.58</td>
</tr>
<tr>
<td>1</td>
<td>0.46</td>
<td>1.4</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

El cuadro resumen, se muestra en el ANEXO B14
4.2.2.15 Diseño de mezclas final para concretos $f'_c= 280$ kg/cm2 (testigos cilíndricos 4” x 8”)

Los pasos a seguir en el diseño de mezclas son los mismos que se mostraron en el diseño de mezclas inicial, con la diferencia de que la resistencia requerida se obtiene mediante fórmulas que consideran la desviación estándar obtenida a partir ensayos de compresión simple hechos a testigos cilíndricos que se elaboraron con el diseño de mezclas inicial corregido.

Los ensayos de compresión simple que se realizaron para la obtención de la desviación estándar se muestran en el ANEXO A4.

La desviación estándar es $S_s=13.55$, con este valor se determina la resistencia requerida para el diseño de mezclas final.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, como la resistencia especificada del diseño de mezclas es $f'_c=280$ kg/cm2 y éste es menor a 350 kg/cm2, entonces se utiliza las fórmulas (1) y (2), de las cuales seleccionaremos el mayor valor resultante.

$$f'_c r = f'_c + 1.34 Ss = 280 + 1.34 \times 13.55 = 298.16$$

$$f'_c r = f'_c + 2.33 Ss - 35 = 280 + 2.33 \times 13.55 - 35 = 276.57$$

El mayor valor resultante de la resistencia requerida es 298.16 Kg/cm2

o) Determinación de la cantidad de agua de mezcla

De acuerdo a la tabla 21, la cantidad de agua es 205 lit/m3

p) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 2%.

q) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac.

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>a/c</th>
<th>x</th>
<th>0.47</th>
<th>0.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>0.47</td>
<td>298.16</td>
<td>x</td>
<td>300</td>
</tr>
<tr>
<td>350</td>
<td>0.54</td>
<td>298.16</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

$$\frac{298.16 - 300}{350 - 300} = \frac{x - 0.54}{0.47 - 0.54}$$

$x = 0.543$

r) Cantidad de cemento

$$c = \frac{\text{agua}}{a/c} = \frac{205}{0.543} = 377.53 \text{ kg}$$

s) Cantidad de arena y piedra

$$v = \frac{\text{peso seco}}{\text{peso específico}}$$

$$V_{cemento} = \frac{377.53}{2850} = 0.132$$

$$V_{agua} = \frac{205}{1000} = 0.205$$

$$V_{aire} = 2\% = 0.020$$

El volumen parcial, es:

$$V_{parcial} = 0.132 + 0.205 + 0.020 = 0.357$$

El volumen faltante, es:

$$V_{faltante} = 1 - 0.357 = 0.643$$

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

$$V_{arena} = 0.643 \times 48\% = 0.309$$

$$V_{piedra} = 0.643 \times 52\% = 0.334$$

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]

\[x = \text{peso seco arena} = 2617.57 \times 0.309 = 808.83 \]

\[y = \text{peso seco piedra} = 2689.35 \times 0.334 = 898.24 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WUS_{cemento} = \frac{377.53}{377.53} = 1 \]

\[WUS_{agüa} = \frac{205}{377.53} = 0.54 \]

\[WU_{arena} = \frac{808.83}{377.53} = 2.14 \]

\[WUS_{piedra} = \frac{898.24}{377.53} = 2.38 \]

t) **Corrección por humedad y absorción**

La cantidad de agua final, está dado por la siguiente fórmula:

\[\text{Acorreg} = A\text{diseño} - \left[P\text{secoarena} \times \frac{\text{Humaren} - \text{absaren}}{100} + P\text{secopiedra} \times \frac{\text{Humpied} - \text{absplied}}{100} \right] \]

\[\text{Acorreg} = 205 - \left[808.83 \times \frac{0.79 - 1.30}{100} + 898.24 \times \frac{0.52 - 0.66}{100} \right] = 210.38 \]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[P\text{eso húmedo arena en kg} = P\text{eso seco arena en kg} \times (1 + \text{humedad de arena en }%) \]

\[P\text{eso húmedo arena en kg} = 808.83 \times (1 + 0.0079) = 815.22 \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[P\text{eso húmedo piedra en kg} = P\text{eso seco piedra en kg} \times (1 + \text{humedad de piedra en }%) \]

\[\text{peso húmedo piedra en kg} = 898.24 \times (1 + 0.0052) = 902.91 \]
El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUO_{cemento} = \frac{377.53}{377.53} = 1 \]
\[WUO_{agua} = \frac{210.38}{377.53} = 0.56 \]
\[WUO_{arena} = \frac{815.22}{377.53} = 2.16 \]
\[WUO_{piedra} = \frac{902.91}{377.53} = 2.39 \]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 23.80 lit
- El volumen de la arena en obra en pies³, es:

\[\frac{WUO_{arena} \times 42.5}{PUS_{arena}} \times 35.31 = \frac{91.80}{1648.46} \times 35.31 = 1.97 \text{pie³} \]

- El volumen en obra en pies³ de la piedra

\[\frac{WUO_{piedra} \times 42.5}{PUS_{piedra}} \times 35.31 = \frac{101.58}{1615.57} \times 35.31 = 2.22 \text{pie³} \]

Cuadro explicativo 50 Dosificación de diseño de mezclas final f’c=280 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Lit / bols</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.97</td>
<td>2.22</td>
<td>23.80</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B15
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae

4.2.2.16 Corrección de diseño de mezclas final f’c= 280 kg/cm² por asentamiento y densidad (testigos cilíndricos 4”x8”)

a) Sobra agua

Agua sobrante 0.09 lit

b) Peso del proctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.592 kg.

d) Volumen del proctor

Vol próctor = 0.002124

e) Densidad teórica

Densidad teorica= 2289.60 kg/m³

f) Densidad real

\[
Densidad \, real = \frac{peso \, concreto \, más \, próctor - peso \, del \, próctor}{volumen \, del \, próctor}
\]

\[
Densidad \, real = \frac{11.592 - 6.5602}{0.002124} = 2369.02 \, kg/m³
\]

g) Rendimiento

\[
Rendimiento = \frac{3.21 + 1.80 + 6.93 + 7.67 - 0.09}{2369.02} = 0.00824
\]

h) Agua corregida

\[
Agua \, corregida = \frac{1.80 + 0.035 + 0.011 - 0.18}{0.00824} = 213.11 \, lit
\]

i) Cemento corregido

\[
cemento \, corregido = \frac{213.11}{0.54} = 394.65 \, kg
\]
j) Piedra húmeda corregida

\[\text{Piedra húmeda corregida} = \frac{7.67}{0.00824} = 930.83 \text{ kg} \]

k) Piedra seca corregida

\[\text{Piedra seca corregida} = \frac{930.83}{1.0052} = 926.01 \text{ kg} \]

l) Piedra saturada corregida

\[\text{Piedra saturada corregida} = 926.01 \times 1.0066 = 932.12 \text{ kg} \]

m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2369.02 - 213.11 - 394.65 - 932.12 \]
\[= 829.14 \text{ kg} \]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{829.14}{1.013} = 818.50 \text{ kg} \]

Cuadro explicativo 51 Dosificación en seco de diseño de mezclas final f'c=280 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>394.65</td>
<td>213.11</td>
<td>818.5</td>
<td>926.01</td>
</tr>
<tr>
<td>1</td>
<td>0.54</td>
<td>2.07</td>
<td>2.35</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 52 Dosificación en húmedo de diseño de mezclas final f'c=280 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>394.65</td>
<td>218.58</td>
<td>824.97</td>
<td>930.83</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>2.09</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B16
4.2.2.17 Diseño de mezclas inicial para concreto f’c= 350 kg/cm2 – huso 67 (muestras cilíndicas de 4”x8”)

Se siguió los siguientes pasos para el diseño de mezclas mediante el método del agregado global para f’c=350 kg/cm2

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 18, se trabaja con un asentamiento de 3” a 4”.

b) Determinación de la resistencia requerida

De acuerdo a la tabla 19, como la resistencia especificada es f’c=350 kg/cm2, se utiliza la siguiente fórmula para la resistencia requerida: f’cr= f’c +85

\[F’cr = 350 + 85 = 435 \text{ kg/cm}^2 \]

c) Determinación de la cantidad de agua de mezcla

Para lo cual es necesario conocer el asentamiento, que en este caso es 3” a 4”, así como el tamaño máximo nominal del agregado grueso, que en nuestro caso es 3/4”.

De acuerdo a la tabla 20, la cantidad de agua para diseño es de 205 lit/m3

d) Determinación del contenido de aire

Para la determinación del aire atrapado se considera el tamaño máximo nominal de la piedra.

De acuerdo a la tabla 21, el aire atrapado es de 2%

e) Selección de la relación agua/cemento (a/c)

Para la selección de la relación agua/cemento, se necesita la resistencia requerida f’cr, que para este diseño de mezclas es f’cr=435 kg/cm2.
De acuerdo a la tabla 22, se observa que f’cr=435 kg/cm2, es un valor que está entre 400 kg/cm2 y 450 kg/cm2, para lo cual es necesario realizar una interpolación, en la que resulta 0.392.

\[
\begin{array}{cc}
\text{f’cr} & \text{a/c} \\
450 & 0.38 \\
435 & x \\
400 & 0.42 \\
\end{array}
\]

\[
\frac{435 - 400}{450 - 200} = \frac{x - 0.42}{0.38 - 0.42}
\]

\[x = 0.392\]

f) Cantidad de cemento

\[c = \frac{aguq}{a/c} = \frac{205}{0.392} = 522.96 \text{ kg}\]

g) Cantidad de arena y piedra

Para hallar la cantidad de arena y piedra, es necesario tomar en consideración si el concreto a diseñar es convencional o requerirá de algún aditivo, más para esta investigación sólo es convencional, por lo que sus componentes son el cemento, agua, arena, piedra y aire.
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Cuadro explicativo 53 Cantidad de arena y piedra

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (kg)</th>
<th>Peso específico (kg/m³)</th>
<th>Volumen existente V (m³)</th>
<th>Distrib. volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>522.96</td>
<td>2850.00</td>
<td>0.183</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Arena</td>
<td>X</td>
<td>2617.57</td>
<td>0.284</td>
<td>1.42</td>
<td>1.42</td>
</tr>
<tr>
<td>Piedra</td>
<td>Y</td>
<td>2689.35</td>
<td>0.308</td>
<td>1.58</td>
<td>1.58</td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.67</td>
<td>0.408</td>
<td>0.592</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso seco del cemento se conoce, como también la cantidad de agua y el porcentaje de aire, las cuales ocupan un volumen. Más de la arena y la piedra son incógnitas, “x” e “y” respectivamente.

Los pesos específicos de los componentes son conocidos

Se pueden conocer el volumen del cemento, del agua y del aire, de la siguiente forma:

$$ v = \frac{\text{peso seco}}{\text{peso específico}} $$

$$ V_{cemento} = \frac{522.96}{2850} = 0.183 $$

$$ V_{agua} = \frac{205}{1000} = 0.205 $$

$$ V_{aire} = 2\% = 0.020 $$

El volumen parcial, es:

$$ V_{parcial} = 0.183 + 0.205 + 0.020 = 0.408 $$

El volumen faltante, es:

$$ V_{faltante} = 1 - 0.408 = 0.592 $$

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyac

$V_{arena} = 0.592 \times 48\% = 0.284$

$V_{piedra} = 0.592 \times 52\% = 0.308$

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

$peso \ seco = peso \ específico \times volumen$

$x = peso \ seco \ arena = 2617.57 \times 0.284 = 743.39$

$y = peso \ seco \ piedra = 2689.35 \times 0.308 = 828.32$

Cuadro explicativo 54 Cálculo de peso unitario seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m3)</th>
<th>V (m3)</th>
<th>Distrib. volum. faltante (m3)</th>
<th>Peso unitario seco WUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>522.96</td>
<td>2850.00</td>
<td>0.183</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td>Arena</td>
<td>743.39</td>
<td>2617.57</td>
<td>0.284</td>
<td></td>
<td>1.42</td>
</tr>
<tr>
<td>Piedra</td>
<td>828.32</td>
<td>2689.35</td>
<td>0.308</td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.67</td>
<td>0.408</td>
<td>0.592</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{cemento} = \frac{522.96}{522.96} = 1
\]

\[
WUS_{agua} = \frac{205}{522.96} = 0.39
\]

\[
WUS_{arena} = \frac{743.39}{522.96} = 1.42
\]

\[
WUS_{piedra} = \frac{828.32}{522.96} = 1.58
\]
h) **Corrección por humedad y absorción**

La corrección por humedad y absorción de la piedra y la arena modifica la cantidad de agua previsto en estado seco, ésta puede aumentar o disminuir.

Cuadro explicativo 55 Corrección por humedad y absorción de agregados

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>522.96</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>209.95</td>
<td>0.40</td>
<td>17.00</td>
<td>17.00</td>
</tr>
<tr>
<td>Arena</td>
<td>749.26</td>
<td>1.43</td>
<td>60.78</td>
<td>1.30</td>
</tr>
<tr>
<td>Piedra</td>
<td>832.63</td>
<td>1.59</td>
<td>67.58</td>
<td>1.48</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El peso del cemento en obra es el mismo, no varía

Peso del cemento=522.96 kg.

La cantidad de agua final está dada por la siguiente fórmula:

\[
A_{\text{correg}} = A_{\text{diseno}} - \left[P_{\text{seco arena}} \cdot \frac{(\text{Humared} - \text{absaren})}{100} + P_{\text{seco piedra}} \cdot \frac{(\text{Humpied} - \text{abspied})}{100} \right]
\]

\[
A_{\text{correg}} = 205 - \left[743.39 \cdot \frac{(0.79 - 1.30)}{100} + 828.32 \cdot \frac{(0.52 - 0.66)}{100} \right] = 209.95
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
P_{\text{húmedo arena en kg}} = P_{\text{seco arena en kg}} \times (1 + \text{humedad de arena en %})
\]

\[
P_{\text{húmedo arena en kg}} = 743.39 \times (1 + 0.0079) = 749.26
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
P_{\text{húmedo piedra en kg}} = P_{\text{seco piedra en kg}} \times (1 + \text{humedad de piedra en %})
\]
Densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac

peso húmedo piedra en kg = 828.32 x (1 + 0.0052) = 832.63

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WUO_{cemento} = \frac{522.96}{522.96} = 1
\]

\[
WUO_{agua} = \frac{209.95}{522.96} = 0.40
\]

\[
WUO_{arena} = \frac{749.26}{522.96} = 1.43
\]

\[
WUO_{piedra} = \frac{832.63}{522.96} = 1.59
\]

Peso unitario en obra por bolsa de cemento (WU x 42.5)

En obra, para las tandas de concreto normalmente se referencia con la bolsa de cemento cuyo peso es 42.5 kg, por lo cual hacemos el siguiente cálculo:

\[
WUO_{cemento} \times 42.5 = 1 \times 42.5 = 42.5 \text{ kg}
\]

\[
WUO_{agua} \times 42.5 = 0.40 \times 42.5 = 17 \text{ lit}
\]

\[
WUO_{arena} \times 42.5 = 1.43 \times 42.5 = 60.78 \text{ kg}
\]

\[
WUO_{piedra} \times 42.5 = 1.59 \times 42.5 = 67.58 \text{ kg}
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

1 bolsa de cemento = 1 pie³

En el caso del agua, es manejable la unidad con la que se está trabajando, 17 lit

El volumen en obra en pies³ de la arena

\[
\frac{WUO_{arena} \times 42.5}{PUS_{arena}} \times 35.31 = \frac{60.78}{1648.46} \times 35.31 = 1.30 \text{ pie³}
\]

El volumen en obra en pies³ de la piedra, es:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyae

\[\frac{WUOpiedra \times 42.5}{PUSpiedra} \times 35.31 = \frac{67.58}{1615.57} \times 35.31 = 1.48 \text{ pie}^3 \]

La dosificación, es:

\[\text{Cuadro explicativo 56 Dosificación de diseño de mezclas inicial de } f'_c=175 \text{ kg/cm}^2\text{-huso 67} \]

<table>
<thead>
<tr>
<th>Componente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>17.00</td>
<td>lit/bols</td>
</tr>
<tr>
<td>a/c</td>
<td></td>
<td>0.40</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

i) Mezcla de prueba

El diseño de mezclas es una aproximación de las cantidades de cada componente a considerar en la elaboración del concreto, es por ello que es necesario realizar las mezclas de prueba.

Para la mezcla de prueba, debemos hacer los siguientes cálculos:

\[\text{Cuadro explicativo 57 Cálculo para mezcla de prueba} \]

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de briquetas</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60</td>
<td>kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td></td>
<td>4.43</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se elaboró 04 briquetas de prueba y se consideró un peso aproximado de 4.90 kg por cada uno, haciendo un peso total de 19.60 kg.

Se trabaja con un factor F, que es igual a:

\[F = \frac{\text{peso total de briquetas}}{\text{peso unitario en obra total}} = \frac{19.60}{4.42} = 4.43 \]

Entonces la mezcla de prueba resulta:
Cuadro explicativo 58 Cantidades de componentes para mezcla de prueba f’c=175 kg/cm²

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>4.43</td>
</tr>
<tr>
<td>Agua</td>
<td>1.77</td>
</tr>
<tr>
<td>Arena</td>
<td>6.33</td>
</tr>
<tr>
<td>Piedra</td>
<td>7.04</td>
</tr>
<tr>
<td>Aire</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
WUO_{cemento} \times F = 1 \times 4.43 = 4.43
\]

\[
WUO_{agua} \times F = 0.40 \times 4.43 = 1.77
\]

\[
WUO_{arena} \times F = 1.43 \times 4.43 = 6.33
\]

\[
WUO_{piedra} \times F = 1.59 \times 4.43 = 7.04
\]

Se muestra un cuadro resumen en el ANEXO B17

4.2.2.18 Corrección de diseño de mezclas inicial f’c=350 – huso 67 kg/cm² por asentamiento y densidad

Después elaborar las briquetas de prueba se observó que la cantidad de agua de diseño fue insuficiente para lograr un asentamiento de 3” a 4”, lo que obligó a replantear el diseño de mezclas, modificando la cantidad de agua de diseño.

Cuadro explicativo 59 Cálculo en seco del diseño inicial de f’c=350 kg/cm²-huso67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
</tr>
<tr>
<td>Cemento</td>
<td>522.96</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
</tr>
<tr>
<td>Arena</td>
<td>743.39</td>
</tr>
<tr>
<td>Piedra</td>
<td>828.32</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.67</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La densidad teórica del concreto es de 2299.67 kg/m³, de acuerdo al cuadro anterior.
Según el cálculo del diseño de mezclas inicial se tiene lo siguiente

Cuadro explicativo 60 Medidas de los componentes de mezcla de prueba inicial de $f_c=350$ kg/cm²-husos 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso en obra</td>
<td>WUO*F</td>
</tr>
<tr>
<td></td>
<td>WO</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>522.96</td>
<td>4.43</td>
</tr>
<tr>
<td>Agua</td>
<td>209.95</td>
<td>1.77</td>
</tr>
<tr>
<td>Arena</td>
<td>749.26</td>
<td>6.33</td>
</tr>
<tr>
<td>Piedra</td>
<td>832.63</td>
<td>7.04</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2314.80</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Al preparar la mezcla de prueba faltó 0.109 lit de agua para un asentamiento de 3” a 4”.

La densidad real medida después de la elaboración de la mezcla de prueba es 2347.83 kg/m³

Rendimiento de la mezcla = \(\frac{4.43 + 1.77 + 0.143 + 6.33 + 7.04}{2347.83} = 0.00838 \text{ m}^3 \)

Agua corregida = \(\frac{1.77 + 0.03 + 0.01 + 0.143}{0.00838} = 229 \text{ lit} \)

cemento corregido = \(\frac{229}{0.39} = 587.18 \text{ kg} \)

Piedra húmeda corregida = \(\frac{7.04}{0.00838} = 840.1 \text{ kg} \)

Piedra seca corregida = \(\frac{840.1}{1.0052} = 835.75 \text{ kg} \)

Piedra saturada corregida = \(835.75 \times 1.0066 = 841.27 \text{ kg} \)

Arena saturada corregida = \(2347.83 - 229 - 587.18 - 841.27 = 690.38 \text{ kg} \)

Arena seca corregida = \(\frac{690.38}{1.013} = 681.52 \text{ kg} \)

Entonces las proporciones corregidas por asentamiento y densidad son:
Cuadro explicativo 61 Dosificación en seco de diseño de mezclas inicial corregido de f’c=140 kg/cm² – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>587.18</td>
<td>229</td>
<td>681.52</td>
<td>835.75</td>
</tr>
<tr>
<td>1</td>
<td>0.39</td>
<td>1.16</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 62 Dosificación en húmedo de diseño de mezclas inicial corregido de f’c=140 kg/cm² – huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>587.18</td>
<td>233.65</td>
<td>686.9</td>
<td>840.1</td>
</tr>
<tr>
<td>1.00</td>
<td>0.40</td>
<td>1.17</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B18

4.2.2.19 Diseño de mezclas final para concretos f’c= 350 kg/cm² – huso 67

Los pasos a seguir en el diseño de mezclas son los mismos que se mostraron en el diseño de mezclas inicial f’c=350 kg/cm², con la diferencia de que la resistencia requerida se obtiene mediante fórmulas que consideran la desviación estándar obtenida a partir ensayos de compresión simple hechos a testigos cilíndricos que se elaboraron con el diseño de mezclas inicial.

Los resultados de los ensayos de compresión simple para la desviación estándar se muestran en el ANEXO A5.

La desviación estándar es Ss=29.46, con cuyo dato se determina la resistencia requerida para el diseño de mezclas final.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, como la resistencia especificada del diseño de mezclas es f’c=350 kg/cm² y éste es igual a 350 kg/cm², entonces se utiliza las fórmulas (1) y (2), de las cuales seleccionaremos el mayor valor resultante.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_{cr} = 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyae

$$f'cr = f'c + 1.34 Ss = 350 + 1.34 \times 29.46 = 389.48$$

$$f'cr = f'c + 2.33 Ss - 35 = 350 + 2.33 \times 29.46 - 35 = 383.64$$

El mayor valor resultante de la resistencia requerida es 389.48 Kg/cm²

c) **Determinación de la cantidad de agua de mezcla**

De acuerdo a la tabla 21, la cantidad de agua es 205 lit/m³

d) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es 2%

e) **Selección de la relación agua/cemento (a/c)**

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>389.48</td>
<td>x</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

$$\frac{389.48 - 350}{400 - 350} = \frac{x - 0.47}{0.42 - 0.47}$$

$$x = 0.431$$

f) **Cantidad de cemento**

$$c = \frac{agua}{a/c} = \frac{205}{0.431} = 475.64 \text{ kg}$$

g) **Cantidad de arena y piedra**

$$v = \frac{peso \text{ seco}}{peso \text{ específico}}$$

$$V_{cemento} = \frac{475.64}{2850} = 0.167$$

$$V_{agua} = \frac{205}{1000} = 0.205$$

$$V_{aire} = 2\% = 0.020$$
El volumen parcial, es:

\[V_{parcial} = 0.167 + 0.205 + 0.020 = 0.392 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.392 = 0.608 \]

El volumen faltante se distribuye en el 52% para la piedra y el 48% para la arena

\[V_{arena} = 0.608 \times 48\% = 0.292 \]

\[V_{piedra} = 0.608 \times 52\% = 0.316 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]

\[x = \text{peso seco arena} = 2617.57 \times 0.292 = 764.33 \]

\[y = \text{peso seco piedra} = 2689.35 \times 0.316 = 849.83 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WUS_{cemento} = \frac{475.64}{475.64} = 1 \]

\[WUS_{sagua} = \frac{205}{475.64} = 0.43 \]

\[WUS_{arena} = \frac{764.33}{475.64} = 1.61 \]

\[WUS_{piedra} = \frac{849.83}{475.64} = 1.79 \]

h) **Corrección por humedad y absorción**

La cantidad de agua final, está dado por la siguiente fórmula:

\[Acorreg = \text{Adiseño} - \left[\frac{P_{secoarena}}{100} \times \frac{(Hum_{arena} - \text{abs}_{arena})}{100} + \frac{P_{secopiedra}}{100} \times \frac{(Hum_{piedra} - \text{abs}_{piedra})}{100} \right] \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2$ con agregados de la cantera de Cunyac

$A_{corr} = 205 - \left[764.33 \times \frac{(0.79 - 1.30)}{100} + 849.83 \times \frac{(0.52 - 0.66)}{100} \right] = 210.09$

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

$Peso \ húmedo \ arena \ en \ kg$

$= Peso \ seco \ arena \ en \ kg \times (1 + \text{ humedad de arena en }\%)$

$Peso \ húmedo \ arena \ en \ kg = 764.33 \times (1 + 0.0079) = 770.37$

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

$Peso \ húmedo \ piedra \ en \ kg$

$= Peso \ seco \ piedra \ en \ kg \times (1 + \text{ humedad de piedra en }\%)$

$peso \ húmedo \ piedra \ en \ kg = 849.83 \times (1 + 0.0052) = 854.25$

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

$\frac{WUO\text{cemento}}{475.64} = 1$

$\frac{WUO\text{agua}}{475.64} = 0.44$

$\frac{WUO\text{arena}}{475.64} = 1.62$

$\frac{WUO\text{piedra}}{475.64} = 1.80$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie3
- En el caso del agua, es manejable la unidad con la que se trabaja, 18.70 lit
- El volumen de la arena en obra en pies3, es:

$\frac{WUO\text{arena} \times 42.5}{PUS\text{arena}} \times 35.31 = \frac{68.85}{1648.46} \times 35.31 = 1.47 \text{ pie}^3$
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae

- El volumen en obra en pies³ de la piedra

\[
\frac{WU_{\text{piedra}} \times 42.5}{PUS_{\text{piedra}}} \times 35.31 = \frac{76.50}{1615.57} \times 35.31 = 1.67\ pie³
\]

Cuadro explicativo 63 Dosificación del diseño de mezclas final de f’c=350 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.47</td>
<td>1.67</td>
<td>18.70</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B19

4.2.2.20 Corrección de diseño de mezclas final f’c= 350 kg/cm²– huso 67 por asentamiento y densidad

Después de elaborado las briquetas de prueba, la cantidad de agua es el correcto para obtener el asentamiento de 3” a 4”, por lo que no fue necesario la corrección por asentamiento, pero sí por densidad.

a) Sobra agua

No sobra ni falta agua 0.00 lit

b) Peso del proctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.543 kg.

d) Volumen del proctor

Vol proctor = 0.002124

e) Densidad teórica

Densidad teorica= 2294.80 kg/m³

f) Densidad real

\[
\text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]
Densidad real = \(\frac{11.5602 - 6.5602}{0.002124} = 2345.95 \text{ kg/m}^3\)

g) Rendimiento

\[Rendimiento = \frac{4.03 + 1.77 + 6.53 + 7.25 - 0.00}{2345.95} = 0.00835 \]

h) Agua corregida

\[Agua \text{ corregida} = \frac{1.77 + 0.037 + 0.011 - 0.00}{0.00835} = 217.13 \text{ lit} \]

i) Cemento corregido

\[cemento \text{ corregido} = \frac{217.13}{0.43} = 504.95 \text{ kg} \]

j) Piedra húmeda corregida

\[Piedra \text{ húmeda corregida} = \frac{7.25}{0.00835} = 868.26 \text{ kg} \]

k) Piedra seca corregida

\[Piedra \text{ seca corregida} = \frac{868.26}{1.0052} = 863.77 \text{ kg} \]

l) Piedra saturada corregida

\[Piedra \text{ saturada corregida} = 863.77 \times 1.0066 = 869.47 \text{ kg} \]

m) Arena saturada corregida

\[Arena \text{ saturada corregida} = 2345.95 - 217.13 - 504.95 - 869.47 = 754.40 \text{ kg} \]

n) Arena seca corregida

\[Arena \text{ seca corregida} = \frac{754.40}{1.013} = 744.72 \text{ kg} \]
Cuadro explicativo 64 Dosificación en seco de diseño de mezclas f’c= 350 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.95</td>
<td>217.13</td>
<td>744.72</td>
<td>863.77</td>
</tr>
<tr>
<td>1</td>
<td>0.43</td>
<td>1.47</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 65 Dosificación en húmedo de diseño de mezclas f’c= 350 kg/cm² huso 67

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.95</td>
<td>222.14</td>
<td>750.6</td>
<td>868.26</td>
</tr>
<tr>
<td>1.00</td>
<td>0.44</td>
<td>1.49</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen se muestra en el anexo B20

4.2.3 Diseño de mezclas para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² –huso 8 (testigos cilíndricos de 2” x 4”)

La investigación consideró la máxima compacidad de los agregados, para lo cual se determinó el máximo peso unitario compactado del agregado global mediante la combinación del agregado grueso y fino a diferentes porcentajes.

Para la elaboración de briquetas de 2” x 4” se utilizó agregado grueso de tamaño máximo de 1/2” y tamaño máximo nominal de 3/8” (huso 8), el agregado fino pasante la malla 3/8.

En la investigación se buscó la mejor combinación de agregados por el método de compacidad, de tal forma que se logre una mayor densidad del concreto y por consiguiente una mayor resistencia a la compresión.

El siguiente cuadro muestra las diferentes combinaciones en porcentaje de agregado grueso y fino.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c=140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Porcentaje de agregado grueso</th>
<th>Porcentaje de agregado fino</th>
<th>Peso del próctor más agregado global (kg)</th>
<th>Peso del próctor sin collarín</th>
<th>Volumen del próctor</th>
<th>Peso de agregado</th>
<th>Peso unitario compactado</th>
</tr>
</thead>
<tbody>
<tr>
<td>36%</td>
<td>64%</td>
<td>10.8199</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.26</td>
<td>2005.58</td>
</tr>
<tr>
<td>42%</td>
<td>58%</td>
<td>10.8386</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.28</td>
<td>2014.39</td>
</tr>
<tr>
<td>46%</td>
<td>54%</td>
<td>10.8501</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2019.80</td>
</tr>
<tr>
<td>48%</td>
<td>52%</td>
<td>10.8675</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.31</td>
<td>2028.00</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>10.873</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.31</td>
<td>2030.59</td>
</tr>
<tr>
<td>52%</td>
<td>48%</td>
<td>10.8688</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.31</td>
<td>2028.61</td>
</tr>
<tr>
<td>54%</td>
<td>46%</td>
<td>10.8588</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.30</td>
<td>2023.90</td>
</tr>
<tr>
<td>56%</td>
<td>44%</td>
<td>10.8538</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2021.55</td>
</tr>
<tr>
<td>58%</td>
<td>42%</td>
<td>10.8501</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.29</td>
<td>2019.80</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>10.8400</td>
<td>6.5602</td>
<td>0.002124</td>
<td>4.28</td>
<td>2015.05</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 8 Compacidad del agregado global para testigos cilíndricos de 2"x4"

Del cuadro de compacidad se desprende que, la combinación de agregados con el cual se muestra más peso unitario compactado, es del 50% para agregado grueso y 50% para agregado fino.
4.2.3.1 Diseño de mezclas inicial para concreto $f'c=140$ kg/cm² –huso 8

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3”

b) Determinación de la resistencia requerida

Para la determinación de la resistencia requerida se utiliza la siguiente tabla 20

\[f'cr = f'c + 70 = 140 + 70 = 210 \text{ kg/cm}^2 \]

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m3

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

\[
\begin{array}{cc}
\text{f'cr} & \text{a/c} \\
250 & 0.61 \\
210 & X \\
200 & 0.69 \\
\end{array}
\]

\[
\frac{210 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69}
\]

\[x = 0.674 \]

f) Cantidad de cemento

\[
c = \frac{\text{agua}}{a/c} = \frac{228}{0.674} = 338.28 \text{ kg}
\]
g) Cantidad de arena y piedra

\[v = \frac{peso \ seco}{peso \ específico} \]

\[V_{cemento} = \frac{338.28}{2850} = 0.119 \]

\[V_{agua} = \frac{228}{1000} = 0.228 \]

\[V_{aire} = 3\% = 0.030 \]

El volumen parcial, es:

\[V_{parcial} = 0.119 + 0.228 + 0.030 = 0.377 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.377 = 0.623 \]

El volumen faltante se distribuye en el 50\% para la piedra y el 50\% para la arena

\[V_{arena} = 0.623 \times 50\% = 0.312 \]

\[V_{piedra} = 0.623 \times 50\% = 0.312 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \ seco = peso \ específico \times \ volumen \]

\[x = peso \ seco \ arena = 2617.57 \times 0.320 = 816.68 \]

\[y = peso \ seco \ piedra = 2645.35 \times 0.320 = 825.35 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WU_{cemento} = \frac{338.28}{338.28} = 1 \]

\[WU_{agua} = \frac{228}{338.28} = 0.67 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c = 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

\[
W_{Uarena} = \frac{816.68}{338.28} = 2.41
\]

\[
W_{USpiedra} = \frac{825.35}{338.28} = 2.44
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
A_{correg} = A_{diseño} - \left[P_{secórea} \times \frac{(H_{arena} - a_{bárena})}{100} + P_{secopié} \times \frac{(H_{piedra} - a_{báspí})}{100} \right]
\]

\[
A_{correg} = 228 - \left[816.68 \times \frac{(0.79 - 1.30)}{100} + 825.35 \times \frac{(0.50 - 0.92)}{100} \right]
\]

\[
= 235.63 \text{ lit/m}^3
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ arena \ en \ kg
\]

\[
= Peso \ seco \ arena \ en \ kg \times (1 + humedad \ de \ arena \ en \ %)
\]

\[
Peso \ húmedo \ arena \ en \ kg = 816.68 \times (1 + 0.0079) = 823.13
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ piedra \ en \ kg
\]

\[
= Peso \ seco \ piedra \ en \ kg \times (1 + humedad \ de \ piedra \ en \ %)
\]

\[
peso \ húmedo \ piedra \ en \ kg = 825.35 \times (1 + 0.0050) = 829.48 \text{ kg}
\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
W_{UOCemento} = \frac{338.28}{338.28} = 1
\]

\[
W_{UOagua} = \frac{235.63}{338.28} = 0.70
\]

\[
W_{UOarena} = \frac{823.13}{338.28} = 2.43
\]

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determination of the density and resistance with ultrasonic and triaxial for concretes \(f'c=140, 175, 210, 280 \) and 350 kg/cm\(^2\) with aggregates of the cantera of cunyac.

\[
WUO_{\text{piedra}} = \frac{829.48}{338.28} = 2.45
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie\(^3\)
- En el caso del agua, es manejable la unidad con la que se trabaja, 29.75 lit
- El volumen de la arena en obra en pies\(^3\), es:
 \[
 \frac{WUO_{\text{arena}} \times 42.5}{PUS_{\text{arena}}} \times 35.31 = \frac{103.28}{1648.46} \times 35.31 = 2.21 \text{ pie}^3
 \]
- El volumen en obra en pies\(^3\) de la piedra
 \[
 \frac{WUO_{\text{piedra}} \times 42.5}{PUS_{\text{piedra}}} \times 35.31 = \frac{104.13}{1626.96} \times 35.31 = 2.26 \text{ pie}^3
 \]

Cuadro explicativo 66 Dosificación de diseño de mezclas inicial \(f'c=140 \) kg/cm\(^2\) -huso

<table>
<thead>
<tr>
<th>Fuente:</th>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.21</td>
<td>2.26</td>
<td>29.75</td>
<td>0.70</td>
<td>lit/bols</td>
</tr>
</tbody>
</table>

El cuadro resumen, se muestra en el ANEXO B21

4.2.3.2 Corrección del diseño de mezclas inicial \(f'c=140 \) kg/cm\(^2\) - huso 8

a) **Sobra agua**

Agua sobrante 0.356 lit

b) **Peso del próctor**

Peso próctor= 6.5602 kg

c) **Peso del concreto más próctor**

Peso concreto + próctor=11.304 kg.

d) **Volumen del próctor**

Vol proct= 0.002124 m\(^3\)
e) **Densidad teórica**

 Densidad teorica= 2208.31 kg/m³

f) **Densidad real**

 \[
 \text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
 \]

 \[
 \text{Densidad real} = \frac{11.304 - 6.5602}{0.002124} = 2233.43 \text{ kg/m³}
 \]

g) **Rendimiento**

 \[
 \text{Rendimiento} = \frac{2.96 + 2.07 + 7.19 + 7.25 - 0.356}{2233.43} = 0.00856
 \]

h) **Agua corregida**

 \[
 \text{Agua corregida} = \frac{2.07 + 0.04 + 0.03 - 0.356}{0.00856} = 208.41 \text{ lit}
 \]

i) **Cemento corregido**

 \[
 \text{cemento corregido} = \frac{208.41}{0.67} = 311.06 \text{ kg}
 \]

j) **Piedra húmeda corregida**

 \[
 \text{Piedra húmeda corregida} = \frac{7.25}{0.00856} = 846.96 \text{ kg}
 \]

k) **Piedra seca corregida**

 \[
 \text{Piedra seca corregida} = \frac{846.96}{1.0050} = 842.75 \text{ kg}
 \]

l) **Piedra saturada corregida**

 \[
 \text{Piedra saturada corregida} = 842.75 \times 1.0092 = 850.50 \text{ kg}
 \]
m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2233.43 - 208.41 - 311.06 - 850.05 = 863.46 \, \text{kg}\]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{863.46}{1.013} = 852.38 \, \text{kg}\]

Cuadro explicativo 67 Dosificación en seco de diseño de mezclas inicial \(f_c=140 \, \text{kg/cm}^2\) - huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.06</td>
<td>208.41</td>
<td>852.38</td>
<td>842.75</td>
</tr>
<tr>
<td>1.00</td>
<td>0.67</td>
<td>2.74</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 68 Dosificación en húmedo del diseño de mezclas inicial \(f_c=140 \, \text{kg/cm}^2\) - huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.06</td>
<td>216.3</td>
<td>859.11</td>
<td>846.96</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>2.76</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B22

4.2.3.3 Diseño de mezclas final para \(f'_c=140 \, \text{kg/cm}^2\) – huso 8

Con el diseño inicial para concretos \(f'_c=140 \, \text{kg/cm}^2\) se elaboró 30 muestras cilíndricas, las cuales fueron roturadas a compresión simple para la determinación de la desviación estándar, resultado que fue utilizado en este diseño de mezclas.

Los resultados obtenidos de la rotura a compresión simple para desviación estándar de las 30 muestras cilíndricas de 2”x4”, se muestran en el ANEXO A6.

La desviación estándar que resultó es 14.28, con este dato se trabajó el diseño de mezclas.
a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3’’ a 4’’

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, se tiene las siguientes fórmulas para determinar la resistencia requerida

\[
fc = f'c + 1.34 \times Ss = 140 + 1.34 \times 14.28 = 153.27 \text{ kg/cm}^2
\]

\[
fc = f'c + 2.33 \times Ss - 35 = 140 + 2.33 \times 14.28 - 35 = 128.07 \text{ kg/cm}^2
\]

Se trabajó con el mayor valor obtenido, en este caso 153.27 kg/cm²

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3’’ a 4’’.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m³

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

\[
\begin{array}{l l}
\text{f'cr} & \text{a/c} \\
200 & 0.69 \\
153.27 & x \\
150 & 0.79
\end{array}
\]

\[
\frac{153.27 - 150}{200 - 150} = \frac{x - 0.79}{0.69 - 0.79}
\]

\[
x = 0.783
\]

f) Cantidad de cemento

\[
c = \frac{agua}{a/c} = \frac{228}{0.783} = 291.19 \text{ kg}
\]
g) Cantidad de arena y piedra

\[v = \frac{\text{peso seco}}{\text{peso específico}} \]

\[V_{\text{cemento}} = \frac{291.19}{2850} = 0.102 \]

\[V_{\text{agua}} = \frac{228}{1000} = 0.228 \]

\[V_{\text{aire}} = 3\% = 0.030 \]

El volumen parcial, es:

\[V_{\text{parcial}} = 0.102 + 0.228 + 0.030 = 0.360 \]

El volumen faltante, es:

\[V_{\text{faltante}} = 1 - 0.360 = 0.640 \]

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

\[V_{\text{arena}} = 0.640 \times 50\% = 0.320 \]

\[V_{\text{piedra}} = 0.640 \times 50\% = 0.320 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]

\[x = \text{peso seco arena} = 2617.20 \times 0.320 = 837.50 \]

\[y = \text{peso seco piedra} = 2645.35 \times 0.320 = 846.51 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WUS_{\text{cemento}} = \frac{291.19}{291.19} = 1 \]

\[WUS_{\text{agua}} = \frac{228}{291.19} = 0.78 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

\[W_{U\text{arena}} = \frac{837.50}{291.19} = 2.88 \]

\[W_{U\text{piedra}} = \frac{846.50}{291.19} = 2.91 \]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[A_{\text{correg}} = A_{\text{diseno}} - \left[P_{\text{secos arena}} \cdot \frac{(H_{\text{aren}} - a_{\text{aren}})}{100} + P_{\text{secos piedra}} \cdot \frac{(H_{\text{pied}} - a_{\text{pied}})}{100} \right] \]

\[A_{\text{correg}} = 228 - \left[837.50 \cdot \frac{(0.79 - 1.30)}{100} + 846.51 \cdot \frac{(0.50 - 0.92)}{100} \right] \]

\[= 235.83 \text{ lit/m}^3 \]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[Peso \text{ húmedo arena en kg} \]

\[= Peso \text{ seco arena en kg} \times (1 + \text{humedad de arena en } \%) \]

\[Peso \text{ húmedo arena en kg} = 837.50 \times (1 + 0.0079) = 844.12 \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[Peso \text{ húmedo piedra en kg} \]

\[= Peso \text{ seco piedra en kg} \times (1 + \text{humedad de piedra en } \%) \]

\[peso \text{ húmedo piedra en kg} = 846.51 \times (1 + 0.0050) = 850.74 \text{ kg} \]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[W_{U\text{O cemento}} = \frac{291.19}{291.19} = 1 \]

\[W_{U\text{O agua}} = \frac{235.83}{291.19} = 0.81 \]

\[W_{U\text{O arena}} = \frac{844.12}{291.19} = 2.90 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de cunyac.

\[
WUOpiedra = \frac{850.74}{291.19} = 2.92
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie\(^3\)

- En el caso del agua, es manejable la unidad con la que se trabaja, 34.43 lit

- El volumen de la arena en obra en pies\(^3\), es:

\[
\frac{WUOarena \times 42.5}{PUSarena} \times 35.31 = \frac{123.25}{1648.46} \times 35.31 = 2.64 \text{ pie}^3
\]

- El volumen en obra en pies\(^3\) de la piedra

\[
\frac{WUOpiedra \times 42.5}{PUSpiedra} \times 35.31 = \frac{124.10}{1626.96} \times 35.31 = 2.69 \text{ pie}^3
\]

Cuadro explicativo 69 Dosificación de diseño de mezclas inicial \(f'c = 140 \) kg/cm\(^2\) – huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.64</td>
<td>2.69</td>
<td>34.43</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B23

4.2.3.4 Corrección del diseño de mezclas final para concreto \(f'c = 140 \) kg/cm\(^2\) – huso 8

a) **Sobra agua**

 Agua sobrante 0.4 lit

b) **Peso del próctor**

 Peso próctor= 6.5602 kg

c) **Peso del concreto más próctor**

 Peso concreto + próctor=11.477 kg.

d) **Volumen del próctor**

 Vol proct= 0.002124 m\(^3\)

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac”

e) Densidad teórica

Densidad teórica = 2203.20 kg/m³

f) Densidad real

\[
Densidad\ real = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]

\[
Densidad\ real = \frac{11.477 - 6.5602}{0.002124} = 2314.88\ kg/m³
\]

g) Rendimiento

\[
Rendimiento = \frac{2.56 + 2.07 + 7.42 + 7.48 - 0.4}{2314.88} = 0.00826
\]

h) Agua corregida

\[
Agua\ corregida = \frac{2.07 + 0.038 + 0.031 - 0.356}{0.00826} = 210.53\ lit
\]

i) Cemento corregido

\[
cemento\ corregido = \frac{210.53}{0.78} = 269.91\ kg
\]

j) Piedra húmeda corregida

\[
Piedra\ húmeda\ corregida = \frac{7.48}{0.00826} = 905.57\ kg
\]

k) Piedra seca corregida

\[
Piedra\ seca\ corregida = \frac{905.57}{1.0050} = 901.06\ kg
\]

l) Piedra saturada corregida

\[
Piedra\ saturada\ corregida = 901.06 \times 1.0092 = 909.35\ kg
\]

m) Arena saturada corregida

\[
Arena\ saturada\ corregida = 2314.88 - 210.53 - 269.91 - 909.35 = 925.09\ kg
\]
n) Arena seca corregida

\[
\text{Arena seca corregida} = \frac{925.09}{1.013} = 913.22 \text{ kg}
\]

Cuadro explicativo 70 Dosificación de diseño de mezclas final \(f'c = 140 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>269.91</td>
<td>210.53</td>
<td>913.22</td>
<td>901.06</td>
</tr>
<tr>
<td>1.00</td>
<td>0.78</td>
<td>3.38</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B24

4.2.3.5 Diseño de mezclas inicial para concreto \(f'c = 175 \text{ kg/cm}^2 \) – huso 8

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3”

b) Determinación de la resistencia requerida

Para la determinación de la resistencia requerida se utiliza la siguiente tabla 20

como \(f'c < 210 \), entonces \(f'cr = f'c + 70 = 175 + 70 = 245 \text{ kg/cm}^2 \)

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m3

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

\[
\begin{array}{cc}
\text{f'cr} & \text{a/c} \\
250 & 0.61 \\
\end{array}
\]
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyae”

<table>
<thead>
<tr>
<th>245</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>

$$\frac{245 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69}$$

$x = 0.618$

f) Cantidad de cemento

$$c = \frac{\text{agua}}{a/c} = \frac{228}{0.618} = 368.93 \text{ kg}$$

g) Cantidad de arena y piedra

$$v = \frac{\text{peso seco}}{\text{peso específico}}$$

$$V_{cemento} = \frac{368.93}{2850} = 0.129$$

$$V_{agua} = \frac{228}{1000} = 0.228$$

$$V_{aire} = 3\% = 0.030$$

El volumen parcial, es:

$$V_{parcial} = 0.119 + 0.228 + 0.030 = 0.387$$

El volumen faltante, es:

$$V_{faltante} = 1 - 0.387 = 0.613$$

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

$$V_{arena} = 0.613 \times 50\% = 0.307$$

$$V_{piedra} = 0.613 \times 50\% = 0.307$$

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

$$\text{peso seco} = \text{peso específico} \times \text{volumen}$$

$$x = \text{peso seco arena} = 2617.57 \times 0.307 = 803.60$$
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

\[y = \text{peso seco piedra} = 2645.35 \times 0.307 = 812.12 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{\text{cemento}} = \frac{368.93}{368.93} = 1
\]
\[
WUS_{\text{sagua}} = \frac{228}{368.93} = 0.62
\]
\[
WUS_{\text{arena}} = \frac{803.60}{368.93} = 2.18
\]
\[
WUS_{\text{piedra}} = \frac{812.12}{368.93} = 2.20
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
A_{\text{correg}} = A_{\text{diseno}} - \left[\frac{\text{Peso arena} \times (\text{Humared} - \text{absarena})}{100} + \frac{\text{Peso piedra} \times (\text{Humpied} - \text{abspied})}{100} \right]
\]

\[
A_{\text{correg}} = 228 - \left[803.60 \times \frac{(0.79 - 1.30)}{100} + 812.12 \times \frac{(0.50 - 0.92)}{100} \right]
\]

\[= 235.51 \text{ lit/m}^3\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \text{ húmedo arena en kg} = \text{Peso seco arena en kg} \times (1 + \text{humedad de arena en \%})
\]

\[
Peso \text{ húmedo arena en kg} = 803.60 \times (1 + 0.0079) = 809.95
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
Peso \text{ húmedo piedra en kg} = \text{Peso seco piedra en kg} \times (1 + \text{humedad de piedra en \%})
\]

\[
peso \text{ húmedo piedra en kg} = 812.12 \times (1 + 0.0050) = 816.18 \text{ kg}
\]
El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[WUO_{\text{cemento}} = \frac{368.93}{368.93} = 1 \]

\[WUO_{\text{agua}} = \frac{235.51}{368.93} = 0.64 \]

\[WUO_{\text{arena}} = \frac{809.95}{368.93} = 2.20 \]

\[WUO_{\text{piedra}} = \frac{816.18}{368.93} = 2.21 \]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 27.20 lit
- El volumen de la arena en obra en pies³, es:
 \[\frac{WUO_{\text{arena}} \times 42.5}{PUS_{\text{arena}}} \times 35.31 = \frac{93.50}{1648.46} \times 35.31 = 2.00 \text{ pie}³ \]
- El volumen en obra en pies³ de la piedra
 \[\frac{WUO_{\text{piedra}} \times 42.5}{PUS_{\text{piedra}}} \times 35.31 = \frac{93.93}{1626.96} \times 35.31 = 2.04 \text{ pie}³ \]

Cuadro explicativo 71 Dosificación de diseño de mezclas inicial f’c= 175 kg/cm² - huso 8

<table>
<thead>
<tr>
<th>Fuente</th>
<th>1.00</th>
<th>2.00</th>
<th>2.04</th>
<th>27.20</th>
<th>0.64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>

El cuadro resumen, se muestra en el ANEXO B25
4.2.3.6 Corrección del diseño de mezclas inicial $f'_c=175$ kg/cm²- huso 8

a) Sobra agua

Agua sobrante 0.29 lit

b) Peso del próctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.311 kg.

d) Volumen del próctor

Vol proct= 0.002124 m³

e) Densidad teórica

Densidad teórica= 2212.65 kg/m³

f) Densidad real

\[
Densidad \ real = \frac{peso \ concreto \ más \ próctor \ − \ peso \ del \ próctor}{volumen \ del \ próctor}
\]

\[
Densidad \ real = \frac{11.311 \ − \ 6.5602}{0.002124} = 2236.72 \ kg/m³
\]

g) Rendimiento

\[
Rendimiento = \frac{3.22 + 2.06 + 7.08 + 7.12 − 0.29}{2236.72} = 0.00858
\]

h) Agua corregida

\[
Agua \ corregida = \frac{2.07 + 0.04 + 0.03 − 0.29}{0.00858} = 214.45 \ lit
\]

i) Cemento corregido

\[
cemento \ corregido = \frac{214.45}{0.62} = 345.89 \ kg
\]
j) Piedra húmeda corregida

\[\text{Piedra húmeda corregida} = \frac{7.12}{0.00858} = 829.84 \text{ kg} \]

k) Piedra seca corregida

\[\text{Piedra seca corregida} = \frac{829.84}{1.0050} = 825.71 \text{ kg} \]

l) Piedra saturada corregida

\[\text{Piedra saturada corregida} = 825.71 \times 1.0092 = 833.31 \text{ kg} \]

m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2236.72 - 214.45 - 345.89 - 833.31 \]
\[= 843.07 \text{ kg} \]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{843.07}{1.013} = 832.25 \text{ kg} \]

Cuadro explicativo 72 Dosificación de diseño inicial de mezclas corregido \(f'c=175 \text{ kg/cm}^2 \)-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>345.89</td>
<td>214.45</td>
<td>832.25</td>
<td>825.71</td>
</tr>
<tr>
<td>1.00</td>
<td>0.62</td>
<td>2.41</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 73 Dosificación en húmedo de diseño de mezclas inicial corregido \(f'c=175 \text{ kg/cm}^2 \)-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>345.89</td>
<td>222.16</td>
<td>838.82</td>
<td>829.84</td>
</tr>
<tr>
<td>1</td>
<td>0.64</td>
<td>2.43</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B26
4.2.3.7 Diseño de mezclas final para f'c=175 kg/cm² – huso 8

Con el diseño inicial para concreto f'c=175 kg/cm² se elaboró 30 muestras cilíndricas, las cuales fueron roturadas a compresión simple para la determinación de la desviación estándar, resultado que fue utilizado en este diseño de mezclas.

Los resultados obtenidos de la rotura a compresión simple para desviación estándar de las 30 muestras cilíndricas de 2”x4”, se muestran en el ANEXO A7

La desviación estándar que resultó es 22.64, con este dato se trabajó el diseño de mezclas.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3" a 4"

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, se tiene las siguientes fórmulas para determinar la resistencia requerida

\[f_{cr} = f'c + 1.34 \times Ss = 175 + 1.34 \times 22.64 = 205.34 \text{ kg/cm}^2 \]

\[f_{cr} = f'c + 2.33 \times Ss - 35 = 175 + 2.33 \times 22.64 - 35 = 192.75 \text{ kg/cm}^2 \]

Se trabajó con el mayor valor obtenido, en este caso 205.34 kg/cm²

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m³

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

f'_c\text{cr} \quad a/c

\begin{align*}
250 & \quad 0.61 \\
205.34 & \quad x \\
200 & \quad 0.69
\end{align*}

\[
\frac{205.34 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69} \quad \Rightarrow \quad x = 0.681
\]

f) Cantidad de cemento

\[c = \frac{agua}{a/c} = \frac{228}{0.681} = 334.8 \, kg\]

g) Cantidad de arena y piedra

\[v = \frac{peso \, seco}{peso \, específico}\]

\[V_{cemento} = \frac{334.80}{2850} = 0.117\]

\[V_{agua} = \frac{228}{1000} = 0.228\]

\[V_{aire} = 3\% = 0.030\]

El volumen parcial, es:

\[V_{parcial} = 0.117 + 0.228 + 0.030 = 0.375\]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.375 = 0.625\]

El volumen faltante se distribuye en el 50\% para la piedra y el 50\% para la arena

\[V_{arena} = 0.625 \times 50\% = 0.313\]

\[V_{piedra} = 0.625 \times 50\% = 0.313\]
Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico x volumen} \]

\[x = \text{peso seco arena} = 2617.57 \times 0.313 = 819.18 \]

\[y = \text{peso seco piedra} = 2645.35 \times 0.313 = 827.99 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[\text{WUScemento} = \frac{334.80}{334.80} = 1 \]

\[\text{WUSagua} = \frac{228}{334.80} = 0.68 \]

\[\text{WUarena} = \frac{819.18}{334.80} = 2.45 \]

\[\text{WUSpiedra} = \frac{827.99}{334.80} = 2.47 \]

h) **Corrección por humedad y absorción**

La cantidad de agua final, está dado por la siguiente fórmula:

\[A_{\text{correg}} = A_{\text{diseno}} - \left[\frac{\text{Peso arena}}{100} \times \left(\frac{\text{Humared} - \text{absarena}}{100} \right) + \frac{\text{Psecpiedra}}{100} \times \left(\frac{\text{Humped} - \text{abspied}}{100} \right) \right] \]

\[A_{\text{correg}} = 228 - \left[\frac{819.18 \times (0.79 - 1.30)}{100} + \frac{827.99 \times (0.50 - 0.92)}{100} \right] \]

\[= 235.66 \text{ lit/m3} \]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo arena en kg} = \text{Peso seco arena en kg} \times (1 + \text{humedad de arena en %}) \]

\[\text{Peso húmedo arena en kg} = 819.18 \times (1 + 0.0079) = 825.65 \]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula
Peso húmedo piedra en kg

\[\text{peso húmedo piedra en kg} = 827.99 \times (1 + 0.0050) = 832.13 \text{ kg} \]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WUO_{\text{cemento}} = \frac{334.80}{334.80} = 1
\]

\[
WUO_{\text{agua}} = \frac{235.66}{334.80} = 0.70
\]

\[
WUO_{\text{arena}} = \frac{819.18}{334.80} = 2.47
\]

\[
WUO_{\text{piedra}} = \frac{827.99}{334.80} = 2.49
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 29.75 lit
- El volumen de la arena en obra en pies³, es:

\[
WUO_{\text{arena}} \times 42.5 \times \frac{104.98}{1648.46} \times 35.31 = 2.25 \text{ pie³}
\]

- El volumen en obra en pies³ de la piedra

\[
WUO_{\text{piedra}} \times 42.5 \times \frac{105.83}{1626.96} \times 35.31 = 2.30 \text{ pie³}
\]

Cuadro explicativo 74 Dosificación de diseño de mezclas final f’c= 175 kg/cm²-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.25</td>
<td>2.30</td>
<td>29.75</td>
<td>lit/bols</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B27
4.2.3.8 Corrección del diseño de mezclas final para concreto $f'c=175$ kg/cm2 – huso 8

a) Sobra agua

Agua sobrante 0.316 lit

b) Peso del próctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.479 kg.

d) Volumen del próctor

Vol proctor= 0.002124 m3

e) Densidad teórica

Densidad teorica= 2209.97 kg/m3

f) Densidad real

\[
Densidad \; real = \frac{peso \; concreto \; más \; próctor - peso \; del \; próctor}{volumen \; del \; próctor}
\]

\[
Densidad \; real = \frac{11.479 - 6.5602}{0.002124} = 2315.82 \; kg/m^3
\]

g) Rendimiento

\[
Rendimiento = \frac{2.93 + 2.05 + 7.24 + 7.30 - 0.316}{2315.82} = 0.00829
\]

h) Agua corregida

\[
Agua \; corregida = \frac{2.05 + 0.04 + 0.03 - 0.316}{0.00829} = 217.61 \; lit
\]

i) Cemento corregido

\[
cemento \; corregido = \frac{217.61}{0.68} = 320.01 \; kg
\]
j) Piedra húmeda corregida

\[Piedra\ húmeda\ corregida = \frac{7.30}{0.00829} = 880.58\ kg \]

k) Piedra seca corregida

\[Piedra\ seca\ corregida = \frac{880.58}{1.0050} = 876.20\ kg \]

l) Piedra saturada corregida

\[Piedra\ saturada\ corregida = 876.20 \times 1.0092 = 884.26\ kg \]

m) Arena saturada corregida

\[Arena\ saturada\ corregida = 2315.82 - 217.61 - 320.01 - 884.26 = 893.94\ kg \]

n) Arena seca corregida

\[Arena\ seca\ corregida = \frac{893.94}{1.013} = 882.47\ kg \]

Cuadro explicativo 75 Dosificación en seco de diseño de mezclas final f'c=175 kg/cm2-

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>320.01</td>
<td>217.61</td>
<td>882.47</td>
<td>876.2</td>
</tr>
<tr>
<td>1.00</td>
<td>0.68</td>
<td>2.76</td>
<td>2.74</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 76 Dosificación en húmedo de diseño de mezclas f'c=175 kg/cm2

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>320.01</td>
<td>225.79</td>
<td>889.44</td>
<td>880.58</td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>2.78</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B28
4.2.3.9 Diseño de mezclas inicial para concreto $f'_c=210$ kg/cm² – huso 8

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

Para la determinación de la resistencia requerida se utiliza la siguiente tabla 20

\[f'_c < 210, entonces : f'_cr = f'_c + 70 = 210 + 85 = 295 \text{ kg/cm}^2 \]

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el
asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m³

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:

\[
\begin{array}{c|c}
\text{f'cr} & \text{a/c} \\
300 & 0.54 \\
295 & X \\
250 & 0.61 \\
\end{array}
\]

\[
\frac{295 - 250}{300 - 250} = \frac{x - 0.61}{0.54 - 0.61}
\]

\[x = 0.547 \]

f) Cantidad de cemento

\[c = \frac{\text{agua}}{a/c} = \frac{228}{0.547} = 416.82 \text{ kg} \]
g) Cantidad de arena y piedra

\[v = \frac{\text{peso seco}}{\text{peso específico}} \]

\[V_{\text{cemento}} = \frac{416.82}{2850} = 0.146 \]

\[V_{\text{agua}} = \frac{228}{1000} = 0.228 \]

\[V_{\text{aire}} = 3\% = 0.030 \]

El volumen parcial, es:

\[V_{\text{parcial}} = 0.146 + 0.228 + 0.030 = 0.404 \]

El volumen faltante, es:

\[V_{\text{faltante}} = 1 - 0.404 = 0.596 \]

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

\[V_{\text{arena}} = 0.596 \times 50\% = 0.298 \]

\[V_{\text{piedra}} = 0.596 \times 50\% = 0.298 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[\text{peso seco} = \text{peso específico} \times \text{volumen} \]

\[x = \text{peso seco arena} = 2617.57 \times 0.298 = 780.04 \]

\[y = \text{peso seco piedra} = 2645.35 \times 0.298 = 788.31 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WUS_{\text{cemento}} = \frac{416.82}{416.82} = 1 \]

\[WUS_{\text{agua}} = \frac{228}{416.82} = 0.55 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

\[
WU_{arena} = \frac{780.04}{416.82} = 1.87
\]

\[
WUS_{piedra} = \frac{788.31}{416.82} = 1.89
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
A_{correg} = A_{diseno} - \left[\frac{P_{secosarena} \times (H_{arena} - abs_{arena})}{100} + \frac{P_{secopiedra} \times (H_{piedra} - abs_{piedra})}{100} \right]
\]

\[
A_{correg} = 228 - \left[\frac{780.04 \times (0.79 - 1.30)}{100} + \frac{788.31 \times (0.50 - 0.92)}{100} \right]
\]

\[= 235.29 \text{ lit/m}^3\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[Peso \ húmedo \ arena \ en \ kg = Peso \ seco \ arena \ en \ kg \times (1 + \text{humedad \ de \ arena \ en \%})\]

\[Peso \ húmedo \ arena \ en \ kg = 780.04 \times (1 + 0.0079) = 809.95\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[Peso \ húmedo \ piedra \ en \ kg = Peso \ seco \ piedra \ en \ kg \times (1 + \text{humedad \ de \ piedra \ en \%})\]

\[peso \ húmedo \ piedra \ en \ kg = 788.31 \times (1 + 0.0050) = 816.18 \text{ kg}\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WU_{Ocemento} = \frac{416.82}{416.82} = 1
\]

\[
WU_{Oagua} = \frac{235.29}{416.82} = 0.56
\]

\[
WU_{Oarena} = \frac{786.20}{416.82} = 1.89
\]

\[
WU_{Opiedra} = \frac{792.25}{416.82} = 1.90
\]
El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 23.80 lit
- El volumen de la arena en obra en pies³, es:
 \[
 \frac{W_{UOarena} \times 42.5}{P_{USarena}} \times 35.31 = \frac{80.33}{1648.46} \times 35.31 = 1.72 \text{ pie}³
 \]
- El volumen en obra en pies³ de la piedra
 \[
 \frac{W_{UOpiedra} \times 42.5}{P_{USpiedra}} \times 35.31 = \frac{80.75}{1626.96} \times 35.31 = 1.75 \text{ pie}³
 \]

Cuadro explicativo 77 Dosificación de diseño de mezclas inicial f’c=210 kg/cm²-hus0 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.72</td>
<td>1.75</td>
<td>23.80</td>
<td>lit/bols</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B29

4.2.3.10 Corrección del diseño de mezclas inicial f’c=210 kg/cm²- huso 8

a) **Sobra agua**
 Agua sobrante 0.23 lit

b) **Peso del próctor**
 Peso próctor= 6.5602 kg

c) **Peso del concreto más próctor**
 Peso concreto + próctor=11.312 kg.

d) **Volumen del próctor**
 Vol proct= 0.002124 m³
e) Densidad teórica

Densidad teórica = 2213.17 kg/m³

f) Densidad real

\[
\text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]

\[
\text{Densidad real} = \frac{11.312 - 6.5602}{0.002124} = 2237.19 \text{ kg/m³}
\]

g) Rendimiento

\[
\text{Rendimiento} = \frac{3.64 + 2.04 + 6.88 + 6.92 - 0.23}{2237.19} = 0.0086
\]

h) Agua corregida

\[
\text{Agua corregida} = \frac{2.04 + 0.03 + 0.03 - 0.23}{0.0086} = 217.44 \text{ lit}
\]

i) Cemento corregido

\[
\text{cemento corregido} = \frac{217.44}{0.55} = 395.35 \text{ kg}
\]

j) Piedra húmeda corregida

\[
\text{Piedra húmeda corregida} = \frac{6.92}{0.0086} = 804.65 \text{ kg}
\]

k) Piedra seca corregida

\[
\text{Piedra seca corregida} = \frac{804.65}{1.0050} = 800.65 \text{ kg}
\]

l) Piedra saturada corregida

\[
\text{Piedra saturada corregida} = 800.65 \times 1.0092 = 808.02 \text{ kg}
\]

m) Arena saturada corregida

\[
\text{Arena saturada corregida} = 2237.19 - 217.44 - 395.35 - 808.02 = 816.38 \text{ kg}
\]
n) Arena seca corregida

\[
\text{Arena seca corregida} = \frac{816.38}{1.013} = 805.90 \text{ kg}
\]

Cuadro explicativo 78 Dosificación en seco de diseño de mezclas inicial corregido \(f'c=210 \text{ kg/cm2} \)

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>395.35</td>
<td>217.44</td>
<td>805.9</td>
<td>800.65</td>
</tr>
<tr>
<td>1.00</td>
<td>0.55</td>
<td>2.04</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 79 Dosificación en húmedo de diseño de mezclas inicial corregido \(f'c=210 \text{ kg/cm2-huso 8} \)

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>395.35</td>
<td>224.91</td>
<td>812.27</td>
<td>804.65</td>
</tr>
<tr>
<td>1</td>
<td>0.57</td>
<td>2.05</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B30

4.2.3.11 Diseño de mezclas final para \(f'c=210 \text{ kg/cm2 – huso 8} \)

Con el diseño inicial para concretos \(f'c=210 \text{ kg/cm2} \) se elaboró 30 muestras cilíndricas, las cuales fueron roturadas a compresión simple para la determinación de la desviación estándar, resultado que fue utilizado en este diseño de mezclas.

Los resultados obtenidos de la rotura a compresión simple para desviación estándar de las 30 muestras cilíndricas de 2”x4”, se muestran en el ANEXO A8

La desviación estándar que resultó es 21.42, con este dato se trabajó el diseño de mezclas.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, se tiene las siguientes fórmulas para determinar la resistencia requerida
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

$$f_{cr} = f'c + 1.34 \times Sa = 210 + 1.34 \times 21.42 = 238.70 \text{ kg/cm}^2$$

$$f_{cr} = f'c + 2.33 \times Sa - 35 = 210 + 2.33 \times 21.42 - 35 = 224.91 \text{ kg/cm}^2$$

Se trabajó con el mayor valor obtenido, en este caso 238.70 kg/cm²

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 l/m³

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 22, se realiza la siguiente interpolación:

<table>
<thead>
<tr>
<th>$f'c_r$</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>238.7</td>
<td>x</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>

$$\frac{238.7 - 200}{250 - 200} = \frac{x - 0.69}{0.61 - 0.69}$$

$$x = 0.628$$

f) Cantidad de cemento

$$c = \frac{\text{agua}}{a/c} = \frac{228}{0.628} = 363.06 \text{ kg}$$

g) Cantidad de arena y piedra

$$v = \frac{\text{peso seco}}{\text{peso específico}}$$

$$V_{\text{cemento}} = \frac{363.06}{2850} = 0.127$$
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

La cantidad de agua final, está dado por la siguiente fórmula:

$$V_{agua} = \frac{228}{1000} = 0.228$$

$$V_{aire} = 3\% = 0.030$$

El volumen parcial, es:

$$V_{parcial} = 0.127 + 0.228 + 0.030 = 0.385$$

El volumen faltante, es:

$$V_{faltante} = 1 - 0.385 = 0.615$$

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

$$V_{arena} = 0.615 \times 50\% = 0.308$$

$$V_{piedra} = 0.615 \times 50\% = 0.308$$

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[
\begin{align*}
peso\ seco\ arena &= 2617.57 \times 0.308 = 806.10 \\
peso\ seco\ piedra &= 2645.35 \times 0.308 = 814.77
\end{align*}
\]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

$$WUS_{cemento} = \frac{363.06}{363.06} = 1$$

$$WUS_{agua} = \frac{228}{363.06} = 0.63$$

$$WUS_{arena} = \frac{806.10}{363.06} = 2.22$$

$$WUS_{piedra} = \frac{814.77}{334.80} = 2.44$$

b) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c=140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2 \) con agregados de la cantera de cunyac

\[
A_{\text{correg}} = A_{\text{diseño}} - \left[P_{\text{seco arena}} \times \frac{(H_{\text{aren}} - \text{absaren})}{100} + P_{\text{seco piedra}} \times \frac{(H_{\text{pied}} - \text{absied})}{100} \right]
\]

\[
A_{\text{correg}} = 228 - \left[806.10 \times \frac{(0.79 - 1.30)}{100} + 814.77 \times \frac{(0.50 - 0.92)}{100} \right]
\]

\[
= 235.53 \text{ lit/m}^3
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ arena \ en \ kg
\]

\[
= Peso \ seco \ arena \ en \ kg \times (1 + \text{ humedad de arena en } \%)
\]

\[
Peso \ húmedo \ arena \ en \ kg = 806.10 \times (1 + 0.0079) = 812.47
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
Peso \ húmedo \ piedra \ en \ kg
\]

\[
= Peso \ seco \ piedra \ en \ kg \times (1 + \text{ humedad de piedra en } \%)
\]

\[
peso \ húmedo \ piedra \ en \ kg = 814.77 \times (1 + 0.005) = 818.84 \text{ kg}
\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WUOCemento = \frac{363.06}{363.06} = 1
\]

\[
WUOagua = \frac{235.53}{363.06} = 0.65
\]

\[
WUOarena = \frac{812.47}{363.06} = 2.24
\]

\[
WUOpiedra = \frac{818.84}{363.06} = 2.26
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie3
- En el caso del agua, es manejable la unidad con la que se trabaja, 27.63 lit
• El volumen de la arena en obra en pies³, es:

\[
\frac{WUO_{\text{arena}} \times 42.5}{PUS_{\text{arena}}} \times 35.31 = \frac{95.20}{1648.46} \times 35.31 = 2.04 \text{ pies}^3
\]

• El volumen en obra en pies³ de la piedra

\[
\frac{WUO_{\text{piedra}} \times 42.5}{PUS_{\text{piedra}}} \times 35.31 = \frac{96.05}{1626.96} \times 35.31 = 2.08 \text{ pies}^3
\]

Cuadro explicativo 80

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit/bols</td>
<td>1.00</td>
<td>2.04</td>
<td>2.08</td>
<td>27.63</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B31

4.2.3.12 Corrección del diseño de mezclas final para concreto f'c=210 kg/cm² – huso 8

a) **Sobra agua**

Agua sobrante 0.25 lit

b) **Peso del próctor**

Peso próctor= 6.5602 kg

c) **Peso del concreto más próctor**

Peso concreto + próctor=11.482 kg.

d) **Volumen del próctor**

Vol proct= 0.002124 m³

e) **Densidad teórica**

Densidad teórica= 2211.93 kg/m³

f) **Densidad real**

\[
\text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

\[Densidad \ real = \frac{11.482 - 6.5602}{0.002124} = 2317.23 \text{ kg/m}^3 \]

\[Rendimiento = \frac{3.17 + 2.06 + 7.10 + 7.16 - 0.25}{2317.23} = 0.0083 \]

\[Agua \ corregida = \frac{2.06 + 0.04 + 0.03 - 0.25}{0.0083} = 226.51 \text{ lit} \]

\[cemento \ corregido = \frac{226.51}{0.63} = 359.54 \text{ kg} \]

\[Piedra \ húmeda \ corregida = \frac{7.16}{0.0083} = 862.65 \text{ kg} \]

\[Piedra \ seca \ corregida = \frac{862.65}{1.0050} = 858.36 \text{ kg} \]

\[Piedra \ saturada \ corregida = 858.36 \times 1.0092 = 866.26 \text{ kg} \]

\[Arena \ saturada \ corregida = 2317.23 - 226.51 - 359.54 - 866.26 = 864.92 \text{ kg} \]

\[Arena \ seca \ corregida = \frac{864.92}{1.013} = 853.82 \text{ kg} \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

Cuadro explicativo 81 Dosificación de diseño de mezclas final corregido

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.54</td>
<td>226.51</td>
<td>853.82</td>
<td>858.36</td>
</tr>
<tr>
<td>1.00</td>
<td>0.63</td>
<td>2.37</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 82 Dosificación en húmedo de diseño de mezclas final corregido $f'c=210 \text{ kg/cm}^2$ – huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.54</td>
<td>234.47</td>
<td>860.57</td>
<td>862.65</td>
</tr>
<tr>
<td>1.00</td>
<td>0.65</td>
<td>2.39</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B32

4.2.3.13 Diseño de mezclas inicial para concreto $f'c=280 \text{ kg/cm}^2$ – huso 8

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

Para la determinación de la resistencia requerida se utiliza la siguiente tabla 20

como $f'c < 210$, entonces: $f'cr = f'c + 70 = 280 + 85 = 365 \text{ kg/cm}^2$

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m3

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 22, se realiza la siguiente interpolación:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>$f'c$</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>365</td>
<td>x</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

\[
\frac{365 - 350}{400 - 350} = \frac{x - 0.47}{0.42 - 0.47}
\]

\[x = 0.455\]

f) Cantidad de cemento

\[c = \frac{agua}{a/c} = \frac{228}{0.455} = 501.1 \text{ kg}\]

g) Cantidad de arena y piedra

\[v = \frac{peso \text{ seco}}{peso \text{ específico}}\]

\[V_{cemento} = \frac{501.1}{2850} = 0.176\]

\[V_{agua} = \frac{228}{1000} = 0.228\]

\[V_{aire} = 3\% = 0.030\]

El volumen parcial, es:

\[V_{parcial} = 0.176 + 0.228 + 0.030 = 0.434\]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.434 = 0.566\]

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

\[V_{arena} = 0.566 \times 50\% = 0.283\]

\[V_{piedra} = 0.566 \times 50\% = 0.283\]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y 350 kg/cm² con agregados de la cantera de cunyac

\[
\text{peso seco} = \text{peso específico} \times \text{volumen}
\]

\[\begin{align*}
x &= \text{peso seco arena} = 2617.57 \times 0.283 = 740.77 \\
y &= \text{peso seco piedra} = 2645.35 \times 0.283 = 748.63
\end{align*}\]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
\begin{align*}
WUS_{\text{cemento}} &= \frac{501.1}{501.1} = 1 \\
WUS_{\text{agua}} &= \frac{228}{501.1} = 0.45 \\
WU_{\text{arena}} &= \frac{740.77}{501.1} = 1.48 \\
WU_{\text{piedra}} &= \frac{748.63}{501.1} = 1.49
\end{align*}
\]

\text{h) Corrección por humedad y absorción}

La cantidad de agua final, está dado por la siguiente fórmula:

\[
\begin{align*}
\text{Acorreg} &= \text{Adiño} - \left[\text{Psecoarena} \times \frac{(\text{Humaren} - \text{absaren})}{100} + \text{Psecopiedra} \times \frac{(\text{Humpied} - \text{abs pied})}{100} \right] \\
\text{Acorreg} &= 228 - \left[740.77 \times \frac{0.79 - 1.30}{100} + 748.63 \times \frac{0.50 - 0.92}{100} \right] \\
&= 234.92 \text{ lit}/m³
\end{align*}
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
\text{Peso húmedo arena en kg} = \text{Peso seco arena en kg} \times (1 + \text{humedad de arena en %})
\]

\[
\begin{align*}
\text{Peso húmedo arena en kg} &= 740.77 \times (1 + 0.0079) = 746.62
\end{align*}
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
\begin{align*}
\text{Peso húmedo piedra en kg} &= \text{Peso seco piedra en kg} \times (1 + \text{humedad de piedra en %})
\end{align*}
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

$peso \text{ húmedo piedra en kg} = 748.63 \times (1 + 0.0050) = 752.37$ kg

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

$$WUO_{cemento} = \frac{501.1}{501.1} = 1$$

$$WUO_{agua} = \frac{234.92}{501.1} = 0.47$$

$$WUO_{arena} = \frac{746.62}{501.1} = 1.49$$

$$WUO_{piedra} = \frac{752.37}{501.1} = 1.50$$

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 19.98 lit
- El volumen de la arena en obra en pie³, es:

$$\frac{WUO_{arena} \times 42.5}{PUS_{arena}} \times 35.31 = \frac{63.33}{1648.46} \times 35.31 = 1.36 \text{ pie}^3$$

- El volumen en obra en pie³ de la piedra

$$\frac{WUO_{piedra} \times 42.5}{PUS_{piedra}} \times 35.31 = \frac{63.75}{1626.96} \times 35.31 = 1.38 \text{ pie}^3$$

Cuadro explicativo 83 Dosificación de diseño de mezclas inicial $f'c=280$ kg/cm² huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.36</td>
<td>1.38</td>
<td>19.98</td>
<td>lit/bols 0.47</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B33
4.2.3.14 Corrección del diseño de mezclas inicial f’c=280 kg/cm²- huso 8

a) Sobra agua

Agua sobrante 0.1 lit

b) Peso del próctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.311 kg.

d) Volumen del próctor

Vol proct= 0.002124 m³

e) Densidad teórica

Densidad teórica= 2218.50 kg/m³

f) Densidad real

\[
\text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]

\[
\text{Densidad real} = \frac{11.311 - 6.5602}{0.002124} = 2236.72 \text{ kg/m}^3
\]

g) Rendimiento

\[
\text{Rendimiento} = \frac{4.37 + 2.05 + 6.51 + 6.56 - 0.10}{2236.72} = 0.00867
\]

h) Agua corregida

\[
\text{Agua corregida} = \frac{2.05 + 0.03 + 0.03 - 0.1}{0.00867} = 231.83 \text{ lit}
\]

i) Cemento corregido

\[
\text{cemento corregido} = \frac{231.83}{0.45} = 515.18 \text{ kg}
\]
j) Piedra húmeda corregida

\[Piedra	ext{ }húmeda	ext{ }corregida = \frac{6.56}{0.00867} = 756.63\text{ }kg \]

k) Piedra seca corregida

\[Piedra\text{ }seca\text{ }corregida = \frac{756.63}{1.0050} = 752.87\text{ }kg \]

l) Piedra saturada corregida

\[Piedra\text{ }saturada\text{ }corregida = 752.87 \times 1.0092 = 759.8\text{ }kg \]

m) Arena saturada corregida

\[Arena\text{ }saturada\text{ }corregida = 2236.72 - 231.83 - 515.18 - 759.8 = 729.91\text{ }kg \]

n) Arena seca corregida

\[Arena\text{ }seca\text{ }corregida = \frac{729.91}{1.013} = 720.54\text{ }kg \]

Cuadro explicativo 84 Dosificación de diseño de mezclas inicial corregido \(f^c = 280 \) kg/cm\(^2\) huco 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.18</td>
<td>231.83</td>
<td>720.54</td>
<td>752.87</td>
</tr>
<tr>
<td>1.00</td>
<td>0.45</td>
<td>1.40</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 85 Dosificación de diseño de mezclas corregido \(f^c = 280 \) kg/cm\(^2\) huco 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.18</td>
<td>238.67</td>
<td>726.23</td>
<td>756.63</td>
</tr>
<tr>
<td>1</td>
<td>0.46</td>
<td>1.41</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B34
4.2.3.15 Diseño de mezclas final para $f'c=280\text{ kg/cm}^2$ – huso 8

Con el diseño inicial para concretos $f'c=280\text{ kg/cm}^2$ se elaboró 30 muestras cilíndricas, las cuales fueron roturadas a compresión simple para la determinación de la desviación estándar, resultado que fue utilizado en este diseño de mezclas.

Los resultados obtenidos de la rotura a compresión simple para desviación estándar de las 30 muestras cilíndricas de 2”x4”, se muestran en el ANEXO A9

La desviación estándar que resultó es 20.75, con este dato se trabajó el diseño de mezclas.

a) Resistencia especificada y selección del asentamiento

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) Determinación de la resistencia requerida

De acuerdo a la tabla 24, se tiene las siguientes fórmulas para determinar la resistencia requerida

$$f_{cr} = f'c + 1.34 \cdot Ss = 280 + 1.34 \cdot 20.75 = 307.81 \text{ kg/cm}^2$$

$$f_{cr} = f'c + 2.33 \cdot Ss - 35 = 280 + 2.33 \cdot 20.75 - 35 = 293.35 \text{ kg/cm}^2$$

Se trabajó con el mayor valor obtenido, en este caso 307.81 kg/cm²

c) Determinación de la cantidad de agua de mezcla

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m³

d) Determinación del contenido de aire

De acuerdo a la tabla 22, el aire atrapado es 3%

e) Selección de la relación agua/cemento (a/c)

De acuerdo a la tabla 23, se realiza la siguiente interpolación:
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de cunyac

\[
\begin{array}{c|c|c|c}
\text{f’cr} & \text{a/c} & \text{350} & 0.47 \\
307.81 & x & 300 & 0.54 \\
\end{array}
\]

\[
\frac{307.81 - 300}{350 - 300} = \frac{x - 0.54}{0.47 - 0.54}
\]

\[x = 0.529\]

f) Cantidad de cemento

\[c = \frac{agua}{a/c} = \frac{228}{0.529} = 431.00 \text{ kg}\]

g) Cantidad de arena y piedra

\[v = \frac{peso \text{ seco}}{peso \text{ específico}}\]

\[V_{cemento} = \frac{431.00}{2850} = 0.151\]

\[V_{agua} = \frac{228}{1000} = 0.228\]

\[V_{aire} = 3\% = 0.030\]

El volumen parcial, es:

\[V_{parcial} = 0.151 + 0.228 + 0.030 = 0.409\]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.409 = 0.591\]

El volumen faltante se distribuye en el 50\% para la piedra y el 50\% para la arena

\[V_{arena} = 0.591 \times 50\% = 0.296\]

\[V_{piedra} = 0.591 \times 50\% = 0.296\]
Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[
\text{peso seco} = \text{peso específico} \times \text{volumen}
\]

\[
x = \text{peso seco arena} = 2617.57 \times 0.296 = 774.69
\]

\[
y = \text{peso seco piedra} = 2645.35 \times 0.296 = 783.02
\]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{\text{cemento}} = \frac{431.00}{431.00} = 1
\]

\[
WUS_{\text{agua}} = \frac{228}{431.00} = 0.53
\]

\[
WU_{\text{arena}} = \frac{774.69}{431.00} = 1.80
\]

\[
WU_{\text{piedra}} = \frac{783.02}{431.00} = 1.82
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
A_{\text{correg}} = A_{\text{diseno}} - \left[\frac{P_{\text{secoarena}} \cdot (H_{\text{arena}} - a_{\text{absarena}})}{100} + \frac{P_{\text{secopiedra}} \cdot (H_{\text{piedra}} - a_{\text{abscedra}})}{100} \right]
\]

\[
A_{\text{correg}} = 228 - \left[774.69 \times \frac{0.79 - 1.30}{100} + 783.02 \times \frac{0.50 - 0.92}{100} \right] = 235.24 \text{ lit/m3}
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \text{ húmedo arena en kg} = Peso \text{ seco arena en kg} \times (1 + \text{humedad de arena en %})
\]

\[
Peso \text{ húmedo arena en kg} = 774.69 \times (1 + 0.0079) = 780.81
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula
El cuadro resumen, se muestra en el ANEXO B35
4.2.3.16 Corrección del diseño de mezclas final para concreto f\(^c\)=280 kg/cm\(^2\) – huso 8

a) Sobra agua

Agua sobrante 0.131 lit

b) Peso del proctor

Peso próctor= 6.5602 kg

c) Peso del concreto más próctor

Peso concreto + próctor=11.479 kg.

d) Volumen del proctor

Vol proct= 0.002124 m\(^3\)

e) Densidad teórica

Densidad teorica= 2216.71 kg/m\(^3\)

f) Densidad real

\[
Densidad\ real = \frac{peso\ concreto\ más\ próctor - peso\ del\ próctor}{volumen\ del\ próctor}
\]

\[
Densidad\ real = \frac{11.479 - 6.5602}{0.002124} = 2315.82\ kg/m^3
\]

g) Rendimiento

\[
Rendimiento = \frac{3.76 + 2.07 + 6.81 + 6.88 - 0.131}{2315.82} = 0.00837
\]

h) Agua corregida

\[
Agua\ corregida = \frac{2.07 + 0.03 + 0.08 - 0.131}{0.00837} = 244.8\ lit
\]
i) Cemento corregido

\[cemento\ corregido = \frac{244.8}{0.53} = 461.89\ kg \]

j) Piedra húmeda corregida

\[Piedra\ húmeda\ corregida = \frac{6.88}{0.00837} = 821.98\ kg \]

k) Piedra seca corregida

\[Piedra\ seca\ corregida = \frac{821.98}{1.005} = 817.89\ kg \]

l) Piedra saturada corregida

\[Piedra\ saturada\ corregida = 817.89 \times 1.0092 = 825.41\ kg \]

m) Arena saturada corregida

\[Arena\ saturada\ corregida = 2315.82 - 244.8 - 461.89 - 825.41 = 783.72\ kg \]

n) Arena seca corregida

\[Arena\ seca\ corregida = \frac{783.72}{1.013} = 773.66\ kg \]

Cuadro explicativo 87 Dosificación en seco de diseño de mezclas final corregido \(f'c=280 \) kg/cm²

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>461.89</td>
<td>244.8</td>
<td>773.66</td>
<td>817.89</td>
</tr>
<tr>
<td>1.00</td>
<td>0.53</td>
<td>1.67</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 88 Dosificación en húmedo de diseño de mezclas final corregido \(f'c=280 \) kg/cm²

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>461.89</td>
<td>252.18</td>
<td>779.77</td>
<td>821.98</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>1.69</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B36
4.2.3.17 Diseño de mezclas inicial para concreto \(f'c = 350 \text{ kg/cm}^2 \) – huso 8

a) ** Resistencia especificada y selección del asentamiento**

 De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) **Determinación de la resistencia requerida**

 Para la determinación de la resistencia requerida se utiliza la siguiente tabla 20

 \[\text{como } f'c < 210, \text{ entonces } f'cr = f'c + 70 = 350 + 85 = 435 \text{ kg/cm}^2 \]

 \[
 c) \text{ **Determinación de la cantidad de agua de mezcla**}

 Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

 De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m3

d) **Determinación del contenido de aire**

 De acuerdo a la tabla 22, el aire atrapado es 3%

 e) **Selección de la relación agua/cemento (a/c)**

 De acuerdo a la tabla 23, se realiza la siguiente interpolación:

 \[
 \begin{array}{c|c}
 \hline
 f'cr & a/c \\
 \hline
 450 & 0.38 \\
 435 & X \\
 400 & 0.42 \\
 \hline
 \end{array}
 \]

 \[
 \frac{435 - 400}{450 - 400} = \frac{x - 0.42}{0.38 - 0.42}
 \]

 \[
 x = 0.392
 \]
f) **Cantidad de cemento**

\[c = \frac{agua}{a/c} = \frac{228}{0.392} = 581.63 \text{ kg} \]

g) **Cantidad de arena y piedra**

\[v = \frac{peso \text{ seco}}{peso \text{ específico}} \]

\[V_{cemento} = \frac{581.63}{2850} = 0.204 \]

\[V_{agua} = \frac{228}{1000} = 0.228 \]

\[V_{aire} = 3\% = 0.030 \]

El volumen parcial, es:

\[V_{parcial} = 0.176 + 0.228 + 0.030 = 0.462 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.462 = 0.538 \]

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

\[V_{arena} = 0.538 \times 50\% = 0.269 \]

\[V_{piedra} = 0.538 \times 50\% = 0.269 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \text{ seco} = peso \text{ específico} \times volumen \]

\[x = peso \text{ seco arena} = 2617.57 \times 0.269 = 704.13 \]

\[y = peso \text{ seco piedra} = 2645.35 \times 0.269 = 711.60 \]

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[WU_{cemento} = \frac{581.63}{581.63} = 1 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm² con agregados de la cantera de Cunyac

\[
WUS_{agua} = \frac{228}{581.63} = 0.39
\]
\[
WU_{arena} = \frac{704.13}{581.63} = 1.21
\]
\[
WU_{piedra} = \frac{711.60}{581.63} = 1.22
\]

h) Corrección por humedad y absorción

La cantidad de agua final está dado por la siguiente fórmula:

\[
Acorreg = Adiseño - \left[P_{secosarena} \times \frac{(Humaren - absaren)}{100} + P_{secospiedra} \times \frac{(Humpied - absowied)}{100} \right]
\]

\[
Acorreg = 228 - \left[704.13 \times \frac{(0.79 - 1.30)}{100} + 711.60 \times \frac{(0.50 - 0.92)}{100} \right]
\]

\[
= 234.58 \text{ lit/m}^3
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo arena en kg} = \text{Peso seco arena en kg} \times (1 + \text{humedad de arena en %})\]

\[
\text{Peso húmedo arena en kg} = 704.13 \times (1 + 0.0079) = 709.69
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[\text{Peso húmedo piedra en kg} = \text{Peso seco piedra en kg} \times (1 + \text{humedad de piedra en %})\]

\[
\text{peso húmedo piedra en kg} = 711.60 \times (1 + 0.0050) = 715.16 \text{ kg}
\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:

\[
WUO_{cemento} = \frac{581.63}{581.63} = 1
\]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de cunyae

\[
WUO\text{agua} = \frac{234.58}{581.63} = 0.47
\]

\[
WUO\text{arena} = \frac{709.69}{581.63} = 1.22
\]

\[
WUO\text{piedra} = \frac{715.16}{581.63} = 1.23
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1pie\(^3\)
- En el caso del agua, es manejable la unidad con la que se trabaja, 17.00 lit
- El volumen de la arena en obra en pies\(^3\), es:
 \[
 \frac{WUO\text{arena} \times 42.5}{PUS\text{arena}} \times 35.31 = \frac{51.85}{1648.46} \times 35.31 = 1.11 \text{ pie}^3
 \]

- El volumen en obra en pies\(^3\) de la piedra
 \[
 \frac{WUO\text{piedra} \times 42.5}{PUS\text{piedra}} \times 35.31 = \frac{52.28}{1626.96} \times 35.31 = 1.13 \text{ pie}^3
 \]

Cuadro explicativo 89 Dosificación de diseño de mezclas inicial \(f'c = 350 \) kg/cm\(^2\)-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.11</td>
<td>1.13</td>
<td>17.00</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B37

4.2.3.18 Corrección del diseño de mezclas inicial \(f'c = 350 \) kg/cm\(^2\)- huso 8

- **o) Sobra agua**

 Agua sobrante 0.04 lit
p) Peso del proctor

Peso próctor= 6.5602 kg

q) Peso del concreto más próctor

Peso concreto + próctor=11.311 kg.

r) Volumen del proctor

Vol proct= 0.002124 m³

s) Densidad teórica

Densidad teórica= 2225.36 kg/m³

t) Densidad real

\[
\text{Densidad real} = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
\]

\[
\text{Densidad real} = \frac{11.311 - 6.5602}{0.002124} = 2236.72 \text{ kg/m³}
\]

u) Rendimiento

\[
\text{Rendimiento} = \frac{5.06 + 2.02 + 6.17 + 6.22 - 0.04}{2236.72} = 0.00869
\]

v) Agua corregida

\[
\text{Agua corregida} = \frac{2.02 + 0.03 + 0.03 - 0.04}{0.00869} = 243.96 \text{ lit}
\]

w) Cemento corregido

\[
\text{cemento corregido} = \frac{293.96}{0.45} = 625.54 \text{ kg}
\]

x) Piedra húmeda corregida

\[
\text{Piedra húmeda corregida} = \frac{6.22}{0.00867} = 715.77 \text{ kg}
\]

y) Piedra seca corregida
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae

\[P_i = \frac{715.77}{1.0050} = 712.21 \text{ kg} \]

z) Piedra seca corregida

\[P_i = 712.21 \times 1.0092 = 718.76 \text{ kg} \]

aa) Arena saturada corregida

\[A_i = 2236.72 - 243.96 - 625.54 - 718.76 = 648.46 \text{ kg} \]

bb) Arena seca corregida

\[A_i = \frac{648.46}{1.013} = 640.14 \text{ kg} \]

Cuadro explicativo 90 Dosificación en seco de diseño de mezclas inicial corregido f’c=350 kg/cm²-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>625.54</td>
<td>243.96</td>
<td>640.14</td>
<td>712.21</td>
</tr>
<tr>
<td>1.00</td>
<td>0.39</td>
<td>1.02</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 91 Dosificación en húmedo de diseño de mezclas inicial corregido f’c=350 kg/cm²-huso 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>625.54</td>
<td>250.22</td>
<td>645.2</td>
<td>715.77</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>1.03</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B38

4.2.3.19 Diseño de mezclas final para f’c=350 kg/cm² – huso 8

Con el diseño inicial para concretos f’c=350 kg/cm² se elaboró 30 muestras cilíndricas, las cuales fueron roturadas a compresión simple para la determinación de la desviación estándar, resultado que fue utilizado en este diseño de mezclas.
Los resultados obtenidos de la rotura a compresión simple para desviación estándar de las 30 muestras cilíndricas de 2”x4”, se muestran en el ANEXO A10

La desviación estándar que resultó es 21.05, con este dato se trabajó el diseño de mezclas.

a) **Resistencia especificada y selección del asentamiento**

De acuerdo a la tabla 19, el asentamiento es de 3” a 4”

b) **Determinación de la resistencia requerida**

De acuerdo a la tabla 24, se tiene las siguientes fórmulas para determinar la resistencia requerida

\[fc' = f'c + 1.34 \times Ss = 350 + 1.34 \times 21.05 = 378.21 \, kg/cm^2 \]

\[fc' = f'c + 2.33 \times Ss - 35 = 350 + 2.33 \times 21.05 - 35 = 364.05 \, kg/cm^2 \]

Se trabajó con el mayor valor obtenido, en este caso 378.21 kg/cm²

c) **Determinación de la cantidad de agua de mezcla**

Considerando que el tamaño máximo nominal del agregado grueso es 3/8 y el asentamiento elegido es 3” a 4”.

De acuerdo a la tabla 21, la cantidad de agua es 228 lit/m³

d) **Determinación del contenido de aire**

De acuerdo a la tabla 22, el aire atrapado es 3%

e) **Selección de la relación agua/cemento (a/c)**

De acuerdo a la tabla 22, se realiza la siguiente interpolación:

<table>
<thead>
<tr>
<th>(f'c)</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>378.21</td>
<td>x</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac.

\[\frac{378.21 - 350}{400 - 350} = \frac{x - 0.47}{0.42 - 0.47} \]

\[x = 0.442 \]

f) Cantidad de cemento

\[c = \frac{agua}{a/c} = \frac{228}{0.442} = 515.84 \, kg \]

g) Cantidad de arena y piedra

\[v = \frac{peso \, seco}{peso \, específico} \]

\[V_{cemento} = \frac{515.84}{2850} = 0.181 \]

\[V_{agua} = \frac{228}{1000} = 0.228 \]

\[Vaire = 3\% = 0.030 \]

El volumen parcial, es:

\[V_{parcial} = 0.181 + 0.228 + 0.030 = 0.439 \]

El volumen faltante, es:

\[V_{faltante} = 1 - 0.439 = 0.561 \]

El volumen faltante se distribuye en el 50% para la piedra y el 50% para la arena

\[V_{arena} = 0.561 \times 50\% = 0.281 \]

\[V_{piedra} = 0.561 \times 50\% = 0.281 \]

Una vez conocido el volumen de la piedra y la arena, recién se puede conocer el peso seco de éstas.

\[peso \, seco = peso \, específico \times volumen \]

\[x = peso \, seco \, arena = 2617.57 \times 0.281 = 735.43 \]

\[y = peso \, seco \, piedra = 2645.35 \times 0.281 = 743.34 \]
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

El peso unitario seco se obtiene dividiendo todos los componentes entre el peso del cemento.

\[
WUS_{\text{cemento}} = \frac{515.84}{515.84} = 1
\]

\[
WUS_{\text{agua}} = \frac{228}{515.84} = 0.44
\]

\[
WUS_{\text{arena}} = \frac{735.43}{515.84} = 1.43
\]

\[
WUS_{\text{piedra}} = \frac{743.34}{431.00} = 1.7
\]

h) Corrección por humedad y absorción

La cantidad de agua final, está dado por la siguiente fórmula:

\[
Ac_\text{correg} = Ad_\text{iseño} - \left[P_{\text{seco arena}} \times \left(\frac{\text{Humared } - \text{ absarena}}{100}\right) + P_{\text{secpiedra}} \times \left(\frac{\text{Humped } - \text{ abspedido}}{100}\right)\right]
\]

\[
Ac_{\text{correg}} = 228 - \left[735.43 \times \frac{0.79 - 1.30}{100} + 743.34 \times \frac{0.50 - 0.92}{100}\right]
\]

\[
= 234.87 \text{ lit/m3}
\]

Para el peso de la arena húmeda, se utiliza la siguiente fórmula

\[
Peso \text{ húmedo arena en kg} \]

\[
= Peso \text{ seco arena en kg} \times (1 + \text{ humedad de arena en %})
\]

\[
Peso \text{ húmedo arena en kg} = 735.43 \times (1 + 0.0079) = 741.24
\]

Para el peso de la piedra húmeda, se utiliza la siguiente fórmula

\[
Peso \text{ húmedo piedra en kg} \]

\[
= Peso \text{ seco piedra en kg} \times (1 + \text{ humedad de piedra en %})
\]

\[
peso \text{ húmedo piedra en kg} = 743.34 \times (1 + 0.0050) = 747.06 \text{ kg}
\]

El peso unitario en obra se calcula dividiendo el peso en obra de cada componente entre el peso del cemento, de la siguiente forma:
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae”

\[
WUO_{\text{cemento}} = \frac{515.84}{515.84} = 1
\]

\[
WUO_{\text{agua}} = \frac{234.87}{515.84} = 0.46
\]

\[
WUO_{\text{arena}} = \frac{741.24}{515.84} = 1.44
\]

\[
WUO_{\text{piedra}} = \frac{747.06}{515.84} = 1.45
\]

El volumen en obra en pies cúbicos de cada componente, se determina de la siguiente forma:

- 1 bolsa de cemento = 1 pie³
- En el caso del agua, es manejable la unidad con la que se trabaja, 19.55 lit
- El volumen de la arena en obra en pies³, es:
 \[
 \frac{WUO_{\text{arena}} \times 42.5}{PUS_{\text{arena}}} \times 35.31 = \frac{61.20}{1648.46} \times 35.31 = 1.31 \text{ pie³}
 \]
- El volumen en obra en pies³ de la piedra
 \[
 \frac{WUO_{\text{piedra}} \times 42.5}{PUS_{\text{piedra}}} \times 35.31 = \frac{61.63}{1626.96} \times 35.31 = 1.34 \text{ pie³}
 \]

Cuadro explicativo 92 Dosificación de diseño de mezclas final $f'_c=350$ kg/cm²

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Água</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>1.31</td>
<td>1.34</td>
<td>19.55</td>
<td>lit/bols</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El cuadro resumen, se muestra en el ANEXO B39

4.2.3.20 Corrección del diseño de mezclas final para concreto $f'_c=350$ kg/cm² – huso 8

a) **Sobra agua**

Agua sobrante 0.03 lit

b) **Peso del proctor**

Peso próctor= 6.5602 kg
c) **Peso del concreto más próctor**

 Peso concreto + próctor = 11.476 kg.

 d) Volumen del proctor

 Vol proct = 0.002124 m³

 e) Densidad teórica

 Densidad teorica = 2222.61 kg/m³

 f) Densidad real

 \[
 Densidad\ real = \frac{\text{peso concreto más próctor} - \text{peso del próctor}}{\text{volumen del próctor}}
 \]

 \[
 Densidad\ real = \frac{11.476 - 6.5602}{0.002124} = 2314.41\ kg/m³
 \]

 g) Rendimiento

 \[
 Rendimiento = \frac{4.48 + 2.06 + 6.45 + 6.50 - 0.03}{2314.41} = 0.00841
 \]

 h) Agua corregida

 \[
 Agua\ corregida = \frac{2.06 + 0.03 + 0.08 - 0.03}{0.00841} = 254.46\ lit
 \]

 i) Cemento corregido

 \[
 cemento\ corregido = \frac{254.46}{0.44} = 578.32\ kg
 \]

 j) Piedra húmeda corregida

 \[
 Piedra\ húmeda\ corregida = \frac{6.50}{0.00837} = 772.89\ kg
 \]

 k) Piedra seca corregida

 \[
 Piedra\ seca\ corregida = \frac{772.89}{1.0050} = 769.04\ kg
 \]
l) Piedra saturada corregida

\[\text{Piedra saturada corregida} = 769.04 \times 1.0092 = 776.12 \text{kg} \]

m) Arena saturada corregida

\[\text{Arena saturada corregida} = 2314.41 - 254.46 - 578.32 - 776.12 \]

\[= 705.51 \text{ kg} \]

n) Arena seca corregida

\[\text{Arena seca corregida} = \frac{705.51}{1.013} = 696.46 \text{ kg} \]

Cuadro explicativo 93 Dosificación en seco de diseño de mezclas final corregido f’c=350 kg/cm2-huao 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>578.32</td>
<td>254.46</td>
<td>696.46</td>
<td>769.04</td>
</tr>
<tr>
<td>1.00</td>
<td>0.44</td>
<td>1.20</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro explicativo 94 Dosificación de diseño de mezclas final corregido f’c=350 kg/cm2-huao 8

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>578.32</td>
<td>261.24</td>
<td>701.96</td>
<td>772.89</td>
</tr>
<tr>
<td>1</td>
<td>0.45</td>
<td>1.21</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

A continuación, se muestra el resumen de los diseños de mezclas inicial corregido por asentamiento y densidad, con los cuales se elaboraron las muestras cilíndricas para la obtención de la desviación estándar.

Para la elaboración de las muestras cilíndricas de diámetro=4” y altura=8” para la obtención de la desviación estándar, se utilizaron las siguientes dosificaciones en seco:
Tabla elaborada 27 Resumen de dosificaciones para diseños de mezclas inicial con corrección por asentamiento y densidad de 140, 175, 210, 280 y 350 kg/cm²- huso 67

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Peso seco (kg/m³)</th>
<th>Slump 3” a 4”</th>
<th>Relación a/c</th>
<th>F’c diseño (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>305.94</td>
<td>331.61</td>
<td>374.73</td>
<td>515.69</td>
</tr>
<tr>
<td>Agua</td>
<td>204.98</td>
<td>205.60</td>
<td>206.10</td>
<td>232.06</td>
</tr>
<tr>
<td>Arena</td>
<td>868.19</td>
<td>856.57</td>
<td>840.66</td>
<td>717.83</td>
</tr>
<tr>
<td>Agregado grueso huso 67</td>
<td>967.06</td>
<td>957.30</td>
<td>934.20</td>
<td>877.02</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Para la elaboración de las muestras cilíndricas de diámetro=2” y altura=4” para obtención de desviación estándar, se utilizaron las siguientes dosificaciones en seco:

Tabla elaborada 28 Resumen de dosificaciones para diseños de mezclas inicial con corrección por asentamiento y densidad de 140, 175, 210, 280 y 350 kg/cm²- Huso 8

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Peso seco (kg/m³)</th>
<th>Slump 3” a 4”</th>
<th>Relación a/c</th>
<th>F’c diseño (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>311.06</td>
<td>345.89</td>
<td>395.35</td>
<td>515.18</td>
</tr>
<tr>
<td>Agua</td>
<td>208.41</td>
<td>214.45</td>
<td>217.44</td>
<td>231.83</td>
</tr>
<tr>
<td>Arena</td>
<td>852.38</td>
<td>832.25</td>
<td>805.90</td>
<td>720.54</td>
</tr>
<tr>
<td>Agregado grueso huso 8</td>
<td>842.75</td>
<td>825.71</td>
<td>800.65</td>
<td>752.87</td>
</tr>
<tr>
<td>Aire</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Finalmente, se muestran los cuadros resumen de dosificaciones en seco, de los diseños de mezclas finales corregidos por asentamiento y densidad, que se utilizaron para la elaboración de las muestras cilíndricas patrones objeto de estudio.

Tabla elaborada 29 Resumen de dosificaciones para diseño de mezclas final con corrección por asentamiento y densidad para concretos f’c= 140, 175, 210, 280 y 350 kg/cm²
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Materiales</th>
<th>f'_c diseño (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Cemento</td>
<td>0.77</td>
</tr>
<tr>
<td>Agua</td>
<td>261.31</td>
</tr>
<tr>
<td>Arena</td>
<td>201.21</td>
</tr>
<tr>
<td>Agregado grueso huso 67</td>
<td>885.91</td>
</tr>
<tr>
<td>Agregado grueso huso 8</td>
<td>987.58</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 30 Resumen de dosificaciones de diseños de mezclas final con corrección por asentamiento y densidad para concretos $f'_c=140,175,210,280$ y 250 kg/cm2

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Peso seco (kg/m3)</th>
<th>Slump 3” a 4”</th>
<th>Relación a/c</th>
<th>F’c diseño (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.68</td>
<td>0.63</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>175</td>
<td>210</td>
<td>280</td>
</tr>
<tr>
<td>Cemento</td>
<td>269.91</td>
<td>320.01</td>
<td>359.54</td>
<td>461.89</td>
</tr>
<tr>
<td>Agua</td>
<td>210.53</td>
<td>217.61</td>
<td>226.51</td>
<td>244.80</td>
</tr>
<tr>
<td>Arena</td>
<td>913.22</td>
<td>882.47</td>
<td>853.82</td>
<td>773.66</td>
</tr>
<tr>
<td>Agregado grueso huso 8</td>
<td>901.06</td>
<td>876.20</td>
<td>858.36</td>
<td>817.89</td>
</tr>
<tr>
<td>Aire</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
5. CAPÍTULO V

ELABORACIÓN Y ENSAYO DE ESPECÍMENES

5.1 Elaboración de especímenes

5.1.1 Procedimiento de elaboración

Para la elaboración de especímenes cilíndricos se tuvo especial cuidado en la preparación, corrección y pesado de los agregados, la adquisición, almacenaje y pesado del cemento, así como la medición del agua de acuerdo al diseño.

Antes del mezclado, fue necesario tener una zona limpia y despejada, sin obstáculos que causen accidentes o impidan el proceso de mezclado y sus respectivos ensayos. Por ello, el trompo mezclador estuvo ubicado en una zona seca y alejado de los pozos de agua y próximo a la toma de corriente, el cono de Abrams limpio y humedecido, adecuadamente ubicado para realizar el ensayo de asentamiento, así como las briqueteras limpias y engrasadas, dispuestas en orden y en zona plana.

Para la mezcla de concreto se utilizó un trompo mezclador de ½ bolsa con motor eléctrico.

Para el mezclado del concreto, primero fue necesario limpiar el trompo mezclador y humedecer la cuba para evitar que el agua de mezcla sea absorbida. En seguida se colocaron los agregados y una porción de agua, dando inicio a las revolturas, de tal forma que los agregados se humedezcan y haya una mejor adherencia del cemento al agregado, posteriormente se echó el cemento y el resto de agua, cuidando el slump de diseño, hasta que se muestre una mezcla homogénea, no más de cinco minutos. Durante el proceso se hizo necesario utilizar el combo de goma para golpear en la cuba del trompo mezclador y así evitar
que el cemento se pegue en la cara interna de la dicha cuba. Así como también se hizo el anote correspondiente de la cantidad de agua sobrante por cada tanda.

Una vez realizado el mezclado se procedió a verter la mezcla en una carretilla para trasladar el concreto al lugar donde se tenían listos, el cono de Abrams para el respectivo ensayo de asentamiento, el recipiente de ½ pie³ para el ensayo de densidad, así como los moldes o briqueteras, debidamente aceitados con aceite desmoldante, para luego proceder al colado de la mezcla, en tres capas, cada una con 25 golpes de varillado, con sus respectivos golpes de combo de goma para evitar los espacios vacíos. Luego del consolidado de los especímenes, se procedió al enrase y respectivo acabado superficial.

Tabla 25 Diámetro de varilla y número de varillados por capa.

<table>
<thead>
<tr>
<th>Diámetro del cilindro IN (mm)</th>
<th>Diámetro de varilla (mm)</th>
<th>Número de varillados por capa</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(75) hasta 6(150)</td>
<td>3/8 (10)</td>
<td>25</td>
</tr>
<tr>
<td>6(150)</td>
<td>5/8 (16)</td>
<td>25</td>
</tr>
<tr>
<td>8(200)</td>
<td>5/8 (16)</td>
<td>50</td>
</tr>
<tr>
<td>10 (250)</td>
<td>5/8 (16)</td>
<td>75</td>
</tr>
</tbody>
</table>

Fuente: ASTM C192 pág. 308

5.1.2 Calidad de moldes

Para la elaboración de las muestras cilíndricas de 4”x8”, se utilizaron moldes de PVC (policloruro de vinilo) de 4”x 8”, normalizadas y nuevas, pero en el caso de las muestras cilíndricas de 2”x4” fue necesario adaptar tubos de PVC de 2” de diámetro, cortados en trozos de 4”, a la cual se adhirrió tapas de PVC de 2” de diámetro.
5.1.3 Codificación de los especímenes

Los especímenes fueron codificados de acuerdo a la resistencia especificada, a la fecha de fabricación y al número de especímen. Este codificado se realizó al día siguiente de la fabricación (24±8h) de dichos especímenes y después del desmolde.

5.1.4 Curado de concreto

Para el curado de concreto se utilizaron cilindros galvanizados contenidos con agua potable, en el cual se depositaron los especímenes de concreto, al día siguiente de su elaboración y después de su respectiva codificación, hasta el día de rotura. Estos cilindros fueron protegidos de la lluvia, el sol y demás efectos climatológicos que fueran a afectar la resistencia del concreto.

5.2 Ensayos de especímenes

5.2.1 Ensayo de Pulso ultrasónico

5.2.1.1 Preparación de especímenes

Para realizar la prueba ultrasónica, fue necesario que los especímenes estén al aire libre, por un periodo de 2 horas, hasta que las superficies de las caras de los especímenes, estuvieran relativamente secas y sin presencia de agua en los poros del concreto.

Una vez que se tuvo los especímenes en la condición antes mencionada, se procedió a limpiar las caras de los especímenes y en algunos casos se procedió a lijar dichas caras para conseguir superficies lisas, ya que las lecturas ultrasónicas son más confiables cuando la superficie es lisa y el acoplante está adecuadamente adherido a la superficie y al transductor.
Una vez listos los especímenes se midieron las alturas de cada espécimen, para luego insertar este dato en el equipo de ultrasonido y así poder realizar las mediciones de las velocidades ultrasónicas en cada espécimen en un número de 3. Estos datos fueron anotados manualmente en formatos ya elaborados con anticipación.

5.2.1.2 Preparación de equipo

El equipo de ultrasonido utilizado fue el Pundit Lab Test Device H2984, este equipo posee una unidad de pantalla o monitor, 2 transductores de 54 kHz y una varilla de calibración. El equipo puede funcionar con electricidad o con el uso de 4 baterías AA(LR6), más en esta investigación se utilizó baterías AA, debido a las condiciones de laboratorio. Una vez colocados las 4 baterías AA, se hace la conexión de los transductores emisor y receptor y luego se realiza el encendido del equipo.

Antes de realizar las mediciones ultrasónicas fue necesario configurar el equipo, de acuerdo al manual de funcionamiento, donde básicamente se configuró la frecuencia del pulso ultrasónico, la longitud del elemento a medir y la calibración correspondiente con la barra calibradora. Después de la configuración del equipo, recién se pudo realizar las mediciones de las velocidades de pulso ultrasónico en el concreto, utilizando para ello un gel acoplante que va en el centro de las caras del espécimen, donde se coloca los transductores.

5.2.1.3 Ensayo y recolección de datos

una vez preparados los especímenes, vale decir, que el agua contenido en los poros hayan salido, que las caras de cada espécimen estén relativamente secas y lisas, se procedió con la medición de la longitud de recorrido o altura de briqueta, para luego insertar el dato en el equipo, y luego colocar el gel acoplante en cantidad considerable entre las caras del concreto y los transductores, para finalmente ejecutar la medición de velocidad de pulso ultrasónico.
La medición de la velocidad de pulso ultrasoníco se hizo tres veces por espécimen y en otros se tuvo que repetir las mediciones, hasta que el nivel de señal recibida sea por lo menos de un 75%.

A pesar de que el equipo cuenta con la opción de guardado de datos, se tomó la decisión de anotar las mediciones en forma manual en formatos de toma de datos elaborados con anticipación.

5.2.2 Ensayo de compresión

5.2.2.1 Preparación de especímenes

De acuerdo a la norma ASTM C 39, la rotura de especímenes cilíndricos de concreto a determinadas edades, deben cumplir las siguientes tolerancias que se indican en la siguiente tabla.

<table>
<thead>
<tr>
<th>Edad</th>
<th>Tolerancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 horas</td>
<td>± 0.5 horas</td>
</tr>
<tr>
<td>3 días</td>
<td>2 horas</td>
</tr>
<tr>
<td>7 días</td>
<td>6 horas</td>
</tr>
<tr>
<td>14 días</td>
<td>8 horas</td>
</tr>
<tr>
<td>28 días</td>
<td>20 horas</td>
</tr>
<tr>
<td>90 días</td>
<td>2 días</td>
</tr>
</tbody>
</table>

Fuente: ASTM C39

En esta investigación, se hizo roturas de especímenes cilíndricos de concreto a los 7, 14, 21 y 28 días, los cuales se hicieron respetando las tolerancias establecidas de acuerdo a norma, presentadas en la tabla anterior.
Para el ensayo a compresión, primero se hicieron las mediciones básicas necesarias a los especímenes cilíndricos de concreto como son: peso, diámetro (tres diámetros), y las alturas que ya fueron consideradas en el ensayo ultrasónico.

5.2.2.2 Preparación de equipo

El equipo que se utilizó para la rotura de las muestras cilíndricas de concreto de resistencias $f'_c= 140, 175, 210, 280$ y 350 kg/cm^2 fue el equipo ADR 1500 marca ELE, que utilizan almohadillas de neopreno para la distribución adecuada de la fuerza de compresión.

La carga se aplicó a una velocidad de movimiento correspondiente a una velocidad de esfuerzo sobre el espécmien de 0.25 MPa \pm 0.05 MPa, manteniéndose la velocidad de movimiento al menos durante la última mitad de la fase de carga anticipada.

5.2.2.3 Ensayo y recolección de datos

Los ensayos de velocidad ultrasónica y compresión simple cada una de las muestras cilíndricas de concreto, fueron realizados en las fechas correspondientes a 7, 14, 21 y 28 días de elaboración para cada f'_c de diseño de 140, 175, 210, 280 y 350 kg/cm2, de acuerdo al siguiente cuadro.

<table>
<thead>
<tr>
<th>Edad</th>
<th>$f'_c=140$ kg/cm²</th>
<th>$f'_c=175$ kg/cm²</th>
<th>$f'_c=210$ kg/cm²</th>
<th>$f'_c=280$ kg/cm²</th>
<th>$f'_c=350$ kg/cm²</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 días</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>14 días</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>21 días</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>28 días</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>300</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
De acuerdo a la tabla anterior, se hizo el ensayo de velocidad de pulso ultrasónico y de compresión simple a un total de 300 especímenes cilíndricos de concreto de 4”x8”, cuyos resultados se apuntaron en fichas de recolección de datos.

Tabla elaborada 32 Número de especímenes cilíndricos de 2”x4” sometidos a ensayo de pulso ultrasónico y compresión simple

<table>
<thead>
<tr>
<th>Edad</th>
<th>$f'c=140$ kg/cm²</th>
<th>$f'c=175$ kg/cm²</th>
<th>$f'c=210$ kg/cm²</th>
<th>$f'c=280$ kg/cm²</th>
<th>$f'c=350$ kg/cm²</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 días</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

De acuerdo a la tabla anterior, se hizo el ensayo de velocidad de pulso ultrasónico y compresión simple a un total de 75 especímenes cilíndricos de concreto de 2”x4”, cuyos resultados se apuntaron en fichas de recolección de datos.

Tabla elaborada 33 Número de especímenes cilíndricos de 2”x4” sometidos a ensayo de pulso ultrasónico y compresión triaxial

<table>
<thead>
<tr>
<th>Edad</th>
<th>$f'c=140$ kg/cm²</th>
<th>$f'c=175$ kg/cm²</th>
<th>$f'c=210$ kg/cm²</th>
<th>$f'c=280$ kg/cm²</th>
<th>$f'c=350$ kg/cm²</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 días</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

De acuerdo a la tabla anterior, se hizo el ensayo de Velocidad de pulso ultrasónico a un total de 15 especímenes cilíndricos de concreto de 2”x4”, cuyos resultados se apuntaron en fichas de recolección de datos.

5.2.2.4 Resultados del ensayo de pulso ultrasónico y el ensayo de compresión simple

Los resultados de los ensayos se muestran en los ANEXOS C1 al C20

El siguiente cuadro muestra el resumen de resultados promedio, obtenidos en los ensayos de compresión simple y velocidad ultrasónica de muestras cilíndricas 4”x8” (Huso 67)
Tabla elaborada 34 Cuadro resumen de compresión y velocidad ultrasonica promedio de muestras cilíndricas de 4”x8”- huso 67

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (días)</th>
<th>$f’c$ promedio (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140</td>
<td>7</td>
<td>133.70</td>
<td>3863</td>
</tr>
<tr>
<td>14-140</td>
<td>14</td>
<td>167.18</td>
<td>4202</td>
</tr>
<tr>
<td>21-140</td>
<td>21</td>
<td>177.48</td>
<td>4249</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>187.3</td>
<td>4244</td>
</tr>
<tr>
<td>07-175</td>
<td>7</td>
<td>157.64</td>
<td>4121</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>191.66</td>
<td>4280</td>
</tr>
<tr>
<td>21-175</td>
<td>21</td>
<td>210.79</td>
<td>4316</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>226.11</td>
<td>4309</td>
</tr>
<tr>
<td>07-210</td>
<td>7</td>
<td>203.30</td>
<td>4288</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>259.63</td>
<td>4364</td>
</tr>
<tr>
<td>21-210</td>
<td>21</td>
<td>270.03</td>
<td>4390</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>288.27</td>
<td>4387</td>
</tr>
<tr>
<td>07-280</td>
<td>7</td>
<td>246.32</td>
<td>4348</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>307.75</td>
<td>4400</td>
</tr>
<tr>
<td>21-280</td>
<td>21</td>
<td>321.01</td>
<td>4427</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>348.99</td>
<td>4421</td>
</tr>
<tr>
<td>07-350</td>
<td>7</td>
<td>307.66</td>
<td>4399</td>
</tr>
<tr>
<td>14-350</td>
<td>14</td>
<td>387.73</td>
<td>4491</td>
</tr>
<tr>
<td>21-350</td>
<td>21</td>
<td>406.39</td>
<td>4566</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>436.83</td>
<td>4509</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Gráfica 9 Cuadro comparativo de la evolución de la resistencia a compresión del concreto de resistencias de diseño $f'_c=140$, 175, 210, 280 y 350 kg/cm² a los 7, 14, 21 y 28 días de edad, huso 67 (M.C. 4”X8”).

![Gráfica 9](image)

Fuente: Elaboración propia

Gráfica 10 Cuadro comparativo de la evolución de la Resistencia a la compresión versus velocidad de pulso ultrasónico para resistencias de diseño $f'_c=140$, 175, 210, 280 y 350 kg/cm² huso 67 (M.C. 4”x8”).

![Gráfica 10](image)

Fuente: Elaboración propia
El siguiente cuadro muestra el resumen de las densidades con las velocidades ultrasonícas promedio de las muestras cilíndricas 4”x8” – Huso 67

Tabla elaborada 35 Cuadro resumen de densidad y velocidad de pulso ultrasonico para muestras cilíndricas de 4”x8” (huso 67)

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad</th>
<th>Velocidad de pulso (m/s)</th>
<th>Densidad (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140</td>
<td>7</td>
<td>3863</td>
<td>2355.45</td>
</tr>
<tr>
<td>14-140</td>
<td>14</td>
<td>4202</td>
<td>2355.72</td>
</tr>
<tr>
<td>21-140</td>
<td>21</td>
<td>4249</td>
<td>2355.45</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>4244</td>
<td>2354.04</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>4140</td>
<td>2355.17</td>
</tr>
<tr>
<td>07-175</td>
<td>7</td>
<td>4121</td>
<td>2366.35</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4280</td>
<td>2366.51</td>
</tr>
<tr>
<td>21-175</td>
<td>21</td>
<td>4316</td>
<td>2368.82</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>4309</td>
<td>2369.22</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>4257</td>
<td>2367.73</td>
</tr>
<tr>
<td>07-210</td>
<td>7</td>
<td>4288</td>
<td>2371.88</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>4364</td>
<td>2372.83</td>
</tr>
<tr>
<td>21-210</td>
<td>21</td>
<td>4390</td>
<td>2371.73</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>4387</td>
<td>2370.67</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>4357</td>
<td>2371.78</td>
</tr>
<tr>
<td>07-280</td>
<td>7</td>
<td>4348</td>
<td>2370.19</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>4400</td>
<td>2370.00</td>
</tr>
<tr>
<td>21-280</td>
<td>21</td>
<td>4427</td>
<td>2369.53</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>4421</td>
<td>2370.08</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>4399</td>
<td>2369.95</td>
</tr>
<tr>
<td>07-350</td>
<td>7</td>
<td>4399</td>
<td>2366.55</td>
</tr>
<tr>
<td>14-350</td>
<td>14</td>
<td>4491</td>
<td>2365.41</td>
</tr>
<tr>
<td>21-350</td>
<td>21</td>
<td>4566</td>
<td>2366.82</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>4509</td>
<td>2366.23</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>4491</td>
<td>2366.25</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 36 Cuadro Resumen Velocidad-densidad-huso 67

<table>
<thead>
<tr>
<th>f’c (kg/cm2)</th>
<th>Velocidad de pulso (m/s)</th>
<th>Densidad (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>4140</td>
<td>2355.17</td>
</tr>
<tr>
<td>175</td>
<td>4257</td>
<td>2367.73</td>
</tr>
<tr>
<td>210</td>
<td>4357</td>
<td>2371.78</td>
</tr>
<tr>
<td>280</td>
<td>4399</td>
<td>2369.95</td>
</tr>
<tr>
<td>350</td>
<td>4491</td>
<td>2366.25</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Los resultados obtenidos de los ensayos a compresión y velocidad ultrasónica a muestras cilíndricas de 2”x4” a los 28 días, se muestran en los ANEXOS C21 al C25

El siguiente cuadro muestra el resumen de los resultados de los ensayos de resistencia a la compresión y velocidad ultrasónica a muestras cilíndricas de 2”x4”.

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>28</td>
<td>4057</td>
<td>171.87</td>
</tr>
<tr>
<td>28-140-02</td>
<td>28</td>
<td>4027</td>
<td>175.23</td>
</tr>
<tr>
<td>28-140-03</td>
<td>28</td>
<td>4047</td>
<td>176.58</td>
</tr>
<tr>
<td>28-140-04</td>
<td>28</td>
<td>3923</td>
<td>144.65</td>
</tr>
<tr>
<td>28-140-05</td>
<td>28</td>
<td>4027</td>
<td>166.91</td>
</tr>
<tr>
<td>28-140-06</td>
<td>28</td>
<td>4050</td>
<td>176.87</td>
</tr>
<tr>
<td>28-140-07</td>
<td>28</td>
<td>4027</td>
<td>170.12</td>
</tr>
<tr>
<td>28-140-08</td>
<td>28</td>
<td>3979</td>
<td>173.49</td>
</tr>
<tr>
<td>28-140-09</td>
<td>28</td>
<td>4100</td>
<td>193.52</td>
</tr>
<tr>
<td>28-140-10</td>
<td>28</td>
<td>4103</td>
<td>193.03</td>
</tr>
<tr>
<td>28-140-11</td>
<td>28</td>
<td>4020</td>
<td>173.31</td>
</tr>
<tr>
<td>28-140-12</td>
<td>28</td>
<td>4018</td>
<td>172.71</td>
</tr>
<tr>
<td>28-140-13</td>
<td>28</td>
<td>3997</td>
<td>173.2</td>
</tr>
<tr>
<td>28-140-14</td>
<td>28</td>
<td>3999</td>
<td>177.55</td>
</tr>
<tr>
<td>28-140-15</td>
<td>28</td>
<td>4027</td>
<td>174.46</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-01</td>
<td>28</td>
<td>4128</td>
<td>233.67</td>
</tr>
<tr>
<td>28-175-02</td>
<td>28</td>
<td>4130</td>
<td>235.12</td>
</tr>
<tr>
<td>28-175-03</td>
<td>28</td>
<td>4102</td>
<td>227.38</td>
</tr>
<tr>
<td>28-175-04</td>
<td>28</td>
<td>4113</td>
<td>223.13</td>
</tr>
<tr>
<td>28-175-05</td>
<td>28</td>
<td>4095</td>
<td>202.23</td>
</tr>
<tr>
<td>28-175-06</td>
<td>28</td>
<td>4089</td>
<td>205.3</td>
</tr>
<tr>
<td>28-175-07</td>
<td>28</td>
<td>4146</td>
<td>212.05</td>
</tr>
<tr>
<td>28-175-08</td>
<td>28</td>
<td>4163</td>
<td>230.29</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c=140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunayc”

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-09</td>
<td>28</td>
<td>4112</td>
<td>227.47</td>
</tr>
<tr>
<td>28-175-10</td>
<td>28</td>
<td>4189</td>
<td>227.38</td>
</tr>
<tr>
<td>28-175-11</td>
<td>28</td>
<td>4203</td>
<td>224</td>
</tr>
<tr>
<td>28-175-12</td>
<td>28</td>
<td>4132</td>
<td>224</td>
</tr>
<tr>
<td>28-175-13</td>
<td>28</td>
<td>4119</td>
<td>227.38</td>
</tr>
<tr>
<td>28-175-14</td>
<td>28</td>
<td>4142</td>
<td>231.25</td>
</tr>
<tr>
<td>28-175-15</td>
<td>28</td>
<td>4187</td>
<td>227.87</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 39 Resumen de Resultados de Velocidad y resistencia, f’c=210 kg/cm² a 28 días -M.C. 2”x4”-huso 8

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-210-01</td>
<td>28</td>
<td>4222</td>
<td>261.25</td>
</tr>
<tr>
<td>28-210-02</td>
<td>28</td>
<td>4231</td>
<td>260.28</td>
</tr>
<tr>
<td>28-210-03</td>
<td>28</td>
<td>4212</td>
<td>251.57</td>
</tr>
<tr>
<td>28-210-04</td>
<td>28</td>
<td>4251</td>
<td>255.42</td>
</tr>
<tr>
<td>28-210-05</td>
<td>28</td>
<td>4224</td>
<td>264.1</td>
</tr>
<tr>
<td>28-210-06</td>
<td>28</td>
<td>4268</td>
<td>272.86</td>
</tr>
<tr>
<td>28-210-07</td>
<td>28</td>
<td>4299</td>
<td>276.25</td>
</tr>
<tr>
<td>28-210-08</td>
<td>28</td>
<td>4312</td>
<td>275.28</td>
</tr>
<tr>
<td>28-210-09</td>
<td>28</td>
<td>4278</td>
<td>269.88</td>
</tr>
<tr>
<td>28-210-10</td>
<td>28</td>
<td>4259</td>
<td>270.36</td>
</tr>
<tr>
<td>28-210-11</td>
<td>28</td>
<td>4302</td>
<td>268.02</td>
</tr>
<tr>
<td>28-210-12</td>
<td>28</td>
<td>4245</td>
<td>264.04</td>
</tr>
<tr>
<td>28-210-13</td>
<td>28</td>
<td>4245</td>
<td>265.12</td>
</tr>
<tr>
<td>28-210-14</td>
<td>28</td>
<td>4207</td>
<td>255.4</td>
</tr>
<tr>
<td>28-210-15</td>
<td>28</td>
<td>4219</td>
<td>256.89</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 40 Resumen de Resultados de Velocidad y resistencia, f’c=280 kg/cm² a 28 días -M.C. 2”x4”-huso 8

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-280-01</td>
<td>28</td>
<td>4387</td>
<td>353.17</td>
</tr>
<tr>
<td>28-280-02</td>
<td>28</td>
<td>4365</td>
<td>337.20</td>
</tr>
<tr>
<td>28-280-03</td>
<td>28</td>
<td>4372</td>
<td>335.75</td>
</tr>
<tr>
<td>28-280-04</td>
<td>28</td>
<td>4302</td>
<td>328.50</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-280-05</td>
<td>28</td>
<td>4298</td>
<td>320.48</td>
</tr>
<tr>
<td>28-280-06</td>
<td>28</td>
<td>4312</td>
<td>351.33</td>
</tr>
<tr>
<td>28-280-07</td>
<td>28</td>
<td>4299</td>
<td>314.47</td>
</tr>
<tr>
<td>28-280-08</td>
<td>28</td>
<td>4287</td>
<td>311.08</td>
</tr>
<tr>
<td>28-280-09</td>
<td>28</td>
<td>4275</td>
<td>304.79</td>
</tr>
<tr>
<td>28-280-10</td>
<td>28</td>
<td>4292</td>
<td>308.66</td>
</tr>
<tr>
<td>28-280-11</td>
<td>28</td>
<td>4272</td>
<td>320.48</td>
</tr>
<tr>
<td>28-280-12</td>
<td>28</td>
<td>4293</td>
<td>335.90</td>
</tr>
<tr>
<td>28-280-13</td>
<td>28</td>
<td>4301</td>
<td>335.75</td>
</tr>
<tr>
<td>28-280-14</td>
<td>28</td>
<td>4319</td>
<td>309.63</td>
</tr>
<tr>
<td>28-280-15</td>
<td>28</td>
<td>4309</td>
<td>310.36</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 41 Resumen de Resultados de Velocidad y resistencia, $f'c=280$ kg/cm2 a 28 días-M.C. 2”x4”-huso 8

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Resistencia a la compresión (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-01</td>
<td>28</td>
<td>4417</td>
<td>370.60</td>
</tr>
<tr>
<td>28-350-02</td>
<td>28</td>
<td>4356</td>
<td>348.54</td>
</tr>
<tr>
<td>28-350-03</td>
<td>28</td>
<td>4352</td>
<td>352.69</td>
</tr>
<tr>
<td>28-350-04</td>
<td>28</td>
<td>4359</td>
<td>367.68</td>
</tr>
<tr>
<td>28-350-05</td>
<td>28</td>
<td>4389</td>
<td>370.60</td>
</tr>
<tr>
<td>28-350-06</td>
<td>28</td>
<td>4377</td>
<td>373.00</td>
</tr>
<tr>
<td>28-350-07</td>
<td>28</td>
<td>4332</td>
<td>373.49</td>
</tr>
<tr>
<td>28-350-08</td>
<td>28</td>
<td>4389</td>
<td>378.33</td>
</tr>
<tr>
<td>28-350-09</td>
<td>28</td>
<td>4297</td>
<td>380.26</td>
</tr>
<tr>
<td>28-350-10</td>
<td>28</td>
<td>4282</td>
<td>375.90</td>
</tr>
<tr>
<td>28-350-11</td>
<td>28</td>
<td>4385</td>
<td>366.27</td>
</tr>
<tr>
<td>28-350-12</td>
<td>28</td>
<td>4335</td>
<td>383.16</td>
</tr>
<tr>
<td>28-350-13</td>
<td>28</td>
<td>4377</td>
<td>384.62</td>
</tr>
<tr>
<td>28-350-14</td>
<td>28</td>
<td>4423</td>
<td>383.16</td>
</tr>
<tr>
<td>28-350-15</td>
<td>28</td>
<td>4415</td>
<td>381.71</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El siguiente cuadro muestra el resumen de los ensayos de densidad y velocidad de pulso ultrasónico promedio, realizados a muestras cilíndricas de 2”x4”
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunayac

Tabla elaborada 42 Resumen de Resultados de Velocidad y Densidad a 28 días – M.C. 2”x4”-huso 67

<table>
<thead>
<tr>
<th>Briqueta (días)</th>
<th>Edad (días)</th>
<th>Velocidad ultrasonónica promedio (m/s)</th>
<th>Densidad promedio (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140</td>
<td>28</td>
<td>4027</td>
<td>2313.47</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>4137</td>
<td>2314.58</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>4252</td>
<td>2315.26</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>4312</td>
<td>2314.88</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>4366</td>
<td>2314.40</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los resultados de la prueba triaxial en concreto, fueron los siguientes:

Tabla elaborada 43 Resultados de compresión triaxial a 28 días- M.C. de 2”x4”-huso 8

<table>
<thead>
<tr>
<th>Código</th>
<th>σ_3 (MPa)</th>
<th>f'_c máximo (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-28</td>
<td>3</td>
<td>32.40</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>38.02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>40.20</td>
</tr>
<tr>
<td>175-28</td>
<td>3</td>
<td>35.60</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40.11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>45.77</td>
</tr>
<tr>
<td>210-28</td>
<td>3</td>
<td>44.75</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>51.57</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>54.61</td>
</tr>
<tr>
<td>280-28</td>
<td>1</td>
<td>59.07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>64.86</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>67.80</td>
</tr>
<tr>
<td>350-28</td>
<td>1</td>
<td>62.24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>66.86</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>70.80</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
6. CAPÍTULO VI
ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

6.1 Análisis estadístico de resultados de velocidad y resistencia de muestras cilíndricas de 4”x8”-huso 67

Bajo criterios estadísticos de agrupación de datos, es que se realizó la siguiente tabla, donde las muestras fueron agrupadas a dos edades distintas del concreto (7 y 28; 14 y 28; 21 y 28), a tres edades distintas del concreto (7, 14 y 28; 14, 21 y 28; 7, 21 y 28) y finalmente a cuatro edades distintas del concreto (7, 14, 21 y 28), que viene a ser todo el conglomerado de datos, de los cinco f’c de diseño de 140, 175, 210, 280 y 350 kg/cm².

Se consideró la edad de 28 días en todos los grupos G1, G2, G3, G4, G5, G6 y G7, debido a que se considera que dichos datos son importantes para la investigación, ya que a esta edad se alcanza aproximadamente el 100% de la resistencia.

Tabla elaborada 44 Coeficientes de determinación para diferentes modelos de regresión, Velocidad de pulso ultrasónico-resistencia a la compresión, M.C. 4”x8”

<table>
<thead>
<tr>
<th>Grupo</th>
<th>R² para modelos de regresión estadística Velocidad-Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lineal</td>
</tr>
<tr>
<td>G1(7-28)</td>
<td>0.7303</td>
</tr>
<tr>
<td>G2(14-28)</td>
<td>0.9597</td>
</tr>
<tr>
<td>G3(21-28)</td>
<td>0.9290</td>
</tr>
<tr>
<td>G4(7-14-28)</td>
<td>0.7395</td>
</tr>
<tr>
<td>G5(14-21-28)</td>
<td>0.9106</td>
</tr>
<tr>
<td>G6(7-21-28)</td>
<td>0.7489</td>
</tr>
<tr>
<td>G7(7-14-21-28)</td>
<td>0.7611</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Se observa en la tabla anterior, los coeficientes de determinación, que indican el grado de dependencia y correlación de la velocidad de pulso ultrasónico y la resistencia a compresión de las muestras cilíndricas a diferentes edades.

El coeficiente de determinación más cercano a 1, es el que presenta una mayor dependencia entre las variables de Velocidad de pulso ultrasónico y Resistencia a la compresión.

Es necesario aclarar que, se desestima los coeficientes de determinación cúbica para G1, G2 y G3, que son 0.9894, 0.9848 y 0.9702, respectivamente, ya que se considera que, la cantidad de datos no es representativa.

Los grupos G4, G5 y G7, para el modelo de regresión cúbica, son los que muestran mayor coeficiente de determinación, siendo estas 0.9838, 0.9674 y 0.9487, respectivamente. A los datos de estos grupos se determinará sus porcentajes residuales, con lo cual se tomará una mejor decisión.

Gráfica 11 Curvas de tendencia para Resistencia versus Velocidad de pulso, grupo G4–Huso 67

Fuente: Elaboración propia

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Gráfica 12 Curvas de tendencia para Resistencia versus Velocidad de pulso, grupo G5-Huso 67

Resistencia a la compresión versus Velocidad de pulso ultrasónico para datos G5 (14,21 y 28 días) de \(f'_c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) - Huso 67.

Fuente: Elaboración propia

Gráfica 13 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G7-Huso 67.

Resistencia a la compresión versus Velocidad de pulso ultrasónico para datos de 7,14,21 y 28 días de \(f'_c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) - Huso 67.

Fuente: Elaboración propia
6.2 Análisis estadístico de resultados de velocidad y densidad de muestras cilíndricas de 4”x8”-huso 67

En el caso de la densidad, también se agrupó como D1 (7,14,28), D2 (14,21,28), D3(7,21,28), D4 (7,14,21,28) y D5(promedios únicos), donde la denominación D, es el nombre del grupo y las numeraciones en el paréntesis las respectivas edades del concreto.

Tabla elaborada 45 Coeficientes de determinación para diferentes modelos de regresión, Velocidad-Densidad, M.C. 4”x8”

<table>
<thead>
<tr>
<th>Grupo</th>
<th>R^2 para modelos de regresión estadística Velocidad-Densidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lineal</td>
</tr>
<tr>
<td>D1(7,14,28)</td>
<td>0.3430</td>
</tr>
<tr>
<td>D2(14,21,28)</td>
<td>0.3002</td>
</tr>
<tr>
<td>D3 (7,21,28)</td>
<td>0.3177</td>
</tr>
<tr>
<td>D4 (7,14,21,28)</td>
<td>0.3100</td>
</tr>
<tr>
<td>D5(prom. Únic.)</td>
<td>0.4683</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se observan los coeficientes de determinación, que indican el grado de dependencia y correlación de la velocidad de pulso ultrasónico y la densidad de las muestras cilíndricas de concreto, agrupadas a diferentes edades, pero que consideran todas las resistencias de diseño propuestas en la investigación, 140, 175, 210, 280 y 350 kg/cm2.

El coeficiente de determinación más cercano a 1, es el que presenta una mayor dependencia entre las variables Densidad y Velocidad, que en este caso se da en el modelo de aproximación cúbica, en los grupos D2 con $R^2=0.8015$ y D5 (promedios únicos) con $R^2=0.9946$, para lo cuales analizaremos sus porcentajes residuales.
Gráfica 14 Curvas de tendencia para Densidad versus Velocidad de pulso, grupo D2, Huso 67.

Gráfica 15 Curvas de tendencia para Densidad versus Velocidad de pulso, grupo D5, huso 67
6.3 Análisis estadístico de resultados de velocidad y resistencia de muestras cilíndricas de 2”x4”-huso 8

Bajo criterios estadísticos de agrupación de datos, es que se realizó la siguiente tabla, donde las muestras fueron agrupadas a tres f’c de diseño distintos (140, 175 y 210; 175, 210 y 280; 210, 280 y 350), a cuatro f’c de diseño distintos (140, 175, 210 y 280; 175, 210, 280 y 350) y finalmente los cuatro f’c de diseño (140, 175, 210, 280 y 350).

Tabla elaborada 46 Coeficientes de determinación para Resistencia versus Velocidad de pulso, Huso 8

<table>
<thead>
<tr>
<th>Grupo</th>
<th>R² para modelos de regresión estadística Velocidad - Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lineal</td>
</tr>
<tr>
<td>G1’(140,175,210)</td>
<td>0.9249</td>
</tr>
<tr>
<td>G2’(175,210,280)</td>
<td>0.8150</td>
</tr>
<tr>
<td>G3’(210,280,350)</td>
<td>0.6998</td>
</tr>
<tr>
<td>G4’(140,175,210,280)</td>
<td>0.9069</td>
</tr>
<tr>
<td>G5’(175,210,280,350)</td>
<td>0.8300</td>
</tr>
<tr>
<td>G6’(140,175,210,280,350)</td>
<td>0.8991</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se desestima los coeficientes de determinación cúbica para G1’ con R² =0.9327, ya que se considera que, la cantidad de datos no es representativa.

Los grupos G4’ y G6’, para el modelo de regresión exponencial, son los que muestran mayor coeficiente de determinación, siendo estas **0.9308** y **0.9307**, respectivamente. A los datos de estos grupos se determinará sus porcentajes residuales, con lo cual se tomará una mejor decisión.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

Gráfica 16 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G4’- Huso 8

Fuente: Elaboración propia

Gráfica 17 Curvas de tendencia para Resistencia a la compresión versus Velocidad de pulso, grupo G6’- Huso 8

Fuente: Elaboración propia

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
6.4 Análisis estadístico de resultados de velocidad y densidad de muestras cilíndricas de 2”x4”-huso 8

Tabla elaborada 47 Coeficientes de determinación para diferentes modelos de regresión, Velocidad-Densidad, M.C. 2”x4”

<table>
<thead>
<tr>
<th>Código</th>
<th>R² para modelos de regresión estadística Velocidad - Densidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lineal</td>
</tr>
<tr>
<td>Huso 8 (M.C. 2”x4”)</td>
<td>0.4167</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Del cuadro anterior, se observan los coeficientes de determinación, que indican el grado de dependencia y correlación de la velocidad de pulso ultrasónico y la Densidad de las muestras cilíndricas de concreto a edad de 28 días para resistencias de diseño de 140, 175, 210, 280 y 350 kg/cm².

El coeficiente de determinación más cercano a 1, es el que presenta una mayor dependencia entre las variables Densidad y Velocidad, por lo cual se determina que el modelo cúbico es el más apropiado con $R^2 = 0.9907$.

Gráfica 18 Curvas de tendencia para Velocidad versus Densidad – Huso 8

Fuente: Elaboración propia
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'_c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de cunyac”

6.5 Análisis estadístico de resultados de resistencia obtenida con velocidad de pulso y resistencia triaxial de muestras cilíndricas de 2”x4”-huso 8

Se realizó un análisis de los resultados del ensayo triaxial, en la que se comparó la resistencia calculada con prueba de ultrasonido y la resistencia alcanzada en el ensayo triaxial.

Tabla elaborada 48 Esfuerzos máximos triaxiales para muestras cilíndricas de 2”x4” – Huso 8

<table>
<thead>
<tr>
<th>Código</th>
<th>(\sigma_3) (MPa)</th>
<th>(f'_c) máximo triaxial (MPa)</th>
<th>(f'_c) ultrasónico (MPa)</th>
<th>(\frac{\sigma_3}{f'_c}) ultras.</th>
<th>(\frac{f'_c \text{ máx.}}{f'_c \text{ ultras.}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-28</td>
<td>3</td>
<td>32.40</td>
<td>18</td>
<td>0.17</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>38.02</td>
<td>19.8</td>
<td>0.25</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>40.20</td>
<td>20</td>
<td>0.35</td>
<td>2.01</td>
</tr>
<tr>
<td>175-28</td>
<td>3</td>
<td>35.60</td>
<td>20</td>
<td>0.15</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40.11</td>
<td>21</td>
<td>0.24</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>45.77</td>
<td>23</td>
<td>0.30</td>
<td>1.99</td>
</tr>
<tr>
<td>210-28</td>
<td>3</td>
<td>44.75</td>
<td>25</td>
<td>0.12</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>51.57</td>
<td>27</td>
<td>0.19</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>54.61</td>
<td>26.9</td>
<td>0.26</td>
<td>2.03</td>
</tr>
<tr>
<td>280-28</td>
<td>3</td>
<td>59.07</td>
<td>33</td>
<td>0.03</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>64.86</td>
<td>34.5</td>
<td>0.09</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>67.80</td>
<td>33.4</td>
<td>0.15</td>
<td>2.03</td>
</tr>
<tr>
<td>350-28</td>
<td>3</td>
<td>62.24</td>
<td>38.9</td>
<td>0.03</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>66.86</td>
<td>39.8</td>
<td>0.08</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

6.6 Análisis estadístico de porcentajes residuales

Para una comprobación de resultados, es necesario calcular los porcentajes residuales en función de los datos reales, tomados en campo y los datos estimados con las fórmulas halladas en la investigación. Para ello se resta el dato real del dato estimado, dividido por el dato real, y todo ello multiplicado por 100.
Porcentaje residual = \(\frac{\text{Dato real} - \text{Dato estimado}}{\text{dato real}} \times 100 \)

6.6.1 Porcentajes residuales para ecuación Velocidad - Resistencia, huso 67, muestras cilíndricas 4”x8”.

El modelo de regresión estadística cúbica, es el que presentó mayor confiabilidad en la obtención de ecuaciones Velocidad de pulso ultrasónico-Resistencia a la compresión, en los grupos G4, G5 y G7, por lo cual, se hizo necesario realizar el estudio de sus porcentajes residuales y determinar el grado de precisión en el cálculo de la resistencia a la compresión utilizando cada ecuación obtenida para cada grupo.

Para el grupo G4 (7, 14 y 28), cuyo \(R^2 =0.9838 \), se utilizó la ecuación cúbica

\[
r = 1.2014 \times 10^{-6} \times v^3 - 1.3928 \times 10^{-2} \times v^2 + 5.3787 \times 10^1 \times v - 6.9056 \times 10^4
\]

Donde: \(r \) = Resistencia a la compresión del concreto.

\(v \) = Velocidad de pulso ultrasónico en el concreto.

Tabla elaborada 49 Porcentajes residuales para Ecuación cúbica Resistencia-Velocidad, grupo G4 – Huso 67

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (días)</th>
<th>(f_c) (kg/cm²) promedio</th>
<th>Velocidad ultrasónica promedio (m/s)</th>
<th>(f_c) (kg/cm²) calculado con fórmula</th>
<th>Diferencia (f_c) prom y (f_c) calculado</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140</td>
<td>7</td>
<td>133.70</td>
<td>3863</td>
<td>135.55</td>
<td>-1.85</td>
<td>-1.38</td>
</tr>
<tr>
<td>14-140</td>
<td>14</td>
<td>167.18</td>
<td>4202</td>
<td>169.55</td>
<td>-2.37</td>
<td>-1.42</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>187.30</td>
<td>4244</td>
<td>187.52</td>
<td>-0.22</td>
<td>-0.12</td>
</tr>
<tr>
<td>07-175</td>
<td>7</td>
<td>157.64</td>
<td>4121</td>
<td>146.54</td>
<td>11.10</td>
<td>7.04</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>191.66</td>
<td>4280</td>
<td>206.75</td>
<td>-15.09</td>
<td>-7.87</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>226.11</td>
<td>4309</td>
<td>225.05</td>
<td>1.06</td>
<td>0.47</td>
</tr>
<tr>
<td>07-210</td>
<td>7</td>
<td>203.30</td>
<td>4288</td>
<td>211.54</td>
<td>-8.24</td>
<td>-4.05</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>259.63</td>
<td>4364</td>
<td>267.3</td>
<td>-7.67</td>
<td>-2.95</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>288.27</td>
<td>4387</td>
<td>288.13</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>07-280</td>
<td>7</td>
<td>246.32</td>
<td>4348</td>
<td>253.94</td>
<td>-7.62</td>
<td>-3.09</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>307.75</td>
<td>4400</td>
<td>300.78</td>
<td>6.97</td>
<td>2.26</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>348.99</td>
<td>4421</td>
<td>322.6</td>
<td>26.39</td>
<td>7.56</td>
</tr>
<tr>
<td>07-350</td>
<td>7</td>
<td>307.66</td>
<td>4399</td>
<td>299.78</td>
<td>7.88</td>
<td>2.56</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (días)</th>
<th>f’c (kg/cm²) promedio</th>
<th>Velocidad ultrasónica promedio (m/s)</th>
<th>f’c (kg/cm²) calculado con fórmula</th>
<th>Diferencia f’c prom y f’c calculado</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-350</td>
<td>14</td>
<td>387.73</td>
<td>4491</td>
<td>408.48</td>
<td>-20.75</td>
<td>-5.35</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>436.83</td>
<td>4509</td>
<td>434.04</td>
<td>2.79</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Se observa en la tabla anterior, que el mayor porcentaje residual con sobreestimación de la resistencia real, corresponde al -7.87%, y el mayor porcentaje con subestimación de la resistencia real promedio, corresponde al 7.56%.

Para el grupo G5 (14, 21 y 28), cuyo R² =0.9726, se utilizó la ecuación cúbica

\[r = 1.4261 \times 10^{-5} \times v^3 - 1.8788 \times 10^{-1} \times v^2 - 8.2389 \times 10^2 \times v + 1.2030 \times 10^6 \]

Tabla elaborada 50 Porcentajes Residuales para Ecuación cúbica Resistencia-Velocidad, grupo G5-Huso 67

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (días)</th>
<th>f’c (kg/cm²) promedio</th>
<th>Velocidad ultrasónica promedio (m/s)</th>
<th>f’c (kg/cm²) calculado con fórmula</th>
<th>Diferencia f’c prom y f’c calcul.</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-140</td>
<td>14</td>
<td>167.18</td>
<td>4202</td>
<td>185.84</td>
<td>-18.66</td>
<td>-11.16</td>
</tr>
<tr>
<td>21-140</td>
<td>21</td>
<td>177.48</td>
<td>4249</td>
<td>183.72</td>
<td>-6.24</td>
<td>-3.52</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>187.30</td>
<td>4244</td>
<td>182.51</td>
<td>4.79</td>
<td>2.56</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>191.66</td>
<td>4280</td>
<td>197.59</td>
<td>-5.93</td>
<td>-3.09</td>
</tr>
<tr>
<td>21-175</td>
<td>21</td>
<td>210.79</td>
<td>4316</td>
<td>225.02</td>
<td>-14.23</td>
<td>-6.75</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>226.11</td>
<td>4309</td>
<td>218.91</td>
<td>7.20</td>
<td>3.18</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>259.63</td>
<td>4364</td>
<td>273.9</td>
<td>-14.27</td>
<td>-5.50</td>
</tr>
<tr>
<td>21-210</td>
<td>21</td>
<td>270.03</td>
<td>4390</td>
<td>303.23</td>
<td>-33.20</td>
<td>-12.29</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>288.27</td>
<td>4387</td>
<td>299.82</td>
<td>-11.55</td>
<td>-4.01</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>307.75</td>
<td>4400</td>
<td>314.62</td>
<td>-6.87</td>
<td>-2.23</td>
</tr>
<tr>
<td>21-280</td>
<td>21</td>
<td>321.01</td>
<td>4427</td>
<td>344.74</td>
<td>-23.73</td>
<td>-7.39</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>348.99</td>
<td>4421</td>
<td>338.18</td>
<td>10.81</td>
<td>3.10</td>
</tr>
<tr>
<td>14-350</td>
<td>14</td>
<td>387.73</td>
<td>4491</td>
<td>404.19</td>
<td>-16.46</td>
<td>-4.25</td>
</tr>
<tr>
<td>21-350</td>
<td>21</td>
<td>406.39</td>
<td>4566</td>
<td>427.77</td>
<td>-21.38</td>
<td>-5.26</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>436.83</td>
<td>4509</td>
<td>415.58</td>
<td>21.25</td>
<td>4.86</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Se observa en la tabla anterior, que el mayor porcentaje residual con sobreestimación de la resistencia real promedio, corresponde al -12.29%, y el mayor porcentaje con subestimación de la resistencia real promedio, corresponde al 4.86%.

Para el grupo G7(7, 14, 21 y 28), cuyo $R^2=0.9726$, se utilizó la ecuación cúbica

$$r = -8.7446 \times 10^{-7} \times v^3 + 1.2061 \times 10^{-2} \times v^2 - 5.4523 \times 10^{-1} \times v + 8.1183 \times 10^4$$

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (días)</th>
<th>f_c (kg/cm²)</th>
<th>Velocidad ultrasonica promedio (m/s)</th>
<th>f_c calculado con fórmula</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140</td>
<td>7</td>
<td>133.70</td>
<td>3863</td>
<td>134.47</td>
<td>-0.58</td>
</tr>
<tr>
<td>14-140</td>
<td>14</td>
<td>167.18</td>
<td>4202</td>
<td>156.48</td>
<td>6.40</td>
</tr>
<tr>
<td>21-140</td>
<td>21</td>
<td>177.48</td>
<td>4249</td>
<td>182.98</td>
<td>-3.10</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>187.30</td>
<td>4244</td>
<td>179.96</td>
<td>3.92</td>
</tr>
<tr>
<td>07-175</td>
<td>7</td>
<td>157.64</td>
<td>4121</td>
<td>121.86</td>
<td>22.70</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>191.66</td>
<td>4280</td>
<td>202.71</td>
<td>-5.77</td>
</tr>
<tr>
<td>21-175</td>
<td>21</td>
<td>210.79</td>
<td>4316</td>
<td>227.62</td>
<td>-7.98</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>226.11</td>
<td>4309</td>
<td>222.62</td>
<td>1.54</td>
</tr>
<tr>
<td>07-210</td>
<td>7</td>
<td>203.30</td>
<td>4288</td>
<td>208.07</td>
<td>-2.35</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>259.63</td>
<td>4364</td>
<td>263.77</td>
<td>-1.59</td>
</tr>
<tr>
<td>21-210</td>
<td>21</td>
<td>270.03</td>
<td>4390</td>
<td>284.56</td>
<td>-5.38</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>288.27</td>
<td>4387</td>
<td>282.12</td>
<td>2.13</td>
</tr>
<tr>
<td>07-280</td>
<td>7</td>
<td>246.32</td>
<td>4348</td>
<td>251.37</td>
<td>-2.05</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>307.75</td>
<td>4400</td>
<td>292.76</td>
<td>4.87</td>
</tr>
<tr>
<td>21-280</td>
<td>21</td>
<td>321.01</td>
<td>4427</td>
<td>315.4</td>
<td>1.75</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>348.99</td>
<td>4421</td>
<td>310.31</td>
<td>11.08</td>
</tr>
<tr>
<td>07-350</td>
<td>7</td>
<td>307.66</td>
<td>4399</td>
<td>291.93</td>
<td>5.11</td>
</tr>
<tr>
<td>14-350</td>
<td>14</td>
<td>387.73</td>
<td>4491</td>
<td>371.48</td>
<td>4.19</td>
</tr>
<tr>
<td>21-350</td>
<td>21</td>
<td>406.39</td>
<td>4566</td>
<td>440.01</td>
<td>-8.27</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>436.83</td>
<td>4509</td>
<td>387.73</td>
<td>11.24</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El mayor porcentaje residual o por defecto o subestimación es de 22.70% y el menor porcentaje residual o por exceso o sobreestimación es de -8.27%.
6.6.2 Porcentajes residuales para ecuación Densidad - Velocidad, huso 67, muestras cilíndricas 4”x8”

Los grupos D2(14,21,28) y el D5(promedios únicos), son los que presentaron mayor coeficiente de determinación en el modelo de regresión estadística cúbica en la obtención de ecuaciones Velocidad-Densidad para muestras cilíndricas de 4”x8”, por lo cual, se hizo necesario realizar el estudio de sus porcentajes residuales y determinar el grado de precisión en el cálculo de la densidad.

Para D2 (14,21,28), con $R^2 = 0.8015$, se trabajó con la siguiente fórmula:

$$d = 1.00661 \times 10^{-6} \times v^3 - 1.36103 \times 10^{-2} \times v^2 + 6.13014 \times 10^1 \times v - 8.96075 \times 10^4$$

Donde:

- $d =$ Densidad del concreto (kg/m3)
- $v =$ Velocidad de pulso ultrasónico (m/s)

Tabla elaborada 52 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D2 – Huso 67

<table>
<thead>
<tr>
<th>f’c de diseño (kg/cm²)</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad promedio real (kg/m³)</th>
<th>Densidad obtenida con fórmula</th>
<th>Diferencia de densidad real y estimada</th>
<th>Porcentaje residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>14</td>
<td>4202</td>
<td>2355.72</td>
<td>2350.90</td>
<td>4.82</td>
<td>0.20</td>
</tr>
<tr>
<td>140</td>
<td>21</td>
<td>4249</td>
<td>2355.45</td>
<td>2360.29</td>
<td>-4.84</td>
<td>-0.21</td>
</tr>
<tr>
<td>140</td>
<td>28</td>
<td>4244</td>
<td>2354.04</td>
<td>2359.47</td>
<td>-5.43</td>
<td>-0.23</td>
</tr>
<tr>
<td>175</td>
<td>14</td>
<td>4280</td>
<td>2366.51</td>
<td>2364.57</td>
<td>1.94</td>
<td>0.08</td>
</tr>
<tr>
<td>175</td>
<td>21</td>
<td>4316</td>
<td>2368.82</td>
<td>2367.89</td>
<td>0.93</td>
<td>0.04</td>
</tr>
<tr>
<td>175</td>
<td>28</td>
<td>4309</td>
<td>2369.22</td>
<td>2367.37</td>
<td>1.85</td>
<td>0.08</td>
</tr>
<tr>
<td>210</td>
<td>14</td>
<td>4364</td>
<td>2372.83</td>
<td>2370.04</td>
<td>2.79</td>
<td>0.12</td>
</tr>
<tr>
<td>210</td>
<td>21</td>
<td>4390</td>
<td>2371.73</td>
<td>2370.34</td>
<td>1.39</td>
<td>0.06</td>
</tr>
<tr>
<td>210</td>
<td>28</td>
<td>4387</td>
<td>2370.67</td>
<td>2370.33</td>
<td>0.34</td>
<td>0.01</td>
</tr>
<tr>
<td>280</td>
<td>14</td>
<td>4400</td>
<td>2370.00</td>
<td>2370.32</td>
<td>-0.32</td>
<td>-0.01</td>
</tr>
<tr>
<td>280</td>
<td>21</td>
<td>4427</td>
<td>2369.53</td>
<td>2369.96</td>
<td>-0.43</td>
<td>-0.02</td>
</tr>
<tr>
<td>280</td>
<td>28</td>
<td>4421</td>
<td>2370.08</td>
<td>2370.07</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>350</td>
<td>14</td>
<td>4491</td>
<td>2365.41</td>
<td>2367.92</td>
<td>-2.51</td>
<td>-0.11</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = \) 140, 175, 210, 280 y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>(f'c) de diseño (kg/cm(^2))</th>
<th>Edad (días)</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad promedio real (kg/m(^3))</th>
<th>Densidad obtenida con fórmula</th>
<th>Diferencia de densidad real y estimada</th>
<th>Porcentaje residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>21</td>
<td>4566</td>
<td>2366.82</td>
<td>2365.14</td>
<td>1.68</td>
<td>0.07</td>
</tr>
<tr>
<td>350</td>
<td>28</td>
<td>4509</td>
<td>2366.23</td>
<td>2367.20</td>
<td>-0.97</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se muestra que existe hasta un -0.23% de sobreestimación en la densidad del concreto y hasta un 0.20% de subestimación del mismo.

Para \(D5 \) (promedios únicos), cuyo \(R^2 = 0.9946 \) se trabajó con la siguiente fórmula:

\[
d = 1.98985 \times 10^{-7} \times v^3 - 2.89813 \times 10^{-3} \times v^2 + 1.39216 \times 10^4 \times v - 1.97273 \times 10^4
\]

Donde:

\(d = \) Densidad del concreto (kg/m\(^3\)).

\(v = \) Velocidad de pulso ultrasónico en el concreto (m/s).

Tabla elaborada 53 Porcentajes residuales de la Ecuación cúbica Densidad- Velocidad, grupo \(D5 \)- Huso 67 (con promedios únicos)

<table>
<thead>
<tr>
<th>(f'c) de diseño (kg/cm(^2))</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad promedio real (kg/m(^3))</th>
<th>Densidad obtenida con fórmula</th>
<th>Diferencia de densidad real y estimada</th>
<th>Porcentaje residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>4140</td>
<td>2355.17</td>
<td>2354.9</td>
<td>0.27</td>
<td>0.01</td>
</tr>
<tr>
<td>175</td>
<td>4257</td>
<td>2367.73</td>
<td>2367.71</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>210</td>
<td>4357</td>
<td>2371.78</td>
<td>2370.83</td>
<td>0.95</td>
<td>0.04</td>
</tr>
<tr>
<td>280</td>
<td>4399</td>
<td>2369.95</td>
<td>2370.31</td>
<td>-0.36</td>
<td>-0.02</td>
</tr>
<tr>
<td>350</td>
<td>4491</td>
<td>2366.25</td>
<td>2365.92</td>
<td>0.33</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se observa que existe hasta un -0.02% de sobreestimación en la densidad del concreto y hasta un 0.04% de subestimación del mismo, lo que indica que existe una fuerte aproximación en el cálculo de las densidades mediante el ensayo de pulso ultrasónico.

Para una mejor comprobación de porcentajes residuales y antes de afirmar que se tiene un porcentaje residual de cero, se hizo importante realizar un contraste de resultados con los datos de densidades por edad y resistencia.
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y 350 kg/cm² con agregados de la cantera de cunyac

Tabla elaborada 54 Porcentajes residuales de la ecuación cúbica Densidad-Velocidad, grupo D5 – Huso 67 (con promedios parciales)

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad</th>
<th>Velocidad de pulso (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad calculada con fórmula</th>
<th>Diferencia Densidad real y Densidad calculada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140</td>
<td>7</td>
<td>3863</td>
<td>2355.45</td>
<td>2274.54</td>
<td>80.91</td>
<td>3.44</td>
</tr>
<tr>
<td>14-140</td>
<td>14</td>
<td>4202</td>
<td>2355.72</td>
<td>2363.02</td>
<td>-7.30</td>
<td>-0.31</td>
</tr>
<tr>
<td>21-140</td>
<td>21</td>
<td>4249</td>
<td>2355.45</td>
<td>2367.16</td>
<td>-11.71</td>
<td>-0.5</td>
</tr>
<tr>
<td>28-140</td>
<td>28</td>
<td>4244</td>
<td>2354.04</td>
<td>2366.8</td>
<td>-12.76</td>
<td>-0.54</td>
</tr>
<tr>
<td>07-175</td>
<td>7</td>
<td>4121</td>
<td>2366.35</td>
<td>2351.77</td>
<td>14.58</td>
<td>0.62</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4280</td>
<td>2366.51</td>
<td>2369.02</td>
<td>-2.51</td>
<td>-0.11</td>
</tr>
<tr>
<td>21-175</td>
<td>21</td>
<td>4316</td>
<td>2368.82</td>
<td>2370.34</td>
<td>-1.52</td>
<td>-0.06</td>
</tr>
<tr>
<td>28-175</td>
<td>28</td>
<td>4309</td>
<td>2369.22</td>
<td>2370.15</td>
<td>-0.93</td>
<td>-0.04</td>
</tr>
<tr>
<td>07-210</td>
<td>7</td>
<td>4288</td>
<td>2371.88</td>
<td>2369.38</td>
<td>2.50</td>
<td>0.11</td>
</tr>
<tr>
<td>14-210</td>
<td>14</td>
<td>4364</td>
<td>2372.83</td>
<td>2370.82</td>
<td>2.01</td>
<td>0.08</td>
</tr>
<tr>
<td>21-210</td>
<td>21</td>
<td>4390</td>
<td>2371.73</td>
<td>2370.5</td>
<td>1.23</td>
<td>0.05</td>
</tr>
<tr>
<td>28-210</td>
<td>28</td>
<td>4387</td>
<td>2370.67</td>
<td>2370.56</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>07-280</td>
<td>7</td>
<td>4348</td>
<td>2370.19</td>
<td>2370.81</td>
<td>-0.62</td>
<td>-0.03</td>
</tr>
<tr>
<td>14-280</td>
<td>14</td>
<td>4400</td>
<td>2370.00</td>
<td>2370.28</td>
<td>-0.28</td>
<td>-0.01</td>
</tr>
<tr>
<td>21-280</td>
<td>21</td>
<td>4427</td>
<td>2369.53</td>
<td>2369.42</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>28-280</td>
<td>28</td>
<td>4421</td>
<td>2370.08</td>
<td>2369.64</td>
<td>0.44</td>
<td>0.02</td>
</tr>
<tr>
<td>07-350</td>
<td>7</td>
<td>4399</td>
<td>2366.55</td>
<td>2370.31</td>
<td>-3.76</td>
<td>-0.16</td>
</tr>
<tr>
<td>14-350</td>
<td>14</td>
<td>4491</td>
<td>2365.41</td>
<td>2365.92</td>
<td>-0.51</td>
<td>-0.02</td>
</tr>
<tr>
<td>21-350</td>
<td>21</td>
<td>4566</td>
<td>2366.82</td>
<td>2359.58</td>
<td>7.24</td>
<td>0.31</td>
</tr>
<tr>
<td>28-350</td>
<td>28</td>
<td>4509</td>
<td>2366.23</td>
<td>2364.6</td>
<td>1.63</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se observa que existe hasta un 3.44% de subestimación de la densidad real del concreto, y también un -0.54% de sobrestimación.

6.6.3 Porcentajes residuales para ecuación velocidad - resistencia, huso 8, muestras cilíndricas 2”x4”

El modelo de regresión estadística exponencial, es el que presentó mayor confiabilidad en la obtención de ecuaciones Velocidad de pulso ultrasónico-Resistencia a la compresión, en muestras cilíndricas de 2”x4”, por lo cual, se hizo necesario realizar el estudio de sus porcentajes residuales y determinar el grado de precisión en el cálculo de la Resistencia a la
compresión de testigos cilíndricos, utilizando las ecuaciones que tengan mejor coeficiente de determinación, que en este caso son los dos siguientes:

Para el grupo G4'(140, 175, 210, 280), cuyo $R^2 = 0.9308$, se utilizó la ecuación exponencial:

$$r = 6.7604 \times 10^{-2} \times e^{1.9552 \times 10^{-3} \times v}$$

Donde: $r =$ Resistencia a la compresión del concreto (kg/m3)

$V =$ Velocidad de pulso ultrasonico (m/s)

Tabla elaborada 55 Porcentajes residuales para ecuación exponencial Resistencia-Velocidad, grupo G4'- Huco 8 (resist. Diseño 140 y 175 kg/cm2)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>f'_c real (kg/cm2)</th>
<th>f'_c fórm. (kg/cm2)</th>
<th>f'_c real- f'_c form. (kg/cm2)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>4057</td>
<td>171.87</td>
<td>188.32</td>
<td>-16.45</td>
<td>-9.57</td>
</tr>
<tr>
<td>28-140-02</td>
<td>4027</td>
<td>175.23</td>
<td>177.59</td>
<td>-2.36</td>
<td>-1.35</td>
</tr>
<tr>
<td>28-140-03</td>
<td>4047</td>
<td>176.58</td>
<td>184.68</td>
<td>-8.1</td>
<td>-4.59</td>
</tr>
<tr>
<td>28-140-04</td>
<td>3923</td>
<td>144.65</td>
<td>144.92</td>
<td>-0.27</td>
<td>-0.19</td>
</tr>
<tr>
<td>28-140-05</td>
<td>4027</td>
<td>166.91</td>
<td>177.59</td>
<td>-10.68</td>
<td>-6.4</td>
</tr>
<tr>
<td>28-140-06</td>
<td>4050</td>
<td>176.87</td>
<td>185.76</td>
<td>-8.89</td>
<td>-5.03</td>
</tr>
<tr>
<td>28-140-07</td>
<td>4027</td>
<td>170.12</td>
<td>177.59</td>
<td>-7.47</td>
<td>-4.39</td>
</tr>
<tr>
<td>28-140-08</td>
<td>3979</td>
<td>173.49</td>
<td>161.69</td>
<td>11.8</td>
<td>6.8</td>
</tr>
<tr>
<td>28-140-09</td>
<td>4100</td>
<td>193.52</td>
<td>204.84</td>
<td>-11.32</td>
<td>-5.85</td>
</tr>
<tr>
<td>28-140-10</td>
<td>4103</td>
<td>193.03</td>
<td>206.05</td>
<td>-13.02</td>
<td>-6.75</td>
</tr>
<tr>
<td>28-140-11</td>
<td>4020</td>
<td>173.31</td>
<td>175.18</td>
<td>-1.87</td>
<td>-1.08</td>
</tr>
<tr>
<td>28-140-12</td>
<td>4018</td>
<td>172.71</td>
<td>174.5</td>
<td>-1.79</td>
<td>-1.04</td>
</tr>
<tr>
<td>28-140-13</td>
<td>3997</td>
<td>173.2</td>
<td>167.48</td>
<td>5.72</td>
<td>3.3</td>
</tr>
<tr>
<td>28-140-14</td>
<td>3999</td>
<td>177.55</td>
<td>168.13</td>
<td>9.42</td>
<td>5.31</td>
</tr>
<tr>
<td>28-140-15</td>
<td>4027</td>
<td>174.46</td>
<td>177.59</td>
<td>-3.13</td>
<td>-1.79</td>
</tr>
<tr>
<td>28-175-01</td>
<td>4128</td>
<td>233.67</td>
<td>216.37</td>
<td>17.3</td>
<td>7.4</td>
</tr>
<tr>
<td>28-175-02</td>
<td>4130</td>
<td>235.12</td>
<td>217.22</td>
<td>17.9</td>
<td>7.61</td>
</tr>
<tr>
<td>28-175-03</td>
<td>4102</td>
<td>227.38</td>
<td>205.64</td>
<td>21.74</td>
<td>9.56</td>
</tr>
<tr>
<td>28-175-04</td>
<td>4113</td>
<td>223.13</td>
<td>210.11</td>
<td>13.02</td>
<td>5.84</td>
</tr>
<tr>
<td>28-175-05</td>
<td>4095</td>
<td>202.23</td>
<td>202.85</td>
<td>-0.62</td>
<td>-0.31</td>
</tr>
<tr>
<td>28-175-06</td>
<td>4089</td>
<td>205.3</td>
<td>200.48</td>
<td>4.82</td>
<td>2.35</td>
</tr>
<tr>
<td>28-175-07</td>
<td>4146</td>
<td>212.05</td>
<td>224.12</td>
<td>-12.07</td>
<td>-5.69</td>
</tr>
<tr>
<td>28-175-08</td>
<td>4163</td>
<td>230.29</td>
<td>231.69</td>
<td>-1.4</td>
<td>-0.61</td>
</tr>
<tr>
<td>28-175-09</td>
<td>4112</td>
<td>227.47</td>
<td>209.7</td>
<td>17.77</td>
<td>7.81</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280 y 350 \text{ kg/cm}^2$ con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>$f'c$ real (kg/cm²)</th>
<th>$f'c$ fórm. (kg/cm²)</th>
<th>$f'c$ real-$f'c$ fórm. (kg/cm²)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-10</td>
<td>4189</td>
<td>227.38</td>
<td>243.77</td>
<td>-16.39</td>
<td>-7.21</td>
</tr>
<tr>
<td>28-175-11</td>
<td>4203</td>
<td>224</td>
<td>250.54</td>
<td>-26.54</td>
<td>-11.85</td>
</tr>
<tr>
<td>28-175-12</td>
<td>4132</td>
<td>224</td>
<td>218.07</td>
<td>5.93</td>
<td>2.65</td>
</tr>
<tr>
<td>28-175-13</td>
<td>4119</td>
<td>227.38</td>
<td>212.59</td>
<td>14.79</td>
<td>6.5</td>
</tr>
<tr>
<td>28-175-14</td>
<td>4142</td>
<td>231.25</td>
<td>222.37</td>
<td>8.88</td>
<td>3.84</td>
</tr>
<tr>
<td>28-175-15</td>
<td>4187</td>
<td>227.87</td>
<td>242.82</td>
<td>-14.95</td>
<td>-6.56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 56 Porcentajes residuales para ecuación exponencial Resistencia Velocidad, grupo G4’ – Huso 8. (Resist. Diseño 210 y 280 kg/cm²)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>$f'c$ real (kg/cm²)</th>
<th>$f'c$ fórm. (kg/cm²)</th>
<th>$f'c$ real-$f'c$ fórm. (kg/cm²)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-210-01</td>
<td>4222</td>
<td>261.25</td>
<td>260.02</td>
<td>1.23</td>
<td>0.47</td>
</tr>
<tr>
<td>28-210-02</td>
<td>4231</td>
<td>260.28</td>
<td>264.64</td>
<td>-4.36</td>
<td>-1.68</td>
</tr>
<tr>
<td>28-210-03</td>
<td>4212</td>
<td>251.57</td>
<td>254.99</td>
<td>-3.42</td>
<td>-1.36</td>
</tr>
<tr>
<td>28-210-04</td>
<td>4251</td>
<td>255.42</td>
<td>275.19</td>
<td>-19.77</td>
<td>-7.74</td>
</tr>
<tr>
<td>28-210-05</td>
<td>4224</td>
<td>264.1</td>
<td>261.04</td>
<td>3.06</td>
<td>1.16</td>
</tr>
<tr>
<td>28-210-06</td>
<td>4268</td>
<td>272.86</td>
<td>284.49</td>
<td>-11.63</td>
<td>-4.26</td>
</tr>
<tr>
<td>28-210-07</td>
<td>4299</td>
<td>276.25</td>
<td>302.27</td>
<td>-26.02</td>
<td>-9.42</td>
</tr>
<tr>
<td>28-210-08</td>
<td>4312</td>
<td>275.28</td>
<td>310.05</td>
<td>-34.77</td>
<td>-12.63</td>
</tr>
<tr>
<td>28-210-09</td>
<td>4278</td>
<td>269.88</td>
<td>290.11</td>
<td>-20.23</td>
<td>-7.5</td>
</tr>
<tr>
<td>28-210-10</td>
<td>4259</td>
<td>270.36</td>
<td>279.53</td>
<td>-9.17</td>
<td>-3.39</td>
</tr>
<tr>
<td>28-210-11</td>
<td>4302</td>
<td>268.02</td>
<td>304.05</td>
<td>-36.03</td>
<td>-13.44</td>
</tr>
<tr>
<td>28-210-12</td>
<td>4245</td>
<td>264.04</td>
<td>271.98</td>
<td>-7.94</td>
<td>-3.01</td>
</tr>
<tr>
<td>28-210-13</td>
<td>4245</td>
<td>265.12</td>
<td>271.98</td>
<td>-6.86</td>
<td>-2.59</td>
</tr>
<tr>
<td>28-210-14</td>
<td>4207</td>
<td>255.4</td>
<td>252.51</td>
<td>2.89</td>
<td>1.13</td>
</tr>
<tr>
<td>28-210-15</td>
<td>4219</td>
<td>256.89</td>
<td>258.5</td>
<td>-1.61</td>
<td>-0.63</td>
</tr>
<tr>
<td>28-280-01</td>
<td>4387</td>
<td>353.17</td>
<td>359.02</td>
<td>-5.85</td>
<td>-1.66</td>
</tr>
<tr>
<td>28-280-02</td>
<td>4365</td>
<td>337.20</td>
<td>343.9</td>
<td>-6.7</td>
<td>-1.99</td>
</tr>
<tr>
<td>28-280-03</td>
<td>4372</td>
<td>335.75</td>
<td>348.64</td>
<td>-12.89</td>
<td>-3.84</td>
</tr>
<tr>
<td>28-280-04</td>
<td>4302</td>
<td>328.50</td>
<td>304.05</td>
<td>24.45</td>
<td>7.44</td>
</tr>
<tr>
<td>28-280-05</td>
<td>4298</td>
<td>320.48</td>
<td>301.68</td>
<td>18.8</td>
<td>5.87</td>
</tr>
<tr>
<td>28-280-06</td>
<td>4312</td>
<td>351.33</td>
<td>310.05</td>
<td>41.28</td>
<td>11.75</td>
</tr>
<tr>
<td>28-280-07</td>
<td>4299</td>
<td>314.47</td>
<td>302.27</td>
<td>12.2</td>
<td>3.88</td>
</tr>
<tr>
<td>28-280-08</td>
<td>4287</td>
<td>311.08</td>
<td>295.26</td>
<td>15.82</td>
<td>5.09</td>
</tr>
<tr>
<td>28-280-09</td>
<td>4275</td>
<td>304.79</td>
<td>288.41</td>
<td>16.38</td>
<td>5.37</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

En la tabla anterior, se observa que existe hasta un 11.75% de subestimación de la densidad real del concreto, y también un -13.44% de sobrestimación.

Para el grupo G6' (140,175,210,280,350), cuyo $R^2 = 0.9307$, se utilizó la ecuación exponencial:

$$r = 4.4379 \times 10^{-2} \times e^{2.0587 \times 10^{-3} \times v}$$

Tabla elaborada 57 Porcentajes residuales para ecuación exponencial Resistencia – Velocidad, grupo G6' - Huso 8. (Resist. Diseño 140 y 175 kg/cm2)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>f'_c real (kg/cm2)</th>
<th>f'_c fórml. (kg/cm2)</th>
<th>f'_c real- f'_c fórml. (kg/cm2)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>4057</td>
<td>171.87</td>
<td>188.13</td>
<td>-16.26</td>
<td>-9.46</td>
</tr>
<tr>
<td>28-140-02</td>
<td>4027</td>
<td>175.23</td>
<td>176.87</td>
<td>-1.64</td>
<td>-0.94</td>
</tr>
<tr>
<td>28-140-03</td>
<td>4047</td>
<td>176.58</td>
<td>184.3</td>
<td>-7.72</td>
<td>-4.37</td>
</tr>
<tr>
<td>28-140-04</td>
<td>3923</td>
<td>144.65</td>
<td>142.78</td>
<td>1.87</td>
<td>1.29</td>
</tr>
<tr>
<td>28-140-05</td>
<td>4027</td>
<td>166.91</td>
<td>176.87</td>
<td>-9.96</td>
<td>-5.97</td>
</tr>
<tr>
<td>28-140-06</td>
<td>4050</td>
<td>176.87</td>
<td>185.44</td>
<td>-8.57</td>
<td>-4.85</td>
</tr>
<tr>
<td>28-140-07</td>
<td>4027</td>
<td>170.12</td>
<td>176.87</td>
<td>-6.75</td>
<td>-3.97</td>
</tr>
<tr>
<td>28-140-08</td>
<td>3979</td>
<td>173.49</td>
<td>160.22</td>
<td>13.27</td>
<td>7.65</td>
</tr>
<tr>
<td>28-140-09</td>
<td>4100</td>
<td>193.52</td>
<td>205.55</td>
<td>-12.03</td>
<td>-6.22</td>
</tr>
<tr>
<td>28-140-10</td>
<td>4103</td>
<td>193.03</td>
<td>206.82</td>
<td>-13.79</td>
<td>-7.14</td>
</tr>
<tr>
<td>28-140-11</td>
<td>4020</td>
<td>173.31</td>
<td>174.34</td>
<td>-1.03</td>
<td>-0.59</td>
</tr>
<tr>
<td>28-140-12</td>
<td>4018</td>
<td>172.71</td>
<td>173.62</td>
<td>-0.91</td>
<td>-0.53</td>
</tr>
<tr>
<td>28-140-13</td>
<td>3997</td>
<td>173.2</td>
<td>166.27</td>
<td>6.93</td>
<td>4</td>
</tr>
<tr>
<td>28-140-14</td>
<td>3999</td>
<td>177.55</td>
<td>166.96</td>
<td>10.59</td>
<td>5.96</td>
</tr>
<tr>
<td>28-140-15</td>
<td>4027</td>
<td>174.46</td>
<td>176.87</td>
<td>-2.41</td>
<td>-1.38</td>
</tr>
<tr>
<td>28-175-01</td>
<td>4128</td>
<td>233.67</td>
<td>217.75</td>
<td>15.92</td>
<td>6.81</td>
</tr>
<tr>
<td>28-175-02</td>
<td>4130</td>
<td>235.12</td>
<td>218.64</td>
<td>16.48</td>
<td>7.01</td>
</tr>
<tr>
<td>28-175-03</td>
<td>4102</td>
<td>227.38</td>
<td>206.4</td>
<td>20.98</td>
<td>9.23</td>
</tr>
<tr>
<td>28-175-04</td>
<td>4113</td>
<td>223.13</td>
<td>211.12</td>
<td>12.01</td>
<td>5.38</td>
</tr>
<tr>
<td>28-175-05</td>
<td>4095</td>
<td>202.23</td>
<td>203.44</td>
<td>-1.21</td>
<td>-0.6</td>
</tr>
<tr>
<td>28-175-06</td>
<td>4089</td>
<td>205.3</td>
<td>200.95</td>
<td>4.35</td>
<td>2.12</td>
</tr>
</tbody>
</table>
"Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac"

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>f'_c real (kg/cm²)</th>
<th>f'_c form. (kg/cm²)</th>
<th>f'_c real-f'_c form. (kg/cm²)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-07</td>
<td>4146</td>
<td>212.05</td>
<td>225.97</td>
<td>-13.92</td>
<td>-6.56</td>
</tr>
<tr>
<td>28-175-08</td>
<td>4163</td>
<td>230.29</td>
<td>234.01</td>
<td>-3.72</td>
<td>-1.62</td>
</tr>
<tr>
<td>28-175-09</td>
<td>4112</td>
<td>227.47</td>
<td>210.69</td>
<td>16.78</td>
<td>7.38</td>
</tr>
<tr>
<td>28-175-10</td>
<td>4189</td>
<td>227.38</td>
<td>246.88</td>
<td>-19.5</td>
<td>-8.58</td>
</tr>
<tr>
<td>28-175-11</td>
<td>4203</td>
<td>224</td>
<td>254.1</td>
<td>-30.1</td>
<td>-13.44</td>
</tr>
<tr>
<td>28-175-12</td>
<td>4132</td>
<td>224</td>
<td>219.55</td>
<td>4.45</td>
<td>1.99</td>
</tr>
<tr>
<td>28-175-13</td>
<td>4119</td>
<td>227.38</td>
<td>213.75</td>
<td>13.63</td>
<td>5.99</td>
</tr>
<tr>
<td>28-175-14</td>
<td>4142</td>
<td>231.25</td>
<td>224.11</td>
<td>7.14</td>
<td>3.09</td>
</tr>
<tr>
<td>28-175-15</td>
<td>4187</td>
<td>227.87</td>
<td>245.87</td>
<td>-18</td>
<td>-7.9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 58 Porcentajes Residuales para Ecuación exponencial Resistencia – Velocidad, grupo G6’ – Huso 8. (Resist. Diseño 210 y 280 kg/cm²)
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasonico (m/s)</th>
<th>f’c real (kg/cm²)</th>
<th>f’c fórm. (kg/cm²)</th>
<th>f’c real-f’c fórm. (kg/cm²)</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-01</td>
<td>4417</td>
<td>370.60</td>
<td>394.76</td>
<td>-24.16</td>
<td>-6.52</td>
</tr>
<tr>
<td>28-350-02</td>
<td>4356</td>
<td>348.54</td>
<td>348.18</td>
<td>0.36</td>
<td>0.1</td>
</tr>
<tr>
<td>28-350-03</td>
<td>4352</td>
<td>352.69</td>
<td>345.32</td>
<td>7.37</td>
<td>2.09</td>
</tr>
<tr>
<td>28-350-04</td>
<td>4359</td>
<td>367.68</td>
<td>350.33</td>
<td>17.35</td>
<td>4.72</td>
</tr>
<tr>
<td>28-350-05</td>
<td>4389</td>
<td>370.60</td>
<td>372.65</td>
<td>-2.05</td>
<td>-0.55</td>
</tr>
<tr>
<td>28-350-06</td>
<td>4377</td>
<td>373.00</td>
<td>363.56</td>
<td>9.44</td>
<td>2.53</td>
</tr>
<tr>
<td>28-350-07</td>
<td>4332</td>
<td>373.49</td>
<td>331.39</td>
<td>42.1</td>
<td>11.27</td>
</tr>
<tr>
<td>28-350-08</td>
<td>4389</td>
<td>378.33</td>
<td>372.65</td>
<td>5.68</td>
<td>1.5</td>
</tr>
<tr>
<td>28-350-09</td>
<td>4297</td>
<td>380.26</td>
<td>308.35</td>
<td>71.91</td>
<td>18.91</td>
</tr>
<tr>
<td>28-350-10</td>
<td>4282</td>
<td>375.90</td>
<td>298.98</td>
<td>76.92</td>
<td>20.46</td>
</tr>
<tr>
<td>28-350-11</td>
<td>4385</td>
<td>366.27</td>
<td>369.6</td>
<td>-3.33</td>
<td>-0.91</td>
</tr>
<tr>
<td>28-350-12</td>
<td>4335</td>
<td>383.16</td>
<td>333.44</td>
<td>49.72</td>
<td>12.98</td>
</tr>
<tr>
<td>28-350-13</td>
<td>4377</td>
<td>384.62</td>
<td>363.56</td>
<td>21.06</td>
<td>5.48</td>
</tr>
<tr>
<td>28-350-14</td>
<td>4423</td>
<td>383.16</td>
<td>399.67</td>
<td>-16.51</td>
<td>-4.31</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 59 Porcentajes residuales para ecuación exponencial Resistencia – Velocidad, grupo G6’ – Huso 8. (Resist. Diseño 350 kg/cm²)

En la tabla anterior, se observa que existe hasta un 20.46% de subestimación de la resistencia a la compresión real del concreto, y también un -16.24% de sobrestimación.

6.6.4 Porcentajes residuales para ecuación Densidad - Velocidad, huso 8, muestras cilíndricas 2”x4”

Para la obtención de esta ecuación, se trabajó con los promedios únicos de todos los datos, por lo tanto, se tiene un solo grupo, que lo llamaremos D1, cuyo coeficiente de determinación es R²=0.9907 y cuya ecuación cúbica, es:

Fuente: Elaboración propia
\[d = -8.35009 \times 10^{-8} \times v^3 + 1.11269 \times 10^{-3} \times v^2 - 4.93129 \times v + 9.58215 \times 10^3 \]

Donde: \(d \) = Densidad del concreto (kg/m³)

\(v \) = Velocidad de pulso ultrasónico (m/s)

Tabla elaborada 60 Porcentajes residuales de la Ecuación cúbica Densidad- Velocidad, huso 8. (promedios únicos)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad ultrasónica promedio (m/s)</th>
<th>Densidad promedio real (kg/m³)</th>
<th>Densidad calculado con fórmula (kg/m³)</th>
<th>Diferencia Densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140</td>
<td>4027</td>
<td>2313.47</td>
<td>2313.53</td>
<td>-0.06</td>
<td>0</td>
</tr>
<tr>
<td>28-175</td>
<td>4137</td>
<td>2314.58</td>
<td>2314.67</td>
<td>-0.09</td>
<td>0</td>
</tr>
<tr>
<td>28-210</td>
<td>4252</td>
<td>2315.26</td>
<td>2315.25</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>28-280</td>
<td>4312</td>
<td>2313.88</td>
<td>2315.04</td>
<td>-0.16</td>
<td>-0.01</td>
</tr>
<tr>
<td>28-350</td>
<td>4366</td>
<td>2314.40</td>
<td>2314.44</td>
<td>-0.04</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El porcentaje residual es cero, lo que indica que existe una fuerte aproximación en el cálculo de las densidades mediante en ensayo de pulso ultrasónico.

Para una mejor comprobación de porcentajes residuales y antes de afirmar que se tiene un porcentaje residual de cero, se hizo importante realizar un contraste de resultados con los datos de las densidades para cada briqueta estudiada.

Tabla elaborada 61 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D1’ – Huso 8. (Resist. Diseño 140 y 175 kg/cm²)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad con fórmula</th>
<th>diferencia densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>4057</td>
<td>2292.45</td>
<td>2313.86</td>
<td>-21.41</td>
<td>-0.93</td>
</tr>
<tr>
<td>28-140-02</td>
<td>4027</td>
<td>2339.62</td>
<td>2313.53</td>
<td>26.09</td>
<td>1.12</td>
</tr>
<tr>
<td>28-140-03</td>
<td>4047</td>
<td>2303.32</td>
<td>2313.75</td>
<td>-10.43</td>
<td>-0.45</td>
</tr>
<tr>
<td>28-140-04</td>
<td>3923</td>
<td>2274.88</td>
<td>2312.51</td>
<td>-37.63</td>
<td>-1.65</td>
</tr>
<tr>
<td>28-140-05</td>
<td>4027</td>
<td>2336.49</td>
<td>2313.53</td>
<td>22.96</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad con fórmula</th>
<th>diferencia densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-06</td>
<td>4050</td>
<td>2330.19</td>
<td>2313.78</td>
<td>16.41</td>
<td>0.7</td>
</tr>
<tr>
<td>28-140-07</td>
<td>4027</td>
<td>2273.58</td>
<td>2313.53</td>
<td>-39.95</td>
<td>-1.76</td>
</tr>
<tr>
<td>28-140-08</td>
<td>3979</td>
<td>2298.58</td>
<td>2313.01</td>
<td>-14.43</td>
<td>-0.63</td>
</tr>
<tr>
<td>28-140-09</td>
<td>4100</td>
<td>2336.49</td>
<td>2314.32</td>
<td>22.17</td>
<td>0.95</td>
</tr>
<tr>
<td>28-140-10</td>
<td>4103</td>
<td>2336.49</td>
<td>2314.35</td>
<td>22.14</td>
<td>0.95</td>
</tr>
<tr>
<td>28-140-11</td>
<td>4020</td>
<td>2297.17</td>
<td>2313.45</td>
<td>-16.28</td>
<td>-0.71</td>
</tr>
<tr>
<td>28-140-12</td>
<td>4018</td>
<td>2322.27</td>
<td>2313.43</td>
<td>8.84</td>
<td>0.38</td>
</tr>
<tr>
<td>28-140-13</td>
<td>3997</td>
<td>2338.10</td>
<td>2313.2</td>
<td>24.90</td>
<td>1.06</td>
</tr>
<tr>
<td>28-140-14</td>
<td>3999</td>
<td>2314.29</td>
<td>2313.22</td>
<td>1.07</td>
<td>0.05</td>
</tr>
<tr>
<td>28-140-15</td>
<td>4027</td>
<td>2308.06</td>
<td>2313.53</td>
<td>-5.47</td>
<td>-0.24</td>
</tr>
<tr>
<td>28-175-01</td>
<td>4128</td>
<td>2331.75</td>
<td>2314.59</td>
<td>17.16</td>
<td>0.74</td>
</tr>
<tr>
<td>28-175-02</td>
<td>4130</td>
<td>2388.63</td>
<td>2314.61</td>
<td>74.02</td>
<td>3.10</td>
</tr>
<tr>
<td>28-175-03</td>
<td>4102</td>
<td>2319.05</td>
<td>2314.34</td>
<td>4.71</td>
<td>0.20</td>
</tr>
<tr>
<td>28-175-04</td>
<td>4113</td>
<td>2303.32</td>
<td>2314.45</td>
<td>-11.13</td>
<td>-0.48</td>
</tr>
<tr>
<td>28-175-05</td>
<td>4095</td>
<td>2312.80</td>
<td>2314.27</td>
<td>-1.47</td>
<td>-0.06</td>
</tr>
<tr>
<td>28-175-06</td>
<td>4089</td>
<td>2306.60</td>
<td>2314.2</td>
<td>-7.60</td>
<td>-0.33</td>
</tr>
<tr>
<td>28-175-07</td>
<td>4146</td>
<td>2270.14</td>
<td>2314.75</td>
<td>-44.61</td>
<td>-1.97</td>
</tr>
<tr>
<td>28-175-08</td>
<td>4163</td>
<td>2309.52</td>
<td>2314.89</td>
<td>-5.37</td>
<td>-0.23</td>
</tr>
<tr>
<td>28-175-09</td>
<td>4112</td>
<td>2308.06</td>
<td>2314.44</td>
<td>-6.38</td>
<td>-0.28</td>
</tr>
<tr>
<td>28-175-10</td>
<td>4189</td>
<td>2336.49</td>
<td>2315.06</td>
<td>21.43</td>
<td>0.92</td>
</tr>
<tr>
<td>28-175-11</td>
<td>4203</td>
<td>2251.18</td>
<td>2315.13</td>
<td>-63.95</td>
<td>-2.84</td>
</tr>
<tr>
<td>28-175-12</td>
<td>4132</td>
<td>2341.23</td>
<td>2314.63</td>
<td>26.60</td>
<td>1.14</td>
</tr>
<tr>
<td>28-175-13</td>
<td>4119</td>
<td>2319.05</td>
<td>2314.51</td>
<td>4.54</td>
<td>0.2</td>
</tr>
<tr>
<td>28-175-14</td>
<td>4142</td>
<td>2255.92</td>
<td>2314.72</td>
<td>-58.80</td>
<td>-2.61</td>
</tr>
<tr>
<td>28-175-15</td>
<td>4187</td>
<td>2364.93</td>
<td>2315.05</td>
<td>49.88</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 62 Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo DI’ – Huso 8. (Resist. Diseño 210 y 280 kg/cm²)
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad con fórmula</th>
<th>diferencia densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-210-05</td>
<td>4224</td>
<td>2350.71</td>
<td>2315.21</td>
<td>35.50</td>
<td>1.51</td>
</tr>
<tr>
<td>28-210-06</td>
<td>4268</td>
<td>2341.23</td>
<td>2315.23</td>
<td>26.00</td>
<td>1.11</td>
</tr>
<tr>
<td>28-210-07</td>
<td>4299</td>
<td>2319.05</td>
<td>2315.12</td>
<td>3.93</td>
<td>0.17</td>
</tr>
<tr>
<td>28-210-08</td>
<td>4312</td>
<td>2331.75</td>
<td>2315.04</td>
<td>16.71</td>
<td>0.72</td>
</tr>
<tr>
<td>28-210-09</td>
<td>4278</td>
<td>2306.60</td>
<td>2315.21</td>
<td>-8.61</td>
<td>-0.37</td>
</tr>
<tr>
<td>28-210-10</td>
<td>4259</td>
<td>2301.89</td>
<td>2315.24</td>
<td>-13.35</td>
<td>-0.58</td>
</tr>
<tr>
<td>28-210-11</td>
<td>4302</td>
<td>2323.81</td>
<td>2315.11</td>
<td>8.70</td>
<td>0.37</td>
</tr>
<tr>
<td>28-210-12</td>
<td>4245</td>
<td>2264.15</td>
<td>2315.24</td>
<td>-51.09</td>
<td>-2.26</td>
</tr>
<tr>
<td>28-210-13</td>
<td>4245</td>
<td>2298.58</td>
<td>2315.24</td>
<td>-16.66</td>
<td>-0.72</td>
</tr>
<tr>
<td>28-210-14</td>
<td>4207</td>
<td>2273.58</td>
<td>2315.15</td>
<td>-41.57</td>
<td>-1.83</td>
</tr>
<tr>
<td>28-210-15</td>
<td>4219</td>
<td>2304.76</td>
<td>2315.19</td>
<td>-10.43</td>
<td>-0.45</td>
</tr>
<tr>
<td>28-280-01</td>
<td>4387</td>
<td>2379.15</td>
<td>2314.09</td>
<td>65.06</td>
<td>2.73</td>
</tr>
<tr>
<td>28-280-02</td>
<td>4365</td>
<td>2308.06</td>
<td>2314.46</td>
<td>-6.40</td>
<td>-0.28</td>
</tr>
<tr>
<td>28-280-03</td>
<td>4372</td>
<td>2342.86</td>
<td>2314.35</td>
<td>28.51</td>
<td>1.22</td>
</tr>
<tr>
<td>28-280-04</td>
<td>4302</td>
<td>2295.24</td>
<td>2315.11</td>
<td>-19.87</td>
<td>-0.87</td>
</tr>
<tr>
<td>28-280-05</td>
<td>4298</td>
<td>2279.62</td>
<td>2315.13</td>
<td>-35.51</td>
<td>-1.56</td>
</tr>
<tr>
<td>28-280-06</td>
<td>4312</td>
<td>2316.04</td>
<td>2315.04</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>28-280-07</td>
<td>4299</td>
<td>2270.14</td>
<td>2315.12</td>
<td>-44.98</td>
<td>-1.98</td>
</tr>
<tr>
<td>28-280-08</td>
<td>4287</td>
<td>2388.63</td>
<td>2315.18</td>
<td>73.45</td>
<td>3.07</td>
</tr>
<tr>
<td>28-280-09</td>
<td>4275</td>
<td>2312.80</td>
<td>2315.22</td>
<td>-2.42</td>
<td>-0.1</td>
</tr>
<tr>
<td>28-280-10</td>
<td>4292</td>
<td>2289.10</td>
<td>2315.16</td>
<td>-26.06</td>
<td>-1.14</td>
</tr>
<tr>
<td>28-280-11</td>
<td>4272</td>
<td>2360.19</td>
<td>2315.23</td>
<td>44.96</td>
<td>1.9</td>
</tr>
<tr>
<td>28-280-12</td>
<td>4293</td>
<td>2308.06</td>
<td>2315.15</td>
<td>-7.09</td>
<td>-0.31</td>
</tr>
<tr>
<td>28-280-13</td>
<td>4301</td>
<td>2284.36</td>
<td>2315.11</td>
<td>-30.75</td>
<td>-1.35</td>
</tr>
<tr>
<td>28-280-14</td>
<td>4319</td>
<td>2276.19</td>
<td>2314.99</td>
<td>-38.80</td>
<td>-1.7</td>
</tr>
<tr>
<td>28-280-15</td>
<td>4309</td>
<td>2312.80</td>
<td>2315.06</td>
<td>-2.26</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 63: Porcentajes residuales para ecuación cúbica Densidad – Velocidad, grupo D1’ – Huso 8. (Resist. Diseño 350 kg/cm²)

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrasónico (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad con fórmula</th>
<th>diferencia densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-01</td>
<td>4417</td>
<td>2284.36</td>
<td>2313.44</td>
<td>-29.08</td>
<td>-1.27</td>
</tr>
<tr>
<td>28-350-02</td>
<td>4356</td>
<td>2301.89</td>
<td>2314.59</td>
<td>-12.70</td>
<td>-0.55</td>
</tr>
<tr>
<td>28-350-03</td>
<td>4352</td>
<td>2300.00</td>
<td>2314.64</td>
<td>-14.64</td>
<td>-0.64</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

<table>
<thead>
<tr>
<th>Briqueta</th>
<th>Velocidad de pulso ultrásónico (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad con fórmula</th>
<th>diferencia densidad real y densidad estimada</th>
<th>% residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-04</td>
<td>4359</td>
<td>2369.67</td>
<td>2314.55</td>
<td>55.12</td>
<td>2.33</td>
</tr>
<tr>
<td>28-350-05</td>
<td>4389</td>
<td>2270.14</td>
<td>2314.05</td>
<td>-43.91</td>
<td>-1.93</td>
</tr>
<tr>
<td>28-350-06</td>
<td>4377</td>
<td>2279.62</td>
<td>2314.27</td>
<td>-34.65</td>
<td>-1.52</td>
</tr>
<tr>
<td>28-350-07</td>
<td>4332</td>
<td>2284.36</td>
<td>2314.87</td>
<td>-30.51</td>
<td>-1.34</td>
</tr>
<tr>
<td>28-350-08</td>
<td>4389</td>
<td>2366.67</td>
<td>2314.05</td>
<td>52.62</td>
<td>2.22</td>
</tr>
<tr>
<td>28-350-09</td>
<td>4297</td>
<td>2293.84</td>
<td>2315.13</td>
<td>-21.29</td>
<td>-0.93</td>
</tr>
<tr>
<td>28-350-10</td>
<td>4282</td>
<td>2298.58</td>
<td>2315.2</td>
<td>-16.62</td>
<td>-0.72</td>
</tr>
<tr>
<td>28-350-11</td>
<td>4385</td>
<td>2369.67</td>
<td>2314.12</td>
<td>55.55</td>
<td>2.34</td>
</tr>
<tr>
<td>28-350-12</td>
<td>4335</td>
<td>2308.06</td>
<td>2314.84</td>
<td>-6.78</td>
<td>-0.29</td>
</tr>
<tr>
<td>28-350-13</td>
<td>4377</td>
<td>2347.62</td>
<td>2314.27</td>
<td>33.35</td>
<td>1.42</td>
</tr>
<tr>
<td>28-350-14</td>
<td>4423</td>
<td>2270.14</td>
<td>2313.3</td>
<td>-43.16</td>
<td>-1.9</td>
</tr>
<tr>
<td>28-350-15</td>
<td>4415</td>
<td>2371.43</td>
<td>2313.49</td>
<td>57.94</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se observa que existe hasta un 3.10% de subestimación de la resistencia a la compresión real del concreto, y también un -2.84% de sobrestimación.

A continuación, se muestra un resumen de los porcentajes residuales

Tabla elaborada 64 Resumen de porcentajes residuales para ecuación Resistencia- Velocidad - Huso 67

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Diferencia resist. Real y estimada (kg/cm²)</th>
<th>Porcentaje residual (%)</th>
<th>Diferencia resist. Real y estimada (kg/cm²)</th>
<th>Porcentaje residual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4(7-14-28)</td>
<td>-15.09</td>
<td>-7.87</td>
<td>26.39</td>
<td>7.56</td>
</tr>
<tr>
<td>G5(14-21-28)</td>
<td>-33.20</td>
<td>-12.29</td>
<td>21.25</td>
<td>4.86</td>
</tr>
<tr>
<td>G7(7-14-21-28)</td>
<td>-33.62</td>
<td>-8.27</td>
<td>35.78</td>
<td>22.70</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla elaborada 65 Resumen de porcentajes residuales para ecuación Densidad – Velocidad, Huso 67

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Sobrevalación</th>
<th>Subvaloración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diferencia res.</td>
<td>Porcentaje residual (%)</td>
</tr>
<tr>
<td>Real y estimada (kg/m³)</td>
<td>231.30</td>
<td>9.82</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 66 Resumen de porcentajes residuales para ecuación Resistencia-Velocidad, huso 8

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Sobrevalación</th>
<th>Subvaloración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diferencia resist.</td>
<td>Porcentaje residual (%)</td>
</tr>
<tr>
<td>resist. Real y estimada (kg/cm²)</td>
<td>41.28</td>
<td>11.75</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla elaborada 67 Resumen de porcentajes residuales para ecuación Densidad – Velocidad, huso 8

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Sobrevalación</th>
<th>Subvaloración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diferencia resist.</td>
<td>Porcentaje residual (%)</td>
</tr>
<tr>
<td>resist. Real y estimada (kg/m³)</td>
<td>74.02</td>
<td>3.10</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
6.7 Análisis estadístico de los dos Husos (huso 67 y huso 8) en la determinación de la resistencia y densidad

Es importante conocer cuál es la relación ultrasónica de la resistencia y la densidad del concreto, si desconociéramos el TMN del agregado, por consiguiente, se hizo un análisis con los datos a los 28 días de edad del concreto.

Tabla elaborada 68 Datos de velocidad, densidad y resistencia promedio para husos 67 y 8

<table>
<thead>
<tr>
<th>Clase</th>
<th>f’c de diseño</th>
<th>Edad</th>
<th>Velocidad ultrasonica (m/s)</th>
<th>Densidad (kg/m3)</th>
<th>Resistencia a la compresión (kg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140</td>
<td>28</td>
<td>4244</td>
<td>2354.04</td>
<td>187.30</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>28</td>
<td>4309</td>
<td>2369.22</td>
<td>226.11</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>28</td>
<td>4387</td>
<td>2370.67</td>
<td>288.27</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>28</td>
<td>4421</td>
<td>2370.08</td>
<td>348.99</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>28</td>
<td>4509</td>
<td>2366.23</td>
<td>436.83</td>
</tr>
<tr>
<td>huso 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>28</td>
<td>4027</td>
<td>2313.47</td>
<td>174.23</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>28</td>
<td>4137</td>
<td>2314.58</td>
<td>223.9</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>28</td>
<td>4252</td>
<td>2315.26</td>
<td>264.45</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>28</td>
<td>4312</td>
<td>2314.88</td>
<td>325.17</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>28</td>
<td>4366</td>
<td>2314.40</td>
<td>372.67</td>
</tr>
<tr>
<td>huso 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

A estos datos se le hizo el análisis de coeficientes de determinación correspondiente, resultando:

Tabla elaborada 69 Coeficientes de determinación para ecuación Resistencia – Velocidad para distintos modelos de regresión, huso 67 y huso 8.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Coeficientes de correlación R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lineal</td>
</tr>
<tr>
<td>Huso 67 y Huso 8</td>
<td>0.7285</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac”

Gráfica 19 Líneas de tendencia para ecuación Resistencia- Velocidad (huso 67 y huso 8)

Gráfica 20 Porcentajes residuales de ecuación cúbica Resistencia-Velocidad, huso 67 y huso 8

<table>
<thead>
<tr>
<th>Grupo</th>
<th>f’c de diseño</th>
<th>Edad</th>
<th>Velocidad ultrasónica (m/s)</th>
<th>Resistencia a la compresión (kg/cm²)</th>
<th>Resistencia estimada (kg/cm²)</th>
<th>diferencia</th>
<th>Porcentaje residual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140</td>
<td>28</td>
<td>4244</td>
<td>187.30</td>
<td>239.97</td>
<td>-52.67</td>
<td>-28.12</td>
</tr>
<tr>
<td>huso 67</td>
<td>175</td>
<td>28</td>
<td>4309</td>
<td>226.11</td>
<td>274.02</td>
<td>-47.91</td>
<td>-21.19</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>28</td>
<td>4387</td>
<td>288.27</td>
<td>326.2</td>
<td>-37.93</td>
<td>-13.16</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>28</td>
<td>4421</td>
<td>348.99</td>
<td>353.12</td>
<td>-4.13</td>
<td>-1.18</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>28</td>
<td>4509</td>
<td>436.83</td>
<td>435.52</td>
<td>1.31</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>28</td>
<td>4027</td>
<td>174.23</td>
<td>178.5</td>
<td>-4.27</td>
<td>-2.45</td>
</tr>
<tr>
<td>huso 8</td>
<td>175</td>
<td>28</td>
<td>4137</td>
<td>223.9</td>
<td>200.53</td>
<td>23.37</td>
<td>10.44</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>28</td>
<td>4252</td>
<td>264.45</td>
<td>243.72</td>
<td>20.73</td>
<td>7.84</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>28</td>
<td>4312</td>
<td>325.17</td>
<td>275.79</td>
<td>49.38</td>
<td>15.19</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>28</td>
<td>4366</td>
<td>372.67</td>
<td>310.87</td>
<td>61.80</td>
<td>16.58</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
En la tabla anterior, se observa que existe hasta un 28.12% de sobreestimación de la resistencia a la compresión real del concreto, y también un 16.58% de subestimación.

Tabla elaborada 70 Coeficientes de correlación para diferentes modelos de regresión de ecuación Densidad – Velocidad, huso 67 y huso 8

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Coeficientes de correlación R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lineal</td>
</tr>
<tr>
<td>Huso 67 y</td>
<td>0.3954</td>
</tr>
<tr>
<td>Huso 8</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 21 Curvas de Tendencia para ecuación Densidad-Velocidad, huso 67 y huso 8.

Tabla elaborada 71 Porcentajes Residuales para ecuación Densidad – Velocidad, grupo Huso 67 y Huso 8.

<table>
<thead>
<tr>
<th>Clase</th>
<th>f’c de diseño</th>
<th>Edad</th>
<th>Velocidad ultrasoníca (m/s)</th>
<th>Densidad (kg/m³)</th>
<th>Densidad estimada</th>
<th>Porcentaje residual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>huso 67</td>
<td>140</td>
<td>28</td>
<td>4244</td>
<td>2354.04</td>
<td>2331.55</td>
<td>22.49</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>28</td>
<td>4309</td>
<td>2369.22</td>
<td>2341.28</td>
<td>27.94</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>28</td>
<td>4387</td>
<td>2370.67</td>
<td>2353.53</td>
<td>17.14</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyat”

<table>
<thead>
<tr>
<th>Clase</th>
<th>$f'c$ de diseño</th>
<th>Edad</th>
<th>Velocidad ultrasoníca (m/s)</th>
<th>Densidad (kg/m3)</th>
<th>Densidad estimada</th>
<th>Diferencia $Densidad$ real y $Densidad$ estimada</th>
<th>Porcentaje Residual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>28</td>
<td>4421</td>
<td>2370.08</td>
<td>2358.71</td>
<td>11.37</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>28</td>
<td>4509</td>
<td>2366.23</td>
<td>2370.51</td>
<td>-4.28</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>28</td>
<td>4027</td>
<td>2313.47</td>
<td>2314.13</td>
<td>-0.66</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>28</td>
<td>4137</td>
<td>2314.58</td>
<td>2318.98</td>
<td>-4.4</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>28</td>
<td>4252</td>
<td>2315.26</td>
<td>2332.69</td>
<td>-17.43</td>
<td>-0.75</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>28</td>
<td>4312</td>
<td>2314.88</td>
<td>2341.74</td>
<td>-26.86</td>
<td>-1.16</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>28</td>
<td>4366</td>
<td>2314.40</td>
<td>2350.25</td>
<td>-35.85</td>
<td>-1.55</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la tabla anterior, se observa que existe hasta un -1.55% de sobreestimación de la densidad real del concreto, y también un 1.18% de subestimación de densidad real del concreto.
7. CAPÍTULO VII

ANALÍSIS DE COSTOS UNITARIOS

El análisis de los costos unitarios para la elaboración del concreto, requiere del conocimiento de costo de mano de obra, del costo de los materiales y del costo de los equipos y herramientas.

El costo semanal y el costo hora-hombre de los trabajadores que intervienen en la elaboración del concreto, fueron extraídos del cuadro Costo Hora Hombre del Cusco, vigente del 01 de junio del 2018 al 31 de mayo del 2019.

Los rendimientos y cuadrillas de cada partida, se obtuvieron del Libro Costos y Presupuestos en Edificaciones de la Cámara Peruana de la Construcción.

La cantidad de materiales que se utiliza en cada partida, como son: el cemento, los agregados y el agua, se obtuvieron del diseño de mezclas final corregido del huso 67, cuyo tamaño máximo de la piedra es 1”.

Tabla elaborada 72 Costo Hora Hombre del Cusco (Vigente del 01 de Junio del 2018 al 31 de mayo del 2019)

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Total por día (8 horas)</th>
<th>Costo hora hombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operario</td>
<td>166.50</td>
<td>20.81</td>
</tr>
<tr>
<td>Oficial</td>
<td>133.17</td>
<td>16.65</td>
</tr>
<tr>
<td>Peón</td>
<td>119.97</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Tabla elaborada 73 Costos reales de los materiales para elaboración de concreto

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Unidad</th>
<th>Precio con IGV</th>
<th>Precio sin IGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento Yura portland tipo IP</td>
<td>bls</td>
<td>24.00</td>
<td>20.34</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>m3</td>
<td>130.00</td>
<td>110.17</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>m3</td>
<td>130.00</td>
<td>110.17</td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>2.00</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2$ con agregados de la cantera de cunyae

Tabla elaborada 74 Análisis de Costos Unitarios de la Partida Zapatas de $f'_c=140 \text{ kg/cm}^2$

<table>
<thead>
<tr>
<th>Partida: Zapatas de $f'_c=140 \text{ kg/cm}^2$</th>
<th>Descripción del insumo</th>
<th>Unidad</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>25</th>
<th>M3/DIA</th>
<th>Parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>Operario</td>
<td>hh</td>
<td>2</td>
<td>0.64</td>
<td>20.81</td>
<td>13.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oficial</td>
<td>hh</td>
<td>2</td>
<td>0.64</td>
<td>16.65</td>
<td>10.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peón</td>
<td>hh</td>
<td>8</td>
<td>2.56</td>
<td>15.00</td>
<td>38.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td>Cemento portland tipo IP</td>
<td>bls</td>
<td>6.13</td>
<td>20.34</td>
<td>124.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agregado grueso</td>
<td>m3</td>
<td>0.62</td>
<td>110.17</td>
<td>68.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agregado fino</td>
<td>m3</td>
<td>0.54</td>
<td>110.17</td>
<td>59.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agua</td>
<td>m3</td>
<td>0.206</td>
<td>1.69</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo</td>
<td>Mezcladora de 9-11 p3</td>
<td>hm</td>
<td>1</td>
<td>0.32</td>
<td>8.47</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrador de 2”</td>
<td>hm</td>
<td>1</td>
<td>0.32</td>
<td>5.93</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herramientas : 3% M.obra</td>
<td></td>
<td></td>
<td>0.03</td>
<td>62.38</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo Directo Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El análisis de costos unitarios de la partida anterior, indica que 1 m3 de concreto para zapata de $f'_c=140 \text{ kg/cm}^2$, cuesta 321.69 soles.

Tabla elaborada 75 Análisis de Costos Unitarios de la Partida Zapatas de $f'_c=175 \text{ kg/cm}^2$

<table>
<thead>
<tr>
<th>Partida: Zapatas de $f'_c=175 \text{ kg/cm}^2$</th>
<th>Descripción del insumo</th>
<th>Unidad</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>25</th>
<th>M3/DIA</th>
<th>Parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>Operario</td>
<td>hh</td>
<td>2</td>
<td>0.64</td>
<td>20.81</td>
<td>13.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oficial</td>
<td>hh</td>
<td>2</td>
<td>0.64</td>
<td>16.65</td>
<td>10.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peón</td>
<td>hh</td>
<td>8</td>
<td>2.56</td>
<td>15.00</td>
<td>38.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td>Cemento portland tipo IP</td>
<td>bls</td>
<td>6.82</td>
<td>20.34</td>
<td>138.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agregado grueso</td>
<td>m3</td>
<td>0.61</td>
<td>110.17</td>
<td>67.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agregado fino</td>
<td>m3</td>
<td>0.54</td>
<td>110.17</td>
<td>59.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agua</td>
<td>lit</td>
<td>0.208</td>
<td>1.69</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo</td>
<td>Mezcladora de 9-11 p3</td>
<td>hm</td>
<td>1</td>
<td>0.32</td>
<td>8.47</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrador de 2”</td>
<td>hm</td>
<td>1</td>
<td>0.32</td>
<td>5.93</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herramientas : 3% M.obra</td>
<td></td>
<td></td>
<td>0.03</td>
<td>62.38</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo Directo Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>265.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El análisis de costos unitarios de la partida anterior, indica que 1 m3 de concreto para zapata de $f'_c=175 \text{ kg/cm}^2$, cuesta 334.62 soles.
Tabla elaborada 76 Análisis de Costos Unitarios de la Partida Columnas de f’c=210 kg/cm2

<table>
<thead>
<tr>
<th>Partida: Columnas de f’c= 210 kg/cm2</th>
<th>Rend: 10 M3/DIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del insumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>Mano de obra</td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>hh</td>
</tr>
<tr>
<td>Oficial</td>
<td>hh</td>
</tr>
<tr>
<td>Peón</td>
<td>hh</td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
</tr>
<tr>
<td>Cemento portland tipo IP</td>
<td>lbs</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>m3</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>m3</td>
</tr>
<tr>
<td>Agua</td>
<td>lit</td>
</tr>
<tr>
<td>Equipo</td>
<td></td>
</tr>
<tr>
<td>Mezcladora de 9-11 p3</td>
<td>hm</td>
</tr>
<tr>
<td>Vibrador de 2”</td>
<td>hm</td>
</tr>
<tr>
<td>Herramientas : 3% M.obra</td>
<td></td>
</tr>
<tr>
<td>Costo Directo Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El análisis de costos unitarios de la partida anterior, indica que 1 m3 de concreto para columna de f’c=210 kg/cm2, cuesta 472.42 soles.

Tabla elaborada 77 Análisis de Costos Unitarios de la partida Columnas de f’c= 280 kg/cm2

<table>
<thead>
<tr>
<th>Partida: Columnas de f’c= 280 kg/cm2</th>
<th>Rend: 10 M3/DIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del insumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>Mano de obra</td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>hh</td>
</tr>
<tr>
<td>Oficial</td>
<td>hh</td>
</tr>
<tr>
<td>Peón</td>
<td>hh</td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
</tr>
<tr>
<td>Cemento portland tipo IP</td>
<td>lbs</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>m3</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>m3</td>
</tr>
<tr>
<td>Agua</td>
<td>lit</td>
</tr>
<tr>
<td>Equipo</td>
<td></td>
</tr>
<tr>
<td>Mezcladora de 9-11 p3</td>
<td>hm</td>
</tr>
<tr>
<td>Vibrador de 2”</td>
<td>hm</td>
</tr>
<tr>
<td>Herramientas : 3% M.obra</td>
<td></td>
</tr>
<tr>
<td>Costo Directo Total</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El análisis de costos unitarios de la partida anterior, indica que 1 m3 de concreto para columna de f’c=280 kg/cm2, cuesta 502.32 soles.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c =)
140, 175, 210, 280 y 350 \(\text{kg/cm}^2 \) con agregados de la cantera de cunyac

Tabla elaborada 78 Análisis de Costos Unitarios de la Partida Placas \(f'c = 350 \text{ kg/cm}^2 \)

<table>
<thead>
<tr>
<th>Partida: vigas de (f'c = 350 \text{ kg/cm}^2)</th>
<th>Rend: 20 M3/DIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del insumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>Mano de obra</td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>hh</td>
</tr>
<tr>
<td>Oficial</td>
<td>hh</td>
</tr>
<tr>
<td>Peón</td>
<td>hh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
</tr>
<tr>
<td>Cemento portland tipo IP</td>
<td>bls</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>m3</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>m3</td>
</tr>
<tr>
<td>Agua</td>
<td>lit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo</td>
<td></td>
</tr>
<tr>
<td>Mezcladora de 9-11 p3</td>
<td>hm</td>
</tr>
<tr>
<td>Vibrador de 2"</td>
<td>hm</td>
</tr>
<tr>
<td>Herramientas : 3% M.obra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Costo Total Directo 450.20

Fuente: Elaboración propia

El análisis de costos unitarios de la partida anterior, indica que 1 m3 de concreto para viga de \(f'c = 350 \text{ kg/cm}^2 \), cuesta 450.20 soles.

A continuación, se muestra un resumen de los Costos Unitarios de cada partida analizada.

Tabla elaborada 79 Cuadro resumen del Análisis de Costos Unitarios de las Partidas

<table>
<thead>
<tr>
<th>Elementos de concreto</th>
<th>Costo por m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zapatas (f'c = 140 \text{ kg/cm}^2)</td>
<td>321.69</td>
</tr>
<tr>
<td>Zapatas (f'c = 175 \text{ kg/cm}^2)</td>
<td>334.62</td>
</tr>
<tr>
<td>Columnas (f'c = 210 \text{ kg/cm}^2)</td>
<td>472.42</td>
</tr>
<tr>
<td>Columnas (f'c = 280 \text{ kg/cm}^2)</td>
<td>502.32</td>
</tr>
<tr>
<td>Placas (f'c = 350 \text{ kg/cm}^2)</td>
<td>450.20</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

A continuación, se muestra un diagrama de barras, que ilustra de mejor forma los resultados obtenidos en cada de las partidas analizadas.
La gráfica anterior, muestra los costos unitarios para diferentes elementos de concreto, en la que se puede distinguir los altos costos que se generan en la elaboración del concreto por metro cúbico, esto debido a que los agregados de Cunyac, que se utilizaron para la mezcla de concreto tienen un elevado costo en la ciudad del Cusco.

Para el análisis de los costos unitarios de las partidas de Prueba de calidad del concreto, se consideró las experiencias vividas en la investigación, por lo que las cuadrillas que se utilizaron para este análisis, son estimaciones aproximadas, es así que, el rendimiento para las pruebas de compresión simple se consideró 24 unidades/día, y para la prueba ultrasónica 96 unidades/día, además, los precios de los ensayos son los que se encontró en el medio local.
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac”

Tabla elaborada 80 Costos reales de los ensayos necesarios para la investigación

<table>
<thead>
<tr>
<th>Nombre del Ensayo</th>
<th>Precio con IGV (Soles)</th>
<th>Precio sin IGV (soles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo de compresión simple a testigos cilíndricos de diámetro=4” y altura=8”</td>
<td>20.00</td>
<td>16.95</td>
</tr>
<tr>
<td>Ensayo de velocidad de pulso ultrasónico</td>
<td>12.00</td>
<td>10.17</td>
</tr>
<tr>
<td>Ensayo triaxial propuesta para concreto en celda hoek</td>
<td>1260.00</td>
<td>1067.80</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los precios del cuadro anterior, son precios referenciales que se cotizaron en la ciudad del Cusco y en la ciudad de Lima.

Tabla elaborada 81 Costo unitario de la partida Prueba de calidad del concreto (Compresión simple)

<table>
<thead>
<tr>
<th>Partida: Prueba de calidad del concreto (Compresión simple)</th>
<th>Rend: 24 UND/DIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del insumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>Mano de obra</td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>hh</td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
</tr>
<tr>
<td>Ensayo de compresión simple</td>
<td>und</td>
</tr>
<tr>
<td>Equipo</td>
<td></td>
</tr>
<tr>
<td>Camioneta</td>
<td>hm</td>
</tr>
<tr>
<td>Costo Total Directo</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El análisis de costos unitarios de la partida anterior, indica que un ensayo de compresión simple a un testigo de concreto, cuesta 28.12 soles.
Tabla elaborada 82 Costo Unitario de la partida Prueba de Calidad del concreto no destructivo (Ensayo ultrasónico)

<table>
<thead>
<tr>
<th>Mano de obra</th>
<th>Unidad</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operario</td>
<td>hh</td>
<td>1</td>
<td>0.083</td>
<td>20.81</td>
<td>1.73</td>
</tr>
<tr>
<td>Oficial</td>
<td>hh</td>
<td>1</td>
<td>0.083</td>
<td>16.65</td>
<td>1.38</td>
</tr>
<tr>
<td>Costo total directo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.11</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El análisis de costos unitarios de la partida anterior, indica que un ensayo de velocidad de pulso ultrasónico en un concreto al concreto, cuesta 13.28 soles.

Para el Análisis de precios Unitarios del ensayo triaxial, se tomó en consideración el mínimo precio que se pudo encontrar en la localidad, pero haciendo uso de algunos equipos de la UNSAAC, como son la celda hoek y el confinador enerpack, más el ADR y el equipo de compresión se alquiló.

Tabla elaborada 83 Análisis de Costo Unitario de la partida prueba de calidad del concreto (compresión triaxial)

<table>
<thead>
<tr>
<th>Partida: Calidad del concreto compresión triaxial</th>
<th>Rend: 24 UND/DIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del insumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>Mano de obra</td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>hh</td>
</tr>
<tr>
<td>Costo total directo</td>
<td></td>
</tr>
</tbody>
</table>

Materiales

<table>
<thead>
<tr>
<th>Ensayo de compresión compresión triaxial</th>
<th>und</th>
<th>1.00</th>
<th>1.067.80</th>
<th>1067.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camioneta</th>
<th>hm</th>
<th>0.33</th>
<th>12.71</th>
<th>4.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>4.24</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de cunyac

A continuación, se muestra el resumen del Análisis de Costos Unitarios de los ensayos a los concretos.

Tabla elaborada 84 Resumen de los Costos Unitarios de partidas de calidad del concreto

<table>
<thead>
<tr>
<th>Partida</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo de compresión</td>
<td>28.12</td>
</tr>
<tr>
<td>Ensayo de pulso ultrasónico a concreto</td>
<td>13.28</td>
</tr>
<tr>
<td>Ensayo triaxial para concreto</td>
<td>1078.97</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfica 23 Comparación de costos unitarios de Compresión simple y ensayo ultrasónico

La gráfica anterior muestra que el ensayo de pulso ultrasónico es la prueba más económica, representando menos del 50% en costo con respecto al ensayo de compresión simple, más, el ensayo triaxial del concreto en celda hoek, tiene un costo más elevado, esto debido a que es un ensayo más completo, que simula situaciones reales en el que algunos concretos se encuentran, además que dicho ensayo requiere de equipos y accesorios especiales para su ejecución.

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
8. CAPITULO VIII

CONCLUSIONES Y RECOMENDACIONES.

8.1 Conclusiones

- El ensayo de velocidad de pulso ultrasónico aplicado a la determinación de la resistencia a la compresión y densidad de los concretos con f’c de diseño 140, 175, 210, 280 y 350 kg/cm², elaborados con agregados de la cantera de Cunyac, es bastante rápido, fácil, económico y confiable en determinada medida.

- En el caso de la determinación de la resistencia a la compresión mediante la velocidad de pulso ultrasónico, en testigos cilíndricos de concreto de 4”x8”-huso 67 (TMN ¾”), de f’c de diseño 140, 175, 210, 280 y 350 kg/cm², elaborados con agregados de la cantera de Cunyac, el modelo de aproximación cúbica con R²=0.9838, obtuvo mejores resultados con un porcentaje de error del 7.87 %, siendo la ecuación, la siguiente:

\[
r = 1.2014 \times 10^{-6} \times v^3 - 1.3928 \times 10^{-2} \times v^2 + 5.3787 \times 10^1 \times v - 6.9056 \times 10^4
\]

Donde:

- \(r \) = Resistencia a la compresión del concreto (kg/m³).
- \(v \) = Velocidad de pulso ultrasónico en el concreto (m/s).

- En el caso de la determinación de la densidad del concreto mediante la velocidad de pulso ultrasónico, en testigos cilíndricos de 4”x8”-huco 67(TMN ¾”), de f’c de diseño 140, 175, 210, 280 y 350 kg/cm², elaborados con agregados de la cantera de Cunyac, el modelo de aproximación cúbica con R²=0.9946, obtuvo
mejores resultados con un porcentaje de error de 3.44%, siendo la ecuación, la siguiente:

\[d = 1.98985 \times 10^{-7} \times v^3 - 2.89813 \times 10^{-3} \times v^2 + 1.39216 \times 10^1 \times v - 1.97273 \times 10^4 \]

Donde:

d= Densidad del concreto (kg/m3).

v= Velocidad de pulso ultrasónico en el concreto (m/s).

- En el caso de la determinación de la resistencia a la compresión mediante la velocidad de pulso ultrasónico, en testigos cilíndricos de concreto de 2”x4”-huso 8 (TMN 3/8”), de f’c elaborados con agregados de la cantera de Cunyac, el modelo de aproximación exponencial, con \(R^2=0.9308 \), obtuvo mejores resultados con un porcentaje de error de 13.44 %, siendo la ecuación, la siguiente:

\[r = 6.7604 \times 10^{-2} \times e^{1.9552 \times 10^{-3} \times v} \]

Donde:

r= Resistencia a la compresión del concreto (kg/cm2).

v= Velocidad de pulso ultrasónico en el concreto (m/s).

- En el caso de la determinación de la densidad del concreto mediante la velocidad de pulso ultrasónico, en testigos cilíndricos de concreto de 2”x4”-huso 8 (TMN 3/8”), elaborados con agregados de la cantera de Cunyac, el modelo de aproximación cúbica con \(R^2=0.9907 \), obtuvo mejores resultados con un porcentaje de error de 3.10%, siendo la ecuación, la siguiente:

\[d = -8.35009 \times 10^{-8} \times v^3 + 1.11269 \times 10^{-3} \times v^2 - 4.93129 \times v + 9.58215 \times 10^3 \]

Donde:
d= Densidad del concreto (kg/m3)

v = Velocidad de pulso ultrasónico (m/s)

- La ecuación que presentó mejores resultados para la determinación de la Resistencia a la compresión mediante la velocidad de pulso ultrasónico, de testigos cilíndricos de concreto para el huso 67 y huso 8 elaborados con agregados de la cantera de Cunyac, fue de aproximación cúbica con \(R^2 = 0.7911 \), y con un porcentaje de error de 28.12%, siendo la siguiente:

\[
 r = 4.5059 \times 10^{-7} \times v^3 - 4.8152 \times 10^{-3} + 1.6986 \times 10^{-1} \times v - 1.9563 \times 10^4
\]

Donde:

- \(r \) = Resistencia a la compresión del concreto (kg/cm2).
- \(v \) = Velocidad de pulso ultrasónico en el concreto (m/s).

- Las velocidades de pulso ultrasónico registrados en las diferentes pruebas están entre 3832 y 4699 m/s, lo cual, de acuerdo a la clasificación de la calidad del concreto de Leslie y Cheesman, dichos concretos se encuentran entre las clases buena y excelente, lo que es un indicador de que los agregados de la cantera de Cunyac tienen un comportamiento de bueno a excelente en la resistencia y densidad del concreto, ya que los agregados tienen una alta incidencia en la velocidad ultrasónica en el concreto.

- El agregado utilizado en la elaboración del concreto fue el “hormigón de Cunyac”, que viene a ser una mezcla natural de grava y arena del río Apurmac, el cual dió como resultado, concretos con resistencias superiores a los esperados, contraviniendo a lo estipulado en el artículo 3.3.10 de la norma E.060 de
concreto armado, que indica que dichos agregados sólo pueden ser utilizados en concretos con resistencia en compresión no mayor de 10 Mpa a los 28 días.

- La utilización del hormigón de Cunyac requirió menor cantidad de agua a los recomendados en las bibliografías existentes, por lo que en el diseño final de mezclas se prescindió del uso de aditivo plastificante.

- La velocidad de pulso ultrasónico en el concreto es proporcional al TMN del agregado grueso, ya que la velocidad de pulso ultrasónico en concretos de una misma resistencia, en el huso 67, cuyo TMN es ¾”, es más veloz que en el huso 8, cuyo TMN es 3/8”.

- El concreto con resistencia de diseño de 140 a 280 kg/cm2, bajo confinamiento triaxial, presenta una resistencia a la compresión máxima triaxial, hasta en 2 veces su resistencia a la compresión simple, con confinamientos bajos de 3, 5 y 7 MPa.

- En el caso de concretos con resistencia de diseño de 350 kg/cm2, la resistencia a la compresión máxima triaxial, alcanza un 77% más de su resistencia de diseño, con confinamientos bajos de 1, 3 y 5 MPa.

- Las ecuaciones logradas mediante la investigación fueron obtenidas considerando datos de 400 muestras, siendo este un número considerable para la generalización de resultados.
8.2 Recomendaciones

- Las ecuaciones obtenidas mediante esta investigación son válidas para el agregado, “hormigón de Cunyac” utilizado en la elaboración del concreto investigado, por lo que, si se desea utilizar dichas ecuaciones en la evaluación de concretos elaborados con otros agregados, muy probablemente no tenga el grado de confiabilidad hallado.

- El uso del agregado “hormigón de Cunyac” requiere menos cantidad de agua a comparación de agregados triturados, por lo que el concreto para la investigación fue elaborado en forma convencional, sin uso de aditivos, lo que trae a colación la obtención de ecuaciones resistencia- velocidad ultrasónica y densidad-velocidad ultrasónica en concretos elaborados con el hormigón de Cunyac utilizando aditivos fluidificantes.

- Es recomendable realizar las pruebas ultrasónicas del concreto, después de un tiempo mínimo de 1.5 horas después de retirado del curado, debido a que la presencia excesiva de agua en el concreto puede generar lecturas erróneas.

- Para un mejor resultado de la lectura ultrasónica, es recomendable realizar mínimamente tres lecturas y hallar un promedio de éstas.
9. Bibliografía

Aguirre Quispe, L. (s.f.). Resistencia a la compresión del concreto a partir de la velocidad de pulso ultrasónico.

Humbold.

Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

A

(COMPRESIÓN SIMPLE PARA DESVIACIÓN ESTANDAR)
Ensayo de Compresión simple de testigos cilíndricos de concreto de 4"x8" para desviación estándar $f_c=140$ kg/cm²-huso 6

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza(lib)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f_c(kg/cm²)</th>
<th>$(x - \bar{x})$</th>
<th>$(x - \bar{x})^2$</th>
<th>% de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-M01</td>
<td>28</td>
<td>39000</td>
<td>17690.40</td>
<td>10.16</td>
<td>81.07</td>
<td>218.21</td>
<td>-8.07</td>
<td>65.12</td>
<td>155.86%</td>
</tr>
<tr>
<td>140-M02</td>
<td>28</td>
<td>41000</td>
<td>18597.60</td>
<td>10.16</td>
<td>81.07</td>
<td>229.40</td>
<td>3.12</td>
<td>9.73</td>
<td>163.86%</td>
</tr>
<tr>
<td>140-M03</td>
<td>28</td>
<td>42500</td>
<td>19287.00</td>
<td>10.15</td>
<td>80.91</td>
<td>238.26</td>
<td>11.98</td>
<td>143.52</td>
<td>170.19%</td>
</tr>
<tr>
<td>140-M04</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.16</td>
<td>81.07</td>
<td>232.20</td>
<td>5.92</td>
<td>35.05</td>
<td>165.86%</td>
</tr>
<tr>
<td>140-M05</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.17</td>
<td>81.23</td>
<td>231.74</td>
<td>5.46</td>
<td>29.81</td>
<td>165.53%</td>
</tr>
<tr>
<td>140-M06</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.16</td>
<td>81.07</td>
<td>232.20</td>
<td>5.92</td>
<td>35.05</td>
<td>165.86%</td>
</tr>
<tr>
<td>140-M07</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.16</td>
<td>81.07</td>
<td>232.20</td>
<td>5.92</td>
<td>35.05</td>
<td>165.86%</td>
</tr>
<tr>
<td>140-M08</td>
<td>28</td>
<td>41000</td>
<td>18597.60</td>
<td>10.13</td>
<td>80.6</td>
<td>230.74</td>
<td>4.46</td>
<td>19.89</td>
<td>164.81%</td>
</tr>
<tr>
<td>140-M09</td>
<td>28</td>
<td>33000</td>
<td>14968.80</td>
<td>10.16</td>
<td>81.07</td>
<td>184.64</td>
<td>-41.64</td>
<td>1733.89</td>
<td>131.89%</td>
</tr>
<tr>
<td>140-M10</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.17</td>
<td>81.23</td>
<td>234.53</td>
<td>8.25</td>
<td>68.06</td>
<td>167.52%</td>
</tr>
<tr>
<td>140-M11</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.16</td>
<td>81.07</td>
<td>235.00</td>
<td>8.72</td>
<td>76.04</td>
<td>167.86%</td>
</tr>
<tr>
<td>140-M12</td>
<td>28</td>
<td>43000</td>
<td>19504.80</td>
<td>10.16</td>
<td>81.07</td>
<td>240.59</td>
<td>14.31</td>
<td>204.78</td>
<td>171.85%</td>
</tr>
<tr>
<td>140-M13</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.16</td>
<td>81.07</td>
<td>235.00</td>
<td>8.72</td>
<td>76.04</td>
<td>167.86%</td>
</tr>
<tr>
<td>140-M14</td>
<td>28</td>
<td>40000</td>
<td>18144.00</td>
<td>10.17</td>
<td>81.23</td>
<td>223.37</td>
<td>-2.91</td>
<td>8.47</td>
<td>159.55%</td>
</tr>
<tr>
<td>140-M15</td>
<td>28</td>
<td>39500</td>
<td>17917.20</td>
<td>10.15</td>
<td>80.91</td>
<td>221.45</td>
<td>-4.83</td>
<td>23.33</td>
<td>158.18%</td>
</tr>
<tr>
<td>140-M16</td>
<td>28</td>
<td>38000</td>
<td>17236.80</td>
<td>10.16</td>
<td>81.07</td>
<td>212.62</td>
<td>-13.66</td>
<td>186.60</td>
<td>151.87%</td>
</tr>
<tr>
<td>140-M17</td>
<td>28</td>
<td>43000</td>
<td>19504.80</td>
<td>10.16</td>
<td>81.07</td>
<td>240.59</td>
<td>14.31</td>
<td>204.78</td>
<td>171.85%</td>
</tr>
<tr>
<td>140-M18</td>
<td>28</td>
<td>38500</td>
<td>17463.60</td>
<td>10.17</td>
<td>81.23</td>
<td>214.99</td>
<td>-11.29</td>
<td>127.46</td>
<td>153.56%</td>
</tr>
<tr>
<td>140-M19</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.17</td>
<td>81.23</td>
<td>234.53</td>
<td>8.25</td>
<td>68.06</td>
<td>167.52%</td>
</tr>
<tr>
<td>140-M20</td>
<td>28</td>
<td>44000</td>
<td>19958.40</td>
<td>10.17</td>
<td>81.23</td>
<td>245.70</td>
<td>19.42</td>
<td>377.14</td>
<td>175.50%</td>
</tr>
<tr>
<td>140-M21</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.16</td>
<td>81.07</td>
<td>232.20</td>
<td>5.92</td>
<td>35.05</td>
<td>165.86%</td>
</tr>
<tr>
<td>140-M22</td>
<td>28</td>
<td>36500</td>
<td>16556.40</td>
<td>10.15</td>
<td>80.91</td>
<td>204.63</td>
<td>-21.65</td>
<td>468.72</td>
<td>146.16%</td>
</tr>
<tr>
<td>140-M23</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.17</td>
<td>81.23</td>
<td>234.53</td>
<td>8.25</td>
<td>68.06</td>
<td>167.52%</td>
</tr>
<tr>
<td>140-M24</td>
<td>28</td>
<td>36500</td>
<td>16556.40</td>
<td>10.17</td>
<td>81.23</td>
<td>203.82</td>
<td>-22.46</td>
<td>504.45</td>
<td>145.59%</td>
</tr>
<tr>
<td>140-M25</td>
<td>28</td>
<td>41000</td>
<td>18597.60</td>
<td>10.17</td>
<td>81.23</td>
<td>228.95</td>
<td>2.67</td>
<td>7.13</td>
<td>163.54%</td>
</tr>
<tr>
<td>140-M26</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.17</td>
<td>81.23</td>
<td>231.74</td>
<td>5.46</td>
<td>29.81</td>
<td>165.53%</td>
</tr>
<tr>
<td>140-M27</td>
<td>28</td>
<td>42000</td>
<td>19051.20</td>
<td>10.15</td>
<td>80.91</td>
<td>235.46</td>
<td>9.18</td>
<td>84.27</td>
<td>168.19%</td>
</tr>
<tr>
<td>140-M28</td>
<td>28</td>
<td>41500</td>
<td>18824.40</td>
<td>10.16</td>
<td>81.07</td>
<td>232.20</td>
<td>5.92</td>
<td>35.05</td>
<td>165.86%</td>
</tr>
<tr>
<td>140-M29</td>
<td>28</td>
<td>39000</td>
<td>17690.40</td>
<td>10.16</td>
<td>81.07</td>
<td>218.21</td>
<td>-8.07</td>
<td>65.12</td>
<td>155.86%</td>
</tr>
<tr>
<td>140-M30</td>
<td>28</td>
<td>35500</td>
<td>16102.80</td>
<td>10.16</td>
<td>81.07</td>
<td>198.63</td>
<td>-27.65</td>
<td>764.52</td>
<td>141.88%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº de muestra</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S²)</td>
<td>192.76</td>
</tr>
<tr>
<td>Desviación estándar (S)</td>
<td>13.88</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>6.13%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquina Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y $350\,\text{kg/cm}^2$ con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lib)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>$f'c$ (kg/cm²)</th>
<th>$(x-\bar{x})$</th>
<th>$(x-\bar{x})^2$</th>
<th>% de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>175-M01</td>
<td>28</td>
<td>50000</td>
<td>22680.00</td>
<td>10.15</td>
<td>80.91</td>
<td>280.31</td>
<td>13.19</td>
<td>173.98</td>
<td>160.18%</td>
</tr>
<tr>
<td>175-M02</td>
<td>28</td>
<td>50250</td>
<td>22793.40</td>
<td>10.16</td>
<td>81.07</td>
<td>281.16</td>
<td>14.04</td>
<td>197.12</td>
<td>160.66%</td>
</tr>
<tr>
<td>175-M03</td>
<td>28</td>
<td>50000</td>
<td>22680.00</td>
<td>10.16</td>
<td>81.07</td>
<td>279.76</td>
<td>12.64</td>
<td>159.77</td>
<td>159.86%</td>
</tr>
<tr>
<td>175-M04</td>
<td>28</td>
<td>48000</td>
<td>21772.80</td>
<td>10.16</td>
<td>81.07</td>
<td>268.57</td>
<td>1.45</td>
<td>2.1</td>
<td>153.47%</td>
</tr>
<tr>
<td>175-M05</td>
<td>28</td>
<td>48500</td>
<td>21999.60</td>
<td>10.17</td>
<td>81.23</td>
<td>270.83</td>
<td>3.71</td>
<td>13.76</td>
<td>154.76%</td>
</tr>
<tr>
<td>175-M06</td>
<td>28</td>
<td>51000</td>
<td>23133.60</td>
<td>10.16</td>
<td>81.07</td>
<td>285.35</td>
<td>18.23</td>
<td>332.33</td>
<td>163.06%</td>
</tr>
<tr>
<td>175-M07</td>
<td>28</td>
<td>49000</td>
<td>22226.40</td>
<td>10.15</td>
<td>80.91</td>
<td>274.71</td>
<td>7.59</td>
<td>57.61</td>
<td>156.98%</td>
</tr>
<tr>
<td>175-M08</td>
<td>28</td>
<td>49000</td>
<td>22226.40</td>
<td>10.15</td>
<td>80.91</td>
<td>274.71</td>
<td>7.59</td>
<td>57.61</td>
<td>156.98%</td>
</tr>
<tr>
<td>175-M09</td>
<td>28</td>
<td>46500</td>
<td>21092.40</td>
<td>10.16</td>
<td>81.07</td>
<td>260.18</td>
<td>-6.94</td>
<td>48.16</td>
<td>148.67%</td>
</tr>
<tr>
<td>175-M10</td>
<td>28</td>
<td>50750</td>
<td>23020.20</td>
<td>10.17</td>
<td>81.23</td>
<td>283.4</td>
<td>16.28</td>
<td>265.04</td>
<td>161.94%</td>
</tr>
<tr>
<td>175-M11</td>
<td>28</td>
<td>44250</td>
<td>20071.80</td>
<td>10.15</td>
<td>80.91</td>
<td>248.08</td>
<td>-19.04</td>
<td>362.52</td>
<td>141.76%</td>
</tr>
<tr>
<td>175-M12</td>
<td>28</td>
<td>44750</td>
<td>20298.60</td>
<td>10.16</td>
<td>81.07</td>
<td>250.38</td>
<td>-16.74</td>
<td>280.23</td>
<td>143.07%</td>
</tr>
<tr>
<td>175-M13</td>
<td>28</td>
<td>49750</td>
<td>23566.60</td>
<td>10.15</td>
<td>80.91</td>
<td>278.91</td>
<td>11.79</td>
<td>1.93</td>
<td>159.38%</td>
</tr>
<tr>
<td>175-M14</td>
<td>28</td>
<td>49000</td>
<td>22226.40</td>
<td>10.16</td>
<td>80.91</td>
<td>274.16</td>
<td>7.04</td>
<td>49.56</td>
<td>156.66%</td>
</tr>
<tr>
<td>175-M15</td>
<td>28</td>
<td>43500</td>
<td>19731.60</td>
<td>10.16</td>
<td>81.07</td>
<td>243.39</td>
<td>-23.73</td>
<td>563.11</td>
<td>139.08%</td>
</tr>
<tr>
<td>175-M16</td>
<td>28</td>
<td>44000</td>
<td>19958.40</td>
<td>10.15</td>
<td>80.91</td>
<td>246.67</td>
<td>-20.45</td>
<td>418.2</td>
<td>140.95%</td>
</tr>
<tr>
<td>175-M17</td>
<td>28</td>
<td>46000</td>
<td>20865.60</td>
<td>10.16</td>
<td>81.07</td>
<td>257.38</td>
<td>-9.74</td>
<td>94.87</td>
<td>147.07%</td>
</tr>
<tr>
<td>175-M18</td>
<td>28</td>
<td>47000</td>
<td>21319.20</td>
<td>10.16</td>
<td>81.07</td>
<td>262.97</td>
<td>-4.15</td>
<td>17.22</td>
<td>150.27%</td>
</tr>
<tr>
<td>175-M19</td>
<td>28</td>
<td>49500</td>
<td>22453.20</td>
<td>10.17</td>
<td>81.23</td>
<td>276.42</td>
<td>9.3</td>
<td>86.49</td>
<td>157.95%</td>
</tr>
<tr>
<td>175-M20</td>
<td>28</td>
<td>47000</td>
<td>21319.20</td>
<td>10.16</td>
<td>81.07</td>
<td>262.97</td>
<td>-4.15</td>
<td>17.22</td>
<td>150.27%</td>
</tr>
<tr>
<td>175-M21</td>
<td>28</td>
<td>47000</td>
<td>21319.20</td>
<td>10.16</td>
<td>81.07</td>
<td>262.97</td>
<td>-4.15</td>
<td>17.22</td>
<td>150.27%</td>
</tr>
<tr>
<td>175-M22</td>
<td>28</td>
<td>48500</td>
<td>21999.60</td>
<td>10.16</td>
<td>81.07</td>
<td>271.37</td>
<td>4.25</td>
<td>18.06</td>
<td>155.07%</td>
</tr>
<tr>
<td>175-M23</td>
<td>28</td>
<td>45000</td>
<td>20412.00</td>
<td>10.17</td>
<td>81.23</td>
<td>251.29</td>
<td>-15.83</td>
<td>250.59</td>
<td>143.59%</td>
</tr>
<tr>
<td>175-M24</td>
<td>28</td>
<td>54000</td>
<td>24494.40</td>
<td>10.17</td>
<td>81.23</td>
<td>301.54</td>
<td>34.42</td>
<td>1184.74</td>
<td>172.31%</td>
</tr>
<tr>
<td>175-M25</td>
<td>28</td>
<td>46500</td>
<td>21092.40</td>
<td>10.16</td>
<td>81.07</td>
<td>260.18</td>
<td>-6.94</td>
<td>48.16</td>
<td>148.67%</td>
</tr>
<tr>
<td>175-M26</td>
<td>28</td>
<td>45000</td>
<td>20412.00</td>
<td>10.17</td>
<td>81.23</td>
<td>251.29</td>
<td>-15.83</td>
<td>250.59</td>
<td>143.59%</td>
</tr>
<tr>
<td>175-M27</td>
<td>28</td>
<td>49000</td>
<td>22226.40</td>
<td>10.16</td>
<td>81.07</td>
<td>274.16</td>
<td>7.04</td>
<td>49.56</td>
<td>156.66%</td>
</tr>
<tr>
<td>175-M28</td>
<td>28</td>
<td>49000</td>
<td>22226.40</td>
<td>10.16</td>
<td>81.07</td>
<td>274.16</td>
<td>7.04</td>
<td>49.56</td>
<td>156.66%</td>
</tr>
<tr>
<td>175-M29</td>
<td>28</td>
<td>46500</td>
<td>21092.40</td>
<td>10.16</td>
<td>81.07</td>
<td>260.18</td>
<td>-6.94</td>
<td>48.16</td>
<td>148.67%</td>
</tr>
<tr>
<td>175-M30</td>
<td>28</td>
<td>44000</td>
<td>19958.40</td>
<td>10.16</td>
<td>81.07</td>
<td>246.19</td>
<td>-20.93</td>
<td>438.06</td>
<td>140.68%</td>
</tr>
</tbody>
</table>

Nº de muestra=	30
Varianza (S²)=	196.23
Desviación estándar	14.01
Coeficiente de	5.24%
Cantera Cunyac
Fecha 11-12-18
Laboratorio EPIC-UNSAAC

Cuadro resumen de ensayo a compresión simple de testigos cilíndricos de concreto de 4"x8"
para desviación estándar $f'_c=210$ kg/cm2

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f'_c (kg/cm2)</th>
<th>$(x - \bar{x})$</th>
<th>$(x - \bar{x})^2$</th>
<th>% de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-M01</td>
<td>28</td>
<td>52000</td>
<td>23587.20</td>
<td>10.14</td>
<td>80.75</td>
<td>292.10</td>
<td>-23.76</td>
<td>564.32</td>
<td>139.10%</td>
</tr>
<tr>
<td>210-M02</td>
<td>28</td>
<td>54000</td>
<td>24944.90</td>
<td>10.16</td>
<td>81.07</td>
<td>302.14</td>
<td>-13.72</td>
<td>188.11</td>
<td>143.88%</td>
</tr>
<tr>
<td>210-M03</td>
<td>28</td>
<td>54500</td>
<td>24721.20</td>
<td>10.17</td>
<td>81.23</td>
<td>304.34</td>
<td>-11.52</td>
<td>132.60</td>
<td>144.92%</td>
</tr>
<tr>
<td>210-M04</td>
<td>28</td>
<td>53000</td>
<td>24040.80</td>
<td>10.16</td>
<td>81.07</td>
<td>296.54</td>
<td>-19.32</td>
<td>373.08</td>
<td>141.21%</td>
</tr>
<tr>
<td>210-M05</td>
<td>28</td>
<td>56500</td>
<td>25628.40</td>
<td>10.17</td>
<td>81.23</td>
<td>315.50</td>
<td>-0.36</td>
<td>0.13</td>
<td>150.24%</td>
</tr>
<tr>
<td>210-M06</td>
<td>28</td>
<td>55000</td>
<td>24948.00</td>
<td>10.16</td>
<td>81.07</td>
<td>307.73</td>
<td>-8.13</td>
<td>66.02</td>
<td>146.54%</td>
</tr>
<tr>
<td>210-M07</td>
<td>28</td>
<td>51000</td>
<td>23133.60</td>
<td>10.17</td>
<td>81.23</td>
<td>284.79</td>
<td>-31.07</td>
<td>965.05</td>
<td>135.61%</td>
</tr>
<tr>
<td>210-M08</td>
<td>28</td>
<td>54000</td>
<td>24944.90</td>
<td>10.14</td>
<td>80.75</td>
<td>303.34</td>
<td>-12.52</td>
<td>156.63</td>
<td>144.45%</td>
</tr>
<tr>
<td>210-M09</td>
<td>28</td>
<td>59000</td>
<td>26762.40</td>
<td>10.16</td>
<td>81.07</td>
<td>330.11</td>
<td>14.25</td>
<td>203.20</td>
<td>157.20%</td>
</tr>
<tr>
<td>210-M10</td>
<td>28</td>
<td>55000</td>
<td>24948.00</td>
<td>10.17</td>
<td>81.23</td>
<td>307.13</td>
<td>-8.73</td>
<td>76.13</td>
<td>146.25%</td>
</tr>
<tr>
<td>210-M11</td>
<td>28</td>
<td>55750</td>
<td>25288.20</td>
<td>10.17</td>
<td>81.23</td>
<td>311.32</td>
<td>-4.54</td>
<td>20.57</td>
<td>148.25%</td>
</tr>
<tr>
<td>210-M12</td>
<td>28</td>
<td>55500</td>
<td>25174.80</td>
<td>10.16</td>
<td>81.07</td>
<td>310.53</td>
<td>-5.33</td>
<td>28.36</td>
<td>147.87%</td>
</tr>
<tr>
<td>210-M13</td>
<td>28</td>
<td>57000</td>
<td>25855.20</td>
<td>10.16</td>
<td>81.07</td>
<td>318.92</td>
<td>3.06</td>
<td>9.39</td>
<td>151.87%</td>
</tr>
<tr>
<td>210-M14</td>
<td>28</td>
<td>54000</td>
<td>24944.90</td>
<td>10.17</td>
<td>81.23</td>
<td>301.54</td>
<td>-14.32</td>
<td>204.93</td>
<td>143.59%</td>
</tr>
<tr>
<td>210-M15</td>
<td>28</td>
<td>57500</td>
<td>26082.00</td>
<td>10.17</td>
<td>81.23</td>
<td>321.09</td>
<td>5.23</td>
<td>27.40</td>
<td>152.90%</td>
</tr>
<tr>
<td>210-M16</td>
<td>28</td>
<td>57000</td>
<td>25855.20</td>
<td>10.14</td>
<td>80.75</td>
<td>320.19</td>
<td>4.33</td>
<td>18.79</td>
<td>152.47%</td>
</tr>
<tr>
<td>210-M17</td>
<td>28</td>
<td>60500</td>
<td>27442.80</td>
<td>10.16</td>
<td>81.07</td>
<td>338.51</td>
<td>22.65</td>
<td>513.23</td>
<td>161.20%</td>
</tr>
<tr>
<td>210-M18</td>
<td>28</td>
<td>55000</td>
<td>24948.00</td>
<td>10.13</td>
<td>80.60</td>
<td>309.53</td>
<td>-6.33</td>
<td>40.01</td>
<td>147.40%</td>
</tr>
<tr>
<td>210-M19</td>
<td>28</td>
<td>57500</td>
<td>26082.00</td>
<td>10.17</td>
<td>81.23</td>
<td>321.09</td>
<td>5.23</td>
<td>27.40</td>
<td>152.90%</td>
</tr>
<tr>
<td>210-M20</td>
<td>28</td>
<td>58500</td>
<td>26535.60</td>
<td>10.14</td>
<td>80.75</td>
<td>328.61</td>
<td>12.75</td>
<td>162.68</td>
<td>156.48%</td>
</tr>
<tr>
<td>210-M21</td>
<td>28</td>
<td>60500</td>
<td>27442.80</td>
<td>10.16</td>
<td>81.07</td>
<td>338.51</td>
<td>22.65</td>
<td>513.23</td>
<td>161.20%</td>
</tr>
<tr>
<td>210-M22</td>
<td>28</td>
<td>58500</td>
<td>26535.60</td>
<td>10.16</td>
<td>81.07</td>
<td>327.32</td>
<td>11.46</td>
<td>131.44</td>
<td>155.87%</td>
</tr>
<tr>
<td>210-M23</td>
<td>28</td>
<td>58500</td>
<td>26535.60</td>
<td>10.17</td>
<td>81.23</td>
<td>326.67</td>
<td>10.81</td>
<td>116.96</td>
<td>155.56%</td>
</tr>
<tr>
<td>210-M24</td>
<td>28</td>
<td>59000</td>
<td>26762.40</td>
<td>10.17</td>
<td>81.23</td>
<td>329.46</td>
<td>13.60</td>
<td>185.09</td>
<td>156.89%</td>
</tr>
<tr>
<td>210-M25</td>
<td>28</td>
<td>57250</td>
<td>25968.60</td>
<td>10.14</td>
<td>80.75</td>
<td>321.59</td>
<td>5.73</td>
<td>32.89</td>
<td>153.14%</td>
</tr>
<tr>
<td>210-M26</td>
<td>28</td>
<td>57000</td>
<td>25855.20</td>
<td>10.17</td>
<td>81.23</td>
<td>318.30</td>
<td>2.44</td>
<td>5.98</td>
<td>151.57%</td>
</tr>
<tr>
<td>210-M27</td>
<td>28</td>
<td>57000</td>
<td>25855.20</td>
<td>10.16</td>
<td>81.07</td>
<td>318.92</td>
<td>3.06</td>
<td>9.39</td>
<td>151.87%</td>
</tr>
<tr>
<td>210-M28</td>
<td>28</td>
<td>59000</td>
<td>26762.40</td>
<td>10.16</td>
<td>81.07</td>
<td>330.11</td>
<td>14.25</td>
<td>203.20</td>
<td>157.20%</td>
</tr>
<tr>
<td>210-M29</td>
<td>28</td>
<td>57500</td>
<td>26082.00</td>
<td>10.13</td>
<td>80.60</td>
<td>323.60</td>
<td>7.74</td>
<td>59.98</td>
<td>154.10%</td>
</tr>
<tr>
<td>210-M30</td>
<td>28</td>
<td>56500</td>
<td>25628.40</td>
<td>10.16</td>
<td>81.07</td>
<td>316.13</td>
<td>0.27</td>
<td>0.08</td>
<td>150.54%</td>
</tr>
</tbody>
</table>

$f'c$ promedio 315.85 Total 5036.27

N° de muestra= 30
Varianza (S2)= 173.66
Desviación estándar 13.18
Coeficiente de 4.17%
Cuadro resumen de ensayo a compresión simple de testigos cilíndricos de concreto de 4"x8"
par para desviación estándar $f_c=280$ kg/cm²

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f_c (kg/cm²)</th>
<th>\bar{x}</th>
<th>$(x - \bar{x})$</th>
<th>$(x - \bar{x})^2$</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>280-M01</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.14</td>
<td>80.75</td>
<td>373.55</td>
<td>-0.71</td>
<td>0.50</td>
<td>133.41%</td>
<td></td>
</tr>
<tr>
<td>280-M02</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.16</td>
<td>81.07</td>
<td>372.08</td>
<td>-2.18</td>
<td>4.75</td>
<td>132.89%</td>
<td></td>
</tr>
<tr>
<td>280-M03</td>
<td>28</td>
<td>64500</td>
<td>29257.20</td>
<td>10.16</td>
<td>81.07</td>
<td>360.89</td>
<td>-13.37</td>
<td>178.76</td>
<td>128.89%</td>
<td></td>
</tr>
<tr>
<td>280-M04</td>
<td>28</td>
<td>69000</td>
<td>31298.40</td>
<td>10.16</td>
<td>81.07</td>
<td>386.07</td>
<td>11.81</td>
<td>139.48</td>
<td>137.88%</td>
<td></td>
</tr>
<tr>
<td>280-M05</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.17</td>
<td>81.23</td>
<td>371.35</td>
<td>-2.91</td>
<td>8.47</td>
<td>132.63%</td>
<td></td>
</tr>
<tr>
<td>280-M06</td>
<td>28</td>
<td>69000</td>
<td>31298.40</td>
<td>10.14</td>
<td>80.75</td>
<td>387.60</td>
<td>13.34</td>
<td>177.96</td>
<td>138.43%</td>
<td></td>
</tr>
<tr>
<td>280-M07</td>
<td>28</td>
<td>63000</td>
<td>28576.80</td>
<td>10.14</td>
<td>80.75</td>
<td>353.89</td>
<td>-20.37</td>
<td>414.94</td>
<td>126.39%</td>
<td></td>
</tr>
<tr>
<td>280-M08</td>
<td>28</td>
<td>63500</td>
<td>28803.60</td>
<td>10.14</td>
<td>80.75</td>
<td>356.70</td>
<td>-17.56</td>
<td>308.35</td>
<td>127.39%</td>
<td></td>
</tr>
<tr>
<td>280-M09</td>
<td>28</td>
<td>70000</td>
<td>31752.00</td>
<td>10.16</td>
<td>81.07</td>
<td>391.66</td>
<td>17.4</td>
<td>302.76</td>
<td>139.88%</td>
<td></td>
</tr>
<tr>
<td>280-M10</td>
<td>28</td>
<td>68500</td>
<td>31071.60</td>
<td>10.17</td>
<td>81.23</td>
<td>382.51</td>
<td>8.25</td>
<td>68.06</td>
<td>136.61%</td>
<td></td>
</tr>
<tr>
<td>280-M11</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.16</td>
<td>81.07</td>
<td>372.08</td>
<td>-2.18</td>
<td>4.75</td>
<td>132.89%</td>
<td></td>
</tr>
<tr>
<td>280-M12</td>
<td>28</td>
<td>65000</td>
<td>29484.00</td>
<td>10.16</td>
<td>81.07</td>
<td>363.69</td>
<td>-10.57</td>
<td>111.72</td>
<td>129.89%</td>
<td></td>
</tr>
<tr>
<td>280-M13</td>
<td>28</td>
<td>69000</td>
<td>31298.40</td>
<td>10.16</td>
<td>81.07</td>
<td>386.07</td>
<td>11.81</td>
<td>139.48</td>
<td>137.88%</td>
<td></td>
</tr>
<tr>
<td>280-M14</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.17</td>
<td>81.23</td>
<td>371.35</td>
<td>-2.91</td>
<td>8.47</td>
<td>132.63%</td>
<td></td>
</tr>
<tr>
<td>280-M15</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.16</td>
<td>81.07</td>
<td>372.08</td>
<td>-2.18</td>
<td>4.75</td>
<td>132.89%</td>
<td></td>
</tr>
<tr>
<td>280-M16</td>
<td>28</td>
<td>72000</td>
<td>32659.20</td>
<td>10.14</td>
<td>80.75</td>
<td>404.45</td>
<td>30.19</td>
<td>911.44</td>
<td>144.45%</td>
<td></td>
</tr>
<tr>
<td>280-M17</td>
<td>28</td>
<td>67000</td>
<td>30391.20</td>
<td>10.16</td>
<td>81.07</td>
<td>374.88</td>
<td>0.62</td>
<td>0.38</td>
<td>133.89%</td>
<td></td>
</tr>
<tr>
<td>280-M18</td>
<td>28</td>
<td>63500</td>
<td>28803.60</td>
<td>10.16</td>
<td>81.07</td>
<td>355.29</td>
<td>-18.97</td>
<td>359.86</td>
<td>126.89%</td>
<td></td>
</tr>
<tr>
<td>280-M19</td>
<td>28</td>
<td>67000</td>
<td>30391.20</td>
<td>10.17</td>
<td>81.23</td>
<td>374.14</td>
<td>-0.12</td>
<td>0.01</td>
<td>133.62%</td>
<td></td>
</tr>
<tr>
<td>280-M20</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.16</td>
<td>81.07</td>
<td>372.08</td>
<td>-2.18</td>
<td>4.75</td>
<td>132.89%</td>
<td></td>
</tr>
<tr>
<td>280-M21</td>
<td>28</td>
<td>65000</td>
<td>29484.00</td>
<td>10.16</td>
<td>81.07</td>
<td>363.69</td>
<td>-10.57</td>
<td>111.72</td>
<td>129.89%</td>
<td></td>
</tr>
<tr>
<td>280-M22</td>
<td>28</td>
<td>69000</td>
<td>31298.40</td>
<td>10.14</td>
<td>80.75</td>
<td>387.60</td>
<td>13.34</td>
<td>177.96</td>
<td>138.43%</td>
<td></td>
</tr>
<tr>
<td>280-M23</td>
<td>28</td>
<td>69500</td>
<td>31525.20</td>
<td>10.17</td>
<td>81.23</td>
<td>388.10</td>
<td>13.84</td>
<td>191.55</td>
<td>138.61%</td>
<td></td>
</tr>
<tr>
<td>280-M24</td>
<td>28</td>
<td>71000</td>
<td>32205.60</td>
<td>10.17</td>
<td>81.23</td>
<td>396.47</td>
<td>22.21</td>
<td>493.28</td>
<td>141.60%</td>
<td></td>
</tr>
<tr>
<td>280-M25</td>
<td>28</td>
<td>69500</td>
<td>31525.20</td>
<td>10.16</td>
<td>81.07</td>
<td>388.86</td>
<td>14.6</td>
<td>213.16</td>
<td>138.88%</td>
<td></td>
</tr>
<tr>
<td>280-M26</td>
<td>28</td>
<td>66500</td>
<td>30164.40</td>
<td>10.17</td>
<td>81.23</td>
<td>371.35</td>
<td>-2.91</td>
<td>8.47</td>
<td>132.63%</td>
<td></td>
</tr>
<tr>
<td>280-M27</td>
<td>28</td>
<td>61500</td>
<td>27896.40</td>
<td>10.14</td>
<td>80.75</td>
<td>345.47</td>
<td>-28.79</td>
<td>828.86</td>
<td>123.38%</td>
<td></td>
</tr>
<tr>
<td>280-M28</td>
<td>28</td>
<td>65000</td>
<td>29484.00</td>
<td>10.16</td>
<td>81.07</td>
<td>363.69</td>
<td>-10.57</td>
<td>111.72</td>
<td>129.89%</td>
<td></td>
</tr>
<tr>
<td>280-M29</td>
<td>28</td>
<td>66000</td>
<td>29937.60</td>
<td>10.14</td>
<td>80.75</td>
<td>370.74</td>
<td>-3.52</td>
<td>12.39</td>
<td>132.41%</td>
<td></td>
</tr>
<tr>
<td>280-M30</td>
<td>28</td>
<td>66000</td>
<td>29937.60</td>
<td>10.16</td>
<td>81.07</td>
<td>369.28</td>
<td>-4.98</td>
<td>24.80</td>
<td>131.89%</td>
<td></td>
</tr>
</tbody>
</table>

N° de muestra=	30
Varianza [S2]=	183.57
Desviación estándar	13.55
Coeficiente de	3.62%

Universidad Nacional de San Antonio Abad del Cusco
Escuela Profesional de Ingeniería Civil

Tesis: "Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyae"
Cuadro resumen de ensayo a compresión simple de testigos cilíndricos de concreto de 4”x8" para resistencia estándar f'c=350 kg/cm²

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lib)</th>
<th>Fuerza (kg)</th>
<th>Diámetro (cm)</th>
<th>Área</th>
<th>f'c (kg/cm²)</th>
<th>(x - x̅)</th>
<th>(x - x̅)^2</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-M01</td>
<td>28</td>
<td>79000</td>
<td>35834.40</td>
<td>10.16</td>
<td>81.07</td>
<td>442.02</td>
<td>-9.98</td>
<td>99.60</td>
<td>126.29%</td>
</tr>
<tr>
<td>350-M02</td>
<td>28</td>
<td>81000</td>
<td>36741.60</td>
<td>10.16</td>
<td>81.07</td>
<td>453.21</td>
<td>1.21</td>
<td>1.46</td>
<td>129.49%</td>
</tr>
<tr>
<td>350-M03</td>
<td>28</td>
<td>76500</td>
<td>34700.40</td>
<td>10.13</td>
<td>80.60</td>
<td>430.53</td>
<td>-21.47</td>
<td>460.96</td>
<td>123.01%</td>
</tr>
<tr>
<td>350-M04</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.16</td>
<td>81.07</td>
<td>419.64</td>
<td>-32.36</td>
<td>1047.17</td>
<td>119.90%</td>
</tr>
<tr>
<td>350-M05</td>
<td>28</td>
<td>77000</td>
<td>34927.20</td>
<td>10.17</td>
<td>81.23</td>
<td>429.98</td>
<td>-22.02</td>
<td>484.88</td>
<td>122.85%</td>
</tr>
<tr>
<td>350-M06</td>
<td>28</td>
<td>90500</td>
<td>41050.80</td>
<td>10.17</td>
<td>81.23</td>
<td>505.37</td>
<td>53.37</td>
<td>28483.36</td>
<td>144.39%</td>
</tr>
<tr>
<td>350-M07</td>
<td>28</td>
<td>86000</td>
<td>39009.60</td>
<td>10.14</td>
<td>80.75</td>
<td>483.09</td>
<td>31.09</td>
<td>966.59</td>
<td>138.03%</td>
</tr>
<tr>
<td>350-M08</td>
<td>28</td>
<td>83000</td>
<td>37648.80</td>
<td>10.14</td>
<td>80.75</td>
<td>466.24</td>
<td>14.24</td>
<td>202.78</td>
<td>133.21%</td>
</tr>
<tr>
<td>350-M09</td>
<td>28</td>
<td>90000</td>
<td>40824.00</td>
<td>10.16</td>
<td>81.07</td>
<td>503.56</td>
<td>51.56</td>
<td>2638.43</td>
<td>143.87%</td>
</tr>
<tr>
<td>350-M10</td>
<td>28</td>
<td>81500</td>
<td>36968.40</td>
<td>10.17</td>
<td>81.23</td>
<td>455.11</td>
<td>3.11</td>
<td>9.67</td>
<td>130.03%</td>
</tr>
<tr>
<td>350-M11</td>
<td>28</td>
<td>86000</td>
<td>39009.60</td>
<td>10.16</td>
<td>81.07</td>
<td>481.18</td>
<td>29.18</td>
<td>851.47</td>
<td>137.48%</td>
</tr>
<tr>
<td>350-M12</td>
<td>28</td>
<td>91000</td>
<td>41277.60</td>
<td>10.16</td>
<td>81.07</td>
<td>509.16</td>
<td>57.16</td>
<td>3267.27</td>
<td>145.47%</td>
</tr>
<tr>
<td>350-M13</td>
<td>28</td>
<td>85000</td>
<td>38556.00</td>
<td>10.13</td>
<td>80.60</td>
<td>478.36</td>
<td>26.36</td>
<td>694.85</td>
<td>136.67%</td>
</tr>
<tr>
<td>350-M14</td>
<td>28</td>
<td>89000</td>
<td>40370.40</td>
<td>10.17</td>
<td>81.23</td>
<td>496.99</td>
<td>44.99</td>
<td>2024.10</td>
<td>142.00%</td>
</tr>
<tr>
<td>350-M15</td>
<td>28</td>
<td>80000</td>
<td>36288.00</td>
<td>10.14</td>
<td>80.75</td>
<td>449.39</td>
<td>-2.61</td>
<td>6.81</td>
<td>128.40%</td>
</tr>
<tr>
<td>350-M16</td>
<td>28</td>
<td>80000</td>
<td>36288.00</td>
<td>10.14</td>
<td>80.75</td>
<td>449.39</td>
<td>-2.61</td>
<td>6.81</td>
<td>128.40%</td>
</tr>
<tr>
<td>350-M17</td>
<td>28</td>
<td>76500</td>
<td>34700.40</td>
<td>10.16</td>
<td>81.07</td>
<td>428.03</td>
<td>-23.97</td>
<td>574.56</td>
<td>122.29%</td>
</tr>
<tr>
<td>350-M18</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.14</td>
<td>80.75</td>
<td>421.30</td>
<td>-30.70</td>
<td>942.49</td>
<td>120.37%</td>
</tr>
<tr>
<td>350-M19</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.17</td>
<td>81.23</td>
<td>418.81</td>
<td>-33.19</td>
<td>1101.58</td>
<td>119.66%</td>
</tr>
<tr>
<td>350-M20</td>
<td>28</td>
<td>77000</td>
<td>34927.20</td>
<td>10.16</td>
<td>81.07</td>
<td>430.83</td>
<td>-21.17</td>
<td>448.17</td>
<td>123.09%</td>
</tr>
<tr>
<td>350-M21</td>
<td>28</td>
<td>76500</td>
<td>34700.40</td>
<td>10.16</td>
<td>81.07</td>
<td>428.03</td>
<td>-23.97</td>
<td>574.56</td>
<td>122.29%</td>
</tr>
<tr>
<td>350-M22</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.14</td>
<td>80.75</td>
<td>421.30</td>
<td>-30.70</td>
<td>942.49</td>
<td>120.37%</td>
</tr>
<tr>
<td>350-M23</td>
<td>28</td>
<td>79000</td>
<td>35834.40</td>
<td>10.17</td>
<td>81.23</td>
<td>441.15</td>
<td>-10.85</td>
<td>117.72</td>
<td>126.04%</td>
</tr>
<tr>
<td>350-M24</td>
<td>28</td>
<td>81000</td>
<td>36741.60</td>
<td>10.17</td>
<td>81.23</td>
<td>452.32</td>
<td>0.32</td>
<td>0.10</td>
<td>129.23%</td>
</tr>
<tr>
<td>350-M25</td>
<td>28</td>
<td>76500</td>
<td>34700.40</td>
<td>10.14</td>
<td>80.75</td>
<td>429.73</td>
<td>-22.27</td>
<td>495.95</td>
<td>122.78%</td>
</tr>
<tr>
<td>350-M26</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.17</td>
<td>81.23</td>
<td>418.81</td>
<td>-33.19</td>
<td>1101.58</td>
<td>119.66%</td>
</tr>
<tr>
<td>350-M27</td>
<td>28</td>
<td>77000</td>
<td>34927.20</td>
<td>10.14</td>
<td>80.75</td>
<td>432.53</td>
<td>-19.47</td>
<td>379.08</td>
<td>123.58%</td>
</tr>
<tr>
<td>350-M28</td>
<td>28</td>
<td>86000</td>
<td>39009.60</td>
<td>10.16</td>
<td>81.07</td>
<td>481.18</td>
<td>29.18</td>
<td>851.47</td>
<td>137.48%</td>
</tr>
<tr>
<td>350-M29</td>
<td>28</td>
<td>86000</td>
<td>39009.60</td>
<td>10.14</td>
<td>80.75</td>
<td>483.09</td>
<td>31.09</td>
<td>966.59</td>
<td>138.03%</td>
</tr>
<tr>
<td>350-M30</td>
<td>28</td>
<td>75000</td>
<td>34020.00</td>
<td>10.16</td>
<td>81.07</td>
<td>419.64</td>
<td>-32.36</td>
<td>1047.17</td>
<td>119.90%</td>
</tr>
</tbody>
</table>

Promedio 452.00 Sumatoria 25174.72

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S²)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>868.09</td>
<td>29.46</td>
<td>6.52%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Cuadro resumen de ensayo de rotura de testigos cilíndricos de 2"x4" para desviación estandar - concreto f'c=140 kg/cm²

<table>
<thead>
<tr>
<th>N°</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f'c (kg/cm²)</th>
<th>(x - x̅)</th>
<th>(x - x̅)^2</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-M01</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.15</td>
<td>20.83</td>
<td>195.99</td>
<td>5.98</td>
<td>35.76</td>
<td>139.99%</td>
</tr>
<tr>
<td>140-M02</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.16</td>
<td>20.91</td>
<td>184.39</td>
<td>-5.62</td>
<td>31.58</td>
<td>131.71%</td>
</tr>
<tr>
<td>140-M03</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.15</td>
<td>20.83</td>
<td>195.99</td>
<td>5.98</td>
<td>35.76</td>
<td>139.99%</td>
</tr>
<tr>
<td>140-M04</td>
<td>28</td>
<td>8000</td>
<td>3628.80</td>
<td>5.16</td>
<td>20.91</td>
<td>173.54</td>
<td>-16.47</td>
<td>271.26</td>
<td>123.96%</td>
</tr>
<tr>
<td>140-M05</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.15</td>
<td>20.83</td>
<td>217.76</td>
<td>27.75</td>
<td>770.06</td>
<td>155.54%</td>
</tr>
<tr>
<td>140-M06</td>
<td>28</td>
<td>9500</td>
<td>4309.20</td>
<td>5.15</td>
<td>20.83</td>
<td>206.87</td>
<td>16.86</td>
<td>284.26</td>
<td>147.76%</td>
</tr>
<tr>
<td>140-M07</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M08</td>
<td>28</td>
<td>8000</td>
<td>3628.80</td>
<td>5.16</td>
<td>20.91</td>
<td>173.54</td>
<td>-16.47</td>
<td>271.26</td>
<td>123.96%</td>
</tr>
<tr>
<td>140-M09</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.17</td>
<td>20.99</td>
<td>183.69</td>
<td>-6.32</td>
<td>39.94</td>
<td>131.21%</td>
</tr>
<tr>
<td>140-M10</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.16</td>
<td>20.91</td>
<td>184.39</td>
<td>-5.62</td>
<td>31.58</td>
<td>131.71%</td>
</tr>
<tr>
<td>140-M11</td>
<td>28</td>
<td>8000</td>
<td>3628.80</td>
<td>5.15</td>
<td>20.83</td>
<td>174.21</td>
<td>-15.8</td>
<td>249.64</td>
<td>124.44%</td>
</tr>
<tr>
<td>140-M12</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.17</td>
<td>20.99</td>
<td>194.49</td>
<td>4.48</td>
<td>20.07</td>
<td>138.92%</td>
</tr>
<tr>
<td>140-M13</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M14</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.99</td>
<td>5.98</td>
<td>35.76</td>
<td>139.99%</td>
</tr>
<tr>
<td>140-M15</td>
<td>28</td>
<td>6500</td>
<td>2948.40</td>
<td>5.15</td>
<td>20.83</td>
<td>141.55</td>
<td>-48.46</td>
<td>2348.37</td>
<td>101.11%</td>
</tr>
<tr>
<td>140-M16</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.15</td>
<td>20.83</td>
<td>185.1</td>
<td>-4.91</td>
<td>24.11</td>
<td>132.21%</td>
</tr>
<tr>
<td>140-M17</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.15</td>
<td>20.83</td>
<td>185.1</td>
<td>-4.91</td>
<td>24.11</td>
<td>132.21%</td>
</tr>
<tr>
<td>140-M18</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M19</td>
<td>28</td>
<td>9500</td>
<td>4309.20</td>
<td>5.15</td>
<td>20.83</td>
<td>206.87</td>
<td>16.86</td>
<td>284.26</td>
<td>147.76%</td>
</tr>
<tr>
<td>140-M20</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M21</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.15</td>
<td>20.83</td>
<td>195.99</td>
<td>5.98</td>
<td>35.76</td>
<td>139.99%</td>
</tr>
<tr>
<td>140-M22</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.15</td>
<td>20.83</td>
<td>185.1</td>
<td>-4.91</td>
<td>24.11</td>
<td>132.21%</td>
</tr>
<tr>
<td>140-M23</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.17</td>
<td>20.99</td>
<td>183.69</td>
<td>-6.32</td>
<td>39.94</td>
<td>131.21%</td>
</tr>
<tr>
<td>140-M24</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.16</td>
<td>20.91</td>
<td>184.39</td>
<td>-5.62</td>
<td>31.58</td>
<td>131.71%</td>
</tr>
<tr>
<td>140-M25</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.15</td>
<td>20.83</td>
<td>217.76</td>
<td>27.75</td>
<td>770.06</td>
<td>155.54%</td>
</tr>
<tr>
<td>140-M26</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M27</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.17</td>
<td>20.99</td>
<td>194.49</td>
<td>4.48</td>
<td>20.07</td>
<td>138.92%</td>
</tr>
<tr>
<td>140-M28</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>5.23</td>
<td>27.35</td>
<td>139.46%</td>
</tr>
<tr>
<td>140-M29</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.17</td>
<td>20.99</td>
<td>183.69</td>
<td>-6.32</td>
<td>39.94</td>
<td>131.21%</td>
</tr>
<tr>
<td>140-M30</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.16</td>
<td>20.91</td>
<td>184.39</td>
<td>-5.62</td>
<td>31.58</td>
<td>131.71%</td>
</tr>
</tbody>
</table>

f'c promedio | 190.01 | Suma | 5914.92

N° de muestra= 30
Varianza (S2)= 203.96
Desviación estándar S= 14.28
Coeficiente de variación 7.52%
Cuadro resumen de ensayo de rotura de testigos cilíndricos de 2”x4” para desviación estándar - concreto f’c=175 kg/cm2

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lib)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f’c (kg/cm2)</th>
<th>(x – x̅)</th>
<th>(x – x̅)²</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>175-M01</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.18</td>
<td>21.07</td>
<td>247.57</td>
<td>5.31</td>
<td>28.20</td>
<td>141.47%</td>
</tr>
<tr>
<td>175-M02</td>
<td>28</td>
<td>11000</td>
<td>4989.60</td>
<td>5.16</td>
<td>20.91</td>
<td>238.62</td>
<td>-3.64</td>
<td>13.25</td>
<td>136.35%</td>
</tr>
<tr>
<td>175-M03</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.17</td>
<td>20.99</td>
<td>259.32</td>
<td>17.06</td>
<td>291.04</td>
<td>148.18%</td>
</tr>
<tr>
<td>175-M04</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.15</td>
<td>20.83</td>
<td>272.2</td>
<td>29.94</td>
<td>896.40</td>
<td>155.54%</td>
</tr>
<tr>
<td>175-M05</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.15</td>
<td>20.83</td>
<td>261.32</td>
<td>19.06</td>
<td>363.28</td>
<td>149.33%</td>
</tr>
<tr>
<td>175-M06</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.15</td>
<td>20.83</td>
<td>261.32</td>
<td>19.06</td>
<td>363.28</td>
<td>149.33%</td>
</tr>
<tr>
<td>175-M07</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M08</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>18.06</td>
<td>326.16</td>
<td>148.75%</td>
</tr>
<tr>
<td>175-M09</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.16</td>
<td>20.91</td>
<td>195.24</td>
<td>-47.02</td>
<td>2210.88</td>
<td>111.57%</td>
</tr>
<tr>
<td>175-M10</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.17</td>
<td>20.99</td>
<td>259.32</td>
<td>17.06</td>
<td>291.04</td>
<td>148.18%</td>
</tr>
<tr>
<td>175-M11</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>18.06</td>
<td>326.16</td>
<td>148.75%</td>
</tr>
<tr>
<td>175-M12</td>
<td>28</td>
<td>11000</td>
<td>4989.60</td>
<td>5.18</td>
<td>21.07</td>
<td>236.81</td>
<td>-5.45</td>
<td>29.70</td>
<td>135.32%</td>
</tr>
<tr>
<td>175-M13</td>
<td>28</td>
<td>11000</td>
<td>4989.60</td>
<td>5.18</td>
<td>21.07</td>
<td>236.81</td>
<td>-5.45</td>
<td>29.70</td>
<td>135.32%</td>
</tr>
<tr>
<td>175-M14</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>18.06</td>
<td>326.16</td>
<td>148.75%</td>
</tr>
<tr>
<td>175-M15</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M16</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M17</td>
<td>28</td>
<td>8500</td>
<td>3855.60</td>
<td>5.17</td>
<td>20.99</td>
<td>183.69</td>
<td>-58.57</td>
<td>3430.44</td>
<td>104.97%</td>
</tr>
<tr>
<td>175-M18</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.15</td>
<td>20.83</td>
<td>261.32</td>
<td>19.06</td>
<td>363.28</td>
<td>149.33%</td>
</tr>
<tr>
<td>175-M19</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M20</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M21</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>18.06</td>
<td>326.16</td>
<td>148.75%</td>
</tr>
<tr>
<td>175-M22</td>
<td>28</td>
<td>11000</td>
<td>4989.60</td>
<td>5.17</td>
<td>20.99</td>
<td>237.71</td>
<td>-4.55</td>
<td>20.70</td>
<td>135.83%</td>
</tr>
<tr>
<td>175-M23</td>
<td>28</td>
<td>10500</td>
<td>4762.80</td>
<td>5.15</td>
<td>20.83</td>
<td>228.65</td>
<td>-13.61</td>
<td>185.23</td>
<td>130.66%</td>
</tr>
<tr>
<td>175-M24</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.17</td>
<td>20.99</td>
<td>216.1</td>
<td>-26.16</td>
<td>684.35</td>
<td>123.49%</td>
</tr>
<tr>
<td>175-M25</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.18</td>
<td>21.07</td>
<td>247.57</td>
<td>5.31</td>
<td>28.20</td>
<td>141.47%</td>
</tr>
<tr>
<td>175-M26</td>
<td>28</td>
<td>11500</td>
<td>5216.40</td>
<td>5.16</td>
<td>20.91</td>
<td>249.47</td>
<td>7.21</td>
<td>51.98</td>
<td>142.55%</td>
</tr>
<tr>
<td>175-M27</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.17</td>
<td>20.99</td>
<td>216.1</td>
<td>-26.16</td>
<td>684.35</td>
<td>123.49%</td>
</tr>
<tr>
<td>175-M28</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>18.06</td>
<td>326.16</td>
<td>148.75%</td>
</tr>
<tr>
<td>175-M29</td>
<td>28</td>
<td>9000</td>
<td>4082.40</td>
<td>5.17</td>
<td>20.99</td>
<td>194.49</td>
<td>-47.77</td>
<td>2281.97</td>
<td>111.14%</td>
</tr>
<tr>
<td>175-M30</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.18</td>
<td>21.07</td>
<td>215.28</td>
<td>-26.98</td>
<td>727.92</td>
<td>123.02%</td>
</tr>
</tbody>
</table>

\[
\bar{x} = 242.26 \quad \text{Suma} = 14865.89
\]

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (s^2)</td>
<td>512.62</td>
</tr>
<tr>
<td>Desviación estándar (s)</td>
<td>22.64</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>9.35%</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Cuadro resumen de ensayo de rotura de testigos cilíndricos de 2”x4” para desviación estandar - concreto $f'c=210$ kg/cm²

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>$f'c$ (kg/cm²)</th>
<th>$(x - \bar{x})$</th>
<th>$(x - \bar{x})^2$</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-M01</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.17</td>
<td>20.99</td>
<td>259.32</td>
<td>-16.50</td>
<td>272.25</td>
<td>123.49%</td>
</tr>
<tr>
<td>210-M02</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.16</td>
<td>20.91</td>
<td>292.86</td>
<td>17.04</td>
<td>290.36</td>
<td>139.46%</td>
</tr>
<tr>
<td>210-M03</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.15</td>
<td>20.83</td>
<td>283.09</td>
<td>7.27</td>
<td>52.85</td>
<td>134.80%</td>
</tr>
<tr>
<td>210-M04</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.17</td>
<td>20.99</td>
<td>280.93</td>
<td>5.11</td>
<td>26.11</td>
<td>133.78%</td>
</tr>
<tr>
<td>210-M05</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.18</td>
<td>21.07</td>
<td>290.63</td>
<td>14.81</td>
<td>219.34</td>
<td>138.40%</td>
</tr>
<tr>
<td>210-M06</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.15</td>
<td>20.83</td>
<td>272.20</td>
<td>-3.62</td>
<td>13.10</td>
<td>129.62%</td>
</tr>
<tr>
<td>210-M07</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.15</td>
<td>20.83</td>
<td>272.20</td>
<td>-3.62</td>
<td>13.10</td>
<td>129.62%</td>
</tr>
<tr>
<td>210-M08</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.18</td>
<td>21.07</td>
<td>279.87</td>
<td>4.05</td>
<td>16.40</td>
<td>133.27%</td>
</tr>
<tr>
<td>210-M09</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.15</td>
<td>20.83</td>
<td>283.09</td>
<td>7.27</td>
<td>52.85</td>
<td>134.80%</td>
</tr>
<tr>
<td>210-M10</td>
<td>28</td>
<td>10500</td>
<td>4762.80</td>
<td>5.16</td>
<td>20.91</td>
<td>227.78</td>
<td>-48.04</td>
<td>2307.84</td>
<td>108.47%</td>
</tr>
<tr>
<td>210-M11</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.16</td>
<td>20.91</td>
<td>271.16</td>
<td>-4.66</td>
<td>21.72</td>
<td>129.12%</td>
</tr>
<tr>
<td>210-M12</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.16</td>
<td>20.91</td>
<td>271.16</td>
<td>-4.66</td>
<td>21.72</td>
<td>129.12%</td>
</tr>
<tr>
<td>210-M13</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.15</td>
<td>20.83</td>
<td>272.20</td>
<td>-3.62</td>
<td>13.10</td>
<td>129.62%</td>
</tr>
<tr>
<td>210-M14</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.17</td>
<td>20.99</td>
<td>280.93</td>
<td>5.11</td>
<td>26.11</td>
<td>133.78%</td>
</tr>
<tr>
<td>210-M15</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.16</td>
<td>20.91</td>
<td>292.86</td>
<td>17.04</td>
<td>290.36</td>
<td>139.46%</td>
</tr>
<tr>
<td>210-M16</td>
<td>28</td>
<td>14000</td>
<td>6350.40</td>
<td>5.16</td>
<td>20.91</td>
<td>303.77</td>
<td>27.88</td>
<td>777.29</td>
<td>144.62%</td>
</tr>
<tr>
<td>210-M17</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.15</td>
<td>20.83</td>
<td>293.98</td>
<td>18.16</td>
<td>329.79</td>
<td>139.99%</td>
</tr>
<tr>
<td>210-M18</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.16</td>
<td>20.91</td>
<td>292.86</td>
<td>17.04</td>
<td>290.36</td>
<td>139.46%</td>
</tr>
<tr>
<td>210-M19</td>
<td>28</td>
<td>14000</td>
<td>6350.40</td>
<td>5.16</td>
<td>20.91</td>
<td>303.77</td>
<td>27.88</td>
<td>777.29</td>
<td>144.62%</td>
</tr>
<tr>
<td>210-M20</td>
<td>28</td>
<td>14000</td>
<td>6350.40</td>
<td>5.17</td>
<td>20.99</td>
<td>302.54</td>
<td>26.72</td>
<td>713.96</td>
<td>144.07%</td>
</tr>
<tr>
<td>210-M21</td>
<td>28</td>
<td>13500</td>
<td>6123.60</td>
<td>5.17</td>
<td>20.99</td>
<td>291.74</td>
<td>15.92</td>
<td>253.45</td>
<td>138.92%</td>
</tr>
<tr>
<td>210-M22</td>
<td>28</td>
<td>12000</td>
<td>5443.20</td>
<td>5.16</td>
<td>20.91</td>
<td>260.32</td>
<td>-15.50</td>
<td>240.25</td>
<td>123.96%</td>
</tr>
<tr>
<td>210-M23</td>
<td>28</td>
<td>10500</td>
<td>4762.80</td>
<td>5.18</td>
<td>21.07</td>
<td>226.05</td>
<td>-49.77</td>
<td>2477.05</td>
<td>107.64%</td>
</tr>
<tr>
<td>210-M24</td>
<td>28</td>
<td>10000</td>
<td>4536.00</td>
<td>5.18</td>
<td>21.07</td>
<td>215.28</td>
<td>-60.54</td>
<td>3665.09</td>
<td>102.51%</td>
</tr>
<tr>
<td>210-M25</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.16</td>
<td>20.91</td>
<td>271.16</td>
<td>-4.66</td>
<td>21.72</td>
<td>129.12%</td>
</tr>
<tr>
<td>210-M26</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.16</td>
<td>20.91</td>
<td>271.16</td>
<td>-4.66</td>
<td>21.72</td>
<td>129.12%</td>
</tr>
<tr>
<td>210-M27</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.17</td>
<td>20.99</td>
<td>280.93</td>
<td>5.11</td>
<td>26.11</td>
<td>133.78%</td>
</tr>
<tr>
<td>210-M28</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.17</td>
<td>20.99</td>
<td>280.93</td>
<td>5.11</td>
<td>26.11</td>
<td>133.78%</td>
</tr>
<tr>
<td>210-M29</td>
<td>28</td>
<td>13000</td>
<td>5896.80</td>
<td>5.18</td>
<td>21.07</td>
<td>279.87</td>
<td>4.05</td>
<td>16.40</td>
<td>133.27%</td>
</tr>
<tr>
<td>210-M30</td>
<td>28</td>
<td>12500</td>
<td>5670.00</td>
<td>5.17</td>
<td>20.99</td>
<td>270.13</td>
<td>-5.69</td>
<td>32.38</td>
<td>128.63%</td>
</tr>
</tbody>
</table>

$f'c$ promedio 275.82 Suma 13306.18

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S²)</td>
<td>458.83</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>21.42</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>7.77%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquina Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>$f'c$ (kg/cm²)</th>
<th>$(x - \bar{x})$</th>
<th>$(x - \bar{x})^2$</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>280-M01</td>
<td>28</td>
<td>16000.00</td>
<td>7257.60</td>
<td>5.17</td>
<td>20.99</td>
<td>345.76</td>
<td>-16.22</td>
<td>263.09</td>
<td>123.49%</td>
</tr>
<tr>
<td>280-M02</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.17</td>
<td>20.99</td>
<td>367.37</td>
<td>5.39</td>
<td>29.05</td>
<td>131.20%</td>
</tr>
<tr>
<td>280-M03</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.18</td>
<td>21.07</td>
<td>355.22</td>
<td>-6.76</td>
<td>45.70</td>
<td>126.86%</td>
</tr>
<tr>
<td>280-M04</td>
<td>28</td>
<td>16000.00</td>
<td>7257.60</td>
<td>5.18</td>
<td>21.07</td>
<td>344.45</td>
<td>-17.53</td>
<td>307.30</td>
<td>123.02%</td>
</tr>
<tr>
<td>280-M05</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M06</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M07</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.16</td>
<td>20.91</td>
<td>368.78</td>
<td>6.80</td>
<td>46.24</td>
<td>131.71%</td>
</tr>
<tr>
<td>280-M08</td>
<td>28</td>
<td>16000.00</td>
<td>7257.60</td>
<td>5.16</td>
<td>20.91</td>
<td>347.09</td>
<td>-14.89</td>
<td>221.71</td>
<td>123.96%</td>
</tr>
<tr>
<td>280-M09</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.17</td>
<td>20.99</td>
<td>388.99</td>
<td>27.01</td>
<td>729.54</td>
<td>138.93%</td>
</tr>
<tr>
<td>280-M10</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.15</td>
<td>20.83</td>
<td>381.08</td>
<td>19.10</td>
<td>364.81</td>
<td>136.10%</td>
</tr>
<tr>
<td>280-M11</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.17</td>
<td>20.99</td>
<td>367.37</td>
<td>5.39</td>
<td>29.05</td>
<td>131.20%</td>
</tr>
<tr>
<td>280-M12</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.18</td>
<td>21.07</td>
<td>365.98</td>
<td>4.00</td>
<td>16.00</td>
<td>130.71%</td>
</tr>
<tr>
<td>280-M13</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.16</td>
<td>20.91</td>
<td>390.47</td>
<td>28.49</td>
<td>811.68</td>
<td>139.45%</td>
</tr>
<tr>
<td>280-M14</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.17</td>
<td>20.99</td>
<td>389.99</td>
<td>27.01</td>
<td>729.54</td>
<td>138.93%</td>
</tr>
<tr>
<td>280-M15</td>
<td>28</td>
<td>14000.00</td>
<td>6350.40</td>
<td>5.16</td>
<td>20.91</td>
<td>303.70</td>
<td>-58.28</td>
<td>3396.56</td>
<td>108.46%</td>
</tr>
<tr>
<td>280-M16</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.17</td>
<td>20.99</td>
<td>388.99</td>
<td>27.01</td>
<td>729.54</td>
<td>138.93%</td>
</tr>
<tr>
<td>280-M17</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.18</td>
<td>21.07</td>
<td>365.98</td>
<td>4.00</td>
<td>16.00</td>
<td>130.71%</td>
</tr>
<tr>
<td>280-M18</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.18</td>
<td>21.07</td>
<td>376.74</td>
<td>14.76</td>
<td>217.86</td>
<td>134.55%</td>
</tr>
<tr>
<td>280-M19</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.16</td>
<td>20.91</td>
<td>368.78</td>
<td>6.80</td>
<td>46.24</td>
<td>131.71%</td>
</tr>
<tr>
<td>280-M20</td>
<td>28</td>
<td>14000.00</td>
<td>6350.40</td>
<td>5.17</td>
<td>20.99</td>
<td>302.54</td>
<td>-59.44</td>
<td>3533.11</td>
<td>108.05%</td>
</tr>
<tr>
<td>280-M21</td>
<td>28</td>
<td>16000.00</td>
<td>7257.60</td>
<td>5.16</td>
<td>20.91</td>
<td>347.09</td>
<td>-14.89</td>
<td>221.71</td>
<td>123.96%</td>
</tr>
<tr>
<td>280-M22</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M23</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.17</td>
<td>20.99</td>
<td>356.57</td>
<td>-5.41</td>
<td>29.27</td>
<td>127.35%</td>
</tr>
<tr>
<td>280-M24</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M25</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.18</td>
<td>21.07</td>
<td>365.98</td>
<td>4.00</td>
<td>16.00</td>
<td>130.71%</td>
</tr>
<tr>
<td>280-M26</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.18</td>
<td>21.07</td>
<td>365.98</td>
<td>4.00</td>
<td>16.00</td>
<td>130.71%</td>
</tr>
<tr>
<td>280-M27</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M28</td>
<td>28</td>
<td>16500.00</td>
<td>7484.40</td>
<td>5.16</td>
<td>20.91</td>
<td>357.93</td>
<td>-4.05</td>
<td>16.40</td>
<td>127.83%</td>
</tr>
<tr>
<td>280-M29</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.16</td>
<td>20.91</td>
<td>379.63</td>
<td>17.65</td>
<td>311.52</td>
<td>135.58%</td>
</tr>
<tr>
<td>280-M30</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.17</td>
<td>20.99</td>
<td>378.18</td>
<td>16.20</td>
<td>262.44</td>
<td>135.06%</td>
</tr>
</tbody>
</table>

Resistencia $f'c$ promedio: 361.98 kg/cm²
Suma: 12488.36

Nº de muestra: 30
Varianza (S²): 430.63
Desviación estándar S: 20.75
Coeficiente de variación: $5.73%$
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c =$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Edad</th>
<th>Fuerza (lb)</th>
<th>Fuerza (kg)</th>
<th>Diámetro</th>
<th>Área</th>
<th>f'_c (kg/cm²)</th>
<th>\bar{x}</th>
<th>$(x-\bar{x})^2$</th>
<th>% de Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-M01</td>
<td>28</td>
<td>20000.00</td>
<td>9072.00</td>
<td>5.17</td>
<td>20.99</td>
<td>432.21</td>
<td>22.48</td>
<td>505.35</td>
<td>123.49%</td>
</tr>
<tr>
<td>350-M02</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.16</td>
<td>20.91</td>
<td>412.17</td>
<td>2.44</td>
<td>5.95</td>
<td>117.76%</td>
</tr>
<tr>
<td>350-M03</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.15</td>
<td>20.83</td>
<td>413.75</td>
<td>4.02</td>
<td>16.16</td>
<td>118.21%</td>
</tr>
<tr>
<td>350-M04</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.16</td>
<td>20.91</td>
<td>412.17</td>
<td>2.44</td>
<td>5.95</td>
<td>117.76%</td>
</tr>
<tr>
<td>350-M05</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M06</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.16</td>
<td>20.91</td>
<td>390.47</td>
<td>-19.26</td>
<td>370.95</td>
<td>111.56%</td>
</tr>
<tr>
<td>350-M07</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.17</td>
<td>20.99</td>
<td>410.60</td>
<td>0.87</td>
<td>0.76</td>
<td>117.31%</td>
</tr>
<tr>
<td>350-M08</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.16</td>
<td>20.91</td>
<td>423.01</td>
<td>13.28</td>
<td>176.36</td>
<td>120.86%</td>
</tr>
<tr>
<td>350-M09</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.18</td>
<td>21.07</td>
<td>365.98</td>
<td>-43.75</td>
<td>1914.06</td>
<td>104.57%</td>
</tr>
<tr>
<td>350-M10</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.16</td>
<td>20.91</td>
<td>390.47</td>
<td>-19.26</td>
<td>370.95</td>
<td>111.56%</td>
</tr>
<tr>
<td>350-M11</td>
<td>28</td>
<td>18500.00</td>
<td>8391.60</td>
<td>5.16</td>
<td>20.91</td>
<td>401.32</td>
<td>-8.41</td>
<td>70.73</td>
<td>114.66%</td>
</tr>
<tr>
<td>350-M12</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.18</td>
<td>21.07</td>
<td>409.04</td>
<td>-0.69</td>
<td>0.48</td>
<td>116.87%</td>
</tr>
<tr>
<td>350-M13</td>
<td>28</td>
<td>18000.00</td>
<td>8164.80</td>
<td>5.16</td>
<td>20.91</td>
<td>401.32</td>
<td>-8.41</td>
<td>70.73</td>
<td>114.66%</td>
</tr>
<tr>
<td>350-M14</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.17</td>
<td>20.99</td>
<td>410.60</td>
<td>0.87</td>
<td>0.76</td>
<td>117.31%</td>
</tr>
<tr>
<td>350-M15</td>
<td>28</td>
<td>19000.00</td>
<td>8618.40</td>
<td>5.15</td>
<td>20.83</td>
<td>413.75</td>
<td>4.02</td>
<td>16.16</td>
<td>118.21%</td>
</tr>
<tr>
<td>350-M16</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.18</td>
<td>21.07</td>
<td>419.80</td>
<td>10.07</td>
<td>101.40</td>
<td>119.94%</td>
</tr>
<tr>
<td>350-M17</td>
<td>28</td>
<td>20000.00</td>
<td>9072.00</td>
<td>5.16</td>
<td>20.91</td>
<td>433.86</td>
<td>24.13</td>
<td>582.26</td>
<td>123.96%</td>
</tr>
<tr>
<td>350-M18</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M19</td>
<td>28</td>
<td>20000.00</td>
<td>9072.00</td>
<td>5.17</td>
<td>20.99</td>
<td>432.21</td>
<td>22.48</td>
<td>505.35</td>
<td>123.49%</td>
</tr>
<tr>
<td>350-M20</td>
<td>28</td>
<td>20000.00</td>
<td>9072.00</td>
<td>5.16</td>
<td>20.91</td>
<td>433.86</td>
<td>24.13</td>
<td>582.26</td>
<td>123.96%</td>
</tr>
<tr>
<td>350-M21</td>
<td>28</td>
<td>20500.00</td>
<td>9298.80</td>
<td>5.17</td>
<td>20.99</td>
<td>443.01</td>
<td>33.28</td>
<td>1107.56</td>
<td>126.57%</td>
</tr>
<tr>
<td>350-M22</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.17</td>
<td>20.99</td>
<td>367.37</td>
<td>-42.36</td>
<td>1794.37</td>
<td>104.96%</td>
</tr>
<tr>
<td>350-M23</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M24</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.16</td>
<td>20.91</td>
<td>379.63</td>
<td>-30.10</td>
<td>906.01</td>
<td>108.47%</td>
</tr>
<tr>
<td>350-M25</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M26</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M27</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
<tr>
<td>350-M28</td>
<td>28</td>
<td>17000.00</td>
<td>7711.20</td>
<td>5.17</td>
<td>20.99</td>
<td>367.37</td>
<td>-42.36</td>
<td>1794.37</td>
<td>104.96%</td>
</tr>
<tr>
<td>350-M29</td>
<td>28</td>
<td>17500.00</td>
<td>7938.00</td>
<td>5.17</td>
<td>20.99</td>
<td>378.18</td>
<td>-31.55</td>
<td>995.40</td>
<td>108.05%</td>
</tr>
<tr>
<td>350-M30</td>
<td>28</td>
<td>19500.00</td>
<td>8845.20</td>
<td>5.17</td>
<td>20.99</td>
<td>421.40</td>
<td>11.67</td>
<td>136.19</td>
<td>120.40%</td>
</tr>
</tbody>
</table>

\bar{x} promedio $= 409.73$
Suma $= 12847.66$

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S²)</td>
<td>443.02</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>21.05</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>5.14%</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae

B
(DISEÑOS DE MEZCLAS)
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo Diseño de mezclas
Cantera Cunyac
Agua Potable
Cemento Yura IP
Fecha 15-09-18
Laboratorio EPIC-UNSAAC

| Resistencia | 140 kg/cm² | Huso | 67 | Diseño | Inicial |

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/m³</td>
<td>2689.35 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4</th>
<th>Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f'_c)</td>
<td>140 kg/cm³</td>
<td></td>
</tr>
<tr>
<td>Resistencia requerida (f'_cr)</td>
<td>210 kg/cm³</td>
<td></td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 lit</td>
<td></td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
<td></td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>304.15 kg</td>
<td></td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f'_cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>210</td>
<td>0.674</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Cuadro resumen de diseño de mezclas inicial para f’c=140 kg/cm² - huso 67- Muestras cilíndricas de 4”x8”

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco (WS)</td>
<td>Peso específico (Pe)</td>
<td>Volumen</td>
</tr>
<tr>
<td>Cemento</td>
<td>304.15</td>
<td>2850.00</td>
<td>0.107</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
</tr>
<tr>
<td>Arena</td>
<td>840.24</td>
<td>2617.57</td>
<td>0.321</td>
</tr>
<tr>
<td>Piedra</td>
<td>933.20</td>
<td>2689.35</td>
<td>0.347</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2282.59</td>
<td>0.332</td>
<td>0.668</td>
</tr>
</tbody>
</table>

Elaboración propia

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUOtotal</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>2.53</th>
<th>2.86</th>
<th>29.33</th>
<th>Lit / bols</th>
<th>0.69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resistencia 140 kg/cm²

Diseño de mezclas

<table>
<thead>
<tr>
<th>Material</th>
<th>Peso seco (WS)</th>
<th>Peso unitario seco (WUS)</th>
<th>Peso en obra (WO)</th>
<th>Peso unitario en obra (WUO)</th>
<th>Volumen en obra (WUO*42.5)</th>
<th>Volumen en obra (WUO*F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>305.94</td>
<td>1.00</td>
<td>305.94</td>
<td>1.00</td>
<td>42.5</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>204.98</td>
<td>0.67</td>
<td>210.76</td>
<td>0.69</td>
<td>29.28</td>
<td>29.28</td>
</tr>
<tr>
<td>Arena</td>
<td>868.19</td>
<td>2.84</td>
<td>875.05</td>
<td>2.86</td>
<td>121.56</td>
<td>2.60</td>
</tr>
<tr>
<td>Piedra húmeda</td>
<td>972.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra seca</td>
<td>967.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra saturada</td>
<td>973.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena saturada</td>
<td>879.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena seca</td>
<td>868.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 2346.17

Cálculo de mezclas

<table>
<thead>
<tr>
<th>Material</th>
<th>Peso en obra (WO)</th>
<th>Peso unitario en obra (WUO)</th>
<th>Volumen en obra (WUO*42.5)</th>
<th>Volumen en obra (WUO*F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>305.94</td>
<td>1.00</td>
<td>42.5</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>210.76</td>
<td>0.69</td>
<td>29.28</td>
<td>29.28</td>
</tr>
<tr>
<td>Arena</td>
<td>875.05</td>
<td>2.86</td>
<td>121.56</td>
<td>2.60</td>
</tr>
<tr>
<td>Piedra húmeda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra seca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra saturada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena saturada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena seca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 2363.84

Dosificación seco

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad seco</th>
<th>Cantidad humed</th>
<th>Cantidad seca</th>
<th>Cantidad total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>305.94</td>
<td>204.98</td>
<td>868.19</td>
<td>967.06</td>
</tr>
<tr>
<td>Agua</td>
<td>1.00</td>
<td>0.67</td>
<td>2.84</td>
<td>3.16</td>
</tr>
<tr>
<td>Arena seca</td>
<td>875.05</td>
<td></td>
<td>972.09</td>
<td></td>
</tr>
</tbody>
</table>

Dosificación húmedo

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad seco</th>
<th>Cantidad humed</th>
<th>Cantidad seca</th>
<th>Cantidad total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>305.94</td>
<td>210.76</td>
<td>875.05</td>
<td>972.09</td>
</tr>
<tr>
<td>Agua</td>
<td>1.00</td>
<td>0.69</td>
<td>2.86</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Corrección de diseño: 0.151 Lit., 6.5602 Kg., 11.581 Kg., 0.002124 M³, 2282.59 Kg/m³, 2363.84 Kg/m³, 0.00824, 204.98 Lit., 305.94 Kg., 972.09 Kg., 967.06 Kg., 973.44 Kg., 879.48 Kg., 868.19 Kg.

Cuadro resumen de diseño de mezclas inicial corregido por asentamiento y densidad f’c=140 kg/cm²

<table>
<thead>
<tr>
<th>Peso unitario seco</th>
<th>Cálculo en secó</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUS</td>
<td>Peso en obra</td>
<td>Peso unitario en obra</td>
<td>Volumen (pie³)</td>
</tr>
<tr>
<td>305.94</td>
<td>1.00</td>
<td>305.94</td>
<td>1.00</td>
</tr>
<tr>
<td>204.98</td>
<td>0.67</td>
<td>210.76</td>
<td>0.69</td>
</tr>
<tr>
<td>868.19</td>
<td>2.84</td>
<td>875.05</td>
<td>2.86</td>
</tr>
<tr>
<td>967.06</td>
<td>3.16</td>
<td>972.09</td>
<td>3.18</td>
</tr>
</tbody>
</table>

TOTAL: 2346.17

<table>
<thead>
<tr>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.60</td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Ensayo | Diseño de mezclas
Cantera | Cunyac
Agua | Potable
Fecha | 11-11-18
Laboratorio | EPIC-UNSAAC

Resistencia | 140 kg/cm² | Huso | 67 | Diseño | Final

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/m³</td>
<td>2689.35 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Finaez</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Mínimo Nominal</td>
<td>Nº4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 pulg</td>
</tr>
<tr>
<td>Resistencia especificada (f'c)</td>
<td>140 kg/cm²</td>
</tr>
<tr>
<td>Desviación estándar (Ss)</td>
<td>13.88</td>
</tr>
<tr>
<td>Resistencia requerida 1 (fcr1)</td>
<td>158.60 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 1 (fcr1)</td>
<td>137.34 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f'cr)</td>
<td>158.6 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>265.20 kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f'cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
<tr>
<td>158.6</td>
<td>0.773</td>
</tr>
<tr>
<td>150</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

Diseño de mezclas final para concreto f’c=140 kg/cm2-huso 67.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V(m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie³) WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>265.20</td>
<td>2850.00</td>
<td>0.093</td>
<td>1.00</td>
<td>265.20</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>2.26</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.77</td>
<td>210.70</td>
<td>0.79</td>
<td>33.58</td>
<td>33.58</td>
<td>1.79</td>
</tr>
<tr>
<td>Arena</td>
<td>855.95</td>
<td>2617.57</td>
<td>0.327</td>
<td>3.23</td>
<td>862.71</td>
<td>3.25</td>
<td>138.13</td>
<td>2.96</td>
<td>7.35</td>
</tr>
<tr>
<td>Piedra</td>
<td>954.72</td>
<td>2689.35</td>
<td>0.355</td>
<td>3.60</td>
<td>959.68</td>
<td>3.62</td>
<td>153.85</td>
<td>3.36</td>
<td>8.18</td>
</tr>
<tr>
<td>Aire</td>
<td>2%</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2280.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUOtotal</td>
<td>2.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit / bols</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Diseño de mezclas final corregido para f’c=140 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Description</th>
<th>Peso seco</th>
<th>Peso unitario seco</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>Volumen (pie³)</th>
<th>WUO*42.5</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>261.31</td>
<td>1.00</td>
<td>261.31</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>17.32</td>
</tr>
<tr>
<td>Agua</td>
<td>201.21</td>
<td>0.77</td>
<td>207.11</td>
<td>0.79</td>
<td>33.68</td>
<td>33.68</td>
<td>13.73</td>
</tr>
<tr>
<td>Arena</td>
<td>885.91</td>
<td>3.39</td>
<td>892.91</td>
<td>3.42</td>
<td>145.22</td>
<td>3.11</td>
<td>59.17</td>
</tr>
<tr>
<td>Piedra</td>
<td>987.58</td>
<td>3.78</td>
<td>992.72</td>
<td>3.80</td>
<td>161.46</td>
<td>3.53</td>
<td>65.79</td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2336.01</td>
<td></td>
<td>2354.04</td>
<td>9.01</td>
<td>156.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dosificación seco

<table>
<thead>
<tr>
<th>Description</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco</td>
<td>261.31</td>
<td>201.21</td>
<td>885.91</td>
<td>987.58</td>
</tr>
<tr>
<td>Peso unitario seco</td>
<td>1.00</td>
<td>0.77</td>
<td>3.39</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Dosificación húmedo

<table>
<thead>
<tr>
<th>Description</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco</td>
<td>261.31</td>
<td>201.21</td>
<td>892.91</td>
<td>992.72</td>
</tr>
<tr>
<td>Peso unitario seco</td>
<td>1.00</td>
<td>0.79</td>
<td>3.42</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Ensayo
Diseño de mezclas
Cantera
Cunyac
Agua
Potable
Cemento
Yura IP
Fecha
15-09-18
Laboratorio
EPIC-UNSAAC

Resistencia
175 kg/cm²
Huso
67
Diseño
Inicial

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm³</td>
<td>2689.35 kg/cm³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f′c)</td>
<td>175 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida (f′cr)</td>
<td>245 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 litros</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>0.02</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>331.72 kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f′cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>245</td>
<td>0.618</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Diseño de mezclas inicial para concretos $f'_c=175$ kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V(m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*F(kg)</th>
<th>Volumen V(m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>331.72</td>
<td>2850.00</td>
<td>0.116</td>
<td>1.00</td>
<td>331.72</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>2303.17</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.62</td>
<td>210.55</td>
<td>0.63</td>
<td>26.78</td>
<td>26.78</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>827.15</td>
<td>2617.57</td>
<td>0.316</td>
<td>2.49</td>
<td>833.69</td>
<td>2.51</td>
<td>106.68</td>
<td>2.29</td>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>922.45</td>
<td>2689.35</td>
<td>0.343</td>
<td>2.78</td>
<td>927.21</td>
<td>2.80</td>
<td>119.00</td>
<td>2.60</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2286.32</td>
<td></td>
<td>0.341</td>
<td>0.659</td>
<td>2303.17</td>
<td>6.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>2.29</th>
<th>2.60</th>
<th>26.78</th>
<th>0.63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \) kg/cm\(^2\) con agregados de la cantera de Cunyac

Resumen de diseño de mezclas inicial corregido por asentamiento y densidad \(f'c = 175 \) kg/cm\(^2\)

Descripción

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
<td>WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>331.61</td>
<td>1.00</td>
<td>331.61</td>
</tr>
<tr>
<td>Agua</td>
<td>205.60</td>
<td>0.62</td>
<td>211.35</td>
</tr>
<tr>
<td>Arena</td>
<td>856.57</td>
<td>2.58</td>
<td>863.35</td>
</tr>
<tr>
<td>Piedra</td>
<td>957.30</td>
<td>2.89</td>
<td>962.24</td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2351.08</td>
<td></td>
<td>2368.55</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>331.61</td>
<td>205.6</td>
<td>856.57</td>
<td>957.3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.62</td>
<td>2.58</td>
<td>2.89</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac”

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Diseño de mezclas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cunyac</td>
</tr>
<tr>
<td>Agua</td>
<td>Potable</td>
</tr>
<tr>
<td>Cemento</td>
<td>Yura IP</td>
</tr>
<tr>
<td>Fecha</td>
<td>11-11-18</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>EPIC-UNSAAC</td>
</tr>
</tbody>
</table>

Resistencia

- **175 kg/cm2**
- **Huso**
- **67**
- Diseño Final

PROPONEDES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm³</td>
<td>2689.35 kg/cm³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

PROPONEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>175 kg/cm²</td>
</tr>
<tr>
<td>desviación estándar Ss</td>
<td>14.01</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f’cr1)</td>
<td>193.77 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f’cr2)</td>
<td>172.64 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>193.77 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>292.87 kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f’cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>193.77</td>
<td>0.700</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

Diseño de mezclas final para concreto f’c=175 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V(m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>292.87</td>
<td>2850.00</td>
<td>0.103</td>
<td>1.00</td>
<td>292.87</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>1.00</td>
<td>210.66</td>
<td>0.72</td>
<td>30.60</td>
<td>30.60</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>845.48</td>
<td>2617.57</td>
<td>0.323</td>
<td>2.89</td>
<td>852.17</td>
<td>2.91</td>
<td>123.68</td>
<td>2.65</td>
<td>7.28</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>938.58</td>
<td>2689.35</td>
<td>0.349</td>
<td>3.20</td>
<td>943.43</td>
<td>3.22</td>
<td>136.85</td>
<td>2.99</td>
<td>8.05</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2281.93</td>
<td>2689.35</td>
<td>0.328</td>
<td>0.672</td>
<td>2299.13</td>
<td>7.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

- N° de briquetas: 4.00
- Peso de cada briqueta: 4.90 kg
- Peso total de briquetas Wtb= 19.60 kg
- Factor F = Wtb/WUO = 2.50

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>2.65</th>
<th>2.99</th>
<th>30.60</th>
<th>lit/bols</th>
<th>0.72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>a/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>RESISTENCIA</th>
<th>175 kg/cm²</th>
<th>HUSO</th>
<th>67</th>
<th>DISEÑO</th>
<th>FINAL CORREG.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CORRECCIÓN DE DISEÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobraba agua</td>
</tr>
<tr>
<td>Peso de proctor</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
</tr>
<tr>
<td>Volumen proctor</td>
</tr>
<tr>
<td>Densidad teórica</td>
</tr>
<tr>
<td>Densidad real</td>
</tr>
<tr>
<td>Rendimiento</td>
</tr>
<tr>
<td>Agua corregida</td>
</tr>
<tr>
<td>Cemento corregido</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
</tr>
<tr>
<td>Arena seca corregida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUADRO RESUMEN DE DISEÑO DE MEZCLAS INICIAL CORREGIDO POR ASIENTAMIENTO Y DENSIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cemento</td>
</tr>
<tr>
<td>Agua</td>
</tr>
<tr>
<td>Arena</td>
</tr>
<tr>
<td>Piedra</td>
</tr>
<tr>
<td>Aire</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOSIFICACIÓN SECO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
</tr>
<tr>
<td>Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOSIFICACIÓN SECO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
</tr>
<tr>
<td>Agua</td>
</tr>
</tbody>
</table>
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 15-09-18
Laboratorio: EPIC-UNSAAC

Resistencia: 210 kg/cm²
Huso: 67
Diseño: Inicial

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS DE LOS AGREGADOS</th>
<th>PROPIEDADES CEMENTO Y AGUA</th>
<th>PORCENTAJE DE AGREGADO</th>
<th>SELECCIÓN DE LA RELACIÓN A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agregado</td>
</tr>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm³</td>
<td>2689.35 kg/cm³</td>
<td></td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
<td></td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
<td></td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td>3/4 pulg</td>
<td></td>
</tr>
<tr>
<td>Descripción</td>
<td>Peso esp. cemento</td>
<td>Peso esp. agua</td>
<td>Agregado</td>
</tr>
<tr>
<td></td>
<td>2.85 gr/cm³</td>
<td>1 gr/cm³</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Agregado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grueso</td>
<td>52.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selección de la relación A/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f’cr</td>
<td>210 kg/cm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a/c)</td>
<td>300</td>
<td>295</td>
<td>250</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Cuadro resumen de diseño de mezclas inicial para f’c=210 kg/cm² - huso 67- Muestras cilíndricas de 4”x8”

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (WS)</th>
<th>Peso específico (Pe)</th>
<th>Volumen existente V (m³)</th>
<th>Distrib. volum. faltante (m³)</th>
<th>Peso unitario seco (WUS)</th>
<th>Peso en obra (kg) (WO)</th>
<th>Peso unitario en obra (WUO)</th>
<th>Volumen (pie³)</th>
<th>WUO*F (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>374.77</td>
<td>2850.00</td>
<td>0.131</td>
<td>1.00</td>
<td>374.77</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>3.18</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.55</td>
<td>210.42</td>
<td>0.56</td>
<td>23.80</td>
<td>23.80</td>
<td>1.78</td>
</tr>
<tr>
<td>Arena</td>
<td>808.83</td>
<td>2617.57</td>
<td>0.309</td>
<td>2.16</td>
<td>815.23</td>
<td>2.18</td>
<td>92.65</td>
<td>1.98</td>
<td>6.93</td>
</tr>
<tr>
<td>Piedra</td>
<td>900.93</td>
<td>2689.35</td>
<td>0.335</td>
<td>2.40</td>
<td>905.58</td>
<td>2.42</td>
<td>102.85</td>
<td>2.25</td>
<td>7.70</td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2289.53</td>
<td></td>
<td>0.356</td>
<td>0.644</td>
<td>2306.00</td>
<td>6.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>3.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>Lit / bols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.98</td>
</tr>
<tr>
<td>2.25</td>
<td>23.80</td>
</tr>
<tr>
<td>23.80</td>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>a/c</th>
</tr>
</thead>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 02-10-18
Laboratorio: EPIC-UNSAAC

Resistencia: 210 kg/cm²
Huso: 67
Diseño Inicial correg.

<table>
<thead>
<tr>
<th>Corrección de diseño</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.14</td>
<td>Lit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.6</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2289.53</td>
<td>Kg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad real</td>
<td>2372.79</td>
<td>Kg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.0082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua corregida</td>
<td>206.1</td>
<td>lit/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>374.73</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>939.02</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>934.2</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>940.35</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>851.61</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>840.66</td>
<td>Kg.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas inicial corregido por asentamiento y densidad f’c= 210 kg/cm²

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en seco</th>
<th>Peso en obra</th>
<th>Volumen (pie³)</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>cemento</td>
<td>374.73</td>
<td>1.00</td>
<td>374.73</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>agua</td>
<td>206.10</td>
<td>0.55</td>
<td>211.73</td>
<td>0.57</td>
<td>24.01</td>
<td>24.01</td>
</tr>
<tr>
<td>arena</td>
<td>840.66</td>
<td>2.24</td>
<td>847.31</td>
<td>2.26</td>
<td>96.10</td>
<td>2.06</td>
</tr>
<tr>
<td>piedra</td>
<td>934.20</td>
<td>2.49</td>
<td>939.02</td>
<td>2.51</td>
<td>106.50</td>
<td>2.33</td>
</tr>
<tr>
<td>aire a</td>
<td>2.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2355.69</td>
<td></td>
<td>2372.80</td>
<td>6.33</td>
<td></td>
<td>19.60</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>374.73</td>
<td>206.1</td>
<td>840.66</td>
<td>934.2</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>2.24</td>
<td>2.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>374.73</td>
<td>211.73</td>
<td>847.31</td>
<td>939.02</td>
</tr>
<tr>
<td>1</td>
<td>0.57</td>
<td>2.26</td>
<td>2.51</td>
</tr>
</tbody>
</table>

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac”

Ensayo | Diseño de mezclas
Cantera | Cunyac
Agua | Potable
Cemento | Yura IP
Fecha | 12-11-18
Laboratorio | EPIC-UNSAAC
Resistencia | 210 kg/cm²
Huso | 67
Diseño | Final

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS DE LOS AGREGADOS</th>
<th>PROPIEDADES CEMENTO Y AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Arena</td>
</tr>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
</tr>
<tr>
<td>Módulo de Finesa</td>
<td>2.98</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PORCENTAJE DE AGREGADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agregado</td>
</tr>
<tr>
<td>Grueso</td>
</tr>
<tr>
<td>Fino</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSIDERACIONES INICIALES</th>
<th>SELECCIÓN DE LA RELACIÓN A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 a 4 Pulg.</td>
</tr>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>210 kg/cm²</td>
</tr>
<tr>
<td>Desviación estándar (Ss)</td>
<td>13.18</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f’cr1)</td>
<td>227.66 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f’cr2)</td>
<td>205.71 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>227.66 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 lit.</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>317.34 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f’cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>227.66</td>
<td>0.646</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Diseño de mezclas final para concreto f’c=210 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen existente V (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>Volumen (pie³) WUO*42.5</th>
<th>Volumen (pie³) WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>317.34</td>
<td>2850.00</td>
<td>0.111</td>
<td></td>
<td>1.00</td>
<td>317.34</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td></td>
<td>0.65</td>
<td>210.59</td>
<td>0.66</td>
<td>28.05</td>
<td>28.05</td>
</tr>
<tr>
<td>Arena</td>
<td>835.00</td>
<td>2617.57</td>
<td>0.319</td>
<td>2.63</td>
<td>841.61</td>
<td>2.65</td>
<td>112.63</td>
<td>2.41</td>
<td>7.16</td>
</tr>
<tr>
<td>Piedra</td>
<td>927.83</td>
<td>2689.35</td>
<td>0.345</td>
<td>2.92</td>
<td>932.62</td>
<td>2.94</td>
<td>124.95</td>
<td>2.73</td>
<td>7.94</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2285.17</td>
<td></td>
<td>0.336</td>
<td>0.664</td>
<td>2302.16</td>
<td>7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>Lit/bols</th>
<th>0.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>28.05</td>
<td></td>
</tr>
<tr>
<td>a/c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 13-11-18
Laboratorio: EPIC-UNSAAC
Resistencia: 210 kg/cm²
Huso: 67
Diseño Final correg.

Tabla elaborada 85 Diseño de mezclas final corregido para f’c=210 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
<td>WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>315.77</td>
<td>1.00</td>
<td>315.77</td>
</tr>
<tr>
<td>Agua</td>
<td>205.25</td>
<td>0.65</td>
<td>211.08</td>
</tr>
<tr>
<td>arena</td>
<td>870.53</td>
<td>2.76</td>
<td>877.42</td>
</tr>
<tr>
<td>Piedra</td>
<td>964.49</td>
<td>3.05</td>
<td>969.47</td>
</tr>
<tr>
<td>Aire a</td>
<td>2.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2356.04</td>
<td></td>
<td>2373.73</td>
</tr>
</tbody>
</table>

Dosisificación seco

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>315.77</td>
<td>205.25</td>
<td>870.53</td>
<td>964.49</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
<td>2.76</td>
<td>3.05</td>
<td></td>
</tr>
</tbody>
</table>

Dosisificación húmedo

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>315.77</td>
<td>211.08</td>
<td>877.42</td>
<td>969.47</td>
</tr>
<tr>
<td>1</td>
<td>0.67</td>
<td>2.78</td>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 15-09-18
Laboratorio: EPIC-UNSAAC

Resistencia: 280 kg/cm2
Huso: 67
Diseño: Inicial

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57</td>
<td>2689.35</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46</td>
<td>1615.57</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81</td>
<td>1739.11</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm3</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'_cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>365</td>
<td>0.455</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

B13
"Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de cunyac"

Tabla elaborada 86 Cuadro resumen de diseño de mezclas inicial para $f'_c=280$ kg/cm² - huso 67- Muestras cilíndricas de 4”x8”

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso específico</th>
<th>Volumen existente</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>Peso en obra</th>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>450.55</td>
<td>2850.00</td>
<td>0.158</td>
<td>1.00</td>
<td>450.55</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.45</td>
<td>210.16</td>
<td>0.47</td>
<td>19.98</td>
<td>19.98</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>774.80</td>
<td>2617.57</td>
<td>0.296</td>
<td>1.72</td>
<td>780.92</td>
<td>1.73</td>
<td>73.53</td>
<td>1.58</td>
<td>6.61</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>863.28</td>
<td>2689.35</td>
<td>0.321</td>
<td>1.92</td>
<td>867.77</td>
<td>1.93</td>
<td>82.03</td>
<td>1.79</td>
<td>7.37</td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2293.63</td>
<td>0.383</td>
<td>0.617</td>
<td>2309.40</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>3.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>1.00</th>
<th>1.58</th>
<th>1.79</th>
<th>19.98</th>
<th>Lit / bols</th>
<th>0.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

Ensayo	Diseño de mezclas
Cantera | Cunyac
Agua | Potable
Cemento | Yura IP
Fecha | 02-10-18
Laboratorio | EPIC-UNSAAC

| Resistencia | 280 kg/cm2 | Huso | 67 | Diseño | Inicial correg.
---|---|---|---|---|

Corrección de diseño

Falta agua	0.1 lit.
Peso de proctor	6.5602 Kg.
Peso de concreto + proctor	11.568 Kg.
Volumen proctor	0.002124 m3
Densidad teórica	2293.63 Kg/m3
Densidad real	2357.72 Kg/m3
Rendimiento	0.00836
Agua corregida	232.06 lit/m3
Cemento corregido	515.69 Kg.
Piedra húmeda corregida	881.58 Kg.
Piedra seca corregida	877.02 Kg.
Piedra saturada corregida	882.81 Kg.
Arena saturada corregida	727.16 Kg.
Arena seca corregida	717.83 Kg.

Cuadro resumen de diseño de mezclas inicial corregido por asentamiento y densidad $f'c=280$ kg/cm2

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso</td>
<td>Peso</td>
<td>Peso</td>
</tr>
<tr>
<td></td>
<td>seco</td>
<td>unitario</td>
<td>en</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
<td>obra</td>
</tr>
<tr>
<td>cemento</td>
<td>515.69</td>
<td>1.00</td>
<td>515.69</td>
</tr>
<tr>
<td>agua</td>
<td>232.06</td>
<td>0.45</td>
<td>236.95</td>
</tr>
<tr>
<td>arena</td>
<td>717.83</td>
<td>1.39</td>
<td>723.50</td>
</tr>
<tr>
<td>piedra</td>
<td>877.02</td>
<td>1.70</td>
<td>881.58</td>
</tr>
<tr>
<td>aire a</td>
<td>2.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2342.60</td>
<td>2357.72</td>
<td>4.57</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.69</td>
<td>232.06</td>
<td>717.83</td>
<td>877.02</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.45</td>
<td>1.39</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.69</td>
<td>236.95</td>
<td>723.5</td>
<td>881.58</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.46</td>
<td>1.4</td>
<td>1.71</td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_{c}^r = 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 12-11-18
Laboratorio: EPIC-UNSAAC

Resistencia 280 kg/cm² Huso 67 Diseño Final

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm³</td>
<td>2689.35 kg/cm³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal N°4</td>
<td>3/4 pulg</td>
<td></td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f_c)</td>
<td>280 kg/cm²</td>
</tr>
<tr>
<td>Desviación estándar (S)</td>
<td>13.55</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f_{cr1})</td>
<td>298.16 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f_{cr2})</td>
<td>276.57 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f_{cr})</td>
<td>298.16 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 lit.</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>377.53 kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f_{cr}</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
<tr>
<td>298.16</td>
<td>0.543</td>
</tr>
<tr>
<td>300</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Diseño de mezclas final para concreto $f'_c=280$ kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso especifico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>Pe (kg/m³)</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>377.53</td>
<td>2850.00</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td>808.83</td>
<td>2617.57</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>898.24</td>
<td>2689.35</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2289.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>Volumen (pie³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>377.53</td>
<td>42.50</td>
<td>3.21</td>
</tr>
<tr>
<td>Agua</td>
<td>210.38</td>
<td>23.80</td>
<td>23.80</td>
</tr>
<tr>
<td>Arena</td>
<td>815.22</td>
<td>91.80</td>
<td>91.80</td>
</tr>
<tr>
<td>Piedra</td>
<td>902.91</td>
<td>101.58</td>
<td>101.58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2306.04</td>
<td>2306.04</td>
<td>2306.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso de cada briqueta</th>
<th>Peso total de briquetas Wtb</th>
<th>Factor F = Wtb/WUO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>4.90 kg</td>
<td>19.60 kg</td>
<td>3.21</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

- N° de briquetas: 4.00
- Peso de cada briqueta: 4.90 kg
- Peso total de briquetas: 19.60 kg
- Factor F = Wtb/WUO: 3.21

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>Lit / bols</th>
<th>0.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.22</td>
<td>23.80</td>
</tr>
<tr>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
</tr>
<tr>
<td>Agua</td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac”

Ensayo | Diseño de mezclas
Cantera | Cunyac
Agua | Potable
Cemento | Yura IP
Fecha | 13-11-18
Laboratorio | EPIC-UNSAAC

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>280 kg/cm²</th>
<th>Huso</th>
<th>67</th>
<th>Diseño Final correg.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Corrección de diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta agua</td>
</tr>
<tr>
<td>Peso de proctor</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
</tr>
<tr>
<td>Volumen proctor</td>
</tr>
<tr>
<td>Densidad teórica</td>
</tr>
<tr>
<td>Densidad real</td>
</tr>
<tr>
<td>Rendimiento</td>
</tr>
<tr>
<td>Agua corregida</td>
</tr>
<tr>
<td>Cemento corregido</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
</tr>
<tr>
<td>Arena seca corregida</td>
</tr>
</tbody>
</table>

Diseño de mezclas final corregido para f'c=280 kg/cm²-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td>cemento</td>
<td>390.85</td>
<td>1.00</td>
<td>390.85</td>
</tr>
<tr>
<td>agua</td>
<td>211.06</td>
<td>0.54</td>
<td>216.59</td>
</tr>
<tr>
<td>arena</td>
<td>833.12</td>
<td>2.13</td>
<td>839.70</td>
</tr>
<tr>
<td>piedra</td>
<td>917.11</td>
<td>2.35</td>
<td>921.88</td>
</tr>
<tr>
<td>aire a</td>
<td>2.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2352.14</td>
<td>2369.02</td>
<td>6.06</td>
</tr>
</tbody>
</table>

Dosificación seco

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>390.85</td>
<td>211.06</td>
<td>833.12</td>
<td>917.11</td>
</tr>
<tr>
<td>1</td>
<td>0.54</td>
<td>2.13</td>
<td>2.35</td>
</tr>
</tbody>
</table>

Dosificación húmedo

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>390.85</td>
<td>216.59</td>
<td>839.7</td>
<td>921.88</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>2.15</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concreto $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac”

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/cm3</td>
<td>2.69 kg/cm3</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m3</td>
<td>1615.57 kg/m3</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m3</td>
<td>1739.11 kg/m3</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Finaza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm3</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm3</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia específica ($f'c$)</td>
<td>350 kg/cm2</td>
</tr>
<tr>
<td>Resistencia requerida ($f'cr$)</td>
<td>435 kg/cm2</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 litros</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>522.96 kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>0.38</td>
</tr>
<tr>
<td>435</td>
<td>0.392</td>
</tr>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
</tbody>
</table>
CUADRO RESUMEN

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso específico</th>
<th>Volumen</th>
<th>Distrib. de volum. faltante</th>
<th>Peso unitario seco</th>
<th>Peso en obra</th>
<th>Peso unitario en obra (kg)</th>
<th>Volumen (pie3)</th>
<th>WUO*F(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS (kg)</td>
<td>Pe (kg/m3)</td>
<td>V (m3)</td>
<td>WUS</td>
<td>WO</td>
<td>WO</td>
<td>WUO</td>
<td>WUO*42.5</td>
<td>Volume n (pie3)</td>
<td>WUO*F</td>
</tr>
<tr>
<td>Cemento</td>
<td>522.96</td>
<td>2850.00</td>
<td>0.183</td>
<td>1.00</td>
<td>522.96</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>4.43</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.39</td>
<td>209.95</td>
<td>0.40</td>
<td>17.00</td>
<td>17.00</td>
<td>1.77</td>
</tr>
<tr>
<td>Arena</td>
<td>743.39</td>
<td>2617.57</td>
<td>0.284</td>
<td>1.42</td>
<td>749.26</td>
<td>1.43</td>
<td>60.78</td>
<td>1.30</td>
<td>6.33</td>
</tr>
<tr>
<td>Piedra</td>
<td>828.32</td>
<td>2689.35</td>
<td>0.308</td>
<td>1.58</td>
<td>832.63</td>
<td>1.59</td>
<td>67.58</td>
<td>1.48</td>
<td>7.04</td>
</tr>
<tr>
<td>Aire</td>
<td>0.02</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2299.6</td>
<td>7</td>
<td>0.408</td>
<td>0.592</td>
<td>2314.8</td>
<td>0</td>
<td>4.42</td>
<td>1.00</td>
<td>4.42</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>4.90 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.60 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.30</th>
<th>1.48</th>
<th>17.00</th>
<th>lit/bols</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas inicial corregido por asentamiento y densidad $f'c=350$ kg/cm²

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td>Cemento</td>
<td>587.18</td>
<td>1.00</td>
<td>587.18</td>
</tr>
<tr>
<td>Agua</td>
<td>229.00</td>
<td>0.39</td>
<td>233.65</td>
</tr>
<tr>
<td>Arena</td>
<td>681.52</td>
<td>1.16</td>
<td>686.90</td>
</tr>
<tr>
<td>Piedra</td>
<td>835.75</td>
<td>1.42</td>
<td>840.10</td>
</tr>
<tr>
<td>Aire a</td>
<td>2.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2347.83</td>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>587.18</td>
<td>229</td>
<td>681.52</td>
<td>835.75</td>
</tr>
<tr>
<td>1</td>
<td>0.39</td>
<td>1.16</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena humeda</th>
<th>Piedra humeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>587.18</td>
<td>233.65</td>
<td>686.9</td>
<td>840.1</td>
</tr>
<tr>
<td>1.00</td>
<td>0.40</td>
<td>1.17</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Propiedades Físicas de los Agregados</th>
<th>Propiedades Cemento y Agua</th>
<th>Porcentaje de Agregado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Descripción</td>
<td>Porcentaje</td>
</tr>
<tr>
<td>Peso específico de masa</td>
<td>Peso esp. cemento</td>
<td>Agregado</td>
</tr>
<tr>
<td>Arena</td>
<td>2.69 kg/cm3</td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td>2.69 kg/cm3</td>
<td>Grueso</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1615.57 kg/m3</td>
<td>Fino</td>
</tr>
<tr>
<td>arena</td>
<td>1615.57 kg/m3</td>
<td>48.00%</td>
</tr>
<tr>
<td>Piedra</td>
<td>1739.11 kg/m3</td>
<td></td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m3</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td></td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4 pulg</td>
<td></td>
</tr>
</tbody>
</table>

Consideraciones Iniciales

Asentamiento	3 a 4 Pulg.
Resistencia especificada (f'_c)	350 kg/cm2
Desviación estándar (S_s)	29.46
Resistencia requerida 1 ($f'c1$)	389.48 kg/cm2
Resistencia requerida 2 ($f'c2$)	383.64 kg/cm2
Resistencia requerida mayor (f_c)	389.48 kg/cm2
Cantidad de agua para mezcla	205 litros
Aire atrapado	2.00%
Cantidad de cemento	475.64 kg

Selección de la Relación a/c

<table>
<thead>
<tr>
<th>f'_c</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>389.48</td>
<td>0.431</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac”

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 13-11-18
Laboratorio: EPIC-UNSAAC

Resistencia: 350 kg/cm2 Hujo: 67 Diseño: Final
Determínación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2617.57 kg/m³</td>
<td>2.69 kg/cm³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1615.57 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1739.11 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.66 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/4 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>52.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>48.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>350 kg/cm²</td>
</tr>
<tr>
<td>Desviación estándar (Ss)</td>
<td>29.46</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f’cr1)</td>
<td>389.48 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f’cr2)</td>
<td>383.64 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>389.48 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>205 litros</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>2.00%</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f’cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>389.48</td>
<td>0.431</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

Diseño de mezclas final para concreto $f'c=350$ kg/cm2-huso 67

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso específico</th>
<th>Volumen</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS (kg)</td>
<td>Pe (kg/m3)</td>
<td>V (m3)</td>
<td>Distrib. volum. faltante (m3)</td>
<td>Peso unitario seco</td>
</tr>
<tr>
<td>Cemento</td>
<td>475.64</td>
<td>2850.00</td>
<td>0.167</td>
<td>1.00</td>
<td>475.64</td>
</tr>
<tr>
<td>Agua</td>
<td>205.00</td>
<td>1000.00</td>
<td>0.205</td>
<td>0.43</td>
<td>210.09</td>
</tr>
<tr>
<td>Arena</td>
<td>764.33</td>
<td>2617.57</td>
<td>0.292</td>
<td>1.61</td>
<td>770.37</td>
</tr>
<tr>
<td>Piedra</td>
<td>849.83</td>
<td>2689.35</td>
<td>0.316</td>
<td>1.79</td>
<td>854.25</td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td>-</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2294.80</td>
<td>2310.35</td>
<td>0.392</td>
<td>0.608</td>
<td>2310.35</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

N° de briquetas	4.00
Peso de cada briqueta	4.90 kg
Peso total de briquetas Wtb=	19.60 kg
Factor F = Wtb/WUO	4.03

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>1.00</th>
<th>1.47</th>
<th>1.67</th>
<th>18.70</th>
<th>lit/bols</th>
<th>0.44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td></td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>
Tesis: Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Diseño de mezclas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cunyac</td>
</tr>
<tr>
<td>Agua</td>
<td>Potable</td>
</tr>
<tr>
<td>Cemento</td>
<td>Yura IP</td>
</tr>
<tr>
<td>Fecha</td>
<td>14-11-18</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>EPIC-UNSAAC</td>
</tr>
</tbody>
</table>

Resistencia

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>350 kg/cm²</th>
</tr>
</thead>
</table>

| B20 | Huco | 67 | Diseño | Final correg. |

Corrección de diseño

Falta agua	0	Lit.
Peso de proctor	6.5602	Kg.
Peso de concreto + proctor	11.543	Kg.
Volumen proctor	0.002124	m³
Densidad teórica	2294.80	Kg/m³
Densidad real	2345.95	Kg/m³
Rendimiento	0.00835	
Agua corregida	217.13	
Cemento corregido	504.95	Kg.
Piedra húmeda corregida	868.26	Kg.
Piedra seca corregida	863.77	Kg.
Piedra saturada corregida	869.47	Kg.
Arena saturada corregida	754.4	Kg.
Arena seca corregida	744.72	Kg.

Cálculo en seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td>cemento</td>
<td>504.95</td>
<td>1.00</td>
<td>504.95</td>
</tr>
<tr>
<td>agua</td>
<td>217.13</td>
<td>0.43</td>
<td>222.14</td>
</tr>
<tr>
<td>arena</td>
<td>744.72</td>
<td>1.47</td>
<td>750.60</td>
</tr>
<tr>
<td>piedra</td>
<td>863.77</td>
<td>1.71</td>
<td>868.26</td>
</tr>
<tr>
<td>aire a</td>
<td>2.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dosificación seco

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.95</td>
<td>217.13</td>
<td>744.72</td>
<td>863.77</td>
</tr>
<tr>
<td>1.00</td>
<td>0.43</td>
<td>1.47</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Dosificación húmedo

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.95</td>
<td>222.14</td>
<td>750.6</td>
<td>868.26</td>
</tr>
<tr>
<td>1.00</td>
<td>0.44</td>
<td>1.49</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_{c}=140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Diseño de mezclas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cunyac</td>
</tr>
<tr>
<td>Agua</td>
<td>Potable</td>
</tr>
<tr>
<td>Cemento</td>
<td>Yura IP</td>
</tr>
<tr>
<td>Fecha</td>
<td>04-10-18</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>EPIC-UNSAAC</td>
</tr>
</tbody>
</table>

Resistencia | 140 kg/cm^2 | Huso | 8 | Diseño | Inicial |

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
<td>2.65 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1626.96 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1750.63 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Finura</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 Pulg.</td>
</tr>
<tr>
<td>Resistencia especificada ($f'c$)</td>
<td>140 Kg/cm^2</td>
</tr>
<tr>
<td>Desv. Estandar Ss</td>
<td>70</td>
</tr>
<tr>
<td>Resistencia requerida ($f'cr$)</td>
<td>210 Kg/cm^2</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit/m³</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>338.28 Kg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f'_{cr}</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>210</td>
<td>0.674</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas inicial f’c= 140 kg/cm² - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco (WS)</td>
<td>Peso específico Pe (kg/m³)</td>
<td>Volumen</td>
</tr>
<tr>
<td>Cemento</td>
<td>338.28</td>
<td>2850.00</td>
<td>0.119</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>816.68</td>
<td>2617.57</td>
<td>0.312</td>
</tr>
<tr>
<td>Piedra</td>
<td>825.35</td>
<td>2645.35</td>
<td>0.312</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2208.31</td>
<td></td>
<td>0.377</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>30.00</th>
<th>unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65 kg</td>
<td></td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50 kg</td>
<td></td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.96</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>2.21</th>
<th>2.26</th>
<th>29.75</th>
<th>lit/bols</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac”

Resistencia 140 kg/cm2 | Huso | 8 | Diseño | Inicial correg.

<table>
<thead>
<tr>
<th>Corrección de diseño</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.356 Lit.</td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602 Kg.</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.304 Kg.</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124 m3</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2208.31 Kg/m3</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2233.43 Kg/m3</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.00856</td>
</tr>
<tr>
<td>Agua corregida</td>
<td>208.41 Lit/m3</td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>311.06 Kg.</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>846.96 Kg.</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>842.75 Kg.</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>850.5 Kg.</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>863.46 Kg.</td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>852.38 Kg.</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas inicial $f'_c= 140$ kg/cm2 - muestras cilíndricas de 2” x 4”

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco (WS (kg))</td>
<td>Peso unitario seco (WUS)</td>
<td>Peso en obra (WO)</td>
</tr>
<tr>
<td>Cemento</td>
<td>311.06</td>
<td>1.00</td>
<td>311.06</td>
</tr>
<tr>
<td>Agua</td>
<td>208.41</td>
<td>0.67</td>
<td>216.30</td>
</tr>
<tr>
<td>Arena</td>
<td>852.38</td>
<td>2.74</td>
<td>859.11</td>
</tr>
<tr>
<td>Piedra</td>
<td>842.75</td>
<td>2.71</td>
<td>846.96</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2214.60</td>
<td></td>
<td>2233.43</td>
</tr>
</tbody>
</table>

Dosificación seco

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco</td>
<td>311.06</td>
<td>208.41</td>
<td>852.38</td>
<td>842.75</td>
</tr>
<tr>
<td>%</td>
<td>1.00</td>
<td>0.67</td>
<td>2.74</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Dosificación húmedo

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco</td>
<td>311.06</td>
<td>216.3</td>
<td>859.11</td>
<td>846.96</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>0.7</td>
<td>2.76</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo

Diseño de mezclas

Cantera

Cunyac

Agua

Potable

Cemento

Yura IP

Fecha

09-02-19

Laboratorio

EPIC-UNSAAC

Resistencia

140 kg/cm²

Huso

8

Diseño

Final.

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
<td>2.65 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1626.96 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1750.63 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico del cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 pulg</td>
</tr>
<tr>
<td>Resistencia especificada ($f'c$)</td>
<td>140 Kg/cm²</td>
</tr>
<tr>
<td>Desv. Estándar Ss</td>
<td>9.9</td>
</tr>
<tr>
<td>Resistencia requerida 1 ($f'cr1$)</td>
<td>153.266 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 ($f'cr2$)</td>
<td>128.067 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor ($f'cr$)</td>
<td>153.27 Kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit/m³</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>291.19 kg/m³</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
<tr>
<td>153.27</td>
<td>0.783</td>
</tr>
<tr>
<td>150</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas final $f'_c= 140$ kg/cm² - muestras cilíndricas de 2'' x 4'' (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volumen</td>
<td>Peso unitario secu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volumen existente V(m³)</td>
<td>Distrib. de volumn. faltante (m³)</td>
<td>Peso en obra WUS</td>
</tr>
<tr>
<td>Cemento</td>
<td>291.19</td>
<td>2850.00</td>
<td>0.102</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>837.50</td>
<td>2617.20</td>
<td>-</td>
</tr>
<tr>
<td>Piedra</td>
<td>846.51</td>
<td>2465.35</td>
<td>-</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2203.20</td>
<td>0.360</td>
<td>0.640</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>Nº de briquetas</th>
<th>30.00</th>
<th>unidades</th>
<th>1.00</th>
<th>2.64</th>
<th>2.69</th>
<th>34.43</th>
<th>lit/bols</th>
<th>0.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65</td>
<td>kg</td>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'_c = 140, 175, 210, 280 \) y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac

Resistencia 140 kg/cm\(^2\)
Huso 8
Diseño Final correg.

<table>
<thead>
<tr>
<th>Correctión de diseño</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.4 Lit.</td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602 Kg.</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.477 Kg.</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124 m(^3)</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2203.20 Kg/m(^3)</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2314.88 Kg/m(^4)</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.00826</td>
</tr>
<tr>
<td>Agua corregida</td>
<td>210.53 Lit/m(^3)</td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>269.91 Kg.</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>905.57 Kg.</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>901.06 Kg.</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>909.35 Kg.</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>925.09 Kg.</td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>913.22 Kg.</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas final \(f'_c = 140 \) kg/cm\(^2\) - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco WS (kg)</td>
<td>Peso unitario seco WUS</td>
<td>Peso en obra WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>269.91</td>
<td>1.00</td>
<td>269.91</td>
</tr>
<tr>
<td>Agua</td>
<td>210.53</td>
<td>0.78</td>
<td>218.97</td>
</tr>
<tr>
<td>Arena</td>
<td>913.22</td>
<td>3.38</td>
<td>920.43</td>
</tr>
<tr>
<td>Piedra</td>
<td>901.06</td>
<td>3.34</td>
<td>905.57</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2294.72</td>
<td>2314.88</td>
<td>8.58</td>
</tr>
</tbody>
</table>

Dosificación en seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>269.91</td>
<td>210.53</td>
<td>913.22</td>
<td>901.06</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.78</td>
<td>3.38</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>269.91</td>
<td>218.97</td>
<td>920.43</td>
<td>905.57</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.81</td>
<td>3.41</td>
<td>3.36</td>
</tr>
</tbody>
</table>
Universidad Nacional de San Antonio Abad del Cusco
Escuela Profesional de Ingeniería Civil
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo Diseño de mezclas
Cantera Cunyac
Agua Potable
Cemento Yura IP
Fecha 04-10-18
Laboratorio EPIC-UNSAAC

Resistencia 175 kg/cm² | Huso 8 | Diseño Inicial

Propiedades Físicas de los Agregados

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
<td>2.65 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1626.96 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1750.63 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

Propiedades del Cemento y Agua

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

Porcentaje de Agregado

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

Consideraciones Iniciales

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 Pulg</td>
</tr>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>175 Kg/cm²</td>
</tr>
<tr>
<td>Incremento de resistencia</td>
<td>70 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida (f’cr)</td>
<td>245 Kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>368.93 Kg</td>
</tr>
</tbody>
</table>

Selección de la Relación A/C

<table>
<thead>
<tr>
<th>f’cr kg/cm²</th>
<th>(w/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>245</td>
<td>0.618</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas inicial $f'c= 175$ kg/cm² - muestras cilíndricas de 2" x 4" (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco WS (kg)</td>
<td>Peso específico P_e (kg/m³)</td>
<td>Peso unitario WUS</td>
</tr>
<tr>
<td>Cemento</td>
<td>368.93</td>
<td>2850.00</td>
<td>0.129</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>803.60</td>
<td>2617.57</td>
<td>-</td>
</tr>
<tr>
<td>Piedra</td>
<td>812.12</td>
<td>2645.35</td>
<td>-</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2212.65</td>
<td>0.387</td>
<td>0.613</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>Nº de briquetas</th>
<th>30.00</th>
<th>unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas $W_{tb}=19.50$</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Factor $F = W_{tb}/W_{UO}$</td>
<td>3.22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>lit/bols</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.00</td>
<td>2.04</td>
<td>27.20</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Diseño de mezclas

Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 08-11-18
Laboratorio: EPIC-UNSAAC

Resistencia: 175 kg/cm²
Huso: 8
Diseño Inicial correg.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.29</td>
<td>Lit.</td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602</td>
<td>Kg.</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.311</td>
<td>Kg.</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124</td>
<td>m³</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2212.65</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2236.72</td>
<td>Kg/m⁴</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.00858</td>
<td></td>
</tr>
<tr>
<td>Agua corregida</td>
<td>214.45</td>
<td>Lí/tm³</td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>345.89</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>829.84</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>825.71</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>833.31</td>
<td>Kg.</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>843.07</td>
<td>Kg.</td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>832.25</td>
<td>Kg.</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas inicial f’c= 175 kg/cm² - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
<td>WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>345.89</td>
<td>1.00</td>
<td>345.89</td>
</tr>
<tr>
<td>Agua</td>
<td>214.45</td>
<td>0.62</td>
<td>222.16</td>
</tr>
<tr>
<td>Arena</td>
<td>832.25</td>
<td>2.41</td>
<td>838.82</td>
</tr>
<tr>
<td>Piedra</td>
<td>825.71</td>
<td>2.39</td>
<td>829.84</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2218.30</td>
<td>2236.72</td>
<td>6.47</td>
</tr>
</tbody>
</table>

Dosificación en seco

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS (kg)</td>
<td>345.89</td>
<td>214.45</td>
<td>832.25</td>
<td>825.71</td>
</tr>
<tr>
<td>1</td>
<td>0.62</td>
<td>2.41</td>
<td>2.39</td>
<td></td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS (kg)</td>
<td>345.89</td>
<td>222.16</td>
<td>838.82</td>
<td>829.84</td>
</tr>
<tr>
<td>1</td>
<td>0.64</td>
<td>2.43</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 09-02-19
Laboratorio: EPIC-UNSAAC

Resistencia: 175 kg/cm²
Huso: 8
Diseño: Final

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
<td>2.65 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1626.96 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1750.63 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de FINEZA</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 Pulg.</td>
</tr>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>175 Kg/cm²</td>
</tr>
<tr>
<td>Desv. Estandar Ss</td>
<td>22.64</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f’c1)</td>
<td>205.3376 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f’c2)</td>
<td>192.7512 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>205.34 Kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>334.8 Kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>f’cr Kg/cm²</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
<tr>
<td>205.34</td>
<td>0.681</td>
</tr>
<tr>
<td>200</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas final f’c= 175 kg/cm² - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco</td>
<td>Peso específico</td>
<td>Volumen</td>
<td>Peso unitario</td>
</tr>
<tr>
<td>WS (kg)</td>
<td>Pe (kg/m³)</td>
<td>Volumen existente</td>
<td>Pe seco (m³)</td>
</tr>
<tr>
<td>Cemento</td>
<td>334.80</td>
<td>2850.00</td>
<td>0.117</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>819.18</td>
<td>2617.57</td>
<td>0.313</td>
</tr>
<tr>
<td>Piedra</td>
<td>827.99</td>
<td>2645.35</td>
<td>0.313</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2209.97</td>
<td></td>
<td>0.375</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>Nº de briquetas</th>
<th>30.00</th>
<th>unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50</td>
<td>kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>2.93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>lit/bols</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.25</td>
<td>2.30</td>
<td>29.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

Tesis: Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac

Ensayo

- **Diseño de mezclas**
- **Cantera**: Cunyac
- **Agua**: Potable
- **Cemento**: Yura IP
- **Fecha**: 11-02-19
- **Laboratorio**: EPIC-UNSAAC

Resistencia 175 kg/cm2

<table>
<thead>
<tr>
<th>Corrección de diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
</tr>
<tr>
<td>Peso de proctor</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
</tr>
<tr>
<td>Volumen proctor</td>
</tr>
<tr>
<td>Densidad teórica</td>
</tr>
<tr>
<td>Densidad real</td>
</tr>
<tr>
<td>Rendimiento</td>
</tr>
<tr>
<td>Agua corregida</td>
</tr>
<tr>
<td>Cemento corregido</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
</tr>
<tr>
<td>Arena seca corregida</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas final $f'_c= 175$ kg/cm2 - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td>Cemento</td>
<td>320.01</td>
<td>1.00</td>
<td>320.01</td>
</tr>
<tr>
<td>Agua</td>
<td>217.61</td>
<td>0.68</td>
<td>225.79</td>
</tr>
<tr>
<td>Arena</td>
<td>882.47</td>
<td>2.76</td>
<td>889.44</td>
</tr>
<tr>
<td>Piedra</td>
<td>876.20</td>
<td>2.74</td>
<td>880.58</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2296.29</td>
<td></td>
<td>2315.82</td>
</tr>
</tbody>
</table>

Dosificación en seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>320.01</td>
<td>217.61</td>
<td>882.47</td>
<td>876.2</td>
</tr>
<tr>
<td>Agua</td>
<td>1.00</td>
<td>0.68</td>
<td>2.76</td>
<td>2.74</td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>320.01</td>
<td>225.79</td>
<td>889.44</td>
<td>880.58</td>
</tr>
<tr>
<td>Agua</td>
<td>1</td>
<td>0.71</td>
<td>2.78</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \, \text{kg/cm}^2 \) con agregados de la cantera de Cunyac.

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c = 140, 175, 210, 280 \) y \(350 \, \text{kg/cm}^2 \) con agregados de la cantera de Cunyac.”

Ensayo

<table>
<thead>
<tr>
<th>Dato</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia</td>
<td>210 kg/cm²</td>
</tr>
<tr>
<td>Hucho</td>
<td>8</td>
</tr>
<tr>
<td>Diseño</td>
<td>Inicial</td>
</tr>
</tbody>
</table>

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62</td>
<td>2.65</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46</td>
<td>1626.96</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81</td>
<td>1750.63</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30%</td>
<td>0.92%</td>
</tr>
<tr>
<td>Módulo de Finaza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 g/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 g/cm³</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Dato</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 a 4 Pulg.</td>
</tr>
<tr>
<td>Resistencia especificada ((f'c))</td>
<td>210 Kg/cm²</td>
</tr>
<tr>
<td>Incremento de resistencia</td>
<td>85 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida ((f'cr))</td>
<td>295 Kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>416.82 Kg</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>(f'cr) (kg/cm²)</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.54</td>
</tr>
<tr>
<td>295</td>
<td>0.547</td>
</tr>
<tr>
<td>250</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas inicial $f'_c= 210$ kg/cm² - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específicoPe (kg/m³)</th>
<th>Volumen</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>Volumen (pie³) WUO*42.5</th>
<th>Volumen (pie³) WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>416.82</td>
<td>2850.00</td>
<td>0.146</td>
<td>-</td>
<td>1.00</td>
<td>416.82</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
<td>-</td>
<td>0.55</td>
<td>235.29</td>
<td>0.56</td>
<td>23.80</td>
<td>23.80</td>
</tr>
<tr>
<td>Arena</td>
<td>780.04</td>
<td>2617.57</td>
<td>-</td>
<td>0.298</td>
<td>1.87</td>
<td>786.20</td>
<td>1.89</td>
<td>80.33</td>
<td>1.72</td>
</tr>
<tr>
<td>Piedra</td>
<td>788.31</td>
<td>2645.35</td>
<td>-</td>
<td>0.298</td>
<td>1.89</td>
<td>792.25</td>
<td>1.90</td>
<td>80.75</td>
<td>1.75</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2213.17</td>
<td></td>
<td>0.404</td>
<td>0.596</td>
<td></td>
<td>2230.56</td>
<td>5.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cálculo para mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de briquetas</td>
</tr>
<tr>
<td>Peso de cada briqueta</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>Cemento</td>
</tr>
</tbody>
</table>
Resistencia 210 kg/cm² Huso 8 Diseño Inicial correg.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>Peso en obra</td>
</tr>
<tr>
<td></td>
<td>WS (kg)</td>
<td>WUS</td>
<td>WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>395.35</td>
<td>1.00</td>
<td>395.35</td>
</tr>
<tr>
<td>Agua</td>
<td>217.44</td>
<td>0.55</td>
<td>224.91</td>
</tr>
<tr>
<td>Arena</td>
<td>805.90</td>
<td>2.04</td>
<td>812.27</td>
</tr>
<tr>
<td>Piedra</td>
<td>800.65</td>
<td>2.03</td>
<td>804.65</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2219.34</td>
<td>2237.18</td>
<td>5.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Dosificación en seco</th>
<th>Dosificación en húmedo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cemento</td>
<td>Agua</td>
</tr>
<tr>
<td></td>
<td>395.35</td>
<td>217.44</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.55</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESSIONAL DE INGENIERIA CIVIL

Ensayo: Diseño de mezclas
Cantera: Cunyac
Agua: Potable
Cemento: Yura IP
Fecha: 09-02-19
Laboratorio: EPIC-UNSAAC

Resistencia 210 kg/cm² Huso 8 Diseño Final

<table>
<thead>
<tr>
<th>PROPIEDADES FÍSICAS DE LOS AGREGADOS</th>
<th>PROPIEDADES CEMENTO Y AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Arena</td>
</tr>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSIDERACIONES INICIALES</th>
<th>SELECCIÓN DE LA RELACIÓN A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento</td>
<td>3 Pulg.</td>
</tr>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>210 Kg/cm²</td>
</tr>
<tr>
<td>Desv. Estandar Ss</td>
<td>21.42</td>
</tr>
<tr>
<td>Resistencia requerida 1(f’cr1)</td>
<td>238.7028 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2(f’cr2)</td>
<td>224.9086 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>238.7 Kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>363.06 Kg</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Cuadro resumen de diseño de mezclas final f’c= 210 kg/cm² - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco (WS)</th>
<th>Peso específico (Pe) (kg/m³)</th>
<th>Volumen existente (V) (m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco (WUS)</th>
<th>Peso en obra (WO)</th>
<th>Peso unitario en obra (WUO)</th>
<th>Volumen (pie³)</th>
<th>WUO*42.5</th>
<th>Volumen existente (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>363.06</td>
<td>2850.00</td>
<td>0.127</td>
<td>-</td>
<td>1.00</td>
<td>363.06</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>1.00</td>
<td>3.17</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
<td>-</td>
<td>0.63</td>
<td>235.53</td>
<td>0.65</td>
<td>27.63</td>
<td>27.63</td>
<td>27.63</td>
<td>2.06</td>
</tr>
<tr>
<td>Arena</td>
<td>806.10</td>
<td>2617.20</td>
<td>-</td>
<td>0.308</td>
<td>2.22</td>
<td>812.47</td>
<td>2.24</td>
<td>95.20</td>
<td>2.04</td>
<td>2.04</td>
<td>7.10</td>
</tr>
<tr>
<td>Piedra</td>
<td>814.77</td>
<td>2645.35</td>
<td>-</td>
<td>0.308</td>
<td>2.24</td>
<td>818.84</td>
<td>2.26</td>
<td>96.05</td>
<td>2.08</td>
<td>2.08</td>
<td>7.16</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2211.93</td>
<td></td>
<td>0.385</td>
<td>0.615</td>
<td></td>
<td>2229.90</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>30.00</th>
<th>unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wth=</td>
<td>19.50</td>
<td>kg</td>
</tr>
<tr>
<td>Factor F = Wth/WUO</td>
<td>3.17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>2.04</th>
<th>2.08</th>
<th>27.63</th>
<th>lit/bols</th>
<th>0.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.25</td>
<td>Lit.</td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602</td>
<td>Kg.</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.482</td>
<td>Kg.</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124</td>
<td>m3</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2211.93</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2317.23</td>
<td>Kg/m4</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.0083</td>
<td></td>
</tr>
<tr>
<td>Agua corregida</td>
<td>226.51</td>
<td>Lit/m3</td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>359.54</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>862.65</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>858.36</td>
<td>Kg.</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>866.26</td>
<td>Kg.</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>864.92</td>
<td>Kg.</td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>853.82</td>
<td>Kg.</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas final $f'_c= 210$ kg/cm2 - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco WS (kg)</td>
<td>Peso unitario seco WUS</td>
<td>Peso en obra WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>359.54</td>
<td>1.00</td>
<td>359.54</td>
</tr>
<tr>
<td>Agua</td>
<td>226.51</td>
<td>0.63</td>
<td>234.47</td>
</tr>
<tr>
<td>Arena</td>
<td>853.82</td>
<td>2.37</td>
<td>860.57</td>
</tr>
<tr>
<td>Piedra</td>
<td>858.36</td>
<td>2.39</td>
<td>862.65</td>
</tr>
<tr>
<td>Aire</td>
<td>2.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2298.23</td>
<td>2317.23</td>
<td>6.44</td>
</tr>
</tbody>
</table>

Dosificación en seco

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.54</td>
<td>226.51</td>
<td>853.82</td>
<td>858.36</td>
</tr>
<tr>
<td>1.00</td>
<td>0.63</td>
<td>2.37</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.54</td>
<td>234.47</td>
<td>860.57</td>
<td>862.65</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
<td>2.39</td>
<td>2.4</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de Cunyac”

| Resistencia | 280 kg/cm2 | Huso | 8 | Diseño | Inicial |

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m3</td>
<td>2.65 g/m3</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m3</td>
<td>1626.96 kg/m3</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m3</td>
<td>1750.63 kg/m3</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.98</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm3</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm3</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f_c)</td>
<td>280 Kg/cm2</td>
</tr>
<tr>
<td>Incremento de resistencia</td>
<td>85 Kg/cm2</td>
</tr>
<tr>
<td>Resistencia requerida (f_{cr})</td>
<td>365 Kg/cm2</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit/m3</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>501.1 Kg/m3</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>$f'c/r$</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>365</td>
<td>0.455</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Cuadro resumen de diseño de mezclas inicial $f'_c= 280$ kg/cm² - muestras cilíndricas de 2" x 4" (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco WS (kg)</td>
<td>Peso específico Pe (kg/m³)</td>
<td>Volumen</td>
</tr>
<tr>
<td>Cemento</td>
<td>501.10</td>
<td>2850.00</td>
<td>0.176</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>740.77</td>
<td>2617.57</td>
<td>-</td>
</tr>
<tr>
<td>Piedra</td>
<td>748.63</td>
<td>2645.35</td>
<td>-</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2218.50</td>
<td></td>
<td>0.434</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>Nº de briquetas</th>
<th>30.00</th>
<th>unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65</td>
<td>kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50</td>
<td>kg</td>
</tr>
<tr>
<td>Factor $F = \frac{Wtb}{WUO}$</td>
<td>4.37</td>
<td></td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th></th>
<th>WO</th>
<th>1.00</th>
<th>1.36</th>
<th>1.38</th>
<th>19.98</th>
<th>lit/bols</th>
<th>0.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td></td>
<td></td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos \(f'c=\) 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Diseño de mezclas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cunyac</td>
</tr>
<tr>
<td>Agua</td>
<td>Potable</td>
</tr>
<tr>
<td>Cemento</td>
<td>Yura IP</td>
</tr>
<tr>
<td>Fecha</td>
<td>09-10-18</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>EPIC-UNSAAC</td>
</tr>
</tbody>
</table>

Resistencia 280 kg/cm² | Huso | 8 | Diseño | Inicial correg. |

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>280 kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadro resumen de diseño de mezclas inicial (f'c=280) kg/cm² - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso en obra</th>
<th>Peso en obra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cálculo en seco</td>
<td>Cálculo en obra</td>
<td>Mezcla de prueba</td>
</tr>
<tr>
<td>Peso seco</td>
<td>Peso unitario seco</td>
<td>WUS</td>
</tr>
<tr>
<td>Cemento</td>
<td>515.18</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>231.83</td>
<td>0.45</td>
</tr>
<tr>
<td>Arena</td>
<td>720.54</td>
<td>1.40</td>
</tr>
<tr>
<td>Piedra</td>
<td>752.87</td>
<td>1.46</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2220.42</td>
<td>2236.71</td>
</tr>
</tbody>
</table>

Dosificaciación en seco

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.18</td>
<td>231.83</td>
<td>720.54</td>
<td>752.87</td>
</tr>
<tr>
<td>1.00</td>
<td>0.45</td>
<td>1.40</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Dosificaciación en húmedo

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.18</td>
<td>238.67</td>
<td>726.23</td>
<td>756.63</td>
</tr>
<tr>
<td>1</td>
<td>0.46</td>
<td>1.41</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'_c = 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'_c = 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo</td>
</tr>
<tr>
<td>Cantera</td>
</tr>
<tr>
<td>Agua</td>
</tr>
<tr>
<td>Fecha</td>
</tr>
<tr>
<td>Laboratorio</td>
</tr>
</tbody>
</table>

| Resistencia | 280 kg/cm² | Huso | 8 | Diseño | Final |

Propiedades Físicas de los Agregados

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/m³</td>
<td>2.65 g/m³</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m³</td>
<td>1626.96 kg/m³</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m³</td>
<td>1750.63 kg/m³</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>n°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

Propiedades Cemento y Agua

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

Porcentaje de Agregado

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

Consideraciones Iniciales

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f'_c)</td>
<td>280 Kg/cm²</td>
</tr>
<tr>
<td>Desv. Estandar Ss</td>
<td>20.75</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f'_{cr1})</td>
<td>307.805 Kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f'_{cr2})</td>
<td>293.3475 Kg/cm³</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f'_{cr})</td>
<td>307.81 Kg/cm³</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit./m³</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>0.03</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>431 Kg/m³</td>
</tr>
</tbody>
</table>

Selección de la Relación A/C

<table>
<thead>
<tr>
<th>f'_{cr}</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
<tr>
<td>307.81</td>
<td>0.529</td>
</tr>
<tr>
<td>300</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac”

Cuadro resumen de diseño de mezclas final f’c= 280 kg/cm² - muestras cilíndricas de 2’’ x 4’’ (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen V(m³)</th>
<th>Distrib. de volum. faltante (m³)</th>
<th>Peso unitario seco WUS</th>
<th>Peso en obra WO</th>
<th>Peso unitario en obra WUO</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>431.00</td>
<td>2850.00</td>
<td>0.151</td>
<td>-</td>
<td>1.00</td>
<td>431.00</td>
<td>1.00</td>
<td>42.5</td>
<td>1.00</td>
<td>3.76</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
<td>-</td>
<td>0.53</td>
<td>235.24</td>
<td>0.55</td>
<td>23.38</td>
<td>23.38</td>
<td>2.07</td>
</tr>
<tr>
<td>Arena</td>
<td>774.69</td>
<td>2617.57</td>
<td>-</td>
<td>0.296</td>
<td>1.80</td>
<td>780.81</td>
<td>1.81</td>
<td>76.93</td>
<td>1.65</td>
<td>6.81</td>
</tr>
<tr>
<td>Piedra</td>
<td>783.02</td>
<td>2645.35</td>
<td>-</td>
<td>0.296</td>
<td>1.82</td>
<td>786.94</td>
<td>1.83</td>
<td>77.78</td>
<td>1.69</td>
<td>6.88</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2216.71</td>
<td></td>
<td>0.409</td>
<td>0.591</td>
<td>1.00</td>
<td>2233.99</td>
<td>5.19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>30.00 unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>3.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>1.00</th>
<th>1.65</th>
<th>1.69</th>
<th>23.38</th>
<th>lit/bols</th>
<th>0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo
Diseño de mezclas
Cantera
Cunyac
Agua
Potable
Cemento
Yura IP
Fecha
12-02-19
Laboratorio
EPIC-UNSAAC

Resistencia 280 kg/cm² Huso 8 Diseño Final correg.

<table>
<thead>
<tr>
<th></th>
<th>Sobra agua</th>
<th>Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de proctor</td>
<td>6.5602</td>
<td>Kg.</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.479</td>
<td>Kg.</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124</td>
<td>m³</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2216.71</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2315.82</td>
<td>Kg/m⁴</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.00837</td>
<td></td>
</tr>
<tr>
<td>Agua corregida</td>
<td>244.8</td>
<td>Lit/m³</td>
</tr>
</tbody>
</table>
| Cemento corregido | 461.89 | Kg.
| Piedra húmeda corregida | 821.98 | Kg.
| Piedra seca corregida | 817.89 | Kg. |
| Piedra saturada corregida | 825.41 | Kg. |
| Arena saturada corregida | 783.72 | Kg. |
| Arena seca corregida | 773.66 | Kg. |

Cuadro resumen de diseño de mezclas final $f'_c=280$ kg/cm² - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco (WS)</td>
<td>Peso unitario</td>
<td>Peso en obra (WO)</td>
</tr>
<tr>
<td></td>
<td>(kg)</td>
<td>secu</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>461.89</td>
<td>1.00</td>
<td>461.89</td>
</tr>
<tr>
<td>Agua</td>
<td>244.80</td>
<td>0.53</td>
<td>252.18</td>
</tr>
<tr>
<td>Arena</td>
<td>773.66</td>
<td>1.67</td>
<td>779.77</td>
</tr>
<tr>
<td>Piedra</td>
<td>817.89</td>
<td>1.77</td>
<td>821.98</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2298.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dosificación en seco

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>461.89</td>
<td>244.8</td>
<td>773.66</td>
<td>817.89</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>0.53</td>
<td>1.67</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>461.89</td>
<td>252.18</td>
<td>779.77</td>
<td>821.98</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.55</td>
<td>1.69</td>
<td>1.78</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c=140, 175, 210, 280$ y 350 kg/cm2 con agregados de la cantera de cunyac

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>350 kg/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huso</td>
<td>8</td>
</tr>
<tr>
<td>Diseño</td>
<td>Inicial.</td>
</tr>
</tbody>
</table>

PROPIEDADES FÍSICAS DE LOS AGREGADOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62 g/cm3</td>
<td>2.65 g/cm3</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46 kg/m3</td>
<td>1626.96 kg/m3</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81 kg/m3</td>
<td>1750.63 kg/m3</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79 %</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30 %</td>
<td>0.92 %</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>Nº4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

PROPIEDADES CEMENTO Y AGUA

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm3</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm3</td>
</tr>
</tbody>
</table>

PORCENTAJE DE AGREGADO

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

CONSIDERACIONES INICIALES

<table>
<thead>
<tr>
<th>Resistencia especificada (f_c)</th>
<th>350 kg/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremento de resistencia</td>
<td>85 kg/cm2</td>
</tr>
<tr>
<td>Resistencia requerida (f_{cr})</td>
<td>435 kg/cm2</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lí/t/m3</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>581.63 Kg/m3</td>
</tr>
</tbody>
</table>

SELECCIÓN DE LA RELACIÓN A/C

<table>
<thead>
<tr>
<th>$f'cr$</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>0.38</td>
</tr>
<tr>
<td>435</td>
<td>0.392</td>
</tr>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
</tbody>
</table>
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c = 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyae”

Cuadro resumen de diseño de mezclas inicial f’c = 350 kg/cm² - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco WS (kg)</th>
<th>Peso específico Pe (kg/m³)</th>
<th>Volumen V(m³)</th>
<th>Peso unitario WUS (kg)</th>
<th>Peso en obra WO (kg)</th>
<th>Peso unitario en obra WUO (kg)</th>
<th>Peso en obra WO*42.5 (kg)</th>
<th>Peso existente V(m³)</th>
<th>Volumen de volum. faltante (m³)</th>
<th>Volumen existente WUO*F (m³)</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>581.63</td>
<td>2850.00</td>
<td>0.204</td>
<td>-</td>
<td>1.00</td>
<td>581.63</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>5.06</td>
<td>1.00</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
<td>-</td>
<td>0.39</td>
<td>234.58</td>
<td>0.40</td>
<td>17.00</td>
<td>17.00</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>Arena</td>
<td>704.13</td>
<td>2617.57</td>
<td>-</td>
<td>0.269</td>
<td>1.21</td>
<td>709.69</td>
<td>1.22</td>
<td>51.85</td>
<td>1.11</td>
<td>6.17</td>
<td>6.17</td>
</tr>
<tr>
<td>Piedra</td>
<td>711.60</td>
<td>2645.35</td>
<td>-</td>
<td>0.269</td>
<td>1.22</td>
<td>715.16</td>
<td>1.23</td>
<td>52.28</td>
<td>1.13</td>
<td>6.22</td>
<td>6.22</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.47</td>
<td>19.47</td>
<td>19.47</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2225.36</td>
<td></td>
<td>0.462</td>
<td>0.538</td>
<td>1.000</td>
<td>2241.06</td>
<td>3.85</td>
<td>1.00</td>
<td>1.00</td>
<td>6.22</td>
<td>6.22</td>
</tr>
</tbody>
</table>

Cálculo para mezcla de prueba

<table>
<thead>
<tr>
<th>N° de briquetas</th>
<th>30.00 unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65 kg</td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50 kg</td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>5.06</td>
</tr>
</tbody>
</table>

Dosificación

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.11</th>
<th>1.13</th>
<th>17.00</th>
<th>lit/bols</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>Arena</td>
<td>Piedra</td>
<td>Agua</td>
<td>a/c</td>
<td></td>
</tr>
</tbody>
</table>
Diseño de mezclas

<table>
<thead>
<tr>
<th>Componente</th>
<th>Peso en secó (kg)</th>
<th>Peso en obra (kg)</th>
<th>Volumen proctor (m³)</th>
<th>Densidad teórica (Kg/m³)</th>
<th>Densidad real (Kg/m³)</th>
<th>Rendimiento</th>
<th>Agua corregida (Lit/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>625.54</td>
<td>625.54</td>
<td>0.002124</td>
<td>2225.36</td>
<td>2236.72</td>
<td>0.00869</td>
<td>243.96</td>
</tr>
<tr>
<td>Agua</td>
<td>243.96</td>
<td>250.22</td>
<td>0.40</td>
<td>17.00</td>
<td>17.00</td>
<td>2.20</td>
<td>0.39</td>
</tr>
<tr>
<td>Arena</td>
<td>640.14</td>
<td>645.20</td>
<td>1.03</td>
<td>43.78</td>
<td>48.45</td>
<td>0.78</td>
<td>1.04</td>
</tr>
<tr>
<td>Piedra húmeda</td>
<td>715.77</td>
<td>715.77</td>
<td>1.05</td>
<td>48.45</td>
<td>5.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra seca</td>
<td>712.21</td>
<td>715.77</td>
<td>1.05</td>
<td>48.45</td>
<td>6.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena seca húmeda</td>
<td>648.46</td>
<td>645.20</td>
<td>1.03</td>
<td>48.45</td>
<td>6.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena seca</td>
<td>640.14</td>
<td>645.20</td>
<td>1.03</td>
<td>48.45</td>
<td>6.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dosificación en secó

<table>
<thead>
<tr>
<th>Componente</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena seca</th>
<th>Piedra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>625.54</td>
<td>243.96</td>
<td>640.14</td>
<td>712.21</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.39</td>
<td>1.02</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Dosificación en húmedo

<table>
<thead>
<tr>
<th>Componente</th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena húmeda</th>
<th>Piedra húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>625.54</td>
<td>250.22</td>
<td>645.2</td>
<td>715.77</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.4</td>
<td>1.03</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Contrucción de diseño

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobra agua</td>
<td>0.04 Lit</td>
</tr>
<tr>
<td>Peso de proctor</td>
<td>6.5602 Kg</td>
</tr>
<tr>
<td>Peso de concreto + proctor</td>
<td>11.311 Kg</td>
</tr>
<tr>
<td>Volumen proctor</td>
<td>0.002124 m³</td>
</tr>
<tr>
<td>Densidad teórica</td>
<td>2225.36 Kg/m³</td>
</tr>
<tr>
<td>Densidad real</td>
<td>2236.72 Kg/m³</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0.00869</td>
</tr>
<tr>
<td>Agua corregida</td>
<td>243.96 Lit/m³</td>
</tr>
<tr>
<td>Cemento corregido</td>
<td>625.54 Kg</td>
</tr>
<tr>
<td>Piedra húmeda corregida</td>
<td>715.77 Kg</td>
</tr>
<tr>
<td>Piedra seca corregida</td>
<td>712.21 Kg</td>
</tr>
<tr>
<td>Piedra saturada corregida</td>
<td>718.76 Kg</td>
</tr>
<tr>
<td>Arena saturada corregida</td>
<td>648.46 Kg</td>
</tr>
<tr>
<td>Arena seca corregida</td>
<td>640.14 Kg</td>
</tr>
</tbody>
</table>

Cuadro resumen de diseño de mezclas inicial f′c = 350 kg/cm² - muestras cilíndricas de 2” x 4” (corregido por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso secó WU (kg)</td>
<td>Peso unitario secó WUS</td>
<td>Peso en obra WO</td>
</tr>
<tr>
<td>Cemento</td>
<td>625.54</td>
<td>1.00</td>
<td>625.54</td>
</tr>
<tr>
<td>Agua</td>
<td>243.96</td>
<td>0.39</td>
<td>250.22</td>
</tr>
<tr>
<td>Arena</td>
<td>640.14</td>
<td>1.02</td>
<td>645.20</td>
</tr>
<tr>
<td>Piedra</td>
<td>712.21</td>
<td>1.14</td>
<td>715.77</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2221.85</td>
<td>2236.72</td>
<td>3.57</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Universidad Nacional de San Antonio Abad del Cusco
Escuela Profesional de Ingeniería Civil

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo
Diseño de mezclas
Cantera
Cunyac
Agua
Potable
Cemento
Yura IP
Fecha
09-02-19
Laboratorio
EPIC-UNSAAC

Resistencia 350 kg/cm²
Huso 8
Diseño Final

Propiedades físicas de los agregados

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico de masa</td>
<td>2.62</td>
<td>2.65</td>
</tr>
<tr>
<td>Peso Unitario Suelto</td>
<td>1648.46</td>
<td>1626.9</td>
</tr>
<tr>
<td>Peso Unitario Compactado</td>
<td>1781.81</td>
<td>1750.6</td>
</tr>
<tr>
<td>Porcentaje de Humedad</td>
<td>0.79%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Porcentaje de Absorción</td>
<td>1.30%</td>
<td>0.92%</td>
</tr>
<tr>
<td>Módulo de Fineza</td>
<td>2.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Tamaño Máximo Nominal</td>
<td>N°4</td>
<td>3/8 pulg</td>
</tr>
</tbody>
</table>

Propiedades cemento y agua

<table>
<thead>
<tr>
<th>Descripción</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso esp. cemento</td>
<td>2.85 gr/cm³</td>
</tr>
<tr>
<td>Peso esp. agua</td>
<td>1 gr/cm³</td>
</tr>
</tbody>
</table>

Porcentaje de agregado

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso</td>
<td>50.00%</td>
</tr>
<tr>
<td>Fino</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

Consideraciones Iniciales

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>3 a 4 Pulg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia especificada (f’c)</td>
<td>350 kg/cm²</td>
</tr>
<tr>
<td>Desv. Estandar Ss</td>
<td>21.05</td>
</tr>
<tr>
<td>Resistencia requerida 1 (f’cr1)</td>
<td>378.207 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida 2 (f’cr2)</td>
<td>364.0465 kg/cm²</td>
</tr>
<tr>
<td>Resistencia requerida mayor (f’cr)</td>
<td>378.21 kg/cm²</td>
</tr>
<tr>
<td>Cantidad de agua para mezcla</td>
<td>228 Lit</td>
</tr>
<tr>
<td>Aire atrapado</td>
<td>3.00%</td>
</tr>
<tr>
<td>Cantidad de cemento</td>
<td>515.84 Kg</td>
</tr>
</tbody>
</table>

Selección de la relación A/C

<table>
<thead>
<tr>
<th>f’cr</th>
<th>(a/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.42</td>
</tr>
<tr>
<td>378.21</td>
<td>0.442</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Cuadro resumen de diseño de mezclas final f’c= 350 kg/cm2 - muestras cilíndricas de 2” x 4” (sin corrección por asentamiento y densidad)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cálculo en seco</th>
<th>Cálculo en obra</th>
<th>Mezcla de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco WS (kg)</td>
<td>Peso específico Pe (kg/m³)</td>
<td>Volumen</td>
</tr>
<tr>
<td>Cemento</td>
<td>515.84</td>
<td>2850.00</td>
<td>0.181</td>
</tr>
<tr>
<td>Agua</td>
<td>228.00</td>
<td>1000.00</td>
<td>0.228</td>
</tr>
<tr>
<td>Arena</td>
<td>735.43</td>
<td>2617.20</td>
<td>-</td>
</tr>
<tr>
<td>Piedra</td>
<td>743.34</td>
<td>2645.35</td>
<td>-</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2222.61</td>
<td></td>
<td>0.439</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº de briquetas</th>
<th>30.00 unidades</th>
<th>1.00</th>
<th>1.31</th>
<th>1.34</th>
<th>19.55</th>
<th>lit/bols</th>
<th>0.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de cada briqueta</td>
<td>0.65 kg</td>
<td>Cemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso total de briquetas Wtb=</td>
<td>19.50 kg</td>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor F = Wtb/WUO</td>
<td>4.48</td>
<td>Piedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agua</td>
<td>a/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Tabla de Corrección de Diseño

<table>
<thead>
<tr>
<th></th>
<th>Sobra agua</th>
<th>Peso de proctor</th>
<th>Peso de concreto + proctor</th>
<th>Volumen proctor</th>
<th>Densidad teórica</th>
<th>Densidad real</th>
<th>Rendimiento</th>
<th>Agua corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03</td>
<td>6.5602 Kg.</td>
<td>11.476 Kg.</td>
<td>0.002124 m³</td>
<td>2222.61 Kg/m³</td>
<td>2314.41 Kg/m⁴</td>
<td>0.00841</td>
<td>254.46 Lit/m³</td>
</tr>
</tbody>
</table>

Cálculo en Seco y Húmedo

Descripción

- **Cemento**: 578.32 kg, 1.00
- **Agua**: 254.46 kg, 0.44
- **Arena**: 696.46 kg, 1.20
- **Piedra**: 769.04 kg, 1.33
- **Aire**: 3.00%

Cálculo en Seco

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Peso seco</th>
<th>Peso unitario seco</th>
<th>Peso en obra</th>
<th>Peso unitario en obra</th>
<th>WUO*42.5</th>
<th>Volumen (pie³)</th>
<th>WUO*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>578.32</td>
<td>1.00</td>
<td>578.32</td>
<td>1.00</td>
<td>42.50</td>
<td>1.00</td>
<td>4.90</td>
</tr>
<tr>
<td>Agua</td>
<td>254.46</td>
<td>0.44</td>
<td>261.24</td>
<td>0.45</td>
<td>19.13</td>
<td>19.13</td>
<td>2.21</td>
</tr>
<tr>
<td>Arena</td>
<td>696.46</td>
<td>1.20</td>
<td>701.96</td>
<td>1.21</td>
<td>51.43</td>
<td>1.10</td>
<td>5.93</td>
</tr>
<tr>
<td>Piedra</td>
<td>769.04</td>
<td>1.33</td>
<td>772.89</td>
<td>1.34</td>
<td>56.95</td>
<td>1.24</td>
<td>6.57</td>
</tr>
<tr>
<td>Aire</td>
<td>3.00%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Dosificación en Seco

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>254.46</td>
<td>0.44</td>
<td>1.20</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Dosificación en Húmedo

<table>
<thead>
<tr>
<th></th>
<th>Cemento</th>
<th>Agua</th>
<th>Arena</th>
<th>Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>261.24</td>
<td>0.45</td>
<td>1.21</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=$ 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de cunyac

C

COMPRESIÓN SIMPLE Y VELOCIDAD DE PULSO ULTRASÓNICO
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y 350 kg/cm^2 con agregados de la cantera de Cunyac

Ensayo
Compresión simple y velocidad de pulso ultrasónico

Laboratorio
EPIC-UNSAAC y Geotest

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>140 kg/cm2</th>
<th>Huso</th>
<th>67</th>
<th>Tamaño de briqueta</th>
<th>Dián 4" y alt= 8"</th>
<th>Edad</th>
<th>7 días</th>
</tr>
</thead>
</table>
| Resultados de mediciones resistencias y velocidades ultrasónicasCuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f'c=140\text{ kg/cm}^2$ (muestras cilíndricas de 4"x8"-07 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg, f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm2)</th>
<th>Volumen (m3)</th>
<th>Densidad (kg/m3)</th>
<th>$f'c$ (kg/cm2)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-140-01</td>
<td>7</td>
<td>4.003</td>
<td>10731.60</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2354.71</td>
<td>131.85</td>
<td>3900</td>
</tr>
<tr>
<td>07-140-02</td>
<td>7</td>
<td>4.017</td>
<td>10824.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2362.94</td>
<td>133.25</td>
<td>3850</td>
</tr>
<tr>
<td>07-140-03</td>
<td>7</td>
<td>4.000</td>
<td>10498.40</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2352.94</td>
<td>128.99</td>
<td>3857</td>
</tr>
<tr>
<td>07-140-04</td>
<td>7</td>
<td>3.997</td>
<td>10942.80</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.18</td>
<td>134.45</td>
<td>3842</td>
</tr>
<tr>
<td>07-140-05</td>
<td>7</td>
<td>3.997</td>
<td>10643.60</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2360.59</td>
<td>131.29</td>
<td>3870</td>
</tr>
<tr>
<td>07-140-06</td>
<td>7</td>
<td>4.013</td>
<td>11308.00</td>
<td>10.15</td>
<td>20.6</td>
<td>2.03</td>
<td>80.91</td>
<td>0.0017</td>
<td>2361.18</td>
<td>139.76</td>
<td>3870</td>
</tr>
<tr>
<td>07-140-07</td>
<td>7</td>
<td>3.997</td>
<td>10392.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2355.29</td>
<td>131.57</td>
<td>3840</td>
</tr>
<tr>
<td>07-140-08</td>
<td>7</td>
<td>4.004</td>
<td>10687.60</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2353.53</td>
<td>133.96</td>
<td>3832</td>
</tr>
<tr>
<td>07-140-09</td>
<td>7</td>
<td>4.001</td>
<td>10903.20</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.76</td>
<td>138.89</td>
<td>3832</td>
</tr>
<tr>
<td>07-140-10</td>
<td>7</td>
<td>3.998</td>
<td>11237.60</td>
<td>10.15</td>
<td>20.5</td>
<td>2.02</td>
<td>80.91</td>
<td>0.0017</td>
<td>2354.71</td>
<td>130.00</td>
<td>3870</td>
</tr>
<tr>
<td>07-140-11</td>
<td>7</td>
<td>4.003</td>
<td>10560.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2357.06</td>
<td>129.57</td>
<td>3842</td>
</tr>
<tr>
<td>07-140-12</td>
<td>7</td>
<td>4.007</td>
<td>10524.80</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2354.71</td>
<td>140.29</td>
<td>3932</td>
</tr>
<tr>
<td>07-140-13</td>
<td>7</td>
<td>3.999</td>
<td>11418.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2352.35</td>
<td>134.77</td>
<td>3870</td>
</tr>
<tr>
<td>07-140-14</td>
<td>7</td>
<td>4.011</td>
<td>10947.20</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2359.41</td>
<td>138.72</td>
<td>3834</td>
</tr>
<tr>
<td>07-140-15</td>
<td>7</td>
<td>4.017</td>
<td>11290.40</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2362.94</td>
<td>133.70</td>
<td>3863</td>
</tr>
</tbody>
</table>

Promedio

<table>
<thead>
<tr>
<th>Medidas de dispersión (compresión simple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra=</td>
</tr>
<tr>
<td>Varianza (S^2)=</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2$ con agregados de la cantera de Cunyac”

Universidad Nacional de San Antonio Abad del Cusco
Escuela Profesional de Ingeniería Civil
Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2$ con agregados de la cantera de Cunyac”

Ensayo

Cantera: Cunyac
Fecha: 30-11-18
Laboratorio: EPIC-UNSAAC y Geotest

<table>
<thead>
<tr>
<th>Resistencia</th>
<th>140 kg/cm2</th>
<th>Huso</th>
<th>67</th>
<th>Tamaño de briqueta</th>
<th>Diám = 4" y alt= 8"</th>
<th>Edad</th>
<th>14 días</th>
</tr>
</thead>
</table>

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f'_c=140 \text{ kg/cm}^2$ (muestras cilíndricas de 4"x8"-14 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f'_c (kg/cm²)</th>
<th>Velocidad ultrasonica</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-140-01</td>
<td>21</td>
<td>3.996</td>
<td>12570.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2350.59</td>
<td>154.44</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-02</td>
<td>21</td>
<td>4.006</td>
<td>14310.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2356.47</td>
<td>176.17</td>
<td>4232</td>
</tr>
<tr>
<td>14-140-03</td>
<td>21</td>
<td>3.999</td>
<td>14310.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>176.51</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-04</td>
<td>21</td>
<td>3.999</td>
<td>13140.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.35</td>
<td>161.76</td>
<td>4158</td>
</tr>
<tr>
<td>14-140-05</td>
<td>21</td>
<td>4.010</td>
<td>12114.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2358.82</td>
<td>148.84</td>
<td>4160</td>
</tr>
<tr>
<td>14-140-06</td>
<td>21</td>
<td>4.010</td>
<td>12108.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2358.82</td>
<td>149.06</td>
<td>4160</td>
</tr>
<tr>
<td>14-140-07</td>
<td>21</td>
<td>3.995</td>
<td>12924.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2350.00</td>
<td>159.1</td>
<td>4158</td>
</tr>
<tr>
<td>14-140-08</td>
<td>21</td>
<td>3.996</td>
<td>14250.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2350.59</td>
<td>175.08</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-09</td>
<td>21</td>
<td>4.000</td>
<td>13728.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.94</td>
<td>169.34</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-10</td>
<td>21</td>
<td>4.000</td>
<td>14364.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.94</td>
<td>176.83</td>
<td>4232</td>
</tr>
<tr>
<td>14-140-11</td>
<td>21</td>
<td>4.012</td>
<td>13002.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2360.00</td>
<td>160.6</td>
<td>4158</td>
</tr>
<tr>
<td>14-140-12</td>
<td>21</td>
<td>4.012</td>
<td>13668.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2360.00</td>
<td>168.6</td>
<td>4177</td>
</tr>
<tr>
<td>14-140-13</td>
<td>21</td>
<td>4.016</td>
<td>14250.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2362.35</td>
<td>175.77</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-14</td>
<td>21</td>
<td>4.010</td>
<td>14190.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2358.82</td>
<td>175.03</td>
<td>4227</td>
</tr>
<tr>
<td>14-140-15</td>
<td>21</td>
<td>4.010</td>
<td>14742.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2358.82</td>
<td>181.13</td>
<td>4227</td>
</tr>
</tbody>
</table>

Promedio: 2355.72 167.18 4202

Medidas de dispersión (compresión simple)

N° de muestra=	15
Varianza (S^2)=	116.6
Desviación estándar S=	10.8
Coeficiente de variación	6.46%
Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f_{c}=140$ kg/cm² (muestras cilíndricas de 4"x8" - 21 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg-f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f_{c} (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-140-01</td>
<td>14</td>
<td>4.000</td>
<td>15640.90</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.94</td>
<td>192.55</td>
<td>4277</td>
</tr>
<tr>
<td>21-140-02</td>
<td>14</td>
<td>3.990</td>
<td>14844.40</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2347.06</td>
<td>182.75</td>
<td>4270</td>
</tr>
<tr>
<td>21-140-03</td>
<td>14</td>
<td>4.000</td>
<td>14797.20</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.94</td>
<td>182.16</td>
<td>4270</td>
</tr>
<tr>
<td>21-140-04</td>
<td>14</td>
<td>4.160</td>
<td>14814.90</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2447.06</td>
<td>182.02</td>
<td>4298</td>
</tr>
<tr>
<td>21-140-05</td>
<td>14</td>
<td>3.984</td>
<td>14649.70</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2343.53</td>
<td>180.7</td>
<td>4203</td>
</tr>
<tr>
<td>21-140-06</td>
<td>14</td>
<td>3.986</td>
<td>13528.70</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2344.71</td>
<td>166.88</td>
<td>4142</td>
</tr>
<tr>
<td>21-140-07</td>
<td>14</td>
<td>4.002</td>
<td>13935.80</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2354.12</td>
<td>171.56</td>
<td>4286</td>
</tr>
<tr>
<td>21-140-08</td>
<td>14</td>
<td>3.994</td>
<td>13133.40</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2349.41</td>
<td>162</td>
<td>4177</td>
</tr>
<tr>
<td>21-140-09</td>
<td>14</td>
<td>3.998</td>
<td>13204.20</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>162.55</td>
<td>4182</td>
</tr>
<tr>
<td>21-140-10</td>
<td>14</td>
<td>3.980</td>
<td>14773.60</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2341.18</td>
<td>182.23</td>
<td>4290</td>
</tr>
<tr>
<td>21-140-11</td>
<td>14</td>
<td>3.981</td>
<td>14095.10</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2341.76</td>
<td>173.86</td>
<td>4277</td>
</tr>
<tr>
<td>21-140-12</td>
<td>14</td>
<td>4.001</td>
<td>14512.70</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2353.53</td>
<td>186.16</td>
<td>4298</td>
</tr>
<tr>
<td>21-140-13</td>
<td>14</td>
<td>4.020</td>
<td>14661.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>180.85</td>
<td>4277</td>
</tr>
<tr>
<td>21-140-14</td>
<td>14</td>
<td>3.980</td>
<td>14224.90</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2341.18</td>
<td>175.46</td>
<td>4188</td>
</tr>
<tr>
<td>21-140-15</td>
<td>14</td>
<td>3.988</td>
<td>14632.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2345.88</td>
<td>180.49</td>
<td>4298</td>
</tr>
</tbody>
</table>

Promedio

<table>
<thead>
<tr>
<th>Medidas de dispersion (compresion simple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra=</td>
</tr>
<tr>
<td>Varianza (S²)=</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
</tr>
</tbody>
</table>

Promedio 2355.45 177.48 4249
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo
- Compración simple y velocidad de pulso ultrasónico

Cantera: Cunyac

Fecha: 10-12-18

Laboratorio: EPIC-UNSAAC y Geotest

Resistencia 140 kg/cm²

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f'_c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>28</td>
<td>3.99</td>
<td>16051.06</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2347.06</td>
<td>197.99</td>
<td>4249</td>
</tr>
<tr>
<td>28-140-02</td>
<td>28</td>
<td>4.002</td>
<td>14132.10</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2354.12</td>
<td>173.98</td>
<td>4217</td>
</tr>
<tr>
<td>28-140-03</td>
<td>28</td>
<td>3.996</td>
<td>15727.38</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2350.59</td>
<td>193.62</td>
<td>4242</td>
</tr>
<tr>
<td>28-140-04</td>
<td>28</td>
<td>3.997</td>
<td>15062.68</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.18</td>
<td>185.07</td>
<td>4232</td>
</tr>
<tr>
<td>28-140-05</td>
<td>28</td>
<td>4.001</td>
<td>15559.76</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2353.53</td>
<td>191.55</td>
<td>4242</td>
</tr>
<tr>
<td>28-140-06</td>
<td>28</td>
<td>4.01</td>
<td>15380.58</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2358.82</td>
<td>188.97</td>
<td>4242</td>
</tr>
<tr>
<td>28-140-07</td>
<td>28</td>
<td>3.998</td>
<td>14652.30</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>180.38</td>
<td>4242</td>
</tr>
<tr>
<td>28-140-08</td>
<td>28</td>
<td>3.99</td>
<td>14871.94</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2347.06</td>
<td>183.08</td>
<td>4247</td>
</tr>
<tr>
<td>28-140-09</td>
<td>28</td>
<td>3.999</td>
<td>15432.60</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>190.36</td>
<td>4237</td>
</tr>
<tr>
<td>28-140-10</td>
<td>28</td>
<td>3.998</td>
<td>14484.68</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2351.76</td>
<td>178.67</td>
<td>4217</td>
</tr>
<tr>
<td>28-140-11</td>
<td>28</td>
<td>4.02</td>
<td>15322.78</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>189.01</td>
<td>4227</td>
</tr>
<tr>
<td>28-140-12</td>
<td>28</td>
<td>4.004</td>
<td>15762.06</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2355.29</td>
<td>194.04</td>
<td>4282</td>
</tr>
<tr>
<td>28-140-13</td>
<td>28</td>
<td>4.01</td>
<td>15253.42</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2358.82</td>
<td>187.78</td>
<td>4279</td>
</tr>
<tr>
<td>28-140-14</td>
<td>28</td>
<td>4.01</td>
<td>14704.32</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2358.82</td>
<td>180.66</td>
<td>4259</td>
</tr>
<tr>
<td>28-140-15</td>
<td>28</td>
<td>4.003</td>
<td>15819.86</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2354.71</td>
<td>194.37</td>
<td>4249</td>
</tr>
</tbody>
</table>

Promedio
- Medidas de dispersión (compresión simple)

Nº de muestra=	15
Varianza (S²)=	46.4
Desviación estándar S=	6.81
Coeficiente de variación	3.64%

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad


```
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo
Compresión simple y velocidad de pulso ultrasónico

Cantera
Cunyac

Fecha
28-11-18

Laboratorio
EPIC-UNSAAC y Geotest

Resistencia
175 kg/cm²

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f’c=175 kg/cm² (muestras cilíndricas de 4”x8”-07 días)

<table>
<thead>
<tr>
<th>Cód.</th>
<th>Edad</th>
<th>Peso</th>
<th>Fuerza</th>
<th>Diámetro</th>
<th>Altura</th>
<th>H/D</th>
<th>Área</th>
<th>Volumen</th>
<th>Densidad</th>
<th>f’c</th>
<th>Velocidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-175-01</td>
<td>7</td>
<td>4.003</td>
<td>13020.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2354.71</td>
<td>163.76</td>
<td>4140</td>
</tr>
<tr>
<td>07-175-02</td>
<td>7</td>
<td>4.021</td>
<td>11704.50</td>
<td>10.17</td>
<td>20.3</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2365.29</td>
<td>144.09</td>
<td>3999</td>
</tr>
<tr>
<td>07-175-03</td>
<td>7</td>
<td>4.021</td>
<td>12807.00</td>
<td>10.17</td>
<td>20.3</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2365.29</td>
<td>157.66</td>
<td>4070</td>
</tr>
<tr>
<td>07-175-04</td>
<td>7</td>
<td>4.025</td>
<td>12726.00</td>
<td>10.18</td>
<td>20.3</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>156.36</td>
<td>4132</td>
</tr>
<tr>
<td>07-175-05</td>
<td>7</td>
<td>4.026</td>
<td>12649.50</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2368.24</td>
<td>155.42</td>
<td>4150</td>
</tr>
<tr>
<td>07-175-06</td>
<td>7</td>
<td>4.017</td>
<td>13837.50</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2362.94</td>
<td>161.21</td>
<td>4158</td>
</tr>
<tr>
<td>07-175-07</td>
<td>7</td>
<td>4.017</td>
<td>13095.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2362.94</td>
<td>159.20</td>
<td>4002</td>
</tr>
<tr>
<td>07-175-08</td>
<td>7</td>
<td>4.016</td>
<td>12906.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2362.35</td>
<td>159.14</td>
<td>4159</td>
</tr>
<tr>
<td>07-175-09</td>
<td>7</td>
<td>4.027</td>
<td>12820.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>159.20</td>
<td>4002</td>
</tr>
<tr>
<td>07-175-10</td>
<td>7</td>
<td>4.006</td>
<td>12681.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2356.47</td>
<td>155.81</td>
<td>4149</td>
</tr>
<tr>
<td>07-175-11</td>
<td>7</td>
<td>4.030</td>
<td>12766.50</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.59</td>
<td>157.48</td>
<td>4149</td>
</tr>
<tr>
<td>07-175-12</td>
<td>7</td>
<td>4.040</td>
<td>12982.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2376.47</td>
<td>159.82</td>
<td>4132</td>
</tr>
<tr>
<td>07-175-13</td>
<td>7</td>
<td>4.034</td>
<td>12559.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.94</td>
<td>154.92</td>
<td>4155</td>
</tr>
<tr>
<td>07-175-14</td>
<td>7</td>
<td>4.039</td>
<td>12541.50</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.88</td>
<td>154.39</td>
<td>4155</td>
</tr>
<tr>
<td>07-175-15</td>
<td>7</td>
<td>4.020</td>
<td>12672.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2364.71</td>
<td>156.00</td>
<td>4139</td>
</tr>
</tbody>
</table>

Promedio | 2366.35 | 157.64 | 4121

Medidas de dispersión (compresión simple)

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S²)</td>
<td>30.95</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>5.56</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>3.53%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad```
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de Cunyac

Ensayo Compresión simple y velocidad de pulso ultrasonico
Cantera Cunyac
Fecha 30-11-18
Laboratorio EPIC-UNSAAC y Geotest

Resistencia | 175 kg/cm$^2$ | Huso | 67 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de briqueta</td>
<td>Diám = 4&quot; y alt= 8&quot;</td>
<td>Edad</td>
<td>14 días</td>
</tr>
</tbody>
</table>

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasonico $f'_c=175$ kg/cm$^2$ (muestras cilíndricas de 4"x8"-14 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm$^2$)</th>
<th>Volumen (m$^3$)</th>
<th>Densidad (kg/m$^3$)</th>
<th>$f'_c$ (kg/cm$^2$)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.003</td>
<td>14779.80</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2354.71</td>
<td>181.95</td>
<td>4297</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.006</td>
<td>15308.16</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2356.47</td>
<td>188.08</td>
<td>4257</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.030</td>
<td>15879.36</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2370.59</td>
<td>195.49</td>
<td>4282</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>3.998</td>
<td>15327.20</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>188.69</td>
<td>4277</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.040</td>
<td>15466.12</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2376.47</td>
<td>192.62</td>
<td>4282</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.036</td>
<td>14974.96</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.12</td>
<td>184.72</td>
<td>4290</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.027</td>
<td>15798.44</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>194.87</td>
<td>4237</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.028</td>
<td>15993.60</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2369.41</td>
<td>196.51</td>
<td>4299</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.023</td>
<td>15555.68</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2366.47</td>
<td>191.88</td>
<td>4300</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.032</td>
<td>15522.36</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>191.47</td>
<td>4277</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.040</td>
<td>16231.60</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2376.47</td>
<td>199.43</td>
<td>4299</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.019</td>
<td>15084.44</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2364.12</td>
<td>185.70</td>
<td>4270</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.018</td>
<td>15822.24</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2363.53</td>
<td>194.40</td>
<td>4260</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.023</td>
<td>16374.40</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2366.47</td>
<td>201.58</td>
<td>4302</td>
</tr>
<tr>
<td>14-175</td>
<td>14</td>
<td>4.023</td>
<td>15198.68</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2366.47</td>
<td>187.48</td>
<td>4277</td>
</tr>
</tbody>
</table>

Promedio: 2366.51  191.66  4280

Medidas de dispersion (compresion simple)

| N° de muestras= | 15 |
| Varianza (S2)= | 30.92 |
| Desviación estándar S= | 5.56 |
| Coeficiente de variación | 2.90% |

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac”

Ensayo: Compresión simple y velocidad de pulso ultrasónico
Cantera: Cunyac
Fecha: 05-12-18
Laboratorio: EPIC-UNSAAC y Geotest

Resistencia | 175 kg/cm² | Huso | 67 | Tamaño de briqueta | Diám = 4” y alt= 8” | Edad | 21 días

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-175-01</td>
<td>21</td>
<td>4.032</td>
<td>17287.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>213.24</td>
<td>4312</td>
</tr>
<tr>
<td>21-175-02</td>
<td>21</td>
<td>4.025</td>
<td>16443.30</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2367.65</td>
<td>202.43</td>
<td>4300</td>
</tr>
<tr>
<td>21-175-03</td>
<td>21</td>
<td>4.021</td>
<td>19086.50</td>
<td>10.18</td>
<td>20.5</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2365.29</td>
<td>234.51</td>
<td>4359</td>
</tr>
<tr>
<td>21-175-04</td>
<td>21</td>
<td>4.032</td>
<td>17493.50</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>214.93</td>
<td>4312</td>
</tr>
<tr>
<td>21-175-05</td>
<td>21</td>
<td>4.029</td>
<td>16048.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>213.38</td>
<td>4317</td>
</tr>
<tr>
<td>21-175-06</td>
<td>21</td>
<td>4.027</td>
<td>16018.50</td>
<td>10.16</td>
<td>20.6</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2368.82</td>
<td>196.81</td>
<td>4277</td>
</tr>
<tr>
<td>21-175-07</td>
<td>21</td>
<td>4.017</td>
<td>16738.30</td>
<td>10.16</td>
<td>20.5</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2362.94</td>
<td>206.47</td>
<td>4337</td>
</tr>
<tr>
<td>21-175-08</td>
<td>21</td>
<td>3.998</td>
<td>16567.20</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>203.95</td>
<td>4337</td>
</tr>
<tr>
<td>21-175-09</td>
<td>21</td>
<td>3.999</td>
<td>17287.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>213.24</td>
<td>4327</td>
</tr>
<tr>
<td>21-175-10</td>
<td>21</td>
<td>4.032</td>
<td>16443.30</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>202.83</td>
<td>4327</td>
</tr>
<tr>
<td>21-175-11</td>
<td>21</td>
<td>4.038</td>
<td>19086.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.29</td>
<td>235.41</td>
<td>4347</td>
</tr>
<tr>
<td>21-175-12</td>
<td>21</td>
<td>4.040</td>
<td>17493.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>215.78</td>
<td>4299</td>
</tr>
<tr>
<td>21-175-13</td>
<td>21</td>
<td>4.043</td>
<td>17298.80</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2378.24</td>
<td>212.96</td>
<td>4317</td>
</tr>
<tr>
<td>21-175-14</td>
<td>21</td>
<td>4.032</td>
<td>16048.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>197.95</td>
<td>4277</td>
</tr>
</tbody>
</table>

Promedio | 2368.82 | 210.79 | 4316 |

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f’c=175 kg/cm² (muestras cilíndricas de 4”x8”-21 días)

| N° de muestras | 15 |
| Varianza (S²)= | 139.94 |
| Desviación estándar S= | 11.83 |
| Coeficiente de variación | 5.61% |
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y $350$ kg/cm\(^2\) con agregados de la cantera de Cunyac

Ensayo

Compresión simple y velocidad de pulso ultrasónico

Cantera
Cunyac

Fecha
10-12-18

Laboratorio
EPIC-UNSAAC y Geotest

Resistencia 175 kg/cm\(^2\) Huso 67 Tamaño de briqueta Diám = 4" y alt= 8" Edad 28 días

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f'_c=175$ kg/cm\(^2\) (muestras cilíndricas de 4"x8" - 28 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg, f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm(^2))</th>
<th>Volumen (m(^3))</th>
<th>Densidad (kg/m(^3))</th>
<th>$f'_c$ (kg/cm(^2))</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.039</td>
<td>18355.75</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.88</td>
<td>226.42</td>
<td>4330</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.028</td>
<td>18242.70</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2369.41</td>
<td>224.14</td>
<td>4327</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.028</td>
<td>18326.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2369.41</td>
<td>225.61</td>
<td>4293</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.029</td>
<td>17939.25</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.00</td>
<td>221.28</td>
<td>4292</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.018</td>
<td>17231.20</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2363.53</td>
<td>212.55</td>
<td>4275</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.019</td>
<td>18171.30</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.12</td>
<td>224.14</td>
<td>4322</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.018</td>
<td>18641.35</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2363.53</td>
<td>229.94</td>
<td>4317</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.019</td>
<td>18302.20</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.12</td>
<td>225.76</td>
<td>4317</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.034</td>
<td>18516.40</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.94</td>
<td>228.40</td>
<td>4305</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.045</td>
<td>17683.40</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2379.41</td>
<td>218.13</td>
<td>4285</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.028</td>
<td>19676.65</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2369.41</td>
<td>242.23</td>
<td>4342</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.017</td>
<td>19099.50</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2362.94</td>
<td>235.13</td>
<td>4335</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.043</td>
<td>18671.10</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2378.24</td>
<td>229.85</td>
<td>4317</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.038</td>
<td>18587.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.29</td>
<td>229.28</td>
<td>4317</td>
</tr>
<tr>
<td>28-175-</td>
<td>28</td>
<td>4.012</td>
<td>17772.65</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2360.00</td>
<td>218.79</td>
<td>4265</td>
</tr>
</tbody>
</table>

Promedio

2369.22 226.11 4309

Medidas de dispersión (compresión simple)

| Nº de muestra | 15 |
| Varianza (S\(^2\)) | 51.28 |
| Desviación estándar S | 7.16 |
| Coeficiente de variación | 3.17% |
**Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac**

Ensayo de compresión simple y velocidad de pulso ultrasónico

**Cantera:** Cunyac

**Fecha:** 28-11-18

**Laboratorio:** EPIC-UNSAAC y Geotest

### Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f’c=210 kg/cm² (muestras cilíndricas de 4”x8”-07 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (m²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-210-01</td>
<td>7</td>
<td>4.025</td>
<td>14422.80</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>177.21</td>
<td>4227</td>
</tr>
<tr>
<td>07-210-02</td>
<td>7</td>
<td>4.022</td>
<td>15850.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2365.88</td>
<td>195.52</td>
<td>4299</td>
</tr>
<tr>
<td>07-210-03</td>
<td>7</td>
<td>4.030</td>
<td>15789.60</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2370.59</td>
<td>194.38</td>
<td>4257</td>
</tr>
<tr>
<td>07-210-04</td>
<td>7</td>
<td>4.037</td>
<td>16537.60</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.71</td>
<td>203.99</td>
<td>4317</td>
</tr>
<tr>
<td>07-210-05</td>
<td>7</td>
<td>4.034</td>
<td>17319.60</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2372.94</td>
<td>213.22</td>
<td>4317</td>
</tr>
<tr>
<td>07-210-06</td>
<td>7</td>
<td>3.999</td>
<td>15714.80</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>193.84</td>
<td>4257</td>
</tr>
<tr>
<td>07-210-07</td>
<td>7</td>
<td>4.036</td>
<td>16394.80</td>
<td>10.17</td>
<td>20.6</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2374.12</td>
<td>201.83</td>
<td>4297</td>
</tr>
<tr>
<td>07-210-08</td>
<td>7</td>
<td>4.040</td>
<td>17142.80</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2376.47</td>
<td>210.63</td>
<td>4317</td>
</tr>
<tr>
<td>07-210-09</td>
<td>7</td>
<td>4.047</td>
<td>18373.60</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2380.59</td>
<td>225.75</td>
<td>4317</td>
</tr>
<tr>
<td>07-210-10</td>
<td>7</td>
<td>4.047</td>
<td>16592.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2380.59</td>
<td>204.66</td>
<td>4299</td>
</tr>
<tr>
<td>07-210-11</td>
<td>7</td>
<td>4.029</td>
<td>17136.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2370.00</td>
<td>210.54</td>
<td>4299</td>
</tr>
<tr>
<td>07-210-12</td>
<td>7</td>
<td>4.034</td>
<td>17346.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.94</td>
<td>213.97</td>
<td>4299</td>
</tr>
<tr>
<td>07-210-13</td>
<td>7</td>
<td>4.034</td>
<td>17190.40</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2372.94</td>
<td>211.63</td>
<td>4279</td>
</tr>
<tr>
<td>07-210-14</td>
<td>7</td>
<td>4.030</td>
<td>16367.60</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2370.59</td>
<td>201.50</td>
<td>4286</td>
</tr>
<tr>
<td>07-210-15</td>
<td>7</td>
<td>4.039</td>
<td>15470.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.88</td>
<td>190.82</td>
<td>4257</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>2371.88</strong></td>
<td><strong>203.30</strong></td>
<td><strong>4288</strong></td>
</tr>
</tbody>
</table>

**Medidas de dispersión (compresión simple)**

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S2)</th>
<th>Desviación estándar (S)</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>140.4</td>
<td>11.85</td>
<td>5.83%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
“Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_c = 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de Cunyac”

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm$^2$)</th>
<th>Volumen (m$^3$)</th>
<th>Densidad (kg/m$^3$)</th>
<th>$f_c$ (kg/cm$^2$)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-210-01</td>
<td>14</td>
<td>4.031</td>
<td>20515.50</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.18</td>
<td>252.06</td>
<td>4332</td>
</tr>
<tr>
<td>14-210-02</td>
<td>14</td>
<td>4.031</td>
<td>20350.60</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2371.18</td>
<td>250.53</td>
<td>4332</td>
</tr>
<tr>
<td>14-210-03</td>
<td>14</td>
<td>4.038</td>
<td>22348.80</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2375.29</td>
<td>274.59</td>
<td>4380</td>
</tr>
<tr>
<td>14-210-04</td>
<td>14</td>
<td>4.039</td>
<td>21883.20</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2375.88</td>
<td>268.87</td>
<td>4386</td>
</tr>
<tr>
<td>14-210-05</td>
<td>14</td>
<td>4.037</td>
<td>20903.50</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.71</td>
<td>257.85</td>
<td>4386</td>
</tr>
<tr>
<td>14-210-06</td>
<td>14</td>
<td>4.042</td>
<td>21941.40</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2377.65</td>
<td>270.11</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-07</td>
<td>14</td>
<td>4.037</td>
<td>19254.50</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2374.71</td>
<td>236.57</td>
<td>4286</td>
</tr>
<tr>
<td>14-210-08</td>
<td>14</td>
<td>4.037</td>
<td>20884.10</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.71</td>
<td>257.61</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-09</td>
<td>14</td>
<td>4.020</td>
<td>19409.70</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2364.71</td>
<td>238.95</td>
<td>4332</td>
</tr>
<tr>
<td>14-210-10</td>
<td>14</td>
<td>4.041</td>
<td>22436.10</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2377.06</td>
<td>276.75</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-11</td>
<td>14</td>
<td>4.041</td>
<td>20602.80</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2377.06</td>
<td>253.14</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-12</td>
<td>14</td>
<td>4.024</td>
<td>21165.40</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2367.06</td>
<td>261.08</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-13</td>
<td>14</td>
<td>4.024</td>
<td>20835.60</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.18</td>
<td>256.00</td>
<td>4380</td>
</tr>
<tr>
<td>14-210-14</td>
<td>14</td>
<td>4.020</td>
<td>22183.90</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>273.64</td>
<td>4379</td>
</tr>
<tr>
<td>14-210-15</td>
<td>14</td>
<td>4.045</td>
<td>21660.10</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2379.41</td>
<td>266.65</td>
<td>4379</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>2372.83</strong></td>
<td><strong>259.63</strong></td>
<td><strong>4364</strong></td>
</tr>
</tbody>
</table>

**Medidas de dispersión (compresión simple)**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra</td>
<td>15</td>
</tr>
<tr>
<td>Varianza (S$^2$)</td>
<td>151.56</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>12.31</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>4.74%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
**Ensayo Compresión simple y velocidad de pulso ultrasónico**

**Cantera:** Cunyac  
**Fecha:** 06-12-18  
**Laboratorio:** EPIC-UNSAAC y Geotest

**Resistencia:** 210 kg/cm²  
**Huso:** 67  
**Tamaño de briqueta:** Diám = 4" y alt= 8"  
**Edad:** 21 días

### Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico \( f'c = 210 \text{ kg/cm²} \) (muestras cilíndricas de 4"x8" -21 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (k¡_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>( f'c ) (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.040</td>
<td>21549.80</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>265.82</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.042</td>
<td>22512.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2377.65</td>
<td>277.70</td>
<td>4380</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.040</td>
<td>20608.20</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>254.20</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.043</td>
<td>21400.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2378.24</td>
<td>263.45</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.039</td>
<td>23486.50</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.88</td>
<td>289.14</td>
<td>4380</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.035</td>
<td>21549.80</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2373.53</td>
<td>265.29</td>
<td>4332</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.027</td>
<td>22512.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>277.70</td>
<td>4427</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.043</td>
<td>20608.20</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2378.24</td>
<td>254.20</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.028</td>
<td>21400.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2369.41</td>
<td>262.93</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>3.999</td>
<td>23486.50</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>82.23</td>
<td>0.0017</td>
<td>2352.35</td>
<td>289.14</td>
<td>4427</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>3.998</td>
<td>21549.80</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>82.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>265.29</td>
<td>4332</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.041</td>
<td>22512.80</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2377.06</td>
<td>277.70</td>
<td>4447</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.035</td>
<td>20608.20</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2373.53</td>
<td>254.20</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.032</td>
<td>21400.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>263.97</td>
<td>4379</td>
</tr>
<tr>
<td>21-210-21</td>
<td>21</td>
<td>4.037</td>
<td>23486.50</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.71</td>
<td>289.71</td>
<td>4477</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2371.73</td>
<td>270.03</td>
<td>4390</td>
</tr>
</tbody>
</table>

**Medidas de dispersión (compresión simple)**

<table>
<thead>
<tr>
<th>Nº de muestra</th>
<th>Varianza (S²)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>159.93</td>
<td>12.65</td>
<td>4.68%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita  
Bach. Navarro Concha, Euler abad
**Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_c=140, 175, 210, 280$ y $350$ kg/cm² con agregados de la cantera de Cunyac”**

**Universidad Nacional de San Antonio Abad del Cusco**

**Escuela Profesional de Ingeniería Civil**

Ensayo Compresión simple y velocidad de pulso ultrasonico

<table>
<thead>
<tr>
<th>Fecha</th>
<th>11-12-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratorio</td>
<td>EPIC-UNSAAC y Geotest</td>
</tr>
</tbody>
</table>

**Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasonico $f_c=210$ kg/cm² (muestras cilíndricas de 4”x8”-28 días)**

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>$f_c$ (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-210-01</td>
<td>28</td>
<td>4.035</td>
<td>24780.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2373.53</td>
<td>304.46</td>
<td>4408</td>
</tr>
<tr>
<td>28-210-02</td>
<td>28</td>
<td>4.027</td>
<td>22790.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>274.95</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-03</td>
<td>28</td>
<td>4.036</td>
<td>23810.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2374.12</td>
<td>292.54</td>
<td>4373</td>
</tr>
<tr>
<td>28-210-04</td>
<td>28</td>
<td>4.029</td>
<td>23460.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.00</td>
<td>289.38</td>
<td>4427</td>
</tr>
<tr>
<td>28-210-05</td>
<td>28</td>
<td>4.025</td>
<td>22400.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>275.22</td>
<td>4332</td>
</tr>
<tr>
<td>28-210-06</td>
<td>28</td>
<td>4.028</td>
<td>23000.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2369.41</td>
<td>283.71</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-07</td>
<td>28</td>
<td>4.015</td>
<td>22530.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2361.76</td>
<td>277.36</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-08</td>
<td>28</td>
<td>4.032</td>
<td>24540.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>301.51</td>
<td>4427</td>
</tr>
<tr>
<td>28-210-09</td>
<td>28</td>
<td>4.043</td>
<td>23540.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2378.24</td>
<td>284.32</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-10</td>
<td>28</td>
<td>4.022</td>
<td>22730.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2365.88</td>
<td>279.82</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-11</td>
<td>28</td>
<td>4.037</td>
<td>22730.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2374.71</td>
<td>289.22</td>
<td>4427</td>
</tr>
<tr>
<td>28-210-12</td>
<td>28</td>
<td>4.024</td>
<td>24750.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2367.06</td>
<td>305.29</td>
<td>4379</td>
</tr>
<tr>
<td>28-210-13</td>
<td>28</td>
<td>4.022</td>
<td>24220.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2365.88</td>
<td>297.58</td>
<td>4427</td>
</tr>
<tr>
<td>28-210-14</td>
<td>28</td>
<td>4.038</td>
<td>24250.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.29</td>
<td>298.54</td>
<td>4373</td>
</tr>
<tr>
<td>28-210-15</td>
<td>28</td>
<td>4.039</td>
<td>21950.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.88</td>
<td>270.22</td>
<td>4332</td>
</tr>
</tbody>
</table>

**Total**

|             | 2370.67     | 288.27     | 4387        |

**Medidas de dispersión (compresión simple)**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra</td>
<td>15</td>
</tr>
<tr>
<td>Varianza (S²)</td>
<td>131.43</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>11.46</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>3.80%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
### Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f\(_c\) = 140, 175, 210, 280 y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f\(_c\) = 140, 175, 210, 280 y 350 kg/cm\(^2\) con agregados de la cantera de Cunyac”

**Ensayo**

- **Compresión simple y velocidad de pulso ultrasónico**

**Fecha**

- 29-11-18

**Laboratorio**

- EPIC-UNSAAC y Geotest

**Resistencia**

- 280 kg/cm\(^2\)

**Huso**

- 67

**Tamaño de briqueta**

- Diám = 4” y alt= 8”

**Edad**

- 07 días

#### Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f\(_c\) = 280 kg/cm\(^2\) (muestras cilíndricas de 4”x8” - 07 días)

<table>
<thead>
<tr>
<th>Código</th>
<th>Edad (dias)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm(^2))</th>
<th>Volumen (m(^3))</th>
<th>Densidad (kg/m(^3))</th>
<th>f(_c) (kg/cm(^2))</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-280-01</td>
<td>7</td>
<td>3.998</td>
<td>20626.90</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>253.93</td>
<td>4362</td>
</tr>
<tr>
<td>07-280-02</td>
<td>7</td>
<td>4.030</td>
<td>20642.70</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2370.59</td>
<td>253.63</td>
<td>4362</td>
</tr>
<tr>
<td>07-280-03</td>
<td>7</td>
<td>4.044</td>
<td>20326.70</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2378.82</td>
<td>249.74</td>
<td>4306</td>
</tr>
<tr>
<td>07-280-04</td>
<td>7</td>
<td>4.027</td>
<td>19347.10</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>238.65</td>
<td>4337</td>
</tr>
<tr>
<td>07-280-05</td>
<td>7</td>
<td>4.039</td>
<td>20405.70</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.88</td>
<td>251.21</td>
<td>4349</td>
</tr>
<tr>
<td>07-280-06</td>
<td>7</td>
<td>4.032</td>
<td>19347.10</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>238.65</td>
<td>4342</td>
</tr>
<tr>
<td>07-280-07</td>
<td>7</td>
<td>4.033</td>
<td>19615.70</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.35</td>
<td>241.96</td>
<td>4356</td>
</tr>
<tr>
<td>07-280-08</td>
<td>7</td>
<td>4.035</td>
<td>19356.70</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2373.53</td>
<td>240.51</td>
<td>4357</td>
</tr>
<tr>
<td>07-280-09</td>
<td>7</td>
<td>4.037</td>
<td>20461.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2374.71</td>
<td>251.89</td>
<td>4372</td>
</tr>
<tr>
<td>07-280-10</td>
<td>7</td>
<td>4.016</td>
<td>20942.90</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2362.35</td>
<td>258.33</td>
<td>4352</td>
</tr>
<tr>
<td>07-280-11</td>
<td>7</td>
<td>4.032</td>
<td>19805.30</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>243.34</td>
<td>4323</td>
</tr>
<tr>
<td>07-280-12</td>
<td>7</td>
<td>4.024</td>
<td>18912.60</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2372.94</td>
<td>258.97</td>
<td>4377</td>
</tr>
<tr>
<td>07-280-13</td>
<td>7</td>
<td>4.034</td>
<td>21077.20</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2375.88</td>
<td>240.60</td>
<td>4327</td>
</tr>
<tr>
<td>07-280-14</td>
<td>7</td>
<td>4.039</td>
<td>19505.10</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>240.99</td>
<td>4319</td>
</tr>
<tr>
<td>07-280-15</td>
<td>7</td>
<td>4.020</td>
<td>19536.70</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.19</td>
<td>246.32</td>
<td>4348</td>
</tr>
</tbody>
</table>

#### Medidas de dispersión (compresión simple)

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S2)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>65.52</td>
<td>8.09</td>
<td>3.28%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f'c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f'c=280 kg/cm² (muestras cilíndricas de 4”x8’’-14 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-280-01</td>
<td>14</td>
<td>3.999</td>
<td>27960.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>344.89</td>
<td>4427</td>
</tr>
<tr>
<td>14-280-02</td>
<td>14</td>
<td>4.042</td>
<td>24880.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2377.65</td>
<td>306.29</td>
<td>4408</td>
</tr>
<tr>
<td>14-280-03</td>
<td>14</td>
<td>4.030</td>
<td>26970.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.59</td>
<td>332.68</td>
<td>4427</td>
</tr>
<tr>
<td>14-280-04</td>
<td>14</td>
<td>3.999</td>
<td>25040.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>308.87</td>
<td>4408</td>
</tr>
<tr>
<td>14-280-05</td>
<td>14</td>
<td>4.041</td>
<td>24560.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2377.06</td>
<td>302.95</td>
<td>4427</td>
</tr>
<tr>
<td>14-280-06</td>
<td>14</td>
<td>4.039</td>
<td>24990.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.88</td>
<td>308.25</td>
<td>4323</td>
</tr>
<tr>
<td>14-280-07</td>
<td>14</td>
<td>4.033</td>
<td>25730.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2372.35</td>
<td>316.13</td>
<td>4427</td>
</tr>
<tr>
<td>14-280-08</td>
<td>14</td>
<td>4.027</td>
<td>22240.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2368.82</td>
<td>273.79</td>
<td>4379</td>
</tr>
<tr>
<td>14-280-09</td>
<td>14</td>
<td>4.028</td>
<td>24970.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2369.41</td>
<td>306.79</td>
<td>4408</td>
</tr>
<tr>
<td>14-280-10</td>
<td>14</td>
<td>4.036</td>
<td>25180.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.12</td>
<td>310.60</td>
<td>4379</td>
</tr>
<tr>
<td>14-280-11</td>
<td>14</td>
<td>4.018</td>
<td>23180.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2363.53</td>
<td>285.93</td>
<td>4386</td>
</tr>
<tr>
<td>14-280-12</td>
<td>14</td>
<td>4.046</td>
<td>25060.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2380.00</td>
<td>309.12</td>
<td>4427</td>
</tr>
<tr>
<td>14-280-13</td>
<td>14</td>
<td>4.025</td>
<td>24670.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>303.11</td>
<td>4408</td>
</tr>
<tr>
<td>14-280-14</td>
<td>14</td>
<td>4.032</td>
<td>23330.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>287.78</td>
<td>4389</td>
</tr>
<tr>
<td>14-280-15</td>
<td>14</td>
<td>4.040</td>
<td>25920.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2376.47</td>
<td>319.09</td>
<td>4379</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0017</td>
<td>2370.00</td>
<td>307.75</td>
<td>4400</td>
</tr>
</tbody>
</table>

Medidas de dispersión (compresión simple)

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S²)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>306.22</td>
<td>17.5</td>
<td>5.69%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
### Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f'c=280 kg/cm² (muestras cilíndricas de 4"x8"-21 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg·f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-280-01</td>
<td>21</td>
<td>4.042</td>
<td>26660.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2377.65</td>
<td>328.20</td>
<td>4402</td>
</tr>
<tr>
<td>21-280-02</td>
<td>21</td>
<td>4.040</td>
<td>26390.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>325.52</td>
<td>4408</td>
</tr>
<tr>
<td>21-280-03</td>
<td>21</td>
<td>4.037</td>
<td>26730.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2374.71</td>
<td>328.42</td>
<td>4427</td>
</tr>
<tr>
<td>21-280-04</td>
<td>21</td>
<td>4.038</td>
<td>28150.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.29</td>
<td>347.23</td>
<td>4457</td>
</tr>
<tr>
<td>21-280-05</td>
<td>21</td>
<td>4.038</td>
<td>24990.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.29</td>
<td>307.64</td>
<td>4427</td>
</tr>
<tr>
<td>21-280-06</td>
<td>21</td>
<td>4.031</td>
<td>24940.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.18</td>
<td>307.64</td>
<td>4427</td>
</tr>
<tr>
<td>21-280-07</td>
<td>21</td>
<td>3.997</td>
<td>25230.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.18</td>
<td>309.99</td>
<td>4408</td>
</tr>
<tr>
<td>21-280-08</td>
<td>21</td>
<td>3.995</td>
<td>24880.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2350.00</td>
<td>305.69</td>
<td>4408</td>
</tr>
<tr>
<td>21-280-09</td>
<td>21</td>
<td>4.023</td>
<td>27460.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2366.47</td>
<td>337.39</td>
<td>4477</td>
</tr>
<tr>
<td>21-280-10</td>
<td>21</td>
<td>4.032</td>
<td>26870.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2371.76</td>
<td>330.79</td>
<td>4427</td>
</tr>
<tr>
<td>21-280-11</td>
<td>21</td>
<td>4.025</td>
<td>25330.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>311.22</td>
<td>4379</td>
</tr>
<tr>
<td>21-280-12</td>
<td>21</td>
<td>3.995</td>
<td>25530.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2350.00</td>
<td>313.67</td>
<td>4370</td>
</tr>
<tr>
<td>21-280-13</td>
<td>21</td>
<td>4.046</td>
<td>26740.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2380.00</td>
<td>328.54</td>
<td>4579</td>
</tr>
<tr>
<td>21-280-14</td>
<td>21</td>
<td>4.044</td>
<td>26390.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2378.82</td>
<td>324.88</td>
<td>4408</td>
</tr>
<tr>
<td>21-280-15</td>
<td>21</td>
<td>4.040</td>
<td>25000.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.47</td>
<td>308.38</td>
<td>4408</td>
</tr>
</tbody>
</table>

**Total**

<table>
<thead>
<tr>
<th>Medidas de dispersion (compresión simple)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S²)</td>
<td>162.36</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>12.74</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>3.97%</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f_{c} = 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de Cunyac

**Resistencia**  
| $280$ kg/cm$^2$ | Huso | 67 |

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm$^2$)</th>
<th>Volumen (m$^3$)</th>
<th>Densidad (kg/m$^3$)</th>
<th>$f_{c}$ (kg/cm$^2$)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-280-01</td>
<td>28</td>
<td>4.024</td>
<td>27280.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.06</td>
<td>355.18</td>
<td>4477</td>
</tr>
<tr>
<td>28-280-02</td>
<td>28</td>
<td>4.032</td>
<td>29480.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2371.76</td>
<td>362.92</td>
<td>4427</td>
</tr>
<tr>
<td>28-280-03</td>
<td>28</td>
<td>4.037</td>
<td>30150.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2374.71</td>
<td>371.90</td>
<td>4351</td>
</tr>
<tr>
<td>28-280-04</td>
<td>28</td>
<td>4.038</td>
<td>29010.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2375.29</td>
<td>357.84</td>
<td>4427</td>
</tr>
<tr>
<td>28-280-05</td>
<td>28</td>
<td>4.038</td>
<td>29530.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.29</td>
<td>363.54</td>
<td>4427</td>
</tr>
<tr>
<td>28-280-06</td>
<td>28</td>
<td>4.031</td>
<td>28980.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.18</td>
<td>357.47</td>
<td>4427</td>
</tr>
<tr>
<td>28-280-07</td>
<td>28</td>
<td>3.998</td>
<td>30230.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.76</td>
<td>371.42</td>
<td>4379</td>
</tr>
<tr>
<td>28-280-08</td>
<td>28</td>
<td>4.036</td>
<td>29530.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2374.12</td>
<td>362.82</td>
<td>4427</td>
</tr>
<tr>
<td>28-280-09</td>
<td>28</td>
<td>4.018</td>
<td>27270.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2363.53</td>
<td>336.38</td>
<td>4477</td>
</tr>
<tr>
<td>28-280-10</td>
<td>28</td>
<td>4.039</td>
<td>27160.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2375.88</td>
<td>334.36</td>
<td>4379</td>
</tr>
<tr>
<td>28-280-11</td>
<td>28</td>
<td>4.027</td>
<td>26540.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2368.82</td>
<td>326.73</td>
<td>4408</td>
</tr>
<tr>
<td>28-280-12</td>
<td>28</td>
<td>4.031</td>
<td>28460.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.18</td>
<td>351.05</td>
<td>4447</td>
</tr>
<tr>
<td>28-280-13</td>
<td>28</td>
<td>4.032</td>
<td>27350.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>336.04</td>
<td>4379</td>
</tr>
<tr>
<td>28-280-14</td>
<td>28</td>
<td>4.031</td>
<td>27800.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.18</td>
<td>342.91</td>
<td>4477</td>
</tr>
<tr>
<td>28-280-15</td>
<td>28</td>
<td>4.025</td>
<td>26400.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>324.36</td>
<td>4408</td>
</tr>
</tbody>
</table>

**Total**  
| 2370.08 | 348.99 | 4421 |

Medidas de dispersión (compresión simple)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra=</td>
<td>15</td>
</tr>
<tr>
<td>Varianza (S$^2$)=</td>
<td>217.39</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
<td>14.74</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>4.22%</td>
</tr>
</tbody>
</table>
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos con agregados de la cantera de Cunyac

Ensayo Compresión simple y velocidad de pulso ultrasónico
Cantera Cunyac
Fecha 29-11-18
Laboratorios EPIC-UNSAAC y Geotest

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-350-01</td>
<td>7</td>
<td>3.998</td>
<td>27960.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>344.21</td>
<td>4457</td>
</tr>
<tr>
<td>07-350-02</td>
<td>7</td>
<td>4.025</td>
<td>24880.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.65</td>
<td>305.69</td>
<td>4427</td>
</tr>
<tr>
<td>07-350-03</td>
<td>7</td>
<td>4.029</td>
<td>26970.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.00</td>
<td>332.68</td>
<td>4422</td>
</tr>
<tr>
<td>07-350-04</td>
<td>7</td>
<td>4.035</td>
<td>25040.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2373.53</td>
<td>308.26</td>
<td>4323</td>
</tr>
<tr>
<td>07-350-05</td>
<td>7</td>
<td>4.034</td>
<td>24560.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.94</td>
<td>302.95</td>
<td>4427</td>
</tr>
<tr>
<td>07-350-06</td>
<td>7</td>
<td>4.024</td>
<td>24990.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2376.06</td>
<td>308.25</td>
<td>4408</td>
</tr>
<tr>
<td>07-350-07</td>
<td>7</td>
<td>4.027</td>
<td>25730.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>317.38</td>
<td>4427</td>
</tr>
<tr>
<td>07-350-08</td>
<td>7</td>
<td>4.044</td>
<td>22340.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2378.82</td>
<td>274.33</td>
<td>4379</td>
</tr>
<tr>
<td>07-350-09</td>
<td>7</td>
<td>4.021</td>
<td>24970.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2365.29</td>
<td>307.40</td>
<td>4408</td>
</tr>
<tr>
<td>07-350-10</td>
<td>7</td>
<td>4.023</td>
<td>25180.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.03</td>
<td>81.39</td>
<td>0.0017</td>
<td>2366.47</td>
<td>309.37</td>
<td>4332</td>
</tr>
<tr>
<td>07-350-11</td>
<td>7</td>
<td>4.012</td>
<td>23180.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2360.00</td>
<td>285.36</td>
<td>4379</td>
</tr>
<tr>
<td>07-350-12</td>
<td>7</td>
<td>3.999</td>
<td>25060.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.35</td>
<td>308.51</td>
<td>4427</td>
</tr>
<tr>
<td>07-350-13</td>
<td>7</td>
<td>4.034</td>
<td>24670.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.94</td>
<td>304.30</td>
<td>4470</td>
</tr>
<tr>
<td>07-350-14</td>
<td>7</td>
<td>4.010</td>
<td>23330.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2358.82</td>
<td>287.78</td>
<td>4379</td>
</tr>
<tr>
<td>07-350-15</td>
<td>7</td>
<td>4.032</td>
<td>25920.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>318.47</td>
<td>4427</td>
</tr>
<tr>
<td><strong>Promedio</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>2366.55</strong></td>
<td><strong>307.66</strong></td>
<td>4399</td>
</tr>
</tbody>
</table>

Medidas de dispersión (compresión simple)

| N° de muestra= | 15 |
| Varianza (S2)= | 301.31 |
| Desviación estándar S= | 17.36 |
| Coeficiente de variación | 5.64% |

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
### Ensayo

**Compresión simple y velocidad de pulso ultrasónico**

#### Cantera

Cunyac

#### Fecha

04-12-18

#### Laboratorios

EPIC-UNSAAC y Geotest

### Tesis: "Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280 \text{ y } 350 \text{ kg/cm}^2 \text{ con agregados de la cantera de Cunyac}"

### Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f'_c=350 \text{ kg/cm}^2$ (muestras cilíndricas de $4" \times 8"$ - 14 días)

<table>
<thead>
<tr>
<th>Cód.</th>
<th>Edad</th>
<th>Peso</th>
<th>Fuerza</th>
<th>Diámetro</th>
<th>Altura</th>
<th>H/D</th>
<th>Area</th>
<th>Volumen</th>
<th>Densidad</th>
<th>$f'_c$</th>
<th>Velocidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-350-01</td>
<td>14</td>
<td>4.035</td>
<td>31000.00</td>
<td>10.18</td>
<td>20.3</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2373.53</td>
<td>380.88</td>
<td>4477</td>
</tr>
<tr>
<td>14-350-02</td>
<td>14</td>
<td>3.999</td>
<td>31090.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2352.35</td>
<td>390.90</td>
<td>4477</td>
</tr>
<tr>
<td>14-350-03</td>
<td>14</td>
<td>4.031</td>
<td>30710.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.18</td>
<td>378.81</td>
<td>4427</td>
</tr>
<tr>
<td>14-350-04</td>
<td>14</td>
<td>4.022</td>
<td>32300.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2365.88</td>
<td>397.64</td>
<td>4477</td>
</tr>
<tr>
<td>14-350-05</td>
<td>14</td>
<td>3.998</td>
<td>32400.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>398.87</td>
<td>4502</td>
</tr>
<tr>
<td>14-350-06</td>
<td>14</td>
<td>4.020</td>
<td>32900.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>405.82</td>
<td>4527</td>
</tr>
<tr>
<td>14-350-07</td>
<td>14</td>
<td>4.033</td>
<td>30730.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2372.35</td>
<td>379.06</td>
<td>4427</td>
</tr>
<tr>
<td>14-350-08</td>
<td>14</td>
<td>3.998</td>
<td>31280.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>385.08</td>
<td>4499</td>
</tr>
<tr>
<td>14-350-09</td>
<td>14</td>
<td>4.020</td>
<td>31600.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2364.71</td>
<td>397.99</td>
<td>4577</td>
</tr>
<tr>
<td>14-350-10</td>
<td>14</td>
<td>4.029</td>
<td>31380.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.03</td>
<td>81.39</td>
<td>0.0017</td>
<td>2370.00</td>
<td>385.55</td>
<td>4527</td>
</tr>
<tr>
<td>14-350-11</td>
<td>14</td>
<td>4.028</td>
<td>30460.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2369.41</td>
<td>375.72</td>
<td>4477</td>
</tr>
<tr>
<td>14-350-12</td>
<td>14</td>
<td>4.020</td>
<td>31530.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2364.71</td>
<td>388.16</td>
<td>4532</td>
</tr>
<tr>
<td>14-350-13</td>
<td>14</td>
<td>4.027</td>
<td>32510.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>401.01</td>
<td>4579</td>
</tr>
<tr>
<td>14-350-14</td>
<td>14</td>
<td>4.027</td>
<td>31570.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2368.82</td>
<td>388.65</td>
<td>4427</td>
</tr>
<tr>
<td>14-350-15</td>
<td>14</td>
<td>4.031</td>
<td>30060.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2371.18</td>
<td>370.06</td>
<td>4427</td>
</tr>
</tbody>
</table>

**Promedio**

|        |        |        |        |        |        |      |      |        | 2365.41  | 387.73  | 4491     |

**Medidas de dispersión (compresión simple)**

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S2)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100.8</td>
<td>10.04</td>
<td>2.59%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad


### Ensayo de compresión simple y velocidad de pulso ultrasónico

Resistencia: 350 kg/cm²
Cuadros resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f’c=350 kg/cm² (muestras cilíndricas de 4”x8”-21 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-350-01</td>
<td>21</td>
<td>4.009</td>
<td>31810.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2358.24</td>
<td>391.60</td>
<td>4527</td>
</tr>
<tr>
<td>21-350-02</td>
<td>21</td>
<td>4.031</td>
<td>32260.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2371.18</td>
<td>397.14</td>
<td>4577</td>
</tr>
<tr>
<td>21-350-03</td>
<td>21</td>
<td>4.012</td>
<td>34970.00</td>
<td>10.17</td>
<td>20.5</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2360.00</td>
<td>430.51</td>
<td>4679</td>
</tr>
<tr>
<td>21-350-04</td>
<td>21</td>
<td>3.997</td>
<td>31750.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.18</td>
<td>390.10</td>
<td>4477</td>
</tr>
<tr>
<td>21-350-05</td>
<td>21</td>
<td>3.995</td>
<td>31700.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2350.00</td>
<td>391.02</td>
<td>4482</td>
</tr>
<tr>
<td>21-350-06</td>
<td>21</td>
<td>4.250</td>
<td>33210.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2500.00</td>
<td>409.65</td>
<td>4699</td>
</tr>
<tr>
<td>21-350-07</td>
<td>21</td>
<td>4.018</td>
<td>33670.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2363.53</td>
<td>413.69</td>
<td>4579</td>
</tr>
<tr>
<td>21-350-08</td>
<td>21</td>
<td>3.987</td>
<td>33770.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2345.29</td>
<td>414.92</td>
<td>4599</td>
</tr>
<tr>
<td>21-350-09</td>
<td>21</td>
<td>4.015</td>
<td>33450.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2361.76</td>
<td>412.61</td>
<td>4579</td>
</tr>
<tr>
<td>21-350-10</td>
<td>21</td>
<td>4.029</td>
<td>32560.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2370.00</td>
<td>401.63</td>
<td>4579</td>
</tr>
<tr>
<td>21-350-11</td>
<td>21</td>
<td>3.997</td>
<td>33670.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2351.18</td>
<td>415.32</td>
<td>4604</td>
</tr>
<tr>
<td>21-350-12</td>
<td>21</td>
<td>3.998</td>
<td>33040.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2351.76</td>
<td>406.75</td>
<td>4527</td>
</tr>
<tr>
<td>21-350-13</td>
<td>21</td>
<td>4.012</td>
<td>32440.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2360.00</td>
<td>398.57</td>
<td>4477</td>
</tr>
<tr>
<td>21-350-14</td>
<td>21</td>
<td>4.003</td>
<td>33360.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2354.71</td>
<td>409.88</td>
<td>4577</td>
</tr>
<tr>
<td>21-350-15</td>
<td>21</td>
<td>4.001</td>
<td>33500.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2353.53</td>
<td>412.41</td>
<td>4532</td>
</tr>
</tbody>
</table>

**Promedio:** 2366.82  406.39  4566

**Medidas de dispersion (compresion simple)**

<table>
<thead>
<tr>
<th>N° de muestra=</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S2)=</td>
<td>126.8</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
<td>11.26</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>2.77%</td>
</tr>
</tbody>
</table>

---

Bach. Callaymara Ayquipa Rita  
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y $350$ kg/cm² con agregados de la cantera de Cunyac

**Resistencia** | $350$ kg/cm² | Huso | $67$ | Tamaño de briqueta | Diám = 4" y alt= 8" | Edad | 28 días

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg·f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>$f'_c$ (kg/cm²)</th>
<th>Velocidad ultrasonica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-01</td>
<td>28</td>
<td>4.034</td>
<td>38220.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2372.94</td>
<td>469.59</td>
<td>4619</td>
</tr>
<tr>
<td>28-350-02</td>
<td>28</td>
<td>4.028</td>
<td>35500.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.03</td>
<td>81.07</td>
<td>0.0017</td>
<td>2369.41</td>
<td>437.89</td>
<td>4632</td>
</tr>
<tr>
<td>28-350-03</td>
<td>28</td>
<td>4.029</td>
<td>36390.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2370.00</td>
<td>447.99</td>
<td>4599</td>
</tr>
<tr>
<td>28-350-04</td>
<td>28</td>
<td>4.032</td>
<td>34780.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>429.01</td>
<td>4499</td>
</tr>
<tr>
<td>28-350-05</td>
<td>28</td>
<td>3.999</td>
<td>37170.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.02</td>
<td>81.23</td>
<td>0.0017</td>
<td>2352.35</td>
<td>457.59</td>
<td>4479</td>
</tr>
<tr>
<td>28-350-06</td>
<td>28</td>
<td>4.027</td>
<td>35170.00</td>
<td>10.16</td>
<td>20.6</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2368.82</td>
<td>433.82</td>
<td>4517</td>
</tr>
<tr>
<td>28-350-07</td>
<td>28</td>
<td>4.013</td>
<td>35820.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2360.59</td>
<td>440.10</td>
<td>4432</td>
</tr>
<tr>
<td>28-350-08</td>
<td>28</td>
<td>4.024</td>
<td>34510.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2367.06</td>
<td>424.01</td>
<td>4379</td>
</tr>
<tr>
<td>28-350-09</td>
<td>28</td>
<td>4.032</td>
<td>36100.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2371.76</td>
<td>445.29</td>
<td>4532</td>
</tr>
<tr>
<td>28-350-10</td>
<td>28</td>
<td>4.025</td>
<td>35120.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2367.65</td>
<td>432.35</td>
<td>4436</td>
</tr>
<tr>
<td>28-350-11</td>
<td>28</td>
<td>4.032</td>
<td>33890.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2371.76</td>
<td>416.39</td>
<td>4521</td>
</tr>
<tr>
<td>28-350-12</td>
<td>28</td>
<td>4.024</td>
<td>35120.00</td>
<td>10.16</td>
<td>20.5</td>
<td>2.02</td>
<td>81.07</td>
<td>0.0017</td>
<td>2367.06</td>
<td>433.21</td>
<td>4497</td>
</tr>
<tr>
<td>28-350-13</td>
<td>28</td>
<td>4.023</td>
<td>34100.00</td>
<td>10.17</td>
<td>20.6</td>
<td>2.03</td>
<td>81.23</td>
<td>0.0017</td>
<td>2366.47</td>
<td>419.80</td>
<td>4479</td>
</tr>
<tr>
<td>28-350-14</td>
<td>28</td>
<td>4.019</td>
<td>35090.00</td>
<td>10.18</td>
<td>20.5</td>
<td>2.01</td>
<td>81.39</td>
<td>0.0017</td>
<td>2364.12</td>
<td>431.13</td>
<td>4517</td>
</tr>
<tr>
<td>28-350-15</td>
<td>28</td>
<td>3.998</td>
<td>35340.00</td>
<td>10.18</td>
<td>20.6</td>
<td>2.02</td>
<td>81.39</td>
<td>0.0017</td>
<td>2351.76</td>
<td>434.21</td>
<td>4499</td>
</tr>
</tbody>
</table>

Proedio |

**Medidas de dispersión (Compresión simple)**

- N° de muestra: 15
- Varianza: 194.79
- Desviación estándar: 13.96
- Coeficiente de: 3.20%

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de Cunyac

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de Cunyac”

Ensayo Compresión simple y velocidad de pulso ultrasónico
Cantera Cunyac
Fecha 11-03-19
Laboratorio EPIC-UNSAAC y Geotest

Resistencia | 140 kg/cm$^2$ | Huso | 8 | Tamaño de briqueta | Diám = 2” y alt= 4” | Edad | 28 días
--- | --- | --- | --- | --- | --- | --- | ---

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm$^2$)</th>
<th>Volumen (m$^3$)</th>
<th>Densidad (kg/m$^3$)</th>
<th>$f'c$ (kg/cm$^2$)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-140-01</td>
<td>28</td>
<td>0.486</td>
<td>3580.00</td>
<td>5.15</td>
<td>10.2</td>
<td>1.98</td>
<td>20.83</td>
<td>0.000212</td>
<td>2292.45</td>
<td>171.87</td>
<td>4057</td>
</tr>
<tr>
<td>28-140-02</td>
<td>28</td>
<td>0.496</td>
<td>3650.00</td>
<td>5.15</td>
<td>10.19</td>
<td>1.98</td>
<td>20.83</td>
<td>0.000212</td>
<td>2339.62</td>
<td>175.23</td>
<td>4027</td>
</tr>
<tr>
<td>28-140-03</td>
<td>28</td>
<td>0.486</td>
<td>3650.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2303.32</td>
<td>176.58</td>
<td>4047</td>
</tr>
<tr>
<td>28-140-04</td>
<td>28</td>
<td>0.48</td>
<td>2990.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2274.88</td>
<td>166.91</td>
<td>3923</td>
</tr>
<tr>
<td>28-140-05</td>
<td>28</td>
<td>0.493</td>
<td>3450.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2336.49</td>
<td>176.87</td>
<td>4050</td>
</tr>
<tr>
<td>28-140-06</td>
<td>28</td>
<td>0.494</td>
<td>3670.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2303.19</td>
<td>176.87</td>
<td>4050</td>
</tr>
<tr>
<td>28-140-07</td>
<td>28</td>
<td>0.482</td>
<td>3530.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2273.58</td>
<td>170.12</td>
<td>4027</td>
</tr>
<tr>
<td>28-140-08</td>
<td>28</td>
<td>0.485</td>
<td>3600.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2298.58</td>
<td>173.49</td>
<td>3979</td>
</tr>
<tr>
<td>28-140-09</td>
<td>28</td>
<td>0.493</td>
<td>4000.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2336.49</td>
<td>193.52</td>
<td>4100</td>
</tr>
<tr>
<td>28-140-10</td>
<td>28</td>
<td>0.493</td>
<td>3990.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2336.49</td>
<td>193.03</td>
<td>4103</td>
</tr>
<tr>
<td>28-140-11</td>
<td>28</td>
<td>0.487</td>
<td>3610.00</td>
<td>5.15</td>
<td>10.19</td>
<td>1.99</td>
<td>20.83</td>
<td>0.000212</td>
<td>2297.17</td>
<td>173.31</td>
<td>4020</td>
</tr>
<tr>
<td>28-140-12</td>
<td>28</td>
<td>0.49</td>
<td>3570.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2322.77</td>
<td>172.71</td>
<td>4018</td>
</tr>
<tr>
<td>28-140-13</td>
<td>28</td>
<td>0.491</td>
<td>3580.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2338.10</td>
<td>173.2</td>
<td>3997</td>
</tr>
<tr>
<td>28-140-14</td>
<td>28</td>
<td>0.486</td>
<td>3670.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2314.29</td>
<td>177.55</td>
<td>3999</td>
</tr>
<tr>
<td>28-140-15</td>
<td>28</td>
<td>0.487</td>
<td>3620.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2308.06</td>
<td>174.46</td>
<td>4027</td>
</tr>
</tbody>
</table>

Total | 2313.47 | 174.23 | 4027 |

**Medidas de dispersión (Compresión simple)**

<table>
<thead>
<tr>
<th>No de muestra</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S2)</td>
<td>121.85</td>
</tr>
<tr>
<td>Desviación estándar S</td>
<td>11.04</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>6.34%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
**UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO**

**ESCUELA PROFESIONAL DE INGENIERÍA CIVIL**

Tesis: “Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c= 140, 175, 210, 280$ y $350 \text{ kg/cm}^2$ con agregados de la cantera de Cunyac”

Ensayo Compresión simple y velocidad de pulso ultrasónico

Cantera Cunyac

Fecha 11-03-19

Laboratorio EPIC-USAAAC y Geotest

Resistencia $175 \text{ kg/cm}^2$

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico $f'_c=175 \text{ kg/cm}^2$ (muestras cilíndricas de $2''\times4''$-28 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg$_f$)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm$^2$)</th>
<th>Volumen (m$^3$)</th>
<th>Densidad (kg/m$^3$)</th>
<th>$f'_c$ (kg/cm$^2$)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-175-01</td>
<td>28</td>
<td>0.492</td>
<td>4830.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2331.75</td>
<td>233.67</td>
<td>4128</td>
</tr>
<tr>
<td>28-175-02</td>
<td>28</td>
<td>0.504</td>
<td>4860.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2388.63</td>
<td>235.12</td>
<td>4130</td>
</tr>
<tr>
<td>28-175-03</td>
<td>28</td>
<td>0.487</td>
<td>4700.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2319.05</td>
<td>227.38</td>
<td>4102</td>
</tr>
<tr>
<td>28-175-04</td>
<td>28</td>
<td>0.486</td>
<td>4630.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2303.32</td>
<td>223.13</td>
<td>4113</td>
</tr>
<tr>
<td>28-175-05</td>
<td>28</td>
<td>0.488</td>
<td>4180.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000212</td>
<td>2312.80</td>
<td>202.23</td>
<td>4095</td>
</tr>
<tr>
<td>28-175-06</td>
<td>28</td>
<td>0.489</td>
<td>4260.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2306.60</td>
<td>205.3</td>
<td>4089</td>
</tr>
<tr>
<td>28-175-07</td>
<td>28</td>
<td>0.479</td>
<td>4400.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2270.14</td>
<td>212.05</td>
<td>4146</td>
</tr>
<tr>
<td>28-175-08</td>
<td>28</td>
<td>0.485</td>
<td>4760.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2309.52</td>
<td>230.29</td>
<td>4163</td>
</tr>
<tr>
<td>28-175-09</td>
<td>28</td>
<td>0.487</td>
<td>4720.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2308.06</td>
<td>227.47</td>
<td>4112</td>
</tr>
<tr>
<td>28-175-10</td>
<td>28</td>
<td>0.493</td>
<td>4700.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2336.49</td>
<td>227.38</td>
<td>4189</td>
</tr>
<tr>
<td>28-175-11</td>
<td>28</td>
<td>0.475</td>
<td>4630.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2251.18</td>
<td>224</td>
<td>4203</td>
</tr>
<tr>
<td>28-175-12</td>
<td>28</td>
<td>0.494</td>
<td>4630.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2341.23</td>
<td>224</td>
<td>4132</td>
</tr>
<tr>
<td>28-175-13</td>
<td>28</td>
<td>0.487</td>
<td>4700.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2319.05</td>
<td>227.38</td>
<td>4119</td>
</tr>
<tr>
<td>28-175-14</td>
<td>28</td>
<td>0.476</td>
<td>4780.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2255.92</td>
<td>231.25</td>
<td>4142</td>
</tr>
<tr>
<td>28-175-15</td>
<td>28</td>
<td>0.499</td>
<td>4710.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2364.93</td>
<td>227.87</td>
<td>4187</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2314.58</td>
<td>223.9</td>
<td>4137</td>
</tr>
</tbody>
</table>

**Medidas de dispersión (Compresión simple)**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$N$ de muestra=</td>
<td>15</td>
</tr>
<tr>
<td>Varianza (S$^2$)=</td>
<td>95.54</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
<td>9.77</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>4.36%</td>
</tr>
</tbody>
</table>
Ensayo Compresión simple y velocidad de pulso ultrasónico
Cantera Cunyac
Fecha 11-03-19
Laboratorios EPIC-UNSAAC y Geotest

Resistencia 210 kg/cm²
Huso 8
Tamaño de briqueta Diámetro = 2" y alt= 4"
Edad 28 días

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f’c=210 kg/cm² (muestras cilíndricas de 2"x4"-28 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f’c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-210-01</td>
<td>28</td>
<td>0.487</td>
<td>5400.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2308.06</td>
<td>261.25</td>
<td>4222</td>
</tr>
<tr>
<td>28-210-02</td>
<td>28</td>
<td>0.491</td>
<td>5380.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2327.01</td>
<td>260.28</td>
<td>4231</td>
</tr>
<tr>
<td>28-210-03</td>
<td>28</td>
<td>0.498</td>
<td>5200.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2360.19</td>
<td>251.57</td>
<td>4212</td>
</tr>
<tr>
<td>28-210-04</td>
<td>28</td>
<td>0.489</td>
<td>5300.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2317.54</td>
<td>255.42</td>
<td>4251</td>
</tr>
<tr>
<td>28-210-05</td>
<td>28</td>
<td>0.496</td>
<td>5480.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2350.71</td>
<td>264.1</td>
<td>4224</td>
</tr>
<tr>
<td>28-210-06</td>
<td>28</td>
<td>0.494</td>
<td>5640.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2341.23</td>
<td>272.86</td>
<td>4268</td>
</tr>
<tr>
<td>28-210-07</td>
<td>28</td>
<td>0.487</td>
<td>5710.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2319.05</td>
<td>276.25</td>
<td>4299</td>
</tr>
<tr>
<td>28-210-08</td>
<td>28</td>
<td>0.492</td>
<td>5690.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2331.75</td>
<td>275.28</td>
<td>4312</td>
</tr>
<tr>
<td>28-210-09</td>
<td>28</td>
<td>0.489</td>
<td>5600.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2306.60</td>
<td>269.88</td>
<td>4278</td>
</tr>
<tr>
<td>28-210-10</td>
<td>28</td>
<td>0.488</td>
<td>5610.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2301.89</td>
<td>270.36</td>
<td>4259</td>
</tr>
<tr>
<td>28-210-11</td>
<td>28</td>
<td>0.488</td>
<td>5540.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2323.81</td>
<td>268.02</td>
<td>4302</td>
</tr>
<tr>
<td>28-210-12</td>
<td>28</td>
<td>0.48</td>
<td>5500.00</td>
<td>5.15</td>
<td>10.18</td>
<td>1.98</td>
<td>20.83</td>
<td>0.000212</td>
<td>2264.15</td>
<td>264.04</td>
<td>4245</td>
</tr>
<tr>
<td>28-210-13</td>
<td>28</td>
<td>0.485</td>
<td>5480.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2298.58</td>
<td>265.12</td>
<td>4245</td>
</tr>
<tr>
<td>28-210-14</td>
<td>28</td>
<td>0.482</td>
<td>5320.00</td>
<td>5.15</td>
<td>10.19</td>
<td>1.98</td>
<td>20.83</td>
<td>0.000212</td>
<td>2273.58</td>
<td>255.4</td>
<td>4207</td>
</tr>
<tr>
<td>28-210-15</td>
<td>28</td>
<td>0.484</td>
<td>5310.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2304.76</td>
<td>256.89</td>
<td>4219</td>
</tr>
</tbody>
</table>

Total
<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>2315.26</td>
<td>264.45</td>
<td>4252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medidas de dispersión (Compresión simple)

<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Varianza (S2)</th>
<th>Desviación estándar S</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>58.52</td>
<td>7.65</td>
<td>2.89%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f′c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Ensayo: Compresión simple y velocidad de pulso ultrasónico

Cantera: Cunyac

Fecha: 12-03-19

Laboratorio: EPIC-UNSAAC y Geotest

Resistencia | 280 kg/cm² | Huso | 8 | Tamaño de briqueta | Diám = 2" y alt= 4" | Edad | 28 días
--- | --- | --- | --- | --- | --- | --- | ---

Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico f′c=280 kg/cm² (muestras cilíndricas de 2”x4” - 28 días)

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m³)</th>
<th>Densidad (kg/m³)</th>
<th>f′c (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-280-01</td>
<td>28</td>
<td>0.502</td>
<td>7300.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2379.15</td>
<td>353.17</td>
<td>4387</td>
</tr>
<tr>
<td>28-280-02</td>
<td>28</td>
<td>0.487</td>
<td>6970.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2308.06</td>
<td>337.20</td>
<td>4365</td>
</tr>
<tr>
<td>28-280-03</td>
<td>28</td>
<td>0.492</td>
<td>6940.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2342.86</td>
<td>335.75</td>
<td>4372</td>
</tr>
<tr>
<td>28-280-04</td>
<td>28</td>
<td>0.482</td>
<td>6790.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2295.24</td>
<td>328.50</td>
<td>4302</td>
</tr>
<tr>
<td>28-280-05</td>
<td>28</td>
<td>0.481</td>
<td>6650.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2279.62</td>
<td>320.48</td>
<td>4298</td>
</tr>
<tr>
<td>28-280-06</td>
<td>28</td>
<td>0.491</td>
<td>7290.00</td>
<td>5.14</td>
<td>10.2</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000212</td>
<td>2316.04</td>
<td>351.33</td>
<td>4312</td>
</tr>
<tr>
<td>28-280-07</td>
<td>28</td>
<td>0.479</td>
<td>6500.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2270.14</td>
<td>314.47</td>
<td>4299</td>
</tr>
<tr>
<td>28-280-08</td>
<td>28</td>
<td>0.504</td>
<td>6430.00</td>
<td>5.13</td>
<td>10.2</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2388.63</td>
<td>310.08</td>
<td>4287</td>
</tr>
<tr>
<td>28-280-09</td>
<td>28</td>
<td>0.488</td>
<td>6300.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2312.80</td>
<td>304.79</td>
<td>4275</td>
</tr>
<tr>
<td>28-280-10</td>
<td>28</td>
<td>0.483</td>
<td>6380.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2289.10</td>
<td>308.66</td>
<td>4292</td>
</tr>
<tr>
<td>28-280-11</td>
<td>28</td>
<td>0.498</td>
<td>6650.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2360.19</td>
<td>320.48</td>
<td>4272</td>
</tr>
<tr>
<td>28-280-12</td>
<td>28</td>
<td>0.487</td>
<td>6970.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2308.06</td>
<td>335.90</td>
<td>4293</td>
</tr>
<tr>
<td>28-280-13</td>
<td>28</td>
<td>0.482</td>
<td>6940.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2284.36</td>
<td>335.75</td>
<td>4301</td>
</tr>
<tr>
<td>28-280-14</td>
<td>28</td>
<td>0.478</td>
<td>6400.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2276.19</td>
<td>309.63</td>
<td>4319</td>
</tr>
<tr>
<td>28-280-15</td>
<td>28</td>
<td>0.488</td>
<td>6440.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2312.80</td>
<td>310.36</td>
<td>4309</td>
</tr>
</tbody>
</table>

Total | 2314.88 | 325.17 | 4312

Medidas de dispersión (Compresión simple)

<table>
<thead>
<tr>
<th>N° de muestra=</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianza (S2)=</td>
<td>247.78</td>
</tr>
<tr>
<td>Desviación estándar S=</td>
<td>15.74</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>4.84%</td>
</tr>
</tbody>
</table>

Bach. Callaymara Ayquipa Rita
Bach. Navarro Concha, Euler abad
**Cuadro resumen de resultados de ensayo de compresión simple y velocidad de pulso ultrasónico \( f'c = 350 \text{ kg/cm}^2 \) (muestras cilíndricas de 2”x4”-28 días)**

<table>
<thead>
<tr>
<th>Cód. Briqueta</th>
<th>Edad (días)</th>
<th>Peso (kg)</th>
<th>Fuerza (kg_f)</th>
<th>Diámetro (cm)</th>
<th>Altura (cm)</th>
<th>H/D</th>
<th>Área (cm²)</th>
<th>Volumen (m3)</th>
<th>Densidad (kg/m³)</th>
<th>( f'c ) (kg/cm²)</th>
<th>Velocidad ultrasónica (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-350-01</td>
<td>28</td>
<td>0.482</td>
<td>7690.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2284.36</td>
<td>370.60</td>
<td>4417</td>
</tr>
<tr>
<td>28-350-02</td>
<td>28</td>
<td>0.488</td>
<td>7260.00</td>
<td>5.15</td>
<td>10.18</td>
<td>1.98</td>
<td>20.83</td>
<td>0.000212</td>
<td>2301.89</td>
<td>348.54</td>
<td>4356</td>
</tr>
<tr>
<td>28-350-03</td>
<td>28</td>
<td>0.483</td>
<td>7290.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2300.00</td>
<td>352.69</td>
<td>4352</td>
</tr>
<tr>
<td>28-350-04</td>
<td>28</td>
<td>0.5</td>
<td>7600.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2369.67</td>
<td>367.68</td>
<td>4359</td>
</tr>
<tr>
<td>28-350-05</td>
<td>28</td>
<td>0.479</td>
<td>7690.00</td>
<td>5.14</td>
<td>10.19</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2270.14</td>
<td>370.60</td>
<td>4389</td>
</tr>
<tr>
<td>28-350-06</td>
<td>28</td>
<td>0.481</td>
<td>7710.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2279.62</td>
<td>373.00</td>
<td>4377</td>
</tr>
<tr>
<td>28-350-07</td>
<td>28</td>
<td>0.482</td>
<td>7750.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2284.36</td>
<td>373.49</td>
<td>4332</td>
</tr>
<tr>
<td>28-350-08</td>
<td>28</td>
<td>0.497</td>
<td>7820.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2366.67</td>
<td>378.33</td>
<td>4389</td>
</tr>
<tr>
<td>28-350-09</td>
<td>28</td>
<td>0.484</td>
<td>7860.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.75</td>
<td>0.000211</td>
<td>2293.84</td>
<td>380.26</td>
<td>4297</td>
</tr>
<tr>
<td>28-350-10</td>
<td>28</td>
<td>0.485</td>
<td>7800.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2298.58</td>
<td>375.90</td>
<td>4282</td>
</tr>
<tr>
<td>28-350-11</td>
<td>28</td>
<td>0.5</td>
<td>7600.00</td>
<td>5.14</td>
<td>10.18</td>
<td>1.98</td>
<td>20.75</td>
<td>0.000211</td>
<td>2369.67</td>
<td>366.27</td>
<td>4385</td>
</tr>
<tr>
<td>28-350-12</td>
<td>28</td>
<td>0.487</td>
<td>7920.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2308.06</td>
<td>383.16</td>
<td>4335</td>
</tr>
<tr>
<td>28-350-13</td>
<td>28</td>
<td>0.493</td>
<td>7950.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2347.62</td>
<td>384.62</td>
<td>4377</td>
</tr>
<tr>
<td>28-350-14</td>
<td>28</td>
<td>0.479</td>
<td>7920.00</td>
<td>5.13</td>
<td>10.19</td>
<td>1.99</td>
<td>20.67</td>
<td>0.000211</td>
<td>2270.14</td>
<td>383.16</td>
<td>4423</td>
</tr>
<tr>
<td>28-350-15</td>
<td>28</td>
<td>0.498</td>
<td>7890.00</td>
<td>5.13</td>
<td>10.18</td>
<td>1.98</td>
<td>20.67</td>
<td>0.000210</td>
<td>2371.43</td>
<td>381.71</td>
<td>4415</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>2314.40</strong></td>
<td><strong>372.67</strong></td>
<td><strong>4366</strong></td>
</tr>
</tbody>
</table>

**Medidas de dispersión (Compresión simple)**

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de muestra</td>
<td>15</td>
</tr>
<tr>
<td>Varianza (S²)</td>
<td>114.38</td>
</tr>
<tr>
<td>Desviación estándar (S)</td>
<td>10.69</td>
</tr>
<tr>
<td>Coeficiente de variación</td>
<td>2.87%</td>
</tr>
</tbody>
</table>
MATRIZ DE CONSISTENCIA
**Problema General**
¿Cómo determinar la densidad y resistencia de concreto hidráulico con $f'_c=140, 175, 210, 280$ y $350$ kg/cm² con agregados de la cantera de Cunyac utilizando ultrasonido y triaxial?

**Problema Específico**
¿Cómo plantear ecuaciones de tendencia que reflejen el comportamiento del concreto hidráulico con $f'_c=140, 175, 210, 280$ y $350$ kg/cm² con agregados de la cantera de Cunyac, en la medición de su resistencia y densidad mediante ultrasonido?

¿Cómo caracterizar el comportamiento de los agregados de la cantera de Cunyac con densidad y resistencia del concreto hidráulico con $f'_c=140, 175, 210, 280$ y $350$ kg/cm², medidas con equipo de ultrasonido?

¿En qué medida incrementa la resistencia a la compresión del concreto hidráulico de $f'_c=140, 175, 210, 280$ y $350$ kg/cm² con agregados de la cantera de Cunyac, bajo confinamiento triaxial?

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>OBJETIVOS</th>
<th>HIPóTESIS</th>
<th>VARIABLE INDEPENDIENTE</th>
<th>INDICADORES</th>
<th>INSTRUMENTOS</th>
<th>MÉTODOS DE LA INVESTIGACIÓN</th>
<th>FUENTE</th>
</tr>
</thead>
</table>
| General  | Generales | • Tamaño máximo nominal de los agregados de la cantera de Cunyac  
• Relación a/c | • Asentamiento inicial  
• Contenido de aire  
• Tiempo de curado de la probeta | • equipo de compresión simple  
• equipo de ultrasonido  
• Equipo de ensayo triaxial de rocas | • Libros especializados en ultrasonido.  
• Norma técnica peruana 339.034.  
• Normas ASTM C 39 Método de ensayo de compresión  
• Norma ASTM C 597Método de ensayo de velocidad de pulso ultrasonico.  
• Internet |
| Específico| Planteado las ecuaciones de tendencia que reflejen el comportamiento del concreto hidráulico con $f'_c=140, 175, 210, 280$ y $350$ kg/cm², se verificará la validez del ensayo ultrasonico en la determinación de la densidad y resistencia de concreto hidráulico en los 7, 14, 21 y 28 días de curado con un grado de confiabilidad aceptable |

**VARIABLE DEPENDIENTE**

• Densidad y resistencia del concreto  
• Velocidad de pulso ultrasonico  
• Compresión del ensayo triaxial del concreto.
Panel fotográfico

Imagen 5 Ensayo de peso unitario de agregado grueso

Imagen 6 Análisis granulométrico de agregado grueso
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

Imagen 7 Peso específico del agregado grueso

Imagen 8 Tamizado para corrección de agregado
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'c= 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de cunyac

Imagen 9 Vaciado de muestras cilíndricas de 4”x8”

Imagen 10 Medición del slump 3-4 pulg
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de cunyac

Imagen 11 Curado de los muestras clíndricas de 4”x8”

Imagen 12 Ensayo de pulso de velocidad de pulso ultrasónico a muestras cilíndricas de 4”x8”
Imagen 13 Transporte de muestras cilíndricas al laboratorio para su rotura

Imagen 14 Ensayo a compresión simple de muestras cilíndricas de 4”x8”
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos f’c= 140, 175, 210, 280 y 350 kg/cm² con agregados de la cantera de Cunyac

Imagen 15 Ensayo de pulso ultrasónico de muestras cilíndricas de 2”x4”

Imagen 16 Ensayo a compresión simple de muestras cilíndricas de 2”x4”
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c=140, 175, 210, 280$ y $350 \text{ kg/cm}^2$ con agregados de la cantera de Cunyac

Imagen 17 Ensayo triaxial a muestras cilíndricas de 2"x4"

Imagen 18 Ensayo triaxial
Determinación de la densidad y resistencia con ultrasonido y triaxial para concretos $f'_c = 140, 175, 210, 280$ y $350$ kg/cm$^2$ con agregados de la cantera de cunyac

Imagen 19 Desarrollo del ensayo triaxial a muestras cilíndricas de diámetro= 2” y altura=4”, con acompañamiento del docente asesor Ing. Guido Eulogio Holgado Escalante
Manual de operación

Pundit Lab / Pundit Lab+ 
Instrumento ultrasónico

Hecho en Suiza 
...¡más de 50 años de experiencia que se puede medir!
Índice de contenido

1. Seguridad y responsabilidad legal 3
2. Para empezar 4
3. Configuración del sistema 6
4. Visualización de la forma de onda 8
5. Medición con Pundit Lab 9
   5.1 Preparación 9
   5.2 Mediciones básicas 10
   5.3 Medición básica: velocidad de pulso 11
   5.4 Medición básica: visualización de la forma de onda 12
   5.5 Medición básica: longitud de recorrido 13
   5.6 Medición básica: resistencia a la compresión (sólo Pundit Lab+) 14
   5.7 Medición compuesta: velocidad superficial 15
   5.8 Medición compuesta: profundidad de grieta vertical 16
   5.9 Dimensiones mínimas 17
   5.10 Guía para la selección de transductor 17
   5.11 Transductores de ondas transversales de 250 kHz 17
   5.12 Accesorio porta transductor 18
6. Especificaciones técnicas 19
7. Números de pieza y accesorios 20
   7.1 Unidades 20
   7.2 Transductores 20
   7.3 Piezas y accesorios 20
8. Mantenimiento y soporte 21
9. Pundit Link 22
   9.1 Inicio de Pundit Link 22
   9.2 Visualización de los datos 23
   9.3 Ajuste de la configuración 24
   9.4 Exportación de datos 25
   9.5 Eliminación y restauración de datos 26
   9.6 Otras funciones 26
   9.7 Modo dinámico 27
   9.8 Curvas de conversión 30
10. Interfaz de control remoto de Pundit Lab 31

Normas y directivas aplicadas
Pundit Lab está conforme con las normas siguientes: EN 12504-4 (Europa), ASTM C597-02 (Norteamérica), BS 1881 Part 203 (UK), ISO1920-7:2004 (Internacional), IS13311 (India)
1. Seguridad y responsabilidad

1.1 Seguridad y precauciones en el uso
Este manual contiene información importante referente a la seguridad, el uso y el mantenimiento del Pundit Lab. Lea el manual atentamente antes del primer uso del instrumento. Guarde el manual en un lugar seguro para consultarlo en el futuro.

1.2 Seguridad y responsabilidad
Las “Condiciones generales de venta y de entrega” de Proceq tienen vigor en cualquier caso. No habrá lugar a las reclamos de garantía y de responsabilidad que resulten de daños personales y materiales si son la consecuencia de una o varias de las siguientes causas:
• La falta de usar el instrumento conforme a las condiciones previstas descritas en este manual.
• Una prueba de funcionamiento incorrecta para el manejo y el mantenimiento del instrumento y sus componentes.
• La falta de observar las secciones del manual referentes a la prueba de funcionamiento, al manejo y al mantenimiento del instrumento y sus componentes.
• Modificaciones estructurales no autorizadas del instrumento y sus componentes.
• Daños graves que sean el resultado de los efectos de cuerpos extraños, accidentes, vandalismo y fuerza mayor.

Toda la información contenida en esta documentación se presenta de buena fe y se supone correcta. Proceq SA no asume garantía y excluye cualquier responsabilidad con respecto a la integridad y/o la exactitud de la información.

1.3 Instrucciones de seguridad
No está permitido que el instrumento sea manejado por niños o cualquier persona bajo influencia de alcohol, drogas o preparaciones farmacéuticas. Cualquier persona que no esté familiarizada con este manual deberá ser supervisada al estar usando el instrumento.

1.4 Marcado
Los siguientes iconos se han usado en combinación con todas las notas de seguridad importantes usadas en este manual.

Nota:
Este símbolo indica una información importante.

1.5 Utilización correcta
• El instrumento únicamente deberá utilizarse para el uso previsto descrito aquí.
• Sustituir componentes defectuosos únicamente con repuestos originales de Proceq.
• Únicamente deberán instalarse o conectarse al instrumento accesorios expresamente autorizados por Proceq. En caso de que se instalen o conecten otros accesorios al instrumento, Proceq no asumirá responsabilidad alguna y se perderá la garantía del producto.
2. Para empezar

Panel trasero

Pilas

Conectores para:
- Osciloscopio
- USB – PC / fuente de alimentación

El Pundit Lab podrá ser alimentado a través de pilas, a través de la red eléctrica o a través de la conexión USB con un PC.

Panel frontal

Las teclas de función son sensibles al contexto. El icono de pantalla mostrará la función activa.

La tecla inferior derecha se usa para ENCENDER/APAGAR y también para “Cancelar” algún ajuste y regresar al menú anterior.

La tecla de navegación se usa para desplazarse a través de menús y para ajustar parámetros variables.

Conexión de transductor

Conectar los transductores en el frente de la unidad de pantalla usando los cables BNC. Si se usan cables de diferentes longitudes, el cable más largo deberá conectarse en el transmisor.

Nota: Para evitar la posibilidad de un choque eléctrico, los transductores deben estar conectados antes de encender el instrumento, y desconectados sólo después de haber apagado el mismo.

Medición básica

Medición compuesta

Conexión

Pulsar y mantener pulsada durante 3 segundos la tecla inferior derecha. Se visualizará el menú principal y el tipo “Pundit Lab” o “Pundit Lab+”.

Al hacer clic en la tecla de función “Información”, aparecerá la información importante acerca del dispositivo.

Estado de pilas

Conexión USB

Número de serie

Versión del hardware

Versión del firmware

Gestión de energía: DESCONEXIÓN

Al estar funcionando con la alimentación por pilas, el instrumento cambiará al modo standby después de 5 minutos de inactividad. Se apagará completamente después de 30 minutos.

Al estar funcionando con la alimentación a través de la conexión USB, la pantalla se apagará después de 1 hora de inactividad. Pulsar la tecla inferior derecha (ENCENDER/APAGAR, Cancelar) para reestablecer del modo standby. Para apagar, pulsar y mantener pulsada durante 3 segundos la tecla inferior derecha.

© 2011 por Proceq SA
Puesta a cero del Pundit Lab

El Pundit Lab deberá ponerse a cero periódicamente usando la varilla de calibración, y sobre todo si ha cambiado la frecuencia del transductor o si han cambiado los cables. El valor de calibración (µs) está marcado en la varilla de calibración.

Acoplar los transductores a la varilla de calibración aplicando acoplador en ambos extremos de la varilla de calibración y presionando firmemente de la manera mostrada.

Nota: En la puesta a cero de los transductores exponenciales debería usarse la varilla de calibración específica (325 40 174).

Seleccionar Configuración del sistema (Véase el capítulo 3 para más información)

Comprobar que Tx/Rx coincida con la frecuencia de transductor. La duración de pulso no tendrá que ajustarse.

Factor de corrección ajustado en 1.0.

Seleccionar Calibración.

Seleccionar en caso necesario para introducir la duración de recorrido marcada en la varilla de calibración.

Parámetro variable; ajustar del siguiente modo:

- Teclas Hacia arriba/abajo: ajuste fino.
- Teclas Hacia izq./der.: ajuste aproximado.
- Tecla central: entrada del valor y retorno al menú anterior.
- Tecla Cancelar: cancelación de la entrada y retorno al menú anterior.

Pulsar “Start” para comenzar con la secuencia de calibración.

La pantalla final muestra la duración de recorrido esperada y debajo la duración de recorrido medida. Ésta debería coincidir con el valor en la varilla de calibración.
3. Configuración del sistema

Seleccionar Configuración del sistema

Ajustar:
- Frecuencia del transductor
- Duración de pulso
- Ajuste de calibración
- Factor de corrección

O desplazarse a la siguiente pantalla
Ajustar:
- Tensión de excitación
- Ganancias del receptor
- Unidades (métricas/imperiales) (sólo Pundit Lab+; unidad de resistencia a la compresión)
- Transmisión continua o saltatoria

Sólo Pundit Lab+ Ajustar:
Fecha y hora
Curva de resistencia a la compresión (valor de rebote para método SONREB)

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Ajustes predeterminados (hacer clic en tecla de función para desplazamiento)</th>
<th>Variable (ajustar con la tecla de navegación; véase 2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia Tx / Rx (kHz)</td>
<td>24, 37, 54, 82, 150, 200, 220, 250, 500</td>
<td>-</td>
</tr>
<tr>
<td>Duración de pulso</td>
<td>Automática</td>
<td>1-100 µs</td>
</tr>
<tr>
<td>Calibración (véase 2.1)</td>
<td>-</td>
<td>1-110 µs</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>-</td>
<td>0.07 – 1.3</td>
</tr>
<tr>
<td>Tensión de excitación (V)</td>
<td>125, 250, 350, 500, AUTO</td>
<td>-</td>
</tr>
<tr>
<td>Ganancias Rx Pundit Lab Pundit Lab+</td>
<td>1x, 10x, 100x, AUTO 1x, 2x, 5x, 10x, 20x, 50x, 100x, 200x, 500x, 1000x, AUTO</td>
<td>-</td>
</tr>
<tr>
<td>Unidades Pundit Lab Pundit Lab+</td>
<td>ft / m, ft / m, MPa, N/mm2, psi, kg/cm2</td>
<td>-</td>
</tr>
<tr>
<td>Pulso de transmisión</td>
<td>Continuo / saltatorio</td>
<td>-</td>
</tr>
<tr>
<td>Fecha y hora (Pundit Lab+)</td>
<td>-</td>
<td>Ajustar el sello de tiempo.</td>
</tr>
<tr>
<td>Curva de resistencia a la compresión (Pundit Lab+)</td>
<td>Curvas definidas en PunditLink.</td>
<td>Introducir un valor de rebote para las curvas SONREB.</td>
</tr>
</tbody>
</table>

Ganancias automáticas y ajuste de tensión
Tanto la tensión de excitación como las ganancias del receptor pueden ajustarse en modo automático. En este modo, el Pundit Lab localizará la combinación óptima de los dos parámetros para una medición estable.
Ganancias Rx 200x, 500x, 1000x
Esta característica sólo está a disposición a partir de Pundit Lab+, y sustituye la necesidad de un amplificador externo (325 40 059) usando cables largos o transductores exponenciales. Si se han seleccionado niveles de ganancias tan altos se recomienda encarecidamente el uso del disparo manual con la visualización de forma de onda.

Duración de pulso
La duración de pulso se ajustará automáticamente en el valor óptimo para la frecuencia de transductor seleccionada y no necesitará ningún ajuste. Sin embargo, para ciertas aplicaciones será posible ajustarla si esto se desea. (Consulte ASTM D 2845 - Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock.)

También permite el uso de transductores no estandarizados de hasta 500 kHz con Pundit Lab: La duración de pulso "p" en microsegundos (µs), la cual deberá introducirse aquí es calculada de la fórmula $p = \frac{1'000}{2\times f}$, en lo que f = frecuencia del transductor en kHz

Al entrar manualmente un valor que no sea estándar, esto se indicará mediante un asterisco.

Transmisión continua / saltatoria
La transmisión continua continuará transmitiendo hasta que se pulse el botón "Stop".
La transmisión saltatoria enviará paquetes de pulsos hasta obtener una lectura estable, y a continuación parará automáticamente.

Factor de corrección
Varios factores afectan las mediciones de velocidad de pulso. Éstos se encuentran descritos muy bien en BS 1881, parte 203, y se recomienda que el usuario consulte este documento. Dos factores clave son el contenido de humedad del hormigón y la temperatura. La tabla más abajo muestra el factor de corrección que deberá entrarse basado en la norma mencionada más arriba.

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Hormigón seco</th>
<th>Hormigón húmedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 10°C a 30°C</td>
<td>1.0 (sin corrección)</td>
<td>1.0 (sin corrección)</td>
</tr>
<tr>
<td>60°C</td>
<td>1.05</td>
<td>1.04</td>
</tr>
<tr>
<td>40°C</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>0°C</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>-4°C</td>
<td>0.98</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Unidades (sólo Pundit Lab+)
La selección de unidades abre una segunda pantalla en la cual el usuario podrá elegir una unidad de resistencia a la compresión adicionalmente a las unidades imperiales o métricas.

Fecha y hora (sólo Pundit Lab+)
Usado para proporcionar un sello de tiempo a las mediciones. Usar las teclas Hacia izquierda/derecha para desplazarse de un ajuste al otro. Usar las teclas Hacia arriba/abajo para ajustar los valores. Pulsar la tecla Enter para guardar, o la tecla Cancelar para regresar sin guardar.
4. Visualización de la forma de onda

Durante la ejecución de las mediciones descritas en el capítulo siguiente será posible visualizar la forma de onda recibida. Pundit Lab ofrece tres posibilidades de ver la forma de onda.

Osciloscopio
Conectar un osciloscopio en el conector del panel trasero. Una forma de onda típica se verá así:

Se visualizarán tanto el impulso de disparo como la forma de onda recibida.

Pundit Link - PC
La forma de onda también podrá visualizarse en un PC o en un ordenador laptop conectado a través del puerto USB. Por favor, consulte el manual de operación Pundit Link para más detalles.

En el instrumento
La forma de onda podrá verse directamente en el instrumento. Véase el siguiente capítulo para los detalles de operación.
5. Medición con Pundit Lab

El Pundit Lab puede usarse para varias aplicaciones, incluyendo las siguientes:

- Medición de la velocidad de pulso
- Medición de la longitud de recorrido
- Evaluación de uniformidad
- Medición de la velocidad superficial
- Medición de la profundidad de grietas
- Estimación del módulo de elasticidad dinámico de muestras (con los transductores de ondas transversales)
- Sólo Pundit Lab*: Estimación de la resistencia a la compresión usando únicamente la velocidad de pulso o en combinación con un martillo de rebote

Disposición de los transductores

Generalmente, se usarán tres disposiciones de transductores.

![Directa](image1)
![Semidirecta](image2)
![Indirecta o superficial](image3)

Siempre que sea posible, usar la disposición directa ya que esto garantiza la máxima transmisión de señales entre los transductores. La disposición semidirecta es menos sensible que la directa pero más sensible que la disposición indirecta. La longitud de recorrido es la distancia entre los centros de los transductores.

El método indirecto es útil sobre todo para determinar la profundidad de grietas, la calidad de superficies o en los casos en los que únicamente se tiene acceso a una sola superficie.

5.1. Preparación

Hay preparaciones básicas generales para cualquier aplicación. La distancia (longitud de recorrido) entre los transductores deberá medirse del modo más preciso posible. Será sumamente importante asegurar el acoplamiento acústico adecuado de los transductores con la superficie ensayada. Deberá aplicarse una capa delgada de acoplador a los transductores y a la superficie ensayada. En algunos casos podrá ser necesario preparar la superficie alisándola.

Para mediciones compuestas y ensayos de uniformidad, deberá trazarse una cuadrícula de ensayo en la superficie.

Barras afectarán la medición ultrasónica ya que la señal se desplazará más rápidamente a través de la barra que a través del hormigón. Se deberá determinar la ubicación de las barras usando un detector de barras tal como el Profoscope de Proceq y posicionar los ensayos ultrasónicos de tal manera que las mismas se omitan. La BS 1881, parte 203, ofrece información acerca del efecto de barras en los resultados previstos.

El procedimiento de medición estándar será:
- Aplicar el acoplador.
- Posicionar los transductores.
- Ejecutar la medición.
- Reposicionar los transductores (sólo para mediciones compuestas).
- Guardar el resultado.
5.2 Mediciones básicas

Las mediciones básicas comprenden una sola medición sin necesidad de reposicionar los transductores. Existen dos mediciones básicas en función del parámetro conocido, sea la longitud de recorrido o bien la velocidad de pulso.

**Guardar mediciones**

Al final de una medición podrá guardarse el resultado del ensayo.

Guardar en un archivo definido mediante un número de ID.

No guardar y regresar a la pantalla anterior.

**Lista de revisión (sólo Pundit Lab⁺)**

En el menú principal, haciendo clic en la tecla de información del sistema (véase Para empezar) se hará aparecer el submenú:

Seleccionar esta tecla para visualizar la información del sistema.

Seleccionar esta tecla para ir a la lista de revisión, la cual permite ver mediciones previas.

Un asterisco al lado de la velocidad de pulso o la distancia indica que éste es el parámetro que ha sido calculado.

1a línea: medición (p. ej. 4 de 16) / sello de tiempo

2a línea: ID de la medición / temperatura

3a línea: frecuencia / voltaje / ganancias / factor de corrección / valor de rebote (sólo SONREB)

4a línea: tiempo de transmisión / distancia

5a línea: velocidad de pulso / resistencia a la compresión / curva de conversión
5.3 Medición básica: velocidad de pulso

Para poder medir la velocidad de pulso, será necesario medir la longitud de recorrido entre los dos transductores.

Seleccionar "Mediciones básicas"

Seleccionar Ajuste del parámetro "longitud de recorrido"

Entrar la longitud de recorrido

Iniciar la medición

La pantalla muestra:
- Tiempo de transmisión
- Velocidad de pulso medida
- Nivel de la señal recibida *

Parar la medición
(No será necesario en el modo saltatorio)

Guardar el resultado o:
Ajustar la configuración de ganancias.
(Véase el capítulo 3) o:
Iniciar una nueva medición

* Los mejores resultados se obtendrán si el nivel de la señal recibida se encuentra alrededor del 75%. Usar la configuración automática de ganancias y de tensión (véase el capítulo 3) para un funcionamiento optimizado.
5.4 Medición básica: pantalla de forma de onda

Seleccionar “Medición básica”

Iniciar la medición

Seleccionar “Forma de onda”

Ajustar según lo requerido (véase más abajo)

Cancelar para regresar a la pantalla estándar

Controles de la forma de onda

- Y < >: Zoom vertical
- X < >: Zoom horizontal
- t - +: Ajuste de disparo manual
- Paro/inicio

Nota 1: Es posible que las ganancias Rx tengan que reducirse para que el zoom vertical tenga un efecto perceptible.

Nota 2: Una vez ajustado, el punto de disparo no se restablecerá automáticamente a menos de que se inicie una nueva medición en el menú “Iniciar la medición”

Nota 3: La forma de onda no es guardada, sólo el tiempo de transmisión.
5.5 Medición básica: longitud de recorrido

Si se conoce la velocidad de pulso del material a ensayar, será posible medir la longitud de recorrido entre los transductores. El procedimiento es exactamente el mismo que para la medición de la velocidad de pulso pero en este caso se entrará la velocidad de pulso conocida.

Seleccionar “Medición básica”

Seleccionar Ajuste del parámetro “velocidad de pulso”

Entrar la velocidad de pulso

Iniciar la medición

La pantalla muestra:
- Tiempo de transmisión
- Longitud de recorrido medida
- Nivel de la señal recibida

Parar la medición (no es necesario en el modo saltatorio)

Guardar el resultado o:
Ajustar la configuración de ganancias.
(Véase el capítulo 3) o: Iniciar una nueva medición
5.6 Medición básica: resistencia a la compresión (sólo Pundit Lab+)

Antes de ejecutar esta medición, deberá crearse una curva de conversión en PunditLink y cargar la misma al instrumento. Es posible guardar un máximo de cinco curvas en el instrumento. Seleccionar la curva apropiada y ajustar la unidad de resistencia a la compresión deseada. (Véase el capítulo 3 “Configuración del sistema”.) Ejecutar una medición de velocidad de pulso del modo descrito más arriba (5.3).

Durante la ejecución de la medición, o al haberse completado la medición, haciendo clic en las teclas Hacia arriba/abajo se cambiará de la indicación de la velocidad de pulso a la resistencia a la compresión y viceversa.

Método SONREB

Este método para la medición de la resistencia a la compresión combina la medición ultrasónica con una medición de martillo de rebote.

El formato de la curva es: resistencia a la compresión \( f_{ck} = aV^bS^c \)

En lo que:
a, b y c son constantes
V es la velocidad de pulso ultrasónica en m/s
S es el valor de rebote.

En la literatura se encuentran muchos ejemplos de curvas SONREB

En el menú de configuración (capítulo 3), deberá introducirse el valor de rebote antes de ejecutar la medición. En este caso, el valor de rebote introducido es guardado junto con los demás datos de medición.

Aquí ha sido introducido y guardado un valor de rebote de 83.1 junto con los datos de medición

**Nota:** El valor de rebote podrá ser un valor Q (SilverSchmidt) o un valor R (Original Schmidt). Es algo que el usuario definirá. Sin embargo, siempre será visualizado en la lista de revisión como “R para valor de rebote”.

© 2011 por Proceq SA
5.7 Medición compuesta: visualización de la

Seleccionar “Medición compuesta”

Seleccionar “Velocidad superficial”

Seleccionar Ajuste de parámetro “b”.

Medir y entrar la distancia “b”

Transductores en la primera posición: Pulsar: Start

Se mide “t1”. Una lectura estable se indica mediante un tic

Receptor a la 2a posición: Start

Se mide “t2”. Una lectura estable se indica mediante un tic, y se visualiza- rá la pantalla de resultado.

La pantalla muestra:
- “t1”
- “t2”
- Velocidad superficial

Guardar el resultado o pulsar Start para repetir la medición.
5.8 Medición compuesta: profundidad de grieta vertical

Seleccionar “Medición compuesta”

Seleccionar “Profundidad de grieta”

Seleccionar Ajuste de parámetro “b”.

Medir y entrar la distancia “b”

Transductores en la primera posición: Pulsar: Start

Se mide “t1”. Una lectura estable se indica mediante un tic

Transductores en la 2a posición: Start

Se mide “t2”. Una lectura estable se indica mediante un tic, y se visualizará la pantalla de resultado.

La pantalla muestra:
- “t1”
- “t2”
- Profundidad de grieta

Guardar el resultado o pulsar Start para repetir la medición.
5.9 Dimensiones mínimas

Se recomiendan dimensiones mínimas para resultados de ensayo precisos.

**Longitud de recorrido mínima**

100 mm para hormigón de un tamaño de áridos máximo de 20 mm o menos.
150 mm para hormigón de un tamaño de áridos máximo de 20 a 40 mm.

**Dimensiones laterales mínimas de la muestra**

Esto dependerá de la longitud de onda de transmisión y de la velocidad de pulso. La longitud de recorrido mínima deberá ser igual o más grande que la longitud de onda de transmisión, o será posible que se detecte una fuerte reducción de la velocidad de pulso. La tabla siguiente tomada de BS 1881, parte 203, muestra las dimensiones laterales mínimas recomendadas para el objeto de ensayo.

<table>
<thead>
<tr>
<th>Frecuencia Tx kHz</th>
<th>Velocidad de pulso 3500 m/s</th>
<th>Velocidad de pulso 4000 m/s</th>
<th>Velocidad de pulso 4500 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimensones laterales mínimas del objeto de ensayo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>146 mm</td>
<td>167 mm</td>
<td>188 mm</td>
</tr>
<tr>
<td>54</td>
<td>65 mm</td>
<td>74 mm</td>
<td>83 mm</td>
</tr>
<tr>
<td>150</td>
<td>23 mm</td>
<td>27 mm</td>
<td>30 mm</td>
</tr>
</tbody>
</table>

5.10 Guía para la selección de transductor

Por lo general, las frecuencias más bajas permitirán una mayor profundidad de penetración. Las frecuencias más altas permitirán una mejor resolución en las mediciones.

La inhomogeneidades en el hormigón influyen en la propagación de un pulso ultrasónico. Esta influencia podrá ser reducida significantemente eligiendo la frecuencia f de tal modo que la longitud de onda \( \lambda \) sea por lo menos el doble del tamaño de áridos. \( \lambda \) es dada por:

\[
\lambda = \frac{c}{f},
\]

en lo que c es la velocidad de pulso (velocidad del sonido) en hormigón. La tabla más abajo muestra tamaños de áridos típicos y la respectiva frecuencia máxima recomendada:

<table>
<thead>
<tr>
<th>c (m/s)</th>
<th>3500</th>
<th>4000</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de áridos (mm)</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>fmax (kHz)</td>
<td>219</td>
<td>109</td>
<td>55</td>
</tr>
</tbody>
</table>

5.11 Transductores de ondas transversales de 250 kHz

Al ejecutar mediciones con los transductores de ondas transversales de 250 kHz es esencial que se use la pasta de acoplamiento especial para ondas transversales; de lo contrario las ondas transversales no podrán ser transmitidas apropiadamente al objeto de prueba. La pasta de acoplamiento para ondas transversales es una sustancia orgánica no tóxica, soluble en agua, de muy alta viscosidad.

Además, recomendamos encarecidamente que se use la visualización de forma de onda de Pundit Link para localizar manualmente el inicio del eco de onda transversal. Puesto que el mismo siempre es precedido por un eco longitudinal relativamente débil (véase la figura más abajo), la duración de recorrido determinado por Pundit Lab correspondería a la onda longitudinal en lugar de la transversal.
Podrán realizarse los pasos requeridos antes de las mediciones

1. Aplicar una pequeña cantidad de gel de acoplamiento para ondas transversales en los transductores.
2. Presionar los transductores firmemente en ambos lados de la varilla de calibración de 25 µs (n° de pieza 710 10 028). Asegurar que el gel de acoplamiento esté distribuido apropiadamente y que no existan burbujas de aire entre el transductor y la varilla de calibración.
3. Conectar los transductores en Pundit Lab.
4. Seleccionar el transductor de 250 kHz de la lista de los transductores soportados (véase el capítulo 3 del manual del Pundit Lab para más detalles).
5. Poner el instrumento a cero del modo descrito en el capítulo 2.1 del manual del Pundit Lab.

Ejecución de mediciones con los transductores de ondas transversales de 250 kHz.

Señal de eco típica obtenida con una instalación experimental.

El primer eco llega a aproximadamente 25.4 µs y corresponde a la onda longitudinal débil. Después de 50.6 µs, aparecerá el eco de onda transversal mucho más intenso en la señal.

5.12 Accesorio porta transductor

Este accesorio es particularmente útil para las mediciones compuestas. (Véase el capítulo 5).
Los porta transductores individuales pueden ser separados y usados por separado ayudando a reducir el esfuerzo físico al llevar a cabo mediciones extensivas.
### 6. Especificaciones técnicas

<table>
<thead>
<tr>
<th>Medición de duración de recorrido</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcance</td>
<td>0.1 – 9999 µs, ajuste automático del alcance.</td>
</tr>
<tr>
<td>Resolución</td>
<td>0.1 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pantalla</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79 x 21 mm, OLED de matriz pasiva</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmisor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulso de excitación optimizado: 125 V, 250 V, 350 V, 500 V, AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasos de ganacias a seleccionar</td>
<td></td>
</tr>
<tr>
<td>Pundit Lab</td>
<td>1x, 10x, 100x, AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasos de ganacias a seleccionar</td>
<td></td>
</tr>
<tr>
<td>Pundit Lab</td>
<td>1x, 2x, 5x, 10x, 20x, 50x, 100x, 200x, 500x, 1000x, AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ancho de banda</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 kHz – 500 kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memoria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración regional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se soportan unidades métricas e imperiales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente de alimentación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila</td>
<td>4 pilas AA (&gt; 20 horas de uso continuo)</td>
</tr>
<tr>
<td>Red eléctrica:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5v, &lt;500mA a través del cargador de USB</td>
</tr>
<tr>
<td>PC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5v, &lt;500mA directamente a través del cable USB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datos mecánicos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensiones</td>
<td>172 x 55 x 220 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>1.3 kg (incl. pilas)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condiciones ambientales</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de servicio</td>
<td>De -10° a 60°C (De 0° a 140°F)</td>
</tr>
<tr>
<td>Humedad</td>
<td>&lt;95% RH, sin condensar</td>
</tr>
</tbody>
</table>
7. Números de pieza y accesorios

7.1 Unidades

<table>
<thead>
<tr>
<th>N° de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>326 10 001</td>
<td>Pundit Lab que comprende: unidad de pantalla, 2 transductores (54kHz), 2 cables BNC 1.5 m, acoplador, varilla de calibración, cargador de batería con cable USB, 4 pilas AA(LR6), portador de datos con el software, documentación y estuche de transporte</td>
</tr>
<tr>
<td>326 20 001</td>
<td>Pundit Lab+ que comprende: unidad de pantalla, 2 transductores (54kHz), 2 cables BNC 1.5 m, acoplador, varilla de calibración, cargador de batería con cable USB, 4 baterías AA(LR6), portador de datos con el software, documentación y estuche de transporte</td>
</tr>
</tbody>
</table>

7.2 Transductores

<table>
<thead>
<tr>
<th>N° de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>325 40 026</td>
<td>Transductor de 24 kHz (se requieren dos para el funcionamiento)</td>
</tr>
<tr>
<td>325 40 131</td>
<td>Transductor de 54 kHz (se requieren dos para el funcionamiento)</td>
</tr>
<tr>
<td>325 40 141</td>
<td>Transductor de 150 kHz (se requieren dos para el funcionamiento)</td>
</tr>
<tr>
<td>325 40 176</td>
<td>2 transductores exponenciales de 54 kHz, incluyendo la varilla de calibración</td>
</tr>
<tr>
<td>325 40 177</td>
<td>Transductor de 250 kHz (se requieren dos para el funcionamiento)</td>
</tr>
<tr>
<td>325 40 175</td>
<td>Transductor de 500 kHz (se requieren dos para el funcionamiento)</td>
</tr>
<tr>
<td>325 40 049</td>
<td>2 Transductores de ondas transversales de 250 kHz, incluyendo el acoplador</td>
</tr>
</tbody>
</table>

7.3 Piezas y accesorios

<table>
<thead>
<tr>
<th>N° de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>326 80 211</td>
<td>Bolsa de transporte de Pundit Lab</td>
</tr>
<tr>
<td>325 40 059</td>
<td>Amplificador para cables largos (&gt;10m) y transductor exponencial (no se requiere para Pundit Lab+)</td>
</tr>
<tr>
<td>325 40 021</td>
<td>Cable con enchufe BNC, L=1.5 m (5 ft)</td>
</tr>
<tr>
<td>711 10 005</td>
<td>Cable con enchufe BNC, L=3.0 m (10 ft)</td>
</tr>
<tr>
<td>325 40 022</td>
<td>Cable con enchufe BNC, L=10 m (33 ft)</td>
</tr>
<tr>
<td>325 40 024</td>
<td>Cable con enchufe BNC, L=30 m (100 ft)</td>
</tr>
<tr>
<td>710 10 031</td>
<td>Acoplador ultrasónico, botella de 250 ml</td>
</tr>
<tr>
<td>325 40 048</td>
<td>Acoplador para onda transversal</td>
</tr>
<tr>
<td>710 10 028</td>
<td>Varilla de calibración de 25 µs para Pundit</td>
</tr>
<tr>
<td>710 10 029</td>
<td>Varilla de calibración de 100 µs para Pundit</td>
</tr>
<tr>
<td>351 90 018</td>
<td>Cable USB, 1.8m</td>
</tr>
<tr>
<td>341 80 112</td>
<td>Cargador USB, global</td>
</tr>
<tr>
<td>326 01 033</td>
<td>Bloque de demostración Pundit Lab</td>
</tr>
<tr>
<td>325 40 150</td>
<td>Porta transductor completo</td>
</tr>
</tbody>
</table>
8. Mantenimiento y soporte

Pantalla de error

Si aparece esta pantalla durante las mediciones, indicará que no se ha recibido ninguna señal estable.

Si ocurre esto:
Realizar la medición en modo continuo.
Cambiar el impulso de voltaje o las ganancias.
Usar la visualización de forma de onda para determinar el ajuste óptimo del voltaje y las ganancias.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Señal demasiado débil</td>
</tr>
<tr>
<td>2.0</td>
<td>Medición inválida (no se ha cumplido la condición t1 &gt;t2/2 durante la medición de grieta)</td>
</tr>
<tr>
<td>11.0</td>
<td>Memoria llena</td>
</tr>
<tr>
<td>37.0</td>
<td>Sólo Pundit Lab®. Tiempo del sistema inválido (posiblemente está vacía la batería de reserva para el reloj de tiempo real)</td>
</tr>
</tbody>
</table>

Concepto de soporte

Proceq provee el soporte completo para este instrumento mediante nuestro servicio postventa y establecimientos de soporte globales. Se recomienda que el usuario registre su producto en www.proceq.com para obtener las actualizaciones más recientes a disposición y otros datos de valor.

Garantía estándar y garantía extendida

Garantía por 6 meses.
Es posible adquirir una garantía extendida por uno, dos o tres años adicionales para la parte electrónica del instrumento hasta 90 días después de la fecha de adquisición.
9. Pundit Link

9.1 Inicio de Pundit Link

Localizar el archivo “Punditlink Setup.exe” en el ordenador o en el CD y hacer clic en él. Seguir las instrucciones que se visualizan en la pantalla.

Asegurar que esté marcada la casilla de verificación “Launch USB Driver install” [iniciar instalación de controlador USB].

El controlador USB instalará un puerto COM virtual que se necesita para la comunicación con Pundit.

Hacer doble clic en el icono de Pundit Link en el escritorio o iniciar Pundit Link a través del menú Inicio. Pundit Link se inicia con una lista vacía.

Configuración de la aplicación

El elemento de menú “Archivo – Application settings [configuración de la aplicación]” le permite al usuario escoger el idioma y la fecha y la hora que deberán usarse.

Conexión a un Pundit

Conectar el Pundit en un puerto USB y, a continuación, escoger una de las siguientes opciones:
Para descargar todos los datos del Pundit.

Para comenzar el “Modo dinámico” para mediciones a control remoto y el análisis de la forma de onda.

En ambos casos se visualizará la siguiente ventana:

Dejar la configuración en los valores predeterminados o, en caso de que se conozca el puerto COM, introducirlo manualmente.

Hacer clic en “Sig. >”

Si se ha encontrado un Pundit, los detalles del mismo se visualizarán en la pantalla. Hacer clic en el botón “Terminar” para establecer la comunicación.

9.2 Visualización de los datos

Los datos guardados en el Pundit del usuario serán visualizados en la pantalla:

- Un número “Id” identifica el objeto de medición.
- La columna “Nombre” le permite al usuario asignarle un nombre al objeto de medición.
- La “Fecha y hora”. Para Pundit Lab, ésta será la hora en la que los datos son descargados al PC o, en el “Modo dinámico”, la fecha y hora en la que la medición se llevó a cabo. Para Pundit Lab+, ésta será la fecha y hora en la que se llevó a cabo la medición.
- El “Tipo de medición” indicará o bien “directo” o alguno de los tipos de medición compuesta.
- La columna “Velocidad” visualizará la velocidad de pulso medida o el ajuste para las mediciones de longitud de recorrido.
- “Tiempo 1” y “Tiempo 2” visualizarán el tiempo o los tiempos de transmisión medidos para las mediciones compuestas.
- La columna “Distancia” mostrará la distancia medida o el ajuste para las mediciones de velocidad de pulso.
- La “Profundidad de grieta” mostrará la profundidad de grieta medida.
- El “Factor de corrección” mostrará la configuración del factor de corrección.
- Sólo para Pundit Lab+: La “Resistencia a la compresión” mostrará el valor calculado basado en la “Curva de conversión” elegida.
- Sólo para Pundit Lab+: El “Valor de rebote” será el valor introducido (método SONREB)
Hacer clic en el icono de doble flecha en la columna “Id” para ver más detalles:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>09/01/2010 9:00 AM</th>
<th>Directo (predeterminado)</th>
<th>2318 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Configuración</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud del impulso:</td>
<td>9.3 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia de sonda:</td>
<td>54 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitud del impulso:</td>
<td>auto (500V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganancia de sonda PV:</td>
<td>auto (100x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviación de tiempo de calib.:</td>
<td>-3.6 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre del dispositivo:</td>
<td>Pundit Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de serie:</td>
<td>PL01-001-0021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versión del software:</td>
<td>1.0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice del hardware:</td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notas:**
Hacer clic en “Agregar” para agregar un comentario al objeto.

**9.3 Ajuste de la configuración**
Cada uno de los ajustes que han sido usados en el Pundit en el momento de ejecutar la serie de mediciones podrá ajustarse posteriormente en Pundit Link. Para las mediciones de resistencia a la compresión llevadas a cabo con Pundit Lab+, la curva de conversión y el valor de rebote podrán ajustarse posteriormente. Esto puede realizarse o bien haciendo clic con el botón derecho del ratón directamente en el elemento en la columna apropiada, o bien haciendo clic en el elemento de ajuste azul en la ventana de detalle de algún objeto de medición. En todo caso, aparecerá un cuadro de selección desplegable con las posibilidades de configuración.

**Ajuste de la fecha y la hora**
Hacer clic con el botón derecho del ratón en la columna “Fecha y hora”.

La hora únicamente será ajustada para la serie seleccionada.
Por favor, tener en cuenta que el Pundit Lab no dispone de ningún reloj interno, de modo que la fecha y la hora visualizadas para los datos descargados serán la fecha y hora del momento de la descarga.
En el modo “Registro de datos”, serán la fecha y hora de la ejecución de la medición.
9.4 Exportación de datos

Pundit Link permite la exportación de objetos seleccionados o del proyecto completo para utilizarlos en programas de terceros. Hacer clic en el objeto de medición que se desea exportar. Será visualizado de modo resaltado como lo muestra la ilustración.

Hacer clic en el icono “Exportar como archivo(s) CSV”. Los datos para este objeto de medición serán exportados como archivo o archivos Microsoft Office Excel de valores separados por comas. Las opciones de exportación podrán seleccionarse en la siguiente ventana:

En ambos casos, la ventana de vista previa mostrará los efectos de la selección de salida actual. Terminar haciendo clic en “Exportar” para seleccionar la ubicación del archivo, darle un nombre al archivo y, en caso de una salida gráfica, para configurar el formato de salida: .png, .bmp o .jpg
9.5 **Eliminación y restauración de datos**

El elemento de menú “Editar – Delete [borrar]” permite borrar una o varias series seleccionadas de los datos descargados.

**Nota:**
Esto no borrará datos del Pundit, únicamente datos en el proyecto actual.

El elemento de menú “Editar – Select all [seleccionar todo]” permite al usuario seleccionar todas las series en el proyecto para borrarlas, exportarlas, etc.

**Restauración de los datos originales descargados**

Seleccionar el elemento de menú “Archivo – Restore all original data [restaurar todos los datos originales]” para restaurar los datos al formato original del modo como habían sido descargados. Esto es una característica útil si se han estado manipulando los datos pero se desea regresar a los datos brutos una vez más. Aparecerá una advertencia para avisar que los datos originales serán restaurados. Confirmar para restaurar.

**Nota:**
Se perderán todos los nombres o comentarios que hayan sido agregados a la serie.

**Eliminación de datos guardados en el Pundit**

Seleccionar el elemento de menú “Dispositivo – Delete all measurements object on Pundit [borrar todos los objetos de medición en Pundit]” para borrar todos los datos en el Pundit. Aparecerá una advertencia para avisar que todos los datos serán borrados. Confirmar para borrar.

**Nota:**
Esta acción borrará cada una de las series de mediciones. No es posible borrar series individuales.

9.6 **Otras funciones**

Los siguientes elementos de menú están a disposición a través de los iconos en la parte superior de la pantalla:

- **Icono “PQUpgrade”:** permite la actualización del firmware a través de Internet o desde archivos locales.

- **Icono “Abrir proyecto”:** permite abrir un proyecto .pql guardado previamente.

- **Icono “Guardar proyecto”:** permite guardar el proyecto actual.

- **Icono “Imprimir”:** permite imprimir el proyecto. En el cuadro de diálogo de impresora se podrá seleccionar si se desea imprimir todos los datos o únicamente lecturas seleccionadas.
9.7 Modo dinámico

Pundit Lab le permite al usuario el control remoto del Pundit Lab y la vista directa de la forma de onda en la pantalla del PC.

Hacer clic en el ícono “Modo dinámico”. Si todavía no se ha establecido ninguna comunicación con el Pundit, se iniciará la secuencia de establecimiento de comunicación. (Véase 9.1). Se visualizará la ventana “Modo dinámico”.

Aquí se podrán controlar todos los parámetros de transmisión. Hacer clic en el botón “Configuración avanzada ...” para ajustar los siguientes parámetros:

Por favor, tener en cuenta que la duración de pulso estará ajustada de manera predeterminada en un valor óptimo para la frecuencia del transductor seleccionada.

Trama de tiempo

Podrá ajustarse entre 0.1ms y un máximo de 10ms. (Por favor, tener en cuenta que 10 ms corresponden a una medición de aproximadamente 40m a través de hormigón.) Mediciones típicas serán de menos de 0.5ms. Esta configuración determina la escala de tiempo para la visualización de la forma de onda mostrada más abajo.

P. ej.: tiempo de registro ajustado en 0.2 ms
P. ej.: tiempo de registro ajustado en 0.5 ms

Ajuste manual del punto de disparo
Pundit Link le ofrece al usuario la opción de ajustar el punto de disparo manualmente. Véase el ejemplo más abajo

Punto de disparo captado automáticamente.

© 2011 por Proceq SA
Acercar haciendo clic en los botones de zoom de tiempo y de escala de amplitud para el ajuste fino.

Hacer clic y arrastrar la línea azul para ajustar el punto de disparo manualmente.

Nota: En este ejemplo, la amplitud de señal es muy baja. Usar una configuración de tensión de salida y una configuración de ganancia más altas para obtener mejores resultados.

Registro de datos
El modo Registro de datos le permite al usuario la programación de una secuencia de ensayo.

Registro de datos:
Intervalo: entre mediciones.
Cantidad de eventos: hasta completar el ensayo.
Lecturas por evento: la cantidad de mediciones realizadas en cada intervalo.
### Modo dinámico

El modo dinámico le permite al usuario la ejecución de ensayos con o sin registro de los datos.

En el modo continuo, el Pundit Lab comenzará con la medición tan pronto se pulse “Inicio”, y continuará hasta que se pulse “Paro”.

En caso de que únicamente se requiera una cantidad limitada de lecturas, será posible ajustar esto.

Al pulsar “Siguiente”, se registrarán los datos y será posible comenzar con una nueva medición.

### Configuración de forma de onda (ajustes curva)

Haciendo clic en “Escala automática”, se ajustarán en una configuración óptima los parámetros de zoom de la visualización de forma de onda.

### 9.8 Curvas de conversión

Pundit Lab permite la realización de estimaciones de resistencia a la compresión usando mediciones de velocidad de pulso o una combinación de mediciones de velocidad de pulso y de martillo de rebote.

Para hacer esto será necesario crear una curva de conversión y cargar la misma al instrumento.

Las curvas de conversión son muy específicas del hormigón que se está ensayando y existen muchos ejemplos en la literatura.

Pundit Lab permite la programación tanto de curvas polinomiales como de curvas exponentiales y, en el caso de una medición ultrasónica / de valor de rebote combinada, la introducción de una curva basada en el método SONREB (SONic REBound [rebote sónico]).
Seleccionar el elemento de menú “Curvas de conversión”

Aquí pueden verse curvas existentes almacenadas en el ordenador del usuario, puede copiarse una curva existente para su modificación o:

Crear nueva curva.

Introducir los parámetros de curva y hacer clic en “Crear”.

Ahora, la nueva curva aparecerá en la lista desplegable y podrá ser cargada en el Pundit Lab*

10. Interfaz de control remoto de Pundit Lab

La interfaz de Pundit Lab es totalmente adecuada para aquellos usuarios que no desean usar el software PunditLink sino quieren integrar Pundit Lab en el software que usan en el laboratorio tal como LabVIEW.

El documento referente a la interfaz de control remoto, el cual proporciona las instrucciones completas está a disposición en la sección de descargas de la página web de Proceq www.proceq.com.

© 2011 por Proceq SA
Proceq Europe
Ringstrasse 2
CH-8603 Schwerzenbach
Teléfono: +41 -43-355 38 00
Fax: +41 -43-355 38 12
info-europe@proceq.com

Proceq UK Ltd.
Bedford i-lab, Priory Business Park
Stannard Way
Bedford MK44 3RZ
Reino Unido
Teléfono: +44-12-3483-4515
info-uk@proceq.com

Proceq USA, Inc.
117 Corporation Drive
Aliquippa, PA 15001
Teléfono: +1-724-512-0330
Fax: +1-724-512-0331
info-usa@proceq.com

Proceq Asia Pte Ltd
12 New Industrial Road
#02-02A Morningstar Centre
Singapore 536202
Teléfono: +65-6382-3966
Fax: +65 -6382-3307
info-asia@proceq.com

Proceq Rus LLC
Ul.Optikov 4
korp.2, lit. A, Office 412
197374 St. Petersburg
Rusia
Teléfono/Fax: + 7 812 448 35 00
info-russia@proceq.com

Proceq Middle East
P. O. Box 8365, SAIF Zone,
Sharjah, United Arab Emirates
Teléfono: +971-6-557-8505
Fax: +971-6-557-8606
info-middleeast@proceq.com

Proceq SAO Ltd.
South American Operations
Rua Haddock Lobo, 746 - 5 andar
Cerqueira Cesar, São Paulo
Brasil Cep. 01414-000
Teléfono: +55 11 3083 38 89
info-southamerica@proceq.com

Proceq China
Unit B, 19th Floor
Five Continent International Mansion, No. 807
Zhao Jia Bang Road
Shanghai, 200032
China
Teléfono: +86-21-6317-7479
Fax: +86-21-6317-5015
info-china@proceq.com

www.proceq.com
Sujeto a modificaciones sin previo aviso.

Copyright © 2011 por Proceq SA, Schwerzenbach, Suiza
Número de pieza: 820 326 01 S