

Tesis Doctoral

Marco para la Captura de Requisitos de
Usabilidad en Entornos de MDD

Yeshica Isela Ormeño Ayala

Directores:

Dr. Óscar Pastor López

Dr. José Ignacio Panach Navarrete

Diciembre 2023

Marco para la Captura de Requisitos de Usabilidad
en Entornos de MDD

Esta tesis fue realizada por:
Yeshica Isela Ormeño Ayala

Tutores
Dr. Óscar Pastor López (Universitat Politècnica de València)
Dr. José Ignacio Panach Navarrete (Universitat de València)

Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València
Camìno de Vera s/n, Edificio 1F
46022, Valencia, España
Tel. (+34) 963 877 007 ext. 83533
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

Comentarios: La tesis es presentada para la obtención del grado de
Doctor en Informática por la Universidad Politécnica de Valencia.

Derechos: © Yeshica Isela Ormeño Ayala, 2023.

http://www.pros.upv.es/

5

Dedicatoria

A mi madre porque siempre ha sido el pilar que me sostuvo durante esta
travesía, gracias por estar ahí cuando más te necesito.

A mis hijos por todos los momentos de ausencia, gracias por vuestra
comprensión y paciencia.

6

Agradecimientos

Comienzo agradeciendo la generosidad de mis directores, el Dr. Ignacio
Panach y el Dr. Óscar Pastor. Ignacio, gracias por guiarme y
acompañarme, pero sobre todo gracias por tu paciencia y confianza que
me brindabas durante todo este tiempo. Gracias Óscar por recibirme en
el grupo de investigación PROS, por apoyarme y ampliar mis
horizontes. Gracias a todos mis compañeros de laboratorio L104 (Nelly,
Sergio, Raúl, Karolyne, Nathalie, José Luis y Yhu) y del laboratorio
L204 (Ana, Urko, los Perris, Otto y María Eugenia) con quienes pase
inolvidables momentos en la UPV y mis amigos (Nubia, Flabio, Ani,
Raúl, Eva, Alejandro, Lili y demás integrantes del grupo el pulpo
anhelado) que siempre me dieron todo su apoyo y muchos alientos para
seguir adelante pase lo que pase, gracias por vuestra amistad.

Gracias a mis colegas del DAII en especial al profesor Lauro por sus
sabios consejos, a Esthercita que como madre me entendía en los
avatares de la vida, y a todos que de una u otra forma confiaron en mi
persona y me brindaron su apoyo incondicional. Un agradecimiento
especial a la Universidad Nacional de San Antonio Abad del Cusco, que
a través del programa Yachayninchis Wiñarinanpaq en convenio con
Concytec Fondecyt hicieron posible el financiamiento de esta tesis.

7

Resumen

La investigación desarrollada en esta tesis representa un marco
novedoso para capturar requisitos de usabilidad durante el desarrollo de
un sistema software. Estos requisitos, están representados como
alternativas de diseños de Interfaces de Usuario (IU). El objetivo es
desarrollar un proceso de captura de requisitos de usabilidad basado en
entrevistas estructuradas con el apoyo de una herramienta que ayude a
resolver problemas como: (1) la omisión de la usabilidad desde las
primeras etapas de desarrollo, en general, las características de
usabilidad solo se tienen en cuenta al diseñar las interfaces en las
últimas etapas de desarrollo; (2) resulta tedioso la captura de requisitos
para analistas que no son expertos en usabilidad; (3) los métodos y
herramientas que se utilizan para desarrollar software no admiten la
elicitación de requisitos de usabilidad. A partir de estos problemas
encontrados en la literatura se definen las preguntas de investigación:
¿Es posible capturar requisitos de usabilidad en etapas iniciales de
desarrollo al mismo tiempo que los requisitos funcionales? Para
responder a esta pregunta, la tesis ha definido un método de elicitación
de requisitos de usabilidad llamado UREM (por sus siglas en inglés,
Usability Requirements Elicitation Method) y ha propuesto un método
para tratarlo dentro de entornos MDD.

El desarrollo de este trabajo de investigación se ha llevado a cabo
siguiendo la metodología Design Science. Esta metodología considera
dos ciclos: el primer ciclo es un ciclo de ingeniería en el que se diseña
un método para incluir requisitos de usabilidad durante el proceso de
elicitación de requisitos. El segundo ciclo corresponde a la validación
del método propuesto mediante una evaluación empírica dentro de un
contexto académico.

La propuesta de captura de requisitos de usabilidad mediante UREM
consiste en la definición de una estructura de un árbol donde las guías
de usabilidad y las guías de diseño de IU están almacenadas. El árbol
se define como un grafo conectado sin ciclos y una raíz; compuesto de
4 elementos: pregunta, respuesta, grupo de preguntas y diseño.

Las preguntas y las alternativas de diseño (respuestas) son extraídas de
las guías de usabilidad y de diseño, y marcan el camino por el cual el

8

analista navega hasta llegar a los nodos hoja que son los diseños de la
interfaz de usuario que se han alcanzado durante el proceso de captura
de requisitos de usabilidad. Son los usuarios finales quienes eligen la
alternativa más adecuada dependiendo de sus requisitos y/o siguiendo
las recomendaciones ya preestablecidas en la estructura del árbol. La
construcción del árbol la lleva a cabo un experto en usabilidad y puede
ser utilizado en reiteradas ocasiones, generando así diversas alternativas
de diseño de interfaz de usuario.

La tesis presenta el trabajo relacionado en tres áreas: elicitación de
requisitos de usabilidad, uso de guías de usabilidad e ingeniería
empírica de software.

9

Resum

La investigació desenvolupada en aquesta tesi representa un marc nou
per a capturar requisits d'usabilitat durant el desenvolupament d'un
sistema programari. Aquests requisits, estan representats com a
alternatives de dissenys d'Interfícies d'Usuari (IU). L'objectiu és
desenvolupar un procés de captura de requisits d'usabilitat basat en
entrevistes estructurades amb el suport d'una eina que ajude a resoldre
problemes com: (1) l'omissió de la usabilitat des de les primeres etapes
de desenvolupament, en general, les característiques d'usabilitat només
es tenen en compte en dissenyar les interfícies en les últimes etapes de
desenvolupament; (2) resulta tediós la captura de requisits per a
analistes que no són experts en usabilitat; (3) els mètodes i eines que
s'utilitzen per a desenvolupar programari no admeten l’elicitació de
requisits d'usabilitat. A partir d'aquests problemes trobats en la literatura
es defineixen les preguntes d'investigació: És possible capturar requisits
d'usabilitat en etapes inicials de desenvolupament al mateix temps que
els requisits funcionals? Per a respondre a aquesta pregunta, la tesi ha
definit un mètode d’elicitació de requisits d'usabilitat anomenat UREM
(per les seues sigles en anglés, Usability Requirements Elicitation
Method) i ha proposat un mètode per a tractar-lo dins d'entorns MDD.

El desenvolupament d'aquest treball de recerca s'ha dut a terme seguint
la metodologia Design Science. Aquesta metodologia considera dos
cicles: el primer cicle és un cicle d'enginyeria en el qual es dissenya un
mètode per a incloure requisits d'usabilitat durant el procés d’ elicitació
de requisits. El segon cicle correspon a la validació del mètode proposat
mitjançant una avaluació empírica dins d'un context acadèmic.

La proposta de captura de requisits d'usabilitat mitjançant UREM
consisteix en la definició d'una estructura d'un arbre on les guies
d'usabilitat i les guies de disseny d'IU estan emmagatzemades. L'arbre
es defineix com un graf connectat sense cicles i una arrel; compost de
4 elements: pregunta, resposta, grup de preguntes i disseny.

Les preguntes i les alternatives de disseny (respostes) són extretes de
les guies d'usabilitat i de disseny, i marquen el camí pel qual l'analista
navega fins a arribar als nodes fulla que són els dissenys de la interfície
d'usuari que s'han aconseguit durant el procés de captura de requisits

10

d'usabilitat. Són els usuaris finals els qui trien l'alternativa més
adequada depenent dels seus requisits i/o seguint les recomanacions ja
preestablides en l'estructura de l'arbre. La construcció de l'arbre la duu
a terme un expert en usabilitat i pot ser utilitzat en reiterades ocasions,
generant així diverses alternatives de disseny d'interfície d'usuari.

La tesi presenta el treball relacionat en tres àrees: elicitació de requisits
d'usabilitat, ús de guies d'usabilitat i enginyeria empírica de programari.

11

Abstract

The research developed in this thesis represents a novel framework for
capturing usability requirements during the development of a software
system. These requirements are represented as alternative User
Interface (UI) designs. The objective is to develop a usability
requirements capture process based on structured interviews with the
support of a tool that helps solve problems such as: (1) the omission of
usability from the early stages of development, in general, the
characteristics of Usability is only taken into account when designing
interfaces in the later stages of development; (2) it is tedious to capture
requirements for analysts who are not usability experts; (3) the methods
and tools used to develop software do not support the elicitation of
usability requirements. Based on these problems found in the literature,
the research questions are defined: Is it possible to capture usability
requirements in initial stages of development at the same time as
functional requirements? To answer this question, the thesis has defined
a usability requirements elicitation method called UREM (Usability
Requirements Elicitation Method) and has proposed a method to treat
it within MDD environments.

The development of this research work has been carried out following
the Design Science methodology. This methodology considers two
cycles: the first cycle is an engineering cycle in which a method is
designed to include usability requirements during the requirements
elicitation process. The second cycle corresponds to the validation of
the proposed method through an empirical evaluation within an
academic context.

The proposal to capture usability requirements through UREM consists
of the definition of a tree structure where the usability guides and UI
design guides are stored. The tree is defined as a connected graph
without cycles and a root; composed of 4 elements: question, answer,
group of questions and design.

The questions and design alternatives (answers) are extracted from the
usability and design guides, and mark the path along which the analyst
navigates until reaching the leaf nodes, which are the user interface
designs that have been achieved. during the usability requirements

12

capture process. It is the end users who choose the most appropriate
alternative depending on their requirements and/or following the
recommendations already pre-established in the tree structure. The
construction of the tree is carried out by a usability expert and can be
used repeatedly, thus generating various user interface design
alternatives.

The thesis presents related work in three areas: usability requirements
elicitation, use of usability guides, and empirical software engineering.

13

Índice General

Dedicatoria .. 5

Agradecimientos ... 6

Resumen.. 7

Resum ... 9

Abstract ... 11

Estructura de la Tesis .. 15

I. Introducción .. 16

1.1 Motivación y Planteamiento del Problema 18

1.2 Objetivos y Preguntas de Investigación 20

1.3 Compendio de Artículos .. 22

1.4 Metodología de la Investigación .. 28

1.5 Contribuciones de la tesis .. 37

1.6 Contexto de la tesis .. 38

II Compendio de publicaciones ... 39

2.1 Mapping Study about Usability Requirements Elicitation 40

2.2 Towards a proposal to capture usability requirements through

guidelines .. 63

2.3 A Proposal to Elicit Usability Requirements within a Model-

Driven Development Environment .. 92

2.4 An Empirical Experiment of a Usability Requirements Elicitation

Method based on Interviews .. 124

14

III. Discusiones ... 191

IV. Conclusiones ... 198

4.1 Contribuciones a partir de los Objetivos 200

4.2 Fortalezas y Debilidades de la Tesis .. 201

4.3 Trabajos Futuros .. 203

Referencias .. 204

15

Estructura de la Tesis

Siguiendo la normativa de la Universidad Politécnica de Valencia para
la tesis por compendio de artículos, la estructura de este trabajo se ajusta
a las siguientes cuatro partes:

Parte I (Introducción). La primera parte de la tesis presenta la
motivación de la investigación, la descripción del problema, los
objetivos del trabajo, la relación de artículos científicos publicados para
el cumplimiento de los objetivos de la tesis y la metodología seguida
para desarrollar la investigación.

Parte II (Publicaciones). La segunda parte de la tesis, compuesta por
cuatro capítulos (capítulos 1, 2, 3 y 4) contiene el compendio de
artículos científicos que resultan de la investigación realizada para la
tesis. Las contribuciones están ordenadas cronológicamente, y su
formato ha sido adaptado al formato de esta tesis.

Parte III (Discusiones). En la tercera parte de la tesis se realiza una
discusión general de los resultados relacionando los aportes de la tesis
con el contexto de la investigación.

Parte IV (Conclusiones). La cuarta y última parte de la tesis presenta
las conclusiones sobre el trabajo realizado y las futuras líneas de
investigación.

16

 PARTE I

INTRODUCCION
 I

 Los temas que se cubren en esta parte son:

1.1 Motivación y Planteamiento del Problema
1.2 Objetivos y Preguntas de Investigación
1.3 Compendio de Artículos
1.4 Metodología de la Investigación
1.5 Contribuciones de la tesis
1.6 Contexto de la tesis

I. Introducción

17

Esta parte presenta la motivación para realizar la tesis, incluyendo el
análisis del problema a resolver, los objetivos a alcanzar, y las preguntas
de investigación que conducirán a la construcción del marco de
desarrollo de requisitos de usabilidad. Además, se describe la
metodología seguida con la que se llevó a cabo la investigación, así
como las contribuciones y el contexto de la tesis.

18

1.1 Motivación y Planteamiento del Problema

La interacción persona ordenador ha desarrollado guías y
recomendaciones para mejorar la usabilidad en los sistemas de
información que son usualmente aplicados en las etapas finales del
proceso de desarrollo software. Por otro lado, la comunidad de la
ingeniería del software ha desarrollado métodos conocidos para
capturar requisitos funcionales en etapas tempranas, siendo los
requisitos como la usabilidad postergada a etapas finales conjuntamente
con otros requisitos no funcionales. La captura de requisitos de
usabilidad permite a los ingenieros de software, diseñadores, y analistas
crear software que no solo cumpla con los requisitos funcionales [1].

Además, no existen métodos que capturen requisitos de usabilidad
durante el desarrollo del software en ambas comunidades y la mayoría
de trabajos para optimizar la usabilidad se centran en el uso real de la
aplicación final [2]. Un claro ejemplo de este problema se manifiesta en
la aplicación del paradigma de desarrollo dirigido por modelos en
donde los métodos y herramientas no soportan la captura de requisitos
de usabilidad.

El desarrollo de interfaces de usuario, que va desde los primeros
requisitos hasta la implementación del software, se ha convertido en un
proceso costoso y lento en el ciclo de vida del desarrollo de software
(SDLC) [3]. Este proceso sería más efectivo si se incluyeran los
requisitos de usabilidad para que el software cumpla con los requisitos
de los usuarios y además brinde una interacción con el software acorde
con el tipo de tarea a realizar. Existen propuestas para utilizar guías de
diseño que mejoren la usabilidad pero cómo relacionar estas guías con
la elicitación de requisitos es un ámbito aún no explorado [4].

Las áreas de la Interacción Persona Ordenador (IPO) e Ingeniería del
Software (IS) tienen como objetivo común desarrollar sistemas usables.
En ambas comunidades, la usabilidad suele considerarse en las últimas
etapas del proceso de desarrollo de software, cuando las interfaces ya
han sido diseñadas. El incluir características de usabilidad en estas
últimas etapas podría afectar a la arquitectura del sistema. Para

19

minimizar este problema, la usabilidad debe incluirse en la etapa de
captura de requisitos [5], [6]. La comunidad de la IS tiene una amplia
experiencia en la obtención temprana de requisitos y existen métodos
sólidos. Sin embargo, estos métodos solo se centran en los requisitos
funcionales (RF), y los requisitos no funcionales (NFR) como la
usabilidad han sido olvidados en esta etapa temprana. Según muchos
autores, cumplir con los requisitos funcionales no es suficiente para
crear y asumir que un producto es de calidad [7]. La usabilidad es un
factor clave para obtener niveles de aceptación.

Model-Driven Development (MDD) ha sido bastante popular en la
comunidad académica [8] en los últimos años, y se han introducido
varias propuestas diferentes para desarrollar sistemas de software.
MDD es un paradigma de desarrollo de software que se basa en
modelos y transformaciones de modelos para obtener un producto final
mediante la generación automática de código considerando algunas
reglas de transformación.

En un campo donde la tecnología cambia rápidamente, una metodología
basada en modelos es una opción válida por algunas razones:

• El dominio del conocimiento está representado en modelos, siendo
éstos independientes de la tecnología [9],

• La solución para el desarrollo de un sistema software no se ve afectada
por la evolución de la plataforma hardware.

• Cuando se considera una nueva tecnología como plataforma de
destino para desarrollar software, no es necesario volver a describir todo
el sistema sino generar un nuevo modelo específico de plataforma
(PSM) que incluya los cambios en la plataforma de destino.

• Las tareas relacionadas con el ciclo de vida del desarrollo
(mantenimiento, nuevos requisitos, proceso de actualización) son
menos complicadas de realizar [10].

Esta tesis presenta un método para el proceso de elicitación de
requisitos de usabilidad (UREM, por sus siglas en inglés, Usability
Requirements Elicitation Method) representados en diseños de IU

20

construidos siguiendo guías de usabilidad, de diseño, estándares e ISOs
dentro del entorno de MDD con el apoyo de una herramienta de soporte.
El método tiene como objetivo representar los requisitos de usabilidad
mediante alternativas de diseños de IU que serán seleccionados por el
usuario final durante la captura de requisitos. Este método propone
representar los diseños de las interfaces en modelos conceptuales que
después puedan ser la entrada a un proceso de desarrollo MDD.

En resumen, el enunciado del problema en esta tesis es:

No existe un método para capturar los requisitos de usabilidad que
tenga en cuenta guías de diseño y recomendaciones de usabilidad
que ayuden a analistas poco expertos en el desarrollo de sistemas
usables bajo el enfoque MDD.

Nuestro trabajo tiene como objetivo definir un método de captura de
requisitos de usabilidad (UREM) para analistas que no son expertos en
ingeniería de usabilidad y deseen incorporar la especificación de
requisitos de usabilidad en un entorno de MDD.

1.2 Objetivos y Preguntas de Investigación

El objetivo principal de la Tesis es definir UREM: un método
estructurado basado en normas y guías de usabilidad que incorporan
requisitos de usabilidad durante la captura de requisitos mediante
entrevistas entre el analista y el usuario final, obteniendo diseños de IU
como resultado de las entrevistas.

Para lograr el objetivo principal, es necesario responder las siguientes
preguntas de investigación (RQ), que debido a su amplitud son
subdividas en sub preguntas de investigación (SQ):

• RQ1: ¿Es posible capturar requisitos de usabilidad en etapas
iniciales de desarrollo software?

21

- SQ1.1: ¿Que métodos, guías de usabilidad, estándares y
normas se requieren en el proceso de captura de requisitos de
usabilidad que apoyen la labor del analista?

- SQ1.2: ¿Es posible desarrollar una estructura de árbol que
facilite el proceso de captura de requisitos en un entorno MDD?

- SQ1.3: ¿Es posible representar alternativas de diseño de IU en
una estructura de árbol en base a las guías de usabilidad y
diseño para la captura de requisitos de usabilidad?

• RQ2: ¿Qué impacto produce UREM en la captura de requisitos de
usabilidad?
- SQ2.1 ¿Cuál es el impacto del uso de las guías de usabilidad en

el diseño de IU?
- SQ2.2 ¿Cuál es el impacto de la aplicación del UREM en un

contexto académico?
- SQ2.3 ¿Cuál es el impacto de las recomendaciones de

usabilidad propuestas por UREM?

Para contestar estas preguntas, se plantean los siguientes objetivos
específicos:

Objetivo 1 (RQ1). Para contestar la RQ1, se identificarán las
limitaciones y problemas existentes en el desarrollo del software por la
ausencia de mecanismos que garanticen una adecuada captura de
requisitos de usabilidad. Para contestar la SQ1.1, se analizarán métodos,
estándares, normas y guías de usabilidad existentes en la literatura que
deben ser incluidas en el desarrollo del software y durante el diseño de
IU. Para contestar la SQ1.2, se definirá un mecanismo de captura de
requisitos de usabilidad que consiste en desarrollar una estructura de
árbol en base a preguntas, grupo de preguntas y respuestas, que resulten
en diseños de IU usables. Para contestar la SQ1.3 se implementarán las
guías de usabilidad y diseños dentro de la estructura del árbol que
conduzcan a la generación de diseños de IU usables.

Objetivo 2 (RQ2). Para contestar la RQ2, se realizará el experimento
empírico. El experimento, está orientado a responder las SQ2.1, SQ2.2
y SQ2.3, es un experimento con 2 réplicas para comparar UREM con
un método de elicitación de requisitos de usabilidad no estructurado (y

22

sin guías de usabilidad). Los diseños de IU son el resultado de la captura
de requisitos de usabilidad realizado y se plasman en los diseños de IU
obtenidos al final de la entrevista.

1.3 Compendio de Artículos

Como resultado de la investigación se han elaborado y publicado cuatro
artículos de investigación que abarcan las preguntas de investigación y
responden más explícitamente a las sub preguntas de investigación
definidas.

1.3.1 Mapping study about usability requirements elicitation

Ormeño, Yeshica, Ignacio Panach y Óscar Pastor. En International
Conference Advanced Information Systems Engineering (CAiSE
2013). Springer 2013, págs. 672-687, DOI:
https://doi.org/10.1007/978-3-642-38709-8_43.

Este artículo publicado en la conferencia CORE A CAiSE aborda la sub
pregunta de investigación SQ1.1: ¿Que métodos, guías de usabilidad,
estándares y normas se requieren en el proceso de captura de requisitos
de usabilidad que apoyen la labor del analista?

En el primer artículo se ha desarrollado un estudio sistemático
siguiendo la metodología de Kitchenham, cuyo objetivo es identificar
las propuestas existentes para la elicitación de requisitos de usabilidad
desde las primeras etapas de desarrollo software, la misma que ha sido
subdividida en 6 sub preguntas referentes a: 1) Métodos para elicitar los
requisitos de usabilidad. Los métodos existentes inician el proceso de
elicitación de los NFRs mediante técnicas tradicionales (entrevistas,
cuestionarios, etc.) teniendo que ser personalizables en caso de
aplicarse a otros contextos diferentes, es decir deben ser adaptados.
Además, solo proporcionan soporte básico a la gestión de requisitos por

https://doi.org/10.1007/978-3-642-38709-8_43

23

medio de extensiones para la captura de requisitos. 2) Métodos para
elicitar requisitos de interacción. Se caracterizan porque realizan un
análisis exhaustivo de los requisitos para encontrar y aliviar los
problemas de interacción donde los modelos están basados en el análisis
sistemático de un conjunto de propiedades de interfaces estándar, y/o
patrones estructurales, buscando potenciar la usabilidad y experiencia
de usuario. 3) Guías de usabilidad utilizadas para elicitar los requisitos
de usabilidad. Las guías encontradas ayudan a superar en parte el
obstáculo de la integración de la usabilidad y su significado por los
stakeholders. No obstante, para su aplicación se requiere la
interpretación de un experto en usabilidad. 4) Herramientas de apoyo a
la elicitación de requisitos. Las herramientas son de apoyo y presentan
funcionalidad limitada cuando se orientan a la elicitación de requisitos.
En general, están orientadas a la identificación de requisitos para que
las interfaces de usuario sean más comprensibles por los usuarios. Se
utilizan más en el diseño de sistemas interactivos, pero su uso exige
cierto grado de esfuerzo en la comprensión y aplicación por parte del
analista. 5) Tipo de notación para la elicitación de los requisitos. Las
notaciones son utilizadas por los métodos en sus diferentes fases de
desarrollo. Algunos tipos de representación son patrones, escenarios y
plantillas. En algunos métodos se han utilizado más de una notación en
combinación con más de un artefacto, siendo de gran uso para el
analista, aunque no son tan comprendidos por el usuario final. y 6)
Entorno de validación empírica. Los casos de estudio, experimentos o
pruebas de concepto que se plantean dentro del plano académico e
industrial no muestran métricas explícitas que determinen el nivel de
usabilidad logrado por el sistema. Además, los métodos están
desarrollados para ciertas características de usabilidad consideradas de
mayor impacto sobre la funcionalidad. Las listas de verificación,
sesiones y gestión de escenarios son los artefactos generalmente
utilizados para evaluar la usabilidad. Generalmente, la usabilidad se
evalúa mediante encuestas en términos de efectividad, eficiencia y
satisfacción.[1].

Analizando los resultados del estudio sistemático, podemos concluir
que existe una clara línea de investigación en el campo de los requisitos
de usabilidad en entornos MDD. Por lo general, los métodos MDD

24

históricamente se han centrado en modelar el comportamiento y la
persistencia, pero relegando la interacción y particularmente la
usabilidad a una implementación manual. Esta implementación manual
contradice claramente el paradigma MDD, que aboga por que el analista
trabaje con modelos conceptuales holísticos, en los que se puedan
representar todas las características del sistema (incluidas las
características de usabilidad).

1.3.2 Towards a proposal to capture usability requirements through

guidelines

Ormeño, Yeshica, Ignacio Panach, Nelly Condori y Óscar Pastor. En
International Conference Research Challenges in Information Science
(RCIS 2013). IEEE 2013, Págs.1-12, DOI:
10.1109/RCIS.2013.6577677

Este artículo publicado en el congreso CORE B RCIS, aborda la sub
preguntas de investigación SQ1.2: ¿Es posible desarrollar una
estructura de árbol que facilite el proceso de captura de requisitos en un
entorno MDD?.

En este segundo artículo se define el proceso para capturar los requisitos
de usabilidad consistente en construir una estructura de árbol utilizando
las guías de diseño de interfaz usuario y las guías de usabilidad que
ayudan al analista a capturar los requisitos de usabilidad. El enfoque se
basa en un formato de pregunta-respuesta de tal manera que los
requisitos se capturan con una entrevista con el usuario final. El
resultado de la entrevista es un conjunto de diseños que el sistema debe
satisfacer. Si especificamos estos diseños formalmente, podemos
transformarlos en primitivas conceptuales de un método MDD
existente.

Los componentes del modelo para el árbol son: 1) Las preguntas, que
son formuladas en base a las diversas alternativas de diseño que existen
para la especificación de los componentes de una IU extraídas de las
guías de diseño y estándares de usabilidad existentes. Se pregunta al
usuario que alternativa es de su preferencia. 2) Las respuestas, que son

http://dx.doi.org/10.1109/RCIS.2013.6577677

25

establecidas como opciones exclusivas para ser presentadas al analista,
quien elige cuál se adapta mejor a los requisitos. La decisión del analista
no solo se basa en los criterios del usuario final, sino que toma en
consideración las respuestas que están definidas en el árbol en base a
las guías de usabilidad según el tipo de usuario, tarea y contexto. Estas
son las respuestas que son recomendadas al usuario durante su elección.
3) Los grupos de preguntas, que están formadas por un conjunto de
preguntas, agrupadas por una característica de diseño de IU. Las
preguntas no son mutuamente excluyentes, es decir, se deben consultar
todas ellas al usuario independientemente de las respuestas que se
elijan. 4) Los diseños, que son las hojas del árbol alcanzadas a través de
las alternativas que el analista ha ido eligiendo como resultado de las
selecciones realizadas por el usuario final.

La estructura de árbol y la transformación entre los diseños y el método
MDD se definen una sola vez y se pueden reutilizar indefinidamente
para desarrollar cualquier sistema.

1.3.3 A proposal to elicit usability requirements within a model-

driven development environment.

Ormeño, Yeshica, Ignacio Panach, Nelly Condori y Óscar Pastor. En
International Journal of Information System Modeling and Design
(2014) 5(4), Págs.1-21, DOI:
http://dx.doi.org/10.4018/ijismd.2014100101

Este artículo publicado en una revista internacional aborda la sub
preguntas de investigación SQ1.3: ¿Es posible representar alternativas
de diseño de IU en una estructura de árbol en base a las guías de
usabilidad y diseño para la captura de requisitos de usabilidad?

En este tercer artículo se presenta el proceso para elicitar requisitos de
usabilidad basado en alternativas de diseño propuestas y lineamientos
de usabilidad existentes. El enfoque se basa en la construcción de una
estructura de árbol que representa todas las alternativas de diseño. Se
explica en detalle cómo construir la estructura de árbol y cómo usarla.
El usuario final participa en el proceso, eligiendo la alternativa de

http://dx.doi.org/10.4018/ijismd.2014100101

26

diseño que mejor se ajuste a sus requerimientos. La navegación
comienza desde la raíz del árbol y continua mientras el analista hace las
preguntas a los usuarios. La posible navegación entre dos nodos de la
estructura de árbol puede ser: i) De un grupo de preguntas a una
pregunta, o a otro grupo de preguntas; ii) De una pregunta a una
respuesta iii) De una respuesta a una pregunta o a un grupo de preguntas
o a un diseño.

El enfoque ha sido validado con 4 sujetos a través de una demostración
de laboratorio. En el ejemplo, se han utilizado dos guías de usabilidad:
ISO 9126-3 y los criterios ergonómicos. Nuestro enfoque acepta tantas
guías como el analista quiera considerar. Una contradicción entre dos
guías no significa un problema, ya que el usuario final decide la
alternativa de diseño más adecuada. Sin embargo, es importante
mencionar que demasiadas recomendaciones para los posibles diseños
pueden confundir a los usuarios finales.

Como resultado del proceso de elicitación obtenemos algunos modelos
conceptuales incompletos. En los próximos pasos de desarrollo, el
analista debe mejorar estos modelos con primitivas que representen la
funcionalidad y la apariencia visual del sistema para obtener un sistema
completamente funcional.

1.3.4 An Empirical of a Usability Requirements Elicitation Method

based on Interviews

Ormeño, Yeshica, Ignacio Panach y Óscar Pastor. En Information and
Software Technology (2023), Págs. 107324, DOI:
https://doi.org/10.1016/j.infsof.2023.107324

Este artículo publicado en la revista JCR IST (Q2 en JCR) aborda las
sub preguntas de investigación SQ2.1 ¿Cuál es el impacto del uso de
las guías de usabilidad en el diseño de IU?, SQ2.2 ¿Cuál es el impacto
de la aplicación del UREM en un contexto académico? y SQ2.3 ¿Cuál
es el impacto de las recomendaciones de usabilidad propuestas por
UREM?

https://doi.org/10.1016/j.infsof.2023.107324

27

En el cuarto artículo se ha realizado un experimento que compara
entrevistas estructuradas con entrevistas no estructuradas para obtener
requisitos de usabilidad. Las entrevistas estructuradas se
operacionalizan con UREM, que es un método basado en un árbol de
decisiones en el que el analista guía la entrevista navegando por la
estructura del árbol. Cada rama del árbol incluye una pregunta para el
usuario final con posibles respuestas. Además, se recomienda la
respuesta que cumpla más con las guías de usabilidad existentes. Con
el método de entrevista no estructurada, el analista debe obtener
requisitos de usabilidad sin ninguna guía. En el experimento, el
tratamiento de control se denomina entrevista no estructurada. La
evaluación se realiza para analizar cuatro variables de respuesta: 1)
Efectividad en la elicitación de requisitos de usabilidad;2) Efectividad
en la aplicación de las guías de usabilidad; 3) Eficiencia; y 4) la
satisfacción tanto del analista como la del usuario final. Como
resultados significativos, UREM es más efectivo en la obtención de
requisitos de usabilidad y también más efectivo en el diseño de
interfaces que cumplen con las guías de usabilidad.

Se han aprendido algunas lecciones durante la realización del
experimento: 1) El esfuerzo para construir el árbol con UREM es alto.
Esto es algo que no se analizó en el experimento, pero el esfuerzo
requerido no es despreciable en base a la experiencia vivida por los
experimentadores. Cabe destacar que este esfuerzo se amortiza debido
a que la misma estructura de árbol es útil para cualquier desarrollo
futuro; 2) Las recomendaciones realizadas durante la navegación por la
estructura del árbol pueden ser diferentes según las guías de usabilidad
utilizadas para construir el árbol. Si bien la mayoría de las guías de
usabilidad coinciden en las características que optimizan la usabilidad,
existen algunas guías que pueden presentar algunas contradicciones. Al
final, el experto en usabilidad que construye la estructura de árbol es
quien elige las guías de usabilidad más adecuadas para las
recomendaciones; 3) La mayoría de los usuarios finales aceptaron las
recomendaciones de usabilidad. Este valor podría haber sido diferente
si los sujetos hubieran tenido más experiencia en las características de
usabilidad.

28

1.4 Metodología de la Investigación

Para el desarrollo de la tesis se ha seleccionado la metodología “Design
Science” (DS) [11] por su enfoque en la investigación de proyectos de
Sistemas de Información e Ingeniería de Software a través de la
experimentación, observación del estudio y análisis de resultados. Todo
ello hace de esta metodología una guía adecuada para llevar a cabo la
investigación.

DS se basa en el diseño e investigación de artefactos en un contexto.
Los artefactos que estudiamos están diseñados para interactuar con un
contexto problemático a fin de mejorar en ese contexto. Esta tesis aplica
la metodología DS para investigar cómo se pueden capturar requisitos
de usabilidad a partir de la gestión de un modelo basado en guías y
estándares de usabilidad que promuevan el diseño de interfaces de
usuario usables, y que satisfagan los requisitos del usuario.

El objeto de estudio de cualquier proyecto basado en DS es “estudiar
un artefacto interactuando en su contexto del problema”, a lo cual la
metodología lo denomina tratamiento. Cuando se menciona “artefacto”
se refiere a un elemento de software (por ejemplo, método, aplicación
de software, etc.) diseñado por los investigadores del proyecto DS y se
usa por personas como solución a un problema.

El objeto de estudio de esta tesis es: proponer UREM (nuestro artefacto)
para resolver el problema de capturar requisitos de usabilidad mediante
entrevistas estructuradas (preguntas y respuestas) que se realicen en el
proceso de diseño de IU. La siguiente Fig.1 muestra la relación
existente.

29

Figura 1. Artefacto que captura requisitos de usabilidad interactuando con el contexto
para resolver un problema de ese contexto.

Como resultado de esta investigación se pretende que la aplicación de
UREM contribuya a la captura de requisitos de usabilidad en etapas
tempranas del desarrollo software facilitando la generación de diseños
de IU usables. El tratamiento, el artefacto y las investigaciones
asociadas a la creación de este método brindan un avance en la
investigación científica.

1.4.1 Marco Metodológico Aplicado a la tesis

Para alcanzar los objetivos y responder a las preguntas de investigación,
la metodología provee un marco de trabajo que consiste en dos
contextos interactuando con el proyecto DS. Se tiene dos contextos que
son: el contexto social y el contexto de conocimiento, como se muestra
en la siguiente figura.

30

Figura 2. Marco de trabajo de la metodología DS aplicado a la tesis

El contexto social representa a las partes interesadas del proyecto
incluyendo a las personas o instituciones que financian el proyecto y/o
definen los objetivos o requisitos para UREM. Las partes interesadas se
dividen en 2 grupos. El primero lo conforman las partes interesadas que
patrocinan el proyecto de investigación:

• Universidad Nacional de San Antonio Abad del Cusco –
CONCYTEC PROCIENCIA .

• Departamento de Sistemas y Computación de la Universidad
Politécnica de Valencia.

• PROS Centro de Investigación.

El segundo grupo lo conforman las partes interesadas que son
beneficiarios directo del UREM.

• Universidades e investigadores en el área de desarrollo de software
dirigido por modelos.

• Analistas de sistemas y desarrolladores de software

31

El contexto de conocimiento representa la literatura científica
existente que se ha utilizado para poder llevar a cabo la
investigación. En esta tesis, el contexto de conocimiento incluye las
fuentes primarias de conocimiento como son la literatura científica,
profesional, técnica y comunicaciones orales en las disciplinas HCI,
desarrollo de software dirigido por modelos, usabilidad, ingeniería
de requisitos, estudios empíricos.

1.4.2 Ciclo de Diseño y Ciclo Empírico

La metodología DS para realizar las actividades de diseño e
investigación en un proyecto, provee de 2 ciclos iterativos y anidados:
i) Ciclo de Diseño y ii) Ciclo Empírico. Cada ciclo está compuesto de
tareas y cada tarea involucra resolver problemas de diseño y preguntas
de conocimiento.

i) Ciclo de diseño

El ciclo de diseño es un proceso orientado al diseño del artefacto de la
investigación y puede ser visto como un sub-ciclo de un tipo de
ingeniería enfocado a la resolución de problemas. El ciclo de ingeniería
está compuesto de 4 tareas de diseño (TD).

- TD1. Investigación del problema. Identificar las causas del
problema, para poder ser mejorado.

- TD2. Diseño del tratamiento. Diseñar artefactos para tratar el
problema, se especifican los requisitos, se estudian tratamientos
existentes, para ver si se adapta el tratamiento o si se diseña un
nuevo tratamiento.

- TD3. Validación del tratamiento. Verificar que el diseño del
tratamiento abarca el problema.

- TD4. Implementación del tratamiento. Tratar el problema con el
artefacto diseñado.

32

De estas 4 tareas del ciclo de ingeniería, el ciclo de diseño abarca las
tareas, como se muestra en la Figura 3.

Figura 3. Ciclo de diseño de la metodología de DS. Adaptado de [19]

En el desarrollo de esta Tesis, aplicamos un Ciclo del Diseño con las
Tareas (TD) indicando en qué parte, capítulo o sección de la tesis se
encuentran:

- TD1) Problema de Investigación: Definido por el investigador y la
necesidad de investigar un método de captura de requisitos de
usabilidad a partir de entrevistas (Parte II, Sección 1).

- TD2) Estado del Arte: Investigar propuestas existentes relacionadas
con métodos de captura de RF y NFR, requisitos de interacción,
notación, guías, validaciones empíricas (Parte II, Sección 1).

33

- TD3) Definir el método estructurado: A partir de la estructura de
un árbol donde se definen preguntas y respuestas para generar
alternativas de diseño de IUs. Estas preguntas y respuestas fueron
extraídas de la revisión de guías y estándares de usabilidad
existentes en la literatura (Parte II, Sección 2).

- TD4) Definir alternativas de diseños de IU: Al definir las preguntas
de la estructura en árbol, cuando las preguntas tienen más de una
respuesta (alternativa de diseño), se utilizan guías de usabilidad
para recomendar la alterativa apropiada en base a los estándares y
guías de usabilidad. Se asignan preguntas y respuestas a cada
alternativa que conducen a la especificación de un diseño de IU
(Parte II, Sección 3).

- TD5) Definir recomendaciones de usabilidad: Cuando las
preguntas cuentan con más de una alternativa que conlleva a los
diseños de IUs, se proporciona las alternativas que contienen
recomendaciones de usabilidad para saber qué alternativa es más
adecuada (Parte II, Sección 4).

ii) Ciclo Empírico

El ciclo empírico es un proceso orientado a contestar preguntas de
conocimiento científico de manera racional, donde el investigador
diseña la configuración de la investigación (o estudio empírico, como
por ejemplo un experimento) y analiza los datos producidos de esta
experimentación. El ciclo empírico se muestra en la Figura 4, y se
compone de 5 tareas que se identifican con (TE).

- TE1. Análisis del problema de investigación, que consiste en
definir las preguntas de investigación sobre las cuales vamos a
realizar el estudio, y reclutar los sujetos del experimento de quienes
obtenemos los datos.

- TE2. Diseño de la investigación, que consiste en diseñar el estudio
empírico definiendo las variables y las métricas (como medirlas),
definir los problemas experimentales (los problemas que los sujetos
tienen que resolver), definir los tratamientos de la investigación, y
definir los métodos estadísticos que serán utilizados para obtener
resultados.

34

- TE3. Validación de la investigación, que consiste en validar las
amenazas que puedan afectar el estudio empírico y a los resultados.
Utilizamos 4 tipos de validaciones [12]: validez de la conclusión,
validez interna, validez del constructo, y validez externa. Se
describe cómo se ha minimizado o cubierto las amenazas del
experimento para cada tipo de validación.

- TE4. Ejecución del experimento, que consiste en ejecutar el
experimento empírico según el diseño del experimento.

- TE5. Análisis de los datos, que consiste en analizar los datos
obtenidos en el experimento de acuerdo a los métodos estadísticos
definidos en el diseño del experimento.

Figura 4. Ciclo Empírico de la metodología DS. Adaptado de [13]

35

En esta Tesis se ha definido un ciclo empírico que se muestran en la
Parte II Sección 4:

El ciclo empírico TE: La validación de UREM y sus diseños de IU
incluyendo recomendaciones para optimizar la usabilidad se encuentra
en la Parte II Sección 4. A continuación, se muestran las tareas (TE)
relacionadas con este ciclo:

- TE1) Análisis del problema de investigación: Se definieron 5
preguntas de investigación. El experimento consiste en 2 réplicas,
los sujetos son estudiantes del Grado y Master de Ingeniería
Informática de la Universidad Nacional de San Antonio Abad del
Cusco (Perú).

- TE2) Diseñar un experimento para validar UREM: El investigador
propuso 2 problemas experimentales en contextos diferentes, donde
cada problema requiere la elicitación de distintos requisitos de
usabilidad. En el experimento participan sujetos con dos roles: el
rol de analista que elicita los requisitos de usabilidad y diseña las
IUs, y el rol del cliente que explica sus requisitos y valida el
resultado. La captura de requisitos de usabilidad se realiza con un
método de entrevistas no estructurado y UREM (haciendo uso del
árbol implementado para este proceso) para comparar el grupo de
control con el tratamiento respectivamente. Después de realizar la
entrevista con uno u otro método, el analista debe dibujar los
diseños de IUs que satisfagan los requisitos de usabilidad del
cliente. Las variables y las métricas utilizadas en la
experimentación son: Efectividad aplicada en dos contextos:
Efectividad en la captura de requisitos (se mide como el porcentaje
de requisitos de usabilidad satisfechos por el analista usando el
método no estructurado y UREM), y efectividad en la aplicación de
las guías de usabilidad (se mide como el porcentaje de requisitos de
usabilidad que han sido incluidos en el diseño de la IU usando el
método no estructurado y el UREM). Eficiencia (se mide como el
ratio del tiempo destinado en la captura de requisitos de usabilidad
sobre la efectividad lograda en la captura de requisitos por el
analista con el método no estructurado y UREM). Satisfacción
aplicada desde dos perspectivas: Satisfacción del analista que

36

diseña las IU (se mide como el nivel de satisfacción del analista
durante la elicitación de requisitos usando el método no
estructurado y UREM) y satisfacción del usuario final quien
utilizará las IUs (se mide a través del cuestionario CSUQ
(https://garyperlman.com/quest/quest.cgi), para el método no
estructurado y UREM). Para la satisfacción del analista se mide en
términos de Facilidad de Uso Percibida, Utilidad Percibida y la
Intención de Uso a través de un cuestionario de escala de Likert de
5 puntos) para el método no estructurado y el método UREM.

- TE3) Validación de la investigación: El experimento valida las
amenazas que puedan afectar el estudio empírico y a los resultados,
utilizamos 4 tipo de validaciones [12]: validez de la conclusión
(Poder estadístico bajo, Supuestos transgredidos de estadística,
Pesca, Fiabilidad de las medidas, Fiabilidad de la implementación
de los tratamientos y Heterogeneidad aleatoria de los sujetos),
validez interna (Historia, Maduración, Instrumentación, Selección,
Mortalidad y Rivalidad compensatoria), validez del constructo
(Explicación preoperacional inadecuada de los constructos, Sesgo
mono-operación, Sesgo mono-metodo y Homogeneidad del
problema), y validez externa (Interacción de selección y
tratamiento, Interacción de entornos y tratamiento e Interacción de
historia y tratamiento). Se describe cómo se ha cubierto y
minimizado las amenazas del experimento para cada tipo de
validación.

- TE4) Ejecutar el experimento para validar el método: El
experimento se ejecuta en 2 réplicas, el investigador elaboró dos
listas de requisitos de usabilidad para cada problema y se
desarrollaron sesiones de capacitación del manejo de UREM a
todos los sujetos experimentales días antes del experimento.
Además de una introducción de UREM con una duración de 10
minutos antes del experimento, se realiza un cuestionario
demográfico para saber el nivel de conocimiento de captura de
requisitos, diseño de IU y guías de usabilidad de cada uno de los
sujetos.

- TE5) Analizar resultados del método: El análisis muestra el
resultado del Eficiencia, Eficacia y la Satisfacción del método no
estructurado y UREM.

37

La Figura 5 muestra los ciclos aplicados a la Tesis.

Figura 5. Ciclos aplicados a la tesis

1.5 Contribuciones de la tesis

Esta tesis presenta los siguientes aportes:

Contribución 1: Definición de un método de captura de requisitos de
usabilidad basado en un árbol de decisiones. El método captura
requisitos de usabilidad a través del diseño de interfaces usuario
mediante la estructura de un árbol que contiene las guías de usabilidad
y diseño. El árbol lo construye un experto en usabilidad.

Contribución 2: Una herramienta para apoyar el método de requisitos
de usabilidad descrito en la Contribución 1.

Contribución 3: La validación del método propuesto mediante una
evaluación comparativa empírica.

38

1.6 Contexto de la tesis

Este trabajo de investigación se ha desarrollado en el contexto del
Centro de Investigación PROS (Centro de Investigación en Métodos de
Producción de Software), y DSIC (Departamento de Sistemas de
Información y Computación) de la Universitat Politècnica de València,
España.

Este trabajo ha sido financiado por la Universidad Nacional de San
Antonio Abad del Cusco a través del Consejo Nacional de Ciencia y
Tecnología Secretaría Nacional de Educación Superior, Ciencia
Tecnología e Innovación Tecnológica-CONCYTEC de Perú, bajo el
Programa Yachayninchis Wiñarinanpaq UNSAAC.

39

 PARTE II

COMPENDIO
DE

PUBLICACIONES
II

 Los temas que se cubren en esta parte son:

2.1 Revisión sistemática acerca de la captura de
requisitos de usabilidad

2.2 Hacia una propuesta de Captura de Requisitos
de Usabilidad mediante guías

2.3 Una propuesta para capturar requisitos de
usabilidad en el entorno de desarrollo dirigido
por modelos

2.4 Un experimento de captura de requisitos de
usabilidad basado en entrevistas

II Compendio de publicaciones

40

2.1 Mapping Study about Usability Requirements
Elicitation

The HCI community has developed guidelines and recommendations
for improving the usability system, usuability applied at the last stages
of the software development process. On the other hand, the SE
community has developed sound methods to elicit functional
requirements in the early stages, but usability has been relegated to the
last stages together with other non-functional requirements. Therefore,
there are no methods of usability requirements elicitation to develop
software within both communities. An example of this problem arises if
we focus on the Model-Driven Development paradigm, where the
methods and tools that are used to develop software do not support
usability requirements elicitation. In order to study the existing
publications that deal with usability requirements from the first steps of
the software development process, this work presents a mapping study.
Our aim is to compare usability requirements methods and to identify
the strong points of each one.

41

1.1 Introduction

The goal of developing usable systems has been dealt with by the
Human Computer Interaction (HCI) and Software Engineering (SE)
fields. In both communities, usability is usually considered in the last
stages of the software development process, when the interfaces have
already been designed. Including usability characteristics at these last
stages could affect the system architecture. To minimize this problem,
usability should be included at the requirements elicitation stage [5],
[20]. The SE community has broad experience in early requirements
elicitation and there are sound methods. However, these methods are
mainly focused on functional requirements and Non-Functional
Requirements (NFR) have historically been forgotten at this early stage.

According to many authors, fulfilling functional requirements is not
enough to create a quality product [49]. Usability is a key factor in
obtaining good acceptance rates.

In this study, we aim to identify the existing methods for capturing
usability requirements. To do this, we perform a Mapping Study (MS)
based on the works performed by Kitchenham [29]. A MS provides an
objective procedure for identifying the nature and extent of the research
that is available to answer a particular question. These studies are also
useful to identify gaps in current research and to suggest areas for
further investigation. Of all the software development methods, we
focus on the Model-Driven Development (MDD). MDD aims to
develop software by means of a conceptual model, which is the input
for a model compiler that generates the system code implementation.
The SE community has been working with this paradigm, and,
nowadays, there are sound methods and tools (e.g. OO-Method [39],
WebRatio [2], OOHDM [12]). However, to the authors’ knowledge,

Versión del autor del artículo: Ormeño, Y. I., & Panach, J. I. (2013). Mapping
study about usability requirements elicitation. In Advanced Information
Systems Engineering: 25th International Conference, CAiSE 2013, Valencia,
Spain, June 17-21, 2013. Proceedings 25 (pp. 672-687). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-38709-8_43

https://doi.org/10.1007/978-3-642-38709-8_43

42

none of these methods deal with usability. In general, existing MDD
methods deal with usability when the models that represent the
functional requirements have been defined and the code has been
generated. At this stage, if the analyst needs to improve the system
usability, the code must be modified manually. Moreover, some
changes require the architecture to be re-worked [5], [20]. These are the
reasons why more efforts should be made to include usability in MDD
methods, and this MS aims to be a step forward this direction.

Our long term target is twofold: (1) to improve current practices of
usability requirements elicitation; and (2) to enhance the existing MDD
methods to support usability requirements elicitation. The MS can help
us to identify the advantages and disadvantages of each existing capture
method, as a previous step for our target. However, the MS is not
exclusive to MDD; it can analyze in detail any software development
method that includes usability requirements elicitation.

This study is structured as follows. Section 2 reviews related works
about usability requirements elicitation. Section 3 describes the design
process of the MS. Section 4 shows the results obtained from the study.
Section 5 presents a discussion about the results. Section 6 presents our
conclusions and future work.

1.2 Related Work

Usability has been studied in several mapping studies and systematic
reviews. The MS provides a systematic and objective procedure for
identifying all the information that is available to answer a particular
research question, topic area, or phenomenon of interest [29]. This
section summarizes the different studies on requirements elicitation
techniques, NFRs, and development methods based on usability.

First, we focus on studying techniques for capturing requirements that
deal with usability. In this area, Dieste [13] updates a Systematic
Review (SR) where interview-based techniques seem to be the most
effective capture techniques. Carrizo [7] presents a framework to
support decision-making, where some capture techniques respond
better to certain project features than other capture techniques. Second,

43

we focus on NFRs, since usability is considered by many authors to be
a NFR. In the state-of-the-art written by Chung [11], the reviewed
works are classified into six are- as: software variability, requirements
analysis, requirements elicitation, requirements reusability,
requirements traceability, and aspect-oriented development. Svensson
[50] performs a SR to identify: elicitation requirements, metrics,
dependencies, cost estimation, and prioritization as important areas for
managing quality requirements. Mellado [34] carries out a SR about
security requirements engineering in order to summarize evidence
regarding security. The precision and reliability of the information are
his main contribution. Mehwish [33] reports a SR to collect evidence of
software maintainability prediction. The results suggest that there is
little evidence for the effectiveness of these predictions. Third, we focus
on studies that deal with methods to build usable systems. Folmer [20]
performs a survey to explore the feasibility of a framework that can be
applied to usability at the architectural level, taking into account design
methods for usability design and evaluation tools. He concludes that
there are no techniques for dealing with usability at the architectural
level. In Fernandez’s work [18], the objective of the MS is to
summarize the current knowledge of methods in order to evaluate
usability in web applications. The results show the need for usability
evaluation methods that are specific to the web.

In summary, we state that most of the existing research publications
related to usability are focused on: inclusion of usability features at the
design stage; usability evaluation at early phases; methods to assess
usability at the implementation stage; usability evaluation throughout
the web development process; and techniques for usability specification
during the software development process. However, we have not found
mapping studies or SRs focused on usability requirements elicitation at
early phases. We aim to study the existing literature concerning
usability requirements elicitation in order to summarize current
knowledge. This information will be used in a future work to design a
framework for usability requirements elicitation using existing
guidelines.

44

1.3 Mapping Study Design

The MS provides a wide overview of a research area to identify the
quantity and type of research and results available within it. We
considered the following elements: research questions, search strategy,
selection criteria, quality assessment, data extraction strategy [28].
Next, we apply these elements to our MS.

Our research question is: “What are the proposals to elicit usability
requirements throughout the software development process?”. It
includes methods, notations, guidelines, tools, and empirical
validations which are related to the usability area. The main goal is
divided into six subgoals since the general research question is very
abstract and involves many concepts. Each subgoal has been formulated
as a research sub question. These are: SQ 1.1 Methods to elicit usability
requirements. It aims to study whether or not the proposed methods
(including NFR methods) can capture usability requirements at early
stages; SQ1.2 Methods to elicit interaction requirements. It aims to
study the existing methods to elicit interaction requirements related to
usability. These methods are included because some authors improve
usability by means of visual characteristics; SQ 1.3 Usability guidelines
to elicit usability requirements. It aims to study the recommendations
that help the analyst to identify usability requirements; SQ 1.4 Tools to
support usability requirements elicitation. It aims to study the tools or
prototypes that support the methods to elicit usability requirements;
SQ1.5 Notations to elicit usability requirements. It aims to identify the
existing representations in which the usability requirements are
depicted. The target is to identify which notations are the most
frequently employed for capturing usability requirements; SQ1.6
Empirical validation environment. It aims to study whether the proposal
to elicit requirements was validated in an academic context or in
industry.

The search strategy is composed of:

Defining the search sources. These sources are based on digital libraries
that include peer-reviewed literature, such as: IEEExplore, ACM
Digital Library, Springer Link, and Science Direct. Our main tool for

45

searching in all these libraries was Sciverse Scopus, since it allows
searching in all the mentioned digital libraries (among others). The
sources explored were the proceedings of conferences, journals, books,
and workshops. The search area is restricted to the computer science
area. The search period is from 2000 to 2011.

Building and applying the search string. The search string is a set of
terms to obtain the publications that answer the research question. Our
search string is composed of two substrings: Usability Requirements
and Software Engineering. With the first we collect publications related
to how to elicit Usability Requirements, including software quality
features and works related to requirements elicitation. The second
substring is related to Software Engineering concepts based on
requirements elicitation.

Search string = (Usability Requirement) AND (Software Engineering)
Usability Requirement = (usability requirement OR user requirement
OR usability elicitation OR interaction requirement OR non-functional
OR usability guidelines). Software Engineering = (MDD OR model-
driven OR MDA OR notation OR tool OR interface OR engineering OR
test).

We have included the term “non-functional” into the “Usability
Requirements” group since usability is frequently considered as a NFR.

The selection criteria contain:

Inclusion criteria (IC): IC1) Does the work define how to extract
usability requirements?; IC2) Is the proposal applied to an environment
based on MDD conceptual models?; IC3) Does the work define how to
represent the requirements of usability?.

Exclusion criteria (EC): EC1) Publications focused on guidelines,
notations, and tools where usability has not been considered or has not
been included; EC2) Publications that consider only functional
requirements; EC3) Publications written in a language that is not
English.

Next, we select the publications through a systematic process:

46

Reading the title and the abstract. A total of 150 publications are
returned by the search string, which are divided into three groups (50
publications) to be independently evaluated by three reviewers in order
to apply the inclusion and exclusion criteria. The publications whose
inclusion is doubtful must be discussed by the three reviewers until they
arrive at a consensus. The result of this selection is a total of 65
publications, which are based only on the title and abstract of the
publications. This selection is called “potential publications”. Reading
the whole publication. At this time, the whole publication is read. The
inclusion and exclusion criteria are applied again for each potential
publication, which are divided into three groups (one group per
reviewer). The result of this selection is a total of 27 “initial selected
publications”, which are considered to be relevant.

Searching in references. In several cases there may be some relevant
publications prior to the year 2000, such as Nielsen’s work [36]. In
order to avoid discarding these interesting older publications, we review
all the publications referenced in publications from 2000 to 2011. If a
publication was written before 2000 and it has not been referenced in
the last 12 years, then that work is not relevant for the community, and
it is therefore discarded from our study. The process to review the
references of publications from initial selected publications obtains 5
publications. 2 publications support inclusion criteria and are added to
initial selected publications. Finally, a total of 29 publications are our
“selected publications”.

In order to assess the reliability of inclusion, we apply the statistical
measure of Fleiss’ Kappa [19]. This statistic assesses the reliability of
agreement between a fixed number of rates when classifying items. Its
value ranges between 0 (poor agreement) and 1 (full agreement). We
take a sample of 20 publications of the 65 potential publications, 10 of
which are randomly selected and 10 of which are defined by the
reviewers from the 29 selected publications. The Fleiss’ Kappa value is
0.63, which is considered to be a “Considerable level”.

47

 Table 1. Likert-Scale Questionnaire

Subjective Questions 1=Yes 0=Partially -1=No
1. Is the method to capture the usability requirements clear?
2. Are the guidelines to capture requirements comprehensible?
3. Are the guidelines to capture requirements useful in other contexts?
4. Are the publications tools downloadable?
5. Is there a clear case study or example illustrating the proposal?
6. Is the whole proposal empirically validated?
7. Are the results clearly explained?
8. Is the notation to capture requirements easy to learn?

Objective Questions
9. Has the publication been published in journal or conference

proceedings?
1=Very important 0=Important -1=Not important

10. Has the publication been cited by other authors?
1= More than 4 0=Between 2 and 4 -1=Less than 2

In order to perform the quality assessment, we use the Likert-Scale to
be filled out by three reviewers for each selected publication. Table 1
contains closed-questions that are classified into two groups: Subjective
Questions and Objective Questions. For question Nº 9, we consider
conferences at CORE ranking [38]. The publication is “Very important”
if the conference is CORE A or B or if it is a book section, “Important”
if the conference is CORE C or if it is a Workshop, “Not important”
when the conference is not any CORE. For journals, the Journal
Citation Report (JCR) [23] classification is used. The publication is
considered to be “Very important” when it appears in JCR, “Important”
when it does not appear in JCR but is indexed in other lists, and “Not
important” when it is not published in any known list. For question N°
10, we use the H factor, which identifies the number of citations that
each publication receives from other authors. The Publish or Perish [1]
tool was used. In order to identify the quality of each publication, the
three reviewers filled out the quality questionnaire. The aggregation of
all the reviewers is performed by means of an arithmetic mean. After
calculating the arithmetic mean for each question, we add these values,
providing a single number between -10 and 10 which is denominated
Quality Score. We consider that the Quality Score publication is “Very

48

good” if it is more than 3, “Good” if it is between -2 and 2.99, and “Bad”
if it is less than -2 (See Fig. 2b).

The data extraction strategy consists of classifying the possible
answers for each research subquestion. The classifications are defined
to facilitate the answer for our research question. These are:

- SQ1 Methods to elicit usability requirements. a) Yes b) No
- SQ2 Methods to elicit interaction requirements. a) Yes b) No
- SQ3 Guidelines to elicit usability requirements. a) Existing b) New

c) Not exist
- SQ4 Tools to support the usability requirements elicitation a)

Interface design (assistant to design) b) Model development c) Not
Exist

- SQ5 Notations to elicit usability requirements. a) UML b) Natural
Language (workshop sessions, checklists, questionnaires,
heuristics, brainstorming, or interviews) c) i* framework d) CTT
(Concur Task Trees) [40] e) Formal. (logical operators or
grammars) f) QOC (Question Option Criteria) [31] g) BPMN h)
Not Exist .

- SQ6 Empirical validation environment. a) Industrial b) Academic
c) Not Exist.

1.4 Results

Summary sources from search studies. The selected publications
used in our MS are published in different sources. Table 2 shows the 65
potential publications and the 29 selected publications, classified by
conference, journal, book, workshop, and other sources. Table 3 shows
publications presented in conferences only. They are classified by level
of the conference according to the CORE list. Finally, Table 4 shows
publications published in journals only. The classification is based on
the JCR list.

49

Table 2. Publications by Source Table 3. Publications by
Conferences

Source Potential Selected
Conference 31 14
Journal 16 9
Book 4 3
Workshop 4 1
Other 10 2
Total 65 29

CORE Potential Selected
A 12 6
B 10 4
C 9 4
Total 31 14

Table 4. Publication by JCR

JCR Potential Selected

Yes 10 8

No 6 1

Total 16 9

Selected publication analysis. Table 5 shows the results of the 29
selected publications according to the data extraction strategy. Note that
the answer for research subquestion SQ5 is not exclusive, i.e. more than
one choice can be the answer.

Table 5. Mapping of selected publication

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 Quality
Score ID A B A B A B C A B C A B C D E F G H A B C

 X X X X X X 5,00 [14]
 X X X X X X 3,67 [15]
 X X X X X X 7,00 [16]
 X X X X X X 1,00 [17]
 X X X X X X -1,00 [18]
 X X X X X X X 1,33 [19]
X X X X X X 3,67 [20]
 X X X X X X 1,00 [21]
 X X X X X X X 0,00 [22]
 X X X X X X X -0,33 [23]
 X X X X X X X -0,67 [24]
X X X X X X X X 3,00 [25]
X X X X X X X X 4,67 [26]
 X X X X X X -0,33 [27]
X X X X X X -2,00 [28]

50

 X X X X X X 0,33 [29]
 X X X X X 0,33 [30]
 X X X X X X 0,67 [31]
 X X X X X X 4,00 [32]
 X X X X X X -2,67 [33]
 X X X X X X X 2,67 [34]
 X X X X X X 5,00 [35]
 X X X X X X 2,67 [36]
 X X X X X X 0,33 [37]
 X X X X X X X 4,00 [38]
 X X X X X X 1,33 [39]
X X X X X X X X 7,67 [40]
X X X X X X X X X X 6,67 [41]
X X X X X X 4,00 [42]

SQ1: A) Yes 24.14% B) No 75.86%; SQ2: A) Yes 17.24% B) No
82.76%; SQ3: A) Existing 31.03% B) New 24.14% C) Not Exist
44.83%; SQ4: A) Interface Design 17.24% B) Model Development
24.14% C) Not Exist 58.62%; SQ5: A) UML 41.38% B) Natural
Language 27.59% C) i* 27.59% D) CTT 13.79% E) Formal 6.9% F)
QOC 6.9% G) BPMN 3.45% J) Not Exist 17.24% SQ6: A) Industrial
10.34% B) Academic 58.62% C) Not Exist 31.03%.

Next, we summarize the most relevant outcomes for each research
subquestion:

SQ1 Methods to elicit usability requirements. There are few methods
that propose capturing usability requirements, and usually they are
included within NFR methods. In general, the requirements elicitation
process uses traditional techniques (e.g. interviews, questionnaires,
checklists, workshops) to elicit NFR at the same time the system
functionality and architecture are defined [45], [14], [25]. The most
common goals of the studied NFR methods are to elicit measurable
NFRs such a way they can be evaluated [14], [24]. These methods can
be customizable for a different context if some settings are applied to a
specific context. Therefore, a holistic quality model that fits every
context does not exist, and NFR methods only provide basic
requirements management by means of extensions [14]. The major
benefits are the enhancement of the communication between the

51

stakeholders and an increase in the flexibility of their applications,
although some methods [25] tend to use more resources than others.
The results indicate a limited number of approaches that deal with
usability requirements at early stages.

SQ2 Methods to elicit interaction requirements. Methods to specify
interaction requirements are based on the construction of a model and
the definition of structural patterns for different design solutions [38],
[37], [6]. These models support the systematic analysis of interaction
requirements that can be selected from artefacts like a library of
interaction attributes [47], [45]. These methods improve usability by
means of applying formal modelling to analyze interactive systems
systematically [6]. How-ever, further work is needed to deal with
dynamic specifications that depend on system functionality.

SQ3 Guidelines to elicit usability requirements. The publications aim
to overcome the obstacle of the usability inclusion in the methods to
elicit usability requirements and the different interpretations of the
guidelines by the stakeholders. The methods that use existing
guidelines, for instance ISO 9241-11 or ISO 9126, provide guidelines
to determine usability requirements according to the definition of
usability. They are understandable and can be implemented in a specific
context [8], [32], [14], [51]; however, their application is not an easy
task [25], [21], [47]. The guidelines related to functional usability
features are more practical, but they need to specify the usability feature
by means of design patterns in the architectural design [37]. On the
other hand, the new guidelines show a variety of representations (e.g.
catalogues, method-ologies, styles) [10], [22], [30] that are used to elicit
usability requirements in different situations. All these representations
allow to reuse its knowledge, to add new knowledge, to combine
organizational memory or to combine different requirement scenarios.
Other representations are based on patterns, templates, or models [27],
[26], [38]. These artefacts can be improved or adapted according to
which usability requirements are being captured. Nowadays, the
guidelines do not provide precise, practical support to address usability
requirements elicitation at the early stages.

52

SQ4 Tools to support usability requirements elicitation. These
publications present tools to support: frameworks [45], structured styles
[21], scenarios [48], notations [32], and methods [47]. The interface
design tools support the requirements specification and validation
through task flows and scenarios. Their main goals are focused on
relating design options with functional and non-functional requirements
within the design process of interactive systems. In order to reach this
goal, it is necessary to incorporate a mechanism of transformation, (for
example, from task flow diagrams to formal representations [45], [48])
and to solve traceability problems. The tools that are model-based can
resolve this inconvenience by means of a global integration approach
among notations and tools. However, this is not an easy task [4], since
most tools focus specifications on requirements models or requirements
metamodels. In order to define an elicitation process, the use of
templates that are obtained through interviews [15], [16] or the use of
patterns that provide a concise description of the users (detailing every
significant characteristic [21]) are common.

SQ5 Notations to elicit usability requirements. The different notations
are used in different stages of the software development process, and
more than one notation is usually applied to the development method
[28], [51]. The user requirements specifications are usually presented
to end-users in normal text, even though the analyst works with
languages based on models (SysML, UML). These requirements are
based on a series of interviews and studies with end-users [46], [25],
[14]. Some proposals aim to integrate functional requirements and NFR
in the same elicitation process. These works propose a metamodel that
combines UML with PLUS [51], [35], [45]. Therefore, UML and
Natural Language are the most widely used notations (41.38% and
27.59%). In Formal notation, the specification is structured using
hierarchical interfaces components that describe all the actions and
visible attributes of the system [6]. In general, the other studied
notations are currently supported by patterns, scenarios, and formatted
templates in order to visualize and implement usability require-ments
[6], [38], [48], [25]. These representations help analysts to elicit
requirements, even though they are not always easily understood by the
end-user.

53

SQ6 Empirical validation environment. We observe that case studies,
experiments and illustrative examples that have been presented in
Industrial or Academic environments do not have explicit metrics to
evaluate the usability requirements elicitation. In general, existing
validations are focused on quantitative [24], [35], [27] and qualitative
usability requirements [25]. The users’ usability evaluation is often
based on test and usability scenarios [27]. All the studied publications
share the same protocol for the empirical validation. First, the
publication proposes a method, technique or model to elicit usability
requirements. Second, the publication details the results of the
validation. Third, there is a discussion where a qualitative analysis is
performed in detail and some lessons learned are shown. [47], [27],
[48], [15]. Studied publications are focused on evaluating a few
usability features; however, the study of a reduced number of features
is not enough to consider software as being usable. The patterns [6],
[47], [37], [15], scenario management [48], [9], [21], checklists [14],
work sessions [25], and templates [6] are the most common artefacts
used to evaluate usability and other NFRs.

Graphics of mapping results. We present four graphics of the MS
results. Two correspond to comparison between research subquestions
and the others correspond to the potential and selected publications and
to the Quality Score of the selected publications. The six research
subquestions give us an overview of the usability require-ments and
how they are related. Apart from reinforcing our conclusions of this
study, this information can highlight some gaps that should be
researched further.

Fig. 1a shows comparisons between research subquestions SQ1, SQ2,
SQ3, and SQ4. The most important outcomes are the following: there
is not any new guideline to elicit usability requirements or interaction
requirements; there is the same number of publications where the tool
is a support for interface design and model development; there are a
large number of publications that do not address methods of usability
requirements elicitation or methods of interaction requirements
elicitation.

54

Fig. 1b shows comparisons between the research subquestions SQ4 and
SQ5. The most important outcomes are the following: UML, Natural
Language, and CTT are notations used by model development tools and
by design interface tools; BPMN and QOC are notations that are not
used by model development tools; i* and Formal are notations that are
not used by interface design tools.

Fig.1a) Mapping results SQ1,SQ2,SQ3,SQ4 Fig.1b) Mapping results SQ4,SQ5

Fig. 2a) Frequency of publications by year Fig. 2b) Publications by Quality Score

Fig. 2a shows the number of potential publications and selected
publications classified by year. It can be observed that there are very
few publications published each year. Of the 29 selected publications,
8 of them were published in 2008. This is the year that had the most
publications for improving usability requirements elicitation. The year
1998 is included in the graphics because the two publications obtained
from the referenced publications were published that year. None of the
selected publications were published in 2001, 2002, 2003, and 2011.

55

Fig. 2b shows a frequency graphic that describes the quality assessment
of the selected publications. This graphic is obtained from the Quality
Score of selected publications, which can be “Very good”, “Good”, and
“Bad”, according to our quality criteria. The graphic shows a high
number of publications that are considered to be “Good” publications
and “Very good” publications. Both results make up 95% of the total of
the selected publications

1.5 Discussion

In the selected publications, the usability requirements elicitation is
usually performed at the analysis stage [46], [15], i.e., once all
functional requirements have been captured. This late capture involves
changes in system architecture since some usability requirements are
related to functionality [5], [20]. In general, the methods used to elicit
usability requirements deal with usability when the functional
requirements have been previously captured by means of traditional
techniques (e.g. interviews, questionnaires, focus groups, use cases)
[35], [3].
The analysis of the results shows that there are very few publications
that clearly address how to perform the capture process of usability
requirements at early stages. Moreover, existing approaches do not
propose a precise and unambiguous notation to represent these
requirements, which makes difficult to apply them in real systems.
There are some publications where usability requirements elicitation is
performed at the design stage together with interaction requirements
elicitation [25], [45], [24].
When the usability topic is dealt with at requirements elicitation, the
ISO standards are used as guidelines to be applied in software
development systems. For instance, the ISO 9241-11 is considered to
be a basic reference for some practitioners, re-searchers, and designers
[25], and for any kind of requirements the standard ISO 9126-1 is used
[32]. The application of guidelines is necessary, but it is not enough;
the main problem is the correct application and complete understanding
by the end user. Guidelines are only built up in a general way, but they
are not a total support for usability system development. There are some

56

proposals that aim to help the require-ments engineers to address
usability requirements from the early stages by means of GUIDE rules
[22] and a catalogue based on the i* framework [10]. Both techniques
are context-specific, even though GUIDE uses a case-based repository
for taking decisions and i* framework collects a large amount of
knowledge to achieve usability goals.
Another aspect that is observed in selected publications is the use of
artefacts, such as: patterns, scenarios, and templates, which are
frequently used as support for methods to elicit usability requirements
and interaction requirements [6], [48], [16]. The methods proposed in
the selected publications are inflexible and require considerable effort
to be applied in contexts that are different from the contexts where they
have been defined [22]. The guidelines, notations, and artefacts used in
these methods are closer to elicit interaction characteristics rather than
usability characteristics. In general, guidelines for usability
requirements elicitation are defined in a very generic way for different
abstraction levels [8].
The tools to represent usability requirements which are based on a
conceptual model have great possibilities of being useful for building
extensions to other models (e.g. finite state machine) [45] or for being
used in different contexts with other usability requirements. For large
project, these tools are too limited, since the identification of
requirements and modularization of the system need more special
processes, methods and techniques. Moreover, once these requirements
have been structured and gathered in a tool, they could be reused in later
projects. Only few approaches include tools to support existing eliciting
methods. Most approaches must be applied manually, or they require a
tool that is not provided by the authors [17], [42], [38]. This makes
difficult the adoption of those approaches in industrial environments.
The necessity of a tool is more urgent in those proposals that use several
notations and combine the use of different artifacts (e.g. templates,
questionnaires, workshops) [30], [14], [47]. Working with all these
items manually is a huge effort for the analyst.
Validation methods are another crucial aspect for the evaluation of a
proposal. The selected publications present case studies, experiments,
and examples that do not show whether or not the inclusion of usability
requirements produces a positive im-pact on the final product. In

57

addition, only a small percentage of proposals have been applied in an
industrial context [24].
Many works propose eliciting usability requirements with a graphical
notation [10], [9], [6]. This enhances the abstraction for the
requirements engineer but some-times can difficult the end-user
participation, who usually cannot understand those notations. Other
proposals elicit usability requirements textually [25], [8], [48]
facilitating the end-user participation. However, these proposals cannot
be used for a development method based on models, since models do
not exist.
If we focus our analysis on approaches to capture usability requirements
in MDD environments, we notice that there are few proposals [38],
[17], [46], [4]. Moreover, usability requirements are not usually
considered as a main topic in those proposals. Usability requirements
are combined with other NFR or with functional requirements, which
makes difficult to focus the elicitation process on usability issues.
Moreover, transformations among models are not discussed in those
publications even though this is a basic pillar in the MDD paradigm
(where transformations can be automated or semi-automated). Another
problem of the existing proposals within the MDD paradigm is that
there are not evaluations or tools to demonstrate that they can work in
real systems. Existing approaches are just theoretical proposals that
have not been implemented yet.
Note that our mapping study has some limitations. The first one is that
we cannot ensure that all existing publication related to usability
requirements have been considered. We have focused our research on
Scopus, which is a tool that looks for publications in several digital
libraries, such as IEEExplore, ACM Digital Library, Springer Link, and
Science Direct (among others). In order to minimize the loss of some
important publications, we have analyzed references from publications
retrieved by Scopus. However, publications that have not been
published in those libraries or publications that have not been
referenced are out of our search. Second, some found publications were
not accessible (our university had no license to read them). This
happened with 6 publications from 65. If we compare inaccessible
publications with the total amount of publications, we notice that the
percentage of unread publications is a minimum portion 9.23%.

58

Throughout the whole mapping study we have been guided by an expert
at mapping studies and systematic reviews. This expert helped us in the
application of the protocol and recommended us some tools. For
example, the use of Refworks [41] to eliminate duplicities in our search
of publications, since the search string can find the same publication
more than once.

1.6 Conclusions and Future Works

This MS combines usability aspects from both the Software
Engineering (SE) community and the Human-Computer Interaction
(HCI) community. We have explored the development methods that
consider usability as a requirement from the SE community. We have
studied the guidelines and heuristics from the HCI community that are
used to develop usable applications. The MS aims to review existing
studies related to usability requirements in both communities. Our main
target is specially focused on proposals to elicit usability requirements
from the early stages of the software development process.
The MS has been performed according to Kitchenham’s methodology,
focusing on the last 12 years. A total of 29 publications were selected
from an initial set of 150 publications returned by the search string. The
quality assessments of the publications were developed in order to
contrast the significance of the selected publications, where 97% is
composed of good publications and very good publications.
Using the results of the MS, we can conclude that there is a clear
research line in the field of usability requirements in MDD
environments. Usually, MDD methods have historically been focused
on modelling behaviour and persistency, but relegating interaction (and
particularly usability) to manual implementation. This manual
implementation clearly contradicts the MDD paradigm, which
advocates that the analyst must work with holistic conceptual models,
where every feature of the system (including usability features) could
be represented. We plan to develop a framework to elicit usability
requirements in such a way that it could be used in any MDD method.
The main benefit of embedding usability requirements in a MDD
method is that the next steps of the software development process can

59

be derived from the requirements elicitation step. We plan to develop
transformation rules from the usability requirements to generate
analysis and design models. Furthermore, the MS can also be used as a
starting point for future systematic reviews based on usability
requirements elicitation.

References

1. Publish or Perish, http://www.harzing.com
2. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: WebRatio 5: An

Eclipse-Based CASE Tool for Engineering Web Applications. In
7th International Conference on Web Engineering, Springer-
Verlag, Berlin, Heidelberg, 501-505. (2007)

3. Akoumianakis, D., Katsis, A., Vidakis, N.: Non-functional User
Interface Requirements Notation (NfRn) for Modeling the Global
Execution Context of Tasks. In 5th International Conference on
Task Models and Diagrams for Users Interface Design, Springer-
Verlag , Hasselt, Belgium, 259-274. (2007)

4. Ameller, D., Franch, X., Cabot, J.: Dealing with Non-Functional
Requirements in Model-Driven Development. In 18th IEEE
International Conference on Requirements Engineering (RE).
Sydney, NSW, 189-198. (2010)

5. Bass, L., John, B.: Linking Usability to Software Architecture
Patterns through General Scenarios. Journal of Systems and
Software, Vol. 66, No. 3, 187-197. (2003)

6. Campos, J., Harrison, M., Graham, T., Palanque, P.: Systematic
Analysis of Control Panel Interfaces Using Formal Tools
Interactive Systems. Design, Specification, and Verification.
Springer-Verlag, Vol. 5136, Berlin, Heidelberg, 72-85. (2008)

7. Carrizo, D., Dieste, O., Juristo, N.: Study of Elicitation Techniques
Adequacy. In 11th Workshop on Requirements Engineering. Spain,
Barcelona, 104-114. (2008)

8. Cronholm, S. and Bruno, V.: Do you Need General Principles or
Concrete Heuristics?: A Model for Categorizing Usability Criteria.
In 20th Australasian Conference on Computer-Human Interaction:
Designing for Habitus and Habitat, ACM, Cairns, Australia. (2008)

9. Cysneiros, L. M., Leite, J.C.S.P.: Nonfunctional Requirements:
from Elicitation to Conceptual Models. IEEE Trans. on Softw.
Eng., Vol. 30, No. 5, 328-350. (2004)

10. Cysneiros, L.M., Werneck, V. M. Kushniruk, A.: Reusable
Knowledge for Satisficing Usability Requirements. In 13th IEEE

60

International Conference on Requirement Engineering, IEEE
Computer Society, Washington, DC, USA, 463-464. (2005)

11. Chung, L. Leite, J.C.S.P.: On Non-functional Requirements in
Software Engineering. LNCS, Springer, Vol. 5600, Berlin,
Heidelberg, 363-379. (2009)

12. Daniel, S., Rita de Almeida, P., Isbela, M.: OOHDM-Web: An
Environment for Implementation of Hypermedia Applications in
the WWW. SIGWEB Newsl., Vol. 8, No. 2, 18-34. (1999)

13. Dieste, O., Lopez, M., Ramos, F.: Updating a Systematic Review
about Selection of Software Requirements Elicitation Techniques
In 11th Workshop in Requirements Engineering, Barcelona, Spain.
(2008)

14. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-
functional Requirements in Industry - Three Case Studies Adopting
an Experience-based NFR Method. In 13th IEEE International
Conference on Requirements Engineering, Washington, DC, USA,
373-384. (2005)

15. Escalona, M.J., Arag, G.: NDT. A Model-Driven Approach for
Web Requirements. IEEE Trans. Softw. Eng., Vol. 34, No. 3, 377-
390. (2008)

16. Escalona, M.J., Koch, N., Filipe, J., Cordeiro, J., Pedrosa, V.:
Metamodeling the Requirements of Web Systems Web Information
Systems and Technologies. Springer-Verlag, Berlin, Heidelberg,
Vol 1, 267-280. (2007)

17. Fatwanto, A. and Boughton, C.: Analysis, Specification and
Modeling of Non-Functional Requirements for Translative Model-
Driven Development. In International Conference on
Computational Intelligence and Security, Washington, DC,USA,
405-410. (2008)

18. Fernandez, A., Insfran, E., Abrahão, S.: Usability Evaluation
Methods for the Web: A Systematic Mapping Study. Information
and Software Technology, Vol. 53, No. 8, 789-817. (2011)

19. Fleiss, J.L.: Statistical Methods for Rates and Proportions. John
Wiley & Sons, New York, Ed. (1981)

20. Folmer, E., Bosch, J.: Architecting for usability: A Survey, Journal
of Systems and Software, Vol. 70, No. 1, 61-78. (2004)

21. Grosse-Wentrup, D., Stier, A., Hoelscher, U., Dössel, O., Schlegel,
W.C.: Supporting Tool for Usability Specifications. In World
Congress on Medical Physic and Biomedical Engineering.
Springer-Verlag, Munich, Germany, 845-847. (2009)

61

22. Henninger, S.: A Methodology and Tools for Applying Context-
specific Usability Guidelines to Interface Design. Journal
Interacting with Computers, Vol. 12, No. 3, 225-243. (2000)

23. Journal Citation Reports, http://ip-science.thomsonreuters.com
24. Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., Kantola, N.:

Methods for Quantitative Usability Requirements: A Case Study on
the Development of the User Interface of a Mobile Phone. Personal
Ubiquitous Comput., Vol. 10, No. 6, 345-355. (2006)

25. Jokela, T., Seffah, A., Gulliksen, J., Desmarais, M.C.: 8 Guiding
Designers to the World of Usability: Determining Usability
Requirements Through Teamwork. Springer Netherlands, Vol. 8,
127-145. (2005)

26. Juristo, N.: Impact of Usability on Software Requirements and
Design. Springer-Verlag, Vol. 55-77. (2009)

27. Juristo, N., Moreno, A. M., Sánchez, M. I.: Guidelines for Eliciting
Usability Functionalities, IEEE Trans. Softw. Eng., Vol 33, No. 11,
744-758. (2007)

28. Kitchenham, B.: Procedures for Performing Systematic Reviews,
Technical Report TR/SE-0401. (2004)

29. Kitchenham, B. A., Charters, S.: Guidelines for performing
Systematic Literature Reviews in Software Engineering, EBSE
Technica Report. (2007)

30. Lauesen, S. Younessi, H.: Six styles for usability requirements. In
REFSQ’98 (1998)

31. MacLean, A., Young, R. M., Bellotti, V. M. E., Moran, T.P.:
Questions, Options, and Criteria: Elements of Design Space
Analysis. Human-Computer Interaction, Vol. 6, No. 3, 201-250.
(1996)

32. Martinie, C., Palanque, P., Winckler, M., Conversy, S.,
DREAMER: A Design Rationale Environment for Argumentation,
Modeling and Engineering Requirements. In 28th International
Conference on Design of Communication. Säo Paulo, Brazil.
(2010)

33. Mehwish, R., Emilia, M., Ewan, T.: A Systematic Review of
Software Maintainability Prediction and Metrics. IEEE Computer
Society, Washington, DC, USA, 367-377. (2009)

34. Mellado, D., Blanco, C., Sánchez, L. E., Fernandez, E.: A
Systematic Review of Security Requirements Engineering.
Comput. Stand. Interfaces, Vol. 32, No. 4,153-165. (2010)

35. Nguyen, Q.L., Non-Functional Requirements Analysis Modeling
for Software Product Lines. In ICSE Workshop on Modeling in
Software Engineering, Washington, DC, USA, 56-61. (2009)

62

36. Nielsen, J.: Usability Engineering. Morgan Kaufmann. (1993)
37. Panach, J.I., España, S., Moreno, A. and Pastor, Ó.: Dealing with

Usability in Model Transformation Technologies. In ER 2008,
Springer LNCS Barcelona, 498-511. (2008)

38. Panach, J.I., España, S., Pederiva, I., Pastor, O.: Capturing
Interaction Requirements in a Model Transformation Technology
Based on MDA. Journal of Universal Computer Science (JUCS),
Vol. 14, No. 9, 1480-1495. (2007)

39. Pastor, O., Molina, J.: Model-Driven Architecture in Practice.
Springer, Ed. (2007)

40. Paterno, F.: Model-based Tools for Pervasive Usability. In
Interacting with Computers 17 (3), Elsevier, 291-315. (2004)

41. Refworks, http://www.refworks.com/
42. Röder, H.: Using Interaction Requirements to Operationalize

Usability. In ACM Symposium on Applied Computing, Sierre,
Switzerland. (2010)

43. Sajedi, A., Mahdavi, M., Pourshirmohammadi, A., Nejad, M. M.:
Fundamental Usability Guidelines for User Interface Design. In
International Conference on Computational Sciences and Its
Applications ICCSA.Washington, DC, USA, 106-113. (2008)

44. Shehata, M., Eberlein, A., Fapojuwo, A., O.: A Taxonomy for
Identifying Requirement Interactions in Software Systems.
Comput. Netw., Vol. 51, No. 2, 398-425. (2007)

45. Sindhgatta, R. and Srinivas, T. Functional and Non-Functional
Requirements Specification for Enterprise Applications. Springer-
Verlag,Vol. 3547, Berlin, Heidelberg, 189-201. (2005)

63

2.2 Towards a proposal to capture usability
requirements through guidelines

The Model-Driven Development (MDD) paradigm states that analysts
can build a conceptual model that represents the system abstractly. This
conceptual model is the input for a set of transformation rules that can
generate the code that implements the system automatically. Nowadays,
there are sound MDD methods that deal with functional requirements,
but, in general, usability is not taken into consideration from the early
stages of the development. Analysts who work with MDD implement
usability features manually once the code has been generated. This
manual implementation contradicts the MDD paradigm, and it can
affect the system architecture, involving a lot of reworking. This paper
proposes a method to capture usability requirements at the early stages
of the software development process in such a way that non-experts in
usability can use it. The approach consists of organizing several
interface design guidelines and usability guidelines in a tree structure.
These guidelines are shown to the analyst through questions that she/he
must ask the end-users. Answers to these questions mark the path
through the tree structure. At the end of the process, if we gather all the
end-user’s answers, we have the usability requirements. Then, by
means of model to model transformations, we could transform usability
requirements into a conceptual model of any existing MDD method

64

2.1 Introduction

The Software Engineering (SE) community has been working for
several years on the Model-Driven Development (MDD) paradigm [1],
which states that the analysts’ entire effort should be focused on a
conceptual model, and the system should be implemented by means of
model to code transformations. In MDD, a conceptual model is used to
represent a system, independent of the platform and technology. This
conceptual model is the input for a model compiler which includes
transformation rules to generate the code according to the target
platform.

Even though existing MDD methods (e.g. WebML [2] or UWE [3]) are
very powerful for building conceptual models, they do not have a
process to capture usability requirements. In general, usability features
are manually implemented once the code has been generated. This
manual implementation contradicts the MDD paradigm, which
proposes focusing the analyst’s entire effort on building a holistic
conceptual model. According to Bass [4] and Folmer [5], these manual
changes may involve changes in the system architecture, which can
result in a lot of extra effort. Moreover, these manual implementations
can produce a source code that contradicts the system’s characteristics
expressed in the conceptual model.

So, why are usability requirements not captured in the early software
development stages together with functional requirements? One reason
for this is that usability is strongly related to human behavior (software
psychology [6]) and, unfortunately, analysts who capture system
requirements are not experts in this field. In order to facilitate the
software development process, the Human Computer Interaction (HCI)
community has defined usability guidelines for non-experts in usability.

Versión del autor del artículo: Ormeño, Y. I., Panach, J. I., Condori-Fern, N., &
Pastor, Ó. (2013, May). Towards a proposal to capture usability requirements
through guidelines. In IEEE 7th International Conference on Research
Challenges in Information Science (RCIS) (pp. 1-12). IEEE,
10.1109/RCIS.2013.6577677

http://dx.doi.org/10.1109/RCIS.2013.6577677

65

For example, Shneiderman [7], and Nielsen’s [8] usability design
guidelines are widely accepted and used as tools to measure usability.
However, these guidelines are usually described in such an abstract way
that they are difficult to apply (directly) in software development.
Moreover, the evolution and presence of new technologies and
communication devices encourages the development of usability
guidelines oriented to different platforms (contexts) such as: the Web,
development tools, phones, tablets and media devices [9]. According to
Nielsen [10], there are around 2394 guidelines. The Web is the software
platform with the most guidelines. It contains 874 user-experience
design guidelines, 144 guidelines for commercial businesses, 103 for
corporate sites and 614 usability design guidelines on the intranet. This
huge number of guidelines hinders the analyst when he/she is searching
for the most suitable guideline for a specific system.

Thus, the main contribution of this work is to define an approach to
facilitate the usability requirements capture process for analysts who
are not experts in usability engineering. This approach can be included
in an MDD method in such a way that these requirements generate part
of the conceptual model of the MDD method. This is in accordance with
the MDD paradigm, which states that models used in the early stages
of the software development process can be transformed into models
for the next stages. The approach is based on textual questions, and
design alternatives for each question that end-users must be asked
relevant questions, and design alternatives, are extracted from interface
design guidelines and they are represented in a tree structure. End-users
must choose which alternative is the most suitable according to their
requirements (or constraints). Usability guidelines can help the end-
user select an alternative throughout the tree structure. At the end of the
process, we have a design for our system based on the end-user’s
requirements. This design can be embedded in a conceptual model of
an existing MDD method through transformation rules.

This paper is divided into the following sections: Section 2 presents the
state of art of various approaches made by other authors concerning the
use of usability guidelines; section 3 describes the concepts that are
involved in the usability requirement capture approach; section 4

66

explains the proposed scheme to capture usability requirements viewed
from both the analyst’s and the expert’s side; section 5 presents a proof
of concept based on an example, and finally, Section 6 describes the
conclusions and future work.

2.2 Related Work

The literature presents a lot of usability guidelines to support the design
of user interfaces, but they may confuse the analyst if she/he is not an
expert in usability. In general, the analyst may face the following
problems (among others): it is not easy to understand how to apply the
guideline; sometimes it is difficult to determine when a guideline has
been broken; and, some guidelines are so ambiguous that they are
difficult to apply to specific contexts. All these aspects require a huge
effort on the part of the analyst that leads us to determine if the usability
guidelines are still usable.

Cronholm’s work [11] and Henninger’s work [12] describe possible
solutions to some of these problems. Cronholm’s work proposes meta
guidelines as a solution to obtain more systematic and categorized
guidelines. These meta guidelines consist of a set of principles whose
objective is to improve the usability of the guidelines. Design guidelines
defined by Henninger include two types of guidelines: interface
principles, or typed rules, and usability examples, also known as cases.
These cases are examples of specific interfaces developed for
organizations that contain a lot of knowledge about the needs and
common practices of clients’ work.

Furthermore, Cysneiros’s work [13] proposes a reusable catalogue to
capture usability requirements. The method is based on i* framework
and it uses personal experiences to obtain knowledge to achieve the
objectives of usability. His work shows how usability can be modeled
through different views with different alternatives. Bevan [14] makes a
comparison between three guidelines: HHS for a Web site, JISC for
Web services, and ISO 9241-151, which includes principles and
specific solutions (conceptual models, task structure, and navigational
structures). Bevan highlights differences and similarities between these

67

three guidelines. He states that a perfect set of guidelines does not exist,
since the necessities of different audiences are not homogeneous.

The cited works aim to mellow the ambiguity of the usability
guidelines, but they increase the complexity of use for non-experts in
usability. All these solutions involve a lot of effort to understand all the
guidelines and choose the most suitable one for a specific context. For
example, understanding the notation, or the information arrangement in
a guideline may involve some of the analyst’s effort in order to use the
guideline optimally. Furthermore, the comparison of guidelines shows
great variability, which leads to creating specific usability guidelines
for specific domains.

Usability guidelines for the Web and for WAP mobile phone
applications are widely used. Pei [15] states that web design should be
focused on the user Web site to improve usability. The design of a
usable web is made up of the following three elements: user research,
web design, and usability evaluation. On the other hand, the usability
of mobile phone applications is increasing, although it is lower than
Web Sites accessed by computer [16]. Sabine's work [17] proposes
usability guidelines to design applications based on WAP. This author
compares two versions of a travel management Web Site, one which
includes usability guidelines of design and the other which does not.
The results show that user-experience of the Web site which uses
usability guidelines is higher than mobile phone or Smartphone
applications with standard features.

The literature provides a wide range of usability guidelines for web
sites, web applications, desktop applications, mobile phones and others
[10]. Some examples of usability guidelines are: development tools
(AJAX, RIA), User Interface (Apple Mac OSX, iPad user experience)
platform (Window XP, Vista User Experience Interaction) Interface
Software Mobile (Android, Nokia top 10, WebOS) among others [9].
Moreover, these existing guidelines are continuously in state of change
and development especially for mobile phone Internet services looking
to improve usability.

68

Some examples of methods used to capture usability requirements are:
a method for quantitative usability requirements applied in user
interfaces to depict the true usability [18]; multimedia user interface
designs that design attractive and usable multimedia systems [19]; and,
embedded Functionality Usability Features in model transformation
technologies [20]. We can state that there are many proposals but none
of them clearly and concisely addresses how to perform the extraction
process of usability requirements in the early stages.

This paper proposes a method to organize the information stored in
different usability guidelines. This way, analysts without a background
in usability can work with the guidelines. Based on a review of the
literature, we can say that for the MDD paradigm very few papers have
been written that address how to perform the extraction process of
usability requirements. Generally, this task is done when the usability
requirement capture has been done. Moreover, usability requirement
capture has not been developed focusing on the MDD method. This
paper aims to cover this gap, proposing a process to capture usability
requirements such a way they can be transformed later into part of the
conceptual model of the MDD method.

2.3 Proposal to Capture Usability Requirement

This section describes our approach to capture usability requirements
within the MDD paradigm. Based on the ISO 9241-11 [21] standard,
the usability requirements are the effectiveness, efficiency and
satisfaction of a user achieving his/her goals in a defined context of use.
Our approach is based on existing usability guidelines, and design
guidelines, that are stored in a tree structure. The analyst navigates
through this structure in order to capture the usability requirements by
asking the end-users questions. The tree structure helps the analyst to
identify the different design alternatives, and how these decisions will
affect the system’s usability. Figure 1 shows the elements used in our
approach. Next, we describe each element:

69

Figure 1. Schema of the proposal to capture usability requirements.

A. Usability guidelines and interface design guidelines

Both usability guidelines and interface design guidelines have
been created to guide the analyst to develop systems. Usability
guidelines recommend how to combine users, tasks, and
context to enhance the system usability [21]. Interface design
guidelines provide alternatives and recommendations for
design systems [22]. These guidelines have been built for
different technologies and platforms which are represented by
standards, principles, heuristics, styles, patterns, best practices,
etc. Both types of guidelines are related to each other since
some design guidelines can improve or decrease the usability
(depending on the combination of tasks, users and context).
Working directly with both kinds of guidelines [23], [24], [21],
implies a huge effort as the variability and amplitude of these
guidelines is very high. In order to reduce this effort, we
propose storing all the relevant guideline information in a tree
structure, which is explained in more detail below.

B. Tree Diagram

 In this context, we propose using these guidelines by means of
a tree structure in order to minimize the cognitive effort to work
with both types of guidelines. A tree structure is defined as a
connected graph with no cycles and a root [25],[26]. Figure 2

PLATFORMS

MOBILE
PHONE

TABLET

USABILITY AND DESIGN
GUIDELINES

WEBSITE

A USABILITY REQUIREMENTS
CAPTURE

APPLICATION

USABILITY
EXPERT

ANALYST

Application
Guidelines

Representation

C

METAMODEL

DESIGN
1

DESIGN
2

DESIGN
N

INTERFACE
DESIGNS

...

use

deve
lo

pm
ent

B
TREE DIAGRAM

GUIDELINES

ISOs

HEURISTICS

BEST PRACTICES

DESKTOP

70

shows a general schema of the tree structure used in our
approach, which is composed of four elements: question,
answer, group of questions, and designs. In the next part, we
will present these elements:

1) Question(Qi): The design guidelines present diverse
design alternatives for many UI (User Interface) components
(e.g. menu). In order to ask the end-user which alternative
she/he prefers, we have defined a question when alternatives to
design appear. For example, when we are designing dialog
elements for mobile, design guidelines [27], [24] specify that
dialog elements provide a top-level window for short-term
tasks and a brief interaction with the user. We can define a
question to decide which is the UI component to represent a
selectionable task, Which UI component is used to show
selectable tasks?. This question could enable the user to
complete a specific task. In Figure 2, questions are represented
by Qi.

2) Answer(Ai): These are the exclusive options for each
question according to interface design guidelines. These
options are presented to the analyst in such a way that she/he
can choose which one best fits the user’s requirements. The
analyst’s decision is not only based on end-user criteria, but
also on usability guidelines. This means that we have related
answers with usability guidelines depending on the type of user,
type of task, and type of context. When the answers are shown
to the analyst, we will show which answers are recommended
by usability guidelines. For example, the answers to the
question “Which UI component is used to show selectable
tasks?” can be: radio buttons, text field, checkboxes, slider
[24],[27]. Mobile design guidelines [28] advise using a UI
component dialogue to show tasks as information that require
users to take an action before they can proceed. The usability
recommendations are identified when answers have been
defined. For example a radio button is constructed for a
persistent single-choice list [24], where aspects such as

71

“simplify navigation” and “minimize user input” are usability
requirements [28]. In Figure 2, answers are represented as Ai,
Ai+1, … , An.

3) Group of Question (GQi). Some branches of the tree
structure are not mutually exclusive (the end-user should be
asked all of the questions). This type of branch is represented
by a group of questions, which gathers several questions
grouped by a design characteristic. For example, the question
“Which UI component is used to show selectable tasks?” can
be gathered with other questions that ask about Selection
Dialogues, such as “Where is the action button located?”,
“Where is the dialogue box located?”, and “Where is the
positive action on button located?”. All these questions have
also in common that deal with how the selection dialogs are
displayed, and all of them are gathered in the same Group of
questions. In the tree structure these are represented as GQi, in
Figure 2.
4) Designs (Di): These are the interface designs reached
through the alternatives that the analyst has been choosing. The
analyst navigates through the tree structure asking the questions
to, the end-user, who selects the most suitable answer (usability
guidelines can recommend some answers). When the analyst
reaches a leaf in the tree, a design has been obtained. The final
design of the whole system is the set of leaves in the tree that
the analyst has reached. For example, a design can be a
selection dialog with radio buttons, where each item shows an
enumerated data [27],[24]. At the tree structure these are
represented as Di, in Figure 2.

72

Figure 2. General representation of the tree structure of a figure caption

The navigation starts from the root of the tree while the analyst asks the
questions to the end-users. The analyst asks the questions according to
their sequence in the tree, from the root to the leaves. Questions are
mutually exclusive, in other words, the analyst only navigates through
the branch of the answer selected by the end-user. Questions that are
gathered in the same group of questions are all asked. When the analyst
reaches a branch with a group of questions, the flow continues with the
first question in the group. Only when this flow has finished, can the
analyst continue with the next question in the group. The possible
navigation between two nodes of the tree structure can be: i) From a
group of questions to a question, or to another group of questions (GQi
→ Qi / GQi); ii) From a question to an answer (Qi →Ai); iii) From an
answer to a question to a group of questions or to a design (A i →Qi /
GQi / Di).

Note that if we work with several usability guidelines, they can
contradict each other when they recommend an answer. This
contradiction is not a problem in our approach, since usability
guidelines are only recommendations. The choice of the most suitable
answer only depends on the analyst and on the user’s requirements.

One advantage of our approach is that designs reached throughout the
navigation in the tree can be transformed into a conceptual model of a
MDD method. For this aim, each design of the tree must have a
transformation rule to generate part of the conceptual model of the
target MDD method, as Figure 3 shows. In order to facilitate these
transformations, we recommend using UsiXML (USer Interface

Tree

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQi/Qi/Di

GQI : GROUP OF QUESTION
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = 1,2,…, N

LEGEND

73

eXtensible Markup Language) [29] as the language to specify the
designs. UsiXML is an XML-based markup language for defining user
interfaces which is widely used in the academy. The main advantage of
using UsiXML is that a framework has already been defined to support
interface modeling, and there are also transformations from UsiXML to
some MDD methods, which facilitates the transformation work.

Figure 3. General process to generate a conceptual model from the designs

In order to formalize all the elements that compose the tree structure,
we have defined a meta-model (Figure 4). Below, we describe its
classes.
Class Design Guideline represents the interface design guidelines used
in our tree structure. Questions that the end-user will be asked in order
to discover which design alternative is most suitable are derived from
these guidelines. Every question can be related to a Group of questions,
or to at least two Answers. The class Group of questions represents the
set of questions we can define, and the class Answer specifies the
exclusive alternatives for the question. Some of these answers can be
recommended by one or several usability guidelines, recommendations,
standards and best practices, represented as instances of the class
Usability Guideline.
According to the usability definition described in ISO-9241 [21], some
usability guidelines are specific for a context, task or user [30],[31].
This is represented through the classes Context, Task, and User
respectively. The class Context describes the context where the
guideline is recommended, the class Task describes the type of task for
which the guideline is recommended, and class User describes the type
of user for which the task is recommended. Context, Task and User are
related to class Description, to describe how they enhance the system’s
usability. Finally, class Design represents the designs that the analyst

DESIGN 1
IN USIXML

DESIGN 2
IN USIXML

DESIGN N
IN USIXML

.

.

.

TRANSFORMATION
RULES

ANSWER X

ANSWER Y

ANSWER Z

EXISTING MDD METHOD

.

.

.

74

can get to at the leaves of the tree. Each instance of this class is a
different interface design which we can reach through different
answers.

Figure 4. Meta-model of usability requirements capture

C. Usability requirement capture

The usability requirement capture is the process to capture
usability requirements using our approach. The next section
explains how to build the tree structure, and how to use it in the
requirement capture process.

2.4 Process to Capture Usability Requirement
in MDD

This section describes the process to build an instance of the meta-
model shown in Figure 4. This instance will be used later to capture
usability requirements. Three stakeholders participate in this process:
an expert in usability, an analyst and the end-user. In the next section
we will explain how the stakeholders participate in both activities: the
construction of the tree structure and requirement capture.

DGuidelineName
DDescription

DESIGN GUIDELINE

URequirementName

USABILITY REQUIREMENTS

UGuidelineName
UDescription

USABILITY GUIDELINE

DesignDescription
DesignSpecification

DESIGN

GroupDescription

GROUP OF QUESTIONS

QuestionDetail

QUESTION

AuthorName

AUTHOR

AnswerDescription

ANSWER

ContextDescription

CONTEXT

TaskDescription

TASK

DescriptionApplicability

DESCRIPTION

UserDescription

USER

1..*

1

Define
1..*

1

IsComposedOf

1

0..*

IsDescription

0..*

0..*0..*

0..*

0..*

0..1 0..1
Related

2..*

1

Links
0..1

1

Has

0..*

0..1

0..1
Related

1..*0..*
Define

0..1

0..1
Contain

0..1

1..*

Define

0..*

0..*

Recommended

75

A. Phase of construction

 This phase is performed by the usability expert and the analyst.
First, the usability expert builds the tree structure using
interface design guidelines and usability guidelines.
Second, the analyst specifies the transformation rules to
transform the designs into a conceptual model of a MDD
method. Figure 5 summarizes all the steps that make up this
phase. Below we detail all of them.
SE1) Analysing the usability guidelines and interface design
guidelines: The usability expert looks for existing interface
design guidelines and usability guidelines that can be applied
to build the tree structure.
In the literature there are many guidelines, the expert must
choose on those guidelines focused on the type of systems we
aim to build using the tree structure. Then, an analysis of these
guidelines is required to identify the relevant aspects for
designing usable systems. It is important to point out that this
identification of relevant aspects depends on the experience
level of the “usability expert” to appropriately construct the
tree. The identification of these relevant aspects depends on the
experience of the usability expert.
SE2) Defining the question: Using interface design guidelines,
the usability expert defines the questions. When there is a set
of possible alternatives for a design, the expert must define a
question in order to ask the user which is the most suitable
alternative.
SE3) Defining the answer: Each alternative to a question is
expressed as a possible answer for that question. According to
the tree structure, after specifying an answer the usability
expert has several possibilities: (1) To define another more
specific question (if we need more information to determine the
final design); (2) To define a final design (if we have reached a
leaf in the tree because there are no more alternatives); (3) To
define a group of questions (if the answer leads to more than
one related questions).

76

SE4) Recommending usability guidelines: Usability guidelines
may recommend some answers. In this step, the usability expert
defines which answers are recommended by which usability
guideline. Recommendations can be given with respect to any
of the elements: context, task, or user. The relationship between
answers and usability guidelines is not mandatory, but the more
guides we provide to the end-user to choose the answer the
more possibilities to build a usable system we have.
SE5) Defining the group of question: The usability expert
defines the groups according to the topic of the questions. Note
that the end-user will be asked every question included in a
group.

Figure 5. Process to build the tree structure to capture usability requirements

SE6) Obtaining interface designs: When the usability expert
identifies that there are no more alternatives to specify a design,
she/he can define this design formally. Each design (leaf) of the tree
structure must be completely different to other designs, since the
path used to reach the design will be exclusive. We propose
defining these designs using the UsiXML [29] language. This
definition must be performed by the analyst, since the usability
expert does not work with conceptual models usually, and this topic
is out of the scope of his / her expertise.

SE7) Transformation rules definitions: Once the designs have been
defined, the analyst must specify transformation rules to transform
these designs into primitives of the conceptual model of a MDD
method. The transformations aim to include all the usability
requirements in the software development process. Since we

ANALYSING USABILITY
GUIDELINES AND INTERFACE

DESIGN GUIDELINES

DEFINING
QUESTIONS

GROUPING
QUESTIONS

DEFINING
ANSWERS

RECOMMENDING
USABILITY

GUIDELINES

1

2 43

5

GUIDELINES
EXIST?

USABILITY REQUIREMENTS CAPTURE

TRANSFORMATION DESIGNS

6

7DESIGN 1
IN USIXML

DESIGN 2
IN USIXML

DESIGN N
IN USIXML

.

.

.

TRANSFORMATION
RULES

ANSWER
1

ANSWER
2

ANSWER
N

.

.

.

77

propose specifying the designs with UsiXML some of these
transformations already exist [32].

B. Phase of use.

This phase explains how the analyst uses the tree structure to
capture usability requirements. The process starts from the tree
root to the leaves. When a question arises in the path, the
analyst must ask the end-user the question. Apart from the
question, the analyst must tell the end-user the possible answers
to the question. If the answers are recommended by some
usability guidelines, the analyst must specify which answers are
recommended. Note that more than one answer can be
recommended, and some usability guidelines can contradict
each other.
This is not a problem, since the end-user must choose the
answer that best fits the requirements, independent of the
recommendations. When the end-user chooses an answer, the
flow continues through the branches of that answer, while the
branches of the other rejected answers will not be crossed.
When a group of questions arises in the path, the analyst must
ask the end-user every question in this group to based on the
order they were created. Once the analyst asks the first question
in the group, the flow continues with the branch of that
question. When this branch has been completely gone through,
the flow continues with the second question in the group. This
process is repeated for every question in the group.
When a design arises in the path, the flow continues with the
closest unresolved question. At the end of the process, we have
a set of designs we have reached through the navigation. These
designs are then transformed into primitives of a conceptual
model of a MDD method according to the transformation rules
previously defined. Note that rules are defined once, but they
can be used indefinitely for the same tree structure and the same
MDD method.

78

2.5 A Laboratory Demonstration

In order to illustrate the usability requirements capture process, we
show an example to design a menu for a mobile phone application.
Next, we exemplify our proposal for capturing usability requirements:

A. Phase of construction

SE1) Analizing the usability guidelines and interface design
guidelines: As there are many interface design guidelines
specific for mobile devices, our analysis focus only on
Android[24], iOs [23], and Symbian [27] guidelines, since they
provide specific descriptions to design menus and are widely
used. With respect to usability guidelines, we used Nielsen’s
heuristics [33] since it is widely known and used by user
interface designers to develop usable systems. From the
interface design guidelines [24], we identified the most relevant
aspects that should be considered in order to capture usability
requirements. In our example, we focus on the “display mode”
as a relevant aspect, since there are different ways to display
menu options.
 SE2) Defining the questions: We define the questions to ask
concerning how to display the menu options in a system.
According to interface design guidelines [24], we have
identified the following questions: Q1. How can the menu
options be displayed?; Q2. What is the layout type to display
nest views?; Q3. How is the contextual action item displayed?
Q1 has been extracted from Symbian [27] guidelines, which
state that menu options are “an efficient way to allow users to
perform actions”. Therefore, the definition of the menu display
is essential to allow users to trigger actions. Q2 has been
extracted from the Android guideline [24], which proposes
defining the menu hierarchy as simply as possible using a nest
view. Q3 has been extracted from the Android guideline [24],
which proposes contextual actions, such as actions that affect a
specific item or context frame in the UI. This guideline
describes different alternatives to display contextual action

79

items. With these three questions, we began to define a part of
a branch in our tree structure (Figure 6).

Figure 6. Example of questions

SE3) Defining the answers. For question Q1, we have identified
the alternatives “Button” and “Action Bar”, since both options
are the two possible ways to display the options of a menu. This
classification is also used in the guidelines of Symbian [27],
iOS [23] and Android [24]. Figure 7 shows an example of
button and action bar. The different between them is that the
button is based on option displayed by pressing the Buttons
while the action bar is based on the combination of onscreen
action items overflow options.
For question Q2, we have identified the alternatives “Linear”,
“Relative”, and “Web view”, which appear in the Android
guidelines. These answers gather all the possibilities to display
a nest menu. These alternatives are also used in the design
guidelines of Symbian and iOS. Figure 8 shows an example of
“linear”, “relative” and “Web view”. All of them deal with
the arrangement of view hierarchy. “Linear” arranges the view
in a single column or in a single row. “Relative”, arranges the
view in sections, and “Web” arranges the view as a web view.
For question Q3, we have identified the alternatives “Floating
contextual” and “Contextual action mode”. These answers
have been defined using the design Android guidelines
[24],[23] Figure 9 shows an example of a floating contextual

Mobile Menu

How can the options of
the menu be displayed?

What is the layout type to
display nest views?

How is the contextual
action item displayed?

...

 Q1

Q2

Q3

80

menu and a contextual action mode. The difference between
both types is that the Floating contextual displays actions using
a flying list, while the Contextual action mode displays action
item on the screen.

 a) Button b) Action Bar

Figure 7. Alternatives Design for question Q1

a) Linear b) Relative c) Web view

Figure 8. Alternatives Design for question Q2

a) Floating Contextual Menu b) Contextual Action Mode

Figure 9. Alternatives Design for question Q3

Figure 10 shows how the tree is built using the questions and
answers identified in our example. Next, we must continue
following this procedure in order to define questions and answers
until we do not have any more design alternatives defined by
interface design guidelines.

81

Figure 10. Example of answers

SE4) Recommending usability guidelines: Following this
process, once the answers have been defined, we must define
which answers are recommended by usability guidelines.
As shown in Fig 10, for question Q1, two design alternatives
(answers) are considered: Button and Action bar. Their
respective recommendations are given with respect to the
context of use (type of platform). For example, the alternative
Button is recommended if we are developing an application for
Symbian, Nokia, or Android (lower until version 2.3)
platforms. This design alternative fulfils the usability feature
which is stated in Nielsen heuristic [33], “match between
system and the real world”, because the user activities should
follow real-world conventions without essential changes. The
alternative Action bar is recommended when the application is
planned to be developed for Android (version 3.0 or higher)
[24]. This design alternative fulfills the usability feature
“flexibility and efficiency of use” according to Nielsen’s
heuristics [33]; since it offers flexibility for accessing actions.
For question Q2, three design alternatives are considered:
Linear, Relative and Web view. The recommendations are
given taking into account all platforms [24], [27], [23] and
considering the tasks for which they are used. For example, the
alternative Linear is recommended when the tasks consist of
displaying content that has dynamic layout, or is not
predetermined, or the menu structure is not too deep [24]. This
design alternative fulfills the usability feature which is stated in

Mobile Menu

Buttom

Action Bar

How can the options of
the menu be displayed?

What is the layout type
to display nest views?

How is the contextual
action item displayed?

Linear

Relative

Web view

Floating
contextual menu

Contextual action
mode...

Q1

Q2

 Q3

82

Nielsen heuristic [33], “give people a logical path to follow”,
because the information should appear in a logical order. The
alternative Relative is recommended when the task is to locate
the main actions easily without high hierarchy. This design
alternative fulfills the usability feature, “minimize the user’s
memory load by making the object, action and option visible”
specified by Nielsen’s heuristic [33] since the user does not
need to remember information required for her/his activities.
The Web view alternative is recommended when the task is to
embed a web browser into the action. In this case, the design
alternative fulfills the usability feature “Any such information
should be easy to search, focused on the user’s task”, according
to Nielsen’s heuristic [33], because frequency actions are
tailored by users.
For question Q3, two design alternatives are considered, the
Floating contextual menu and the Contextual action mode.
These have been selected for use with Android and Symbian
platforms, and tasks in which they are used. We recommend
using the Floating contextual menu alternative when the task
consists of displaying the contextual menu on views displayed
by list view or grid view, where the user can perform direct
actions on each item. This design alternative fulfills the
usability feature “The main tasks should be available quickly”
recommended by the Symbian usability guideline [27] since the
actions frequently used should have priority in terms of
visibility. The Contextual action mode alternative is
recommended when the task is to perform an action on multiple
items at once. This alternative fulfills the usability “The help
would assist the user in making full use of the functionalities”
according to Nielsen’s heuristic [33], since the user should be
informed about what is going on.
The recommendation was continued for each alternative, but
the usability guidelines are not always in concordance with the
context, task and/ or user; so situations involving contradiction
exist. For example, when the task consists of defining the
hierarchy of the actions, a recommendation is that the
application “Can suffer from poor usability and

83

discoverability” if a drop down is used. This is a piece of advice
contemplated in the Symbian platform. When the context is the
Android platform, the drop down is called “linear layout”, and
the advice is to use it when the task is to reduce the hierarchy
of views on applications. Therefore, the recommendations have
been made according to context, task or user.
SE5) Defining the group of questions: Questions: Q1, Q2, Q3,
are grouped by “Menu”, since the end-user must be asked all of
them in order to know the requirements with regard to the
menu. We differentiate the group of questions in the tree
structure with the character “*”, as Figure 11 shows.

Figure 11. Example of groups of questions

SE6) Obtaining interface designs: At the end of our navigation
we arrive at a set of designs depending on the user’s
requirements. For example in Figure 18, we arrived at the leaf
Grid following the sequence: Mobile → Menu → How can the
menu options be displayed? →Button → What type of menu is
required? → View menu → What is the item display mode →
Grid → Grid View.
Figure 12 shows the differences between the designs of Button,
View Menu and Grid. Depending on the end-user’s answers, the
navigation process guides the analyst towards one of these
designs.

Tree

* Web

* Mobile

* Desktop

 * Menu

* Dialog

...

Buttom

Action Bar

How can the menu
options be displayed?

What is the layout type
to display nest views?

How is the contextual
action item displayed?

Linear

Relative

Web view

Floating
contextual menu

Contextual action
mode

... ...

* Home
Screen ...

Q1

Q2

Q3

84

Button View Menu Grid

Figure 12. Sequence of alternatives in order to obtain a design

As the same way, we could obtain other alternatives of design.
Such designs are depicted in Figure 13. These are obtained
following the same trajectory but selecting the alternative Six
Button or List as answers for question What is the item display
mode? (See Q8 in Figure 18)

a) Six menu button b) List view
Figure 13. Some possible design alternatives

SE7) Transformation rules definitions: in this stage, we must
define transformation rules to transform the designs into
primitives of a MDD method. In order to facilitate this
transformation, we recommend using UsiXML [29] to specify
the designs, since there are existing rules to generate primitives
for some MDD methods. The definition of these rules is beyond
the scope of this paper, but existing rules can be used with our

85

proposal. For example, there is a set of rules to transform
UsiXML interface designs into conceptual models of a MDD
method called OO-Method [34].

B. Phase of use.

Once we have defined the tree structure, we can use it to capture
requirements. Figure 18 shows tree structure of our example
completed with more questions and answers. The navigation
process in the tree starts from the root to the leaves. Next, we
describe a possible navigation process to capture the
requirements for a mobile phone. Since we are developing for
a mobile platform, we start selecting the alternative Mobile
from the root. Inside Mobile there are other groups of questions
(Menu, Dialogue, among others). The end-user must be asked
the questions in all these groups of questions. We begin our
navigation process with the first group, Menu (GQ1 → GQ2).
Once we begin the flow through the Menu, we follow the next
sequence of branches:
• The Navigation process derived from Q1. A possible

sequence could be: Q1→ GQ3→ Q4→ GQ5→ Q8→ A3→
D1. With this navigation process, we can arrive at the
design D1-Grid View (See Figure 14). Once we arrive at a
leaf, the navigation process continues with the closest
unresolved question. In this example, we must continue
with Q9, since it was in a group (GQ5) together with Q8.
This navigation process brings us to D2 (Drop Down
Menu) through Q9→A5→D2 arriving at design D2. Figure
15 shows an example of this design. The flow continues
with the other questions in GQ3.

86

Figure 14. Design D1 - Grid view.

Figure 15. Design D2 – Drop Down menu

• Navigation process derived from Q2: A possible sequence
could be: Q2→A16→D3. Since A16 was selected, we
arrived at design alternative D3. Figure 16 shows a possible
design for D3.

 Figure 16 Design D3 - Linear Vertical with nest view.

• Navigation process derived from Q3: A possible sequence
could be: Q3→A19→D4. This last selection addresses to

87

the Floating Contextual Menu design, represented by D4 in
Figure 18. A possible design for D4 is represented in Figure
17.

Figure 17. Design D4 - Floating Contextual Menu

At this point we have ended up with a design that is composed of
D1, D2, D3 and D4. These designs will be gathered with the other
designs arrived at through the whole navigation process. Finally,
the designs arrived at can be transformed into conceptual primitives
of an existing MDD method according to previously-defined
transformation rules. Note that we have not exemplified this
process since these transformations are beyond the scope of the
current paper.

88

Figure 18. Usability Requirement Capture

2.6 Conclusion

This paper presents an approach to deal with usability requirements in
MDD environments. The process consists of building a tree structure
using interface design guidelines and usability guidelines that helps the
analyst to capture usability requirements. The approach is based on a

T
re

e

*
 W

e
b

*
 M

o
b

ile

*
 D

e
sk

to
p

*
 M

e
n

u

*
 D

ia
lo

g

..
.

*
A

ct
io

n
 B

a
r

*
 B

u
tt

o
n

Is
 t

h
e

 s
p

lit
ti

n
g

u
p

co

n
te

n
t

re
q

u
ir

e
d

?

 W
h

a
t

is
 t

h
e

 d
is

p
la

y
m

o
d

e
 f

o
r

a
n

 a
ct

io
n

 o
f

it
e

m
 d

a
ta

?

W
h

a
t

is
 t

h
e

 it
e

m
 d

is
p

la
y

m
o

d
e

?

Si
x

B
u

tt
o

n

Li
st

G
ri

d

Sp
lit

 li
st

 it
e

m

D
ro

p
-D

o
w

n

H
o

w
 c

a
n

 t
h

e

o
p

ti
o

n
s

o
f

th
e

m

e
n

u
 b

e

d
is

p
la

ye
d

?

W
h

a
t

is
 t

h
e

 la
yo

u
t

ty
p

e

to
 d

is
p

la
y

n
e

st
 v

ie
w

s?

H
o

w
 is

 t
h

e
 c

o
n

te
xt

u
a

l
a

ct
io

n
 it

e
m

 d
is

p
la

ye
d

?

..
.

..
.

Li
n

e
a

r

R
e

la
ti

ve

W
e

b
 v

ie
w

Fl
o

a
ti

n
g

co
n

te
xt

u
a

l

C
o

n
te

xt
u

a
l A

ct
io

n
 M

o
d

e
..

.

W
h

ic
h

 c
o

n
tr

o
l i

s
u

se
d

 t
o

m

a
n

a
ge

 t
h

e
 it

e
m

 in
 a

 v
ie

w
?

N
a

vi
ga

ti
o

n
 B

a
r

T
o

o
lb

a
r

Si N
o

Is
 m

a
n

d
a

to
ry

 t
o

 f
it

 a
ll

a
ct

io
n

it

e
m

s
a

t
A

ct
io

n
 B

a
r?

Fi
xe

d
 T

a
b

Is
 t

h
e

re
 la

rg
e

n

u
m

b
e

r
o

f
vi

e
w

?

Si N
o

Is
 t

h
e

 v
ie

w
 in

se
rt

e
d

d

yn
a

m
ic

a
lly

?
Si N
o

Is
 t

h
e

 v
ie

w
 d

is
p

la
ye

d

o
f

th
e

 s
a

m
e

 d
a

ta
 s

e
t?

Sc
ro

lla
b

le
 T

a
b

s

T
a

b

Sp
in

n
e

r

D
ra

w
e

r

Is
 n

e
ce

ss
a

ry
 t

o
 f

it

fr
e

q
u

e
n

cy
 a

ct
io

n
 in

 t
h

e

A
ct

io
n

 B
a

r?

Si N
o

W
h

ic
h

 is
 t

h
e

 s
cr

e
e

n

w
id

th
 in

 d
e

n
si

ty
-

in
d

e
p

e
n

d
 p

ix
e

l (
d

p
)

Sm
a

lle
r

th
a

n
 3

6
0

 d
p

3
6

0
-4

9
9

 d
p

5
0

0
-5

9
9

 d
p

6
0

0
 d

p
 a

n
d

 la
rg

e
r

2
 ic

o
n

s

3
 ic

o
n

s

4
 ic

o
n

s 5
 ic

o
n

s
St

a
n

d
a

rd
 m

o
d

e

Si N
o

Si

W
h

a
t

se
gm

e
n

t
co

n
tr

o
l i

s
re

q
u

ir
e

d
?

Sl
id

e
r

St
ip

e
e

r

Sw
it

ch

T
e

xt
 F

ie
ld

SC
_

sl
id

e
r

SC
_

st
ip

e
e

r

SC
_

sw
it

ch

SC
_

te
xt

fi
e

ld

N
o

D
ro

p
D

o
w

n

W
h

a
t

ty
p

e
 o

f
m

e
n

u
 is

re

q
u

ir
e

d
?

*
 O

b
je

ct
 m

e
n

u

D
o

e
s

it
e

m
 in

 a
 v

ie
w

co

n
ta

in
 a

ct
io

n
s?

Si N
o

E
n

a
b

le
 a

ct
io

n

D
is

a
b

le
 a

ct
io

n

*
 V

ie
w

 m
e

n
u

..
.

..
.

D
ro

p
 D

o
w

n
 m

e
n

u

Sp
lit

 li
st

Si
x

m
e

n
u

 b
u

tt
o

m
s

Li
st

 v
ie

w

G
ri

d
 v

ie
w

..
.

Li
n

e
a

r
La

yo
u

t

R
e

la
ti

ve
 L

a
yo

u
t

W
e

b
 V

ie
w Fl

o
a

ti
n

g
C

o
n

te
xt

u
a

l M
e

n
u

C
o

n
te

xt
u

a
l A

ct
io

n
 M

o
d

e

..
.

..
.

D
1

D
3

D
4

.

Q
1

Q
2

Q
3

D
2

G
Q

1

G
Q

2

Q
4

Q
8

G
Q

3

G
Q

5

Q
9

A
3

.

LE
G

E
N

D

D
E

SI
G

N
 T

R
A

JE
C

T

D
E

SI
G

N
S

D
E

SI
G

N
S

SE
LE

C
T

E
D

A
1

6

A
1

9

A
5

89

question-answer format in such a way that requirements are captured
with an interview with the end-user. The output of the interview is a set
of designs that the system must satisfy. If we specify these designs
formally, we can transform them into conceptual primitives of an
existing MDD method.
As a language to specify the designs, we recommend UsiXML, since
there are current works that have defined transformations between this
language and existing MDD methods. However, our proposal is
independent of the language to specify the designs. Note that the
approach is also independent of the MDD method we used as the target
of the transformations. However, if the chosen MDD method does not
have conceptual primitives to express interaction features, we could
hardly define transformations from the designs to the conceptual model,
and few requirements could be included in the software development
process. The tree structure and the transformation between the designs
and the MDD method are defined once only, and they can be reused
indefinitely to develop any system.
Note that the size of the tree structure will increase with the number of
guidelines we consider. Even with few guidelines, the size of the tree is
difficult to manage if we do not have a tool. As future work, we plan to
develop a tool that helps with the definition of the tree structure and
with navigation through the branches. In order to simplify the structure,
we recommend focusing only on the more frequently used interface
design and usability guidelines.
The main contribution of this work is the definition of the process to
capture usability requirements, but there is still a lot of work needed to
make this viable. The next step is to enrich the existing transformation
rules from UsiXML to a MDD method in order to ensure that we can
work with any design. Next, with a tool to support the process and the
transformation rules, we plan to empirically evaluate the proposal. For
this aim, we will compare a software development using our approach
to capture usability requirements with a development which does not
take these requirements into consideration.

90

References

1. S. J. Mellor, A. N. Clark, and T. Futagami, “Guest Editors'
Introduction: Model-Driven Development,” IEEE Software, vol.
20, pp. 14-18, 2003.

2. S. Ceri, Fraternali, P., Bongio, A., "Web Modeling Language
(WebML): a modeling language for designing Web sites." pp. 137
- 157.

3. N. Koch, A. Knapp, G. Zhang et al., “Uml-based web engineering,”
Web Engineering: Modelling and Implementing Web Applications,
pp. 157-191, 2008.

4. L. Bass, and B. John, “Linking usability to software architecture
patterns through general scenarios,” The journal of systems and
software, vol. 66, pp. 187-197, 2003.

5. E. Folmer, and J. Bosch, “Architecting for usability: A Survey,”
Journal of Systems and Software, vol. 70, pp. 61-78, 2004.

6. J. Carroll, M., “Human-computer interaction: psychology as a
science of design,” Int. J. Hum.-Comput. Stud., vol. 46, pp. 501-
522, 1997.

7. B. Shneiderman, Plaisant, C., Diseño de Interfaces de Usuario.
Cuarta Edicion. Estrategias para una Interacción Persona-
Computadora Efectiva, Madrid: Addison Wesley, 2006.

8. J. Nielsen, Usability Engineering: Morgan Kaufmann, 1993.
9. E. Dynamic. "UI Styles Guides, "

http://www.experiencedynamics.com/science-usability/ui-style-
guides

10. G. Nielsen Norman. "Reports," http://www.nngroup.com/reports/.
11. S. Cronholm, "The usability of usability guidelines: a proposal for

metaguidelines."
12. S. Henninger, “A methodology and tools for applying context-

specific usability guidelines to interface design,” Interacting with
Computers, vol. 12, pp. 225-243, 2000.

13. L. M. Cysneiros, V. M. Werneck, and A. Kushniruk, "Reusable
knowledge for satisficing usability requirements." pp. 463-464.

14. N. Bevan, "Guidelines and standards for web usability." pp. 22-27.
15. Y. Pei, and G. Jiao, "The research of Web usability design." pp.

480- 483.
16. J. Nielsen. "Mobile Usability Update ":

http://www.useit.com/alertbox/mobile-usability.html.
17. S. Schneider, F. Ricci, A. Venturini et al., “Usability Guidelines for

WAP-based Travel Planning Tools,” Information and
Communication Technologies in Tourism 2010, pp. 125-136.

91

18. T. Jokela, J. Koivumaa, J. Pirkola et al., “Methods for quantitative
usability requirements: a case study on the development of the user
interface of a mobile phone,” Personal Ubiquitous Comput., vol.
10, pp. 345-355, 2006.

19. A. G. Sutcliffe, S. Kurniawan, and S. Jae-Eun, “A method and
advisor tool for multimedia user interface design,” Int. J. Hum.-
Comput. Stud., vol. 64, pp. 375-392, 2006.

20. J. I. Panach, S. España, A. Moreno et al., "Dealing with Usability
in Model Transformation Technologies." pp. 498-511.

21. ISO-9241_11, “Ergonomic requirements for office work with
visual display terminals (VDTs) - Part 11: Guidance on usability,”
1998.

22. J. Tidwell, Designing Interfaces: O'Reilly Media, 2005.
23. iOS Human interface Guidelines Apple, 2012.
24. D. Android, “User Interface Guidelines,” 2012.
25. N. L. Biggs, "Discrete Mathematics," Oxford University Press.
26. R. Johnsonbaugh, Discrete Mathematics, Fourth Edition ed., New

Jersey: Prentice Hall Intemational, 1997.
27. Nokia. "Symbian Design Guidelines - Dialogs,"

http://www.developer.nokia.com/Resources/Library/Symbian_De
sign_G uidelines/.

28. L. Cerejo, A. "User-Centered Approach To Web Design For
Mobile Devices,"
http://mobile.smashingmagazine.com/2011/05/02/a-usercentered-
approach-to-mobile-design/.

29. J. Vanderdonckt, Q. Limbourg, B. Michotte et al., "USIXML: a
User Interface Description Language for Specifying Multimodal
User Interfaces."

30. M. Maguire, “Context of use within usability activities,”
International Journal of Human-Computer Studies, vol. 55, pp.
453-483, 2001.

31. J. A. T. Hackos, and J. Redish, User and task analysis for interface
design: Wiley New York, 1998.

32. J. I. Panach, Ó. Pastor, and N. Aquino, “A Model for Dealing with
Usability in a Holistic MDD Method.”

33. J. Nielsen. "Ten Usability Heuristics";
http://www.useit.com/papers/heuristic/heuristic_list.html.

34. J. I. Panach, Ó. Pastor, and N. Aquino, "A Model for Dealing with
Usability in a Holistic MDD Method," User Interface Description
Language (UIDL), D. F. Adrien Coyette, Juan González-
Caballeros, Jean Vanderdonckt. (ed.), ed., pp. 68-77, Lisbon
(Portugal), 2011

92

2.3 A Proposal to Elicit Usability Requirements
within a Model-Driven Development
Environment

Nowadays there are sound Model-Driven Development (MDD)
methods that deal with functional requirements, but in general,
usability is not considered from the early stages of the development.
Analysts that work with MDD implement usability features manually
once the code has been generated. This manual implementation
contradicts the MDD paradigm and it may involve much rework. This
paper proposes a method to elicit usability requirements at early stages
of the software development process such a way non-experts at usability
can use it. The approach consists of organizing several interface design
guidelines and usability guidelines in a tree structure. These guidelines
are shown to the analyst through questions that she/he must ask to the
end-user. Answers to these questions mark the path throughout the tree
structure. At the end of the process, we gather all the answers of the
end-user to obtain the set of usability requirements. If we represent
usability requirements according to the conceptual models that
compose the framework of a MDD method, these requirements can be
the input for next steps of the software development process. The
approach is validated with a laboratory demonstration.

93

3.1 Introduction

Model-Driven Development (MDD) paradigm (Embley, Liddle, &
Pastor, 2011) states that the analysts’ entire effort should be focused on
a conceptual model, and the system should be implemented by means
of model to code transformations performed by a model compiler. A
software production process is then seen as a set of conceptual models
that are adequately transformed from requirements to code. A plethora
of MDD methods and tools have been proposed, such as WebML (Ceri,
Fraternali, & Bongio, 2000) or UWE (Koch, Knapp, Zhang, &
Baumeister, 2008) among others. There are two main dimensions to
consider in MDD (Frankel, 2002): a “vertical” dimension and a
“horizontal” dimension. In the vertical dimension there are at least three
main layers that must be present in any MDD process:
1. A Requirements Modeling step, to produce a Requirements Model.
2. A Conceptual Model representation, where requirements are

represented from the computer-oriented perspective.
3. The final Software Product (the Code).
The horizontal dimension focuses on the different expressiveness that
must be present in the different conceptual perspectives of a MDD
software process. Summarizing, these perspectives are:
• The data (static, system structure-oriented) perspective.
• The functional (dynamic, system behavior-oriented) perspective.
• The interaction (user interface-oriented) perspective.
While it can be argued that the two first perspectives (data and
functionality) are largely explored by the different MDD approaches, it
is surprising to realize that the interaction perspective is not at all so
intensively explored. One could conclude that a Software Product is just
the sum of a conceptual model where data and behavior are precisely
specified, what is not exactly true, because the specification of the

Versión del autor del artículo: Ormeño, Y. I., Panach, J. I., Condori-Fernández,
N., & Pastor, Ó. (2014). A proposal to elicit usability requirements within a
model-driven development environment. International Journal of
Information System Modeling and Design (IJISMD), 5(4), 1-21,
http://dx.doi.org/10.4018/ijismd.2014100101

http://dx.doi.org/10.4018/ijismd.2014100101

94

system interaction is an essential component of any software product.
To confirm this situation, it is enough to consider the current modeling
approaches that we find in practice. From the Data perspective, the
question of what data models can be used to represent data has an
immediate answer: ER and UML Class Diagrams are clearly among the
most widely used and known. From the Functional perspective, since
the appearance of the Data Flow Diagrams till the most modern UML
diagrams designed to represent functionality, the offer is large.
However, if the question is what models are specially used to represent
System Interaction, the answer is not at all so immediate. Extending a
previous version presented at (Y. I. Ormeño, Panach, Condori-
Fernandez, & Pastor, 2013), the goal of this paper is to explore the need
of an interaction modeling, focusing on an essential software quality
criteria that is mainly in the interaction scope: usability. Nowadays, in
MDD, usability features are manually implemented once the code has
been generated. According to Bass (Bass & John, 2003) and Folmer
(Folmer & Bosch, 2004), these manual changes may involve changes
in the system architecture, which can result in a lot of extra effort.
Moreover, these manual implementations can produce a source code
that contradicts the system’s characteristics expressed in the conceptual
model. In the previous work (Y. I. Ormeño et al., 2013) we defined how
to elicit usability requirements according to existent usability
guidelines. In this paper, we define how to include the usability
requirements elicitation process in a MDD method. The main final goal
of the paper is to define an approach to facilitate the usability
requirements capture process for analysts who are not experts in
usability engineering, and that want to include also the specification of
usability requirements in a MDD-based approach. The proposal to elicit
usability requirements is based on the idea that first, an expert in
usability defines a tree structure where design alternatives and usability
guidelines are represented textually with questions and answers. Next,
the analyst (non-expert in usability) can use this tree structure
indefinitely to ask end-users which alternative is the most suitable
according to their requirements. Usability guidelines can help the end-
user select an alternative throughout the tree structure. At the end of the
process, we have a design for our system based on the end-user’s
requirements. If we represent the designs according to an existing

95

conceptual model of a MDD method, those designs are the input for
next development steps in the MDD process. The approach is validated
with a laboratory demonstration with the participation of 4 subjects.
This paper is divided into the following sections: Section 2 presents the
state of art of various approaches concerning both the modeling of
interaction and the use of usability guidelines; Section 3 provides a
general view of the approach to elicit usability requirements; Section 4
describes how to build the tree structure to represent all the design
alternatives in an existent MDD method; Section 5 shows how to use
the approach once the tree structure has been built; Section 6 reports an
initial empirical validation of our approach. Finally, Section 7 describes
the conclusions and future work.

3.2 Related Work

The literature presents a lot of usability guidelines to support the design
of user interfaces, but they may confuse the analyst if she/he is not an
expert in usability. In general, the analyst may face the following
problems (among others): it is not easy to understand how to apply the
guideline; sometimes it is difficult to determine when a guideline has
been broken; and some guidelines are so ambiguous that they are
difficult to apply to specific contexts. All these aspects require a huge
effort on the part of the analyst that leads us to determine if the usability
guidelines are still usable. Cronholm’s work (Cronholm, 2009) and
Henninger’s work (Henninger, 2000) describe possible solutions to
some of these problems. Cronholm’s work proposes meta guidelines as
a solution to obtain more systematic and categorized guidelines. Design
guidelines defined by Henninger include two types of guidelines:
interface principles, or typed rules, and usability examples, also known
as cases. These cases are examples of specific interfaces developed for
organizations that contain a lot of knowledge about the needs and
common practices of clients’ work. Cysneiros’s work (Cysneiros,
Werneck, & Kushniruk, 2005) proposes a reusable catalogue to capture
usability requirements. The method is based on i* framework and it
uses personal experiences to obtain knowledge to achieve the objectives
of usability. The cited works aim to mellow the ambiguity of the

96

usability guidelines, but they increase the complexity of use for non-
experts in usability. All these solutions involve a lot of effort to
understand all the guidelines and to choose the most suitable one for a
specific context. For example, understanding the notation or the
information arrangement in a guideline may involve some of the
analyst’s effort in order to use the guideline optimally. Furthermore, the
comparison of guidelines shows great variability, which leads to
creating specific usability guidelines for specific domains. Some
authors aim to reduce developer’s effort, such as Ferre (Ferre, Juristo,
& Moreno, 2005), who defined a framework for usability practices
integration. HCI techniques are characterized according to relevant
criteria from a Software Engineering (SE) perspective and integrated
into a framework organized according to development activities.
Examples of methods to capture usability requirements are: a method
for quantitative usability requirements applied in user interfaces to
depict the true usability (Jokela, Koivumaa, Pirkola, Salminen, &
Kantola, 2006); multimedia user interface designs that design attractive
and usable multimedia systems (Sutcliffe, Kurniawan, & Jae-Eun,
2006); and, embedded Functionality Usability Features in model
transformation technologies (Panach, España, Moreno, & Pastor,
2008). We can state that there are many proposals but none of them
clearly and concisely addresses how to perform the usability
requirements capture in early stages. If we focus on approaches to elicit
usability requirements according to the MDD paradigm, we realize that
there are not previous works; in spite of MDD methods have usually a
model to represent the interaction with the end-user. For example,
WebRatio (Acerbis, Bongio, Brambilla, & Butti, 2007) includes a
Presentation Model to express the layout and graphic appearance of
pages, independently of the output device and of the rendition language.
UWE (Koch et al., 2008) enables the definition of the front-end
interface by means of a Hypertext Model. NDT (Escalona & Arag,
2008) has an abstract interface based on a set of prototypes to represent
the interaction with the user. OO-Method (Pastor, 2007) has two models
to represent the interaction: the Abstract Interaction Model
(independently of platform) and the Concrete Interaction Model
(platform-specific). All these MDD methods have some proposals to
capture functional requirements but all of them lack of a process to

97

capture usability requirements. This might result in unsatisfied end-
users, which involves changes in conceptual models and in the
generated code to solve problems related to interaction. This rework
involves a lot of effort if analysts are not experts in usability. An early
usability requirements elicitation guided by means of usability
guidelines aims to prevent these problems from the first steps of the
software development process. This paper defines a process to organize
the information stored in different usability guidelines based on a user-
centred development (Hassenzahl, 2008). This way, analysts without a
background in usability can work with the guidelines. Based on a
review of the literature (Yeshica Isela Ormeño & Panach, 2013), we can
say that very few papers that address how to perform the extraction
process of usability requirements have been written (Henninger, 2000),
(Cysneiros et al., 2005). Generally, this task is done when the usability
requirement capture has finished. Moreover, usability requirement
capture has not been developed focusing on the MDD method. This
paper aims to cover this gap, proposing a process to capture usability
requirements such a way they can be transformed later into part of the
conceptual model of the MDD method.

3.3 A Proposal to Elicit Usability Requirements

Based on ISO 9241-11 (ISO-9241_11, 1998) standard, usability
requirements are requirements that affect effectiveness, efficiency and
satisfaction of a user achieving his/her goals in a defined context of
use. Our approach is based on existing usability guidelines and design
guidelines, that are stored in a tree structure. The analyst navigates
through this structure in order to capture the usability requirements by
asking questions to end-users. The tree structure helps the analyst to
identify the different design alternatives, and how these decisions will
affect the system’s usability. Figure 1 shows the elements used in our
approach. Next, we describe each element:

98

Figure 1. Schema of the proposal to capture usability requirements.

3.3.1 Usability guidelines and interface design guidelines

Both usability guidelines and interface design guidelines have been
created to guide the analyst to develop systems (Figure 1a). Usability
guidelines recommend how to combine users, tasks and context to
enhance the system usability. Interface design guidelines provide
alternatives for designing systems. These guidelines have been built
for different technologies and platforms that are represented by
standards, principles, heuristics, styles, patterns, best practices, etc.
Design and usability guidelines are related to each other since some
design guidelines can improve or decrease the usability (depending
on the combination of tasks, users and context). Working directly with
both kinds of guidelines implies a huge effort as the variability and
amplitude of these guidelines is very high. In order to reduce this
effort, we propose storing all the relevant guidelines information in a
tree structure, which is explained in more detail below.

3. 3.2 Tree diagram

We propose using design and usability guidelines through a tree
structure in order to minimize the cognitive effort to work with them
(Figure 1b). A tree structure is defined as a connected graph with no
cycles and a root (Johnsonbaugh, 1997). Figure 2 shows a general
schema of the tree structure used in our approach, which is composed
of four elements: question, answer, group of questions, and design.
Next, we present these elements:

99

Figure 2. General representation of the tree structure (adapted from (Y. I. Ormeño et

al., 2013))

1. Question (Qi): The design guidelines present diverse design
alternatives for many UI (User Interface) components (e.g. menu).
In order to ask the end-user which alternative she/he prefers, we
have defined a question when alternatives to design appear. For
example, when we are designing dialog elements for mobile,
design guidelines (Nokia), (Android, 2012) specify that dialog
elements provide a top-level window for short-term tasks and a
brief interaction with the user. We can define a question to decide
which is the UI component to represent a selectable, “Which UI
component is used to show selectable tasks?”. In Figure 2,
questions are represented by Qi.

2. Answer (Ai): These are the exclusive options for each question
according to interface design guidelines. These options are
presented to the analyst in such a way that she/he can choose which
one best fits user’s requirement. The analyst’s decision is not only
based on end-user criteria, but also on usability guidelines. This
means that we must relate answers to usability guidelines
depending on the type of user, task, and context. When answers are
shown to the analyst, we will show which answers are
recommended by usability guidelines. For example, the answers to
the question “Which UI component is used to show selectable
tasks?” can be: RadioButtons, TextBoxes, CheckBoxes or Slider
(Android, 2012), (Nokia). According to usability guidelines, a
RadioButton is constructed for a persistent single-choice list
(Android, 2012), where aspects such as “simplify navigation” and

Root

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQii/Di

GQI : GROUP OF
QUESTION
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = 1,2,…, N

LEGEND

...

Ai/GQii/Di

Ai/GQii/Di

Ai/GQii/Di

100

“minimize user input” are usability requirements (Cerejo, 2011).
In Figure 2, answers are represented as Ai, Ai+1, …, An.

3. Group of Question (GQi): Some branches of the tree structure are
not mutually exclusive (the end-user should be asked all of the
questions). This type of branch is represented by a group of
questions, which gathers several questions grouped by a design
characteristic. For example, the question “Which UI component is
used to show selectable tasks?” can be gathered with other
questions that ask about Selection Dialogues, such as “Where is
the action button located?”, “Where is the dialogue box located?”,
and “Where is the positive action on button located?”. All these
questions have in common that deal with how selection dialogs are
displayed, and all of them are gathered in the same Group of
questions. In the tree structure these are represented as GQi, in
Figure 2.

4. Designs (Di): These are the interface designs reached through the
alternatives that the analyst has been choosing. The analyst
navigates through the tree structure asking the questions to the end-
user, who selects the most suitable answer (usability guidelines can
recommend some answers). When the analyst reaches a leaf in the
tree, a design has been obtained. The final design of the whole
system is the set of leaves in the tree that the analyst has reached.
For example, a design can be a selection dialog with radio buttons,
where each item shows an enumerated data (Nokia), (Android,
2012). At the tree structure these are represented as Di, in Figure
2.

The tree structure must be built by an analyst in collaboration with an
expert in usability, who knows how to interpret and use usability
guidelines. The expert in usability is responsible for defining the
recommendations for each answer. In order to identify all the elements
that compose the tree structure, we have defined a meta-model (Figure
3). The meta-model allows the replication of the tree structure in any
context and the instantiation of as much instances as we need. Each
instance can be used for different design and usability guidelines,
resulting in different combinations of questions and answers.

101

Next, we describe the elements of the metamodel (classes). Class
Design Guideline represents the interface design guidelines used in our
tree structure. Questions that the end-user will be asked in order to
discover which design alternative is most suitable are derived from
these guidelines. Every question can be related to a group of questions,
or to at least two Answers, since there is always more than one choice
for each question. The class Group of Questions represents the set of
questions we can define, and the class Answer specifies the exclusive
alternatives for the question. Some of these answers can be
recommended by one or several usability guidelines, recommendations,
standards and best practices, represented as instances of the class
Usability Guideline. According to the usability definition described in
ISO-9241 (ISO- 9241_11, 1998), some usability guidelines are specific
for a context, task or user. This is represented through the classes
Context, Task, and User respectively. Finally, class Design represents
the designs that the analyst can get to at the leaves of the tree. Each
instance of this class is a different interface design that we can reach
through different answers.

Figure 3. Meta-model of usability requirements capture (adapted from (Y. I. Ormeño

et al., 2013))

3.3.3 Usability requirement elicitation

Once the tree structure has been finished, any analyst without explicit
knowledge of usability can use it (Figure 1c). The usability requirement
elicitation is the process to capture usability requirements using our

102

approach. The navigation starts from the root of the tree while the
analyst asks the questions to the end-users. The analyst asks the
questions according to their sequence in the tree, from the root to the
leaves. Questions are mutually exclusive, in other words, the analyst
only navigates through the branch of the answer selected by the end-
user. Questions that are gathered in the same group of questions are all
asked. When the analyst reaches a branch with a group of questions, the
flow continues with the first question in the group. Only when this flow
has finished, the analyst can continue with the next question in the
group. The possible navigation between two nodes of the tree structure
can be: i) From a group of questions to a question, or to another group
of questions (GQi→Qi / GQi); ii) From a question to an answer
(Qi→Ai); iii) From an answer to a question, to a group of questions or
to a design (Ai→Qi / GQi/ Di). Note that if we work with several
usability guidelines, they can contradict each other when they
recommend an answer. For example, a widget with a ListBox (list of
items) is recommended to improve Information Density (amount of
information in the interface), since items are hidden inside the list.
However, a RadioButton (◎) is recommended to improve Brevity
(users’ cognitive workload), since the items are displayed directly
without the necessity of opening any list. This contradiction is not a
problem in our approach, since usability guidelines are only
recommendations. In case of contradiction, the analyst must tell the
end-user which alternative is proposed by each usability guideline. The
choice of the most suitable answer only depends on the user, who must
choose according to his preferences. The analyst must explain to the
user which usability recommendation satisfies each design alternative.

3.3.4 Including the Approach in a MDD Method

The link between the tree structure and a MDD method is performed
through the leaves of the tree (the designs). Our approach consists in
specifying the possible designs of the tree structure through a
conceptual model of any existing MDD method. Most MDD methods
have a specific model to represent end-user interaction (interaction
model), that together with other models to represent persistency and
behaviour are the input for the code generation process. We propose

103

using those interaction models to represent all the design possibilities
expressed in the tree structure. Note that our proposal does not deal with
how to work with interaction models or how to transform these
interaction models into code. That depends exclusively on the MDD
tool used as instantiation of our proposal. We focus on how to elicit
usability requirements and how to include them in any of the existing
MDD methods without modifying its existing conceptual model.

From all the MDD methods with an interaction model, we focus our
illustrative example on OOMethod (Pastor, 2007). This choice is based
on two characteristics: (1) OO-Method has an industrial tool named
INTEGRANOVA (CARE, 2014) with a model compiler that can
generate fully functional systems from a set of conceptual models
without writing a single line of code. The generation is performed with
ad-hoc transformation rules from models to code. All the models of the
OO-Method framework are stored in a XML file that is the input for the
code generation process. The XML file is read with a parser
implemented in C++ that generates the code in C# or Java. (2) OO-
Method has a model expressive enough to represent several design
alternatives.

Next, we summarize both models of OO-Method to represent
interaction: the Abstract Interaction Model (Molina, Meliá, & Pastor,
2002) and the Concrete Interaction Model (Aquino, 2008). The Abstract
Interaction Model focuses on representing which are the elements that
will be displayed for each interface. From a MDA perspective, this
model is PIM since interfaces represented with this model are valid for
any platform. These are the possible elements (named interaction
patterns):

• Introduction: captures the relevant aspects of data to be entered
by the end-user (including masks).

• Defined selection: enables the definition (by enumeration) of a
set of valid values for an associated model element.

• Argument grouping: defines which input arguments can be
grouped.

104

• Filter: defines a condition to display a list of elements.
• Order criterion: defines how a list can be ordered.
• Display set: determines the elements that compose a list with

several fields.
• Actions: defines the set of available services.
• Navigations: determines the information set that can be

accessed through a navigation between two interfaces.

The Concrete Interaction Model specifies how the elements that
compose the interface will be displayed. From a MDA perspective, this
model is PSM since interfaces represented with this model are for a
specific platform. For example, in this model, the analyst decides the
widget to display a Defined Selection (a list of enumerated values),
which can be a ListBox or with a Radiobutton. The Concrete Interaction
Model is defined through Transformation Templates, which specify the
structure, layout and style of an interface according to preferences and
requirements of end-users, and the different hardware and software
computing platforms. A Transformation Template is composed of
Parameters with associated values which parameterize the different
design alternatives of the interfaces (Aquino, 2008). Apart from
interaction models, OO-Method is composed of an Object Model
(which specifies the system structure in terms of classes of objects and
their relations), a Functional Model (which specifies how events change
object states) and a Dynamic Model (which represents the valid
sequence of events for an object). A detailed description of all these
models can be found in (Pastor, 2007).

Next, we apply the three elements of our approach (Figure 1) to OO-
Method: (1) Usability and Design Guidelines; (2) Tree Diagram and (3)
Usability Requirements Elicitation. This section deals with the two first
elements, relegating the Usability Requirements Elicitation to next
section. For the first element (Figure 1a) we use the design alternatives
of the Abstract Interaction Model and the Concrete Interaction Model
of OO-Method. As usability guidelines, we use ISO 9126-3 (ISO-9126,
2001) and the ergonomic criteria of Bastien and Scapin (Bastien, 1993).

105

Both guidelines have been widely used in the software engineering
community and in the human-computer interaction community.

The second element of our approach (Figure 1b) is the tree structure
definition using design and usability guidelines previously chosen.
From a MDA perspective, the tree structure is CIM, since it is
independent of computation. According to (Y. I. Ormeño et al., 2013),
the steps to build a tree structure are the following:

1. Identify design alternatives and define questions to ask the end-
user which is the best design.

2. Express each design alternative as a possible answer for the
questions defined previously.

3. Gather non-excluding design alternatives in groups of
questions.

4. Define specific designs in the leaves of the tree.

After applying all these steps to OO-Method, we have the tree structure
displayed in Figure 4 and Figure 5. Each design is identified with the
letter “D” and a number. Apart from identifying design alternatives, we
have also identified the recommendations for the answers according to
the metrics of ISO 9126-3 (ISO-9126, 2001) and the ergonomic criteria
(Bastien, 1993). Next, we describe in detail the design alternatives
identified in the Abstract Interaction Model of OOMethod and which
ones are recommended according to usability guidelines. The tree
structure has been performed by an analyst of OO-Method and an expert
in usability. Each design alternative is represented in Figure 4 and
Figure 5 as an answer:

106

Figure 4. Tree structure with alternatives of OO-Method (1)

107

Figure 5. Tree structure with alternatives of OO-Method (2)

• Introduction: the system can show the rule of a mask to prevent

end-user from errors or hide it. Moreover, the error message
displayed when inserted data does not fulfill the mask rule can
be shown in a new emergent window or in the same window of
the form. According to the ergonomic criterion Information
Density, rules should not be shown, since they can overload the
amount of information. However, criterion Error Protection
(prevention of data entry errors) and metric Message Clarity
(proportion of self-explanatory messages) recommend showing
the rules with a textual description to be understandable.
Moreover, criterion Minimal Actions (workload regarding the
number of actions) recommends showing the error message in
the same window; while metric Interface Element Clarity
(proportion of self-explanatory interface elements)
recommends using a new emergent interface to show the error
message.

• Defined Selection: the possible values can be inserted with a
ListBox, a RadioButton or a TextBox (free text). According to

108

criterion Minimal Action, enumerated values with less than 9
items should be displayed with RadioButtons, since all the
possible values are shown directly (Panach, Condori-
Fernández, Vos, Aquino, & Valverde, 2011). However,
according to criterion Information Density, items should be
displayed with a ListBox, such a way, the list of possible values
is hidden until the end-user opens the list. Enumerated values
with more than 9 items should be displayed with a ListBox
according to the criteria Information Density and Legibility
(lexical characteristics of information that facilitate the
reading). In this case, a design with RadioButtons could
increase the amount of information in the interface and a design
with TextBoxes could not guide the user.

• Argument Grouping: arguments of a form can be grouped by a
GroupBox (a group of elements in the same window),
Accordion (a group of elements that can be hidden), Tabs
(division of a form into different windows without relationship
among them) or split into several interfaces through a Wizard
(division of a form into different windows with a relationship
among them). According to metric Functional
Understandability (assessment that new users can understand
the system) and criterion Guidance (availability of advising), a
Wizard should be used when there are many arguments to
perform an action. When there are not so many arguments,
criterion Information Density recommends dividing the
argument using Tabs or Accordion, since the end-users can
show the arguments depending on their needs. When there are
a few arguments, the design with a GroupBox is recommended
by criterion Minimal Actions, since the arguments do not take
up much space and they are shown directly.

• Filter: the first decision is to choose whether or not the system
needs filters. Next, we must decide where displaying them.
According to criterion Information Density, the use of a filter
makes sense when there is a huge amount of information, and
the end-user needs some mechanisms to reduce it. However,
when the amount of information is little, criterion Minimal
Actions recommends not using a filter, such a way, end-users

109

can list all the information directly. With regard to the position
of the filter in the interface, top and left positions will consider
the filter more important than the right and bottom positions.
This recommendation provides from criterion Compatibility
(match between users’ characteristics and dialogues), that
propose developing the system regarding end-users’
perceptions and customs.

• Order Criterion: this pattern shares the same design alternatives
as the filter, adding the possibility to choose how to display the
different order criteria. According to criterion Legibility and
metric Help Facility (proportion of functions described in the
user documentation), order criteria should be used when there
is much information in interfaces. This mechanism will help
end-users identify quickly the required data. However, when
the amount of information is little, criterion Minimal Actions
than the benefit obtained with the order. With regard to the
position of the order criteria, we can apply the same criterion
used for Filter (Compatibility). How to display the order
criteria alternatives will depend on the size of the screen. For
wide screens, criterion Minimal Actions recommends
displaying the order criteria with a RadioButton or a
CheckBox. However, for narrow screens, criterion Information
Density recommends hiding the order criterion until the end-
user needs them. In this case, a design with a ListBox or
Acordion is the most suitable.

• Display Set: the fields of the list can be displayed per rows or
per columns. Moreover, we can colour the fields if we think
that this will help to understand displayed data. According to
criterion Compatibility, the fields of the Display Set should be
compliant with the size of the screen in order to avoid scroll
bars. Therefore, wide screens can show the different fields per
column and narrow screens should show the fields per row.
Moreover, criterion Legibility and metric Help Facility
recommend using different colours per field to help end-users
understand the information.

110

• Actions: there are different locations to display the actions;
different widgets, such as buttons or hyperlinks; and different
representations, such as icons, labels or a combination of icons
and labels. According to criterion Compatibility, the
recommendation for the position is the same as the
recommendation for Filters. With regard to how to display the
action in the screen, criterion Compatibility recommends using
the widget most commonly used. Therefore, an appearance as
Hyperlink is more suitable for Web applications and mobile
systems, while an appearance as button is more suitable for
desktop systems. Moreover, criterion Prompting (guide to
make specific actions) and metric Function Understandability
recommend identifying the actions such a way every user can
recognize the action. Therefore, a textual label or an icon with
a label is more suitable than only an icon. However, systems
with a small screen should use icons according to criterion
Information Density, since an icon will always take up less
space than a textual description.

• Navigations: they share the same alternatives as actions.
According to criterion Compatibility, the recommendation for
the position is the same as the recommendation for Filters.
Moreover, the recommendation for the appearance is the same
as the recommendation for Actions according to criterion
Compatibility.

The fourth step of our process consists in specifying the designs of
the leaves through a conceptual model of the MDD method (Figure
6). This specification is the link between our proposal to elicit
usability requirements and an existing MDD method. Each design
of the tree structure can be represented in a conceptual model of the
MDD method. Note that the process to specify the designs is done
once only, when the tree structure is specified. How each design is
specified depends exclusively on the used MDD method. As
illustrative example, we describe how to specify the design to show
a mask rule (D2 in Figure 4) and the design to display its error
message in an emergent window (D4 in Figure 4). D2 and D4 must
be specified both in Abstract and Concrete Models of OO-Method.

111

This notation is just an example for the instantiation of our proposal
to OO-Method:

• D2 is represented in the Abstract Model through the interaction

pattern Mask, which is specified through the XML code:
<PIntroductionM id=”Mask_XX”>
<MsgError> “XXXX” </MsgError>
<PIntroduccionStringM Mask=” XXXX” />
</PIntroduccionStringM>
</PIntroduccionM>
D2 is represented in the Concrete Model through the template:
.MaskError=Mask_XX.MsgError

• D4 is represented with the same Abstract Model as D2, since
both designs share the samein teraction pattern: Mask.
D4 is represented in the Concrete Model through the next
template:
.DisplayErrorMask= NewWindow

Note that models used to define the designs in the requirements
elicitation step are initial interaction models composed of a first draft
of Abstract and Concrete Models. By initial, we mean a model where
specific details of the interface are not yet represented, just usability
requirements. That is the reason why the previous examples of Abstract
and Concrete Models do not specify an error message. In next
development steps, the analyst must complete the interaction model and
together with other models that represent persistency and behaviour,
they are the input for the model compiler. Finally, the model compiler
interprets the characteristics expressed in the interaction models and
generates the code that implements those characteristics.
A detailed description about how to model interfaces with the Abstract
Interaction Model (Molina et al., 2002), the Concrete Interaction Model
(Aquino, 2008) and model to code transformations are out of scope of
this paper since they do not concern the requirements elicitation step.
Our contribution in this paper is only the process to elicit usability
requirements (in grey background in Figure 6).

112

Figure 6. Overview of the process to include usability requirements in an MDD

method.

3.4 The Tree Structure in Use

This section describes the third element of our approach (Figure 1c):
how to use the tree structure once it has been defined completely. As
example, we use a system for car rental that must save information of
all the cars that the car rental company has around the world; therefore,
the system needs to store much information. The system will follow a
client-server architecture, such a way, the same server can connect with
several clients in different platforms. In our example, we need to
develop for two platforms: Web and mobile. The need of two platforms
results in the development of two types of interfaces, in spite of the
business logic is the same in both of them. In order to elicit the usability
requirements for both systems, we must navigate two times through the
tree structure of our approach.
First, we focus the example on eliciting usability requirements for the
Web application. The process starts from the tree root to the leaves.
When a question arises in the path, the analyst must ask the end-user
that question. Apart from the question, the analyst must tell the end-
user the possible answers to the question. If the answers are
recommended by some usability guidelines, the analyst must specify
which answers are recommended and why. Starting from the root
(Figure 4 and Figure 5), we have a group of questions with two
questions: How would you like to display the mask rule? and How
would you like to display the error message? In this case, since the size
of the screen is not a key issue, we can guess that the end-user chooses
to show a textual description of the mask and to show the error message
in a new window (A in Figure 7a). Once all the questions of a group of
questions have been answered, the flow continues with the next

113

question or group of questions with a pending answer. When a design
(a leaf) arises in the path, the flow continues with the closest unresolved
question.

In our example, the flow continues with the group of questions for
Defined Selection. We guess that the end-user chooses as answers the
recommendations for a Web application: using a RadioButton for items
between 2 and 9 elements (B in Figure 7a) and using a ListBox for more
than 9 items (C in Figure 7a). The next group of questions in the flow
elicits requirements for Argument Grouping. According to the
recommendations, the end-user selects a Wizard for more than 20
arguments, Tabs for a set between 11 and 20 arguments (D in figure 7a)
and a Group Box for less than 10 arguments. Next, the flow continues
with the questions regarding the Filters. Since there is much information
to store in the system, the end-user selects to display the filters at the
top of the interface (E in Figure 7b). This way, the first task end-users
do within the interface is filling filters. Next, the flow continues with
the questions regarding Order Criteria. Again, the amount of
information recommends using order criteria. Since the size of the
screen is not a problem, the end-user selects to display the order
alternatives at the top of the interface using RadioButtons (which
require less clicks than the use of a ListBox) (F in Figure 7b). Next, the
flow continues with the questions regarding Display Sets. Since the
screen for a Web application is wide, the recommendations suggest
displaying the fields per column using different colours per field (G in
Figure 7b). Next, the flow continues with the questions regarding
Actions. According to the recommendations, the end-user selects to
display the actions on the left with a hyperlink and to use a textual
description (the size of the screen is not a problem) (H in Figure 7b).
Finally, the flow continues with the questions regarding Navigations.
The end-user selects to display the navigations at the bottom, since
these actions will not be used very frequently (I in Figure 7b).
Moreover, the visual appearance of navigations should be a hyperlink,
since it is the most common widget for Web applications.
At the end of the process, we have a set of designs we have reached
through the navigation of the tree structure. All these designs compose
the set of usability requirements for the Web application. As example,

114

we show the specification of designs D7, D10 and D13 used to display
a RadioButton for lists between 2 and 9 items in INTEGRANOVA (B
in Figure 7a). Note that all the designs are specified when the tree
structure is defined. D7, D10 and D13 are represented in the Abstract
Model through the interaction pattern Defined Selection, which is
specified through the XML code:

<PDefined_Selection id=”List_2-9”>
<Item1> “XXXX” </Item1>
<ItemN> “XXXX” </ItemN>

 </PDefined_Selection>

This design is represented in the Concrete Model through the template:
 :PDefined_Selection_id=”List_2-9”=RadioButton

This design is generic for every list of items between 2 and 9 elements.
In next steps of the software development process, the analyst must
complete this model for each interface that includes the pattern Defined
Selection. In our example of Figure 7a, the Abstract Model will be
completed with the following XML lines:

<PDefined_Selection id=”List_2-9” name=”Marital_Status”>
<Item1> Single </Item1>
<Item2> Married </Item2>
<Item3> Widowed </Item3>

 </PDefined_Selection>

The Concrete Model does not need more details to specify how to
display the list. The Abstract and Concrete Models are specified
together with the other models of the OO-Method framework and
finally we can obtain the final system. Figure 7 shows two examples of
interfaces compliant with the requirements we have elicited for the Web
application.

115

Figure 7.a, b Two examples of interfaces compliant with the requirements for a Web

application

Figure 8.a, b Two examples of interfaces compliant with the requirements for

a mobile application

Second, we use the tree structure again to elicit the usability
requirements for the mobile system. In this case, the end-user would
accept the recommendations for mobile applications, which claim to
reduce as much information as possible in interfaces. In the group of
questions Introduction, the end-user chooses to hide mask rules and to
show error messages in a new emergent window (A in Figure 8a). Next,
in the group of questions Defined Selection, the end-user selects to use
ListBoxes in order to reduce the amount of information in interface (B
in Figure 8a). Next, in the group of questions Argument Grouping, for

116

a set of arguments between 2 and 20 items, the end-user chooses to use
a design with Accordion (C in Figure 8a). Groups with more arguments
should be displayed with a Wizard. Next, the end-user selects to display
Filters at the top of the interface with an Accordion, since there is much
information to display in little space (D in Figure 8b). Next, the end-
user also selects Order Criteria at the top of the interface displayed with
a ListBox, such a way they do not take up much space (E in Figure 8b).
Display Sets are shown per row with colours, since mobile screens are
very narrow (F in Figure 8b). Next, the end-user selects to show the
Actions on the left of the interface, with a visual appearance of buttons
and with a description based on icons (G in Figure 8b). Finally, for
Navigations, the end-user selects to display them at the bottom of the
interface using buttons, since this is the most frequently used
representation for mobile systems (H in Figure 8b). As example of
designs specification, we show the specification of D6, D9, D12 and
D15, used to display a ListBox for any group of items (B in Figure 8a).
The Abstract Model for these designs is the same as the used for D7,
D10 and D13. The Concrete Model is:

.PDefined_Selection_id=”List2-10”=ListBox

In next steps of the software development process, the analyst must
complete the Abstract Model and the Concrete Model for each
interface. For the example of list “Marital Status”, we can use the same
Abstract Model as we defined for Defined Selection in Figure 7a. The
Concrete Model does not need more changes. Figure 8 shows the same
example of interface represented in Figure 7 but for a mobile system.
Filters and Order Criteria have been hidden according to usability
requirements.

3.5 Initial Validation of Our Approach

 Wieringa (Wieringa, 2010) classifies many different forms of
validation that can be conducted with respect to a research proposal.
This section describes a laboratory demonstration that we have
performed to validate the usability requirements elicitation process. We

117

have used 4 subjects that are members of the PROS research center
(http://www.pros.upv.es): 2 subjects play the role of analysts (persons
that work usually with INTEGRANOVA) and other 2 subjects play the
role of customers (persons without knowledge in INTEGRANOVA).
We use two problems: Problem1 is a Web application to manage a car-
rental system (like Figure 7) and Problem2 is a mobile application to
manage a company of water supply. Table 1 shows the design used in
the evaluation.

Treatments Without Tree With Tree

Problems Problem1 Problem2

Subjects Analyst1, Customer1 Analyst1, Customer1

Analyst2, Customer2 Analyst2, Customer2

Table 1. Evaluation design

The experimental process consists in an interview between the analyst
and the customer to elicit usability requirements of each problem with
the target of developing both problems in INTEGRANOVA. Elicitation
of Problem1 is performed without the tree structure and the elicitation
of Problem2 is performed with the tree structure of Figure 4 and Figure
5 (design alternatives for INTEGRANOVA). Previously to the
elicitation process, we explained how the tree structure works to the
analyst. During the interview, the customer can change his requirements
if the analyst offers him a better solution. Once the interview is over,
we ask the analyst for interface sketches in paper. Next, the customer
compares these sketches with his requirements. This way, we can
confirm whether elicited usability requirements correspond to expected
interfaces by the customer.
The Factor used in the experiment is the elicitation technique used for
usability requirements.
The factor has two levels: without our proposal and with our proposal.
Each level is applied to each problem. Response variables are: time
spent in the elicitation process (measured as minutes); design
alternatives not asked to the customer and design alternatives that the
customer changes after talking with the analyst (measured as number of

118

design alternatives); analyst’s satisfaction and customer’s satisfaction
(measured with a 5 point Likert scale). Table 2 shows the satisfaction
questionnaires used.

Analyst’s Satisfaction

I have no doubts about customer requirements

I would use the method to elicit requirements frequently

The method to elicit requirements is easy to use

The method to elicit requirements is useful

Customer’s Satisfaction

The offered sketches satisfy your expectations

You would change your idea of system for the offered sketches

You think that the analyst has done a good work in the requirements
elicitation process

Table 2. Satisfaction questionnaires

Results regarding spent time show that time spent using our approach
is slightly higher (an average of 5 minutes more). Regarding design
alternatives not asked to the customer without our approach,
Analyst1 forgot asking 68% of design alternatives, and Analyst2 forgot
79%. Both analysts chose the most frequently used design alternatives
without contrasting those decisions with the customer. Using our
approach, both analysts asked 100% of design alternatives. Regarding
changes in interfaces during the interview, Customer1 changed 5
features without our proposal and 6 features with our proposal.
Customer2 changed 11 features without our proposal and 8 features
with our proposal. Regarding analyst’s satisfaction, both analysts are
more self-confident with elicited requirements using our proposal, they
would use our approach frequently and they classify our approach as
useful and easy to use. Regarding customer’s satisfaction, there are
not differences between using our approach or not for the expected
sketch and for the valuation of the analyst’s work. Using our approach,
both customers prefer the sketches of the analyst rather than their own
ideas previous to the interview.

119

As conclusion, we state that even though this evaluation is a pilot
experiment, results show an improvement in the elicitation process of
usability requirements in a MDD method such as INTEGRANOVA:
more matching between elicited requirements by the analyst and real
needs of customers, and more satisfaction for analysts and customers.
A disadvantage of our proposal is that it takes more time, since it
requires asking the customers all the possible design alternatives.
Note that how to model the interaction and transformations have not
been evaluated because they depend on the MDD tool used
(INTEGRANOVA in this case).

3.6 Conclusions and Further Work

This paper is a step forward to obtain holistic MDD methods, where all
the system features, including usability, can be represented from the
early steps till the code (vertical dimension). We propose a process to
elicit usability requirements based on existent design alternatives and
usability guidelines. The end-user must participate in the process,
choosing the design alternative that better fits with her/his
requirements. The approach is based on the construction of a tree
structure that represents all the design alternatives. How to build the
tree structure and how to use it, is explained in detail. Moreover, the
approach has been validated with 4 subjects through a laboratory
demonstration.
Note that the approach is valid for any MDD method but, as illustrative
example, we have used OO-Method. This choice has led the design
alternatives and the construction of the tree structure. The use of our
approach in other MDD method, with models to represent the
interaction different from the Abstract Model and the Concrete Model
of OO-Method, involves building another tree structure. The size of the
tree structure depends on the number of design alternatives; the more
alternatives, the higher is the tree structure. One benefit of our proposal
is that its use does not involve changing the existing MDD method. We
do not propose any extension of existing interaction models or new
transformation rules. We propose using existing interaction models to
represent designs of our tree structure, and those models will be the

120

input for existing transformation rules in next steps of the development
process (if the existing MDD method supports these transformations).
In our example, we have used two usability guidelines: ISO 9126-3 and
the ergonomic criteria. In Human-Computer Interaction and in
Software Engineering communities there are many other guidelines.
Our approach accepts as many guidelines as the analyst would like to
consider. A contradiction between two guidelines does not mean a
problem, since the end-user decides the most suitable design alternative.
However, it is important to mention that too many recommendations for
the possible designs can confuse end-users.
Our approach focuses on eliciting usability requirements. As outcome
of our elicitation process, we get some incomplete conceptual models.
In next development steps, the analyst must enhance these models with
primitives that represent the functionality and the visual appearance of
the system in order to get a fully functional system. How the usability
requirements will be expressed in the next steps of the software process
will depend exclusively on the MDD method.
As future work, we plan to develop a tool to support the construction
and use of any tree structure. Even with a few design alternatives and a
few usability guidelines, the size of the tree structure is considerable.
Moreover, we also plan to apply our proposal to a real case study in
industry with more subjects than the ones used in this paper.

Acknowledgements

This work has been developed with the support of MICINN (PROS-
Req TIN2010-19130-C02- 02), UV (UV-INV-PRECOMP13-115032),
GVA (ORCA PROMETEO/2009/015), and cofinanced with ERDF.
We also acknowledge the support of the Intra European Marie Curie
Fellowship Grant 50911302 PIEF-2010. We also thank Sergio España,
Francisco Valverde, Marcela Ruiz and María Jose Villanueva for their
participation in the experimental validation.

121

References

1. Acerbis, R., Bongio, A., Brambilla, M., & Butti, S. (2007).

WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web
Applications. LNCS, 4607, 501-505.

2. Android, D. (2014). User Interface Guidelines, from
http://developer.android.com/guide/practices/ui_guidelines/index.
html

3. Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O. (2008).
Using Profiles to Support Model Transformations in the Model-
Driven Development of User Interfaces. Paper presented at the
Proc. of 7th Int. Conf. on Computer-Aided Design of User
Interfaces CADUI’2008, Albacete, Spain.

4. Bass, L., & John, B. (2003). Linking Usability to Software
Architecture Patterns through General Scenarios. Journal of
Systems and Software, 66(3), 187-197.

5. Bastien, J. M., Scapin, D. (1993). Ergonomic Criteria for the
Evaluation of Human-Computer Interfaces. Rapport technique de
l'INRIA, 79.

6. CARE. (2014). CARE Technologies, from https://www.care-t.com.
7. Cerejo, L., A. (2011). User-Centered Approach To Web Design For

Mobile Devices. Retrieved 11 october 2012, from
http://mobile.smashingmagazine.com/2011/05/02/a-user-
centeredapproach-to-mobile-design/

8. Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling
Language (WebML): A Modeling Language for Designing Web
Sites. Computer Networks, 33(1), 137-157.

9. Cronholm, S. (2009). The Usability of Usability Guidelines: A
Proposal for Meta-guidelines. Paper presented at the 2lth
Australasian Conference on Computer-Human Interaction,
Melbourne, Australia.

10. Cysneiros, L. M., Werneck, V. M., & Kushniruk, A. (2005, Aug 29
- Sept 2, 2005). Reusable Knowledge for Satisficing Usability
Requirements. Paper presented at the 13th IEEE International
Conference on Requirement Engineering, Washington, DC, USA.

11. Embley, D. W., Liddle, S. W., & Pastor, O. (2011). Conceptual-
Model Programming: A Manifesto. In D. W. Embley & B.
Thalheim (Eds.), Handbook of Conceptual Modeling (pp. 3-16):
Springer Berlin Heidelberg.

12. Escalona, M. J., & Arag, G. (2008). NDT. A Model-Driven
Approach for Web Requirements. IEEE Trans. Softw. Eng., 34(3),
377-390.

122

13. Ferre, X., Juristo, N., & Moreno, A. M. (2005). Framework for
integrating usability practices into the software process. Paper
presented at the Proceedings of the 6th international conference on
Product Focused Software Process Improvement.

14. Folmer, E., & Bosch, J. (2004). Architecting for Usability: A
Survey. Journal of Systems and Software, 70, 61-78.

15. Frankel, D. (2002). Model Driven Architecture: Applying MDA to
Enterprise Computing: John Wiley & Sons, Inc.

16. Hassenzahl, M. (2008). The interplay of beauty, goodness, and
usability in interactive products. Hum.-Comput. Interact., 19(4),
319-349.

17. Henninger, S. (2000). A Methodology and Tools for Applying
Context-Specific Usability Guidelines to Interface Design.
Interacting with Computers, 12(3), 225-243.

18. ISO-9126. (2001). Software Engineering - Product Quality - Part 1:
Quality Model.

19. ISO-9241_11. (1998). Ergonomic Requirements for Office Work
with Visual Display Terminals (VDTs) - Part 11: Guidance on
Usability.

20. Johnsonbaugh, R. (1997). Discrete Mathematics (Fourth ed.). New
Jersey: Prentice Hall Intemational.

21. Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., & Kantola, N.
(2006). Methods forQuantitative Usability Requirements: A Case
Study on the Development of the User Interface of a Mobile Phone.
Personal Ubiquitous Comput., 10(6), 345-355.

22. Koch, N., Knapp, A., Zhang, G., & Baumeister, H. (2008). UML-
Based Web Engineering, an Approach Based on Standards In Web
Engineering, Modelling and Implementing Web Applications (pp.
157-191): Springer.

23. Molina, P. J., Meliá, S., & Pastor, Ó. (2002). JUST-UI: A User
Interface Specification Model. Paper presented at the Proceedings
of Computer Aided Design of User Interfaces, CADUI'2002,
Valenciennes, Francia.

24. Nokia. (2014). Symbian Design Guidelines - Dialogs. From
http://www.developer.nokia.com/Resources/Library/Symbian_De
sign_Guidelines/

25. Ormeño, Y. I., & Panach, J. I. (2013). Mapping study about
usability requirements elicitation. Paper presented at the
Proceedings of the 25th international conference on Advanced
Information Systems Engineering.

26. Ormeño, Y. I., Panach, J. I., Condori-Fernandez, N., & Pastor, O.
(2013, 29-31 May 2013). Towards a proposal to capture usability

123

requirements through guidelines. Paper presented at the IEEE
Seventh International Conference on Research Challenges in
Information Science (RCIS'2013).

27. Panach, J. I., Condori-Fernández, N., Vos, T., Aquino, N., &
Valverde, F. (2011). Early Usability Measurement In Model-
Driven Development: Definition and Empirical Evaluation.
International Journal of Software Engineering & Knowledge
Engineering (IJSEKE).

28. Panach, J. I., España, S., Moreno, A., & Pastor, O. (2008). Dealing
with Usability in Model Transformation Technologies. Paper
presented at the ER 2008, Barcelona.

29. Pastor, O., Molina, J. (2007). Model-Driven Architecture in
Practice. Valencia: Springer.

30. Sutcliffe, A. G., Kurniawan, S., & Jae-Eun, S. (2006). A Method
and Advisor Tool for Multimedia User Interface Design. Int. J.
Hum.-Comput. Stud., 64(4), 375-392.

31. Wieringa, R. (2010). Design science methodology: principles and
practice. Paper presented at the Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering.

124

 2.4 An Empirical Experiment of a Usability
Requirements Elicitation Method based on
Interviews

Context: The usability requirements elicitation process is a difficult
task that lacks methods to guide and help analysts, who are usually not
experts at usability. Objective: This paper conducts an experiment with
two replications to evaluate a method that elicits usability requirements
based on structured interviews named UREM versus an unstructured
method. The method consists of guided interviews by the analyst using
decision trees. The tree is composed of questions and possible answers.
Each question appears when there are different possible design
alternatives, and each answer represents one of these alternatives. The
tree also recommends the alternative that enhances the usability based
on existing usability guidelines. Method: We have conducted an
experiment with two replications with 22 and 26 subjects playing two
different roles in a within-subjects design. The analysts used a tree to
guide the interview and elicit the requirements while the end users had
to explain to the analyst the type of system to develop. During the
interview, the analyst must design a paper prototype to be validated by
the end user. For the analyst, the experiment measures the effectiveness
of usability requirements elicitation, the effectiveness of the use of the
usability guidelines, the efficiency of the elicitation process, and the
satisfaction with the entire elicitation process. For the end user, the
experiment measures the satisfaction with the designed prototype at the
end of the interview. Results: UREM yielded significantly better results
for the effectiveness in the usability requirements elicitation process
and for the effectiveness in the use of usability guidelines when
compared to unstructured interviews. The use of UREM did not reduce
the analysts’ efficiency and both analyst and end user remained the
same satisfaction. Conclusions: Eliciting usability requirements is a
difficult task if it is done with unstructured interviews and without
usability recommendations.

125

1. Introduction

Usability is an important quality characteristic of software and is an
essential element to be considered in the development of different
software systems in order to determine the development’s success or
failure [1-2]. The ISO 9241-11 [3] standard defines usability
requirements as the effectiveness, efficiency, and satisfaction of a user
achieving his/her goals in a defined context of use. Similarly, according
to the ISO/IEC 25010 [4] standard, usability is the degree to which a
product or system can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a specified
context of use. Today we live with new and innovative ways of
interacting with computers, and this era requires application software
that has high usability levels that decrease potential usability difficulties
and risks [5]. However, usability requirements are usually ignored
during the software development process, especially in the early stages
of requirements elicitation. This increases the cost of solving usability
problems and affects the quality of final products.

The software engineering and requirements engineering community
knows that the process of eliciting the usability requirements of a
system is not an easy task and requires a lot of effort. Therefore,
methods that help software engineers or systems analysts in the process
of eliciting usability requirements are needed, reducing time and
resource costs, and complying with standards or regulations for
different domains and platforms. Since usability is a multifaceted
concept, there are many usability techniques for performing usability
studies. Interviews and prototypes are the most common techniques
used to elicit usability requirements, but they must be structured

Versión del autor del artículo., Ormeño, Y. I., Panach, J. I., & Pastor, O. (2023).
An Empirical Experiment of a Usability Requirements Elicitation Method to
Design GUIs based on Interviews. Information and Software Technology,
107324, https://doi.org/10.1016/j.infsof.2023.107324

https://doi.org/10.1016/j.infsof.2023.107324

126

correctly so that they can be defined, measured, and evaluated properly
[6]. An analyst that elicits requirements is not usually an expert at
usability and needs some guidelines to be able to design usable
interfaces.

In order to help analysts design usable systems, in a previous work [7],
we proposed the Usability Requirement Elicitation Method (UREM).
UREM consists of a decision tree where nodes are questions and
answers. The analyst must navigate throughout the tree asking
questions to the end user and providing to the end user different answers
as possible design alternatives. Questions appear when the analyst has
to choose among several design alternatives. Each answer is a design
alternative. In order to help in this choice, the tree must also show which
alternative optimizes the usability. Each answer of the tree has a
description that suggests for which circumstances this design is
recommended. Thus, the analyst can recommend a specific option to
the end user, but the end user is the one who desires what she/he prefers.
The recommendations have been extracted from usability guidelines.
The question-answer format of this interview is a way to guide the
requirements elicitation process in order to elicit usability requirements.
During the interview, the analyst must design a paper prototype with
the GUI. The end user must validate this design, proposing any changes
that she/he considers optimize usability. Usability requirements is a
concept that affects many factors, not only the visible GUI that is the
result of the design, but also functionality, learnability, efficiency, etc.
[8]. UREM can be used for all the usability requirements whose
guidelines can be written in the tree structure as answers or
recommendations.

The main contribution of this article is the design and conduction of an
empirical experiment to validate UREM with two replications of 22 and
26 subjects respectively. The design includes two treatments:
unstructured interviews and UREM. Both treatments are participatory
methods to involve the end users and analysts throughout the design
process [9]. The experiment is a within-subjects design (repeated
measures) where each subject plays the role of analyst or end user in

127

one of both treatments. We defined 24 pairs of subjects from the 48
subjects recruited for both replications. In each of these pairs, roles were
swapped during the application of each treatment. The subject that
played the role of analyst had to guide the interview in order to elicit
the usability requirements and validate these requirements using a paper
prototype. The subject that played the role of end user had to explain to
the analyst the type of system they needed and the usability
requirements that had to be included. We used two different problems
in order to avoid the carryover effect between treatments. For the
analyst, the response variables were: the effectiveness of the usability
requirements successfully elicited; the effectiveness of the usability
guidelines properly applied in the prototype; the efficiency in the
requirements elicitation process; and the satisfaction during the whole
elicitation process. For the end user, the response variable was the
satisfaction with the designed GUI.

The results yielded two significant differences between UREM and the
unstructured interview: 1) UREM was more effective in the usability
requirements elicitation; 2) UREM was more effective in the
application of the usability guidelines to improve usability. The lack of
significant differences in efficiency using the two elicitation methods
means that, even though UREM might be considered more cumbersome
at first glance, its use did not increase the time required to design the
GUI. The improvement in effectiveness using UREM does not lead to
an improvement in the satisfaction of the analyst and the end user. An
analysis of these results is discussed in the article.

This article is organized as follows. Section 2 describes the related
works. Section 3 explains UREM and the unstructured interview in
detail. Section 4 justifies the experimental design. Section 5 presents
the statistical results. Section 6 discusses and interprets the results.
Finally, Section 7 presents the conclusions and future work.

128

2. Related Works
In this section, we describe works that are related to usability
requirements elicitation and their empirical validations. We conducted
a Targeted Literature Review (TLR) [10], which is a non-systematic,
in-depth, and informative literature review aimed at keeping only the
significant references in order to maximize rigorousness while
minimizing selection bias. For this purpose, the semantic question about
usability requirements elicitation is translated into the following
syntactical queries used as a search string: ("usability requirements"
AND ("method" OR "methodology" OR "model") AND ("experiment"
OR "case study")). This search string was applied to the title, keyword,
and abstract of the Scopus digital library, ACM Digital Library, Web
of Science, and IEEExplore in May 2023.

As exclusion criteria, we have: 1) tutorial papers; 2) papers that do not
deal strictly with usability requirement elicitation; 3) papers that do not
report the results of the experiment; 4) papers without methods or
models; and 5) paper without any experimental design carried out. As
inclusion criteria, we have: 1) papers that describe the developing
methodology in usability requirement elicitation; 2) papers that
describe how they evaluated or analyzed developing methodology; and
3) papers that include a case study and/or guidelines for the elicitation
process. The search string returned 22 papers from the Scopus digital
library and 23 papers from the IEEExplore digital library. After
applying the exclusion and inclusion criteria to the title and abstract,
and gathering the papers from both outlets and search string, we finally
analyzed the content of 15 papers, which we describe below. The
references resulting from these searches were classified into four
categories, which are discussed further in the following subsections.
This classification aims to identify the papers that have proposed
requirements elicitation methods for both specific contexts and non-
specific contexts, papers that use usability guidelines in their proposals
of requirements elicitation, and papers that validate empirically a
requirements elicitation method. These four types of papers cover the
target of our contribution: an empirical validation of a requirements
elicitation method of non-functional requirements based on usability

129

guidelines. Table 1 shows a summary of all of these works, comparing
the proposed method, metrics, tools, and techniques.

2.1 Usability Requirements Elicitation for Specific Contexts

This subsection describes the works whose processes have been
developed to be carried out for a specific problem domain, to test the
method in an existing application, or to understand/complement it.
Gunduz and Pathan [11] describe usability problems found in
touchscreen mobile flight-booking applications and suggest solutions
to eliminate such problems. A qualitative research approach is used for
usability analysis. They considered users’ actions and reactions towards
the application for their specific context and collected their opinions
with regard to efficiency, user satisfaction, and adoption of the
application. The case study was carried out on a Turkish Airlines’
commercial mobile flight-booking application where 20 interviewees
from different countries were randomly selected from novice and
advanced users. They use questionnaires and interviews during the
practical investigation.

Troyer and Janssens [12] present a Feature Modeling method which is
a variability modeling technique used in Software Product Lines. It has
a twofold approach: one to unlock available information on
requirements elicitation and the other to provide a mechanism for
guiding the stakeholders (non-computing people) through the
requirements elicitation process. The feature model is supported in a
tablet app that provides explanations for different usability issues,
possible design options and alternatives, and the impact of the choices.
Two case studies based on games and e-shop web applications were
conducted using evaluation sessions that focused on the usability of the
tool, brainstorming sessions, and templates done by requirements
engineering experts.

Fahey et al. [13] describe the value of a design approach to elicit user
requirements by performing business process modelling (BPM) and the
elicitation and modelling of user requirements through the work of the
users. It presents a case study of how an outpatient Electronic Patient

130

Record (EPR) system was successfully implemented in the Epilepsy
Unit of Beaumont Hospital, Dublin. The determination of functional
(FR) and non-functional user requirements (NFR) was realized through
a series of traditional requirements elicitation techniques such as
workshops and multi-stage Delphi interviews. Process maps were
drawn up and confirmed with end users, and new prototypes were
developed on paper and on mock-up screens. They conclude that the
more time spent on usability issues in the early stages of system
development, the more likely a system will undergo a successful
implementation with minimal disruption of the necessary services.

Temper et al. [14] introduce an efficient continuous biometric
authentication technique using touchscreen gestures and related posture
information that is based on a Vaguely Quantified Nearest Neighbor
classifier combined with a scoring model and fuzzy classifier. A bank
app prototype implemented on a Google Nexus 4 mobile phone was
developed to evaluate the security and usability requirements. The
evaluation was conducted with 22 volunteers based on a trust score
which was used as an indicator to verify whether or not the person that
enters information within the app is a legitimate user. The calculation
of the score is based on touchscreen gestures and posture information.
The results depicted how the trust score evolves over time. The initial
results showed the applicability of behavioral biometrics as an
additional security mechanism on mobile phones.

Rocha et al. [15] have defined a method to elicit requirements based on
structured interviews using user stories. These user stories are used in a
behaviour-driven development context with templates for guiding the
writing of such stories. The approach can be helpful to ensure that
consistent information about the requirements is provided. User stories
written using terms of an ontology describing events, behaviours, and
user interface elements can be used to promote consistency of
requirements. Moreover, user stories can be used for testing the
automation of diverse types of artefacts, such as task models, low-
fidelity prototypes or final implementation of the interactive system.
The approach was validated in a case study with potential product

131

owners in a research institute, where subjects had to write their own
user stories to describe a feature they are used to performing.

The above research works were performed for a specific context. the
work of Troyer and Janssens [12] is for Software Product Lines, the
work of Fahey et al. [13] is for BPM, the work of Temper et al. [14] is
for touchscreen gestures, and the work of Rocha et al. [15] is for
behaviour-driven development. Each method seeks to elicit
requirements and to find solutions for usability issues in its own way.
The techniques that are most widely used to support the methods are
unstructured interviews, brainstorming, focus groups, and
questionnaires with Likert scale, but there are also proposals such as the
work of Rocha et al. that propose a structured method.

2.2 Usability Requirements Elicitation for Non-
Specific Contexts
This subsection describes the works to elicit requirements that have
been performed from a non-specific context, i.e., the method can be
applied in different domains. De Carvalho et al. [1, 16] evaluate the
possibility of discovering usability requirements from information in
the Functional Resonance Analysis Method (FRAM) in the health field.
The methodology follows these steps: 1) identification of the context;
2) identification of problems and difficulties in the execution of a task;
3) definition of solutions; and 4) definition of software requirements.
Two experiments were conducted. The first one was a patient selection
process with BPMN notation, and the second one was a patient
selection process through a FRAM model. The results showed that the
FRAM method used for complex systems yields more requirements,
especially usability requirements. There was also superiority in the
average performance related to the number of requirements per
activity/function, the average in functional requirements, and the
quality (availability, understanding, clarity, completeness) of the
elicited requirements.
Nhavoto [17] presents an integrated mobile phone text-messaging
system that is used to follow up on Human Immunodeficiency Virus
(HIV) and Tuberculosis (TB) patients. The study focuses on three key

132

activities: eliciting the requirements, design of the GUIs, and
implementation of a prototype named SMSaúde to facilitate
communication between patients and the healthcare systems. Testing
and evaluation of the SMSaúde system were done using seven quality
criteria (functionality, completeness, consistency, accuracy,
performance, reliability, and usability) and six different requirements
(data collection, telecommunication costs, privacy, data security, the
content of text messages, connectivity, and system scalability). The
artifact was improved interactively and incrementally. During the
design and development process, a broad set of usability requirements
was identified in two brainstorming design sessions. They plan to
perform an evaluation of the system, including a satisfaction survey of
the health professionals and patients.
Elias [18] presents a semi-automatic validation system to improve
usability in Computer Support Collaborative Learning (CSCL)
environments. It uses an ontology to represent usability knowledge and
software agents to automate the process. This system uses usability
methods and techniques to create SPARQL rules to deal with usability
issues. The rules were performed by the interaction among agents,
using questionnaires to know the users’ opinion about usability. A case
study in a real collaborative learning environment based on Moodle at
Federal University of Alagoas - Brazil was described to present the
advantages of using the proposed system. As a result, the system
provides graphical reports and checklists to help the administrator
improve the usability of the CSCL environment.
Yuan, X. and X. Zhang [19] present an ontology model to represent the
knowledge of common and variable software assets for interactive
requirements elicitation. The instances of an abstract model help the
interactive software customization system to communicate with
software clients via dialogue in natural language. In order to
demonstrate how it works and to provide evidence of its usability, they
include a case study of an online book shopping system with
experienced and non-experienced software clients. The system retrieves
product information from the ontology model and presents software
requirements in utterances as slots for users to fill in. Learnability,
efficiency, reliability, and satisfaction, along with several other
measurements, were evaluated. The proposed approach was capable of

133

not only eliciting requirements but also automatically converting client-
picked requirements into service descriptions in Web Ontology
Language for the production of customized software systems.
Abad et al. [20] study the impact of Loud Paper Prototyping (LPP) on
requirements elicitation. They compare this technique with several
variations of Silent Paper Prototyping (SPP) such as traditional Woz,
sketching, and storyboard. Furthermore, they present a comparison
between LPP and elicitation meetings alone as well as paper
prototyping versus No Paper Prototyping (NPP). Two research
questions were defined: 1) How does paper prototyping help in
capturing mobile App requirements?; and 2) Does LPP affect the type
of requirements extracted during requirements elicitation? These
questions were analyzed in a case study with two mobile application
developments teams. The results showed that 1) SPP is more efficient
in capturing NFRs than NPP; and 2) LPP is more useful in adding new
NFRs and moving/modifying existing ones. Among the techniques
reviewed, most teams found LPP to be the most useful approach for
managing mobile application requirements.
All of these research works deal with methods, models, and techniques
that are oriented to information management in order to elicit
requirements during the design and development process. The elicited
usability requirements were generally obtained from brainstorming
sessions, interview sessions, and questionnaires. Some works show a
formal analysis of data to improve the elicitation of usability
requirements by algorithms. The selected case studies were adapted to
methods or models in order to demonstrate their effectiveness. In most
of the previous works, the usability requirements are studied together
with functional requirements and other NFRs in the elicitation process.
In other words, the methods are not exclusive to the elicitation of
usability requirements.

2.3 Using Guidelines

This subsection describes the papers whose elicitation method depend
on usability guidelines. Márquez and Taramasco [21] present a
methodology that uses dissemination and implementation (D&I)
strategies to recommend requirements elicitation guidelines [22] for

134

eliciting requirements in health systems. The D&I framework considers
two phases: The first phase aims to identify the goals of the system. The
second phase is about the implementation strategies and requirements
elicitation guidelines represented in a model and a multidimensional
catalog based on a source of knowledge that generates a set of
guidelines for the elicitation of requirements to be evaluated by IT
professionals. Working sessions were conducted by IT professionals
and clinicians to ensure that each strategy/guideline relationship was
fully explained. To assess the impact of using the D&I framework, the
authors present a real clinical software case study of the main software
component of SIGICAM related to clinical priorities that were
developed using the D&I framework. The analyzed variables were:
impact, perceived usefulness, perceived ease of use, and user control.
The results show an acceptable level of usability with approximately
72% approval.
Abdallah et al. [23] introduced an enhancement of an eXtreme Scenario
Based Design (XSBD) process named Quatified eXtreme Scenario
Based Design (QXSBD) to quantify usability. QXSBD complements
XSBD with a set of usability metrics that need to be assessed in an agile
process based on usability guidelines. This framework uses the
Usability Critical Parameters Workshop (UCPW) to identify usability
scenarios from stakeholders (usability engineers, developers, end users,
and customers) and Quality in Use Integrated Model (QUIM)
procedures to assign required values. The UCPW provides engineering
practices defining the usability requirements and design goals. In order
to demonstrate the feasibility of the QXSBD, an interactive system,
Customer Request Project, was implemented where efficiency,
effectiveness, productivity, and learnability were selected as usability
critical parameters. After applying the QXSBD process, the usability
defect rate was reduced by 30%. The team questionnaire and end user
questionnaire show that UCPW provides practical tactics and
guidelines to implement usability scenarios on the process cycle,
achieving better user satisfaction.

135

Scope Authors Methods Metrics Tools Techniques

Usability
Requirement
Elicitation
from
Specific
Context over
Existing
Systems

Gunduz
and Pathan
[43]

Qualitative research
approach

Easiness, efficiency, user
satisfaction, and adoption of
the application.

 Questionnaire
 Interview sessions
Likert scale questions

Troyer and
Janssens
[44]

Feature Modeling Effectiveness of the Guinea
maps tool.
Completeness of the template.
Relevance of the template.
Learnability of the app.
Easy of use
Good overview

Guidemap tool Usability questionnaire
 Interview
Templates
workshops

Fahey et al.
[45]

Business Process
Modelling (BPM)

Usability testing
Optimize time management of
users
Facilitate work practice change

 Ethnographic analysis
Workshop and multi-stage
Delphi interview
Iterative prototyping
 Process maps
 Screenshots

Temper et
al. [46]

Vaguely Quantified
Nearest Neighbor
 Fuzzy model
 Rough Set Theory
(RST)

Feasibility, trust score, Equal
Error Rate

Fuzzy-Weka Particle Swarm Optimization
 Fuzzy rules

Rocha et al.
[47]

Behaviour-driven
development based on
user stories

Adherence to a template to
include behaviours

 User stories

Usability
Requirement
Elicitation

De
Carvalho et
al. [48]

Functional Resonance
Analysis Method
(FRAM and

Average performance,
completeness
Likert Scale

 Ethnography, Questionnaires,

136

from Others
General
Methods
with
Unexisting
Systems

MacKnight) and
BPMN

Nhavoto
[49]

Design science
research methodology

 Functionality
Completeness
Consistency
Accuracy
Performance
Reliability and Usability

Web client for
the Web-SMS
tool

Brainstorming
Focus group meetings
Algorithm

Elias [50] Ontology, software
agents, SPARQL rules
 usability methods

Standardization of Pedagogical
Usability
 Standardization of Technical
Usability
Moodle graphical report

Questionnaires
 Usability techniques
Checklists

Yuan, X.
and X.
Zhang [51]

Ontology model Learnability
Efficiency
Reliability
Satisfaction

 Rules
Algorithm

Abad et al.
[52]

LPP (Loud Paper
Prototyping)
 Silent Paper
Prototyping (SPP)
 No Paper Prototyping
(NPP)

Learnability
Navigation helpful
Improvements
Understandability

 Latent Dirichlet Allocation-
LDA
NVivo [11] tool

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es%2DES&rs=en%2DUS&wopisrc=https%3A%2F%2Fupvedues.sharepoint.com%2Fsites%2FTesis_Yeshica_OA%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F7b8ceb182d3345538466e51be28e890c&wdenableroaming=1&wdfr=1&mscc=1&hid=A09610A0-0084-C000-A54B-147B348AC76A&wdorigin=Other&jsapi=1&jsapiver=v1&newsession=1&corrid=471914d9-dbff-a690-9795-1eef4ea05ff0&usid=471914d9-dbff-a690-9795-1eef4ea05ff0&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=83ca3e6d-5b9c-00dd-945d-73da308db28a&preseededwacsessionid=471914d9-dbff-a690-9795-1eef4ea05ff0&rct=Medium&ctp=LeastProtected#_ENREF_11

137

Using
Guidelines

Márquez
and
Taramasco
[53]

D&I framework Perceived usefulness
Perceived ease of use and user
control
Health-ITUES questionnaire

 Interviews
 Requirement
elicitation guidelines
 Working sessions

Abdallah et
al. [54]

eXtreme Scenario
Based Design
 Quality in Use
Integrated Model
 Usability Critical
Parameters Workshop

Learnability
Efficiency
Effectiveness
Likert scale

 Scenarios
Workshops
(SUS) questionnaires

Empirical
validations

Vitiello et
al. [55]

The empowerment-
driven (UX)
Requirements
Engineering method

Index of Self Efficacy (ISE),
the Index of Knowledge &
Skills (IKS), the Index of
Personal Control (IPC), and
the Index of Motivation
(IMOT).
Efficacy and efficiency

Sedato
prototype

Interview, Questionnaires

Tanikawa
et al. [56]

Process support
method

Validity of the output
requirements and the
effectiveness

 Entry form
check item
in-house guidelines for usability
improvement [Hiramatsu]

Abad et al.
[57]

Wizard-of-Oz (WOz)
 User Reviews

Efficacy
Effective in capturing NFR
Clarifying existing FR

Statistical
methods
Saturate web-
based coding
tool

Storyboarding
 Low-fidelity prototyping
 Meeting
Github repository

138

Table 1. Overview of state of the related works

Latent Dirichlet Allocation
(LDA) algorithm
topic models package in R

Peruzzini
and
Germani
[58]

User-Centered Design
(UCD)
 Delphi methodology
 Design Structure
Matrix (DSM)
 Quality Functional
Deployment

Satisfaction
Usable solutions
Correlation between users’
needs and system
funcionalities
Positive effect on efficiency

 Workshops
 Focus groups
 Brainstorming
 Questionnaires

139

In the previous frameworks, requirement elicitation guidelines are
based on a source of knowledge obtained from workshops sessions
conducted by usability experts and the IT team. The carrying out of
these workshops increases the need to dedicate more time to the process
of eliciting, redefining, and updating usability parameters. In addition,
the continuous participation of usability specialists is needed to clarify
and explain the reasons and effects of the use of these parameters.

2.4 Empirical validations

This subsection describes the empirical evaluations of requirements
elicitation methods. There are proposals where the evaluation of the
method is unstructured, i.e., formal mechanisms are not used. Vitiello
et al. [24] proposed a methodology to extract UX requirements. It is a
transformative process that starts from a contextual investigation in
order to understand users, their behavior (decision making, self-
management, communication, and engagement), and capacities (self-
efficacy, knowledge & skills, personal control, and motivation), which
are expressed in terms of human needs. The author tested the
methodology on a case study of polypharmacy management
interviews. The questionnaires give an initial measure of user
empowerment perception represented with empowerment perception
ratings such as the Index of Self Efficacy (ISE), the Index of Knowledge
& Skills (IKS), the Index of Personal Control (IPC), and the Index of
Motivation (IMOT). The results showed that an improvement in the
described capacity indicators was achieved.

Tanikawa et al. [25] present a method that focuses on clarifying the
needs related to the customer’s usability (clarification of customer
needs) and the matching of these needs with the system design
(conformity between needs and design). The approach consists of
defining the activities (tasks and procedures) that are needed to support
those needs. An entry form is used to specify target tasks of a system,
identify representative users, and describe the works they are in charge
of in each task. They also developed check items for specifying the
characteristics of the users and tasks of the target system based on in-
house guidelines for usability improvement [28]. As a result, the needs

140

and requirements generated by the support method were almost
equivalent to those extracted with the work of the experts. Positive
effects on efficiency and quality improvement of activities were
reported, including a reduction of man-hours for preparation of
customers interviews and requirements elicitation.

 Abad et al. [26] conducted two studies to compare the role of early
usability requirements specification and app reviews. The evaluation
focuses on how Wizard-of-Oz (Woz) technique can be used to elicit
usability requirements. The first study was about the role of Woz in
requirement elicitation activity with the use of storyboarding, low-
fidelity prototyping, and meetings between the development team and
the client. The second study was related to comparing the role of user
review analysis and Woz in eliciting and defining mobile app
requirements. It was conducted using 40 mobile apps that are available
on Google Play. The results showed that while user reviews are a
powerful tool for capturing FRs, there were reports of bugs in several
app categories. The authors conclude that Woz is effective in capturing
usability requirements and clarifying existing FRs.

Peruzzini and Germani [27] propose a new model to design assistive
ICT-platforms including smart products and services to support active
aging for elderly and frail people by adopting a user-centered approach
to define an interoperable architecture that integrates different types of
smart objects. The approach aims to deal with three limitations of
existing ambient assisted living systems: low system usability, poor
acceptance by users, and lack of personalization. As a result, they
obtained a highly usable and flexible platform that is designed
according to the specific needs of their direct users with high user
satisfaction, usable solutions, user-friendly products, and services with
high-level functions integrating data from completely different
contexts. Techniques such as interviews, questionnaires, focus groups,
and brainstorming were used to conduct the process. Positive effects on
efficiency and quality improvement of activities were reported,
including a reduction of man-hours for preparing customers interviews
and for extracting evidence-based requirements.

141

Most related works are based on interviews and questionnaires, but
none include usability recommendations to guide the end user in the
different GUI designs. Moreover, the proposed techniques based on
interviews are usually unstructured, so, in the end, how the interview is
conducted depends on the interviewer’s skills. UREM was proposed as
an attempt to cover this gap, proposing a structured interview that is
specific for usability requirements. The contribution of this article is the
validation of UREM based on effectiveness, efficiency, and
satisfaction. These three metrics are the most commonly used in the
previous works to validate requirements elicitation methods.

3. Usability requirements elicitation process

This section describes the two methods used to elicit usability
requirements that we analyze in our experiment. The first method uses
unstructured interviews and the second method is UREM [7], which
uses structured interviews based on usability guidelines and interface
design guidelines by means of a tree structure to minimize the cognitive
effort. Note that both methods are participatory methods [9] with the
end user. The difference lies in the fact that UREM utilizes a flow for
requesting input from the end user and provides usability
recommendations. Below, we describe both methods in detail.

3.1 The unstructured requirements elicitation method

The unstructured method [29] consists in eliciting usability
requirements in an unstructured way, without any guideline or tool to
support the process. These are the steps of the method:

- The process begins with an interview between the analyst and the
end user. The analyst must ask to the end user how she/he prefers
the GUI. There is no guide for what questions must be asked, what
design alternatives are possible, and which design alternative
optimizes the usability. The analyst organizes the questions as
she/he prefers.

- During the interview, the analyst draws a paper prototype of the
GUI described by the end user that best fulfils the elicited
requirements.

142

- During this process, the end user can suggest any changes after
seeing the results of the prototype. Thus, the analyst can evolve the
prototype during the interview until the end user is completely
satisfied with the result and considers that the proposed solution
fulfils the GUI requirements.

At the end of the session, we have the paper prototypes of all of the GUI
that fulfil the usability requirements from the point of view of the end
user.

3.2 The usability requirements elicitation method (UREM)

This section presents a summary of eliciting usability requirements
proposed by UREM. UREM is a structured and general purpose method
for designing GUIs compliant with usability guidelines, that supports
the analyst during usability requirements elicitation. To do this, a tree
structure is built by a usability expert based on user interface design
guidelines and usability guidelines to be executed in the process of
eliciting usability requirements. The tree is composed of four elements:
questions, answers, groups of questions, and designs. Figure 1 shows a
general schema of the tree structure used by UREM.

Figure 1. General representation of the tree structure.

We describe each element of the tree as follows.

- Question (Qi) is defined based on UI design guidelines that are
represented in different design alternatives for GUI
components. The design guidelines present diverse design

Tree

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQi/Qi/Di

GQI : GROUP OF QUESTIONS
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = … N

LEGEND

143

alternatives for GUI components (e.g. menu). In order to ask
the end-user which alternative she/he prefers, we have defined
a question when alternatives to design appear. For example,
when we are designing a selectable task, we can ask about how
to show it. A possible question is “Which UI component is used
to show selectable tasks?”

- Answer (Ai) is composed of exclusive alternatives for each
question based on GUI design guidelines, where the analyst
selects which one best fits the user’s requirement. These
options are presented to the analyst in such a way that she/he
can choose which one best fits user’s requirements. For each
question, some answers are recommended based on usability
guidelines. These recommendations aim to help the end user
choose the best answers. They are not mandatory; the end user
can accept the recommendations or reject them. When answers
are shown to the analyst, we will show which answers are
recommended by usability guidelines. Possible answers can be
yes/no or the choice of one item from a list. For example, the
answers to the question “Which UI component is used to show
selectable tasks?” can be: RadioButtons, Textfields,
CheckBoxes or Slider. According to usability guidelines, a
RadioButton is used for a persistent single-choice list.

- Group of Questions (GQi) are created since some branches of
the tree structure are not mutually exclusive (the end user
should be asked all of the questions). This type of branch is
represented by a group of questions that gathers several
questions that are grouped by a design characteristic. For
example, the question “Which UI component is used to show
selectable tasks?” can be gathered with other questions that ask
about Selection Dialogues, such as “Where is the action button
located?”, “Where is the dialogue box located?”, and “Where
is the positive action on a button located?”. All these questions
have in common that deal with how selection dialogues are
displayed, and all of them are gathered in the same Group of
Questions.

- Designs (Di) are the interface designs reached at the end of the
tree structure (they are the leaves of the tree). The tree structure

144

is navigated from the root to the leaves. When the analyst
reaches a leaf in the tree, a design has been obtained. The final
design of the whole system is the set of leaves in the tree that
the analyst has reached. More details can be found in [7]. For
example, a design can be a selection dialogue with radio
buttons, where each item shows an enumerated data.

The tree structure is built by an expert in interface design and usability.
This expert must have enough knowledge to specify design alternatives
as questions and answers, as well as to specify the usability guidelines
as recommended answers. Once the tree is completed, the analysts can
use it an unlimited number of times to elicit usability requirements in
several projects. The analysts that use the tree structure do not need
knowledge of usability or design since all this information is
represented in the tree structure. In order to interview the client to elicit
usability requirements, the analyst starts to navigate from the root of the
tree, and asks the questions to the end user during the interview. The
analyst asks the questions according to their sequence in the tree, from
the root to the leaves. The analyst only navigates through the branch of
the answer selected by the end user. When the analyst reaches a branch
with a group of questions, all of the questions must be answered. Only
the analyst can continue with the next question if the flow has reached
a leaf and, then continues with the next question in the group of
questions. The possible navigation between two nodes of the tree
structure can be: 1) from a group of questions to a single question or to
another group of questions (Gqi→ Qi / GQi); 2) from a question to an
answer (Qi →Ai); 3) from an answer to a question, to a group of
questions, or to a design (Ai → Qi / GQi / Di).

The process of eliciting usability requirements is supported by a tool
(hci.dsic.upv.es/urem) that supports the creation and navigation of
several trees. The analyst uses the tool to perform the elicitation using
interview eliciting. The result after navigating the decision tree with
UREM can be seen as a design rationale [30-31]; following the flow of
the interview we have the report that explains why a system has been
designed the way it is. GUI designs must be manually drawn by the
analyst.

145

3.2.1 An illustrative Example of working with UREM

Figure 2. Illustrative example of usability elicitation

This section presents a short and illustrative example of how to deal
with UREM to develop a GUI design for a medical system starting from
a set of usability requirements and using the usability guidelines
represented in the tree structure. The example focuses on the usability
requirements that are related to data entry forms (Figure 2). All of the
entire process is performed in an interview between the end user and
the analyst. The first question that the analyst asks the end user is
“Should textfields have selectable options”? This question has two
possible answers. “yes” or “no”. The recommended option is “yes”. If
the end user opts for “yes”, the next question that the analyst asks is “In
which component are the options displayed?” There are four possible
answers: Dropdown menu (recommended option); Emergent popup,
Radiobuttons; Checkboxes. Each one of these options is a leaf in the
tree, so it involves a specific design (Table 2). If the end user opts for
the recommendation and chooses the answer “Dropdown menu”, we
have reached design D1. Below, the flow continues with the question
“Should textfields have a label?”. This question has two possible
answers: “yes” or “no”. The answer “yes” is recommended based on
usability guidelines. If the end user opts for the recommendation and
chooses the answer “yes”, we have reached design D5 (Table 2). Note
that D1 refers to the items that compose the textfield, while D5 refers
to the label of the textfield.

146

DESIGNS GUI DESIGNS

D1

D2

D3

D4

D5

Table 2. GUI designs for each leaf of the tree

4. Experiment Definition and Planning

In this section, we describe the experiment design according to Juristo
and Moreno [32].

147

4.1 Goal
The main goal of this experiment is to compare the use of a structured
method (named UREM) for interviewing the end user in order to elicit
usability requirements with the use of unstructured interviews for the
purpose of studying the pros and cons of UREM in the GUI design. The
experiment is conducted from the perspective of researchers and
practitioners who are interested in investigating how useful a structured
interview method is compared to an unstructured interview method in
eliciting usability requirements.

4.2. Research Questions and Hypothesis Formulation

Our empirical study is based on the concept of quality, which is defined
in terms of effectiveness, efficiency, and satisfaction (ISO 25010) [4].
The concept of quality is different depending on the role of the subjects
that participate in the validation (as analyst or end user). From the point
of view of the analyst, we aim to study whether the requirements
elicitation method affects the elicitation process. This means that we
need research questions to analyze the effectiveness, efficiency, and
satisfaction of the process of usability requirements elicitation. From
the point of view of the end user, quality refers to how satisfied the end
user is with the designed GUI. Both perspectives of quality are
represented in the research questions. Note that the experiment uses a
tree structure previously existing. The role of expert in interface design
and usability that builds the tree structure of UREM is played by one
experimenter. The study of how the tree is built is out of scope of the
current analysis. While the construction of the tree structure is done
once, its use is unlimited, which leads to focus the experiment on the
use of the tree structure instead of its construction. In the experiment,
the construction of the tree structure required two hours, including the
time to study the design alternatives to be specified as answers, the
usability guidelines to be identified as recommendations, and the
specification of all this information in the UREM tool. The
experimenter who built the tree is an expert in interface design and
usability that has been evaluating usability in systems for more than ten
years.

148

The research questions used in our validation are described as follows:

RQ1: Effectiveness is defined in ISO/IEC-25010 as “the degree to
which specified users can achieve specified goals with accuracy and
completeness in a specified context of use”. Effectiveness in use is
applied in two contexts: elicited usability requirements (RQ1r) and
guidelines recommendations (RQ1g).

RQ1r:

Is analyst effectiveness to elicit usability requirements affected by the
elicitation method?

We operationalize effectiveness as the percentage of usability
requirements satisfied by the analyst. The null hypothesis tested to
address this research question is: H01r: The analyst effectiveness using
UREM is similar to that of using unstructured interviews.

RQ1g:

Is analyst effectiveness to apply usability guidelines affected by the
elicitation method?

We operationalize effectiveness as the percentage of usability
recommendations that the designed GUI prototype includes. The null
hypothesis tested to address this research question is: H01g: The analyst
effectiveness using usability guidelines in UREM is similar to that of
using unstructured interviews.

RQ2: Efficiency is defined in ISO/IEC-25010 as “the degree to which
specified users expend appropriate amounts of resources in relation to
the effectiveness achieved in a specified context of use”. Efficiency is
studied based on usability requirements (RQ2r).

RQ2r:

Is analyst efficiency affected by the usability requirements elicitation
method?

149

We measure analyst efficiency as the ratio percentage of usability
requirements successfully elicited by the time spent to elicit the
usability requirements. The null hypothesis tested to address this
research question is: H02r: The analyst efficiency using UREM is
similar to that of using unstructured interviews.

RQ3: Satisfaction is defined in ISO/IEC-25010 as “the degree to which
users are satisfied in a specified context of use”. Satisfaction is analyzed
from two perspectives: analyst satisfaction (RQ3a) and end user
satisfaction (RQ3e), since the satisfaction of the analysts who design
interfaces may be different from the satisfaction of the end users that
will use the interfaces.

RQ3a:

Is analyst satisfaction affected by the usability requirements elicitation
method?

We measure analyst satisfaction as the level of contentment of the
analysts during the usability requirements elicitation. The null
hypothesis tested to address this research question is: H03a: The analyst
satisfaction using UREM is similar to that of using unstructured
interviews.

RQ3e:

Is end user satisfaction affected by the usability requirements
elicitation method?

We measure end user satisfaction as the level of contentment of the end-
user with the designed prototype as a result of the process of
requirements elicitation. The null hypothesis tested to address this
research question is: H03e: The end user satisfaction using UREM is
similar to that of using unstructured interviews.

4.3 Factors and Treatments

We now define factors and their levels to operationalize the reason for
our experiment construct. Factors are variables whose effect on the
response variables we want to understand [34]. Treatments are the

150

factor alternatives that help us answer the questions of the research
hypotheses.

The experiment studies one factor: the usability requirements elicitation
method with unstructured interviews (T1) and UREM (T2), where T1
is referred to as the control treatment. Table 3 shows the description of
the factor and its two treatments.

Factor Treatment Description

Usability
Requirements
Elicitation
Method

T1: unstructured
interviews

Experimental subjects elicit
usability requirements through
unstructured interviews.

T2: UREM Experimental subjects elicit
usability requirements through
UREM

Table 3. Description of the factor and treatments

In the first treatment (T1), the analysts conduct the elicitation process
using interviews without any structure. This means that the analysts can
ask any question regarding the GUI design. Moreover, even though the
subjects playing the role of analysts know usability guidelines, there is
no recommendation system to suggest a specific design for enhancing
usability (as described in subsection 3.1).

In the second treatment (T2), the analysts use UREM as a method to
elicit usability requirements. The analysts must follow a question-
answer format based on the different alternatives specified in a decision
tree that is defined in advanced. This decision tree also suggests which
design alternative optimizes the usability based on usability guidelines.
The details of this treatment are described in subsection 3.2.

4.4. Response Variables and Metrics
Response variables are the values that are measured in the experiment
in order to study how the factors influence these variables [32]. Below,
we define a response variable for each research question (summary in
Table 4).

151

Response
Variables

Metrics Definition Research
Questions

Effectiveness
for usability
requirements
elicitation

Percentage of usability
requirements successfully
elicited .

Percentage (between 0% and 100%) of the usability
requirements included in the GUI prototype after the
interview that match the usability requirements of
the experimenters’ solution.

RQ1r

Effectiveness of
usability
guidelines

Percentage of usability
guidelines used correctly on
usability requirement
elicitation

The number of usability guidelines used correctly
divided by the total number of usability guidelines.

RQ1g

Efficiency for
usability
requirements
elicitation

Percentage of usability
requirements successfully
elicited /Time spent to
complete the usability
requirement elicitation process

Time is the amount of minutes that the analyst
requires to elicit usability requirements and design
the GUI prototype.

RQ2r

Analyst’s
Satisfaction

Perceived usefulness (PU), The addition of the questions that ask for PU on a
Likert scale

RQ3a

Perceived ease of use (PEOU) The addition of the questions that ask for PEOU on
a Likert scale

152

Intention to use (ITU) The addition of the questions that ask for ITU on a
Likert scale

End user’s
Satisfaction

 Computer System Usability
Questionnaire (CSUQ)

The addition of the questions of the CSUQ on a
Likert scale

RQ3e

Satisfaction with analyst’s
recommendations

One extra question in the CSUQ to ask about the
usefulness of the recommendations

Table 4. Response variables

153

For RQ1, Effectiveness is the response variable. This response variable
was divided into RQ1r to measure the effectiveness of eliciting
usability requirements and RQ1g to measure the effectiveness of the
usability recommendations provided by the guidelines. The metric for
RQ1r is calculated as the percentage of usability requirements that are
satisfied by the analyst in the GUI prototype built at the end of the
interview. For each experimental problem, there is a list of usability
requirements that the designed GUI in a prototype must include at the
end of the interview. This list is called experimenters’ solution since it
is defined by the experimenters (in this case, the authors of the article).
Possible values for Effectiveness fluctuate from 0% (no usability
requirement of the experimenters’ solution appears in the designed
GUI) to 100% (all of the usability requirements of the experimenters’
solution appear in the designed GUI). The metric for RQ1g is calculated
as the percentage of designs reached following the tree structure that
fits the recommendations provided by the usability guidelines. Possible
values fluctuate from 0% (there is no design that agrees with any
usability guidelines) to 100% (all of the designs agree with the usability
guidelines).

For RQ2r, Efficiency is the response variable. This response variable
is measured as the ratio percentage of usability requirements
successfully elicited by time spent by the analyst eliciting the usability
requirements and drawing the GUI prototype. The time is measured in
minutes. The larger efficiency, the better the efficiency.

For RQ3, Satisfaction is the response variable. This response variable
was divided into RQ3a to measure the analyst´s satisfaction and RQ3e
to measure the end user´s satisfaction. RQ3a was measured using the
MAM questionnaire developed by Moody [36]. Moody defined a
framework (based on the work by Lindland et al..[37]) to measure
satisfaction in terms of Perceived Usefulness (PU), Perceived Ease of
Use (PEOU), and Intention to Use (ITU). This framework has been
previously validated and is widely used [38]. Based on [36], we defined
eight questions to measure PU, five questions to measure PEOU, and
two questions to measure ITU. The questionnaire is based on a 5-point
Likert questionnaire with five possible answers: “Strongly Disagree”,

154

“Disagree”, “Undecided”, “Agree” and “Strongly Agree”. RQ3e is
based on the Computer System Usability Questionnaire (CSUQ) [59],
which is a 5-point Likert questionnaire that asks about the satisfaction
of the end user with the GUI. We have extended this questionnaire with
a specific statement to evaluate whether or not the recommendation
system was useful: “Are analyst’ recommendations useful to improve
the usability of the system?”. Table 5 shows a summary of the research
questions, hypotheses, response variables, and metrics used to test these
hypotheses.

Research
Questions

Hypotheses Response Variables Metrics

RQ1r H01r Effectiveness of usability
requirements elicitation

M1: Completeness

RQ1g H01g Effectiveness of usability
guidelines

M1: Correctness

RQ2r H02r Efficiency for usability
requirements elicitation

M2:Completeness/Time

RQ3a H03a Analyst Satisfaction M3A: PU, PEOU, ITU

RQ3e H03e End user Satisfaction M3E: CSUQ

Table 5. Summary of research questions, hypotheses, response variables, and metrics

4.5 Experimental Subjects

The subjects participating in the experiment were undergraduate
students in computer science from the Universidad Nacional de San
Antonio Abad del Cusco (UNSAAC, Perú). The computer science
students have previously taken software engineering courses with
enough knowledge about information systems. We selected 48
computer science students. Replication 1 (R1) was conducted with 22
undergraduate students and Replication 2 (R2) was conducted with 26
Master’s students. All of them played the role of analyst and the role of
end user. The subjects had previous knowledge of the unstructured
requirements elicitation method, but none knew anything about UREM.
We spent two hours training the subjects in UREM before conducting
the experiment. Apart from a theoretical description, the training

155

activity consisted of doing a brief exercise to navigate throughout the
decision tree in order to identify the different alternatives. The subjects
filled in demographic questionnaires before running the experiment in
order to characterize the population. Table summarize the main
characteristics of participants and their background.

None 1 month 1-3 months More than 3-12
months

More than 12
months

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

0 0 0 0 10 4 10 4 2 18

Table 6. Job experience at software development companies

Table 7. Types of jobs performed and the time duration of the job

Table 8. Experience with software development

Number of

students

Junior
Programmer

System
Analyst/Programmer

Lan
Technician

System
Manager

R1 R2 R1 R2 R1 R2 R1 R2

8 4 7 4 5 8 2 6

Duration

(months)

Avg. 6 6 12 24 18 24 18 24

Min 3 3 6 12 8 12 12 12

Max 12 6 36 36 36 36 24 36

Experience
with

I have never
heard of it

I have heard
of it

I have some
knowledge of it

I know it

 R1 R2 R1 R2 R1 R2 R1 R2

Usability 8 8 7 6 4 7 3 5
User Interfaces
design

4 2 11 8 4 11 3 5

Requirements
elicitation and
requirement
analysis

0 0 8 2 7 13 7 11

Requirements
elicitation
techniques

1 4 5 5 9 9 7 8

Requirements
elicitation
methods

2 6 4 10 9 5 7 5

156

Methods Name of method/technique
Number

R1 R2

Unstructured

Interview 20 26
Focus Group 8 12
Questionnaires 23 25
User stories 7 13
Other 5 12

Structured

Eyetracking 0 0
Remo 0 0
Reassure 0 0
Other 2 0

Table 9. Experience with elicitation methods

Table 7 focuses on development experience measured as the number of
months or years that the students have developed software in
companies. Most of the participants had work experience even though
they were students. Table 6 shows the type of job and the (average,
minimum, and maximum) time spent on that job. Table 8 shows their
previous experience with usability and requirements elicitation
methods. Only 8 persons had not heard of user interface design and only
5 persons had not heard of requirements elicitation techniques. Table 9
shows their previous experience with unstructured interviews and
structured methods. Most of the subjects had not worked with any
structured method before the experiment, and a few subjects had
worked with some method. The item “Other” gathers other options with
no agreement among the subjects. Our sample is representative of a
population of novice developers. Even though the use of students in
experiments limits the generalization of results, it is useful, depending
on the target of the experiment, as other works such as Falessi et al. [34]
claim. For this experiment, our objective is to compare subjects that
have knowledge in unstructured interviews with novice subjects who
have experience in structured interviews. At first glance, the structured
interview is at a disadvantage due to the absence of experience.
Therefore if the results are positive for the structured method, we can
conclude that the structured interview is better in spite of this
disadvantage. Other benefits of recruiting students are that they often
come at a lower cost and are more accessible because they are taking

157

courses at a university. Moreover, for the students, the experiment can
be viewed as a learning experience of technology or methods to be
evaluated.

4.6. Experiment Design

This section describes the within-subjects design (or repeated
measures) where the subjects play two different roles, one for each
treatment. We divided the group of subjects into pairs. For each pair,
we randomly assigned two roles: analyst and end user. These roles were
swapped for each treatment. We used two different problems (one for
each treatment) in order to avoid the carryover effect, so this is paired
design blocked by experimental objects [35]. Table shows the summary
of the design that was applied in both replications. In the first session,
all of the pairs worked with the unstructured method. Half of the pairs
were in a group named G1 and worked with Problem 1 (P1), while the
other half were in a group named G2 and worked with Problem 2 (P2).
In the second session, the subjects swapped their roles and all of the
pairs worked with UREM. G1 worked with P2 and G2 worked with P1.

 P1 P2
Session 1 Unstructured interview G1 G2
Session 2 UREM G2 G1

Table 10. Within-subjects design of the experiment

This design has the following advantages: 1) largest sample size
possible to analyze the data; 2) we avoid the learning effect; 3) the
problem is not confused with the treatments. The expected time
required to fulfill the user requirements defined in each treatment was
around 30 minutes. This value was defined taking into account two
factors: a previous pilot test, and the problem complexity.

The design avoids most of the threats:

- The experiment findings do not depend exclusively on one
problem (since we use two problems).

- The pairs cannot share their GUI prototypes with members of
other groups since all of the subjects work at the same time with
the same treatment.

158

- All of the subjects are used in both treatments, avoiding
variability among subjects.

- The context of the experiment in Session 1 is the same as in
Session 2.

 4.7 Experimental Object
In order to observe the effects produced by the two treatments (i.e.,
unstructured interview and UREM), we defined two problems to elicit
usability requirements, one for mobile health center (P1), and one for
mobile banking (P2). Both problems are in the context of mobile
applications. P1 aims to represent a system where users can login, list
the health services, query the schedule for attendance, make a new
appointment, and list the previous appointments. P2 aims to implement
a bank management application. The end user can log in and access the
bank services, such as bank accounts, location of cash dispensers,
access news, and language customization. The end user has a personal
section where she/he makes bank transfers, list credit cards, and update
personal data. Table 5 and Table respectively show the usability
requirements that the subjects that play the role of the client must
demand in the prototypes designed by the analyst. Even though these
lists are not exclusive for each type of problem, using a different list in
each problem allows us to validate different branches of the tree
structure. These requirements are known by the end user, and the
analyst must elicit them with interviews. When clients describe the
problem to analysts, they must consider all these requirements shown
in Table 5 and Table . The description of the problems in the same way
as they were distributed to the clients is shown in Appendix C.

N° Usability Requirements of List_Req1

1 The widgets must be self-descriptive to facilitate the understanding of
the requested data.

2 To avoid errors in data entry, helpful information should be displayed.
3 If the data entry is mandatory, the user should be notified.
4 To facilitate the data entry, the choices must be shown to the user.

Table 5. Mobile Health Center Requirement List

N° Usability Requirements of List_Req2
1 When inserting data, widgets must avoid errors.

159

2 Mandatory information must be clearly identified.
3 The system must help fix errors when they arise.
4 The system must offer actions to activate/deactivate pre-established

options.

Table 12. Mobile Banking Requirement List

4.8. Instrumentation

All the instruments used for running the experiment can be accessed in
a Zenodo repository [36]. Below, we describe all of them:

- Demographic questionnaires: The online questionnaires
gather information about the subjects’, experience using apps
or web applications, as well as their level of experience in
developing information systems. This questionnaire is shown
in Appendix A.

- Experimental object: Two problems make up the
experimental objects. We have an experimenters’ solution with
the usability requirements that the GUI must support. This
experimenters’ solution is shown in Appendix B. The list of
requirements shared with the end users to specify the system
required is shown in Appendix C

- Satisfaction questionnaires: The questionnaires measure the
analysts’ satisfaction and the end users’ satisfaction. Each
questionnaire has 15 questions in a 5-Likert scale format. These
questionnaires are shown in Appendix D.

- Spreadsheets: The spreadsheet is used to evaluate the metrics
of the experiment. These calculations were carried out by two
experts in usability engineering and measurement.

- Tool: This is the tool that supports UREM
(http://hci.dsic.upv.es/urem). This tool can guide the end user
through the design alternatives, recommending those
alternatives that optimize the usability. The tree with of the all
the questions, answers, and recommendations is shown in
Appendix E.

160

4.9 Experiment Procedure

This section describes the procedure used to conduct the experiment.
This procedure was executed twice, for the two replications R1 and R2).
The experimental process consists in interviews within a pair of
subjects. The procedure is strictly based on the experiment design
configuration shown in Figure 3. The procedure has been labelled with
numbers to explain each step. Before the experiment, we explained the
goals of the experiment to the experimental subjects as well as the role
they played in it. We also randomly created the two groups of subjects
(G1, G2). The diagram in Figure 3 summarizes the procedure. Each
number inside the circle represents the number of step that is
represented in the figure.

Figure 3. Summary of the experimental procedure

Below we describe the steps of Session 1, where unstructured
interviews is used.

Step 1. The subjects complete the demographic questionnaire. The
questions were the same for all of the experimental subjects
independently of their group and role.

UNSTRUCTURED – SESSION 1

UREM- SESSION 2

1 2

3

4

5

G1, G2 READ
PROBLEMS P1 AND P2

RESPECTIVELY

G1, G2 READ
PROBLEMS P2 AND
P1 RESPECTIVELY

DEMOGRAPHIC
QUESTIONNAIRES

TO SUBJECTS

G1 SOLVE P1

G2 SOLVE P2

G1 SOLVE P2

G2 SOLVE P1

FILL UNSTRUCTURED
SATISFACTION

QUESTIONNAIRES

DEFINE G1
AND G2

FILL UREM
SATISFACTION

QUESTIONNAIRES

6

7

8

161

Step 2. The experimenter divides all of the subjects into two groups (G1
and G2). The subjects play one role in each of the two sessions.

Step 3. The subjects that play the role of end users read the description
of the system (P1 or P2) and the list of the usability requirements that
the system must support.

Step 4. The subjects that play the role of analysts must use unstructured
interviews to elicit the usability requirements by interviewing the
subjects that play the role of end users. Through question-answers, the
analysts must draw a prototype of GUI that satisfies the usability
requirements for the specific problem.

Step 5. Once the analysts finish the GUI prototype, they complete a
satisfaction questionnaire to report their level of satisfaction during the
unstructured interview to elicit usability requirements. The end users
must complete a satisfaction questionnaire about the result of the
prototype. This questionnaire is used to determine whether or not the
prototype meets the end users expectations.

Below we describe the steps of Session 2, where UREM is used.

Step 6. The subjects that play the role of end users read the description
of the system (a different problem from the one used in Step 3) and the
list of the usability requirements that the system must support. The
experiment continues in the second session with UREM.

Step 7. The subjects that play the role of analysts must use UREM to
elicit the usability requirements by interviewing the subjects that play
the role of end users. Following the tree structure, the analysts ask each
question following the guide of the tree. The analysts must also
recommend the option that best optimizes the usability based on
suggestions of the tree. Afterwards, the analysts must draw a prototype
of a GUI that satisfies the usability requirements for the specific
problem.

Step 8.- Both the analysts and the end users complete the satisfaction
questionnaire in the same way as in Step 5, but specifically for UREM.

162

4.10 Data Analysis

Replications 1 and 2 respectively have 11 and 13 subjects playing the
role of analysts. This sample size is not large enough to apply a
parametric test. Therefore, when we analyze the replications separately,
we opt for a non-parametric test such as Mann-Withney. We consider
differences to be significant when the p-value is less than .05. When we
analyze Replication 1 and Replication 2 together, we have a large
enough sample size (24 subjects playing the role of analysts) to apply
the General Linear Model (GLM). There are two requirements for
applying a GLM test: homogeneity of the covariance matrices and
sphericity. Levene’s test is used to check the condition of homogeneity
of covariance matrices where the null hypothesis is that the observed
covariance matrices of the dependent variables should be equal across
groups [37-38]. All of the Levene’s test p-values were greater than 0.05.
Therefore, we cannot reject the null hypotheses of homogeneity of
covariance, which means that the premises of the statistical tests are met
in this regard. Mauchly’s test is used to check the sphericity condition.
In our case, however, there are only two treatments (unstructured
interviews and UREM). This precludes a sphericity violation [37], and
the test is unnecessary. We regard the differences between
treatments as being significant when the GLM p–value is less than
.05.

For variables with significant differences according to the GLM, we
calculated the degree of these differences using partial eta squared. The
partial eta squared results were interpreted as follows: Values of less
than 0.3 mean a significant, but weak, effect; values between 0.3 and
0.6 mean a moderate effect, and values greater than 0.6 mean a strong
effect. Statistical power is the probability of rejecting a false null
hypothesis. Statistical power is inversely related to beta or the
probability of making a type II error. In short, power = 1 – β. Power in
software engineering experiments tends to be low, e.g., Dyba et al. [39]
reports values of 0.39 for medium effect sizes and 0.63 for large effect
sizes. Low values of statistical power mean that non-significant results
could imply the acceptance of null hypotheses when they are false.
Therefore, we calculated the power to find out whether our results were

163

influenced by this widespread problem in software engineering. Note
that effect size and power cannot be calculated in non-parametric tests.

5. Results
First, we analyzed the data of each experiment separately using Mann-
Whitney as a non-parametric test. Second, we gathered the results using
a moderator variable named “Replication” to look for differences
between the two experiments. Replication 1 refers to the 22
undergraduate students and Replication 2 refers to the 26 Master’s
students (as described in Section 4.5). In the aggregation, apart from
analyzing the difference for Method, we looked for differences in the
Method*Problem and Method*Replication interactions. This test is
based on the GLM. Below, we analyze the results ordered by response
variable.

5.1 Effectiveness of Usability Requirements Elicitation

Table 13 shows the statistical results of Replication 1 and Replication
2 separately and both replications together. Replication 1 yielded
significant results for the method. The average for effectiveness in the
usability requirements elicitation was 78.18 for the unstructured
interview and 93.45 for UREM. Therefore, we conclude that UREM
yields better effectiveness for Replication 1. Even though Replication 2
did not present statistical differences, the p-value is very close to being
less than 0.05 (it is exactly 0.05). When analyzing the averages of
Replication 2, the unstructured interview was 71.01 and UREM was
86.61. Thus, there is a clear trend showing that UREM yields better
effectiveness in the requirements elicitation process.

Figure shows the box-plot analyzing the two replications together. The
first quartile, the median and the third quartile are clearly better for
UREM. When analyzing the data with GLM, we obtained a p-value of
.000 (Table 13), which means that UREM was statistically better than
the unstructured interview. The effect size (.274) yielded a weak effect,
and the power (.978) was enough to avoid rejecting the null hypothesis
for poor sample size. There are no significant differences in the
Method*Problem and Method*Replication interactions, which means

164

that the results do not depend on the problem used or the replication
where the experiment was conducted.

In conclusion, we reject H01r (the analyst effectiveness using UREM is
similar that using unstructured interviews.), since UREM yielded better
results than the unstructured interview.

 Rep. 1 Rep. 2 Both rep.

p-value Method .001 .05 .000

p-value
Method*Problem - - .195

p-value
Method*Replication - - .195

Effect size - - .274

Power - - .978

Table 13. Statistical results of effectiveness for usability
requirements elicitation

Figure 4. Box plot of effectiveness for usability requirements
elicitation with both replications

5.2 Effectiveness of Usability Guidelines

Table 6 shows the statistical results after applying the non-parametric
test and GLM to each replication alone and both replications together,
respectively. Both Replication 1 and Replication 2 yielded significant

165

results (p-value of .001 and .0001). In Replication 1, the average for the
effectiveness of the guidelines was 35.36 for the unstructured interview
and 62.72 for UREM. Replication 2 also showed a better average for
UREM (71.76) than the unstructured interview (33.76). Therefore, we
can state that, in both replications, UREM yields a design that better fits
the usability guidelines.
Figure 5 shows the box-plot of both replications together. The first
quartile, the median and the third quartile are better for UREM. When
analyzing the data with the GLM test, we obtained a p-value of .000
(Table 14), which means that UREM is statistically better than the
unstructured interview. The effect size of .571 means a moderate effect
and the power of 1 is very high, which ensures having enough sample
size to avoid rejecting the null hypothesis for a lack of sample. There
were no significant differences in the Method*Problem and
Method*Replication interactions, which means that results do not
depend on the problem used or the replication where the experiment
was conducted.
In conclusion, we reject H01g (the analyst effectiveness using usability
guidelines in UREM is similar to that of using unstructured interviews)
since UREM yields better results than the unstructured interview.

 Rep. 1 Rep. 2 Both rep.
p-value Method .001 .000 .000

p-value Method*Problem - - .05

p-value Method*Replication - - .05
Effect size - - .571

Power - - 1

Table 6. Statistical results of effectiveness for usability guidelines

1 We use only 3 decimals even though the statistical package works with
more.

166

Figure 5. Box plot of effectiveness for usability guidelines with both replications

5.3 Efficiency for Usability Requirements Elicitation

Table 15 shows the statistical results of Replication 1 and Replication
2 separately and both replications together. Replication 1 shows a
significant result with a p-value of .018 while Replication 2 shows no
significant results with a p-value of .489. In Replication 1 the average
was .953 for the unstructured interview and 1.34 for UREM. In
Replication 2, the average was 0.998 and .886 respectively. The results
are contradictory in both replications, but the differences are so slight
that we cannot draw conclusions.

Figure 6 shows the box-plot of efficiency aggregating both replications.
The median, the first quartile, and the third quartile are slightly better
for UREM. Although these differences are not strong, UREM shows a
trend with a better efficiency. The GLM test showed no significant
results (p-value .220), with a power of .230, which is low. A larger
sample size may produce some significant differences between
treatments. Both the Method*Problem and Method*Replication
replications yielded significant differences. This means that there is a
specific problem and a specific replication that affects the result. To
analyze this idea, in Figure 7 we show profile plots of both interactions.
Figure 7 a) shows that the Bank Problem (P2) is better in UREM. Figure
7 b) shows that Replication 1 is better for UREM.

167

In conclusion, we cannot reject H02r (the analyst efficiency using
UREM is similar to that of using unstructured interviews), so there are
no differences between the unstructured interview and UREM.

 Rep. 1 Rep. 2 Both-rep.

p-value Method .018 .489 .220

p-value
Method*Problem - - .021

p-value
Method*Replication

- - .021

Effect size - - -

Power - - .230

Table 7. Statistical results of efficiency

Figure 6. Box plot of efficiency

168

Figure 7. a) profile plot of Method*Problem. b) profile plot of Method*Replication

5.4 Analyst Satisfaction

Analyst satisfaction was measured using three different metrics:
Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and
Intention to Use (ITU). When analyzing the p-values of each replication
separately (Table 8), only PEOU yielded significant results in
Replication 1 (p-value was .028). The average in this case was 16 for
the unstructured interview and 13.63 for UREM, so the subjects
perceived the unstructured interview being as easier to use. The other
averages were: PU in Replication 1: 30.18 in the unstructured interview
and 25.9 in UREM; ITU in Replication 1: 10.81 in the unstructured
interview and 9.81 in UREM; PU in Replication 2: 29.46 in the
unstructured interview and 28.76 in UREM; PEOU in Replication 2:
15.07 in the unstructured interview and 14.69 in UREM; ITU in

169

Replication 2: 10.15 in the unstructured interview and 10.23 in UREM.
Note that most of the results yielded slightly better satisfaction for the
unstructured interview, but this difference was not significant.

Figure show the box plot of the two replications together for PU,
PEOU, and ITU, respectively. PU and ITU yielded the same median for
both treatments. In the case of PEOU, the median was slightly better for
the unstructured interview. For the three metrics (PU, PEOU, and ITU),
the third quartile was very similar for both treatments, but the first
quartile was better for the unstructured interview. The statistical test of
the GLM did not yield significant differences for any metric (all p-
values were higher than .05) and there were no differences for
Method*Problem and Method*Replication interactions. The statistical
power was low in the three metrics, so significant differences may
appear in a larger sample size.

 Rep. 1 Rep. 2 Both rep.

p-value Method .065 1 .128
p-value

Method*Problem - - .434

p-value
Method*Replication - - .434

Effect size - - -
Power - - .330

Table 8. Statistical results of PU

Figure 8. Box plot of PU

170

 Rep. 1 Rep. 2 Both rep.

p-value Method .028 1 .141

p-value
Method*Problem - - .561

p-value
Method*Replication - - .561

Effect size - - -

Power - - .311

Table 9. Statistical results of PEOU

Figure 9. Box plot of efficiency

 Rep. 1 Rep. 2 Both rep.

p-value Method .193 .579 .429

p-value
Method*Problem - - .636

p-value
Method*Replication - - .636

Effect size - - -

Power - - .122

Table 10. Statistical results of ITU

171

Figure 10. Box plot of efficiency

In conclusion, we can only reject H03a (The analyst satisfaction using
UREM is similar to that of using unstructured interviews) for the
metric PEOU in Replication 1, where the unstructured interview
yields a better satisfaction level. The other metrics did not present
significant differences in each replication separately or together.

5.5 End User Satisfaction

End user satisfaction is measured using two metrics: the CSUQ
questionnaire and the satisfaction of the end user with the
recommendation offered by the analyst to improve usability. The p-
values of each replication individually were higher than .05 (Table 19
and Table 11), so there were no significant differences between
treatments in any replication. The average of CSUQ in Replication 1
was 70.72 for the unstructured interview and 75.81 for UREM. In
Replication 2 the average was 78.23 for the unstructured interview and
66.46 for UREM. The median of satisfaction with the recommendations
to improve the usability in Replication 1 was 4 for both the unstructured
interview and UREM. In Replication 2, it was also 4 for both the
unstructured interview and UREM. All of this descriptive data does not
yield any conclusion in the differences between the two treatments.

Figure 1119 show the box plot of the two replications together for the
CSUQ questionnaire and the end user satisfaction with the
recommendations to improve usability. The medians in both plots were
similar. The first quartile was slightly better for the unstructured
interview in both metrics. The third quartile was better for the

172

unstructured interview in the CSUQ metric, while the third quartile does
not present differences in the metric of satisfaction with the
recommendations. The statistical test did not yield significant
differences for any metric (all p-values were higher than .05), and there
were no differences for Method*Problem and Method*Replication
interactions.

In conclusion, we cannot reject H03e (the end user satisfaction using
UREM is similar to that of using unstructured interviews), so there were
no differences between treatments in terms of satisfaction with the
recommendations to improve usability. Table 21 summarizes the results
of the statistical tests for all of the hypotheses.

 Rep. 1 Rep. 2 Both rep.

p-value Method .151 .153 .426

p-value
Method*Problem - - .136

p-value
Method*Replication - - .136

Effect size - - -

Power - - .123

Table 19. Statistical results of CSUQ questionnaire

Figure 1119. Box plot of CSUQ questionnaire

173

 Rep. 1 Rep. 2 Both rep.

p-value Method .562 .287 .504

p-value
Method*Problem - - .396

p-value
Method*Replication - - .396

Effect size - - -

Power - - .101

Table 11. Statistical results of end user satisfaction with the
recommendations

Figure 12. Box plot of end user satisfaction with the recommendations

174

Hypotheses Results

H01r
Effectiveness of usability requirements elicitation is
significantly better for UREM

H01g Effectiveness of usability guidelines is significantly better for
UREM

H02r Efficiency for usability requirements elicitation is the same for
UREM and the unstructured interview

H03a Analyst Satisfaction is the same for UREM and the unstructured
interview

H03e End user Satisfaction is the same for UREM and the
unstructured interview

Table 12. Summary of the results.

5.6 Usability Requirements Problems and Usability
Guidelines Compliance

Next, we describe the actual results in terms of usability requirements
problems and level of compliance with usability guidelines found
during the experimentation. Figure 13.a and b show the percentage of
usability requirements used in the experiment that are successfully
elicited in P1 and P2 respectively. These requirements were defined in
Table 5 and Table and used to measure the response variable
Effectiveness for usability requirements elicitation. Both plots show
that UREM obtains a better percentage than the Unstructured method.
If we focus on UREM for P1, the lowest effectiveness is for “Display
different choices” since several prototypes did not show all the menu
options by default. “Helpful information” is around 85% since most
prototypes included helpful information to describe the options and
actions that each interface offers. “Notification of mandatory data” and
"Self-descriptive widgets” are close to 100%. Almost all interfaces
included self-descriptive widgets and identified the mandatory widgets
to fill in. If we focus on UREM for P2, the lowest level is for “Avoid
errors”. A few interfaces did not include a list of enumerated options to
avoid errors. “Flexibility to activate/deactivate” is around 85%, which
means that most interfaces included options to modify the default
options; for example, the date of today, or your current position to look

175

for the closest bank to extract money. “Help to fix errors” and
“Notification of mandatory data” are close to 100%. Most interfaces
included messages to guide the end-user when an error arises, and
mandatory data is clearly identified in the interfaces. Note that, even
though the requirements are the same for both P1 and P2, UREM yields
better effectiveness in the usability requirements elicitation.

Figure 13. a) Percentage of usability requirements correctly elicited in P1.
b) Percentage of usability requirements correctly elicited in P2

Figure 14 shows the percentage of usability guidelines that are satisfied
in P1. These usability guidelines are the ones used to build the tree
structure used in the experiment (Appendix B). The percentage of
agreement with usability guidelines is used in the experiment to
measure the response variable Effectiveness of usability guidelines.
Note that there is a large difference between UREM and Unstructured
method for “Use a dialogbox to show error message”, “Use asterisk for
mandatory fields”, “Use alternative text for textfields”, and “Use
dropdown for a menu with several options”. In the Unstructured

0 20 40 60 80 100

SELF-DESCRIPTIVE WIDGETS

HELPFUL INFORMATION

NOTIFICATION OF MANDATORY
DATA

DISPLAY DIFFERENT CHOICES

UREM Unstructured

0 20 40 60 80 100

AVOID ERRORS

NOTIFICATION OF MANDATORY DATA

HELP TO FIX ERRORS

FLEXIBILITY TO ACTIVATE/DEACTIVATE
DEFAULT OPTIONS

UREM Unstructured

176

method, most prototypes did not specify the mechanisms to notify about
errors. Moreover, they used the red color or a bold font to highlight the
mandatory data (instead of an asterisk). Almost no interface used
alternative text for textfields. Menus with several options were designed
mainly with a list (instead of a dropdown). The level of agreement with
usability guidelines improves when using UREM. All the guidelines are
larger than 65% except for “Use dropdown for the menu with several
options”. Even though the tree structure recommended the use of a
dropdown, several clients preferred a design with all the items in the
interface without a dropdown.

Figure 14. Percentage of usability guidelines satisfied in P1

Figure 15 shows the percentage of usability guidelines satisfied in P2
both with UREM and with the Unstructured method. Note that there are
usability guidelines around 0% with the Unstructured method: “Use text
and icon for help actions”, “Use a dialogbox to show error message”,
and “Use alternative text for textfields”. Even though many subjects
used text to describe actions, a few of them complemented the text with
an icon. Moreover, as in P1, a few prototypes included dialogboxes to
show errors messages and a few prototypes used alternative text for
textfields. The guidelines “Use asterisk for mandatory fields” and “Use
dropdown for a menu with several options” show a value of around
20%. This is because mandatory fields are represented in red color or
bold and menus with several options are displayed with items without
dropdown. On the contrary, some guidelines are very similar between

177

UREM and the Unstructured method: “Use the whole screen to select
the different options”, and “Use a vertical list”. Subjects tend to use all
the size of the screen to design the interface, and lists are always shown
in vertically. If we analyze the results for UREM, all values of
agreement with usability guidelines improve. The only guideline that is
below 65% is “Use dropdown for a menu with several options”. This
shows that even though UREM recommends usability guidelines, the
results of the design are not 100% compliant with usability guidelines.
The client chooses between applying the usability guidelines or any
other alternative she/he prefers.

Figure 15. Percentage of usability guidelines satisfied in P2

6. Discussion
This section discusses the results, looking for justifications for the data
and comparing the outcomes with previous existing empirical works.
We analyze the results for each hypothesis. H01r yields significant
differences, where UREM presents better effectiveness in the
requirements elicitation process. Since effectiveness is defined as the
percentage of usability requirements successfully elicited, this means
that working with UREM helps the analyst identify successfully more
usability requirements than an unstructured interview does. These
differences arise in Replication 1 and when both replications are
aggregated, but it does not appear in Replication 2. This may be due to
the low sample size if we analyze replications individually. The

178

descriptive data in Replication 2 shows a trend of more effectiveness of
UREM than the unstructured interviews. Note that the previous
experience of the subjects was mainly in unstructured interviews (Table
7), and only two subjects had experience in structured interviews. Even
though the experience in the two treatments is so unbalanced, the
effectiveness with UREM (a structured method) is clearly better when
a short training is provided before the experiment. This result aligns
with previous works in the literature, which state that structured
interviews are the most effective elicitation techniques in a wide range
of domains and situations [40-41].
H01g also yields significant differences, where UREM shows better
effectiveness applying usability guidelines. This means that analysts
working with UREM are more compliant with usability guidelines than
analysts working with the unstructured interview. Note that the use of
UREM does not ensure the support of usability guidelines in the GUI
designs. UREM suggests which design alternative is the one that best
fits the usability requirements. However, the choice of the final design
depends on the agreement between the analyst and the end user, and
this choice may be different from the one suggested by UREM. Based
on these results, we can state that most analysts agreed to accept the
suggestions of the UREM method to improve usability. Median for the
effectiveness of usability guidelines (Figure 5) is 70%. This means that
even using UREM, some subjects did not follow the usability
suggestions. Note that the subjects that were recruited in the experiment
had experience in the requirements elicitation process but only half of
them had experience with usability (Table 8). Even though their
experience in usability is not high, the designed GUI are compliant with
the usability guidelines. This means that UREM helps design usable
interfaces even when the analyst is not an expert in usability guidelines.
There are previous works that have classified the different usability
guidelines, reporting advantages and describing how to deal with the
guidelines [42]. To our knowledge, there are no previous works that
structure the information of the guidelines in a tree structure as a
helping guide during the requirements elicitation process. UREM
provides a clear contribution to the field of usability guidelines
assistance.

179

H02r does not yield significant differences between UREM and the
unstructured interview. Differences only appear in Replication 1.
Moreover, if we analyze the descriptive data after aggregating both
replications, we see that the averages are very similar between UREM
and the unstructured interview. This means that, even though the use of
UREM could lead to an increase in the required time, the data shows
that this increase in time is not real. The efficiency needed to navigate
throughout the tree structure is the same as the efficiency needed to
conduct an unstructured interview. This conclusion may be biased by
the size of the tree, but, in our experiment, we are not working with a
small tree. This may reduce the effort required by the analyst for the
navigation. The whole tree is shown in Appendix E. This result
contradicts the conclusions of other previous works, which state that
structured interviews such as JAD require more effort than unstructured
ones such as Brainstorming [43]. The statistical power is low, so to be
completely sure that significant differences in terms of efficiency do not
arise between the two treatments, we need a larger sample size. In this
hypothesis, we identified two interactions as being significant:
Method*Problem and Method*Replication. The differences between
UREM and the unstructured interview are more evident in P2 (bank)
than in P1 (health center). UREM required more time in P1, which
reduced the efficiency. The subjects who were recruited for the
experiment may have had more experience in interaction with banking
systems, so the effort spent for each treatment was low in this problem
because the analysts could have had a possible prototype in mind for
this type of system. A health center application is usually used with less
frequency than a banking application. This may have led to requiring
more effort to elicit the requirements, which may highlight the
difference in efficiency between the treatments. With regard to the
Method*Replication interaction, the difference between treatments is
more evident in Replication 1. This could be due to the profile of the
subjects of that replication; they are undergraduate students with low
experience in software development companies (Table 6). This result
together with the significant result for efficiency in Replication 1 leads
to thinking that UREM shows a better efficiency in a context with low
professional experience.

180

H03a yields significant differences for the PEOU metric in Replication
1. When analyzing the box plot of the two replications together, there
is a trend where the unstructured interview obtains a better satisfaction.
The low power may justify that this significant difference is not present
when the two replications are aggregated together. Since the significant
result focuses only on one replication, general conclusions cannot be
drawn. Note that most of the subjects have experience in the area of
software development (Table 8), and they have a good background with
unstructured interviews (Table 10). Despite this advantage for the
unstructured interview compared with UREM, the subjects do not have
a clear preference for either method. To the authors knowledge, there
are no previous works that have experimentally evaluated how the
structured interviews may affect the analysts’ satisfaction. This lack of
empirical works may be because satisfaction is a broad term with
several perspectives. For example, the work of Elrakaiby et al.[44]
states that satisfaction depends on motivation, relevance of the
realization, and relevance of the statement,. All of these characteristics
are difficult to control in an empirical evaluation.
H03e does not yield significant differences between UREM and the
unstructured interview. This means that from the point of view of the
end user, there is no difference between the two treatments. Even
though the usability requirements are elicited with more effectiveness
using UREM, the end users are no more satisfied with the designed
GUI. Previous works in the literature state that there is a relationship
between usability features supported by the system and end user
satisfaction [45]. Note that the statistical power is very low in both
metrics that analyze the hypothesis; it is possible that some significant
differences may arise with a larger sample size. Moreover, the designed
GUI are only some parts of the system; the analysts did not design the
whole system. An experiment involving more types of interfaces with
more complexity might help to find differences between the treatments.
We plan to replicate the experiment with a larger sample size and with
more complex problems in order to analyze in detail how the use of
UREM affects the end user’s satisfaction.
As conclusions of our analysis, we can state that UREM helps to
improve the effectiveness of the usability requirements elicitation
process. Moreover, UREM helps the inclusion of usability guidelines

181

in designs even though the analysts that make the design are not experts
in usability. These advantages do not involve a loss of efficiency in the
requirements elicitation process and GUI design.

7. Threats to Validity
We have classified the threats to validity of our experiment based on
the classification provided by Wohlin [46]. We described each type of
threat as: avoided, incurred, and mitigated.
Conclusion validity. This threat is concerned with issues that affect the
ability to draw the correct conclusions about relationships between the
treatment and the outcome. Threats of this type are: 1) Low statistical
power: This appears when the sample size is low. After the aggregation
of both replications, we obtain enough statistical power for response
variables that are related to effectiveness. However, efficiency, analyst
satisfaction and end user satisfaction is affected by this threat due to
low power. 2) Violated assumptions of statistical tests: GLM has some
assumptions that must be satisfied in order to conduct the test. We
avoided this threat since the aggregation of both replications satisfies
all of these assumptions. 3) Fishing: This appears when experimenters
are looking for a specific result. Even though one experimenter was the
designer of UREM, the other two experimenters that participated in the
design and interpretation of the results were not the authors of UREM.
Therefore, this threat was mitigated. 4) Reliability of measures: This
appears when measures have errors due to problems with instruments.
We mitigated this threat by conducting a pilot study with two subjects
before conducting the real experiment. This helped to check all of the
experimental artefacts. 5) Reliability of treatment implementation:
There is a risk that the implementation is not similar between different
replications. We mitigated this threat since the experimenter who
described the treatments and conducted the experiment was the same in
both replications. It is also possible that end users describe the usability
requirements wrongly, and this may affect RQ1r and RQ1g. This is
mitigated because both treatments suffer this threat, so it should not
affect positively or negatively a specific treatment. 6) Random
heterogeneity of subjects: This appears when the sample size is too
heterogeneous, and this variation is larger than the variation produced

182

by the treatment. Subjects of R2 (Master’s students) have more job
experience than subjects of R1 (undergraduate students). Since we
analyze each replication individually, we can analyze whether or not
there are differences between both profiles.
Internal validity. This threat is concerned with influences that may
affect the dependent variable with respect to a causality which the
researchers are unaware of. Threats of this type that may appear are: 1)
History: This appears when the treatments are applied at different
moments. Our experiment was affected since unstructured interviews
and UREM are applied in different sessions. Even though we tried to
maintain the same context and conditions, we cannot ensure that the
different moment of each session did not affect the results. 2)
Maturation: This appears when the subjects react differently as time
pass. We mitigated this threat by conducting each session in a
maximum of one hour. This was to avoid boredom and fatigue. 3)
Instrumentation: This appears when the instruments used in the
experiment may affect the results. This threat was mitigated since the
satisfaction questionnaires were validated previously. The analyst
satisfaction questionnaire is based on the TAM by Davis [60] while the
end user satisfaction is based on the CSUQ [59]. 4) Selection: How the
subjects are recruited may affect the results. In our experiment, the
participants participated as part of a course. The participation in the
experiment was not mandatory, but it gave the participants extra credit
in the course. This may lead to subjects being over motivated, which
may result in a threat. 5) Mortality: This appears when the subjects
abandon the experiment before finishing. We avoided this threat since
no subject left the experiment. 6) Compensatory rivalry: This appears
when the subjects receive different treatments. We avoided this threat
since all of the subjects received both treatments and all of the subjects
played both roles (analyst and end user). 7) Differences between roles:
playing the role of the analyst can be easier than playing the role of the
end-user. When subjects play the role of the analyst, they act with the
role that their course is preparing for. This may lead to more motivated
subjects when they play the role of the analyst. We have mitigated this
threat by swapping the roles between both treatments.
Construct validity. This threat is concerned with generalizing the
results of the experiment to the concept or theory behind the

183

experiment. Threats of this type that our family of experiments may be
open to are: 1) Inadequate preoperational explication of constructs:
This appears when the theory behind the treatment has not been
sufficiently defined. We avoided this threat since the UREM method
had a proper definition before conducting the experiment. 2) Mono-
operation bias: This appears when experiments with only one factor
may under-represent the construct. We mitigated this threat by
analyzing the interaction of the method with the problem and the
replication. This was to look for differences due to context or problem
complexity. 3) Mono-method bias: This appears when a simple type of
metrics is used. We mitigated this threat since the analyst satisfaction
and end user satisfaction depend on more than one metric. However,
the effectiveness of usability requirements elicitation, the effectiveness
of usability guidelines, and efficiency were affected by this threat. 4)
Problem homogeneity: This appears when experimental problems are
too homogeneous to generalize the results to other problems. We
mitigated this threat by choosing problems from different domains.
External validity. This threat is concerned with conditions that limit
the ability to generalize the results of experiments to industrial practice.
Threats of this type are: 1) Interaction of selection and treatment: This
appears when the subjects are not representative of the population that
we want to generalize. We mitigated this threat since, even though the
subjects were students, they had previous experience in real software
development projects. 2) Interaction of setting and treatment: This
appears when the experimental setting or the material are not
representative of our target of study. We mitigated this threat since the
usability requirements and the problems were aligned with the context
where UREM is used. 3) Interaction of history and treatment: this
appears when the experiment is conducted at a special time that may
affect the results. Our experiment was affected by this threat since each
replication was conducted on different days. 4) Interaction between
research questions: this appears when there is a correlation between
research questions. The experiment suffers this threat since RQ2r might
be somehow correlated to RQ1r. The fewer usability requirements
satisfied by the analyst, the shorter the time required to define them.

184

8. Conclusions
This article presents an empirical experiment that compares structured
interviews with unstructured interviews in order to elicit usability
requirements. Structured interviews are operationalized as UREM,
which is a method based on a decision tree where the analyst guides the
interview by navigating throughout the tree structure. Each branch of
the tree includes a question for the end user with possible answers.
Moreover, the answer that is more compliant with existing usability
guidelines is recommended. In the unstructured interview method, the
analyst must elicit usability requirements without any guide. In this
work, this control treatment is referred to as unstructured interview. The
evaluation is conducted to analyze four response variables:
effectiveness in the usability requirements elicitation; effectiveness in
the application of usability guidelines; efficiency; the analyst’s
satisfaction; the end user’s satisfaction. As significant results, UREM
is more effective in the usability requirements elicitation and also more
effective in designing interfaces that are compliant with usability
guidelines.
Note that even though the recruited subjects are students, a large
percentage of them have experience in real software development
companies. Therefore, the results could be generalizable to any person
with some type of experience in software development, not just
students. The experiment was conducted with two different problems,
so the results are not associated to a single problem. This also facilitates
the generalization of results.
Some lessons have been learned during the conduction of the
experiment: 1) The effort to build the tree in UREM is high. This is
something that was not analyzed in the experiment, but the required
effort is not null. Note that this effort can be recovered; the same tree
structure is useful for any future development; 2) The recommendations
during the tree structure navigation may be different depending on the
usability guidelines used to build the tree. Even though most usability
guidelines agree on the characteristics that optimize usability, there are
some guidelines that may present some contradictions. In the end, the
expert at usability that builds the tree structure is the one who chooses
the most suitable usability guidelines for the recommendations; 3) Most

185

of the end users accepted the usability recommendations. This value
may have been different if the subjects had had more experience in
usability characteristics. Other experiments can be conducted to
determine how the level of experience may affect the results. 4) Due to
the structure of questions, UREM may leave no room for discovering
designs not included as alternatives in the tree structure.
As future work, we plan to replicate the experiment in order to enhance
the sample size. Some response variables such as the analyst’
satisfaction and the end user’ satisfaction have a low statistical power.
With a larger sample size we may be able to identify more significant
differences for these response variables. Moreover, we aim to analyze
more factors, such as previous experience in usability concepts and the
complexity of the problems. In a future validation of UREM, we plan
to include other metrics such as creativity when the tree structure is built
and when it is used in the interviews; qualitative analysis of how
designers perceive the use of UREM; need of training for the method;
overall appreciation of the guidance provided; reusability in multiple
contexts of use; perception of the time and effort necessary to prepare
the tree structure; and flexibility to run the method. We also plan to
compare UREM with other structured interview methods.

Acknowledgements

This work was developed with the support of the National University
of San Antonio Abad of Cusco under the program Yachayninchis
Wiñarinanpaq CONCYTEC and FONDECYT, the support of
Generalitat Valenciana with CoMoDID (CIPROM/2021/023) and
GENI (CIAICO/2022/229), as well as the support of the Spanish
Ministry of Science and Innovation co-financed by FEDER in the
project SREC (PID2021-123824OB-I00)

186

References

1. M. Rajanen and N. Livari, "Usability cost-benefit analysis: How

usability became a curse word?," pp. 511-524, 2007.
2. D. Quiñones, C. Rusu, and V. Rusu, "A methodology to develop

usability/user experience heuristics," Computer standards &
interfaces, vol. 59, pp. 109-129, 2018.

3. ISO, ISO 9241-11: Ergonomic requirements for office work with
visual display terminals (VDTs): Part 11: Guidance on usability,
1998.

4. ISO/IEC, "ISO / IEC 25010 : 2011 Systems and software
engineering@ Systems and software Quality Requirements and
Evaluation (SQuaRE)@ System and software quality models,"
2013.

5. H. A. Hutahaean, R. Govindaraju, and I. Sudirman, "Identifying
Usability Risks for Mobile Application," in Proceedings of the
International Conference on Engineering and Information
Technology for Sustainable Industry, Tangerang, Indonesia, pp. 1-
6, 2021.

6. E. M. Rey, V. M. Bonillo, and D. A. Ríos, "Session details: Theme:
Software design and development: UE - Usability engineering
track," in Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, Limassol, Cyprus, 2019.

7. Y. I. Ormeño, J. I. Panach, N. Condori-Fernández, and Ó. Pastor,
"Towards a proposal to capture usability requirements through
guidelines," in Proceedings of the IEEE 7th International
Conference on Research Challenges in Information Science
(RCIS), pp. 1-12, 2013.

8. J. Nielsen, Usability Engineering: Morgan Kaufmann, 1993.
9. M. J. Muller, "Participatory design: the third space in HCI," in The

human-computer interaction handbook: fundamentals, evolving
technologies and emerging applications, ed: L. Erlbaum Associates
Inc., pp. 1051–1068, 2002.

10. K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic
mapping studies in software engineering," in EASE, pp. 68–77,
2008.

11. F. Gunduz and A. S. K. Pathan, "Usability improvements for touch-
screen mobile flight booking application: A case study," in
Proceedings of the International Conference on Advanced
Computer Science Applications and Technologies, ACSAT 2012,
pp. 49-54, 2012.

187

12. O. D. Troyer and E. Janssens, "A feature modeling approach for
domain-specific requirement elicitation," in Proceedings of the
IEEE 4th International Workshop on Requirements Patterns
(RePa), pp. 17-24, 2014.

13. P. Fahey, C. Harney, S. Kesavan, A. McMahon, L. McQuaid, and
B. Kane, "Human computer interaction issues in eliciting user
requirements for an Electronic Patient Record with multiple users,"
in Proceedings of the 24th International Symposium on Computer-
Based Medical Systems (CBMS), pp. 1-6, 2011.

14. M. Temper, S. Tjoa, and M. Kaiser, "Touch to authenticate—
Continuous biometric authentication on mobile devices," in
Proceedings of the 1st International Conference on Software
Security and Assurance (ICSSA), pp. 30-35, 2015.

15. T. Rocha Silva, M. Winckler, and C. Bach, "Evaluating the usage
of predefined interactive behaviors for writing user stories: an
empirical study with potential product owners," Cognition,
Technology & Work, vol. 22, pp. 437-457, 2020.

16. E. A. De Carvalho, A. Jatobá, and P. V. R. De Carvalho, "Usability
for complex systems?: An experimental evaluation with functional
resonance analysis method," in Proceedings of the 18th Brazilian
Symposium on Human Factors in Computing Systems (IHC), pp. 1-
4, 2019.

17. J. A. Nhavoto, Å. Grönlund, and W. P. Chaquilla, "SMSaúde:
Design, development, and implementation of a remote/mobile
patient management system to improve retention in care for
HIV/aids and tuberculosis patients," JMIR mHealth and uHealth,
vol. 3, 2015.

18. E. Elias, D. Miquilino, I. I. Bittencourt, T. Tenório, R. Ferreira, A.
Silva, S. Isotani, and P. Jaques, "Towards an ontology-based
system to improve usability in collaborative learning
environments," in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) vol. 7315 LNCS, ed, 2012, pp. 298-303.

19. X. Yuan and X. Zhang, "An ontology-based requirement modeling
for interactive software customization," in Proceedings of the IEEE
International Model-Driven Requirements Engineering Workshop
(MoDRE), pp. 1-10, 2015.

20. Z. S. H. Abad, S. Moazzam, C. Lo, T. Lan, E. Frroku, and H. Kim,
"Loud and Interactive Paper Prototyping in Requirements
Elicitation: What is it Good for?," in Proceedings of the IEEE 7th
International Workshop on Empirical Requirements Engineering
(EmpiRE), pp. 16-23, 2018.

188

21. G. Márquez and C. Taramasco, "Using Dissemination and
Implementation Strategies to Evaluate Requirement Elicitation
Guidelines: A Case Study in a Bed Management System," IEEE
Access, vol. 8, pp. 145787-145802, 2020.

22. S. Tiwari, S. S. Rathore, and A. Gupta, "Selecting requirement
elicitation techniques for software projects," pp. 1-10, 2012.

23. A. Abdallah, R. Hassan, and M. A. Azim, "Quantified extreme
scenario based design approach," in Proceedings of the ACM
Symposium on Applied Computing, pp. 1117-1122, 2013.

24. G. Vitiello, R. Francese, M. Sebillo, G. Tortora, and M. Tucci,
"UX-requirements for patient's empowerment - The case of
multiple pharmacological treatments: A case study of it support to
chronic disease management," in Proceedings of the IEEE 25th
International Requirements Engineering Conference Workshops,
REW 2017, pp. 139-145, 2017.

25. Y. Tanikawa, R. Okubo, and S. Fukuzumi, "Process support
method for improved user experience," NEC Technical Journal,
vol. 8, pp. 28-32, 2014.

26. Z. S. H. Abad, S. D. V. Sims, A. Cheema, M. B. Nasir, and P.
Harisinghani, "Learn More, Pay Less! Lessons Learned from
Applying the Wizard-of-Oz Technique for Exploring Mobile App
Requirements," in Proceedings of the IEEE 25th International
Requirements Engineering Conference Workshops (REW), pp.
132-138, 2017.

27. M. Peruzzini and M. Germani, "Designing a user-centred ICT
platform for active aging," in Proceedings of the IEEE/ASME 10th
International Conference on Mechatronic and Embedded Systems
and Applications (MESA), pp. 1-6, 2014.

28. H. Takeshi and F. Shin'ichi, "Applying human-centered design
process to SystemDirector Enterprise development methodology,"
NEC Technical Journal, vol. 3, pp. 12-16, 2008.

29. S. Sharma and S. Pandey, "Revisiting Requirements Elicitation
Techniques," International Journal of Computer Applications, vol.
75, pp. 35-39, 2013.

30. T. R. Gruber, C. Baudin, J. H. Boose, and J. Webber, "Design
Rationale Capture as Knowledge Acquisition," in ML Workshop,
1991.

31. C. Martinie, P. Palanque, M. Winckler, and S. Conversy,
"DREAMER: a design rationale environment for argumentation,
modeling and engineering requirements," in Proceedings of the
28th ACM International Conference on Design of Communication,
São Carlos, São Paulo, Brazil, pp. 73–80, 2010.

189

32. N. Juristo and A. M. Moreno, Basics of software engineering
experimentation: Springer Science & Business Media, 2013.

33. J. R. Lewis, "IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use," International
Journal of Human‐Computer Interaction, vol. 7, pp. 57-78, 1995.

34. D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A.
Jedlitschka, and M. Oivo, "Empirical software engineering experts
on the use of students and professionals in experiments," Empirical
Software Engineering, vol. 23, pp. 452-489, 2018.

35. N. Juristo and A. Moreno, Basics of Software Engineering
Experimentation: Springer, 2001.

36. Y. Ormeño, J. I. Panach, and Ó. Pastor, "Experimental material of
the article "An Empirical Experiment of a Usability Requirements
Elicitation Method based on Interviews"," Z.
https://doi.org/10.5281/zenodo.7646554, 2023.

37. L. S. Meyers, "Applied multivariate research : design and
interpretation," G. Gamst and A. J. Guarino, Eds. Thousand Oaks :
Sage Publications, 2006.

38. L. S. Meyers, G. Gamst, and A. J. Guarino, Applied multivariate
research: Design and interpretation: Sage publications, 2016.

39. T. Dybå, V. B. Kampenes, and D. I. Sjøberg, "A systematic review
of statistical power in software engineering experiments,"
Information and Software Technology, vol. 48, pp. 745-755, 2006.

40. A. M. Davis, Ó. D. Tubío, A. M. Hickey, N. J. Juzgado, and A. M.
Moreno, "Effectiveness of Requirements Elicitation Techniques:
Empirical Results Derived from a Systematic Review," in
Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE'06), pp. 179-188, 2006.

41. N. Bahurmuz, R. Alnajim, R. Al-Mutairi, Z. Al-Shingiti, F. Saleem,
and B. Fakieh, "Requirements Elicitation Techniques in Mobile
Applications: A Systematic Literature Review," International
Journal of Information Technology Project Management (IJITPM),
vol. 12, pp. 1-18, 2021.

42. M. S. Goundar, B. A. Kumar, and A. B. M. S. Ali, "Development
of Usability Guidelines: A Systematic Literature Review,"
International Journal of Human–Computer Interaction, pp. 1-19,
2022

43. .O. Okesola, K. Okokpujie, R. Goddy-Worlu, A. Ogunbanwo, and
O. Iheanetu, "Qualitative comparisons of elicitation techniques in
requirement engineering," Journal of Engineering and Applied
Sciences, vol. 14, pp. 565-570, 2019.

190

44. Y. Elrakaiby, A. Ferrari, P. Spoletini, S. Gnesi, and B. Nuseibeh,
"Using Argumentation to Explain Ambiguity in Requirements
Elicitation Interviews," in Proceedings of the IEEE 25th
International Requirements Engineering Conference (RE), pp. 51-
60, 2017.

45. J. M. Ferreira, S. T. Acuña, O. Dieste, S. Vegas, A. Santos, F.
Rodríguez, and N. Juristo, "Impact of usability mechanisms: An
experiment on efficiency, effectiveness and user satisfaction,"
Information and Software Technology, vol. 117, p. 106195, 2020.

46. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: Springer
Science & Business Media, 2012.

47. F. D. Davis, "User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts,"
International journal of man-machine studies, vol. 38, pp. 475-487,
1993.

191

 PARTE III

DISCUSIONES
DE LOS

RESULTADOS

III

 Los temas que cubre esta parte son:

3.1 Discusiones

III. Discusiones

192

En esta parte de la tesis, se presentan los resultados de este trabajo,
conectando las preguntas de investigación planteadas al inicio del
trabajo con los resultados plasmados en los artículos de investigación
recogidos en las cuatro secciones anteriores de la parte II.

193

Cada uno de estos artículos intenta investigar y responder a las
preguntas y sub preguntas de investigación de la tesis.

En el primer artículo que conforma esta tesis, se ha tratado de responder
a la siguiente pregunta de investigación RQ1: ¿Es posible capturar
requisitos de usabilidad en etapas iniciales de desarrollo software? y la
sub pregunta de investigación SQ1.1: ¿Qué guías de usabilidad,
estándares y normas se requieren en el proceso de captura de requisitos
de usabilidad que apoyen la labor del analista?

En relación a la RQ1, la elicitación de los requisitos de usabilidad
generalmente se realiza en la etapa de análisis [46], [15], después que
se hayan capturado todos los requisitos funcionales. Esta captura tardía
podría ocasionar cambios en la arquitectura del sistema debido a que
algunos requisitos de usabilidad están relacionados con la funcionalidad
[5], [20]. Por lo general, los métodos utilizados para elicitar los
requisitos de usabilidad tratan la usabilidad mediante técnicas
tradicionales (e.g. entrevistas, cuestionarios, grupos focales, casos de
uso) [35], [3]. El análisis de resultados de la revisión sistemática
muestra que existen muy pocas publicaciones que aborden claramente
cómo realizar el proceso de captura de requisitos de usabilidad en etapas
tempranas. Además, los enfoques existentes no proponen una notación
precisa e inequívoca para representar estos requisitos, lo que dificulta
su aplicación en sistemas reales. Hay algunas publicaciones donde la
elicitación de requisitos de usabilidad se realiza en la etapa de diseño
junto con la elicitación de requisitos de interacción [25], [45], [24].

En relación a la SQ1.1, cuando el tema de la usabilidad se trata en la
elicitación de requisitos, las normas ISO se utilizan como directrices
para ser aplicadas en los sistemas de desarrollo de software. Por
ejemplo, la norma ISO 9241-11 se considera una referencia básica para
algunos profesionales, investigadores y diseñadores [25]. Para
cualquier tipo de requisitos se utiliza la norma ISO 9126-1 [32]. La
aplicación de lineamientos es necesaria, pero no suficiente; el principal
problema es la correcta aplicación y completa comprensión por parte
del usuario final. Las guías solo se construyen de manera general, pero
no son un soporte total para el desarrollo de sistemas usables.

194

Hay algunas propuestas que tienen como objetivo ayudar a los
ingenieros de requisitos a abordar los requisitos de usabilidad desde las
primeras etapas por medio de reglas GUIDE [22] y un catálogo basado
en el marco i* [10]. Ambas técnicas son específicas del contexto,
aunque GUIDE utiliza un repositorio basado en casos para tomar
decisiones e i* framework recopila una gran cantidad de conocimiento
para lograr los objetivos de usabilidad. Otro aspecto que se observa en
las publicaciones seleccionadas es el uso de artefactos, tales como:
patrones, escenarios y plantillas, que se utilizan con frecuencia como
soporte de métodos para elicitar requisitos de usabilidad y requisitos de
interacción [6], [48], [16]. Los métodos propuestos en las publicaciones
seleccionadas son rígidos y requieren un esfuerzo considerable para ser
aplicados a contextos diferentes de los contextos en que han sido
definidos [22]. Las guías, notaciones y artefactos utilizados en estos
métodos están más cerca de obtener características de interacción que
características de usabilidad. En general, las guías para la elicitación de
requisitos de usabilidad se definen de manera muy genérica para
diferentes niveles de abstracción [8].

En el segundo artículo que conforma esta tesis se ha tratado de
responder a la siguiente sub pregunta de investigación SQ1.2: ¿Es
posible desarrollar una estructura de árbol que facilite el proceso de
captura de requisitos en un entorno MDD?

En relación a la SQ.1.2, se debe tomar en cuenta que existen guías de
diseño de IU y guías de usabilidad que pueden ser gestionadas mediante
una estructura de árbol en apoyo a la captura de requisitos de usabilidad
durante el desarrollo de software. Se debe tomar en cuenta que el
tamaño de la estructura de árbol aumentará con la cantidad de guías que
consideremos. Incluso con pocas guías, el tamaño del árbol es difícil de
manejar si no es gestionado por una herramienta que ayude con la
definición de la estructura de árbol y con la navegación a través de las
ramas. Para simplificar la estructura, se recomienda centrarse solo en el
diseño de la interfaz y las guías de usabilidad más utilizadas. Como
parte de trabajo de la tesis, se ha desarrollado la herramienta que
implementa UREM, accesible desde http://hci.dsic.upv.es/urem

195

La asistencia al analista y la reducción del esfuerzo en el proceso de
captura de requisitos de usabilidad son aspectos considerados en la
evaluación empírica cuando se compara un desarrollo de software que
utiliza el enfoque UREM para capturar los requisitos de usabilidad con
el desarrollo que no tiene en cuenta estos requisitos (entrevistas no
estructuradas). La validación inicial de UREM se hace en un contexto
MDD, donde los desarrolladores expertos deben valorar la herramienta
UREM dentro de un proceso de desarrollo MDD.

En el tercer artículo que conforma esta tesis, se ha tratado de responder
a la SQ1.3: ¿Es posible representar alternativas de diseño de IU en una
estructura de árbol en base a las guías de usabilidad y diseño para la
captura de requisitos de usabilidad? Los nodos hoja del árbol a los que
llega durante la entrevista con el cliente son los diseños de IU
seleccionados por el usuario final. Esta selección puede incluir o no las
recomendaciones de usabilidad, dependiendo de las preferencias del
usuario. Las alternativas de IU son solo propuestas construidas según
los estándares, guías de usabilidad y de diseño para guiar la entrevista
de elicitación de requisitos y proponer diseños que optimicen la
usabilidad.

En el cuarto artículo que compone esta tesis, se ha tratado de responder
a las preguntas de investigación RQ2: ¿Qué impacto produce UREM en
la captura de requisitos de usabilidad? y las sub preguntas: SQ2.1 ¿Cuál
es el impacto del uso de las guías de usabilidad en el diseño de IU?,
SQ2.2 ¿Cuál es el impacto de la aplicación del UREM en un contexto
académico? y SQ2.3 ¿Cuál es el impacto de las recomendaciones de
usabilidad propuestas por UREM?

En relación a la RQ2, se ha realizado el experimento para validar
UREM, que consiste en realizar la captura de requisitos de usabilidad
comparando UREM con entrevistas no estructuradas. El experimento
se ha realizado en dos réplicas bajo un diseño intra-sujetos Replicación
1 (22 estudiantes de pregrado) y Replicación 2 (26 estudiantes de
máster). Se han utilizado dos problemas diferentes Problema 1 (App
para un Centro de Salud) y Problema 2 (App para una entidad bancaria)
para evitar el efecto “carry over” entre tratamientos. Además de buscar
diferencias significativas entre tratamientos, se han buscado diferencias

196

en las interacciones Método*Problema y Método*Replicación b. Todo
el análisis estadístico se hizo con el Método Lineal General (GML).

En el experimento, se han refutado las hipótesis nulas de las variables
respuesta Efectividad (H01r) referente a la Efectividad en la captura de
requisitos de usabilidad y Efectividad (H01g) referente a la Efectividad
en el uso de las guías, lo que significa que la efectividad lograda en la
obtención de los requisitos y en el uso de las guías con UREM es
superior frente a la entrevista no estructurada. Este resultado no se
muestra en ambas replicaciones, quizá por el bajo tamaño de la muestra.
Por otro lado, no se ha podido refutar la hipótesis nula de la variable
respuesta Eficiencia (H02r), referente a la Eficiencia en la captura de
requisitos de usabilidad, lo que significa que no se aprecia diferencias
significativas. Se aprecia una mejora en la efectividad, pero no en el
tiempo, lo que implica que no haya variaciones significativas en la
eficiencia. De igual forma no se ha podido refutar la hipótesis nula de
la variable respuesta Satisfacción (H03e) referente a la Satisfacción del
usuario final y la Satisfacción del analista (H03a), lo que significa que
no existe diferencias significativas. Esto puede deberse a que los
analistas vienen con una amplia experiencia en entrevista no
estructuradas.

En relación a la SQ.2.1, la Efectividad (H01g) referente a la Efectividad
en el uso de las guías de usabilidad, arroja diferencias significativas,
siendo UREM más efectivo. Es decir, que los analistas que trabajan con
UREM cumplen mas con las guías de usabilidad en relación a los
analistas que trabajan con entrevistas no estructuradas. El uso de UREM
no garantiza la gestión de los requisitos de usabilidad para los diseños
de IU, sino que ofrece alternativas que se ajusten a los requisitos de
usabilidad. La decisión final sobre optar o no por el diseño de la IU
ofrecido, siempre será tomada en acuerdo entre el usuario final y el
analista. Por otro lado, se ha observado que los analistas que usan
UREM siguen de media el 70% de las recomendaciones de usabilidad
que se ofrecen con el método. El otro 30% son otros diseños que ha
elegido el usuario, diferentes a los recomendados por las guías de
usabilidad.

197

En relación a la SQ.2.2, la aplicación de UREM a través del
experimento, se realizó en el contexto académico con sujetos
estudiantes (Replica1, estudiantes de pregrado de último ciclo y la
Réplica 2, estudiantes de maestría) de la Universidad Nacional de San
Antonio Abad del Cusco – Perú. Todos los sujetos tenían suficiente
conocimiento en el campo del desarrollo de software. De los resultados
se observa que las variables respuesta como la satisfacción del analista
y la satisfacción del usuario tienen un bajo poder estadístico. Esto se
debe al tamaño de muestra utilizada en su ejecución. Un aspecto
positivo es que la propuesta al ser evaluada dentro del entorno
académico conlleva a la identificación de las fortalezas y debilidades
del método que serían temas de investigación posterior para la mejora
del método y de la herramienta en la elicitación de requisitos de
usabilidad.

En relación a la SQ.2.3, el método UREM cuenta con la herramienta
que ayuda a garantizar la inclusión de las exigencias de las guías de
usabilidad y diseño de IU sen los proyectos de desarrollo software, que
contribuyen en la mejora de la calidad. La herramienta está accesible en
hci.dsic.upv.es/UREM

198

 PARTE IV

CONCLUSIONES IV

 El tema que se cubre en esta parte son las
conclusiones a las que se arribó en el trabajo de
investigación enmarcados en:

4.1 Contribuciones a partir de los Objetivos
4.2 Fortalezas y Debilidades de la Tesis
4.3 Trabajos Futuros.

IV. Conclusiones

199

Esta parte presenta las conclusiones finales de la tesis, resumiendo los
objetivos, el estudio realizado y los resultados de nuestro trabajo.
También se presentan futuras líneas de investigación que pueden
contribuir a ampliar estos resultados.

200

4.1 Contribuciones a partir de los Objetivos

Las contribuciones de la tesis surgen directamente de los objetivos
principales de la tesis contenidos en las preguntas de investigación:

1) Objetivo OBJ1 (RQ1): ¿Es posible capturar requisitos de usabilidad
en etapas iniciales de desarrollo software? La respuesta a esta
pregunta está inmersa en el desarrollo del primer, segundo y tercer
artículo como sigue:

El primer artículo presenta un estudio sistemático en relación a la
a las propuestas existentes para la captura de requisitos de
usabilidad en entornos MDD, la misma que ha sido subdivida en 6
sub preguntas respecto a métodos, guías, notaciones, herramientas
y validaciones que contiene las propuestas para capturar requisitos
de usabilidad. como resultado de la revisión sistemática. Se
seleccionaron un total de 29 publicaciones de un conjunto inicial de
150 publicaciones devueltas por la cadena de búsqueda. Las
valoraciones de calidad de las publicaciones se desarrollaron con el
fin de contrastar la importancia de las publicaciones seleccionadas,
donde el 97% está compuesto por buenas y muy buenas
publicaciones. A partir de los resultados del mapeo sistemático,
podemos concluir que se evidencia una línea de investigación en el
campo de los requisitos de usabilidad.

 La aplicación de los métodos de captura de requisitos de usabilidad
facilita un apoyo básico que demandan mucho esfuerzo y tiempo
en su gestión y ejecución. Las guías de usabilidad, normas, y
estándares son de difícil interpretación por parte del equipo de
desarrollo. Se requiere un ingeniero de usabilidad para su correcta
interpretación, las notaciones y representaciones utilizadas por las
diferentes soluciones son extensiones y adaptaciones de los
requisitos funcionales. Las herramientas existentes son limitadas y
en general son de soporte para el diseño de las interfaces no
tomando en cuenta aspectos de usabilidad.

201

El segundo artículo plantea una primera versión de la estructura en
árbol. Se define un metamodelo de la propuesta y un ejemplo
ilustrativo.

El tercer artículo aborda cómo incorporar la propuesta de UREM
en un entorno MDD. Se tiene una primera validación inicial con
usuarios expertos en MDD.

2) Objetivo OBJ2 (RQ2): ¿Qué impacto produce UREM en la captura
de requisitos de usabilidad? La respuesta a esta pregunta está
inmersa en el desarrollo del cuarto artículo, como sigue:

El cuarto artículo es el diseño y ejecución de un experimento para
validar UREM comparándolo con entrevistas no estructuradas. El
experimento se hace en base a la efectividad. eficiencia, y
satisfacción desde el rol usuario o analista según corresponda.

El impacto de la aplicación del UREM en un contexto académico
conlleva a que los resultados podrían ser generalizables a cualquier
analista con algún tipo de experiencia en el desarrollo software y
no solo estudiantes. Esto se debe a que en el experimento los sujetos
que eran estudiantes tenían experiencia en empresas reales de
desarrollo de software en un alto porcentaje. Por otro lado, los
resultados no han estado asociados a un solo problema, esto
también facilita la generalización de los mismos y hace que UREM
sea una propuesta que pueda ser utilizada en otros sistemas de igual
complejidad.

4.2 Fortalezas y Debilidades de la Tesis

La usabilidad es una de las características esenciales de la calidad
software y su proceso de captura debe darse conjuntamente con los
requisitos funcionales para garantizar la calidad en proceso y producto
del software. Con la presente investigación se logró construir un método
al que denominamos UREM que realiza la captura de requisitos de
usabilidad.

202

Los puntos fuertes de UREM son los siguientes:

- Puede ser utilizado por no expertos en usabilidad. La ausencia de
expertos en los equipos de desarrollo es muy común debido a la
complejidad que presentan las normas ISOs, guías de usabilidad y
guías de diseño.

- Presenta una estructura de árbol basado en nodos, ramas y hojas
representados en preguntas, respuestas y alternativas. Esta
estructura es de fácil comprensión y aprendizaje tanto para el
analista como para el usuario final en cuanto a su uso durante el
proceso de captura de requisitos de usabilidad.

- La propuesta de UREM está contenida en una herramienta que
contiene la estructura de un árbol. El árbol debe ser diseñado por
un experto en usabilidad, donde las alternativas de los diseños de
IUs contienen aspectos de usabilidad provenientes de las guías de
usabilidad y diseño existentes en la literatura.

Dentro de los puntos débiles de UREM identificamos los siguientes:

- Hay que invertir un esfuerzo inicial en la construcción del árbol. Se
deben seleccionar las guías de usabilidad y diseño de IUs e
introducirlas en la estructura de árbol.

- La aplicación de las recomendaciones de usabilidad propuestas a
raíz de las guías de usabilidad depende de las decisiones del usuario
durante la entrevista. Esto puede resultar en diseños que no sigan
ninguna de las recomendaciones de usabilidad. En estos casos, el
diseño sería de la satisfacción del usuario, pero no estaría acorde a
las guías de usabilidad.

- Puede haber contradicciones entre guías de usabilidad que
impliquen recomendaciones contradictorias en algunos puntos del
árbol que deben ser analizados por el analista. Es el usuario final el
que debe tomar la decisión de qué diseño elige en estos casos.

203

4.3 Trabajos Futuros

Durante el desarrollo de la tesis se han identificado varios temas de
investigación que podrían abordarse en las próximas investigaciones.
El objetivo principal de estos trabajos futuros será superar algunas de
las limitaciones del presente trabajo que se ha desarrollado hasta el
momento.

- A partir de los diseños alcanzados en los nodos hoja, se pueden
utilizar modelos abstractos que representen estos diseños y ser
entrada para modelos MDD.

- Implementar otra herramienta colaborativa con varios analistas que
apoyen en la construcción y el uso de cualquier estructura de árbol.

- Se pueden realizar otros experimentos en el futuro para aumentar el
tamaño de la muestra y poder determinar cómo el nivel de
experiencia del analista y la complejidad de los problemas puede
afectar a los resultados.

- Comparar UREM con otros métodos de entrevista estructurada.

204

Referencias

1. Berendes, S., et al., Evaluating the usability of open source
frameworks in energy system modelling. Renewable and
Sustainable Energy Reviews, 2022. 159: p. 112174.

2. Jeong, J., N. Kim, and H.P. In, Detecting usability problems in
mobile applications on the basis of dissimilarity in user
behavior. International Journal of Human-Computer Studies,
2020. 139: p. 102364.

3. Calvary, G. and J. Coutaz, Introduction to model-based user
interfaces. Group Note, 2014. 7: p. W3C.

4. Silveira, S.A.M., et al., On the evaluation of usability design
guidelines for improving network monitoring tools interfaces.
Journal of Systems and Software, 2022. 187: p. 111223.

5. Bass, L. and B.E. John, Linking usability to software
architecture patterns through general scenarios. Journal of
Systems and Software, 2003. 66(3): p. 187-197.

6. Folmer, E. and J. Bosch, Architecting for usability: a survey.
Journal of systems and software, 2004. 70(1-2): p. 61-78.

7. Svensson, R.B., et al., Quality requirements in industrial
practice—an extended interview study at eleven companies.
IEEE transactions on software engineering, 2011. 38(4): p. 923-
935.

8. Acerbis, R., et al. Webratio 5: An eclipse-based case tool for
engineering web applications. Springer.

9. Koch, N., et al., UML-based web engineering. web engineering:
modelling and implementing web applications. Human-
Computer Interaction Series, 2008: p. 157-191.

10. Selic, B., The pragmatics of model-driven development. IEEE
software, 2003. 20(5): p. 19-25.

11. Wieringa, R. Design science methodology: principles and
practice.

12. Urbieta, M., et al., The impact of using a domain language for
an agile requirements management. Information and
Software Technology, 2020. 127: p. 106375.

13. Laurel, B. and S.J. Mountford, The art of human-computer
interface design. 1990: Addison-Wesley Longman Publishing
Co., Inc.

205

14. Cysneiros, L.M., V.M. Werneck, and A. Kushniruk. Reusable
Knowledge for Satisficing Usability Requirements. in 13th IEEE
International Conference on Requirement Engineering. 2005.
Washington, DC, USA: IEEE Computer Society.

15. Panach, J.I., et al. Dealing with Usability in Model
Transformation Technologies. in ER 2008. 2008. Barcelona:
Springer LNCS 5231.

16. Juristo, N., A.M. Moreno, and M.I. Sánchez, Guidelines for
Eliciting Usability Functionalities. IEEE Transactions on
Software Engineering, 2007. 33(11): p. 744-758.

17. Juristo, N., Impact of Usability on Software Requirements and
Design, in Software Engineering, L. Andrea and F. Filomena,
Editors. 2009, Springer-Verlag. p. 55-77.

18. Campos, J., et al., Systematic Analysis of Control Panel
Interfaces Using Formal Tools Interactive Systems. Design,
Specification, and Verification. 2008, Springer-Verlag: Berlin,
Heidelberg. p. 72-85.

19. Grosse, D., et al., Supporting Tool for Usability Specifications,
in World Congress on Medical Physics and Biomedical
Engineering, R. Magjarevic, Editor. 2009, Springer-Verlag:
Munich, Germany. p. 845-847.

20. Jokela, T., et al., Methods for Quantitative Usability
Requirements: A Case Study on the Development of the User
Interface of a Mobile Phone. Personal Ubiquitous Comput.,
2006. 10(6): p. 345-355.

21. Ameller, D., X. Franch, and J. Cabot. Dealing with Non-
Functional Requirements in Model-Driven Development. in
18th IEEE International Conference on Requirements
Engineering (RE). 2010. Sydney, NSW.

22. Yi, L., M. Zhiyi, and S. Weizhong, Integrating Non-functional
Requirement Modeling into Model Driven Development
Method, in 2010 Asia Pacific Software Engineering Conference.
2010, IEEE Computer Society.

23. Fatwanto, A. and C. Boughton, Analysis, Specification and
Modeling of Non-Functional Requirements for Translative
Model-Driven Development, in International Conference on
Computational Intelligence and Security. 2008, IEEE Computer
Society: Washington, DC, USA. p. 405-410.

24. Nguyen, Q.L. Non-Functional Requirements Analysis Modeling
for Software Product Lines. in ICSE Workshop on Modeling in

206

Software Engineering. 2009. Washington, DC, USA: IEEE
Computer Society.

25. Sindhgatta, R. and T. Srinivas, Functional and Non-functional
Requirements Specification for Enterprise Applications, in
Product Focused Software Process Improvement. 2005,
Springer-Verlag: Berlin Heidelberg. p. 189-201.

26. Doerr, J., et al. Non-functional Requirements in Industry - Three
Case Studies Adopting an Experience-based NFR Method. in
13th IEEE International Conference on Requirements
Engineering. 2005. Washington, DC, USA: IEEE Computer
Society.

27. Martinie, C., et al. DREAMER: A Design Rationale Environment
for Argumentation, Modeling and Engineering Requirements.
in 28th International Conference on Design of Communication.
2010. Säo Paulo, Brazil: ACM.

28. Akoumianakis, D., A. Katsis, and N. Vidakis. Non-Functional
User Interface Requirements Notation (NfRn) for Modeling the
Global Execution Context of Tasks. in 5th International
Conference on Task Models and Diagrams for Users Interface
Design. 2007. Hasselt, Belgium: Springer-Verlag.

29. Röder, H., Using Interaction Requirements to Operationalize
Usability, in ACM Symposium on Applied Computing. 2010,
ACM: Sierre, Switzerland.

30. Shehata, M., A. Eberlein, and A. Fapojuwo, O., A Taxonomy for
Identifying Requirement Interactions in Software Systems.
Comput. Netw., 2007. 51(2): p. 398-425.

31. Cronholm, S. and V. Bruno. Do You Need General Principles or
Concrete Heuristics?: A Model for Categorizing Usability
Criteria. in 20th Australasian Conference on Computer-Human
Interaction: Designing for Habitus and Habitat. 2008. Cairns,
Australia: ACM.

32. Henninger, S., A Methodology and Tools for Applying Context-
specific Usability Guidelines to Interface Design. Journal
Interacting with Computers, 2000. 12(3): p. 225-243.

33. Sajedi, A., et al. Fundamental Usability Guidelines for User
Interface Design. in International Conference on
Computational Sciences and Its Applications ICCSA. 2008.
Washington, DC, USA: IEEE Computer Society.

207

34. Soares, M.S. and J.L.M. Vrancken, Model-driven User
Requirements Specification using SysML. Journal of Software,
2008. 3(6): p. 57-68.

35. Sutcliffe, A.G., S. Kurniawan, and S. Jae-Eun, A Method and
Advisor Tool for Multimedia User Interface Design. Int. J. Hum.-
Comput. Stud., 2006. 64(4): p. 375-392.

36. Escalona, M.J. and G. Arag, NDT. A Model-Driven Approach for
Web Requirements. IEEE Trans. Softw. Eng., 2008. 34(3): p.
377-390.

37. Escalona, M.J., et al., Metamodeling the Requirements of Web
Systems Web Information Systems and Technologies, W. Aalst,
et al., Editors. 2007, Springer Berlin Heidelberg. p. 267-280.

38. Panach, J.I., España, S., Pederiva, I., Pastor, O., Capturing
Interaction Requirements in a Model Transformation
Technology Based on MDA, in Journal of Universal Computer
Science (JUCS). 2007.

39. Lauesen, S. Usability Requirements in a Tender Process. in
Computer Human Interaction Conference, 1998. 1998.
Australia.

40. Sutcliffe, A., G. and M. Ryan, Experience with SCRAM, a
SCenario Requirements Analysis Method, in 3rd International
Conference on Requirements Engineering: Putting
Requirements Engineering to Practice. 1998, IEEE Computer
Society. p. 164-171.

41. Cysneiros, L.M. and J.C.S.P. Leite, Nonfunctional
Requirements: from Elicitation to Conceptual Models. IEEE
Trans. on Softw. Eng., 2004. 30(5): p. 328-350.

42. Jokela, T., et al., 8 Guiding Designers to the World of Usability:
Determining Usability Requirements through Teamwork, in
Human-Centered Software Engineering - Integrating Usability
in the Software Development Lifecycle. 2005, Springer
Netherlands. p. 127-145.

43. Gunduz, F. and A.S.K. Pathan. Usability improvements for
touch-screen mobile flight booking application: A case study.
in Proceedings - 2012 International Conference on Advanced
Computer Science Applications and Technologies, ACSAT 2012.
2012.

44. Troyer, O.D. and E. Janssens. A feature modeling approach for
domain-specific requirement elicitation. in 2014 IEEE 4th

208

International Workshop on Requirements Patterns (RePa).
2014.

45. Fahey, P., et al. Human computer interaction issues in eliciting
user requirements for an Electronic Patient Record with
multiple users. in 2011 24th International Symposium on
Computer-Based Medical Systems (CBMS). 2011.

46. Temper, M., S. Tjoa, and M. Kaiser. Touch to authenticate—
Continuous biometric authentication on mobile devices. in 1st
International Conference on Software Security and Assurance
(ICSSA). 2015. IEEE.

47. Rocha Silva, T., M. Winckler, and C. Bach, Evaluating the usage
of predefined interactive behaviors for writing user stories: an
empirical study with potential product owners. Cognition,
Technology & Work, 2020. 22(3): p. 437-457.

48. De Carvalho, E.A., A. Jatobá, and P.V.R. De Carvalho. Usability
for complex systems?: An experimental evaluation with
functional resonance analysis method. in IHC 2019 -
Proceedings of the 18th Brazilian Symposium on Human
Factors in Computing Systems. 2019.

49. Nhavoto, J.A., Å. Grönlund, and W.P. Chaquilla, SMSaúde:
Design, development, and implementation of a remote/mobile
patient management system to improve retention in care for
HIV/aids and tuberculosis patients. JMIR mHealth and
uHealth, 2015. 3(1).

50. Elias, E., et al., Towards an ontology-based system to improve
usability in collaborative learning environments, in Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics).
2012. p. 298-303.

51. Yuan, X. and X. Zhang. An ontology-based requirement
modeling for interactive software customization. in 2015 IEEE
International Model-Driven Requirements Engineering
Workshop (MoDRE). 2015.

52. Abad, Z.S.H., et al. Loud and Interactive Paper Prototyping in
Requirements Elicitation: What is it Good for? in 2018 IEEE 7th
International Workshop on Empirical Requirements
Engineering (EmpiRE). 2018.

53. Márquez, G. and C. Taramasco, Using Dissemination and
Implementation Strategies to Evaluate Requirement Elicitation

209

Guidelines: A Case Study in a Bed Management System. IEEE
Access, 2020. 8: p. 145787-145802.

54. Abdallah, A., R. Hassan, and M.A. Azim. Quantified extreme
scenario based design approach. in Proceedings of the ACM
Symposium on Applied Computing. 2013.

55. Vitiello, G., et al. UX-requirements for patient's empowerment
- The case of multiple pharmacological treatments: A case
study of it support to chronic disease management. in
Proceedings - 2017 IEEE 25th International Requirements
Engineering Conference Workshops, REW 2017. 2017.

56. Tanikawa, Y., R. Okubo, and S. Fukuzumi, Process support
method for improved user experience. NEC Technical Journal,
2014. 8(3): p. 28-32.

57. Abad, Z.S.H., et al. Learn More, Pay Less! Lessons Learned from
Applying the Wizard-of-Oz Technique for Exploring Mobile App
Requirements. in 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW). 2017.

58. Peruzzini, M. and M. Germani. Designing a user-centred ICT
platform for active aging. in 2014 IEEE/ASME 10th
International Conference on Mechatronic and Embedded
Systems and Applications (MESA). 2014.

59. Lewis, J.R., IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. International
Journal of Human‐Computer Interaction 995. 7(1): p. 57-78.

60. Davis, F.D., User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts.
International journal of man-machine studies, 1993. 38(3): p.
475-487.

	022ba95e076d129360ae50b6ba76506faf3c8356e509e3597e9fc87df9e4abc6.pdf
	022ba95e076d129360ae50b6ba76506faf3c8356e509e3597e9fc87df9e4abc6.pdf
	022ba95e076d129360ae50b6ba76506faf3c8356e509e3597e9fc87df9e4abc6.pdf
	Sin título-3.pdf
	Página 1

