UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO CUSCO, 2018"

Tesis para optar el Título de Ingeniero Civil, presentado por:

Bach. Gimi Joseph Galdos Román Bach. Roger Augusto Núñez Esquivel

Asesor:

Ing. Julio Gavino Rojas Bravo

CUSCO-PERÚ 2020

Dedicatoria

La presente tesis va dedicada al esfuerzo de mi familia: mis padres René Alfonso Galdos Béjar y Doris Josefina Román de Galdos, a mis hermanos Luis René Galdos Román y Karen Janitce Galdos Román, quiénes siempre me están apoyando y en quiénes siempre podré confiar. A mis padrinos Rodolfo Ojeda (Q.E.P.D) y Carmen Acosta, quiénes a pesar de la distancia siempre están presentes en todo momento. A mis docentes que han enardecido parte de mis experiencias profesionales, laborales y amicales desde el colegio a la universidad. A mis amigos de colegio y de nuestra querida universidad, en especial a mi promoción de secundaria: "Auténticos D"; mostrándoles mi aprecio y que todos podemos lograr lo que nos proponemos y como en muchas ocasiones conversamos nos queda la frase: "Uno para todos y todos para uno". También dedicar este momento al Ingeniero Hebert Barrio de Mendoza, quién en múltiples oportunidades me ha ayudado y me ha brindado bastante información productiva para esta vida de aprendizaje en la parte profesional.

Bach. Gimi Joseph Galdos Román

A mis padres, Fryda Celmira Esquivel Medrano y Roger Felix Nuñez Linares, que con todo el apoyo, cariño y enseñanzas que cada día me brindan voy logrando cada meta trazada. A mis hermanas, Ivanna Nuñez Esquivel y Magait Nuñez Esquivel, que siempre estuvieron a mi lado apoyándome y motivándome en cada decisión y aspecto de mi vida. A mi tía, Dina Celia Nuñez Linares, quien siempre estuvo orgullosa de mi y que cada día me motiva a ser un gran hombre tanto como persona y como profesional. A "La Mala Mancha", amigos a los cuales considero mis hermanos y con los que puedo contar para cualquier cosa. Al código 12-2, amigos con los cuales viví una de las etapas más grandiosas de mi vida y con los cuales compartiré una vida profesional en el futuro.

Bach. Roger Augusto Nuñez Esquivel

Agradecimientos

Agradecer a la Universidad Nacional de San Antonio Abad del Cusco por habernos brindado una educación de calidad formándonos como buenos profesionales y sobre todo como buenos Ingenieros Civiles.

Agradecemos a todos nuestros docentes, los cuales nos brindaron su conocimiento, enseñanzas, valores y experiencias para ser excelentes profesionales.

Agradecemos a nuestros jurados, Ing. Julio Rojas Bravo, M. Sc. Ing. Francisco Serrano e M. Sc. Ing. Carlos Fernández Baca, por el tiempo y los conocimientos brindados para culminar un buen trabajo de investigación. Así mismo, agradecemos el apoyo del Ing. Enrique Saloma, Ing. Mijail Montesinos y del Ing. Roosevelt Mamani.

Índice General

Dedicatoria		1
Agradecimien	itos	ii
Índice Genera	1	iii
	las	
Índice de Figu	iras	. viii
Resumen		
Abstract		. xiii
Capítulo 1.	Introducción	1
1.1. Asp	ectos Generales	1
1.1.1.	Situación Problemática.	
1.1.2.	Planteamiento del Problema.	1
1.1.2.1.	Problema General	
1.1.2.2.		1
1.1.3.	Justificación de la Investigación.	2
1.1.3.1.	Justificación Técnica	2
1.1.3.2.	Justificación Social	2
1.1.3.3.	Justificación por Viabilidad	
1.1.3.4.	Justificación por Relevancia.	
1.1.4.	Limitaciones de la Investigación.	3
1.1.4.1.	Limitaciones de Campo.	3
1.1.4.2.	Limitaciones Instrumentales	
1.1.5.	Objetivo de la Investigación.	
1.1.5.1.	Objetivo General	
1.1.5.2.	Objetivos Específicos.	
1.1.6.	Formulación de la Hipótesis.	
1.1.6.1.	Hipótesis General	
1.1.6.2.	Hipótesis Específicas	
1.1.7.	Identificación de Variables.	
1.1.8.	Operacionalización de Variables.	
1.1.9.	Matriz de Consistencia.	
Capítulo 2.	Marco Teórico - Conceptual	
	ecedentes de la Tesis	
2.1.1.	Antecedentes a Nivel Nacional.	
2.1.2.	Antecedentes a Nivel Internacional.	
	nceptos Generales	
2.2.1.		
	Clasificación de la Vulnerabilidad Sísmica	
	. Vulnerabilidad Estructural	
	. Vulnerabilidad No Estructural	
2.2.2.	Amenaza o Peligro Sísmico	
2.2.3.	Riesgo Sísmico.	
	todologías de Evaluación de Vulnerabilidad Sísmica	
2.3.1.	Metodología FEMA P-154 (Federal Emergency Management Agency)	
2.3.1.1.	Nivel 1	
2.3.1.2.	Nivel 2	
2.3.2.	Norma de Evaluación Sísmica y la Rehabilitación de Edificios Existentes (ASCE 4	
13).		
2.3.2.1.	Objetivo de Desempeño	
	. Nivel de Peligro Sísmico	
	. Nivel de Desempeño de la Edificación	
2.3.2.2.	Objetivo de Desempeño Básico para Edificios Existentes (BPOE)	
2323	Nivel 1: Inspección	26

	Nivel 2: Evaluación Basada en la Deficiencia y Rehabilitación	
	Nivel 3: Evaluación Sistemática y Rehabilitación	
2.3.2.5.1.	Análisis Estático No Lineal –Pushover	
2.3.2.5.1.	1. Método de Coeficientes de Desplazamientos (DCM)	30
2.3.2.5.1	2. Rótula Plástica	31
2.3.2.5.1	3. Límites de daño	32
2.4. Extra	acción de Núcleos de Concreto	34
Capítulo 3.	Metodología de la Investigación	38
	y Diseño de la Investigación	
	Tipo de la Investigación.	
	Nivel de Investigación.	
	lad de Análisis	
	ación de Estudio	
	cción de Muestra	
	año de Muestra	
	nica de Recolección de Datos e Información	
	Evaluación de la Vulnerabilidad Sísmica en los Edificios de la Escuela Profesiona	
1	il	
	stigación Preliminar	
	Características Físicas de la Zona.	
	Clima y Temperatura.	
	Demografía.	
	Topografía	
	Geología	
	Geomorfología	
	Geología Estructural.	
	Geología del Valle del Cusco.	
	Neotectónica	
4.1.2.	Sismicidad en la Región del Cusco.	
	Historia Sísmica.	
4.1.3.	Amenaza o Peligro Sísmico de la Región del Cusco.	
	cterísticas Generales de los Edificios de la Escuela Profesional de la Escuela	52
	de Ingeniería Civil	55
	Ubicación.	
	Información Básica de los Edificios a Evaluar.	
	uación Estructural de los Edificios de la Escuela Profesional de Ingeniería Civil	
4.3.1.	Aplicación de la Metodología FEMA P-154.	59 50
4.3.1. 13.1.1	Objetivos de la Evaluación y Beneficios de los Resultados	50
	Selección de Evaluadores	
	Alcance de la Evaluación	
	Planificación previa al campo	
	Aplicación de los formatos a Utilizar.	
	Determinación de la Región de Sismicidad.	
	Determinación del Tipo de Suelo	
	Resultados Obtenidos	
	Aplicación de la Metodología del ASCE 41-13	
	Descripción General de las Edificaciones Evaluar	
	Edificación Antigua de la EPIC	
	Edificación Nueva de la EPIC	
	Descripción del Sistema Estructural	
	Sistema Estructural – Edificación Antigua	
	Sistema Estructural – Edificación nueva	
	Propiedades de los Componentes Estructurales	
	Clasificación de las Edificaciones	
4.3.2.5.	Propiedades Geotécnicas	13

4.3.	2.6.	Selección del Objetivo de Desempeño	73
4.3.	2.7.	Peligro Sísmico	74
		Evaluación Nivel 1 – Detección	
4.3.	2.8.1.	Análisis de Verificación Rápida	77
4.3.	2.8.2.	Listas de VerificaciónListas de Verificación	91
		Evaluación Nivel 3 - Sistemática	
4.3.	2.9.1.	Bloque A Edificación Nueva - Evaluación Sistemática	124
		Bloque C Edificación Nueva - Evaluación Sistemática	
4.3.	2.9.3.	Edificio Antiguo - Evaluación Sistemática	163
Capítulo	5.	Observaciones, Conclusiones, Recomendaciones y Líneas Futuras de Investigación	176
5.1.	Obse	ervaciones	176
5.2.	Conc	clusiones	177
5.3.	Reco	omendaciones	182
5.4.	Líne	as Futuras de Investigación	183
Anavos			186

Índice de Tablas

Tabla I. Matriz de Consistencia	6
Tabla 2. Región de Sismicidad a partir de la Respuesta de Aceleración Espectral MCER	13
Tabla 3. Identificadores de acuerdo a la Tipología Estructural	
Tabla 4. Clasificación de Irregularidades en las Estructuras	15
Tabla 5. Indicadores de Uso de Norma	
Tabla 6. Indicadores según el tipo de suelo y cantidad de pisos	
Tabla 7. Niveles de Peligro Sísmico	
Tabla 8. Niveles de Desempeño Estructural	23
Tabla 9. Niveles de Desempeño No Estructural	24
Tabla 10. Objetivo de Desempeño Básico para Edificios Existentes (BPOE)	25
Tabla 11 Factor de Corrección por L/D	35
Tabla 12 Tipos de falla comunes es especímenes de concreto sometidos a Compresión	35
Tabla 13. Magnitud y precisión de los factores de corrección de resistencia para convertir la	
resistencias del núcleo de concreto en resistencias equivalentes	
Tabla 14. Máximas Temperaturas y Mininas Temperaturas del año 2017 junto con las precip	
por mes	
Tabla 15. Población de referencia histórica de la UNSAAC	
Tabla 16. Población de referencia de la carrera Profesional de Ing. Civil	
Tabla 17. Registros de sismos en la Región del Cusco	
Tabla 18. Años de Construcción de los Edificios de la EPIC	56
Tabla 19. Aceleraciones Espectrales para periodos corto y largo según FEMA P-154	62
Tabla 20. Puntajes Obtenidos para el Formato de Nivel 1 de FEMA – 154	
Tabla 21. Puntajes Obtenido para el Formato de Nivel 2 de FEMA – 154	64
Tabla 22. Resultados de los ensayos de perforación con diamantina – Edificio Nuevo	
Tabla 23. Resultados de los ensayos de perforación con diamantina – Edificio Antiguo	
Tabla 24. Resistencia modificada para evaluación – Edificio Nuevo	
Tabla 25. Resistencia modificada para evaluación – Edificio Nuevo	
Tabla 26. Clasificación de sistema estructural de las Edificaciones a Evaluar	
Tabla 27. Parámetros para determinación de peligro sísmico	
Tabla 28. Listas de verificación rápida para las edificaciones evaluadas	
Tabla 29. Factor de modificaciones "C"	
Tabla 30. Factor de Modificación "C" para las edificaciones evaluadas	78
Tabla 31. Valores del Fa en función de la clase del sitio y la aceleración de la respuesta espe	ootral dol
período corto asignada S _S	
Tabla 32. Valores de Fv en función de la clase de sitio y aceleración de respuesta espectral a	
período largo asignado S1período largo asignado S1	
Tabla 33. Parámetros de Aceleración Espectral Modificados	
Tabla 34. Aceleración de respuesta espectral para las edificaciones evaluadas	
Tabla 35. Metrado de cargas Edificación Nueva – Bloque A	
Tabla 36. Metrado de cargas Edificación Nueva – Bloque C	
Tabla 37. Metrado de cargas Edificación Antigua	
Tabla 38. Fuerzas Cortantes por piso - Bloque A	
Tabla 39. Fuerzas Cortantes por piso - Bloque C	
Tabla 40. Fuerzas Cortantes por piso – Edificación Antigua	
Tabla 41. Rigidez Lateral del primer y segundo nivel – Edificación Nueva – Bloque A	
Tabla 42. Rigidez Lateral del primer y segundo nivel – Edificación Nueva – Bloque C	
Tabla 43. Rigidez Lateral del primer y segundo nivel – Edificación Antigua	
Tabla 44. Esfuerzo cortante del Bloque C y la Edificación Antigua	
Tabla 45. Esfuerzo Axial para cada dirección de las edificaciones evaluadas	
Tabla 46. Secciones de vigas – Bloque A	
Tabla 47. Secciones de Columnas – Bloque A	
Lania 4δ Kiyiaeces nor diso – Dirección X - Kloaue A	129

Tabla 49.	Rigideces por piso – Dirección Y - Bloque A	129
Tabla 50.	Masas por piso – Dirección X y Y	130
	Desplazamiento Máximos Relativos y Promedios – Bloque A	
Tabla 52.	Fuerzas absorbidas por Columnas y Muros – Bloque A – Dirección X	131
Tabla 53.	Fuerzas absorbidas por Columnas y Muros – Bloque A – Dirección Y	132
	Coeficientes de fuerzas Basal – Bloque A – Dirección X	
Tabla 55.	Coeficientes de fuerzas Basal – Bloque A – Dirección Y	133
Tabla 56.	Fuerzas Cortantes Basales Estáticas – Bloque A	134
	Cortante Basal Dinámico – Bloque A – Dirección X	
	Cortante Basal Dinámico – Bloque A – Dirección Y	
	Modos de vibración y masas participativas – Bloque A	
	Derivas por piso – Bloque A	
	Patrón de cargas – Pushover – Dirección X – Bloque A	
	Patrón de cargas – Pushover – Dirección Y – Bloque A	
	Determinación del Objetivo de Desplazamiento – Bloque A – Primer Caso	
	Determinación del Objetivo de Desplazamiento – Bloque A – Segundo Caso	
	Secciones de vigas – Bloque C	
	Secciones de Columnas – Bloque A	
Tabla 67	Rigideces por piso – Dirección X - Bloque C	1/10
Tabla 69	Rigideces por piso – Dirección Y - Bloque C	140
Tabla 60	Masas por piso – Dirección X y Y	149
Tabla 09.	Description of Mississer Polytics of Proceedings of the Company of	149
Tabla 70.	Desplazamiento Máximos Relativos y Promedios – Bloque C	150
	Coeficientes de fuerzas Basal – Bloque C – Dirección X e Y	
	Fuerzas Cortantes Basales Estáticas – Bloque C	
	Cortante Basal Dinámico – Bloque C – Dirección X	
Tabla /4.	Cortante Basal Dinámico – Bloque C – Dirección Y	151
Tabla /5.	Modos de vibración y masas participativas – Bloque C	152
	Derivas por piso – Bloque C	
	Patrón de cargas – Pushover – Dirección X – Bloque A	
	Patrón de cargas – Pushover – Dirección Y – Bloque A	
	Determinación del Objetivo de Desplazamiento – Bloque C – Primer Caso	
	Determinación del Objetivo de Desplazamiento – Bloque C – Segundo Caso	
	Secciones y reforzamientos de las Columnas de la Edificación Antigua	
	Secciones y reforzamiento de las Vigas de la Edificación Antigua	
	Rigideces por piso – Dirección X - Edificación Antigua	
	Rigideces por piso – Dirección Y - Edificación Antigua	
	Masas por piso – Dirección X y Y – Edificación Antigua	
	Desplazamiento Máximos Relativos y Promedios – Edificación Antigua	
	Factores de Irregularidad – Edificación Antigua	
Tabla 88.	Coeficientes de fuerzas Basal – Edificación Antigua – Dirección X	167
Tabla 89.	Coeficientes de fuerzas Basal – Edificación Antigua – Dirección Y	168
Tabla 90.	Fuerzas Cortantes Basales Estáticas – Edificación Antigua	168
Tabla 91.	Cortante Basal Dinámico – Edificación Antigua – Dirección X	169
Tabla 92.	Cortante Basal Dinámico – Edificación Antigua – Dirección Y	169
Tabla 93.	Modos de vibración y masas participativas – Edificación Antigua	170
	Derivas por piso – Edificación Antigua – Dirección X y Y	
	Patrón de cargas – Pushover – Dirección X – Edificación Antigua	
	Patrón de cargas – Pushover – Dirección Y – Edificación Antigua	
	Determinación del Objetivo de Desplazamiento – Edificio Antiguo	

Índice de Figuras

Figura 1. Identificación de los Edificios de la Escuela Profesional de Ingeniería Civil de la	
Universidad Nacional de San Antonio Abad del Cusco	xii
Figura 2. Identification of the Buildings of the Escuela Profesional de Ingeniería Civil of the	
Universidad de San Antonio Abad del Cusco	
Figura 3. Operacionalización de la Variable Independiente	5
Figura 4. Operacionalización de la Variable Dependiente	5
Figura 5. Elementos Estructurales de una Edificación.	10
Figura 6. Elementos No Estructurales de una Edificación.	11
Figura 7. Formato de Evaluación de Nivel 1 del FEMA P-154.	17
Figura 8. Formato de Evaluación de Nivel 2 del FEMA P-154	19
Figura 9. Proceso de Evaluación del ASCE 41-13	21
Figura 10. Niveles de Desempeño más comunes	24
Figura 11. Proceso de Evaluación del Nivel 1	
Figura 12. Procedimiento de Evaluación Sistemática de Nivel 3	28
Figura 13. Deficiencias del análisis lineal en la representación de la respuesta de una estructura a	a la
demanda	29
Figura 14. Curva de Capacidad o Curva Pushover	30
Figura 15. Representación Bilineal de la Curva de Capacidad	
Figura 16. Esquema ilustrado del proceso por el cual el método de del coeficiente de modificación	ı
del	31
Figura 17. Diferentes formas de representación de acción inelástica	32
Figura 18. Límites de daño en una curva de capacidad	
Figura 19. Curvas de capacidad, niveles de desempeño y límites de daño	
Figura 20. Instrumento de Perforación de Concreto con Diamantina	34
Figura 21. Máximas y Mininas Temperaturas del año 2017 con precipitaciones por mes	
Figura 22. Plano de planta de todo el campus Universitario – UNSAAC	
Figura 23. Corte E-O de los Andes del Sur	
Figura 24. Recurrencia de sismos vs la Magnitud. Falla Tambomachay	
Figura 25. Magnitudes (Mw) máximas posibles halladas a partir de relaciones empíricas	
Figura 26. Calificación según Niveles de Peligros Sísmicos en la Ciudad del Cusco	
Figura 27. Ubicación geográfica de los edificios a evaluar	
Figura 28. Ubicación de las edificaciones a evaluar en la ciudad del Cusco y dentro del Campus	
Universitario	56
Figura 29. Edificaciones de la Escuela Profesional de Ingeniería Civil a Evaluar	57
Figura 30. Edificación Antigua de la EPIC	57
Figura 31. Edificación Nueva de la EPIC	58
Figura 32. Laboratorio de Hidráulica y Suelos - EPIC	58
Figura 33. Coordenadas de los Edificios a Evaluar – Aplicativo Web de SENCICO,	
Figura 34. Aceleración espectral para un período corto	
Figura 35. Aceleración espectral para un período largo	61
Figura 36. Región de Sismicidad a partir de la respuesta de Aceleración Espectral MCER	
Figura 37. Edificio Antiguo de la Escuela Profesional de Ingeniería Civil.	
Figura 38. Edificación Nueva de Escuela Profesional de Ingeniería Civil	
Figura 39. Sistema Estructural de la Edificación Antigua de la EPIC	
Figura 40. Bloques de la Edificación Nueva de la EPIC	
Figura 41. Ubicación de los Ensayos de Perforación con diamantina – Edificación Antigua	
Figura 42. Ubicación de los Ensayos de Perforación con diamantina – Edificación Nueva	
Figura 43. Estudio de suelos antes de la construcción de la Edificación Nueva	
Figura 44. Selección de lugar y coordenadas del lugar en estudio	
Figura 45. Espectros de Peligro Uniforme con periodo de retorno de 225 años y 975 años	
Figura 46. Sismo de Seguridad Básica para Edificios Existentes BSE-1E (20%/50 años, periodo e	de
retorno 225 años)	79

Figura 47. Sismo de Seguridad Básica para Edificios Existentes BSE-1E (20% / 50 años, period	
retorno 225 años)	80
Figura 48. Sismo de Seguridad Básica para Edificios Existentes BSE-2E (5%/50 años, period	
retorno 975 años)	80
Figura 49. Sismo de Seguridad Básica para Edificios Existentes BSE-2E (5%/50 años, period	o de
retorno 975 años)	81
Figura 50. Sistema estructural aporticado con un muro estructural. Sistema de cargas continuo	
la cimentación	
Figura 51. Separación entre edificaciones	
Figura 52. Fisuras presentes en los elementos estructurales en los últimos niveles	
Figura 53. Apertura en el diafragma por presencia de escalera	
Figura 54. Luces de emergencia y extintor	
Figura 55. Parapetos de las ventanas	
Figura 56. Mobiliario sin anclaje	
Figura 57. Tipo de estructura y trayectoria de carga. Bloque C	
Figura 58. Separación entre el Bloque C y el Bloque B	
Figura 59. Sistema Estructural y Trayectoria de Carga – Edificación Antigua	
Figura 60. Corte Transversal Arquitectónico Edificación Antigua	
Figura 61. Vista Sur – Estructural Edificación Antigua	
Figura 62. Muros de Albañilería aislados de la estructura principal	119
Figura 63. Caja de escalera aislada de la estructura	
Figura 64. Tubería contra incendio correctamente anclada y moderna al igual que la estructur	
ascensor	
Figura 65. Estado de los componentes No Estructurales	
Figura 66. Modelamiento Bloque A en programa ETABS	
Figura 67. Fuerzas Laterales a Columnas y Placas – Bloque A – Dirección X Figura 68. Fuerzas Laterales a Columnas y Placas – Bloque A – Dirección Y	
Figura 69. Estado de carga gravitacional – CGNL – Bloque A – Dirección I	
Figura 70. Estado de carga gravitacional – CGNL – Bioque A Figura 70. Estado de carga del Pushover en la dirección X y Y – Bloque A	137
Figura 70. Estado de curga del 1 usnover en la dirección X y 1 – Bioque A Figura 71. Curva Esfuerzo Deformación del Concreto – Bloque A	
Figura 71. Curva Esjuerzo Dejormación del Concreto – Bioque A Figura 72. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A	
Figura 73. Curva de capacidad en la dirección X del Bloque A – Primer Caso	
Figura 74. Curva de capacidad en la dirección Y del Bloque A – Primer Caso	
Figura 75. Objetivo de Desempeño de la Estructura en dirección X – Bloque A – Primer Caso.	
Figura 76. Objetivo de Desempeño de la Estructura en dirección Y – Bloque A – Primer Caso.	147
Figura 77. Curva de capacidad en la dirección X del Bloque A – Segundo Caso	
Figura 78. Curva de capacidad en la dirección Y del Bloque A – Segundo Caso	
Figura 79. Objetivo de Desempeño de la Estructura en dirección X – Bloque A – Segundo Caso	
Figura 80. Objetivo de Desempeño de la Estructura en dirección Y – Bloque A – Segundo Caso	
Figura 81. Estado de carga gravitacional – CGNL – Bloque A	
Figura 82. Estado de carga del Pushover en la dirección X y Y – Bloque A	
Figura 83. Curva Esfuerzo Deformación del Concreto – Bloque A	
Figura 84. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A	
Figura 85. Curva de capacidad en la dirección X del Bloque C – Primer Caso	
Figura 86. Curva de capacidad en la dirección Y del Bloque C – Primer Caso	
Figura 87. Objetivo de Desempeño de la Estructura en dirección X – Bloque C – Primer Caso	
Figura 88. Objetivo de Desempeño de la Estructura en dirección Y – Bloque C –Primer Caso	
Figura 89. Curva de capacidad en la dirección X del Bloque C – Segundo Caso	
Figura 90. Curva de capacidad en la dirección Y del Bloque C – Segundo Caso	
Figura 91. Objetivo de Desempeño de la Estructura en dirección X – Bloque C –Segundo Caso	
Figura 92. Objetivo de Desempeño de la Estructura en dirección Y – Bloque C –Segundo Caso	162
Figura 93. Modelamiento Edificación Antigua	
Figura 94. Curva Esfuerzo Deformación del Concreto – Bloque A	
Figura 95. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A	
Figura 96. Curva de capacidad en la dirección X – Edificación Antigua	173

Figura 97.	Curva de capacidad en la dirección X – Edificación Antigua	173
Figura 98.	Objetivo de Desempeño de la Estructura en dirección X – Edificio Antiguo	174
Figura 99.	Objetivo de Desempeño de la Estructura en dirección Y – Edificio Antiguo	175

Resumen

La presente tesis tiene como objetivo determinar la vulnerabilidad sísmica de las edificaciones en la Escuela Profesional de Ingeniería Civil (EPIC) de la Universidad Nacional de San Antonio Abad del Cusco (UNSAAC) aplicando un manual de evaluación rápida propuesto por el FEMA P-154 (Federal Emergency Management Agency) y la norma ASCE 41-13 (American Society of Civil Engineers).

El FEMA nos brinda el manual P-154 (Rapid Visual Screening of Buildings for Potential Seismic Hazards) el cual se utiliza como una pre-evaluación rápida y así determinar qué edificaciones necesitan una evaluación más detallada. Este manual tiene un sistema de puntuación en base a las características, tanto de configuración arquitectónica como estructurales, de cada edificación teniendo la calificación 02 como corte, es así que, si una edificación tiene un puntaje menor que 02 significa que necesita una evaluación más detallada. Con la metodología FEMA se evaluaron el Edificio Antiguo de la EPIC que consta de un bloque, el Edificio Nuevo de la EPIC que consta de tres bloques, y los Laboratorios de Suelos e Hidráulica que consta de tres bloques (Ver Figura 1). Para el Edificio Antiguo de la EPIC se obtuvo un puntaje final de 0.3; el Bloque A, el Bloque B y el Bloque C de la Edificación Nueva obtuvieron puntajes finales de 0.4, 2.4 y 1.5 respectivamente; el Bloque A, el Bloque B y Bloque C de los laboratorios de Suelos e Hidráulica obtuvieron puntajes finales de 2.4, 2.1 y 2.4 respectivamente. De esta manera se determinó que solo la Edificación Antigua y los bloques A y C de la Edificación Nueva requieren una evaluación más detallada.

La norma del ASCE 41 – 13 nos brinda un procedimiento de evaluación para edificaciones existentes y utiliza 3 niveles de evaluación en base a un objetivo de desempeño. El primero es de inspección, el cual nos familiariza con las características más generales de la edificación tanto en lo Estructural como en lo No Estructural; el segundo, que es opcional, está basado en las deficiencias encontradas en el nivel 1; y el tercero es una evaluación sistemática basada en el desempeño sísmico de la estructura mediante un análisis estático No Lineal o Pushover, para lo cual fue necesario realizar ensayos destructivos para verificar la resistencia a compresión del concreto, obteniendo resultados por debajo de la resistencia de diseño menores hasta en un 49%. En base al primer nivel de evaluación, en el Edificio Antiguo de la EPIC se utilizaron 50 criterios de evaluación y solo cumple con el 82.00% de ellos; en el Bloque A de la Edificación Nueva se utilizaron 38 criterios de evaluación y solo cumple con el 63.16% de ellos; y en el Bloque C de la Edificación Nueva se utilizaron 39 criterios de evaluación y solo cumple con el 74.36% de ellos. El ASCE 41 – 13 establece que para que una edificación cumpla con el objetivo de desempeño, debe cumplir con todos los criterios de evaluación, por tanto, ninguna de las edificaciones evaluadas bajo el nivel 1 cumplen con el objetivo de desempeño requerido. En base a los resultados del nivel 1, se optó por pasar directamente al nivel 3 de evaluación. En este nivel se hicieron un Análisis Estático y Dinámico Lineal para verificar las irregularidades, derivas, periodo fundamental, y para determinar el patrón de cargas de empuje (Pushover) a partir de la fuerza cortante dinámica para realizar el Análisis Estático No Lineal, con lo cual se determina la curva de capacidad de cada estructura y así verificar si cumple con el objetivo de desempeño para edificaciones esenciales que son: Ocupación Inmediata para un sismo con periodo de retorno de 225 años y Seguridad de Vida para un sismo con periodo de retorno de 975 años. En los bloques A y C del edificio nuevo se realizó el análisis para dos casos de resistencia de concreto: el primero con la resistencia de diseño f'c=210 kg/cm2 y el segundo en base a las resistencias obtenidas de los núcleos de concreto extraídos, mientras que para el edificio antiguo se realizó el análisis con su resistencia de diseño f'c=210 kg/cm2. Como resultado de estos análisis se determinó que el Bloque A de la edificación nueva en el primer caso tiene una Baja Vulnerabilidad Sísmica cumpliendo con los objetivos de desempeño en las dos direcciones y en el segundo caso tiene una Media Vulnerabilidad Sísmica cumpliendo los objetivos de desempeño solo en una dirección. El Bloque C de la edificación nueva en el primer y segundo caso cumple con los objetivos de desempeño en ambas direcciones por lo cual tiene una Baja Vulnerabilidad Sísmica. El Edificio Antiguo no cumple con el objetivo de desempeño de seguridad de vida para un peligro sísmico con periodo de retorno de 975 años en un sentido de análisis sin embargo tiene una Baja Vulnerabilidad Sísmica.

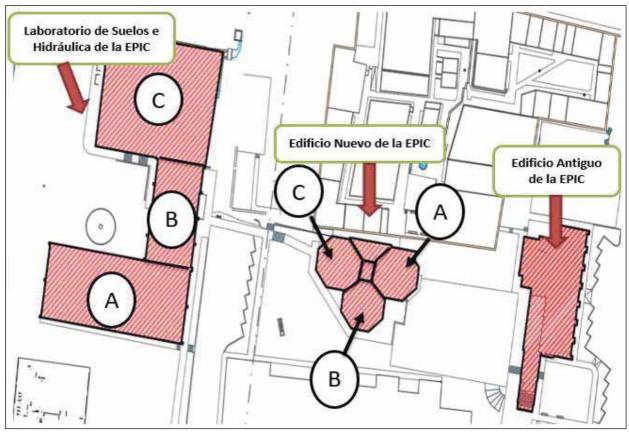
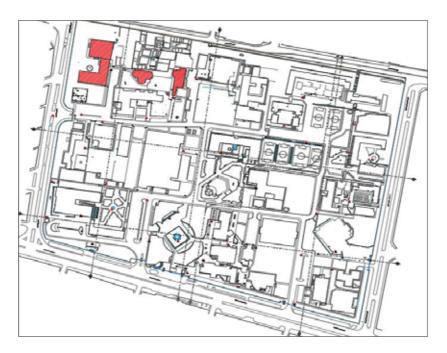


Figura 1. Identificación de los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco

Abstract


The present thesis aims to determine the seismic vulnerability of buildings of the Escuela Profesional de Ingeniería Civil (EPIC) from The Universidad Nacional de San Antonio Abad del Cusco (UNSAAC) through the aplication of a rapid assessment manual proposed by the Federal Emergency Management Agency (FEMA) and ASCE 41-13 (American Society of Civil Engineers).

FEMA gives us the manual P-154 (Rapid Visual Screening of Buildings for Potential Seismic Hazards) which is used as a quick pre-evaluation and to determine which buildings need more detailed evaluation. This manual has a scoring system based on the characteristics, both configuration and structural, of each building with the qualification 02 as a cut-off. Therefore, if a building has a score lower than 02 it means that it needs a more detailed evaluation. With the FEMA's methodology, the EPIC Old Building consisting of one block, the New EPIC Building consisting of three blocks, and the Soil and Hydraulics Laboratories consisting of three blocks were evaluated (See Figure 2). For the Old Building of the EPIC, a final score of 0.3 was obtained. Block A, Block B and Block C of the New Building obtained final scores of 0.4, 2.4 and 1.5 respectively. Block A, Block B and Block C of the Soils and Hydraulics laboratories obtained final scores of 2.4, 2.1, 2.4 respectively. In this way, it was determined that only the Old Building and the A and C blocks of the New Building require a more detailed evaluation.

The standard of ASCE 41 - 13 provides us with an evaluation procedure for existing buildings. It uses 3 levels of evaluation based on a performance objective, which is of Immediate Occupancy and Life Safety. The first level is of inspection, which familiarizes us with the most general characteristics of the building in both the Structural and the Non-Structural. The optional second level is based on the deficiencies found in level 1. The third level is a systematic evaluation based on the seismic performance of the structure through static non-linear analysis or Pushover. It was necessary to perform destructive tests to verify the compressive strength of the concrete, obtaining results below the resistance of design minors up to 49%. Based on the first level of evaluation, in the Old Building of the EPIC, 50 evaluation criteria were used and only complies with 82.00% of them; in Block A of the New Building, 38 evaluation criteria were used and only complies with 63.16% of them; and in Block C of the New Building, 39 evaluation criteria were used and only complies with 74.36% of them. ASCE 41 - 13 establishes that for a building to meet the performance objective, it must comply with all the evaluation criteria, therefore, none of the buildings evaluated under level 1 comply with the required performance objective. Based on the results of level 1, it was decided to go directly to level 3 of evaluation. At this level, a Linear Dynamic and Static Analysis was performed to verify irregularities, drifts, fundamental period, and to determine the load patterns (Pushover) from the dynamic shear force to perform the Nonlinear Static Analysis, with which determines the capacity curve of each structure and thus verify if it meets the performance objective for essential buildings that are: Immediate Occupation for an earthquake with a return period of 225 years and Life Safety for an earthquake with a return period of 975 years. In blocks A and C of the new building, the analysis was carried out for two concrete resistance cases: the first with the design resistance f'c=210 kg/cm2 and the second based on the resistance obtained from the concrete cores extracted, while for the old building the analysis was carried out with its design resistance fc=210 kg/cm2. As a result of these analyzes, it was determined that Block A of the new building in the first case has a Low Seismic Vulnerability complying with the performance objectives in both directions and in the second case it has a Seismic Half Vulnerability meeting the performance objectives only in one direction Block C of the new building in the first and second cases meets the performance objectives in both directions and therefore has a low seismic vulnerability. The Old Building does not meet the objective of life safety performance for a seismic hazard with a return period of 975 years in one direction of analysis however it has a Low Seismic Vulnerability.

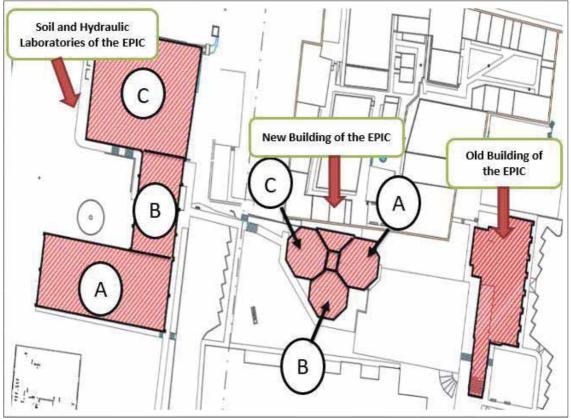


Figura 2. Identification of the Buildings of the Escuela Profesional de Ingeniería Civil of the Universidad de San Antonio Abad del Cusco

Capítulo 1. Introducción

1.1. Aspectos Generales

1.1.1. Situación Problemática.

El Perú se encuentra dentro del cinturón de fuego del Pacífico, siendo éste la zona más destructiva del planeta, ya que se caracteriza por concentrar una de las zonas de subducción más importantes del mundo, como la subducción de la placa de Nazca frente a la placa Sudamericana, la que ocasiona una intensa actividad sísmica en toda la costa Sudamericana.

Si bien la Región del Cusco está alejada de esta zona de subducción, es propensa a movimientos sísmicos debido a las diversas fallas activas presentes en la zona, originando sismos intraplaca con foco superficial los cuales son menos recurrentes en el tiempo, pero que también han causado grandes destrucciones en el siglo pasado. Fuentes históricas demuestran que la región del Cusco fue altamente afectada por sismos considerables.

Los sismos pueden producir una serie de efectos inducidos, que dan lugar a grandes deformaciones y rupturas del terreno, como son los fenómenos de movimientos en masa y los fenómenos de licuefacción del suelo. Según el Instituto Geológico, Minero y Metalúrgico (INGEMMET), dentro de los movimientos de masa inventariados en la región del Cusco, 86 fueron detonados probablemente por sismos, y 33 zonas son susceptibles a procesos de licuefacción del suelo.

1.1.2. Planteamiento del Problema.

1.1.2.1. Problema General.

 ¿Cuál es la Vulnerabilidad Sísmica en los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco, Distrito de Cusco, 2018?

1.1.2.2. Problemas Específicos.

- ¿Qué Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco requieren de una evaluación más detallada según la Metodología FEMA P-154, Distrito de Cusco, 2018?
- ¿Qué problemas Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018?

¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018?

1.1.3. Justificación de la Investigación.

En esta Tesis de Investigación se pretende evaluar la Vulnerabilidad Sísmica de Edificaciones Esenciales según el manual del FEMA P-154 y la norma del ASCE 41-13, las cuales son Edificaciones cuya función no debería interrumpirse inmediatamente después de que ocurra un sismo severo, ya que estas edificaciones deben servir como refugio después de un desastre.

1.1.3.1. Justificación Técnica.

La Norma Técnica Peruana de diseño sismo resistente se ha implementado el año 1977, sufriendo modificaciones en el año 1997, luego en el año 2003 y recientemente en el año 2016, dándose cambios significativos en cuanto a criterios de diseño y comportamiento de elementos estructurales y no estructurales.

Para el diseño en concreto armado se usaba la Norma Peruana de 1970 o el ACI de 1971, luego se usó la del año 1977 y en 1989 se publica la Norma de diseño en Concreto Armado E-060, sufriendo modificaciones en el año 2009.

Las Edificaciones de la Escuela Profesional de Ingeniería Civil fueron construidas en los años 1981 (Edificio Antiguo), 1986 (Laboratorio de Suelos e Hidráulica) y 2000 (Edificio Nuevo).

Debido a las diferentes modificaciones en las normas, así como también a la utilización de normas extranjeras, podemos inferir que las edificaciones de la Escuela Profesional de Ingeniería Civil se diseñaron bajo diferentes criterios de diseño de construcción, los cuales, para la actualidad, cambiaron significativamente.

1.1.3.2. Justificación Social.

La Universidad Nacional de San Antonio Abad del Cusco, concentra una población de más de 15000 personas, de las cuales un gran porcentaje, labora en Edificaciones de considerable antigüedad que han sufrido movimientos sísmicos, lo que representa un riesgo de pérdidas humanas, materiales y socio-económicas.

De la misma forma existe una alta población que construyeron sus viviendas en sectores con alto peligro de deslizamiento y por lo tanto estarían es riesgo de colapso ante un sismo severo. Por tal motivo, es necesario que las edificaciones esenciales para refugio estén en óptimas condiciones para brindar alojamiento a las personas afectadas después de un sismo severo.

Así mismo brindar una información sobre el grado de Vulnerabilidad Sísmica de los Edificios de la Escuela Profesional de Ingeniería Civil aporta un mejor panorama del estado actual de las edificaciones, y de tal manera definir si necesitan refuerzos, cambio total de la estructura o si están en buen estado.

1.1.3.3. Justificación por Viabilidad.

Para la Tesis de Investigación fueron de necesidad diferentes aspectos, los cuales se pudieron obtener y detallan a continuación:

- El manual del Federal Emergency Managament Agency (FEMA P-154) y la norma American Society of Civil Engineers (ASCE 41-13).
- Los planos arquitectónicos y estructurales de los edificios a evaluar, lo cual facilitará en gran medida la evaluación y modelamiento de las estructuras.
- Se tiene la referencia de Investigaciones referidas a Vulnerabilidad Sísmica y Diseño Sismo resistente.
- En la ciudad del Cusco existen laboratorios especializados para realizar muestreo de perforación con Diamantina, así como también ensayos de detección con Pachómetro, los cuales serán de vital importancia para conocer en que condición se encuentran las estructuras a evaluar.
- Como programa de evaluación, contamos con ETABS ultimate V.17.0.1, el cual nos permitirá hacer los modelamientos y análisis estructurales de las edificaciones que lo requieran.
- Se cuenta con permisos de parte de la Oficina de Obras de la UNSAAC para poder realizar ensayos de carácter destructivo como lo es el ensayo de perforación con Diamantina.

1.1.3.4. Justificación por Relevancia.

Varias de las edificaciones de la Universidad Nacional de San Antonio Abad del Cusco presentan signos de daños estructurales, lo que nos permite deducir que pueden tener un mal comportamiento sísmico.

Es necesario evaluar la Vulnerabilidad Sísmica en edificaciones existentes para así prevenir desastres futuros a causa de sismos y así disminuir el impacto socioeconómico de la zona.

1.1.4. Limitaciones de la Investigación.

1.1.4.1. Limitaciones de Campo.

No se tuvieron limitaciones de campo. Con los permisos correspondientes se puede tener acceso a todos los ambientes de las edificaciones a evaluar.

1.1.4.2. Limitaciones Instrumentales.

El laboratorio de estructuras de la Escuela Profesional de Ingeniería Civil no cuenta con el instrumento para la extracción de muestras con diamantina, por lo tanto, se tuvo que contratar los servicios de un laboratorio externo.

1.1.5. Objetivo de la Investigación.

1.1.5.1. Objetivo General.

 Evaluar la Vulnerabilidad Sísmica en los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco, Distrito de Cusco, 2018.

1.1.5.2. Objetivos Específicos.

- Determinar si los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco requieren una evaluación más detallada según la Metodología FEMA P-154, Distrito de Cusco, 2018.
- Determinar los problemas Estructurales que posean los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018.
- Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018.

1.1.6. Formulación de la Hipótesis.

1.1.6.1. Hipótesis General.

 HG: Existe una Alta Vulnerabilidad Sísmica en los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco, Distrito de Cusco, 2018.

1.1.6.2. Hipótesis Específicas.

- HE1: El edificio moderno (Octógonos) y antiguo de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco requerirán de una evaluación más detallada según la Metodología FEMA P-154, Distrito de Cusco, 2018.
- HE2: Los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud, Distrito de Cusco, 2018.
- HE3: Las edificaciones de la Escuela Profesional de Ingeniería Civil presentan problemas No Estructurales que podrían dañar a las personas durante un evento sísmico, Distrito de Cusco, 2018.

1.1.7. Identificación de Variables.

 Variable Independiente (X): Edificios de la Escuela Profesional de Ingeniería Civil -UNSAAC.

• Variable Dependiente (Y): Vulnerabilidad Sísmica.

• Unidad de Análisis: Edificios de la Escuela Profesional de Ingeniería Civil -

UNSAAC.

Ámbito Geográfico: Distrito de Cusco.

• Período: 2018.

1.1.8. Operacionalización de Variables.

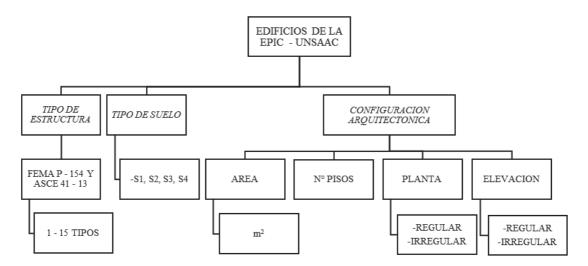


Figura 3. Operacionalización de la Variable Independiente

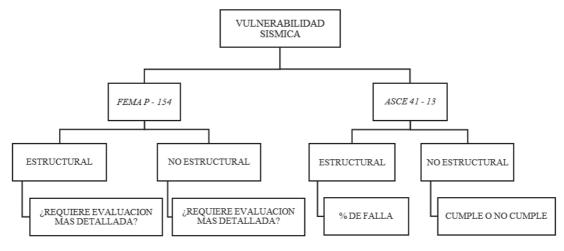


Figura 4. Operacionalización de la Variable Dependiente

1.1.9. Matriz de Consistencia.

	T		MATRIZ DE CONS			
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	FACTORES	SUB FACTORES	INDICADORES
P.G.	O.G.	H.G.	X:	X1:	X11: FEMA P 154 y ASCE	X111:
				Tipo de Estructura	41-13	DEL 1 AL 15
				X2:		x21: S1
			Edificios de la			X22: S2
			Escuela Profesional	Tipo de Suelo		x23: S3
• ¿Cuál es la			de Ingeniería Civil de			X24: S4
Vulnerabilidad Sísmica	 Evaluar la Vulnerabilidad 	HG: Existe una Alta	la Universidad Nacional de San	X3:	X31: Área	X311: m ²
en los Edificios de la	Sísmica en los Edificios de la	Vulnerabilidad Sísmica en los	Antonio Abad del		X32: N° Pisos	X321: N°
Escuela Profesional de Ingeniería Civil de la	Escuela Profesional de Ingeniería Civil de la	Edificios de la Escuela Profesional de Ingeniería Civil de	Cusco		X33: Planta	X331: Regular
Universidad Nacional	Universidad Nacional de San	la Universidad Nacional de San		Configuración Arquitectónica	A33.1 ianta	X332: Irregular
de San Antonio Abad	Antonio Abad del Cusco,	Antonio Abad del Cusco,		Arquitectorica	X34: Elevación	X341: Regular
del Cusco, Distrito de	Distrito de Cusco, 2018.	Distrito de Cusco, 2018.			A34. Ekvacion	X342: Irregular
Cusco, 2018?			Y:	Y1:	Y11: Estructural	Y111: Requiere de Evaluación detallada
						Y112: No requiere de Evaluación detallada
			Vulnerabilidad	FEMA P-154	Y12: No Estructural	Y121: Requiere de Evaluación detallada
			Sísmica			Y122: No requiere de Evaluación detallada
				Y2:	Y21: Estructural	Y211:% de Falla
				ASCE 41-13	Y22: No Estructural	Y221: Cumple o No Cumple
.E.1	O.E.1.	H.E.1.	X:	X1:	X11:	X111:
				Tipo de Estructura	FEMA P 154 y ASCE	DEL 1 AL 15
				X2:	41-13	X21:S1
• ¿Qué Edificios de la			Edificios de la	m: 1 0 1		X22: S2
Escuela Profesional de	Determinar si los Edificios de	HE1: El edificio moderno	Escuela Profesional	Tipo de Suelo		x23: S3
Ingeniería Civil de la	la Escuela Profesional de	(Octágono) y antiguo de la	de Ingeniería Civil de			X24: S4
Universidad Nacional	Ingeniería Civil de la	Escuela Profesional de Ingeniería	la Universidad	X3:	X31: Área	X311: m ²
de San Antonio Abad	Universidad Nacional de San	Civil de la Universidad Nacional	Nacional de San Antonio Abad del		X32: N° Pisos	X321: N°
del Cusco requiere de una evaluación más	Antonio Abad del Cusco requieren una evaluación más	de San Antonio Abad del Cusco requerirán de una evaluación	Cusco		A32.1V 11808	
detallada según la	detallada según la Metodología	más detallada según la		Configuración	X33: Planta	X331: Regular
Metodología FEMA P-	FEMA P-154, Distrito de	Metodología FEMA P-154,		Arquitectónica		X332: Irregular
54, Distrito de Cusco,	Cusco, 2018.	Distrito de Cusco, 2018.			X34: Elevación	X341: Regular
2018?			***			X342: Irregular
			Y1:	Y11: Estructural		Y111: Requiere de Evaluación detallada
			FEMA P-154			Y112: No requiere de Evaluación detallada Y121: Requiere de Evaluación detallada
			PLWA 1-154	Y12: No Estructural		Y122: No requiere de Evaluación detallada
P.E.2	O.E.2.	H.E.2.	X:	X1:	X11:	X111:
LL	0.15.2.	11.1.2.	J.	Tipo de Estructura	FEMA P 154 y ASCE	
					41-13	DEL 1 AL 15
• ¿Qué problemas				X2:		x21:S1
Estructurales poseen	Determinar los problemas	HE2: Los Edificios de la	Edificios de la			X22: S2
los Edificios de la	Estructurales que posean los	Escuela Profesional de Ingeniería	Escuela Profesional	Tipo de Suelo		x23: S3
Escuela Profesional de Ingeniería Civil de la	Edificios de la Escuela	Civil de la Universidad Nacional	de Ingeniería Civil de			X24: S4
ingenieria Civii de ia		de San Antonio Abad del Cusco	de filgefileria Civil de			
Universidad Nacional	Profesional de Ingeniería Civil	de San Antonio Abad del Cusco que fueron evaluadas con la	la Universidad	X3:	X31: Área	
	de la Universidad Nacional de		la Universidad Nacional de San	X3:	X31: Área	X311: m ²
de San Antonio Abad del Cusco que fueron	de la Universidad Nacional de San Antonio Abad del Cusco	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas	la Universidad Nacional de San Antonio Abad del	X3:	X32: N° Pisos	X311: m ² X321: N°
de San Antonio Abad del Cusco que fueron evaluadas con la	de la Universidad Nacional de	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento	la Universidad Nacional de San	X3: Configuración		X311: m ² X321: N° X331: Regular
de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud,	la Universidad Nacional de San Antonio Abad del		X32: N° Pisos	X311: m ² X321: N° X331: Regular X332: Irregular
de San Antonio Abad del Cusco que fueron evaluadas con la fletodología del ASCE 41-13, Distrito de	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento	la Universidad Nacional de San Antonio Abad del	Configuración	X32: N° Pisos	X311: m ² X321: N° X331: Regular X341: Regular
/letodología del ASCE	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud,	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica	X32: N° Pisos X33: Planta	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular
de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud,	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica Y21: Estructural	X32: N° Pisos X33: Planta	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla
de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018?	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud,	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica	X32: N° Pisos X33: Planta	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular
de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018?	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018.	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud, Distrito de Cusco, 2018.	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1:	X32: N° Pisos X33: Planta X34: Elevación	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111:
de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018?	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018.	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud, Distrito de Cusco, 2018.	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura	X32: N° Pisos X33: Planta X34: Elevación X11:	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018?	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018.	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud, Distrito de Cusco, 2018.	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2:	X32: Nº Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018.	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sísmico de gran magnitud, Distrito de Cusco, 2018.	la Universidad Nacional de San Antonio Abad del Cusco	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura	X32: Nº Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? E.3 ¿Qué problemas No Estructurales poseen los Edificios de la	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018.	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X:	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2:	X32: Nº Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3
de San Antonio Abad del Cusco que fueron evaluadas con la Actodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de	de la Universidad Nacional de San Antonio Abad del Cusco que fieron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018. O.E.3 • Determinar los problemas No Estructurales que posean los Edificios de la Escuela	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 • HE3: Las edificaciones de la	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2:	X32: Nº Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018. O.E.3 • Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profesional del ingeniería Civil	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2:	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y221: Gumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3 X24: S4
de San Antonio Abad del Cusco que fueron evaluadas con la fetodologia del ASCE 41-13, Distrito de Cusco, 2018? E.3 ¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional	de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018. O.E.3 Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profesional de Ingeneira (avid de la Universidad Nacional de	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingenieria Civil presentan problemas No Estructurales que podrian dañar	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y342: Irregular Y342: Irregular Y21: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3 X24: S4 X311: m ²
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Secuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron	de la Universidad Nacional de San Antonio Abad del Cusco que fieror o vealuadas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018. O.E.3 • Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profisional de Ingenieria Civil de la Universida Nacional de San Antonio Abad del Cusco	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingeniería Civil presentan problemas No Estructurales que podrían dañar a las personas durante un evento	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San Antonio Abad del	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área X32: N° Pisos	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3 X24: S4 X311: m ² X321: N°
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional del San Antonio Abad del Cusco que fueron evaluadas con la	de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018. O.E.3 Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profesional de Ingeneira (avid de la Universidad Nacional de	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingenieria Civil presentan problemas No Estructurales que podrian dañar	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área	X311: m ² X321: N° X331: Regular X332: Irregular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3 X24: S4 X311: m ² X321: N° X331: Regular
de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la fetodología del ASCE	de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Metodologia del ASCE 41-13, Distrito de Cusco, 2018. Distrito de Cusco, 2018. Determinar los problemas No Estructurales que posean los Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingeniería Civil presentan problemas No Estructurales que podrían dañar a las personas durante un evento	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San Antonio Abad del	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo X3:	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área X32: N° Pisos	X311: m ² X321: N° X331: Regular X331: Regular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 x22: S2 x23: S3 X24: S4 X311: m ² X321: N° X331: Regular X332: Irregular
de San Antonio Abad del Cusco que fueron evaluadas con la fetodologia del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen los Edificios de la Secuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la fetodologia del ASCE 41-13, Distrito de	de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018. * Determinar los problemas No Estructurales que posean los Edificios de la Escuela Professional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingeniería Civil presentan problemas No Estructurales que podrían dañar a las personas durante un evento	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San Antonio Abad del	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo X3: Configuración	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área X32: N° Pisos	X311: m ² X321: N° X331: Regular X332: Irregular X342: Irregular X342: Irregular Y221: Ge Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 X22: S2 x23: S3 X24: S4 X311: m ² X331: N° X331: Negular X332: Irregular X341: Regular
de San Antonio Abad del Cusco que fueron evaluadas con la Actodología del ASCE 41-13, Distrito de Cusco, 2018? ¿Qué problemas No Estructurales poseen ios Edificios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fueron evaluadas con la Actodología del ASCE	de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13, Distrito de Cusco, 2018. * Determinar los problemas No Estructurales que posean los Edificios de la Escuela Professional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco que fierore vestuladas con la Metodología del ASCE 41-13,	que fueron evaluadas con la Metodología ASCE 41-13 presentarán serios problemas estructurales luego de un evento sismico de gran magnitud, Distrito de Cusco, 2018. H.E.3 HE3: Las edificaciones de la Escuela Profesional de Ingeniería Civil presentan problemas No Estructurales que podrían dañar a las personas durante un evento	la Universidad Nacional de San Antonio Abad del Cusco Y2: ASCE 41-13 X: Edificios de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de San Antonio Abad del	Configuración Arquitectónica Y21: Estructural Y22: No Estructural X1: Tipo de Estructura X2: Tipo de Suelo X3: Configuración	X32: N° Pisos X33: Planta X34: Elevación X11: FEMA P 154 y ASCE 41-13 X31: Área X32: N° Pisos X33: Planta	X311: m ² X321: N° X331: Regular X331: Regular X341: Regular X342: Irregular Y211: % de Falla Y221: Cumple o No Cumple X111: DEL 1 AL 15 x21: S1 x22: S2 x23: S3 X24: S4 X311: m ² X321: N° X331: Regular X332: Irregular

Tabla 1. Matriz de Consistencia

Capítulo 2. Marco Teórico - Conceptual

2.1. Antecedentes de la Tesis

2.1.1. Antecedentes a Nivel Internacional.

• En el año 2016, en la ciudad de Guayaquil, Ecuador, el autor Jerry Israel Morán Troya, bajo el asesoramiento del Ing. John Galarza Rodrigo, presento en la Universidad de Guayaquil la tesis de investigación titulada: "Aplicación de la Metodología FEMA 154 para la Evaluación de Daños Estructurales en Edificaciones Luego de un Evento Sísmico".

Esta investigación tuvo como finalidad estudiar y aplicar formularios dados por el FEMA 154 a una vivienda familiar de tres plantas realizando una comparación con los criterios de inspección y evaluación dados por la NEC (Norma Ecuatoriana de la Construcción).

Así mismo, realizo ensayos de carácter no destructivo utilizando esclerómetro y ultrasonido determinando la resistencia a compresión simple de las columnas de la planta baja, primera planta y segunda planta, dando como resultado altas resistencias de hasta 297 kg/cm2.

Con los resultados finales de los formatos de evaluación llegan a la conclusión que la vivienda requiere una evaluación más detallada para así establecer que secciones de los elementos estructurales cumplen con los parámetros dados por la norma, y realizar un reforzamiento de ser el caso.

• En el 2017, en la ciudad de Cartagena, Colombia, el autor Antonio Zabala Jorquera, bajo el asesoramiento del Dr. Pascual Marti Monrull, presento en la Universidad Politécnica de Cartagena la tesis titulada: "Modelado y Análisis Pushover de la Respuesta Sísmica de Estructuras de Acero".

Esta investigación realiza una breve introducción a los fundamentos de la ingeniería sísmica y a los métodos de diseño sismo resistente más importantes, prestando mayor atención al análisis estático no lineal o Pushover.

Utilizando el programa de cálculo estructural Autodesk Robot Structural Analysis Professional, se ha aplicado la técnica de análisis pushover a diferentes estructuras de acero con uniones precalificadas para estudiar la influencia de los arriostramientos en la respuesta sísmica del edificio.

En esta tesis de maestría, el método pushover valida su capacidad como herramienta para el diseño sismorresistente, ya que permite analizar el comportamiento de la estructura frente a demandas sísmicas a partir de la curva pushover y de la secuencia de plastificación. Estos resultados, que serán más precisos cuanto más predominante sea el modo fundamental, permiten detectar debilidades que puedan permanecer ocultas en un análisis elástico convencional tales como: mecanismos de piso blando, desplazamientos excesivos o comportamientos frágiles.

2.1.2. Antecedentes a Nivel Nacional.

• En el año 2015, en la ciudad de Trujillo, Perú, los bachilleres Luis Ronald Quiroz Peche y Lindaura del Rosario Vidal Abelino, bajo el asesoramiento del PhD. Genner Villareal Castro, presentaron en la Universidad Privada Antenor Orrego la tesis de investigación titulada: "Evaluación del Grado de Vulnerabilidad Sísmica Estructural en Edificaciones Conformadas por Sistemas Aporticados y de Albañilería Confinada en el Sector de Esperanza parte baja – Trujillo, 2014".

En esta tesis de investigación se utiliza procesos estadísticos para elaborar un formato de evaluación rápida llamado UPAO. Se evaluó alrededor de 300 edificaciones entre sistemas aporticados y de albañilería confinada determinando así que 75.4% de edificaciones tienen un alto grado de vulnerabilidad sísmica.

Esta tesis de evaluación no evalúa específicamente cada edificación, sino que, en base a un muestreo de las edificaciones presentes en el distrito, brinda configuraciones típicas de construcción y en base a ellas realiza su estudio.

• En el año 2016, en la ciudad de Cusco, Perú, los bachilleres Jorge Arturo Cumpa Marquez y Danny Franco Herhuay, bajo el asesoramiento del Ing. José Felipe Azpilcueta Carbonell, presentaron en la Universidad Nacional de San Antonio Abad del Cusco la tesis de investigación titulada: "Evaluación de las Causas de Fisuramiento en las Vigas de Concreto Armado en las Edificaciones de las Facultades de Derecho, Turismo e Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco".

En esta tesis se diseñó un modelo de viga con los parámetros de diseño según la norma E.060 del reglamento nacional de edificaciones, sometiendo a los modelos de vigas a los ensayos de flexión y temperatura recreando las diferentes formas de fisuramiento en el laboratorio de estructuras de la EPIC, con estos resultados se realizó una comparación para conocer la causa principal por la cual se origina la fisura.

En cuanto al edificio nuevo de la EPIC, se encontró un total de 160 fisuras en el quinto piso, de los cuales un 19% están dentro del rango menor a 0.40 mm, un 18% están en un rango entre 0.40 mm a 1.00 mm, y un 63% mayor a 1.00 mm.

Es de resaltar que esta tesis de investigación solo estudio a las vigas del ultimo nivel de las edificaciones mas no a las fisuras presentes en columnas y no realizaron ensayos de carácter destructivo, sino que recrearon los fisuramientos presentes en vigas de 15cm x 15cm x 1m.

• En el año 2017, en la ciudad de Cusco, Perú, el bachiller David Renzo Choque Escalante, presento en la Universidad Nacional de San Antonio Abad del Cusco la tesis de investigación titulada: "Evaluación de Desempeño Sísmico del Centro de Salud Santa Rosa de la Ciudad del Cusco ante la Acción de un Sismo Severo".

En esta tesis se desarrolló una Evaluación del Desempeño Sísmico del Centro de Salud Santa Rosa tanto para componentes Estructurales y componentes No Estructurales aplicando la norma ASCE 41-13 (American Society of Civil Engineers).

y utilizando un peligro sísmico que estará representado por dos eventos sísmicos con diferentes periodos de retorno: sismo severo con periodo de retorno de 2475 años y sismo moderado con periodo de retorno de 475 años.

Se llega a conclusión que el Centro de Salud de Santa Rosa no cumple con el nivel de desempeño de Ocupación Inmediata para el nivel de peligro sísmico moderado

Esta tesis demuestra que, incluso edificaciones consideradas prácticamente nuevas, pueden presentar comportamientos deficientes ante un sismo y así no garantizar la seguridad ni uso requerido a los ocupantes después de un evento sísmico.

2.2. Conceptos Generales

2.2.1. Vulnerabilidad Sísmica.

La Vulnerabilidad sísmica de una estructura, grupo de estructuras o de una zona urbana completa, se define como su predisposición intrínseca a sufrir daño ante la ocurrencia de un movimiento sísmico y está asociada directamente con sus características físicas y estructurales de diseño. (Barbat & Pujades, 2004).

Cualquier tipo de edificación es afectada por los sismos, pero no todas presentaran los mismos daños ante un mismo sismo. Es así que, cualquier tipo de estructura es vulnerable en mayor o menor medida ante un evento sísmico.

2.2.1.1. Clasificación de la Vulnerabilidad Sísmica.

2.2.1.1.1. Vulnerabilidad Estructural.

En cualquier tipo de edificación están presentes los elementos estructurales y estos son los que mantienen en pie toda la estructura. Estos elementos estructurales, como son las vigas, columnas, muros portantes y cimientos (Figura 5) son los que reciben las cargas verticales (peso de la estructura, sobrecargas, carga viva), y cargas horizontales (sismos, vientos).

El comportamiento y estabilidad de una estructura frente a sismos va a depender esencialmente de los elementos estructurales.

Por tanto, la vulnerabilidad estructural se refiere al comportamiento y a los posibles daños que puedan presentar los elementos estructurales luego de un evento sísmico.

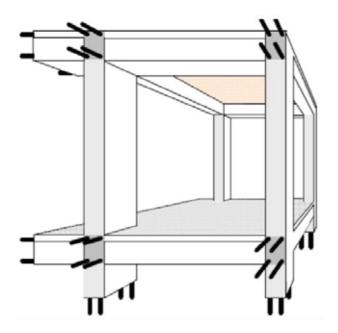


Figura 5. Elementos Estructurales de una Edificación. Fuente: Introduction to Earthquake Protection of Non-Structural Elements in Buildings

2.2.1.1.2. Vulnerabilidad No Estructural.

Cualquier tipo de edificación cuenta con los elementos No Estructurales (Figura 6) los cuales, a diferencia de los elementos Estructurales, no soportan cargas esenciales para mantener en pie la estructura. Estos elementos son los que están unidos a las partes estructurales (tabiques, parapetos, ventanas, puertas), cumplen funciones esenciales (instalaciones sanitarias, instalaciones eléctricas, instalaciones de gas) y están dentro de las edificaciones (muebles, estantes, luminarias, electrodomésticos, etc.)

Los elementos no estructurales al no cumplir una función esencialmente estructural están susceptibles a diferentes tipos de movimiento como deslizamientos y volcamientos causando inseguridad dentro de las edificaciones.

Por tanto, la vulnerabilidad No Estructural se refiere al tipo de comportamiento que tendrán todos estos elementos durante y después de un sismo, así como también a los posibles daños que puedan presentar.

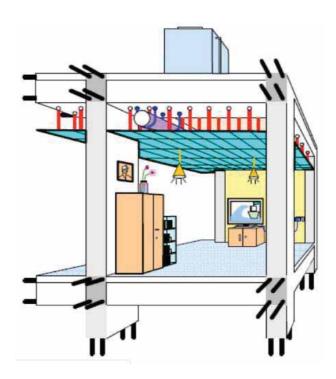


Figura 6. Elementos No Estructurales de una Edificación. Fuente: Introduction to Earthquake Protection of Non-Structural Elements in Buildings

2.2.2. Amenaza o Peligro Sísmico.

Se entiende por Amenaza o Peligro sísmico como la probabilidad que se presente un sismo potencialmente desastroso durante cierto período de tiempo en un sitio dado. Representa un factor de riesgo externo al elemento expuesto, un peligro latente natural asociado al fenómeno sísmico, capaz de producir efectos adversos a las personas, los bienes y/o el medio ambiente. (Melone, 2003).

2.2.3. Riesgo Sísmico.

Se entiende como el grado de pérdida, destrucción o daño esperado debido a la ocurrencia de un determinado sismo. Está relacionado con la probabilidad que se presenten o manifiesten ciertas consecuencias, lo cual está intimamente vinculado al grado de exposición, su predisposición a ser afectado por el evento sísmico y el valor intrínseco del elemento. (Melone, 2003).

2.3. Metodologías de Evaluación de Vulnerabilidad Sísmica

Existen diversas metodologías de evaluación de vulnerabilidad sísmica, así como también diferentes formas de clasificarlas. La primera de ellas corresponde a una clasificación propuesta por Corsanego y Petrini (1990), donde los diferentes tipos de estudios se dividen en clases, de acuerdo al tipo de resultado que producen. Del mismo modo Dolce et al. (1995), proponen una clasificación que permite examinar de forma independiente los tres elementos básicos (los datos de entrada, la metodología y los resultados) involucrados en un análisis de vulnerabilidad.

En esta tesis de investigación se tomó una clasificación de acuerdo al tipo de evaluación de la siguiente forma:

a) Métodos Cualitativos:

Estos métodos recurren a descripciones cualitativas a través de términos como vulnerabilidad baja, media, alta o similares. Se caracterizan generalmente por evaluar de manera descriptiva una edificación, así como por su facilidad de aplicación. Así mismo, brindan una información preliminar de vulnerabilidad para posteriormente realizar una investigación más detallada si es que la edificación lo requiere. Se utilizan generalmente cuando se tiene una cantidad considerable de edificaciones a evaluar brindando resultados muy superficiales.

Para realizar esta tesis se tomó en cuenta la metodología brindada por el Federal Emergencia Management Agency FEMA P-154 (ATC 21).

b) Métodos Cuantitativos:

Estos métodos establecen las probabilidades de daño o relaciones determinísticas equivalentes en términos numéricos. Se requieren parámetros más complejos que producen o determinan el comportamiento de una edificación durante un evento sísmico, tales como la configuración arquitectónica o estructural, cimentación, características del sismo, tipo de materiales, características del suelo, así como también el uso de normas, manuales o reglamentaciones brindando una información detallada y objetiva del comportamiento sismo resistente de una edificación

En esta investigación se utilizó la metodología brindada por el Federal Emergency Management Agency (FEMA-310) el cual a su vez fue actualizado por la norma **American Society of Civil Engineers (ASCE 41-13).**

2.3.1. Metodología FEMA P-154 (Federal Emergency Management Agency).

Este procedimiento de evaluación se ha desarrollado para identificar, inventariar y detectar edificios de forma rápida y determinar que edificaciones son potencialmente peligrosos desde el punto de vista sísmico.

Esta metodología sirve como un paso eficiente para evaluar el riesgo como parte de un programa más amplio de gestión de riesgos sísmicos.

El tiempo de evaluación toma entre 15 a 75 min por edificio y sus beneficios se plasman al analizar gran cantidad de edificios, ya que es una forma de reducir el campo de estudio, eliminado potencialmente la necesidad de un análisis sísmico detallado de una gran fracción de los edificios en cuestión. Cada evaluación detallada que se evita puede ahorrarle horas, días o más esfuerzo a un profesional de la ingeniería.

Según el manual de FEMA P-154, los evaluadores pueden ser ingenieros civiles, ingenieros estructurales, arquitectos, profesionales del diseño, funcionarios de construcción, contratistas de construcción, bomberos, estudiantes de arquitectura o ingeniería, u otras personas con familiaridad general o antecedentes en el diseño o construcción de edificios

Esta metodología comprende dos niveles de evaluación, siendo el Nivel 2 opcional, ya que recopila información sobre las características estructurales adicionales que afectan el riesgo y proporciona modificadores de puntuación refinados.

2.3.1.1. Nivel 1.

El formato de evaluación del FEMA P-154 (Figura 7) contempla los siguientes puntos:

(1) Tipo de Formato según Región de Sismicidad:

Están disponibles 5 formatos según la región de sismicidad (Anexo 1). Estos pueden ser: Bajo, Moderado, Moderadamente Alto, Alto y Muy Alto. La región de sismicidad se determinará bajo la siguiente tabla:

Tabla 2. Región de Sismicidad a partir de la Respuesta de Aceleración Espectral MCER Fuente: FEMA P-154

	Región de Sismicidad		Respuesta de aceleración espectral, S _s (período corto o 0.2 s)	Respuesta de aceleración espectral, S1 (período largo o 1.0 s)	
Ī		Bajo	menos de 0.25 g	menos de 0.10 g	
		Moderado	mayor o igual a 0.25 g pero menor a 0.50 g	mayor o igual a 0.10 g pero menor que 0.20 g	
		Moderadamente Alto	mayor o igual a 0.50 g pero menor que 1,00 g	mayor o igual a 0.20 g pero menor a 0.40 g	
		Alto	mayor o igual que 1.00 g pero menor que 1.50 g	mayor o igual a 0.40 g pero menor a 0.60 g	
		Muy Alto	mayor o igual a 1.50 g	mayor o igual a 0.60 g	

Notas: g = aceleración de la gravedad en dirección horizontal

(2) Información de Identificación de la Edificación:

En esta sección se detalla la información general de la edificación a evaluar como:

- Dirección de la Edificación
- Nombre de la Edificación
- Uso
- Latitud y Longitud
- Fecha de evaluación
- Evaluador

(3) Características de la Edificación:

En esta sección se debe identificar las características generales de la edificación como son:

- Número de Pisos
- Año de construcción
- Área total construida
- Año de la norma usada
- Tipo de función de la edificación
- Tipo de suelo
- Riesgos geológicos
- Adyacencia de edificaciones
- Irregularidades verticales y horizontales

(4) Fotografía de la Edificación:

Se debe colocar una fotografía del edifico para una correcta identificación de la edificación a evaluar.

(5) Dibujo de la Edificación:

Se deberá dibujar un esquema de planta y elevación de la edificación a evaluar indicando las características más resaltantes de esta.

(6) Comentarios:

Esta sección del formulario es para registrar cualquier comentario que el evaluador desee hacer con respecto al edificio, la ocupación, la condición, la calidad de los datos o circunstancias inusuales de cualquier tipo

(7) Determinación de Puntuación Nivel 1:

En esta sección se determina los siguientes aspectos para obtener un puntaje final:

Tipología Estructural

Tabla 3. Identificadores de acuerdo a la Tipología Estructural Fuente: FEMA P-154

TIPOLOGIA ESTRUCTURAL	IDENTIFICADOR
Viviendas con porticos de Madera Ligera de uno o mas niveles para una o mas familias	W1
Residenciales con porticos de Madera Ligera de varios niveles con areas de mas de 250 m2	W1A
Edificos comerciales o industriales con porticos de Madera con mas de 450 m2	W2
Porticos de Acero resistente a momentos	S1
Porticos de Acero con diagonales	S2
Estructura de Metal Ligero	S3
Porticos de Acero con muros de corte de concreto	S4
Porticos de Acero con muros de corte de albañileria	S5
Porticos de Concreto resistente a momentos	C1
Edificaciones con muros de corte de Concreto	C2
Porticos de concreto con muros de albañileria	C3
Edificaciones contruidas con el metodo Tilt-Up	PC1
Edificaciones con porticos de concreto Pre-Fabricado	PC2
Edificios de mampostería reforzada con diafragmas flexibles	RM1
Edificios de mampostería reforzada con diafragmas rígidos	RM2
Edificios de mampostería sin reforzar	URM
Vivienda prefabricada	MH

Irregularidad de la Estructura

Tabla 4. Clasificación de Irregularidades en las Estructuras Fuente: FEMA P-154

IRREGULARIDAD ESTRUCTURAL	NIVEL
Irregularidad Vertical	Moderado
meguandad verticai	Severo
Irregularidad en Planta	Moderado

Norma de Construcción

Tabla 5. Indicadores de Uso de Norma Fuente: FEMA P-154

NORMA DE CONSTRUCCION ANTES DE ADOPTAR LA NORMA DESPUES DE LA ADOPCION DE NORMA

• Tipo de Suelo y Altura de la Edificación

Tabla 6. Indicadores según el tipo de suelo y cantidad de pisos Fuente: FEMA P-154

TIPO DE SUELO	CANTIDAD DE PISOS
ΑοΒ	-
Е	1-3 Niveles
	> 3 Niveles

(8) Puntuación Final Nivel 1:

En esta sección se compara el resultado obtenido $S_{\rm L1}$ con el puntaje mínimo $S_{\rm MIN}$ brindado en el formato. Si el puntaje obtenido es menor que el puntaje mínimo, se elige el puntaje mínimo.

Si el puntaje obtenido es menor o igual a 2, se tendrá que utilizar el formato de evaluación de Nivel 2 para afinar el resultado.

(9) Alcance de la Evaluación:

Esta sección nos brinda más información acerca de cómo se llevó a cabo la evaluación para tener un mejor panorama de la información que se recolectó y que aspectos se tuvieron en cuenta como:

- La evaluación exterior fue parcial o total
- Hubo acceso a la parte interior
- Hubo acceso a los planos
- De donde se sacó la información del tipo de suelo

- De donde se sacó la información de peligros geológicos
- Quien fue la persona que proporcionó la información de la estructura.

(10) ¿Se realizó la evaluación Nivel 2?:

En esta sección se indica si se realizó una evaluación de Nivel 2 y cuál fue el puntaje. También se indica si hay presencia de riesgos No Estructurales.

(11) Otros Peligros:

En esta sección se indica si hay presencia de peligros que harán que se requiera una evaluación más detallada, tales como:

- Potencial de Pounding por la presencia de Edificaciones Adyacentes.
- Peligros de caída de un edificio Adyacente
- Riesgos Geológicos o Suelo Tipo F
- Presencia de deterioro en el Sistema Estructural

(12) Acción Requerida:

En esta sección se indica si la edificación evaluada requerirá una evaluación más detallada en base a la puntuación obtenida o a otras características observadas de la estructura. Conjuntamente a esta se recomendará si la estructura requerirá una evaluación No Estructural.

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" NSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS														_				
INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PAI FEMA P-154 FORMULARIO DE RECOLECCIÓN I			TENCIA	ALES SÍS	MICOS										_	MATO: N		
4								TROS IDENTIFICADORES: OMBRE DEL EDIFICIO: SO: ATITUD: IVALUADOR (s): ECHA PNIVELES: Superiores Injeniores ÑO CONSTRUIDO: REA TOTAL CONSTRUIDA (m2): DICIONALES: Ninguno Si, año construido PCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA										
										INDU:	STRIAL ALM	OFIO ACÉN	CINA		.A/UNIVE ENCIAL	RSIDAD #UND:		
5								REFUGIO										
									ROSOUE	IO ADICI	ONAL O	COMENT	ARIOS EN	LINA DA	ZINIA SED	ARADA		
PUI	VIUA	ION BA	ASICA,	MODI	FICADO	JRES, Y	PUN	IUACIO	ON FIN	AL NIV	EL 1, S	L1						
EMA TIPO DE ESTRUCTURA DNK UNTUACIÓN BÁSICA RREGULARIDAD VERTICAL SEVERA, V _{L1} RREGULARIDAD VERTICAL MODERADA, V _{L1} RREGULARIDAD EN PLANTA, P _{L1} RE-CÓDIGO OST-CÓDIGO UELO TIPO A o B UELO TIPO E (1-3 NIVELES) UNTUACIÓN TOTAL S _{L1}	W1 6.2 -1.5 -1.0 -1.6 NA 2.2 0.9 -1.2 -1.7	W1A 5.9 -1.5 -0.9 -1.4 NA 2.4 1.1 -1.7 -2.0	W2 5.7 -1.5 -0.9 -1.3 NA 2.5 1.3 -2.3 -2.2	\$1 3.8 -1.4 -0.9 -1.2 NA 2.0 1.0 -1.2 -1.2	S2 3.9 -1.3 -0.8 -1.1 NA 1.6 1.2 -1.4	S3 4.4 -1.6 -1 -14 NA 1.4 0.8 -1.0 NA	S4 4.1 -1.2 -0.7 -1.0 NA 2.1 1.3 -1.7 -1.7	\$5 4.5 -1.3 -0.7 -1.1 NA NA 1.4 -2.0 -1.9	C1 3.3 -1.3 -0.7	C2 4.2 -1.2 -0.7 -1.0 NA 2.2 1.2 -2.0 -1.9	C3 3.5 -1.1 -0.6 -0.9 NA NA 1.2 -1.6 -1.6	PC1 3.8 -1.3 -0.8 -1.2 NA 1.9 1.3 -1.7 NA			RM2 3.7 -1.1 -0.6 -0.9 NA 2.3 1.4 -1.7 -1.7	URM 3.2 -1.2 -0.7 -1.0 NA NA 1.3 -1.5 -1.4	MH 4.6 NA NA NA 1.8 0.9 -2.1	
UNTUACIÓN FINAL NIVEL 1, S ₁₁ ≥ S _{MIN}			- 2.3			3	- 0.0	- 0.5	- 0.5	-0.0		- 0.0		. 0.0	- 0.5		- 2.5	
ATCANCE DE LA EVALUACION XTERIOR:				PIROS PELIOROS HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN STRUCTURAL DETALLADA? POTENCIAL DE POUNDING POR UNA CONSTRUCCION ADYACENTE (A MENOS QUE S ₁₂ > CORTE) RIESGOS DE CADA DE NEDIFICIO ADYACENTE RIESGOS GEOLECCES QUELO TIPO F DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA ESTRUCTURAL							REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA U ES OTRA EDIFICACIÓN SI, PUNTUACIÓN LAS BALBUE LA DE CORTE SI, OTROS RIESGOS RESEN/S NO RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? NO, RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NECESARIO NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS							

Figura 7. Formato de Evaluación de Nivel 1 del FEMA P-154.

2.3.1.2. Nivel 2.

Una vez concluida la evaluación de Nivel 1 se procederá a utilizar el formato de Nivel 2 (Figura 8) el cual es opcional y contemplara con mejor detalle las irregularidades verticales y las irregularidades en planta de la estructura afinando la puntuación final de evaluación de vulnerabilidad. A continuación, se detalla las características del formato que se tomaran en cuenta:

(1) Tipo de Formato según la Región de Sismicidad:

Están disponibles 5 formatos de sismicidad según la región. Estos pueden ser: Bajo, Moderado, Moderadamente Alto, Alto y Muy Alto los cuales se encuentran en el Anexo 2 del manual del FEMA P-154 (Tercera Edición).

(2) Información de Identificación de la Edificación y modificación de puntuación final del Nivel 1:

En esta sección se detalla la información general de la edificación a evaluar como:

- Nombre de la Edificación
- Fecha de evaluación
- Evaluador

Así como también se modifica la puntuación final obtenida en el Nivel 1 restando los modificadores de Irregularidad Vertical e Irregularidad en Planta.

(3) Irregularidad Vertical:

En esta sección se dan los modificadores de puntuación según las irregularidades verticales de la estructura según el FEMA P -154 sección 3.10.1. Estos modificadores se suman obteniendo un modificador total, el cual no podrá ser mayor al máximo brindado.

(4) Irregularidad en Planta:

En esta sección se dan los modificadores de puntuación según las irregularidades en planta de la estructura según el FEMA P-154 sección 3.10.2. Estos modificadores se suman obteniendo un modificador total el cual no podrá ser mayor al máximo brindado.

(5) Otros modificadores:

En esta sección se dan otros modificadores de puntuación según las condiciones de adyacencia de una edificación a otra, así como también modificadores según el tipo de edificación. Se obtiene una puntuación final.

(6) Determinación de Puntuación Nivel 2:

Se suma las puntuaciones finales de las irregularidades verticales, las irregularidades en planta y de los otros modificadores, así como también la puntuación modificada del Nivel 1.

Al mismo tiempo se marca la casilla indicando si la estructura tiene algún daño o deterioro que pudiera afectar el comportamiento de la estructura.

(7) Características No Estructurales:

En esta sección se indican los peligros no estructurales que puedan existir dentro de la estructura tanto interior y exteriormente.

(8) Conclusión de características No Estructurales:

Se indica si la estructura necesita o no una evaluación detallada no estructural.

(9) Comentarios:

En esta sección se escriben cualquier comentario que brindaran más información de cómo se llevó a cabo la evaluación indicando cualquier tipo de limitación o dificultad que hubo al realizar la evaluación.

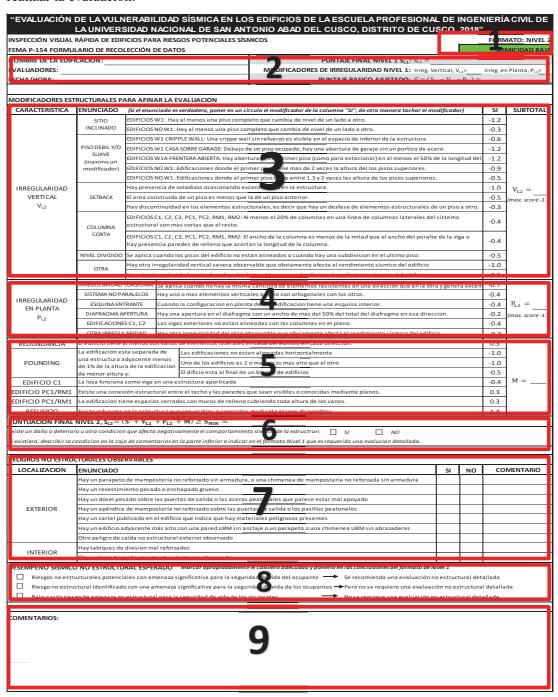
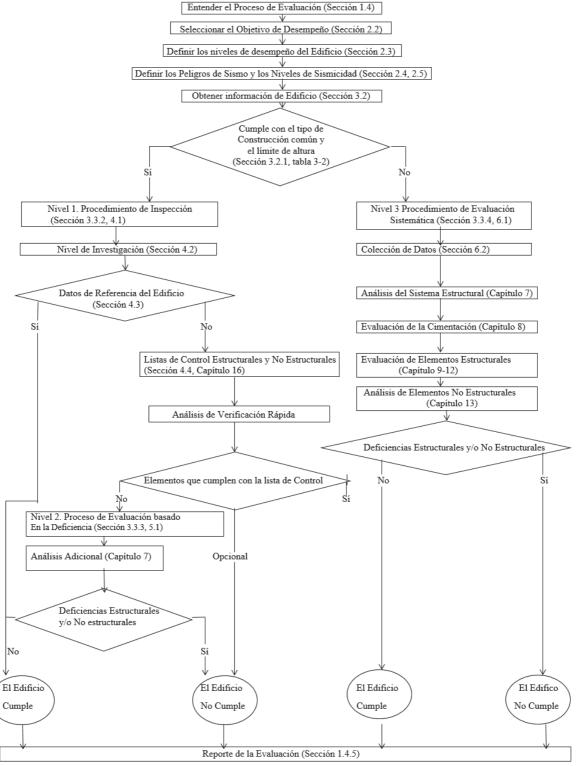


Figura 8. Formato de Evaluación de Nivel 2 del FEMA P-154

2.3.2. Norma de Evaluación Sísmica y la Rehabilitación de Edificios Existentes (ASCE 41-13).

Esta norma brinda un sistema de evaluación sísmica y de rehabilitación de edificaciones existentes. Según esta norma, la evaluación sísmica se define como un proceso o metodología aprobada para evaluar deficiencias en un edificio que impida que el edificio logre un Objetivo de Desempeño seleccionado.

El proceso de evaluación sísmica también está dedicado a instruir al profesional evaluador sobre cómo determinar si un edificio está diseñado y construido adecuadamente para resistir las fuerzas sísmicas. Las disposiciones de esta norma para la evaluación sísmica se basan en una metodología de diseño basada en el "desempeño sísmico" que difiere de los procedimientos de diseño sísmico para edificaciones nuevas.


Esta norma proporciona tres procedimientos escalonados para una evaluación sísmica de edificios existentes apropiados para su uso en áreas de cualquier nivel de sismicidad, como se muestra en la Figura 9: Procedimiento de Inspección de Nivel 1, Procedimiento de Evaluación Basado en Deficiencias de Nivel 2 y Procedimiento de Evaluación Sistemática de Nivel 3.

Como se indica en la Figura 9, el profesional de diseño puede elegir (1) informar las deficiencias y recomendar la mitigación o (2) realizar una evaluación adicional, después de cualquier nivel del proceso de evaluación. El proceso de evaluación puede comenzar con la evaluación sistemática de Nivel 3 y no incurrir en el gasto de los niveles anteriores. Esta decisión es apropiada cuando existe poca duda profesional, ya sea que el edificio tenga deficiencias sísmicas significativas relacionadas con un Objetivo de desempeño seleccionado o que el trabajo a realizar activará el trabajo de mejoramiento. La ventaja de realizar las evaluaciones de Nivel 1 o 2 como punto de partida es que puede identificar otras alternativas basadas en deficiencias para mejorar el edificio.

Para comenzar a evaluar una edificación bajo los parámetros de esta norma, se tendrá que conocer detalladamente el proceso de evaluación, para lo cual las personas evaluadoras deberán tener conocimientos básicos de diseño de estructuras y así mismo, entender cada paso de evaluación de esta norma. Es de resaltar que esta norma se aplicara luego de utilizar la metodología del FEMA P-154, con la cual determinamos que edificaciones necesitan una evaluación más detallada.

^{*} Puede ser beneficioso para el Ingeniero realizar una Evaluación de Nivel 1 antes de la Evaluación Nivel 3, aunque no sea necesaria.

Figura 9. Proceso de Evaluación del ASCE 41-13 Fuente: (American Society of Civil Engineers, 2013)

^{*} El proceso de Evaluación puede ser directamente a una Evaluación Nivel 3 como una opción.

2.3.2.1. Objetivo de Desempeño

Según la norma ASCE 41-13, el desempeño sísmico de un edificio se puede describir cualitativamente en términos de la seguridad que se brinda a los ocupantes del edificio durante y después del evento; el costo y la viabilidad de restaurar el edificio a su condición previa al terremoto; la cantidad de tiempo que el edificio se retira del servicio para efectuar reparaciones; y efectos económicos, arquitectónicos o históricos en la comunidad en general. Estas características de rendimiento están directamente relacionadas con el alcance del daño que se produciría por el edificio y sus sistemas en el evento sísmico.

El objetivo de desempeño estará basado esencialmente en seleccionar un nivel de Peligro Sísmico y un Nivel de Desempeño de la Edificación que engloba lo Estructural y lo No Estructural.

2.3.2.1.1. Nivel de Peligro Sísmico

El peligro sísmico causado por la sacudida del suelo se basará en la ubicación del edificio con respecto a las características geológicas y geotécnicas regionales y específicas del sitio.

Esta norma utiliza varios niveles de peligro sísmico probabilístico para describir los movimientos del terreno para los cuales se realizan evaluaciones de desempeño. Tales movimientos de terreno se conocen como una probabilidad de excedencia en un periodo de tiempo de retorno específico.

La siguiente tabla muestra las probabilidades de excedencia del movimiento del terreno y el periodo de retorno utilizados en esta norma.

Tabla 7. Niveles de Peligro Sísmico Fuente: ASCE 41-13

Probabilidad de Excedencia	Periodo de Retorno
50% / 30 años	43
50% / 50 años	72
20% / 50 años	225
10% / 50 años	475
5% / 50 años	975
2% / 50 años	2475

El peligro sísmico causado por el movimiento del suelo se representará mediante espectros de respuesta de aceleración o historiales de aceleración del movimiento en el suelo determinados sobre una base probabilística o determinista.

Es de resaltar, que un espectro es un gráfico de la respuesta máxima (expresada en términos de desplazamiento, velocidad, aceleración, o cualquier otro tipo parámetro de interés) que produce una acción dinámica determinada en una estructura.

2.3.2.1.2. Nivel de Desempeño de la Edificación

Un nivel de desempeño del edificio en estudio consistirá en una combinación de un "nivel de Desempeño Estructural" y un "nivel de Desempeño No Estructural". El nivel de desempeño del edificio en estudio se designa de forma alfanumérica con un número que representara el desempeño Estructural y una letra que representara el desempeño No Estructural, como 1-B, 3-C, 5-E, o 6-C.

El nivel de desempeño Estructural se seleccionará entre 6 niveles de desempeño estructural. Los niveles de rendimiento estructural discreto son ocupación inmediata (S-1), control de daños (S-2), seguridad de vida (S-3), seguridad limitada (S-4), prevención de colapso (S-5) y no considerado (S-6).

En la tabla 8 se describe brevemente los niveles de desempeño Estructural:

Tabla 8. Niveles de Desempeño Estructural Fuente: ASCE 41-13

Nivel de Desempeño Estructural	Caracteristicas
Ocupacion Inmediata (S-1)	Estado de daño posterior al terremoto en el cual una estructura permanece segura para ocupar y esencialmente conserva su resistencia y rigidez ante el terremoto.
Control de Daños (S-2)	Estado de daño post terremoto entre el Nivel de rendimiento estructural de seguridad de vida (S-3) y el Nivel de rendimiento estructural de ocupación inmediata (S-1)
Seguridad de Vida (S-3)	Estado de daño posterior al terremoto en el que una estructura ha dañado los componentes pero retiene un margen contra el inicio del colapso parcial o total
Seguridad Limitada (S-4)	Estado de daño post terremoto entre el Nivel de rendimiento estructural de seguridad de vida (S-3) y el Nivel de rendimiento estructural de prevención de colapso (S-5).
Prevencion de Colapso (S-5)	Estado de daño posterior al terremoto en el que una estructura ha dañado los componentes y continúa soportando cargas de gravedad, pero no retiene ningún margen contra el colapso.
No Considerado (S-6)	Cuando una evaluación no aborda la estructura, el nivel de desempeño estructural debe ser el desempeño estructural no considerado (S-6).

El nivel de Desempeño No Estructural para un edificio se seleccionará entre cuatro niveles de rendimiento No Estructural discretos: operativo (N-A), retención de posición (N-B), seguridad de vida (N-C) y no considerado (N-D).

En la tabla 9 se describe brevemente los niveles de desempeño No Estructural:

Tabla 9. Niveles de Desempeño No Estructural Fuente: ASCE 41-13

Nivel de Desempeño No Estructural	Caracteristicas
Operacional (N-A)	Estado de daño posterior al terremoto en el que los componentes no estructurales pueden proporcionar las funciones que proporcionaron en el edificio antes del terremoto.
Retencion de Posicion (N-B)	Estado de daño posterior al terremoto en el que los componentes no estructurales pueden dañarse en la medida en que no pueden funcionar de inmediato, pero se aseguran en su lugar para evitar el daño causado por la caída, vuelco o rotura de las conexiones de servicios públicos. Los sistemas de acceso al edificio y de seguridad, que incluyen puertas, escaleras, ascensores, iluminación de emergencia, alarmas de incendio y sistemas de extinción de incendios, generalmente permanecen disponibles y operativos, siempre que haya servicios de energía y servicios públicos disponibles.
Seguridad de Vida (N-C)	Estado de daño posterior al terremoto en el que pueden dañarse los componentes no estructurales, pero el daño consecuente no representa una amenaza para la seguridad de la vida.
No Considerado (N-D)	En los casos en que una evaluación no incluya todos los componentes no estructurales en uno de los niveles de las secciones anteriores, el nivel de desempeño no estructural será el rendimiento no estructural no considerado (N-D)

Como se señaló anteriormente, un nivel de desempeño se designará alfanuméricamente por una combinación de un desempeño Estructural y un desempeño No Estructural.

En la Figura 8 se muestran varios niveles de desempeño comunes:

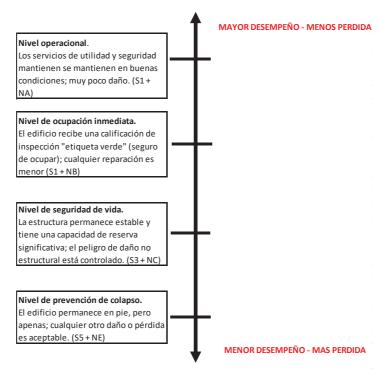


Figura 10. Niveles de Desempeño más comunes Fuente: ASCE 41-13

2.3.2.2. Objetivo de Desempeño Básico para Edificios Existentes (BPOE)

Este objetivo desempeño se utiliza para edificaciones que ya tienen un cierto tiempo de vida. De acuerdo a la norma ASCE 41-13, el BPOE acepta un nivel de seguridad más bajo y un mayor riesgo de colapso que el que ofrecerían los estándares similares para edificios nuevos. Se espera que los edificios que cumplan con el BPOE experimenten poco daño debido a terremotos relativamente frecuentes y moderados, pero un daño significativamente mayor y una pérdida económica potencial debido a los terremotos más severos y no frecuentes que podrían afectarlos.

El objetivo de desempeño básico para edificios existentes (BPOE) es un objetivo de desempeño específico que varía según la categoría de riesgo, como se muestra en la tabla 10, donde la categoría de riesgo está definida por las normas vigentes, el código de construcción o la política o en lugar de cualquier reglamentación, código de construcción o política, según ASCE 7 o en nuestro caso bajo la Norma E.030 de diseño sismo resistente.

Las edificaciones a evaluar que deberán cumplir con este objetivo de desempeño serán sometidas a un nivel de Peligrosidad Sísmica (BSE-1E, BSE-2E) y deberán estar dentro de los rangos aceptables de niveles de desempeño.

En la tabla 10 se puede observar los diferentes niveles de desempeño sísmico según la categoría de riesgo de la edificación y el nivel de peligrosidad sísmica.

Tabla 10. Objetivo de Desempeño Básico para Edificios Existentes (BPOE) Fuente: Tabla 2.1. ASCE 41 – 13

	Nivel de Evaluacion y Peligrosidad Sismica							
Categoria de Riesgo	Nivel 1	Nivel 2	Nivel 3					
	BSE - 1E	BSE - 1E	BSE - 1E	BSE - 2E				
	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural				
ASCE 7: I & II	Seguridad de Vida	Seguridad de Vida	Seguridad de Vida	Prevencion del Colapso				
E.030 : C y D -	Desempeño No Estructural	Desempeño Estructural	Desempeño Estructural	Desempeño No Estructural				
Edificaciones Comunes	Seguridad de Vida	Seguridad de Vida	Seguridad de Vida	No Considerado				
y Temporales	3 - C	3 - C	3 - C	5 - D				
	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural				
ASCE 7 : III	Seguridad de Vida	Control de Daño	Control de Daño	Seguridad Limitada				
E.030 : B	Desempeño No Estructural	Desempeño No Estructural	Desempeño No Estructural	Desempeño No Estructural				
Edificaciones	Retencion de Posicion	Retencion de Posicion	Retencion de Posicion	No Considerado				
Importantes	2 - B	2 - B	2 - B	4 - D				
	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural	Desempeño Estructural				
ACCE 7 . IV	Ocupacion Inmediata	Ocupacion Inmediata	Ocupacion Inmediata	Seguridad de Vida				
ASCE 7 : IV E.030 : A	Desempeño No Estructural	Desempeño No Estructural	Desempeño No Estructural	Desempeño No Estructural				
Edificaciones Esenciales	Retencion de Posicion	Retencion de Posicion	Retencion de Posicion	No Considerado				
Edificaciones Escherates	1 - B	1 - B	1 - B	3 - D				

2.3.2.3. Nivel 1: Inspección.

El propósito de la fase de evaluación de Nivel 1 es identificar rápidamente los edificios que cumplen con las disposiciones de esta norma.

Se requiere la detección de nivel 1 para todos los edificios, de modo que las deficiencias potenciales puedan identificarse rápidamente. Posteriormente, una evaluación adicional utilizando una evaluación de Nivel 2 o Nivel 3 se centra, como mínimo, en las deficiencias potenciales identificadas en el Nivel 1.

En la figura 11 se detalla el procedimiento de evaluación de nivel 1.

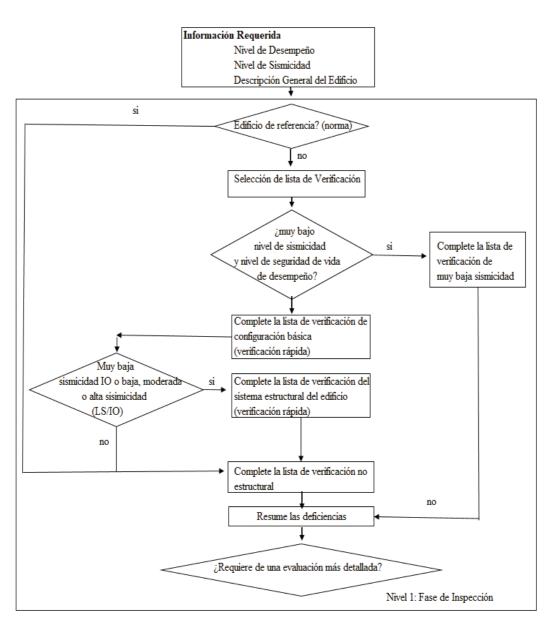


Figura 11. Proceso de Evaluación del Nivel 1 Fuente: ASCE 41-13

La norma ASCE 41-13 desarrolla listas de verificación Estructural las cuales están clasificadas de acuerdo al sistema estructural del edificio (Tabla 3) y los objetivos de desempeño de Ocupación Inmediata y Seguridad de Vida. Así mismo esta norma tiene una lista de verificación No Estructural general.

Las listas de verificación proporcionadas por la norma ASCE 41-13 son el aspecto fundamental del procedimiento de evaluación de Nivel 1. Estas listas de verificación no necesariamente identifican la respuesta de la estructura al movimiento del suelo; más bien, brindan una información general de las deficiencias y el comportamiento potencial de una estructura ante un terremoto.

2.3.2.4. Nivel 2: Evaluación Basada en la Deficiencia y Rehabilitación.

La evaluación basada en deficiencia de Nivel 2 requiere un análisis y una evaluación adicionales de todas las deficiencias potenciales identificadas en la Inspección de Nivel 1 (indicadas por las respuestas "No conforme" o "Desconocida" en las listas de verificación de Nivel 1). El análisis adicional y la evaluación de cada deficiencia potencial serán suficientes para confirmar la deficiencia o demostrar la adecuación de la estructura en lo que se refiere a la deficiencia potencial.

2.3.2.5. Nivel 3: Evaluación Sistemática y Rehabilitación.

Este Nivel establece los requisitos y procedimientos para realizar una evaluación con mayor detalle de las edificaciones. El procedimiento de evaluación de Nivel 3 implica un análisis de todo el edificio en su condición actual. Estos procedimientos se deben usar cuando se requieran procedimientos sistemáticos y se pueden usar como una investigación adicional de los edificios donde se han utilizado los procedimientos de evaluación basados en la deficiencia.

La investigación de las condiciones de construcción y los requisitos de recopilación de datos deben estar de acuerdo con los requisitos de esta sección. Los datos se obtendrán a partir de dibujos, especificaciones y otros documentos disponibles para la construcción existente. Los datos recopilados de los documentos disponibles deberán complementarse y verificarse mediante investigaciones en el sitio, incluido el examen no destructivo y las pruebas de materiales y componentes de construcción, tal como se requiere en esta sección.

En la figura 12 se detalla el procedimiento de evaluación de nivel 3.

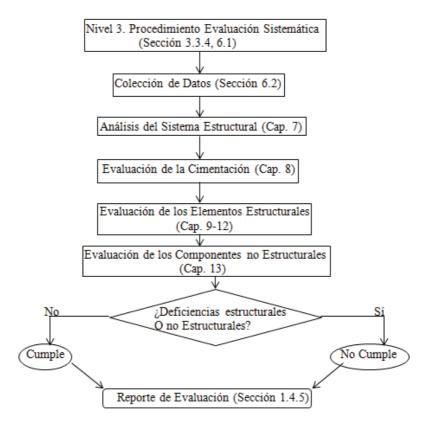


Figura 12. Procedimiento de Evaluación Sistemática de Nivel 3 Fuente (American Society of Civil Engineers, 2013)

Una evaluación de Nivel 3 consistirá en un análisis de un edificio existente y se puede usar como seguimiento de una evaluación de Nivel 1 o Nivel 2. El procedimiento de Nivel 3 contiene una evaluación y análisis de todos los componentes de la estructura para determinar el cumplimiento con el Objetivo de Desempeño Seleccionado.

El Nivel 3 de Evaluación realiza el análisis de los edificios en base a los siguientes tipos de análisis:

- 1. Análisis Estático Lineal.
- 2. Análisis Dinámico Lineal.
- 3. Análisis Estático No Lineal (Pushover).
- 4. Análisis Dinámico No Lineal

Los procedimientos estáticos son apropiados cuando los efectos de modo más alto no son significativos. Esto es generalmente cierto para edificios cortos y regulares. Se requieren procedimientos dinámicos para edificios altos y para edificios con irregularidades torsionales o sistemas no ortogonales.

El procedimiento estático no lineal (AENL), a menudo llamado "análisis de empuje" o Pushover, utiliza técnicas no lineales simplificadas para estimar las deformaciones estructurales sísmicas. El procedimiento dinámico no lineal (ADNL), también conocido como análisis de historial de respuesta no lineal, requiere un juicio considerable y experiencia para realizarlo.

2.3.2.5.1. Análisis Estático No Lineal –Pushover

Un Análisis Estático No Lineal (AENL) nos brindara información de cómo se comportará una estructura cuando esté sujeta a una demanda que exceda su capacidad elástica. Los Análisis No Lineales calculan las deformaciones post-elásticas y dan información directa de la magnitud y distribución de las deformaciones plásticas dentro de una estructura, basándose en los movimientos del terreno representados por espectros de respuesta de diseño.

Este tipo de análisis nos brindará una información precisa y detallada del comportamiento de una estructura ante un peligro sísmico a diferencia de los Análisis Lineales que no toman en cuenta la no linealidad de los materiales.

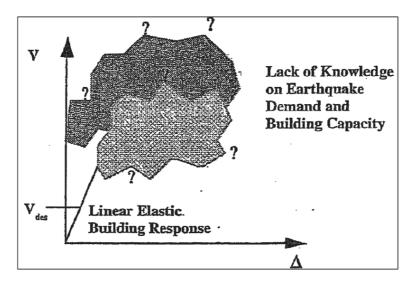


Figura 13. Deficiencias del análisis lineal en la representación de la respuesta de una estructura a la demanda sísmica.

Fuente: ATC 40 (1996) pág. 2-16

La aplicación del AENL permite determinar la capacidad resistente de la estructura y compararla con la demanda posible ante un evento natural. La demanda depende de la amenaza sísmica y del sitio de ubicación de la estructura, así como de las características globales. La capacidad de la estructura depende de la rigidez, la resistencia y la deformación de cada uno de sus miembros. El AENL consiste en que primero actúan las cargas gravitacionales en la estructura produciéndose las primeras deformaciones, luego pasan a actuar las cargas laterales que se incrementan, paso a paso, en una dirección hasta que se forma la primera rótula plástica y se presenta una redistribución de rigidez de la estructura, y así prosigue un proceso iterativo hasta que la estructura falla totalmente. De igual manera sucede con las cargas laterales en la otra dirección. Es decir, AENL consiste en tres análisis, uno por carga gravitacional y dos por cargas laterales en ambas direcciones. Así se obtiene una gráfica, que muestra dónde se forman las rótulas plásticas en las estructuras, y dos curvas (curvas pushover) que muestran la cortante basal V, relacionado con el desplazamiento en el nivel superior. (Denis Rodriguez M., 2014)

La Federal Emergency Managament Agency (FEMA) y el Applied technical Council (ATC) son las dos agencias que formularon y sugirieron el Análisis Estático No Lineal o el Análisis Pushover según los programas y directrices de rehabilitación sísmica. (Qamaruddin, 2016).

Actualmente, hay dos procedimientos de análisis estáticos no lineales disponibles, uno denominado Método de coeficiente de desplazamiento (DCM), FEMA-356 documentado y otro Método de espectro de capacidad (CSM) documentado en ATC-40. Ambos métodos dependen de la variación de carga-deformación lateral obtenida por análisis estático no lineal bajo la carga de gravedad y la carga lateral idealizada debido a la acción sísmica. Este análisis se llama Análisis Pushover. Es de resaltar que la norma ASCE 41-13 utiliza el Método de Coeficientes de desplazamientos.

2.3.2.5.1.1. Método de Coeficientes de Desplazamientos (DCM).

El método de coeficiente de desplazamiento es un procedimiento de análisis estático no lineal que proporciona un proceso numérico para estimar la demanda de desplazamiento en la estructura, mediante el uso de una representación bilineal de la curva de capacidad (Figura 14) y una serie de factores de modificación o coeficientes para calcular un desplazamiento objetivo.

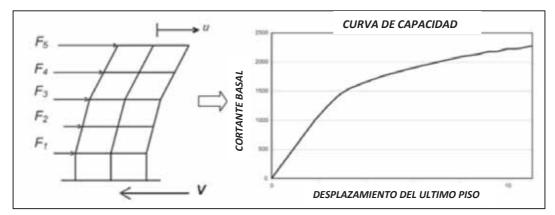


Figura 14. Curva de Capacidad o Curva Pushover Fuente: Deficiencias, Limitaciones, Ventajas y Desventajas de las metodologías de análisis sísmico No Lineal. Mauricio Alexander Mora, Jesus Daniel Villalba y Esperanza Maldonado.

Figura 15. Representación Bilineal de la Curva de Capacidad Fuente: ASCE 41-13

Este método modifica la respuesta estática lineal de un sistema equivalente de un grado de libertad multiplicándolo por una serie de coeficientes, desde C₀ hasta C₃, para generar un estimado del desplazamiento global máximo (elástico más inelástico), que es denominado desplazamiento objetivo. El proceso comienza con una curva idealizada fuerza-deformación (curva pushover), que relaciona el cortante en la base con el desplazamiento del techo (ver Figura 16). Un periodo efectivo, *Te*, es generado a partir del periodo inicial, *Ti*, por un procedimiento grafico que toma en cuenta alguna perdida de rigidez en la transición del comportamiento elástico al inelástico. El periodo efectivo representa la rigidez lineal del sistema de un grado de libertad. Cuando se grafica en un espectro de respuesta elástico representando el movimiento sísmico del terreno como aceleración, *Sa*, versus el periodo, *T*, el periodo efectivo identifica una respuesta máxima de aceleración máxima del sistema equivalente, Sa, la cual es modificada por una serie de coeficientes para calcular la demanda de desplazamiento esperada. El amortiguamiento asumido, usualmente 5%, representa un nivel que podría esperarse para una estructura típica respondiendo en el rango elástico. (David Choque E., 2017)

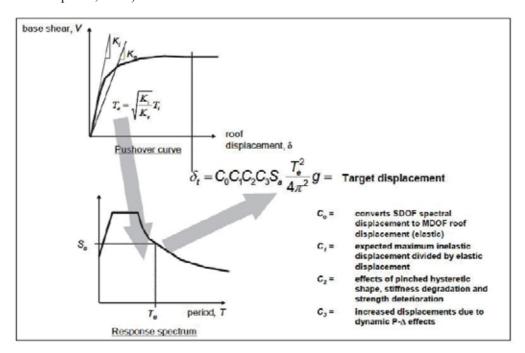


Figura 16. Esquema ilustrado del proceso por el cual el método de del coeficiente de modificación del desplazamiento es usado para estimar el desplazamiento objetivo para un espectro de respuesta y periodo dado.

Fuente: (Figura 2-12, FEMA 440)

2.3.2.5.1.2. Rótula Plástica.

La ubicación de la acción inelástica de un miembro estructural se denomina como rótula plástica. Los momentos máximos causados por el terremoto ocurren cerca de los extremos de las vigas y columnas, es probable que se formen las rótulas plásticas allí y la mayoría de los requisitos de ductilidad se aplican a la sección cerca de la unión.

Los componentes estructurales del modelo inelástico pueden ser diferenciados por la manera en que la inelasticidad es distribuida a través de la sección transversal del miembro y a lo largo de su longitud presentándose dos enfoques generales para modelar los elementos: modelos de plasticidad concentrada y modelos de plasticidad distribuida.

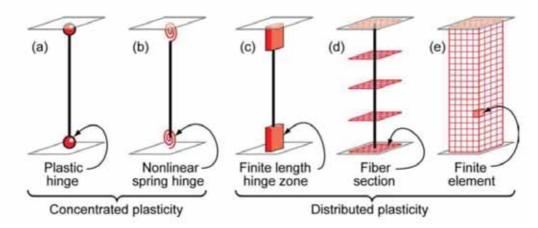


Figura 17. Diferentes formas de representación de acción inelástica.

Para los análisis estáticos no lineales los usuarios pueden simular el comportamiento posterior al rendimiento asignando rótulas plásticas concentradas a los objetos de marco y tendón. El comportamiento elástico se produce a lo largo de la longitud del miembro, y luego la deformación más allá del límite elástico ocurre completamente dentro de las rótulas, que se modelan en ubicaciones discretas.

2.3.2.5.1.3. *Límites de daño*

Para interpretar el comportamiento de una edificación, se han ido mejorando las curvas de capacidad estructural o curvas pushover (Fuerza-Desplazamiento), hechas mediante un AENL, mostrando las diversas etapas que puede experimentar una estructura sometida a cargas incrementales, monitoreando la cedencia progresiva, hasta alcanzar la condición de colapso. La lectura de los desplazamientos o de las derivas laterales indica el grado de daños experimentados y determina diferentes niveles de desempeño estructural, tal como se indican en la figura 18, en donde se muestran los rangos de los daños y las condiciones límites de cada nivel. En este caso se utiliza el Nivel I para la condición del límite elástico, el Nivel II para los daños menores, el Nivel III como daños límites de reparación, el Nivel IV en la prevención de colapso y el Nivel V para el colapso. Otros asocian estos niveles a estados límites de desempeño, quedando designados así: EL-O). Estado límite de funcionamiento pleno; EL-1). Estado límite de Servicio; EL-2). Estado límite de seguridad; EL-3). Estado Límite de capacidad; EL-4). Estado límite de ruina (Hernández, 1997).

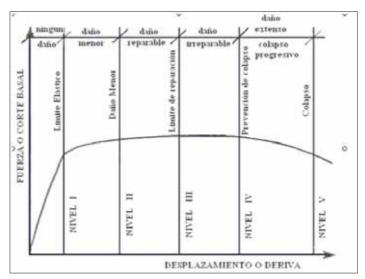


Figura 18. Límites de daño en una curva de capacidad

Fuente: Niveles, condiciones, objetivos y modalidades del diseño sismorresistente basado en desempeño, William Lobo Quintero

En una curva de capacidad de una determinada estructura será necesario determinar los rangos de los niveles de desempeño y así determinar cuál es la capacidad de la estructura ante un determinado peligro sísmico. El comité Vision 2000 propone dividir la curva capacidad en sectores asociados a los niveles de desempeño. La curva se simplifica en un modelo bilineal, dividiendo el tramo inelástico de la edificación en cuatro sectores asociados a los niveles de desempeño correspondientes.

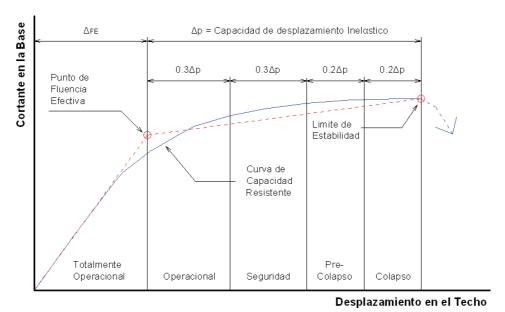


Figura 19. Curvas de capacidad, niveles de desempeño y límites de daño

Fuente: Comité Vision 2000

2.4. Extracción de Núcleos de Concreto

Es un ensayo destructivo realizado para determinar la resistencia a la compresión del concreto. De acuerdo con las normas: NTP 339.059 (Método para la obtención y ensayo de perforación de concreto y vigas cortadas de hormigón) y ASTM C 42 (Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete).

Estas normas establecen procedimientos normalizados para la extracción de las muestras, los cuales deben estar intactos, libres de fallas, tal como la estructura en particular lo permita.

Generalmente esta Prueba de Diamantina se realiza cuando existe una duda acerca de la calidad del concreto colocado "in situ" debido a resultados bajos de resistencia durante la construcción. Adicionalmente, este método puede ser utilizado para obtener información de la resistencia de las estructuras antiguas. (Norma Técnica Peruana, 2017)

En la siguiente imagen se muestra el instrumento necesario para realizar el ensayo:

Figura 20. Instrumento de Perforación de Concreto con Diamantina Fuente: www.matest.com/es/concreto/m%C3%A1quinas-de-perforaci%C3%B3n/

El diámetro nominal de muestras para la determinación de la resistencia a la compresión deberá ser por lo menos 95 mm (3.75 pulgada). Las muestras con diámetros menores de 95 mm (3.75 pulgada) serán permitidos cuando es imposible obtener muestras con una relación de longitud a diámetro (L/D) \geq 1 para la evaluación de la resistencia a la compresión a la compresión pura. Para hormigones (concretos) con un tamaño máximo nominal de agregado mayor a 37.5 mm (1 ½ pulgada), el diámetro nominal deberá ser preferentemente por lo menos tres veces el tamaño nominal de agregado grueso, y será por lo menos dos veces el tamaño máximo nominal del agregado grueso. La longitud ideal de la muestra refrentada estará entre 1.9 y 2.1 veces el diámetro. Si la relación de la longitud del diámetro de la muestra excede 2.1, se debe reducir la longitud del espécimen de tal manera que esta relación esté entre 2.1 y 1.9. Especímenes con relaciones longitud - diámetro menores a 1.8 requieren correcciones en la resistencia a la compresión medida. No se ensayarán muestras con una

longitud menor al 95% de su diámetro antes del refrentado o una longitud menos a su diámetro después del refrentado.

Tabla 11 Factor de Corrección por L/D

Relación	Factor de corrección
(longitud/diámetro)	de resistencia
L/D	
1.75	0.98
1.50	0.96
1.25	0.93
1.0	0.87

Los tipos de falla comunes en las muestras que se sacarán se clasificarán de acuerdo a la siguiente imagen:

Tabla 12 Tipos de falla comunes es especímenes de concreto sometidos a Compresión Fuente: http://columnasdeconcreto.blogspot.com/2012/07/

X	Se observa cuando se logra una carga de compresión bien aplicada sobre un espécimen de prueba bien preparado.
	Se observa comúnmente cuando las caras de aplicación de carga se encuentran en límite de tolerancia especificada o excediendo esta.
	3. Se observa en especímenes que presentan una superficie de carga convexa y/o deficiencia del material de cabeceo; también por concavidad del plato de cabeceo o convexidad en una de las placas de carga.
	4. Se observa en especímenes que presentan una cara de aplicación cóncava y/o por deficiencias en el material de cabeceo o también por concavidad en una de las placas de carga.
	 Se observa cuando se producen concentraciones de esfuerzos en puntos sobresalientes de las caras de aplicación de carga, por deficiencias en el material de cabeceo, rugosidades en el plato cabeceador o placas de carga.
	 Se observa en especímenes que presentan una cara de aplicación de carga convexa y/o por deficiencias del material de cabeceo, rugosidades en el plato cabeceador o placas de carga.

7. Se observa cuando las caras de aplicación de carga del espécimen se desvían ligeramente de las tolerancias de paralelismo establecidas, o por ligeras desviaciones en el centro del espécimen para la aplicación de carga

Así mismo es necesario corregir estos resultados para determinar una resistencia de diseño equivalente para una evaluación estructural de una edificación sustituyendo directamente en ecuaciones de resistencia convencionales

El procedimiento determinado según la norma ACI 214.4R (2010) se utiliza y es apropiado para el caso donde la determinación de un f'c equivalente es necesario para la evaluación de la resistencia de una estructura existente.

La resistencia de diseño, f'c, en el lugar de donde se extrajo una muestra de núcleo de concreto se puede calcular usando la ecuación siguiente:

$$f_c = F_{\ell/d}F_{dia}F_{mc}F_df_{core}$$

donde

- fc: Es la resistencia a compresión equivalente en el lugar de extracción de la muestra;
- **fcore:** Es la resistencia a compresión de núcleo de concreto extraído;

y los factores de corrección de resistencia

- F_{Vd} : Efecto de la relación Longitud-Diámetro del núcleo de concreto extraído.
- F_{dia}: Efecto del diámetro del núcleo de concreto extraído.
- F_{mc}: Efecto de la condición de humedad del núcleo de concreto extraido.
- F_d: Explica el efecto del daño sufrido durante la perforación, que incluye microgrietas y ondulaciones en la superficie perforada y el corte a través de partículas de agregado grueso que posteriormente pueden aparecer durante las pruebas (Bartlett y MacGregor 1994d).

La Tabla 13 muestra los valores medios de los factores de corrección de resistencia reportados por Bartlett y MacGregor (1995) basados en datos para concreto de peso normal con resistencias entre 14 y 92 MPa (2000 y 13,400 psi). La columna de la derecha muestra coeficientes de variación V que indican la incertidumbre del valor medio.

Tabla 13. Magnitud y precisión de los factores de corrección de resistencia para convertir las resistencias del núcleo de concreto en resistencias equivalentes

Fuente: ACI 214.4R (2010)

Factor	Mean value	Coefficient of variation V, %
$F_{\ell/d}$: ℓ/d ratio [†]	•	
As-received [‡]	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{\ell}{d}\right)^2$	$2.5\left(2-\frac{\ell}{d}\right)^2$
Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{\ell}{d}\right)^2$	$2.5\left(2-\frac{\ell}{d}\right)^2$
Air dried [‡]	$1 - \{0.144 - \alpha f_{core}\} \left(2 - \frac{\ell}{d}\right)^2$	$2.5\left(2-\frac{\ell}{d}\right)^2$
F _{dia} : core diameter		
50 mm (2 in.)	1.06	11.8
100 mm (4 in.)	1.00	0.0
150 mm (6 in.)	0.98	1.8
F_{mc} : core moisture content	•	•
As-received [‡]	1.00	2.5
Soaked 48 h	1.09	2.5
Air dried [‡]	0.96	2.5
F _d : damage due to drilling	1.06	2.5

^{*}To obtain equivalent in-place concrete strength, multiply the measured core strength by appropriate factor(s) in accordance with Eq. (8-1).

[†]Constant α equals $3(10^{-6})$ 1/psi for f_{core} in psi, or $4.3(10^{-4})$ 1/MPa for f_{core} in MPa.

^{\$}Standard treatment specified in ASTM C 42/C 42M.

Capítulo 3. Metodología de la Investigación

3.1. Tipo y Diseño de la Investigación

3.1.1. Tipo de la Investigación.

En cuanto a su finalidad es "Aplicada", pues los aportes están dirigidos a iluminar la comprensión de algún fenómeno o aspecto de la realidad perteneciente al dominio de estudio de una disciplina.

Según el diseño de investigación resulta ser una investigación "Cuasi-Experimental" ya que se trabaja con muestreo, pero los elementos de la muestra ya están predeterminados en consecuencia su escogencia no ha sido totalmente al azar.

Según el énfasis en la naturaleza de los datos resulta ser una investigación "Mixta (cualitativa y cuantitativa)" ya que se basa en analizar visualmente las características de cada estructura y obtener porcentajes de daño en base métodos que analizan la cuantificación de daño futuro.

3.1.2. Nivel de Investigación.

Es una investigación "**Descriptiva**" ya que señala cómo es y cómo se manifiesta un fenómeno o evento, cuando se busca especificar las propiedades importantes para medir y evaluar aspectos, dimensiones o componentes del fenómeno a estudiar

3.2. Unidad de Análisis

La unidad de análisis corresponde a la entidad mayor o representativa de lo que va a ser objeto específico de estudio en una medición y se refiere al qué o quién es objeto de interés en una investigación.

En la presente Tesis serán las Edificaciones de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco.

3.3. Población de Estudio

La población de estudios estará constituida por Edificaciones de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de San Antonio Abad del Cusco.

3.4. Selección de Muestra

No probabilísticas.

3.5. Tamaño de Muestra

De acuerdo a la Metodología de Investigación.

3.6. Técnica de Recolección de Datos e Información

- Técnicas Primarias: Consultas a Expertos.
- Técnicas Secundarias: Libros e Internet.

La técnica de recolección de datos será en base a las Metodologías FEMA P-154 y ASCE 41-13, encuestas, observación, análisis y opinión de expertos.

Capítulo 4. Evaluación de la Vulnerabilidad Sísmica en los Edificios de la Escuela Profesional de Ingeniería Civil

4.1. Investigación Preliminar

Se investigaron características generales de la zona donde se encuentran las edificaciones a evaluar debido a que son datos importantes para evaluar, así como también para tener un panorama mucho más amplio del objeto de estudio.

4.1.1. Características Físicas de la Zona.

4.1.1.1. Clima y Temperatura.

El clima de la ciudad del Cusco se caracteriza por ser templado – seco con una temperatura promedio anual que fluctúa entre los 10.3° C y los 13° C. La temperatura en las mañanas soleadas puede llegar hasta los 22° C y en las noches la temperatura puede llegar hasta bajo cero. Las temperaturas más bajas se registran en los meses de junio y julio.

Las mayores precipitaciones se presentan entre los meses enero, febrero y marzo.

Para un mejor detalle se brinda una tabla con los registros de máxima y mínimas temperaturas del año 2017 en la ciudad del Cusco junto con las precipitaciones:

Tabla 14. Máximas Temperaturas y Mininas Temperaturas del año 2017 junto con las precipitaciones por mes Fuente: Recopilación de datos de Senamhi

MES	TEMPERATURA	TEMPERATURA	PRECIPITA	CION (mm)
MES	MAXIMA	MINIMA	07:00 a.m.	07:00 p.m.
ENERO	20.13	7.79	229	129
FEBRERO	21.17	7.11	188	226
MARZO	20.5	6.77	307	89
ABRIL	20.69	5.79	78	91
MAYO	19.94	3.11	4	32
JUNIO	21.08	-0.36	0	19
JULIO	21.69	-1.02	0	0
AGOSTO	22.29	1.37	25	2
SEPTIEMBRE	21.39	4.88	29	35
OCTUBRE	21.93	4.83	49	59
NOVIEMBRE	22.23	6.59	135	69
DICIEMBRE	21.42	7.35	223	105

Figura 21. Máximas y Mininas Temperaturas del año 2017 con precipitaciones por mes Fuente: Recopilación de datos de Senamhi

4.1.1.2. Demografía.

La ciudad de Cusco, según el Instituto Nacional de Estadística e Informática, es la séptima ciudad más poblada de Perú, y albergaba en 2017, una población de 437 538 habitantes.

La Universidad Nacional San Antonio Abad del Cusco cuenta (entre estudiantes, docentes y personal administrativo) con más de 20000 personas. Para mayor referencia se presenta la siguiente tabla:

Tabla 15. Población de referencia histórica de la UNSAAC

Fuente: Boletines Estadísticos 2001-2016.- Unidad de Estadística - UNSAAC

VARIABLES/AÑOS	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Matriculados	14,370	14,888	15,068	15,288	15,063	15,607	15,957	16,386	16,049	16,412	16,626	17,683	18,037	18,760	18,782	18,836
Docentes Nombrados	812	808	769	767	775	771	752	752	760	859	824	815	847	824	764	738
Docentes Contratados	316	295	372	155	419	402	426	415	470	321	427	458	457	465	550	547
Administrativos Nombrados	478	467	453	465	482	480	497	491	499	451	451	457	436	494	408	399
Administrativos Contratados	50	50	16	16	42	201	226	264	260	227	292	292	326	283	251	381
Total Población UNSAAC:	16,026	16,508	16,678	16,691	16,781	17,461	17,858	17,576	18,038	18,270	18,620	19,705	20,103	20,826	20,755	20,901
T.C.	0.0	3.01	1.03	0.08	-1.38	4.05	2.27	-1.58	2.63	1.29	1.92	5.82	2.01	3.60	-0.34	0.70

La Facultad de Ingeniería Civil cuenta (entre estudiantes, docentes y personal administrativo) con 700 a 800 personas por semestre.

Tabla 16. Población de referencia de la carrera Profesional de Ing. Civil Fuente: Boletines estadísticos – Unida de Estadística – UNSAAC

	SEMESTRE	CARRERA PROFESIONAL	Matriculados	Docentes	Total
Г	2017 - 1	Ing. Civil	724	48	772
Γ	2017 - 2	Ing. Civil	694	48	742

4.1.1.3. Topografía

En el caso concreto de la zona donde se ubica las edificaciones a evaluar, la topografía tiene una considerable pendiente que va desde la Av. Collasuyo hasta la Av. De La Cultura.

Para un panorama más amplio se muestra un esquema de la universidad resaltando las edificaciones que se evaluaran, así como también los perfiles que muestran la clara pendiente que muestra todo el campus universitario.

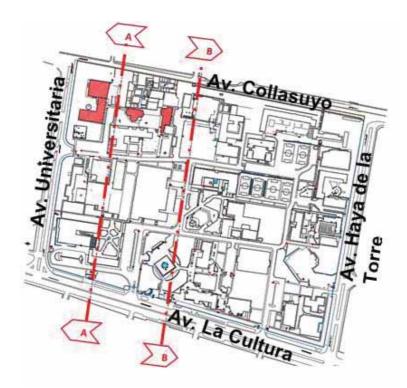



Figura 22. Plano de planta de todo el campus Universitario – UNSAAC Fuente: Oficina de Obras - UNSAAC

4.1.1.4. Geología.

4.1.1.4.1. Geomorfología

El origen y las características del relieve de la región Cusco se deben a diversos episodios de modelamiento tectónico y climático, que han sido los motores para la exhumación y conservación de la cadena de los Andes. Estos procesos originaron diversas formas de paisajes, constituyéndose así la geomorfología actual de su territorio.

La región presenta cuatro grandes unidades morfo-estructurales que son la cordillera Occidental, la cordillera Oriental, la faja sub-andina y el llano amazónico, que en conjunto confieren un matiz complejo al relieve, donde se observan diferentes paisajes: altiplanicies, paisajes montañosos, colinas y los paisajes de llanura amazónica.

4.1.1.4.2. Geología Estructural.

Los sismos en la región Cusco y la mayor parte de las zonas alto andinas del Perú tienen otras características y están relacionadas a otros fenómenos diferentes a la costa peruana. Esta actividad sísmica está en relación con una zona de fallas normales activas cuaternarias.

Según la división morfo-estructural tradicional, la región Cusco forma parte de oeste a este de la cordillera Occidental, el Altiplano, la cordillera Oriental y el frente orogénico o zona sub andina, cada una de estas zonas limitadas por grandes sistemas de fallas con orientaciones paralelas a la cadena andina y con características estructurales propias.

4.1.1.4.3. Geología del Valle del Cusco.

La geología de la cuenca del río Huatanay está caracterizada por presentar afloramientos de rocas sedimentarias y en menor proporción rocas volcánicas e intrusivas (Carlotto et al., 1992 y 2005). La edad de estas varía desde el Paleozoico superior hasta el Cuaternario.

El Grupo Mitu (Triásico superior-Jurásico inferior) aflora en las Montañas de Pachatusan, al norte de Huasao, Tipón y Oropesa. Este grupo tiene un espesor medio de 600 m y está dividido en dos formaciones: Pisac y Pachatusan.

Formación Pisac está constituida principalmente por areniscas y conglomerados intercalados con rocas volcánicas

Formación Pachatusan es volcánica, con andesitas, basaltos y brechas, y además con escasa presencia de conglomerados, areniscas y limolitas rojas. Desde el punto de vista aplicado, estas rocas son bastante duras y estables para las construcciones civiles (carreteras, puentes, presas, etc.). Sin embargo, en zonas de falla, como al norte de Oropesa, se hallan muy fracturadas y alteradas con presencia de panizo (harina de falla), haciéndolas muy inestables. Constituyen buenos acuíferos fisurados. Cuando se hallan bastante duras y no alteradas, pueden constituir una fuente de piedras de construcción.

- La Formación Huambutío (Jurásico superior-Cretácico basal) aflora en los alrededores de Huambutío y al norte de Oropesa. Está constituida por conglomerados rojos violáceos, lutitas rojas, niveles de caliza y areniscas. Son rocas poco compactas y en algunos casos deleznables, no siendo muy estables para las construcciones civiles. Tampoco son rocas aptas para su explotación como canteras. Su espesor promedio es de 100 m.
- La Formación Huancané (Cretácico inferior) aflora en Huaccoto y al norte de Saylla-Tipón-Oropesa. Litológicamente está conformada por areniscas conglomerádicas y areniscas cuarzosas blancas, bastante porosas y permeables. Estas características las hacen muy buenos acuíferos, aunque su poco espesor (150 m) es una desventaja. La explotación de los granos de cuarzo para la producción de vidrios puede constituir un valor económico, ya que no tienen matriz, son muy redondeados y homogéneos.
- El Grupo Yuncaypata (Cretácico medio-superior) se presenta en Huaccoto, Saylla, Huambutío y principalmente al norte y oeste del valle de Cusco, en la denominada Meseta de Saqsaywaman y en la quebrada de Sipasmayo. Este grupo ha sido dividido en cuatro formaciones: Paucarbamba, Maras, Ayabacas y Puquín (Carlotto et al., 1992).
 - a) La Formación Paucarbamba aflora de manera escasa al norte de Oropesa, donde está constituida por lutitas y areniscas rojas de medios litorales.

- **b)** La Formación Maras está constituida por una mezcla de yesos, lutitas y lentes de calizas que se presentan de manera caótica, y aflora ampliamente en Saqsaywaman y en Oropesa.
- c) La Formación Ayabacas o Calizas Yuncaypata se presentan en afloramientos aislados dentro la masa de lutitas y yesos de la Formación Maras.
- d) La Formación Puquín aflora en el sector oeste del valle y al fondo del río Saphy, compuesta esencialmente de lutitas negras y rojas, intercaladas con capas de yesos y localmente por capas de areniscas de origen fluvial. El espesor total del Grupo Yuncaypata se estima entre 400 y 600 metros. Las calizas pueden ser utilizadas como material de construcción o para producir cal. Los yesos son explotados en gran cantidad y constituyen la principal fuente de producción de la cuenca, particularmente entre Huacarpay y Huambutío. En general, las rocas de este grupo no son propicias como basamento para las obras civiles, a excepción de algunas areniscas. En efecto, las lutitas intercaladas de yesos son malos materiales, puesto que sobre estas se ha podido reconocer una serie de deslizamientos, derrumbes e hundimientos, particularmente al norte de Oropesa, en la quebrada de Saphy donde hay una decena de deslizamientos activos y en la quebrada Sipasmayo donde hay viviendas construidas sobre material propicio a deslizamientos (Foto 102).

Las Formaciones de Quilque y Chilca (Paleoceno) forman un solo conjunto compuesto de lutitas, areniscas, microconglomerados y conglomerados de color rojo, con un espesor variable entre 250 y más de 500 m. Afloran en Huaccoto, al sur de Saylla y en las alturas de Huamancharpa. Desde el punto de vista mecánico estas rocas tienen muy baja resistencia, por lo que no se recomienda su uso en de obras civiles, particularmente hidráulicas, ya que en presencia de agua colapsan fácilmente. Sobre estas formaciones también se han desarrollado muchos deslizamientos como El Bosque en la quebrada Sagramayo.

El Grupo San Jerónimo (Eoceno medio-Oligoceno inferior) está conformado por las formaciones Kayra y Soncco que tienen espesores de 3000 m y 1500 m, respectivamente. Estas formaciones se presentan ampliamente al sur y norte de San Jerónimo, Lucre y se prolongan hasta Andahuaylillas. Igualmente se presentan al oeste de la cuenca, en el distrito de Santiago. Están constituidas por areniscas intercaladas con lutitas rojas, y por microconglomerados. Esta unidad es una de las más importantes, no solamente por la extensión de los afloramientos y el espesor de los sedimentos, sino también porque constituyen el principal acuífero de la cuenca. Además, son rocas muy favorables para las obras civiles. Además, yacimientos de cobre y plata en mantos son conocidos en las areniscas, muchas de las cuales han sido explotadas artesanalmente, como en la mina Ushpa, al sur de San Jerónimo, o la mina Tipón. Algunos deslizamientos, sobre todo del tipo traslacional, se han desarrollado sobre estas rocas, es decir, han aprovechado los planos de estratificación a favor de la pendiente, como es el caso de Huamancharpa, que represó el río Huancaro el año 1982.

La Formación Punacancha (Oligoceno superior-Mioceno) se presenta escasamente en las cumbres del límite sur de la cuenca. La litología es de areniscas, conglomerados y lutitas, y su espesor medio es de 1500 m. Constituyen buenos acuíferos.

La Formación Pumamarca o Chinchero (Plioceno) aflora en la ladera norte de la ciudad de Cusco, entre el valle y la Meseta de Saqsaywaman. Esta unidad está constituida por un conjunto sedimentario caótico formado por bloques de calizas, brechas y limolitas, que

provienen de la erosión del Grupo Yuncaypata. El espesor estimado es de 200 m. Las características geotécnicas de los sedimentos que constituyen esta formación son malas debido a la heterogeneidad de los materiales y a los diferentes grados de compactación. Estos hechos han sido comprobados durante el sismo del 5 de abril de 1986, ya que la ladera norte del valle del Cusco fue una de las más afectadas.

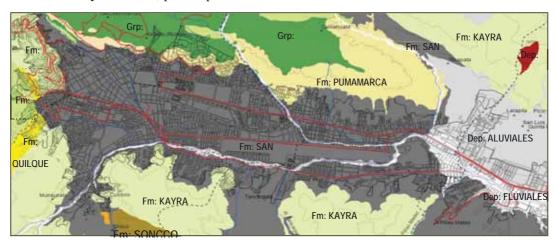
La Formación San Sebastián (Pleistoceno) aflora en el piso y en los bordes del valle. La mayoría de las edificaciones de la ciudad del Cusco han sido construidas sobre los depósitos de esta formación. Está caracterizada por formar dos secuencias: la primera está constituida por areniscas fluviales de canales entrelazados, y lutitas lacustres o palustres. Niveles diatomíticos y calcáreos caracterizan la parte superior. La segunda está compuesta por conglomerados y areniscas de conos y terrazas fluvio-torrenciales. Los sedimentos muestran estructuras compresivas sinsedimentarias (Cabrera, 1988), lo que demuestra una actividad sísmica durante el depósito de las mismas, Los sedimentos lacustres de la Formación San Sebastián corresponden a depósitos acumulados en el antiguo lago Morkill. Las secuencias de conos aluviales se sitúan en los bordes de la cuenca y particularmente en las desembocaduras de las cuencas hidrográficas (Saphy, Picchu, Huancaro, Incas-Tambillo, Cachimayo) que alimentan el río Huatanay. Antiguamente estas constituían los afluentes del lago Morkill. Desde el punto de vista geotécnico, los sedimentos lacustres y palustres tienen un comportamiento pésimo, tanto en las cimentaciones como en las laderas. En efecto, en la ladera norte las capas de diatomitas, turbas e incluso arcillas de la Formación San Sebastián se inclinan a favor de la pendiente, favoreciendo la formación de deslizamientos, tal como ocurrió en la APV Primero de Mayo, Anden Ccahuarina y en el sector norte de San Sebastián y particularmente en la APV Vallejos Santoni. Sin embargo, el comportamiento mecánico de las gravas es relativamente bueno para la cimentación de edificaciones.

Los Volcánicos Cuaternarios se presentan a manera de cuerpos pequeños a medianos. En la cuenca se distinguen los cuerpos de Huaccoto, Tipón, Oropesa y Rumicolca Se trata de coladas volcánicas de shoshonitas (andesitas). Son rocas de mucho interés económico, ya que son explotadas como piedra de construcción. Sin embargo, sobre la mayoría de estos cuerpos se localizan restos arqueológicos importantes.

Microdioritas En la Ladera norte, cerca del Centro Histórico (San Blas) y las ruinas de Saqsaywaman, así como en la margen izquierda de la quebrada Saphy, aflora un conjunto de rocas intrusivas. Se trata de microdioritas con augitas. Estas rocas se hallan fuertemente fracturadas y alteradas, lo que condiciona su comportamiento geotécnico. Así, hay rocas con buen comportamiento y otras de mediocre comportamiento. El primer caso lo vemos en el Rodadero y del segundo caso en la quebrada Saphy, donde sobre estas rocas también se han desarrollado deslizamientos.

Los Depósitos Morrénicos se ubican al pie de las Montañas de Pachatusan. Constituyen acumulaciones de bloques y gravas en una matriz gravo-arenosa. Desde el punto de vista mecánico son depósitos muy variados que en presencia de agua tienen problemas de estabilidad. En las laderas del Pachatusan, estas morrenas están cortadas por fallas activas que ratifican la sismicidad de la región.

Los Depósitos Coluviales se forman en zonas de ladera, destacando los existentes al norte de Oropesa. Están conformados por una mezcla de limos y gravas. Estos depósitos incluyen a los deslizamientos, por lo que estas zonas son consideradas peligrosas para las construcciones.



Los Depósitos Eluviales se forman por efectos de la descomposición in situ de las rocas aflorantes y forman suelos residuales. Se presentan al norte de Oropesa.

Los Depósitos Aluviales corresponden a los conos o abanicos aluviales que se hallan en la desembocadura de las quebradas principales, adyacentes al valle del río Huatanay. Están constituidos por bloques y gravas envueltos por una matriz areno-arcillosa.

Los Depósitos Fluviales. se presentan en las márgenes de los ríos Huatanay y Lucre a manera de terrazas. Están conformados por bancos de gravas y arenas. Las terrazas bajas constituyen zonas vulnerables, ya que durante las avenidas máximas son afectadas por inundaciones y erosiones, por lo que no se deben construir viviendas en ellas.

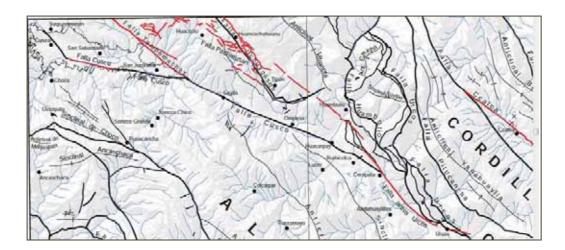
4.1.1.4.4. Neotectónica

Fallas en la Región del Cusco

En el cuadrángulo de Cusco existen varias fallas activas estudiadas por Sebrier et al. (1982) y Cabrera (1988). Estas fallas han controlado la evolución tectónica y sedimentaria de las cuencas Cusco y Ccatca. Han sido divididas en dos sectores. El sistema de **fallas Cusco** y el sistema de **fallas Vilcanota** (Cabrera, 1988).

Dentro del sistema Cusco se han reconocido las fallas de Tambomachay, Tamboray, Qoricocha, Pachatusan y Zurite, mientras que en el sistema Vilcanota están las fallas de Pomacanchis, Pampamarca y Langui.

En el cuadrángulo vecino de Ocongate (28-t) el sistema de fallas activas se encuentra en la zona de Ausangate y Ccatca Ocongate que pasa al cuadrángulo de Cusco.


Fallas Activas

Las fallas activas del sistema Cusco son Tambomachay, Pachatusan y Cusco, mientras que las fallas activas del sistema Vilcanota son Urcos y Pomacanchis. Por otro lado, la región de Cusco está caracterizada por una importante actividad sísmica cortical que está relacionada a los sistemas de fallas activas. Hasta hace algún tiempo se consideraba como activa una falla que había experimentado una o varias reactivaciones holocenas, es decir, en los últimos 10,000 años. Sin embargo, ahora se considera falla activa aquella que ha tenido juegos durante el Cuaternario (hace 2.5 Ma)

Falla Tambomachay

Se ubica al norte de la Ciudad del Cusco y separa la Meseta de Saqsaywaman de las Montañas del Cusco, pone en contacto las formaciones del Grupo Yuncaypata (Cretácico) con las del Grupo San Jerónimo (Eoceno-Oligoceno). Esta falla NO-SE a ONO-ESE es un accidente antiguo que ha tenido muchos juegos, al menos desde el Mesozoico, y que en el Cenozoico ha tenido comportamientos con movimientos de rumbo e inverso (Carlotto, 1988).

En efecto, la disposición actual de las rocas indica que se trata de una falla inversa. Esta falla tiene evidencias de un juego cuaternario antiguo de 400 m de desplazamiento caracterizado por las facetas triangulares.

El plano de falla tiene un buzamiento entre 60 y 70° al sur, y está cubierto parcialmente por detritos de pendiente de los conos de deyección (Cabrera, 1988). Reactivaciones recientes de la falla Tambomachay han creado escarpas menores orientadas hacia el sur en el pie de la escarpa principal (Sébrier et al. 1982, 1985; Cabrera, 1988). Estas escarpas menores se muestran a lo largo de 18 km, exhibiendo ligeramente un patrón arqueado discontinuo entre N80°E y N125°E. Tienen un desplazamiento promedio de 2m y un desplazamiento máximo

de 4 m en su terminación más occidental, es decir a una altura de 4,100 m, en el cuadrángulo vecino de Urubamba (27-r).

Las reactivaciones recientes han creado formas facetadas al pie de la escarpa, formando patrones en V que demuestran un claro movimiento normal reciente hacia el sur de la falla Tambomachay. Hacia el este, la falla activa desaparece bajo los conos aluviales de San Jerónimo, a una altura de 3400 msnm.

Falla Pachatusan

Conformado por escarpas con buzamientos al sur que se extienden al pie de las montañas del mismo nombre, entre 3900 y 4400 msnm. Estas escarpas han sido talladas en las rocas volcánicas del Grupo Mitu (Triásico-Jurásico) y desplazan depósitos glaciares de morrenas y flujos del Cuaternario tardío (Cabrera, 1988). Estas fallas tienen una longitud de 10 km y dirección entre N130° y N140° con buzamiento entre 50 y 70°S. El desplazamiento es de 10 m como máximo.

Se han observado escarpas pequeñas discontinuas, con dirección NE-SO y E-O, estas tienen bloques hundidos al este y al sur. La zona de la falla con orientación NE-SO puede ser interpretada como un sistema en echelón que se une a la falla Tambomachay. En efecto, algunas escarpas menores discontinuas se han formado cerca del cerro Huaynapicol, donde la escarpa principal atraviesa la terraza más joven de la quebrada Arcopunco al noroeste de San Jerónimo, y tiene 4 m de desplazamiento normal (Cabrera, 1988).

Falla Cusco

Las fotografías aéreas y las imágenes de satélite muestran un alineamiento NO-SE que coincide con el valle del río Huatanay, desde Cusco y hasta Saylla. Es una falla antigua sellada con los sedimentos cuaternarios de la Formación San Sebastián. Esta falla separa en parte el Altiplano de la zona intermedia con la Cordillera Oriental.

Actualmente esta estructura no muestra signos de reactivaciones recientes, sin embargo, durante el sismo del 21 de mayo de 1950 se observaron desplazamientos en terrenos recientes que afectaron la Formación San Sebastián. De acuerdo a lo que muestra la foto de Ericksen et al. (1954), las estructuras serían una consecuencia de la reactivación de la falla Cusco (Carlotto et al., 1996).

El reporte del terremoto superficial citado (Ericksen et al., 1954; Silgado, 1978) menciona muchas fisuras de dirección NO-SE entre San Jerónimo y San Sebastián a lo largo de 5 km de



distancia, donde un nivel fue levantado en el sector sur del valle del Cusco. El mapa de isosistas de este sismo muestra el epicentro en el valle, y las curvas isosistas alargadas coinciden con la estructura NO-SE de la falla Cusco. Por otro lado, observaciones de campo del doctor Carlos Kalafatovich (inédito), luego del sismo, indican fracturas discontinuas en el suelo; ellas fueron cartografiadas a lo largo de varios kilómetros entre San Sebastián y San Jerónimo. Esta observación es similar a lo manifestado líneas arriba, y se puede interpretar que correspondería a la reactivación de la falla Cusco. En consecuencia, la actividad de la falla Cusco demostraría la existencia de una fuente sismogénica dentro del valle del mismo nombre, lo cual aumentaría el riesgo sísmico de la ciudad del Cusco y también de las poblaciones del Bajo Huatanay.

Falla Urcos

La falla Urcos se localiza entre Huambutío al NO y Urcos al SE, entre 3200 y más de 3600 msnm. Ella corresponde a la prolongación hacia el este de la falla Pachatusan. Tiene dirección NO-SE y limita bloques de rocas paleozoicas de la Formación Ananea con rocas meso-cenozoicas en el límite Cordillera Oriental-Altiplano. Esta falla corta el volcánico cuaternario de Cerapata (Cabrera et al., 1987) cuyas lavas más jóvenes han sido datadas por K/Ar en <0.7 Ma (Kaneoka y Guevara, 1984). El río Vilcanota corta transversalmente la escarpa exhibiendo un antecedente de proceso del río. La tectónica extensional del Cuaternario parece ser responsable de la sedimentación fluvio aluvial dentro de las depresiones de Lucre y Andahuaylillas. Precisamente, la depresión de Lucre es una consecuencia de la neotectónica y de las actividades volcánicas. Así, el volcán Rumicolca bloqueó la salida del río Huatanay al Vilcanota, causando la formación de la laguna de Huacarpay y luego la migración de drenaje hacia Huambutío.

4.1.2. Sismicidad en la Región del Cusco.

El territorio peruano y particularmente la Región Cusco, son zonas de riesgo sísmico, esto quiere decir que en "cualquier momento" puede ocurrir un sismo.

El cálculo de períodos de recurrencia de sismos, consisten en la estimación probable de que suceda un sismo futuro, en un lapso de tiempo determinado (30, 50, 100 o más años) con cierta magnitud y en un lugar determinado.

En consecuencia, si bien es cierto que Cusco es una zona sísmica, su frecuencia en sismos es muy baja a comparación con la región costera del Perú y otras regiones de alto riesgo sísmico del mundo. Las magnitudes registradas en los dos últimos sismos importantes, como los 1950 y 1986 alcanzaron los 6 y 5.2 (escala de magnitud varía de 1 a 10), lo que indica que los sismos no son de gran magnitud, pero el carácter superficial de estos los hace bastante peligrosos, debido a que independientemente de la magnitud del sismo, estos serán más devastadores e intensos en el área cercana al epicentro.

Es de resaltar que las consecuencias devastadoras de un sismo dependen de mucho otros factores como son:

- La ubicación, ya que un sismo que se produce en un área de pocos habitantes no causa el mismo daño que en un lugar con alta cantidad de habitantes y viviendas.
- La magnitud, ya que mientras más energía libere un sismo, mayor será su poder destructivo.
- La profundidad debido a que generalmente los sismos producidos a una mayor profundidad causan menos daños porque la mayoría de energía se disipa antes de llegar a la superficie.
- Distancia al epicentro que es el punto en la superficie justo arriba donde el terremoto se origina.
- Condiciones geológicas locales, siendo las condiciones de suelo uno de los factores más importantes. Por ejemplo, en suelo suelto, arenoso y húmedo, se vuelve más fluido e inestable si el sismo es fuerte y suficientemente largo.
- También dependerán del tipo de arquitectura que tengas las edificaciones, ya sean configuraciones irregulares en planta y en elevación.

4.1.2.1. Historia Sísmica.

Es de gran importancia conocer los sismos que ocurrieron hace años debido a la ley del Actualismo que implica que lo que paso hace muchos años volverá a pasar ahora. Los sismos son cíclicos y los de mayor magnitud, se tomarán más tiempo en retornar, en todo caso no podremos evitarlos, ellos se harán presentes en algún momento.

Sin embargo, los sismos no se pueden predecir debido a que no existe método o tecnología que permita saber cuándo ocurrirán. Es debido a esto que es de gran importancia conocer los antecedentes sísmicos y así estar preparados cuando estos ocurran.

El registro cronológico de la actividad sísmica data desde la época prehispánica, expresada en los relatos de los cronistas que lograron recoger información acerca de la actividad sísmica en que habían ocurrido fuertes movimientos sísmicos.

Es a partir de la época colonial que se dispone de un registro cronológico de la actividad sísmica ocurrida en el departamento del Cusco, y en la actualidad la sismicidad en nuestra

región ha sido mejor definida gracias a la instalación de estaciones sismográficas en el Cusco como la de Ccorao, Huamancharpa, Izcuchaca, Lamay y Oropesa.

Tabla 17. Registros de sismos en la Región del Cusco Fuente: Marco Antonio Mendoza Peña e IGP

FECHA	POBLACIÓN
1581	Yanaoca
1590	Cusco
31/03/1650	Cusco
17/09/1707	Ccapi
1717	Quiquijana
11/02/1746	Urcos
22/04/1804	Cusco
07/09/1823	Cusco
18/09/1832	Cusco
16/11/1832	Cusco
27/03/1870	Cusco
10/17/1870	Santo Tomás
23/01/1905	Cusco
17/05/1928	Cusco
05/03/1938	Acopia
06/03/1938	Tinta
23/06/1939	Pomacanchi
18/09/1941	Cusco
30/01/1943	Yanaoca
01/02/1944	Cusco
21/02/1946	Cusco
17/04/1946	Marcahuasi
30/05/1946	Cusco
03/06/1947	Yanaoca
31/10/1947	Quillabamba
10/01/1948	Cusco
10/10/1948	Marcahuasi
06/11/1948	Cusco
10/01/1949	Cusco
15/04/1949	Cusco
21/05/1949	Cusco
26/02/1952	Cusco
06/07/1952	Cusco

FECHA	POBLACIÓN
26/08/1952	Cusco
30/03/1953	Cusco
16/03/1954	Cusco
05/05/1954	Cusco
07/05/1954	Marcapata
07/01/1955	Yanaoca
20/02/1955	Yanaoca
19/06/1955	Anta
08/11/1961	Acos
08/05/1965	Urcos
03/06/1980	Mollepata
05/04/1986	Cusco
06/07/1991	Livitaca
19/02/1992	Chinchaypugio
08/08/2003	Ccapacmarca
06/04/2005	Sicuani
03/02/2006	Espinar
28/08/2007	Calca
30/06/2008	Canchis
11/08/2009	Cusco
02/07/2010	Quispicanchi
03/04/2011	Cusco
04/09/2012	Cusco
15/03/2013	Anta
06/07/2014	Paruro
07/10/2015	Acomayo
27/09/2016	Santo Tomás
05/08/2017	Quispicanchi
04/10/2018	Espinar
11/11/2018	Cusco
01/06/2019	Canas
22/08/2019	Calca
23/10/2019	Espinar

En los últimos cuatro siglos, las provincias donde se ha registrado mayor actividad sísmica son: Cusco (29 sismos), Canas 6 sismos, Anta (6 sismos), Quispicanchis (6 sismos), y Acomayo (4 sismos).

4.1.3. Amenaza o Peligro Sísmico de la Región del Cusco.

La principal amenaza sísmica en la Región Cusco es el sistema de fallas activas alrededor de la ciudad, las cuales están ligadas a un fenómeno de levantamiento anormal de la Cordillera Oriental de los Andes del Sur del Perú por el movimiento de subducción que emprende el Escudo Brasileño

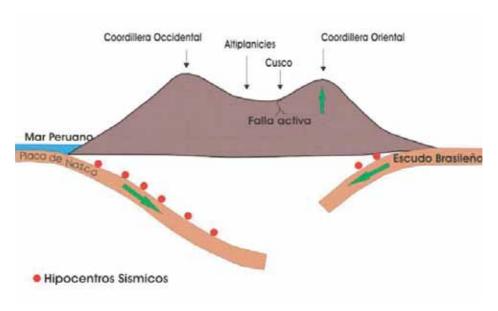


Figura 23. Corte E-O de los Andes del Sur

La base de la investigación se origina en los sismos en fallas de intraplaca, que son menos recurrentes en el tiempo, pero también han causado grandes destrucciones en el siglo pasado con un número de muertos cercano a los miles

Las fallas están sometidas a un ciclo sísmico durante el cual el sistema o estructura acumula energía de deformación elástica y que en casi todos los casos se libera en forma repentina y genera un terremoto.

Por lo tanto, es necesario estudiar las evidencias de crisis sísmicas que pudieron haber ocurrido en épocas anteriores al registro histórico, provistas por las huellas que los terremotos han dejado en el registro geológico.

Es así, que se han logrado recuperar los parámetros sismológicos de 33 eventos tanto del catálogo histórico (Huaco, 1986) como del instrumental (Tavera et al., 2007), aunque solo para la falla Tambomachay, que es la más importante por su cercanía a la ciudad de Cusco. Los datos comprenden sismos con magnitudes que van de 3 a 5 Mw. Además de ello se tienen evidencias, de acuerdo a estudios paleosismológicos (Cabrera, 1988 y Benavente et al., 2010), de sismos con magnitudes mayores a 6.5, todos estos superficiales (<20 kilómetros). Con estos datos se graficó el histograma de la sismicidad en el tiempo, donde se muestra la magnitud de los eventos en función del tiempo; si bien es cierto la sismicidad que se describe en el gráfico no es homogénea, esta podría definir una sismicidad periódica.

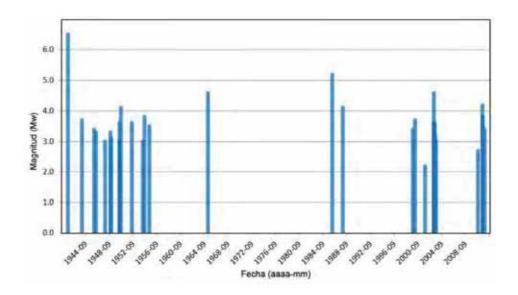


Figura 24. Recurrencia de sismos vs la Magnitud. Falla Tambomachay Fuente: INGEMMET

De la misma forma el Instituto Geológico, Minero y Metalúrgico (INGEMMET) recopilo información útil y así, de acuerdo a la longitud de ruptura, ruptura máxima vertical y, asumiendo que estas reactivaciones tuvieron hipocentros superficiales, calcularon que las fallas de Tambomachay, Amaru, Pachatusan, Paruro y Qoricocha son capaces de generar sismos mayores a 6.1 (Mw) de magnitud.

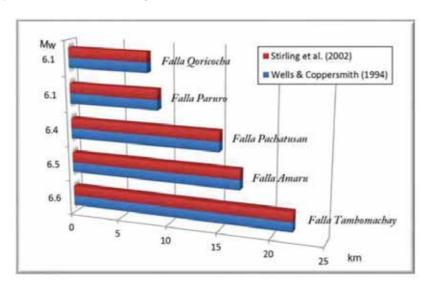


Figura 25. Magnitudes (Mw) máximas posibles halladas a partir de relaciones empíricas propuestas por Wells & Coopersmith (1994) y Stirling et al (2002), para las fallas Tambomachay, Amaru, Pachatusan, Paruro y Qoricocha.

La Región Cusco se halla dentro del área de influencia de estos últimos tipos de sismos. Al norte del Lago Titicaca, entre Sicuani, Urcos, Cusco, Abancay y Ayacucho, existe un sistema de fallas históricamente muy activas, que pasan a sólo 10 km de la ciudad del Cusco; algunos especialistas señalan indicios de la existencia de una falla que cruza la misma ciudad. Este sistema de fallas constituye un peligro potencial para las ciudades de la región Cusco y todo el Sur del Perú. (PREDES, 2007)

Considerando la historia sísmica en esta región y la existencia de fallas geológicas regionales y locales se concluye:

- Alto Peligro Sísmico: Una provincia: Cusco, debido a fallas tectónicas activas que se encuentran próximas.
- Mediano Peligro Sísmico: 10 provincias: Acomayo, Anta, Calca, Canas, Canchis, Chumbivilcas, Paruro, Paucartambo, Quispicanchi y Urubamba.
- Las provincias de Espinar y la Convención presentan un relativo menor peligro sísmico.

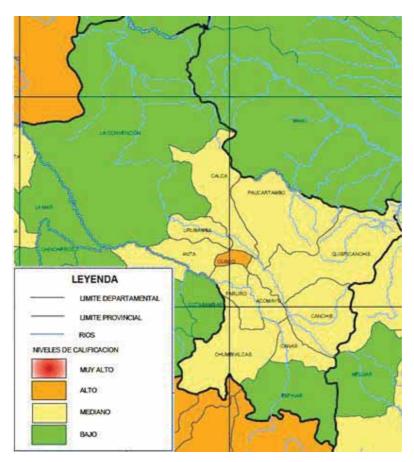


Figura 26. Calificación según Niveles de Peligros Sísmicos en la Ciudad del Cusco.

Fuente: (PCM, 2003)

4.2. Características Generales de los Edificios de la Escuela Profesional de la Escuela Profesional de Ingeniería Civil

4.2.1. Ubicación.

El ámbito o zona de estudio es en la Universidad Nacional de San Antonio Abad del Cusco, distrito Cusco, provincia Cusco, departamento Cusco; y geográficamente la zona de estudio se encuentra ubicada en el borde Oeste de la Cordillera Oriental.

UBICACIÓN POLÍTICA		
DEPARTAMENTO	CUSCO	
PROVINCIA	CUSCO	
DISTRITO	CUSCO	
ZONA ESPECIFICA	UNSAAC	

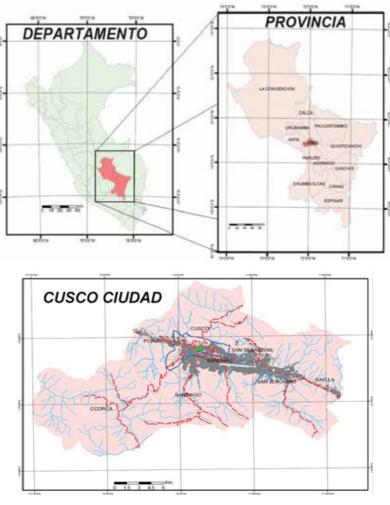


Figura 27. Ubicación geográfica de los edificios a evaluar

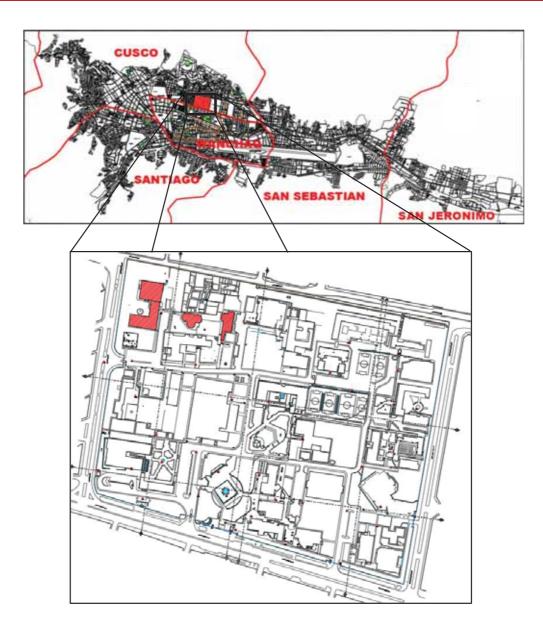


Figura 28. Ubicación de las edificaciones a evaluar en la ciudad del Cusco y dentro del Campus Universitario

4.2.2. Información Básica de los Edificios a Evaluar.

Se describirán de forma general 3 edificaciones de la Escuela Profesional de Ingeniería Civil – UNSAAC, las cuales son las siguientes:

Tabla 18. Años de Construcción de los Edificios de la EPIC

Etiquetas	Edificio	Año de Construcción
1	Edificación Antigua de la EPIC	1981
2	Edificación Nueva de la EPIC	2001
3	Laboratorio de Suelos e Hidráulica de la EPIC	1986

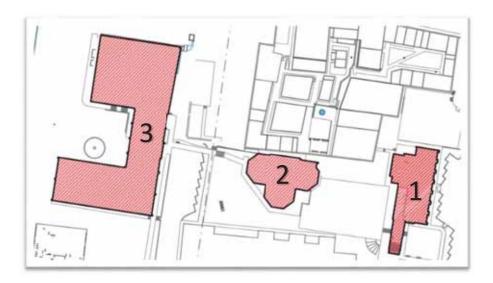


Figura 29. Edificaciones de la Escuela Profesional de Ingeniería Civil a Evaluar.

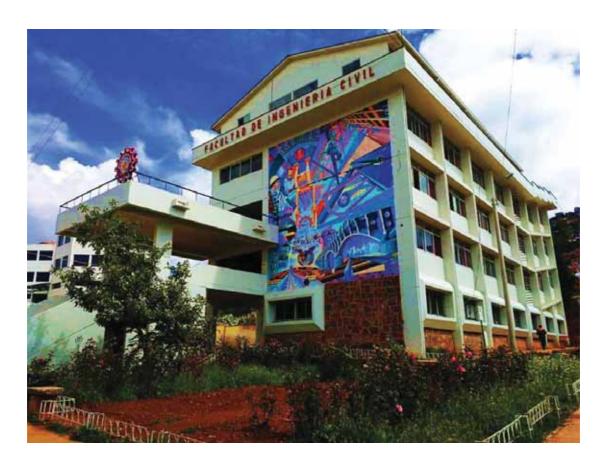


Figura 30. Edificación Antigua de la EPIC

Figura 31. Edificación Nueva de la EPIC

Figura 32. Laboratorio de Hidráulica y Suelos - EPIC

4.3. Evaluación Estructural de los Edificios de la Escuela Profesional de Ingeniería Civil

4.3.1. Aplicación de la Metodología FEMA P-154.

La inspección rápida visual se realizó aplicando el formato FEMA 154 para las edificaciones a analizar.

La aplicación de esta metodología toma entre 15 a 75 minutos por edificación y para ello los evaluadores deben estar debidamente capacitados.

Se seguirá el siguiente protocolo de aplicación de la metodología:

4.3.1.1. Objetivos de la Evaluación y Beneficios de los Resultados

Esta evaluación es una inspección rápida de los edificios a analizar y la cual nos puede brindar un amplio panorama de las características de cada edificación. Así mismo, esta metodología es muy conveniente cuando se tiene una cantidad considerable de edificios analizar.

Con esta metodología se pretende hallar el grado de vulnerabilidad sísmica de las 4 edificaciones a evaluar y así determinar cuáles de ellas necesitan una evaluación mucho más detallada.

Así mismo, se pretende reducir la cantidad de edificaciones a evaluar por una metodología más detallada.

4.3.1.2. Selección de Evaluadores

Los aplicadores de esta evaluación serán los autores de la presente tesis, los cuales tienen los conocimientos necesarios para realizar una correcta evaluación e interpretación de resultados.

4.3.1.3. Alcance de la Evaluación

Se aplicará los dos niveles de evaluación brindados por el FEMA – 154, y de tal manera tener resultados mucho más confiables.

Consecuentemente, se aplicará una evaluación más detallada según el ASCE 41-13 para las edificaciones que requieran de ella.

4.3.1.4. Planificación previa al campo

Se evaluará las edificaciones mencionadas teniendo en cuenta los planos arquitectónicos y estructurales anotando las características más resaltantes de cada edificación.

4.3.1.5. Aplicación de los formatos a Utilizar.

A continuación, se detallan las características generales que serán necesarias para aplicar la metodología.

4.3.1.5.1. Determinación de la Región de Sismicidad.

Para la determinación de la región de sismicidad se necesita la aceleración espectral de acuerdo a la ubicación donde se encuentra las edificaciones a evaluar.

Los parámetros de aceleración de respuesta espectral se obtuvieron utilizando el Servicio Web de Consultas para la Determinación del Peligro Sísmico en el Territorio Nacional (SENCICO, 2016), el cual es un aplicativo web que nos permite obtener la aceleración espectral de curvas de probabilidad anual de excedencia para varios valores de amortiguamiento y periodo, para cualquier ubicación en el territorio nacional.

Figura 33. Coordenadas de los Edificios a Evaluar - Aplicativo Web de SENCICO,

Así mismo el formato de evaluación del FEMA-154 requiere los 2/3 de las aceleraciones espectrales para un periodo de retorno de 2475 años con un 2% de probabilidad de excedencia en 50 años.

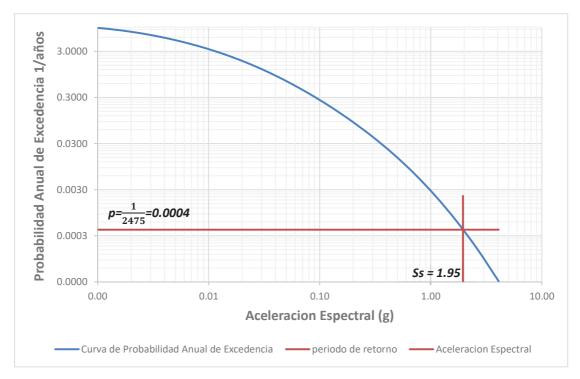


Figura 34. Aceleración espectral para un período corto con retorno de 2475 años y con un 2% de probabilidad de excedencia en 50 años.

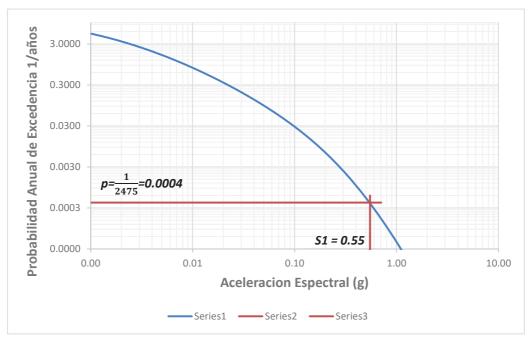


Figura 35. Aceleración espectral para un período largo con retorno de 2475 años con un 2% de probabilidad de excedencia en 50 años.

Los 2/3 de los resultados de aceleraciones espectrales para periodo corto de 0.2 s y para periodo largo de 1 s se muestran en la siguiente tabla.

Tabla 19. Aceleraciones Espectrales para periodos corto y largo según FEMA P-154

Período	Aceleración Espectral (Tr=2475 años)
Ss=0.2 s	1.30
S1 = 1.0 s	0.37

Una vez obtenido la aceleración espectral de acuerdo a la ubicación de las edificaciones pasamos a clasificar el tipo de zona según la tabla siguiente:

Región de Sismicidad	Respuesta de aceleración espectral, S _s (período corto o 0.2 s)	Respuesta de aceleración espectral, S1 (período largo o 1.0 s)				
Bajo	menos de 0.25 g	menos de 0.10 g				
Moderado	mayor o igual a 0.25 g pero menor a 0.50 g	mayor o igual a 0.10 g pero menor que 0.20 g				
Moderadamente Alto	mayor o igual a 0.50 g pero menor que 1,00 g	mayor o igual a 0.20 g pero menor a 0.40 g				
Alto	mayor o igual que 1.00 g pero menor que 1.50 g	mayor o igual a 0.40 g pero menor a 0.60 g				
Muy Alto	mayor o igual a 1.50 g	mayor o igual a 0.60 g				
Notas: g = aceleración de la gravedad en dirección horizontal						

Figura 36. Región de Sismicidad a partir de la respuesta de Aceleración Espectral MCER. Fuente: FEMA P - 154

De acuerdo a esta clasificación brindada por el FEMA – 154 se puede determinar la región de sismicidad para la ubicación de las edificaciones a analizar que para este caso se tendría región de sismicidad Moderadamente Alto y Alto.

De esta forma se concluye que los formatos de evaluación necesarios serán los **Moderadamente Alto** y **Alto**.

4.3.1.5.2. Determinación del Tipo de Suelo

Según el Mapa de Peligros de la Ciudad del Cusco el tipo de suelo predominante en la ubicación donde están situados los edificios a evaluar son arcillas, limos y arenas.

Según la norma E.030 de diseño sismo - resistente, este tipo de suelos tienen velocidad de onda de corte Vs < 180 m/s y corresponde a Perfil Tipo S3: Suelos Blandos.

Según la clasificación del ASCE/SEI 7-10 corresponde a la clasificación Tipo E: Suelo de Arcilla Suave.

4.3.1.6. Resultados Obtenidos

Los formatos llenados se podrán observar en el Anexo 2. A continuación se muestra los puntajes obtenidos para cada edificación evaluada:

Tabla 20. Puntajes Obtenidos para el Formato de Nivel 1 de FEMA – 154.

Formulario de Evaluación para un nivel de		Puntuación				
sismicidad Moderadamente Alta	Nivel 1	Mínima	Puntaje Final			
Edificio Antiguo	1.3	0.3	1.3			
Edificio Nuevo Bloque A	1.3	0.3	1.3			
Edificio Nuevo Bloque B	2.4	0.3	2.4			
Edificio Nuevo Bloque C	2.0	0.3	2.0			
Laboratorio de Hidráulica y suelos - Bloque A	2.4	0.3	2.4			
Laboratorio de Hidráulica y suelos - Bloque B	2.1	0.3	2.1			
Laboratorio de Hidráulica y suelos - Bloque C	2.4	0.3	2.4			

Formulario de Evaluación para un nivel de		Puntuación				
sismicidad Alta	Nivel 1	Mínima	Puntaje Final			
Edificio Antiguo	1.4	0.3	1.4			
Edificio Nuevo Bloque A	1.4	0.3	1.4			
Edificio Nuevo Bloque B	2.5	0.3	2.5			
Edificio Nuevo Bloque C	2.0	0.3	2.0			
Laboratorio de Hidráulica y suelos - Bloque A	2.5	0.3	2.5			
Laboratorio de Hidráulica y suelos - Bloque B	2.3	0.3	2.3			
Laboratorio de Hidráulica y suelos - Bloque C	2.5	0.3	2.5			

Tabla 21. Puntajes Obtenido para el Formato de Nivel 2 de FEMA – 154.

Enemulario de Evaluación para un pivol de	Puntuación				
Formulario de Evaluación para un nivel de sismicidad Moderadamente Alta	Nivel 2	Puntuación mínima	Puntaje Final		
Edificio Antiguo	0	0.3	0.3		
Edificio Nuevo Bloque A	0.4	0.3	0.4		
Edificio Nuevo Bloque B	-	-	-		
Edificio Nuevo Bloque C	1.5	0.3	1.5		
Laboratorio de Hidráulica y suelos - Bloque A	-	-	-		
Laboratorio de Hidráulica y suelos - Bloque B	-	-	-		
Laboratorio de Hidráulica y suelos - Bloque C	-	-	-		

Formulario de Evaluación para un nivel de		Puntuación					
sismicidad Alta	Nivel 2	Puntuación mínima	Puntaje Final				
Edificio Antiguo	0.2	0.3	0.3				
Edificio Nuevo Bloque A	0.3	0.3	0.3				
Edificio Nuevo Bloque B	-	-	-				
Edificio Nuevo Bloque C	1.4	0.3	1.4				
Laboratorio de Hidráulica y suelos - Bloque A	-	-	-				
Laboratorio de Hidráulica y suelos - Bloque B	-	-	-				
Laboratorio de Hidráulica y suelos - Bloque C	-	-	-				

Como se puede observar, la Edificación Antigua, el Bloque A Nuevo y el Bloque C Nuevo requirieron una evaluación de Nivel 2.

Al pasar la evaluación de nivel 2, se determina que estas tres edificaciones requieren una evaluación más detallada, procediendo a hacer su análisis por la norma ASCE 41 - 13.

4.3.2. Aplicación de la Metodología del ASCE 41-13.

4.3.2.1. Descripción General de las Edificaciones Evaluar

4.3.2.1.1. Edificación Antigua de la EPIC

El proyecto de esta edificación fue realizado por bachilleres de la Facultad de Ingeniería Civil y de la Facultad de Arquitectura. Dicho proyecto incluía otras edificaciones las cuales no se llegaron a concretar.

El proyecto constaba de 4 niveles con una azotea. En el tercer nivel cuenta con una terraza que esta sobre las gradas de las gradas principales.

Esta edificación tuvo adicionales en el año 2016, en el cual se adiciono un quinto piso. Así como también se instaló un ascensor.

Esta edificación tiene un área de 512.66 m2 y su configuración arquitectónica es irregular tanto en planta como en elevación.

Se logró conseguir los planos estructurales originales del proyecto lo cual permitirá un análisis de las características estructurales de la edificación, así como también se cuenta los planos arquitectónicos actuales.

Se logró conseguir el permiso de la oficina de obras para poder realizar pruebas de carácter destructivo para conocer la resistencia de los elementos estructurales.

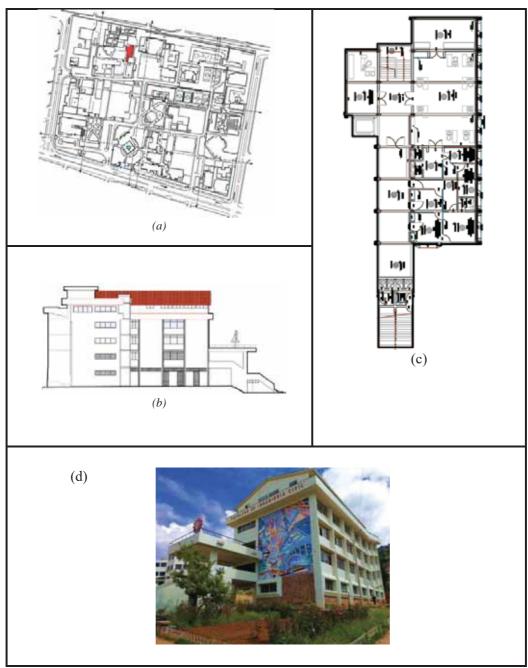


Figura 37. Edificio Antiguo de la Escuela Profesional de Ingeniería Civil.

(a) Ubicación de la Edificación en la Universidad Nacional de San Antonio Abad del Cusco. (b) Elevación Lateral Derecha de la Edificación Antigua de la EPIC. (c) Plano de planta de la Edificación Antigua de la EPIC. (d) Edificación Antigua de la EPIC

4.3.2.1.2. Edificación Nueva de la EPIC

Esta edificación fue realizada en 3 etapas. La primera fue en el año 2000 que consta de la cimentación y el primer piso. La segunda etapa se realizó entre los años 2002 y 2006 que consta del segundo y tercer piso. Y la última etapa fue realizada el año 2006 que consta del cuarto y quinto piso con cubierta de techo.

La ejecución de edificación fue realizada por tres contratistas diferentes.

El proyecto de esta edificación constaba de 14 octógonos de los cuales solo ejecutaron 3 y la tercera parte de un cuarto octógono.

Dos de los tres octógonos tienes 5 niveles y el tercer octógono solo tiene 2 niveles y una azotea.

Esta edificación tienes un área total entre los 4 bloques de 419.13 m2 y su configuración arquitectónica es irregular en uno de los octógonos y en el octágono incompleto.

Es de resaltar que de los tres octógonos solo requieren una evaluación más detallada dos de ellos lo cual se detallara más adelante.

Se logró conseguir los planos estructurales originales del proyecto lo cual permitirá un análisis de las características estructurales de la edificación, así como también se cuenta los planos arquitectónicos.

Se logró conseguir el permiso de la oficina de obras para poder realizar pruebas de carácter destructivo para conocer la resistencia de los elementos estructurales.

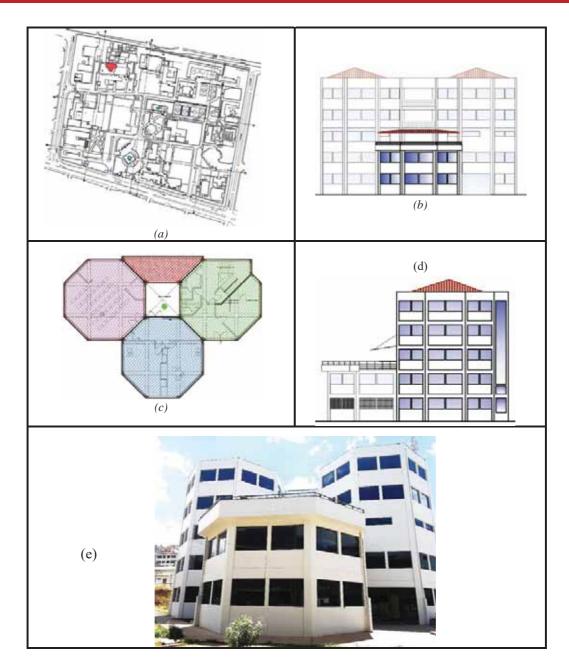


Figura 38. Edificación Nueva de Escuela Profesional de Ingeniería Civil
(a) Ubicación de la Edificación en la Universidad Nacional de San Antonio Abad del Cusco (b) Elevación de la fachada principal. (c) Plano de planta de la Edificación, la cual consta de 3 octágonos y la parte incompleta de un cuarto octógono. (d) Elevación Lateral Izquierda de Edificación Nueva de la EPIC. (e) Edificación Nueva de la EPIC

4.3.2.2. Descripción del Sistema Estructural

4.3.2.2.1. Sistema Estructural – Edificación Antigua

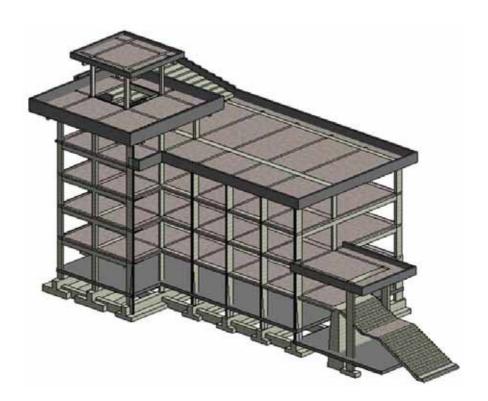


Figura 39. Sistema Estructural de la Edificación Antigua de la EPIC

Cimentación

La edificación cuenta con una cimentación en base a zapatas corridas en forma de "T Invertida" en una dirección las cuales están conectadas por vigas de conexión en la otra dirección. Las columnas que soportan la terraza tienen una cimentación en base a zapatas aisladas. Existe un muro de contención que llega hasta el segundo nivel en la entrada principal a la edificación. La cota de fundación está ubicada a una profundidad de -2.40 m desde el nivel de piso terminado.

Superestructura

Tiene una estructura de concreto reforzado del tipo aporticado. La configuración estructural es irregular tanto en planta como en elevación.

4.3.2.2.2. Sistema Estructural – Edificación nueva

Figura 40. Bloques de la Edificación Nueva de la EPIC

Cimentación

La edificación cuenta con una cimentación en base a zapatas apoyadas directamente en el suelo sobre un solado de pequeño espesor, y a vigas de cimentación para los bloques más altos y aquellos adyacentes unos a otros. La cota de fundación está ubicada a una profundidad de -1.85 m desde el nivel de piso terminado.

Superestructura

El bloque A tiene una estructura de concreto reforzado de muros estructurales, ya que este bloque cuenta con un muro estructural que soporta más del 70% de la cortante basal y su configuración en planta es irregular.

Los bloques B y C tienen una estructura de concreto reforzado del tipo aporticado y su configuración estructural es regular en planta.

4.3.2.3. Propiedades de los Componentes Estructurales

Todas las características geométricas como son las secciones, longitudes y detalles de refuerzo se definieron de acuerdo a los planos estructurales con los que el proyecto fue ejecutado.

Propiedades Mecánicas

Se realizaron ensayos de diamantina que son de carácter destructivo, para conocer la resistencia del concreto en las dos edificaciones y así tener un panorama más amplio del estado actual de las edificaciones.

A continuación, se muestran los resultados y la ubicación de donde se realizaron los ensayos realizados:

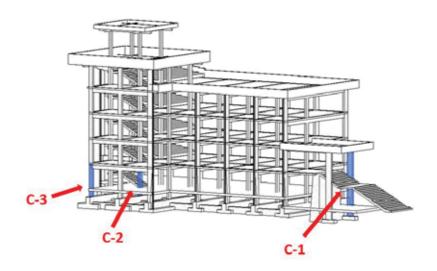


Figura 41. Ubicación de los Ensayos de Perforación con diamantina – Edificación Antigua

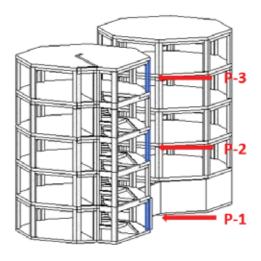


Figura 42. Ubicación de los Ensayos de Perforación con diamantina – Edificación Nueva

Tabla 22. Resultados de los ensayos de perforación con diamantina – Edificio Nuevo

	EDIFICIO NUEV	O O	
	P-01	P-02	P-03
Relación L/D	1.07	1.63	1.78
Factor de Corrección por L/D	0.87	0.97	0.99
Condición de Humedad al momento del ensayo	Seca a la intemperie	Seca a la intemperie	Seca a la intemperie
Dirección de la aplicación de la carga respecto al plano Horizontal del Vaciado	Perpendicular Perpendicular		Perpendicular
Tamaño máximo nominal del agregado grueso del concreto	1/2"	1/2"	1/2"
fecha de extracción del testigo	16/10/2018	16/10/2018	16/10/2018
fecha de ensayo - resistencia a la compresión	19/10/2018	19/10/2018	19/10/2018
Resistencia (kg/cm2)	108	166	133
Resistencia mínima (kg/cm2)	210	210	210
Observación	INACEPTABLE	INACEPTABLE	INACEPTABLE

Tabla 23. Resultados de los ensayos de perforación con diamantina – Edificio Antiguo

EDIFICIO ANTIGUO							
	C-01	C-02	C-03				
Relación L/D	1.5	1.01	1.01				
Factor de Corrección por L/D	0.96	0.87	0.87				
Condición de Humedad al momento del ensayo	Seca a la intemperie	Seca a la intemperie	Seca a la intemperie				
Dirección de la aplicación de la carga respecto al plano Horizontal del Vaciado	Perpendicular Perpendicular		Perpendicular				
Tamaño máximo nominal del agregado grueso del concreto	1"	1"	1"				
fecha de extracción del testigo	16/10/2018	16/10/2018	16/10/2018				
fecha de ensayo - resistencia a la compresión	19/10/2018	19/10/2018	19/10/2018				
Resistencia (kg/cm2)	119	263	273				
Resistencia mínima (kg/cm2)	210	210	210				
Observación	INACEPTABLE	CUMPLE	CUMPLE				

Los ensayos fueron realizados por un laboratorio externo. Este tipo de ensayo es necesario realizarlo como personal calificado. Todo el informe emitido por el laboratorio a partir de la prueba se muestra en el Anexo 3.

Se sacó un promedio aritmético de la resistencia a compresión de los resultados de los ensayos de diamantina para obtener el módulo de elasticidad del concreto de las edificaciones a evaluar:

Tabla 24. Resistencia modificada para evaluación – Edificio Nuevo

Ubicación	Diametro	l/d	Dial (Mpa)	Correcion l/d	f'c _{nucleo} (Mpa)	α	$\mathbf{F}_{\mathbf{l}/\mathbf{d}}$	F _{dia}	$\mathbf{F}_{\mathbf{mc}}$	$\mathbf{F}_{\mathbf{d}}$	fc _{diseño} (MPa)	fc _{diseño} (kg/cm2
Primer Piso	7.67	1.07	12.18	0.87	10.597	4.30E-04	0.879	1.028	0.96	1.06	9.748	99.40
Tercer Piso	7.1	1.63	16.83	0.97	16.325	4.30E-04	0.981	1.035	0.96	1.06	16.868	172.01
Quinto Piso	7.09	1.78	13.21	0.99	13.078	4.30E-04	0.993	1.035	0.96	1.06	13.681	139.50

Tabla 25. Resistencia modificada para evaluación – Edificio Nuevo

Ubicación	Diametro	l/d	Dial (Mpa)	Correcion l/d	f'c _{nucleo} (Mpa)	α	$F_{l/d}$	F_{dia}	F _{mc}	$\mathbf{F}_{\mathbf{d}}$	fc _{diseño} (MPa)	f'c _{diseño} (kg/cm2)
Primer Muestra	7.017	1.5	12.15	0.96	11.664	4.30E-04	0.965	1.048	0.96	1.06	12.004	122.41
Segunda Muestra	6.967	1.01	29.67	0.87	25.813	4.30E-04	0.870	1.049	0.96	1.06	23.954	244.26
Tercera Muestra	7	1.01	30.76	0.87	26.761	4.30E-04	0.870	1.048	0.96	1.06	24.833	253.23

4.3.2.4. Clasificación de las Edificaciones

Las edificaciones se clasificaron de acuerdo a la norma peruana de edificaciones E.030 y de acuerdo al manual ASCE 41-13.

Tabla 26. Clasificación de sistema estructural de las Edificaciones a Evaluar

		Categoría de Riesgo	Configuración Estructural	Sistema Estructural
Edificación Nueva de la	Bloque "A"	Edificación Esencial A2	Edificación Irregular	Muros Estructurales
EPIC	Bloque "C"	Edificación Esencial A2	Edificación Regular	Aporticado
Edificación Antigua de la EPIC		Edificación Esencial A2	Edificación Irregular	Aporticado

4.3.2.5. Propiedades Geotécnicas

Se cuenta con información los análisis geotécnicos de la edificación nueva, los cuales se utilizarán para realizar los análisis para las dos edificaciones en evaluación.

Figura 43. Estudio de suelos antes de la construcción de la Edificación Nueva

De acuerdo con el informe de la verificación de la capacidad de carga admisible para construcción de la Facultad de Ingeniería Civil II Etapa Primera Fase UNSAAC se tiene que:

- El material en general a nivel de la cota de cimentación y dentro de la profundidad efectiva está constituida por suelos finos (arcillas inorgánicas de baja a mediana plasticidad) cuya estratificación corresponde al Perfil tipo S3 en su comportamiento sísmico.
- 2. La capacidad de carga verificada es en base a los sondeos y ensayos de laboratorio alcanza un valor de 0.97 kg/cm², sin embargo, considerando un desplante de 2.15 m es decir con 0.30 m por debajo de la cota fijada, la capacidad de carga admisible verificada alcanza un valor de 1.29 Kg/cm2.

4.3.2.6. Selección del Objetivo de Desempeño

Según el ASCE 41-13, se debe clasificar a las edificaciones dentro de una Categoría de Riesgo en base a la norma del ASCE 7-10 (Cargas de diseño mínimas para edificios y otras estructuras).

Las edificaciones de la Escuela Profesional de Ingeniería Civil de la UNSAAC corresponden a la categoría de riesgo IV por ser una edificación esencial, lo cual es equivalente a la categoría "A"- "A2" - Edificaciones Esenciales -especificada en nuestra

norma de Diseño Sismo resistente E.0.30, las cuales son instituciones educativas, institutos superiores tecnológicos y universidades.

El Objetivo de Desempeño necesario según el ASCE 41-13, de acuerdo a la tabla 2-1 del ASCE 41-13 de "Objetivo de Desempeño para Edificios Existentes", estará compuesto por

- 1. El nivel de desempeño Estructural de Ocupación Inmediata (S-1) para el nivel de peligro sísmico BSE-1E (20% / 50 años)
- 2. El nivel de desempeño Estructural de **Seguridad de Vida (S-3)** para el nivel de peligro sísmico **BSE-2E (5% / 50 años)**
- 3. El nivel de desempeño No Estructural de **Retención de Posición (N-B)** para los dos niveles de peligro sísmico antes mencionados (BSE-1E, BSE-2E) los cuales deben ser alcanzados.

Un nivel de desempeño **Estructural de Ocupación Inmediata** se define como el estado de daño posterior al terremoto en el cual una estructura permanece segura para ocupar y esencialmente conserva su resistencia y rigidez ante el terremoto.

Un nivel de desempeño **Estructural de Seguridad de Vida** se define como el estado de daño posterior al terremoto en el que una estructura ha dañado sus componentes, pero retiene un margen contra el inicio del colapso parcial o total.

Un nivel de desempeño **No Estructural de Retención de Posición** es el estado de daño posterior al terremoto en el que los componentes no estructurales pueden dañarse en la medida en que no pueden funcionar de inmediato, pero se aseguran en su lugar para evitar el daño causado por la caída, vuelco o rotura.

4.3.2.7. Peligro Sísmico

Los niveles de peligro sísmico requeridos son el BSE-1E (Sismo de Seguridad Básica para Edificios Existentes-Nivel 1) con una probabilidad de excedencia de 20% en 50 años con periodo de retorno de 225 años y el BSE-2E (Sismo de Seguridad básica para Edificios Existentes-Nivel 2) con una probabilidad de excedencia de 5% en 50 años con periodo de retorno de 975 años.

Estos sismos serán representados mediante espectros de respuesta y se seguirá el procedimiento de la Norma E 030 de diseño sismo resistente para lo cual será necesario obtener los factores de zona sísmica para los sismos con periodo de retorno de 225 años y 975 años, ya que la norma solo brinda el factor de zona para un sismo con un periodo de retorno de 475 años.

El factor de zona sísmica "Z" es representado por la (aceleración máxima horizontal) en suelo rígido (PGA = Peak Ground Aceleration) y será necesario utilizar las curvas de peligro uniforme para los periodos de retorno requeridos.

Estas curvas de peligro uniforme se podrán encontrar utilizando el servicio Web de consultas para la Determinación del Peligro Sísmico en el Territorio Nacional brindado por la página web de SENCICO, el cual nos brinda espectros de peligro uniforme para cualquier periodo de retorno.

El primer paso es determinar la zona y las coordenadas del lugar donde se quiere obtener el espectro de peligro uniforme:

Figura 44. Selección de lugar y coordenadas del lugar en estudio. Fuente: Aplicativo Web SENCICO

Después de haber especificado el lugar, se selecciona la pestaña de "Espectro de Peligro Uniforme" en la cual se ingresará el periodo de retorno requerido que en nuestro caso será 225 años y 975 años con 5% de amortiguamiento.

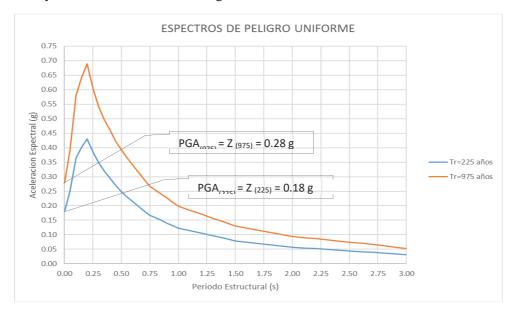


Figura 45. Espectros de Peligro Uniforme con periodo de retorno de 225 años y 975 años Fuente: Aplicativo Web Sencico

Gracias a este aplicativo logramos determinar el factor de zona sísmica requerido para los sismos con periodo de retorno de 225 años y 975 años.

El perfil de suelo es de Tipo S3 según el informe de análisis geotécnico que se tiene de la construcción nueva y este se utilizara para todo este trabajo de investigación.

Los parámetros de sitio S, T_P , y T_L se toman de las tablas N°3 y N°4 de la Norma E.030. Se realizará una interpolación entre los factores dados para hallar los valores para el peligro sísmico de BSE – 1E y BSE – 2E.

La categoría de los edificios a evaluar son A2: Edificios Esenciales con un factor de uso o importancia de U = 1.5.

El coeficiente de reducción sísmica variará de acuerdo a la irregularidad que presente cada estructura.

De esta manera en la tabla 27 se resume todos los factores necesarios para elaborar los espectros de respuesta necesarios para los peligros sísmicos de BSE – 1E y BSE – 2E así como también los espectros de respuesta en la figura 45.

Tabla 27. Parámetros para determinación de peligro sísmico.

	PELIGRO SISMICO					
	BSE - 1E (Tr = 225 años) BSE - 2E (Tr = 975					
FACTOR DE ZONA (PGA)	0.18	0.28				
PERFIL DE SUELO "S3"	1.68	1.34				
T_{P}	1					
$T_{\rm L}$	1.6					
CATEGORIA DE EDIFICACION "U"	1.5					

4.3.2.8. Evaluación Nivel 1 – Detección

El Nivel 1 de evaluación se realiza con el propósito de identificar rápidamente las deficiencias que puedan tener las edificaciones. Este nivel de evaluación se realiza en base a listas de verificación que se completa en base a una investigación in situ de las características de las edificaciones. Este nivel también requiere un análisis de verificaciones rápida para calcular la resistencia y rigidez de los elementos estructurales y así determinar si cumple con ciertos criterios de la norma ASCE 41-13.

Las listas de verificación las proporciona el ASCE 41 - 13 y están clasificadas en base tipo de Estructura de la edificación y al Objetivo de Desempeño.

Las listas de verificación rápida necesarias para cada edificación a evaluar se muestran en la siguiente tabla:

Edificacion Objetivo de Desempeño Lista Requerida Configuracion Basica Edificacion Nueva Ocupacion Inmediata Edificaciones Tipo C-2 (Muros de Corte de Concreto) Bloque A Retencion de Posicion Verificacion No Estructural Configuracion Basica Edificacion Nueva Ocupacion Inmediata Edificaciones Tipo C-1 (Porticos de Concreto) Bloque C Retencion de Posicion Verificacion No Estructural Configuracion Basica Ocupacion Inmediata Edificacion Antigua Edificaciones Tipo C-1 (Porticos de Concreto) Retencion de Posicion Verificacion No Estructural

Tabla 28. Listas de verificación rápida para las edificaciones evaluadas

Las edificaciones presentan configuración estructural aporticada a excepción del Bloque A de la Edificación Nueva que presenta una estructura muros de corte de concreto.

Cada edificación cuenta con una lista de verificación para elementos No Estructurales.

Para completar las listas de verificación se utilizó la información obtenida de cada edificación y se realizó una inspección visual de las edificaciones. Así mismo, se realizó el análisis de verificación rápida con el peligro sísmico BSE - 1E.

4.3.2.8.1. Análisis de Verificación Rápida

Fuerza Sísmica

La fuerza pseudo sísmica horizontal de un edificio, se calculará de acuerdo a la siguiente ecuación brindad por la norma de ASCE 41-13:

$$V = C * S_a * W$$

Donde:

V: Pseudo fuerza sísmica.

C: Factor de modificación que relaciona el máximo desplazamiento inelástico esperado con el desplazamiento de la respuesta elástica lineal.

Sa: Aceleración de respuesta espectral en el periodo fundamental del edificio en la dirección considerada.

W: peso sísmico efectivo del edificio.

Factor de Modificación C

El factor de modificación C varía de acuerdo al tipo de edificación y el número de pisos, su valor se define de acuerdo a la siguiente tabla:

Tabla 29. Factor de modificaciones "C"

Tino do Edificio	Numero de Pisos						
Tipo de Edificio	1	2	3	>4			
Madera	1.3	1.1	1.0	1.0			
Porticos	1.3	1.1	1.0	1.0			
Muros de Corte	1.4	1.2	1.1	1.0			
Porticos Arriostrados	1.7	1.2	1.1	1.0			
Albañileria sin Refuerzo							
	1.0	1.0	1.0	1.0			
Diafragmas Flexibles							

Se presenta a continuación los valores del factor de modificación para cada edificación a Evaluar:

Tabla 30. Factor de Modificación "C" para las edificaciones evaluadas

Edificacion	Factor de Modificacion "C"
Edificacion Nueva Bloque A	1.0
Edificacion Nueva Bloque C	1.0
Edificacion Antigua	1.0

Aceleración de Respuesta Espectral

La aceleración de respuesta espectral es calculada mediante la siguiente ecuación:

$$S_a = \frac{S_{x1}}{T}$$

El valor de Sa no podrá ser mayor de Sxs

Donde:

 S_{X1} : Es el valor modificado de la aceleración espectral para periodo largo.

T: Es el período fundamental en la dirección considerada y es calculado de acuerdo a la ecuación

$$T = C_t \ast h_n^\beta$$

Donde:

Ct = 0.035 para pórticos resistentes a momento de acero.

= 0.018 para pórticos resistentes a momento de concreto (Tipo C1).

= 0.030 para pórticos excéntricos arriostrados de acero.

= 0.020 para otros sistemas.

hn = Altura de la base al nivel de techo (pies)

 β = 0.80 para para pórticos resistentes a momento de acero.

= 0.90 para pórticos resistentes a momento de concreto (Tipo C1).

= 0.75 para otros sistemas.

Para hallar el valor modificado de aceleración espectral se utilizó el procedimiento brindado por la norma ASCE 41-13 así como también el aplicativo web de Sencico para determinar las curvas de probabilidad de excedencia para periodos cortos (Ss) y periodos largos (S1) para sismos con periodo de retorno de 225 años y periodo de retorno de 975 años.

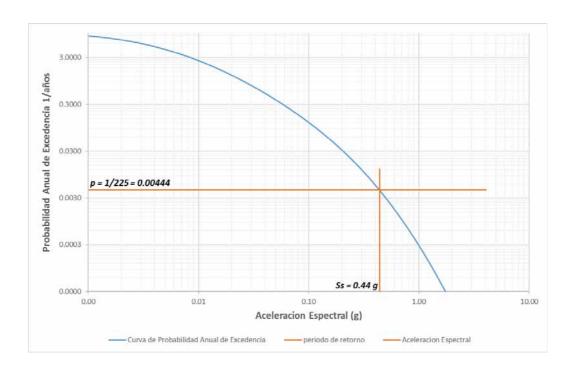


Figura 46. Sismo de Seguridad Básica para Edificios Existentes BSE-1E (20% / 50 años, periodo de retorno 225 años)

Parámetro de Aceleración Espectral para Periodo Corto

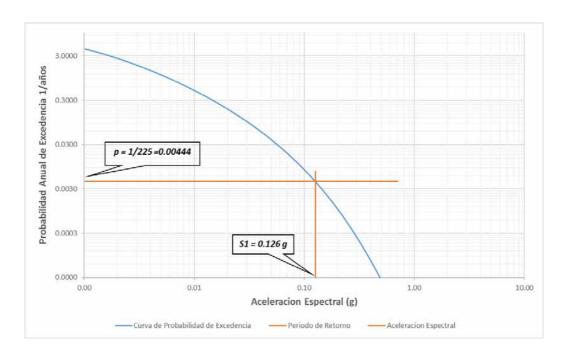


Figura 47. Sismo de Seguridad Básica para Edificios Existentes BSE-1E (20% / 50 años, periodo de retorno 225 años)

Parámetro de Aceleración Espectral para Periodo Largo

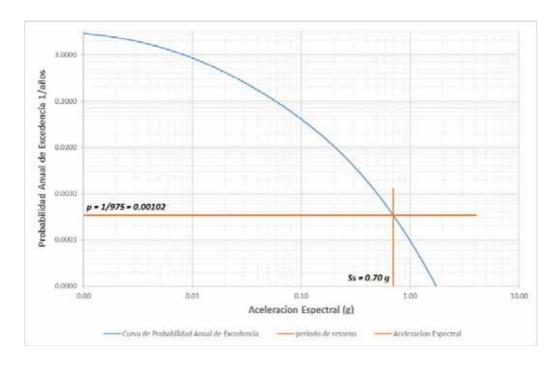


Figura 48. Sismo de Seguridad Básica para Edificios Existentes BSE-2E (5% / 50 años, periodo de retorno 975 años)

Parámetro de Aceleración Espectral para Periodo Corto

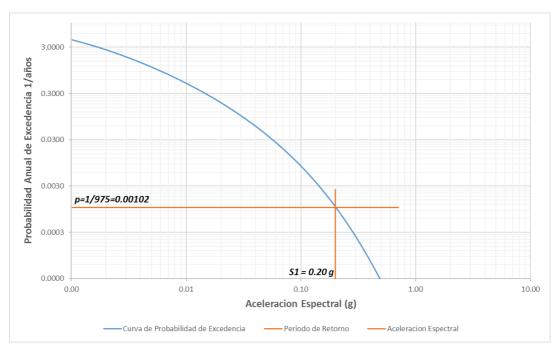


Figura 49. Sismo de Seguridad Básica para Edificios Existentes BSE-2E (5% / 50 años, periodo de retorno 975 años)

Parámetro de Aceleración Espectral para Periodo Largo

Los parámetros de aceleración espectral obtenidos deberán ser modificados por los coeficientes de sitio Fa y Fv que representan las condiciones de suelos presentadas en la ubicación de interés.

$$S_{XS} = F_a S_s$$

$$S_{X1} = F_{v}S_{1}$$

El coeficiente Fa será tomado de la tabla 19 sacados de la norma ASCE 41 - 13 y este modifica al parámetro de aceleración espectral para periodo Corto.

Tabla 31. Valores del Fa en función de la clase del sitio y la aceleración de la respuesta espectral del período corto asignada S_S Fuente: ASCE 41-13

	Ac	Aceleración espectral de periodo corto S _s ^a							
Clase de sitio	$S_S \leq 0.25$	$S_{S} \le 0.25$ $S_{S} = 0.50$ $S_{S} = 0.75$ $S_{S} = 1.00$ $S_{S} \ge 1$							
A	0.80	0.80	0.80	0.80	0.80				
В	1.00	1.00	1.00	1.00	1.00				
С	1.20	1.20	1.10	1.00	1.00				
D	1.60	1.40	1.20	1.10	1.00				
E	2.50	1.70	1.20	0.90	0.90				

 $^{^{\}prime}$ La interpolación en línea recta se utilizará para valores intermedios de S $_{
m S}$

El coeficiente Fv será tomado de la tabla 2.4 del ASCE 41 - 13 y este modifica al parámetro de aceleración espectral para periodo Largo.

Tabla 32. Valores de Fv en función de la clase de sitio y aceleración de respuesta espectral del período largo asignado S1
Fuente: ASCE 41-13

	Ac	Aceleración espectral de período largo S ₁ ^a								
Clase de sitio	$S_1 \leq 0.1$	$S_1 \le 0.1$ $S_1 = 0.2$ $S_1 = 0.3$ $S_1 = 0.4$ $S_1 \ge 0.5$								
A	0.80	0.80	0.80	0.80	0.80					
В	1.00	1.00	1.00	1.00	1.00					
С	1.70	1.60	1.50	1.40	1.30					
D	2.40	2.00	1.80	1.60	1.50					
E	3.50	3.20	2.80	2.40	2.40					
F	b	b	b	b	b					

 $[^]a$ La interpolación en línea recta se utilizará para valores intermedios de S $_1$

En estas tablas hay 5 de clases de sitio las cuales son clasificadas por velocidad de ondas de corte, número de golpes del ensayo de penetración estándar (SPT) y la resistencia al corte en condición no drenada de los 30 m superiores del perfil de suelo en el sitio.

Si no hay suficientes datos disponibles para clasificar un perfil de suelo como Clase A, B o C y no hay evidencia de suelos arcillosos suaves característicos de la Clase E en las proximidades del sitio, la clase de sitio predeterminada se tomará como Clase D. Si hay evidencia de suelos de Clase E en la vecindad del sitio y no hay otros datos que apoyen la selección de Clase A, B, C o D, la clase de sitio predeterminada se tomará como Clase E (ASCE 41-13).

^b Se realizarán investigaciones geotécnicas específicas del sitio y análisis dinámicos de la respuesta del sitio.

^b Se realizarán investigaciones geotécnicas específicas del sitio y análisis dinámicos de la respuesta del sitio.

En esta investigación solo se cuenta con estudio geotécnico el cual nos indica que el tipo de suelo son arcillas inorgánicas de baja a mediana plasticidad clasificándolo como un tipo de suelo S3 según la norma E.030. Este tipo de suelo corresponde al tipo de sitio de Clases E según la clasificación del ASCE 41-13 con un IP > 20, o contenido de humedad w > 40%, y Su < 0.244 kg/cm2 o un perfil de suelo con Vs < 183 m/s.

Una vez determinada la clase de sitio se seleccionan los coeficientes correspondientes (Fa y Fv) para cada parámetro de aceleración espectral (Ss y S1) ya sea para periodo corto o periodo largo y para cada nivel de sismicidad (BSE-1E y BSE-2E) y se determinan los parámetros de aceleración espectral modificados (Sxs y Sx1).

Tabla 33. Parámetros de Aceleración Espectral Modificados

Nivel de Peligrosidad Sismica	Periodo Corto 0.2 s (S _s)	Periodo Largo 1.0 s (S ₁)	Fa	Fv	S _{xs}	S_{x1}
BSE - 1E (225 años)	0.440	0.126	1.892	3.422	0.832	0.431
BSE - 2E (975 años)	0.700	0.200	1.300	3.200	0.910	0.640

Se realizó una tabla resumen con los resultados de la aceleración de respuesta espectral para las edificaciones que se evalúan:

Tabla 34. Aceleración de respuesta espectral para las edificaciones evaluadas

Edificacion	\mathbf{S}_{x1}	\mathbf{S}_{xs}	\mathbf{C}_{t}	hn (pies)	β	T	Sa	Sa
Edificacion Nueva Bloque A			0.020	60.20	0.75	0.43	1.00	0.83
Edificacion Nueva Bloque C	0.431	0.832	0.018	60.20	0.9	0.72	0.60	0.60
Edificacion Antigua			0.018	63.65	0.9	0.76	0.57	0.57

Calculo del Peso Sísmico

Para el metrado de cargas se consideró el total de la carga muerta y el 25% de la carga viva. Las cargas se asignaron de acuerdo a la norma peruana de cargas E.020.

Las cuantificaciones de cargas y sus correspondientes cálculos de su pseudo fuerza lateral se presentan a continuación para cada edificación a evaluar:

Tabla 35. Metrado de cargas Edificación Nueva – Bloque A

	EDIFICACION NUEVA - BLOQUE A								
TIPO DE CARGA	PRIMER NIVEL (kg)	SEGUNDO NIVEL (kg)	TERCER NIVEL (kg)	CUARTO NIVEL (kg)	QUINTO NIVEL (kg)	TOTAL (kg)	%		
1. CARGA MUERTA									
1.1. Columnas	15431.17	16194.05	15224.83	16194.05	16194.05	79238.15	11.52%		
1.2. Vigas	31377.86	31377.86	31377.86	31377.86	31377.86	156889.32	22.80%		
1.3. Muros de Concreto	14138.40	14138.40	14138.40	14138.40	14138.40	70692.00	10.28%		
1.4. Muros de Albañileria	39376.04	25026.25	29660.83	26198.59	25140.32	145402.02	21.13%		
1.5. Losas de Entrepiso	31034.50	31034.50	31034.50	31034.50	31034.50	155172.50	22.55%		
1.6. Escaleras	9792.00	9792.00	9792.00	9792.00	0.00	39168.00	5.69%		
1.7. Techo	0.00	0.00	0.00	0.00	217.91	217.91	0.03%		
SubTotal	141149.97	127563.06	131228.43	128735.40	118103.04	646779.90	94.01%		
2. CARGA VIVA (25%)									
2.1. Oficinas	2074.21	3449.96	0.00	4249.38	2925.00	12698.54	1.85%		
2.2. Corredores	5610.42	4937.77	3926.00	1914.00	0.00	16388.19	2.38%		
2.3. Escaleras	1414.47	1414.47	1414.47	1414.47	0.00	5657.88	0.82%		
2.4. Baños	1537.79	0.00	4926.10	0.00	0.00	6463.89	0.94%		
SubTotal	10636.89	9802.20	10266.57	7577.85	2925.00	41208.50	5.99%		
TOTAL	151786.87	137365.25	141495.00	136313.24	121028.04	687988.40	100.00%		

La Pseudo fuerza sísmica horizontal es igual:

V = 1 * 0.83 * 687988.40

V = 571030.37 kg

Tabla 36. Metrado de cargas Edificación Nueva – Bloque C

	EDIFICACION NUEVA - BLOQUE C								
TIPO DE CARGA	PRIMER NIVEL (kg)	SEGUNDO NIVEL (kg)	TERCER NIVEL (kg)	CUARTO NIVEL (kg)	QUINTO NIVEL (kg)	TOTAL (kg)	0/0		
1. CARGA MUERTA									
1.1. Columnas	15567.85	15355.39	15355.39	15355.39	15355.39	76989.42	12.25%		
1.2. Vigas	41346.24	41346.24	41346.24	41346.24	41346.24	206731.20	32.90%		
1.3. Muros de Concreto	0.00	0.00	0.00	0.00	0.00	0.00	0.00%		
1.4. Muros de Albañileria	32379.18	17201.47	19451.27	23430.31	23430.31	115892.54	18.44%		
1.5. Losas de Entrepiso	36561.00	36561.00	36561.00	36561.00	36561.00	182805.00	29.09%		
1.6. Escaleras	0.00	0.00	0.00	0.00	0.00	0.00	0.00%		
1.7. Techo	0.00	0.00	0.00	0.00	217.91	217.91	0.03%		
SubTotal	125854.28	110464.10	112713.90	116692.94	116910.85	582636.07	92.73%		
2. CARGA VIVA (25%)									
2.1. Aulas	6528.75	19586.25	6528.75	6528.75	6528.75	45701.25	7.27%		
2.2. Corredores	0.00	0.00	0.00	0.00	0.00	0.00	0.00%		
2.3. Escaleras	0.00	0.00	0.00	0.00	0.00	0.00	0.00%		
2.4. Baños	0.00	0.00	0.00	0.00	0.00	0.00	0.00%		
SubTotal	6528.75	19586.25	6528.75	6528.75	6528.75	45701.25	7.27%		
TOTAL	132383.03	130050.35	119242.65	123221.69	123439.60	628337.32	100.00%		

La Pseudo fuerza sísmica horizontal es igual:

$$V = 1 * 0.60 * 628337.32$$

V = 377002.39 kg

Tabla 37. Metrado de cargas Edificación Antigua

		EDII	FICACION A	ANTIGUA				
TIPO DE CARGA	PRIMER NIVEL (kg)	SEGUNDO NIVEL (kg)	TERCER NIVEL (kg)	CUARTO NIVEL (kg)	QUINTO NIVEL (kg)	SEXTO NIVEL (kg)	TOTAL (kg)	%
1. CARGA MUERTA								
1.1. Columnas	127380.00	31608.00	31608.00	31608.00	9645.60	3273.60	231850.96	9.45%
1.2. Vigas	66196.80	69276.00	64082.40	64082.40	18408.00	8150.40	290196.00	11.82%
1.3. Muros de Concreto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00%
1.4. Muros de Albañileria	136436.90	117807.44	111248.06	111248.06	70915.14	7458.75	555114.35	22.62%
1.5. Tabiqueria Drywall	0.00	0.00	0.00	0.00	5717.95	0.00	5717.95	0.23%
1.5. Losas de Entrepiso	226121.10	226121.10	200814.84	200814.84	276209.88	4257.12	1134338.88	46.22%
1.6. Escaleras	42864.00	10344.00	10344.00	10344.00	10344.00	0.00	84240.00	3.43%
1.7. Techo	0.00	0.00	0.00	0.00	522.06	0.00	522.06	0.02%
SubTotal	598998.80	455156.54	418097.30	418097.30	391762.63	19867.63	2301980.20	93.79%
2. CARGA VIVA (25%)								
2.1. Oficinas	8687.50	2103.75	2103.75	2103.75	2103.75	0.00	17102.50	0.70%
2.2. Aulas	8687.50	14840.00	14840.00	14840.00	15241.88	0.00	68449.38	2.79%
2.2. Corredores	11300.00	15525.00	9094.00	9094.00	3509.00	3166.88	51688.88	2.11%
2.3. Escaleras	6309.00	1992.00	1992.00	1992.00	1992.00	0.00	14277.00	0.58%
2.4. Baños	0.00	220.63	220.63	220.63	220.63	0.00	882.50	0.04%
SubTotal	34984.00	34681.38	28250.38	28250.38	23067.25	3166.88	152400.25	6.21%
TOTAL	633982.80	489837.91	446347.67	446347.67	414829.88	23034.51	2454380.45	100.00%

La Pseudo fuerza sísmica horizontal es igual:

$$V = 1 * 0.60 * 2454380.45$$

V = 1398996.86 kg

Fuerza Sísmica por Piso

La fuerza sísmica por piso estará dada por las siguientes formulas:

$$F_{x} = \frac{w_{x} * h_{x}^{k}}{\sum_{i=1}^{n} w_{i*} h_{i}^{k}} V$$

$$V_{j} = \sum_{x=j}^{n} F_{x}$$

Donde:

Vj : Cortante de piso en el nivel j.

n : Número total de pisos por encima del nivel del terreno.

j : Número de piso bajo consideración.

V : Pseudo fuerza sísmica.

wi : Porción del peso total asignado al nivel i.

wx : Porción del peso total asignado al nivel x.
hi : Altura medida de la base hasta el nivel i.
hx : Altura medida de la base hasta el nivel x.

A continuación de presentan las tablas con los resultados de los cortantes por piso de cada edificación evaluada. Para la edificación antigua se consideró el peso del 6to nivel como parte del peso del 5to nivel.

Tabla 38. Fuerzas Cortantes por piso - Bloque A

	EDIFICACION NUEVA - BLOQUE A										
Nivel	Peso "w" (kg)	Altura (m)	h (m)	w*h	Fx (kg)	Vj (kg)					
1er Piso	151786.87	3.35	3.35	508486.00	44618.31	571030.37					
2do Piso	137365.25	3.20	6.55	899742.42	78950.03	526412.07					
3er Piso	141495.00	3.20	9.75	1379576.21	121054.18	447462.04					
4to Piso	136313.24	3.20	12.95	1765256.50	154896.61	326407.86					
5to Piso	121028.04	3.20	16.15	1954602.89	171511.25	171511.25					
TOTAL	687988.40	16.15		6507664.02	571030.37						

Tabla 39. Fuerzas Cortantes por piso - Bloque C

	EDIFICACION NUEVA - BLOQUE C									
Nivel	Peso "w" (kg)	Altura (m)	h (m)	w*h	Fx (kg)	Vj (kg)				
1er Piso	132383.03	3.35	3.35	443483.13	27648.20	377002.39				
2do Piso	130050.35	3.20	6.55	851829.81	53105.89	349354.19				
3er Piso	119242.65	3.20	9.75	1162615.82	72481.31	296248.30				
4to Piso	123221.69	3.20	12.95	1595720.91	99482.52	223766.99				
5to Piso	123439.60	3.20	16.15	1993549.57	124284.47	124284.47				
TOTAL	628337.32	16.15		6047199.23	377002.39					

Tabla 40. Fuerzas Cortantes por piso – Edificación Antigua

	EDIFICACION ANTIGUA									
Nivel	Peso "w" (kg)	Altura (m)	h (m)	w*h	Fx (kg)	Vj (kg)				
1er Piso	633982.80	3.10	3.10	1965346.68	134771.93	1472628.27				
2do Piso	489837.91	3.10	6.20	3036995.07	208259.28	1337856.34				
3er Piso	446347.67	3.10	9.30	4151033.37	284653.48	1129597.06				
4to Piso	446347.67	3.10	12.40	5534711.16	379537.98	844943.58				
5to Piso	437864.39	3.10	15.50	6786898.06	465405.60	465405.60				
TOTAL	2454380.45	15.50		21474984.35	1472628.27					

Verificación Rápida de Resistencia y Rigidez

La verificación de resistencia y rigidez se realizó para los elementos verticales del primer y segundo nivel, como primer paso se requiere distribuir la pseudo fuerza lateral del piso entre los muros y columnas de acuerdo a su rigidez relativa, para el cálculo de la rigidez lateral se consideró la deformación por flexión y por corte suponiendo que los elementos del segundo nivel están empotrados en la base y restringidos contra la rotación en la parte superior, su valor es determinado por la fórmula:

$$k = \frac{1}{\frac{1}{k_f} + \frac{1}{k_c}} = \frac{1}{\frac{h^3}{12EI} + \frac{h}{AG}}$$

Donde:

k
rigidez lateral.
rigidez a flexión.
rigidez a cortante.
altura del elemento.

E : módulo de elasticidad tomado de los ensayos realizados

I : momento de inercia en la dirección considerada.

A : área de la sección del elemento.
 G : módulo de corte, tomado como E/2.4

La rigidez lateral para elementos verticales del primer y segundo nivel, así como las fuerzas cortantes para las columnas y muros de corte se muestran a continuación:

Tabla 41. Rigidez Lateral del primer y segundo nivel – Edificación Nueva – Bloque A

	EDIFICACION NUEVA - BLOQUE A - PRIMER NIVEL														
		Cortante		Altura (m)				Direccion X			Direccion Y	7			
Elemento	Cantidad	por Piso	Area (m2)		Iy	Ix	Rigidez	Rigidez	Cortante	Rigidez	Rigidez	Cortante			
		•					Ü	Relativa	Vj	Ŭ	Relativa	Vj			
Columnas								5.19%	29634.15		6.70%	38239.5			
C-1	1	571030.37	0.20	3.35	0.0061	0.0025	3161298.93	0.96%	5471.91	1352853.64	0.41%	2359.75			
C-2	1	571030.37	0.20	3.35	0.0025	0.0061	1352853.64	0.41%	2341.66	3161298.93	0.97%	5514.18			
C-3	1	571030.37	0.20	3.35	0.0025	0.0061	1352853.64	0.41%	2341.66	3161298.93	0.97%	5514.18			
C-4	1	571030.37	0.20	3.35	0.0061	0.0025	3161298.93	0.96%	5471.91	1352853.64	0.41%	2359.75			
C-5	1	571030.37	0.20	3.35	0.0061	0.0025	3161298.93	0.96%	5471.91	1352853.64	0.41%	2359.75			
C-6	1	571030.37	0.20	3.35	0.0025	0.0061	1352853.64	0.41%	2341.66	3161298.93	0.97%	5514.18			
C-7	1	571030.37	0.20	3.35	0.0025	0.0061	1352853.64	0.41%	2341.66	3161298.93	0.97%	5514.18			
C-8	1	571030.37	0.20	3.35	0.0025	0.0061	1352853.64	0.41%	2341.66	3161298.93	0.97%	5514.18			
C-9	1	571030.37	0.17	3.35	0.0016	0.0039	872451.596	0.26%	1510.13	2057787.58	0.63%	3589.35			
Muros de C	Muros de Corte								541396.22		93.30%	532790.89			
C-1	1	571030.37	1.71	3.35	3.4961	3.0407	312782271	94.81%	541396.22	305451060	93.30%	532790.89			

]	EDIFICACIO	ON NUEV	A - BLOQ	UE A - SEG	UNDO NIV	EL			
		Cantanta	Area (m2)	Altura (m)	Iy			Direccion X	(Direccion Y	[
Elemento	Cantidad	Cortante por Piso				Ix	Rigidez	Rigidez	Cortante	Rigidez	Rigidez	Cortante
							Rigiuez	Relativa	Vj	Kigiuez	Relativa	Vj
Columnas								5.56%	29256.41		7.15%	37616.6
C-1	1	526412.07	0.20	3.2	0.0061	0.0025	3602242.25	1.02%	5392.52	1547600.14	0.44%	2328.38
C-2	1	526412.07	0.20	3.2	0.0025	0.0061	1547600.14	0.44%	2316.74	3602242.25	1.03%	5419.61
C-3	1	526412.07	0.20	3.2	0.0025	0.0061	1547600.14	0.44%	2316.74	3602242.25	1.03%	5419.61
C-4	1	526412.07	0.20	3.2	0.0061	0.0025	3602242.25	1.02%	5392.52	1547600.14	0.44%	2328.38
C-5	1	526412.07	0.20	3.2	0.0061	0.0025	3602242.25	1.02%	5392.52	1547600.14	0.44%	2328.38
C-6	1	526412.07	0.20	3.2	0.0025	0.0061	1547600.14	0.44%	2316.74	3602242.25	1.03%	5419.61
C-7	1	526412.07	0.20	3.2	0.0025	0.0061	1547600.14	0.44%	2316.74	3602242.25	1.03%	5419.61
C-8	1	526412.07	0.20	3.2	0.0025	0.0061	1547600.14	0.44%	2316.74	3602242.25	1.03%	5419.61
C-9	1	526412.07	0.17	3.2	0.0016	0.0039	998751.763	0.28%	1495.12	2348576.4	0.67%	3533.45
Muros de C	Muros de Corte								497155.66		92.85%	488795.45
C-1	1	526412.07	1.71	3.2	3.4961	3.0407	332103349	94.44%	497155.66	324887073	92.85%	488795.45

Tabla 42. Rigidez Lateral del primer y segundo nivel – Edificación Nueva – Bloque C

	EDIFICACION NUEVA - BLOQUE C - PRIMER NIVEL														
		Contonto			Iy			Direccion 2	X	Direccion Y					
Elemento	Cantidad	Cortante por Piso	Area (m2)	Altura (m)		Ix	Rigidez	Rigidez Relativa	Cortante Vj	Rigidez	Rigidez Relativa	Cortante Vj			
Columnas								100.00%	377002.39		100.00%	377002.4			
C-1	1	377002.39	0.20	3.35	0.0061	0.0025	3161298.93	17.51%	66004.48	1352853.64	7.49%	28246.11			
C-2	1	377002.39	0.20	3.35	0.0025	0.0061	1352853.64	7.49%	28246.11	3161298.93	17.51%	66004.48			
C-3	1	377002.39	0.20	3.35	0.0025	0.0061	1352853.64	7.49%	28246.11	3161298.93	17.51%	66004.48			
C-4	1	377002.39	0.20	3.35	0.0061	0.0025	3161298.93	17.51%	66004.48	1352853.64	7.49%	28246.11			
C-5	1	377002.39	0.20	3.35	0.0061	0.0025	3161298.93	17.51%	66004.48	1352853.64	7.49%	28246.11			
C-6	1	377002.39	0.20	3.35	0.0025	0.0061	1352853.64	7.49%	28246.11	3161298.93	17.51%	66004.48			
C-7	1	377002.39	0.20	3.35	0.0025	0.0061	1352853.64	7.49%	28246.11	3161298.93	17.51%	66004.48			
C-8	1	377002.39	0.20	3.35	0.0061	0.0025	3161298.93	17.51%	66004.48	1352853.64	7.49%	28246.11			

	EDIFICACION NUEVA - BLOQUE C - SEGUNDO NIVEL													
		Contanto			Iy			Direccion 2	X	Direccion Y				
Elemento	Cantidad	Cortante por Piso	Area (m2)	Altura (m)		Ix	Rigidez	Rigidez Relativa	Cortante Vj	Rigidez	Rigidez Relativa	Cortante Vj		
Columnas								100.00%	349354.19		100.00%	349354.2		
C-1	1	349354.19	0.20	3.2	0.0061	0.0025	3602242.25	17.49%	61092.08	1547600.14	7.51%	26246.46		
C-2	1	349354.19	0.20	3.2	0.0025	0.0061	1547600.14	7.51%	26246.46	3602242.25	17.49%	61092.08		
C-3	1	349354.19	0.20	3.2	0.0025	0.0061	1547600.14	7.51%	26246.46	3602242.25	17.49%	61092.08		
C-4	1	349354.19	0.20	3.2	0.0061	0.0025	3602242.25	17.49%	61092.08	1547600.14	7.51%	26246.46		
C-5	1	349354.19	0.20	3.2	0.0061	0.0025	3602242.25	17.49%	61092.08	1547600.14	7.51%	26246.46		
C-6	1	349354.19	0.20	3.2	0.0025	0.0061	1547600.14	7.51%	26246.46	3602242.25	17.49%	61092.08		
C-7	1	349354.19	0.20	3.2	0.0025	0.0061	1547600.14	7.51%	26246.46	3602242.25	17.49%	61092.08		
C-8	1	349354.19	0.20	3.2	0.0061	0.0025	3602242.25	17.49%	61092.08	1547600.14	7.51%	26246.46		

Tabla 43. Rigidez Lateral del primer y segundo nivel – Edificación Antigua

	EDIFICACION ANTIGUA - PRIMER NIVEL													
	Elemento Cantidad	Contonto						Direccion X	K	Direccion Y				
Elemento		Cortante por Piso	Area (m2)	Altura (m)	Iy	Ix	Rigidez	Rigidez	Cortante	Rigidez	Rigidez	Cortante		
		por riso					Rigiuez	Relativa	Vj	Kigiuez	Relativa	Vj		
Columnas								100.00%	1472628.27		100.00%	1472628.3		
C-1	8	1472628.27	0.18	3.1	0.0084	0.001	6556381.77	31.68%	466491.31	877768.005	4.15%	61045.24		
C-2	1	1472628.27	0.18	3.1	0.001	0.0088	877768.005	4.24%	62453.83	6827702.36	32.24%	474839.30		
C-3	5	1472628.27	0.18	3.1	0.0084	0.001	6556381.77	31.68%	466491.31	877768.005	4.15%	61045.24		
C-4	4	1472628.27	0.18	3.1	0.0036	0.0018	3027437.55	14.63%	215404.37	1558983.91	7.36%	108421.08		
C-5	2	1472628.27	0.13	3.1	0.0007	0.0026	614644.575	2.97%	43732.41	2185072.81	10.32%	151963.05		
C-6	6	1472628.27	0.13	3.1	0.0026	0.0007	2185072.81	10.56%	155469.51	614644.575	2.90%	42746.06		
C-7	2	1472628.27	0.20	3.1	0.001	0.0107	879619.24	4.25%	62585.55	8232945.16	38.88%	572568.30		

	EDIFICACION ANTIGUA - SEGUNDO NIVEL													
		Cartanta			Iy			Direccion X	ζ	Direccion Y				
Elemento Car	Cantidad	Cortante por Piso	Area (m2)	Altura (m)		Ix	Rigidez	Rigidez	Cortante	Rigidez	Rigidez	Cortante		
		porriso					Rigiucz	Relativa	Vj	Rigidez	Relativa	Vj		
Columnas								100.00%	1337856.34		100.00%	1337856.3		
C-1	8	1337856.34	0.18	3.1	0.0084	0.001	6556381.77	31.68%	423798.97	877768.005	4.15%	55458.51		
C-2	1	1337856.34	0.18	3.1	0.001	0.0088	877768.005	4.24%	56738.18	6827702.36	32.24%	431382.98		
C-3	5	1337856.34	0.18	3.1	0.0084	0.001	6556381.77	31.68%	423798.97	877768.005	4.15%	55458.51		
C-4	4	1337856.34	0.18	3.1	0.0036	0.0018	3027437.55	14.63%	195691.00	1558983.91	7.36%	98498.60		
C-5	2	1337856.34	0.13	3.1	0.0007	0.0026	614644.575	2.97%	39730.11	2185072.81	10.32%	138055.70		
C-6	6	1337856.34	0.13	3.1	0.0026	0.0007	2185072.81	10.56%	141241.26	614644.575	2.90%	38834.03		
C-7	2	1337856.34	0.20	3.1	0.001	0.0107	879619.24	4.25%	56857.84	8232945.16	38.88%	520168.02		

Esfuerzo Cortante en Columnas de Pórticos de Concreto

El esfuerzo cortante promedio en columnas de pórticos de concreto debe ser menor que el mayor de 0.70 MPa o $2\sqrt{f'c}$ (0.75 MPa) para el nivel de desempeño estructural Ocupación Inmediata, su valor es calculado mediante la ecuación:

$$v_j^{avg} = \frac{1}{1.30} \left(\frac{n_c}{n_c - n_f} \right) \left(\frac{V_j}{A_c} \right)$$

Donde:

v_i^{avg} : Esfuerzo cortante promedio en el piso j

n_c : Numero de total de Columnas

n_f : Numero de pórticos en la dirección considerada

A_c : Suma de la sección transversal de todas las columnas en el piso bajo

consideración.

V_i : Cortante en el Piso j.

El esfuerzo cortante promedio en cada dirección para cada edificación se muestra a continuación:

Tabla 44. Esfuerzo cortante del Bloque C y la Edificación Antigua

				Direccion	X	Direccion Y			
Edificacion	n _c	Ac (m2)	n _f	Vj	v_{1x}^{avg} Mpa	$n_{\rm f}$	Vj	$v_{1y}^{avg}MPa$	
Edificacion Nueva Bloque C	8	1.62	4	377002.39	3.51	4	377002.391	3.51	
Edificacion Antigua	28	4.55	18	1472628.27	6.84	24	1472628.27	17.09	

El esfuerzo cortante promedio admisible es de 0.70 MPa y es superado en ambas direcciones por las edificaciones que son solamente estructuras aporticadas, por lo que las estructuras no cumplen con la disposición para esfuerzo cortante en columnas para el nivel de desempeño estructural Ocupación Inmediata.

Esfuerzo Axial en Columna Causado por Volteo

El esfuerzo axial causado por las fuerzas de momento en columnas de pórticos de concreto debe ser menor que 0.30 f'c (6.18 MPa) para el nivel de desempeño estructural Ocupación Inmediata, su valor es calculado mediante la ecuación:

$$p_{ot} = \frac{1}{1.3} \left(\frac{2 V * h_n}{3 L * n_f} \right) \left(\frac{1}{A_{col}} \right)$$

Donde:

nf : Numero de pórticos en la dirección considerada

V : Pseudo fuerza sísmica
hn : Altura total de la edificación
L : Longitud total del pórtico

A_{col} : Área de la última columna del pórtico

El esfuerzo axial para cada dirección se muestra en las siguientes tablas:

Tabla 45. Esfuerzo Axial para cada dirección de las edificaciones evaluadas

Ele.	,	X 7		Direco	cion X			Direco	cion Y	
Edificacion	h _n	v	n_f	L	Acol	p _{otx}	$n_{\rm f}$	L	Acol	p oty
Edificacion Nueva Bloque A	17.00	571030.37	4.00	11.82	0.20	5.16	5.00	11.82	0.20	4.13
Edificacion Nueva Bloque C	17.00	377002.39	4.00	11.82	0.20	3.41	4.00	11.82	0.20	3.41
Edificacion Antigua	19.40	1472628.27	18.00	17.18	0.20	2.32	24.00	34.40	0.20	0.87

En ninguna edificación se sobrepasa los 6.18 MPa que debe tener como mínimo para un desempeño estructural de Ocupación Inmediata.

Esfuerzo Cortante en Muros de Corte

El esfuerzo cortante promedio en muros de corte de concreto debe ser menor que el mayor de 0.70 MPa o $2\sqrt{f'c}$ (0.75 MPa) para el nivel de desempeño estructural Ocupación Inmediata, su valor es calculado mediante la ecuación:

$$v_j^{avg} = \frac{1}{2} \left(\frac{V_j}{A_w} \right)$$

Donde:

 v_{j}^{avg} : Esfuerzo cortante promedio en muros de corte en el piso j. V_{j} : Fuerza cortante asignada a los muros de corte en el piso j. A_{w} : Suma del área transversal de todos los muros en la dirección considerada

La única edificación que cuenta con muros de corte es el Bloque A de la Edificación Nueva. Por tanto, es a la única edificación que se realiza este análisis.

En la dirección X:

$$v_{1x}^{avg} = \frac{1}{2} \left(\frac{541396.22}{1.71} \right) = 1.55 \text{ MPa}$$

En la dirección Y:

$$v_{1y}^{avg} = \frac{1}{2} \left(\frac{532790.89}{1.71} \right) = 1.53 MPa$$

El esfuerzo de corte en muros es mucho mayor al límite establecido, por lo tanto, la estructura no cumple con los requisitos de esfuerzo cortante para el nivel de desempeño de Ocupación Inmediata.

4.3.2.8.2. Listas de Verificación

A partir del análisis de verificación rápida se procede a utilizar los formatos brindados por el ASCE 41-13 los cuales darán a conocer las deficiencias más resaltantes de las edificaciones a evaluar. Así mismo, el ASCE 41-13 establece que para que un edificio cumpla con un objetivo de desempeño determinado, debe cumplir con cada uno de los criterios de evaluación presentes en cada lista de verificación.

Es de resaltar que cada edificación tendrá 3 listas de verificación: configuración básica, según la tipología estructural y una lista de verificación no estructural.

A continuación, se muestra las listas de verificación realizadas y las principales deficiencias encontradas en cada edificación a evaluar:

LISTAS DE VERIFICACION RAPIDA BLOQUE A

HOJA DE RESUMEN DE DATOS INFORMACION DEL EDIFICIO: Nombre del Edificio: Edificacion Nueva - Bloque A 05/02/2019 Direccion del Edificio: Universidad Nacional de San Antonio Abad del Cusco - Av. De la Cultura 773 Año de Construccion: 2000-2006 Año de Remodelacion: Area: 118 m2 Longitud: 11.82 m Ancho: 11.82 m N° de Pisos: 5 Altura del Piso: 3.35 m Altura Total: 16.15 m Uso: Educacional INFORMACION DE CONSTRUCCION: Sistema Estructural de Cargas de Gravedad: Sistema de Muros de Corte y Porticos de Concreto Armado **Muros Transversales Exteriores:** ¿Aberturas?: **Muros Longitudinales Exteriores:** SI ¿Aberturas?: SI Material Estructural de Techo: Cubierta de Concreto Armado y sobre ella estructura de tijerales para cubierta **Estructura Pisos Intermedios:** Losas Aligeradas de Concreto Armado **Piso Primer Nivel:** Losa Aligerada de Concreto Armado Columnas: Forma Especifica Irregular Cimentación: Zapata Corridas Condición General de la Estructura: Presenta rajadura de columnas y vigas en los ultimos niveles Niveles por debajo del nivel de terreno: No presenta Características Especiales y Comentarios: La estructura tiene forma octogonal con una esquina entrante SISTEMA RESISTENTE A FUERZAS LATERALES Longitudinal Transversal Sistema: Muros de Corte Muros de Corte **Elementos Verticales:** Columnas y Muros Columnas y Muros Diafragmas: Losas Aligeradas Losas Aligeradas Conexiones: Monoliticas de Concreto Monoliticas de Concreto **DATOS DE EVALUACION:** 1.892 Factores de Suelo: Clase = 3.422 Aceleracion de Respuesta Espectral (BSE-1E): 0.832 S_{x1}= 0.431 Nivel de Sismicidad: Nivel de Desempeño: Ocupacion Inmediata Alto Periodo del Edificio "T": 0.43 **Aceleracion Espectral Sa:** 0.83 571030.37 kg Pseudo Fueral Lateral (V): 687988.40 kg Peso del Edificio: Clasificacion del Edificio: Edificacion Esencial Tipoa A2 LISTA DE VERIFICACION REQUERIDAS NIVEL 1 Lista de Verificación Configuración Básica: Lista de Verificación Estructural Tipo de Edificio: SI Lista de Verificación Componentes No-Estructurales: SI SI **REQUIERE EVALUACIONES FUTURAS:**

	Edificacion:		on.	Edificacion Nueva - Bloque A Ubicación: Av. De l	a Cultura 773. UNSAAC
		ho po		Bach. Gimi Galdos Roman	a cultura 773. ONSAAC
	· .			Bach. Roger Nuñez Esquivel	
				C: Cumple NC: No Cumple NA: No Aplicable D:	Desconocido
ma		l Edi	ficio		
C	_	NA	D	CRITERIO DE EVALUACION	COMENTARIO
	X			TRAYECTORIA DE CARGA: La estructura deberá tener una trayectoria de carga completa, bien definida, que incluye elementos estructurales y conexiones, que sirven para transferir las fuerzas de inercia asociadas a la masa de todos los elementos del edificio a la cimentación.	No hay tranferencia continua d una viga con columna.
	Х			EDIFICIOS ADYACENTES: La distancia libre entre el edificio siendo evaluado y cualquier edificio adyacente es mayor que el 4% de la altura del edificio más bajo.	Separacion = 2.5 cm 2.5 cm < 6.7 * 0.04
		X		Mezzanine: Niveles de entreplanta interiores están arriostrados independientemente de la estructura principal o están anclados a los elementos resistentes a fuerzas sismicas de la	No presenta entreplantas
igu	ıracio	on de	el Ed	ficio	
С		NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				PISO DEBIL: La suma de la resistencia al corte del sistema resistente a fuerzas sísmica en cualquier piso en cada dirección no será menor que el 80 % de la resistencia en el piso adyacente superior.	
X				PISO BLANDO: La rigidez del sistema resistente a fuerzas sismicas en cualquier piso no será menor que el 70% de la rigidez del SRFS en el piso adyacente superior o menor que el 80% de la rigidez promedio de los tres pisos superiores.	
Χ				IRREGULARIDAD VERTICAL: Todos los elementos verticales del SRFS son continuos hasta la cimentación.	
X				GEOMETRIA: No hay cambios en la dimensión horizontal de la red del SRFS superiores al 30% en un piso con relación a los pisos adyacentes, excluyendo áticos de un piso y entreplantas.	
X				MASA: no hay cambios de más del 50% de la masa efectiva de un piso al siguiente. Cubiertas ligeras, áticos, y entreplantas no serán considerados.	
X				TORSION: la distancia estimada entre el centro de masa y el centro de rigidez del piso es menor que el 20% del ancho del edificio.	
				oletar los siguientes ítems adicionales a los ítems para muy baja sismicidad. el Sitio	
		NA		CRITERIO DE EVALUACION	COMENTARIO
				LICUEFACCION: Suelos granulares sueltos, saturados, susceptibles a licuefacción, que puedan poner en peligro el desempeño sísmico del edificio no existen en el suelo de cimentación en una profundidad de	
X				15 m por debajo del edificio.	
X		X		15 m por debajo del edificio. FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimientos esperados sin fallar.	
X		X		FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimientos	
X	-	Alta		FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimientos esperados sin fallar. RUPTURA POR FALLA DE LA SUPERFICIE: La ruptura por falla de la superficie y el desplazamiento de la	
X	ració	Alta		FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimientos esperados sin fallar. RUPTURA POR FALLA DE LA SUPERFICIE: La ruptura por falla de la superficie y el desplazamiento de la superficie en el sitio del edificio no han sido anticipados icidad: Completar los siguientes ítems adicionales a los ítems para baja sismicidad.	COMENTARIO
X era	ració	Alta on de	la C	FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimientos esperados sin fallar. RUPTURA POR FALLA DE LA SUPERFICIE: La ruptura por falla de la superficie y el desplazamiento de la superficie en el sitio del edificio no han sido anticipados icidad: Completar los siguientes ítems adicionales a los ítems para baja sismicidad. mentación	COMENTARIO 13/16.81=0.77> 0.498

La edificación evaluada tiene un sistema estructural en base a pórticos y con un muro estructural interior irregular. Así mismo, no tiene una trayectoria de carga continua en una de las vigas interiores, es decir, que no hay transferencia viga-columna.

Figura 50. Sistema estructural aporticado con un muro estructural. Sistema de cargas continuo hasta la cimentación

La separación entre que debe tener una edificación con otra no debe ser menor de que el 4% de la altura de la edificación más corta según el ASCE 41-13 y no debe ser menor que 3 cm de acuerdo a la norma E.030. Así mismo, se logra apreciar una discontinuidad en la junta sísmica.

Figura 51. Separación entre edificaciones

Se logra apreciar fisuras en todos elementos estructurales de los últimos niveles de la edificación.

Figura 52. Fisuras presentes en los elementos estructurales en los últimos niveles

				CONCRETO ARMADO CON DDIAFRAGMAS RIGIDOS	
				<u> </u>	a Cultura 773. UNSAAC
				Hecho por: Bach. Gimi Galdos Roman	
				Bach. Roger Nuñez Esquivel	
				C: Cumple NC: No Cumple NA: No Aplicable D:	Desconocido
ıv Ba	aia S	ismi	cida	d	
				a Fuerzas Sísmicas	
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
	X			PORTICOS COMPLETOS: Los pórticos de acero o concreto clasificados como componentes secundarios	
	Х			forman un sistema completo de soporte de cargas verticales.	
	Λ.			REDUNDANCIA: El número de líneas de muros de corte en cada dirección principal es mayor o igual a 2.	
	X			VERIFICACION DEL ESFUERZO CORTANTE: El esfuerzo cortante en los muros de corte de concreto, calculado usando el procedimiento de verificación rápida, es menor que el mayor de 0.70 MPa o 2vf c.	Esfuerzos de corte mucho mayores a 0.70 Mpa en las 2 direcciones
X				ACERO DE REFUERZO: La relación del área de acero de refuerzo con el área gruesa de concreto no es menor que 0.0012 en la dirección vertical y 0.0020 en la dirección horizontal. El espaciamiento del acero	Cuantias > 1%
				de refuerzo es igual o menor que 45 cm.	
nexio	ones				
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
				ANCLAJE DE MUROS EN DIAFRAGMAS FLEXIBLES: Muros de concreto o albañilería que dependen de	
		х		diafragmas flexibles para su soporte lateral están anclados para fuerzas fuera de plano en cada	
		^		diafragma de piso con anclajes de acero, espigas de refuerzo, o correas que se desarrollan en el	
<u> </u>				diafragma.	
X				TRANSFERENCIA A LOS MUROS DE CORTE: Los diafragmas están conectados para transferir cargas a	
	_			los muros de corte.	
			X	PASADORES EN CIMENTACION: Los muros reforzados están anclados dentro de la cimentación, y los	
			^	anclajes son capaces de desarrollar el menor de la resistencia de los muros o la capacidad de	
nent	acio	n		levantamiento de la cimentación.	
C		NA	D	CRITERIO DE EVALUACION	COMENTARIO
_				CIMENTACIONES PROFUNDAS: Pilotes y pilas serán capaces de transferir las fuerzas laterales entre la	
		X		estructura y el suelo.	
		Х		SITIOS INCLINADOS: La diferencia entre la profundidad de desplante de la cimentación de un lado del	
		^		edificio a otro no deberá exceder la altura de un piso.	
a. M	oder	ada v	/ Alt	a Sismicidad: Completar los siguientes ítems adicionales a los ítems para muy baja sismicid	ad.
				Fuerzas Sísmicas	<u></u>
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
				COMPATIBILIDAD DE DEFLEXION: Los componentes secundarios tendrán la capacidad de corte para	
			X	desarrollar la capacidad a flexión de los componentes y cumplirán con los siguientes ítems: EMPALMES EN COLUMNAS, EMPALMES EN VIGAS, ESPACIAMIENTO DE ESTRIBOS EN COLUMNAS, ESPACIAMIENTO	
				DE ESTRIBOS EN VIGAS Y GANCHOS EN ESTRIBOS en la lista de verificación estructural para Ocupación	
				Inmediata para edificios tipo C1	
		X		LOSAS SOLIDAS: Las losas solidas que no formen parte del SRFS tienen acero continuo en la base a través de los nudos en columnas.	
L		V		VIGA DE ACOPLE: Los estribos en vigas de acople en las vías de salida están espaciados a no menos de	
		X		d/2 y están ancladas dentro del núcleo del confinado con ganchos de 135 grados	1
		X			
X		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán	
X				VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados.	
X		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán	Relacion menor de 2 a 1
X				VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados. REFUERZO DE CONFINAMIENTO: Para muros de corte con relaciones de aspecto mayores que 2 a 1, los elementos de borde serán confinados con espirales o estribos con espaciamiento menor que 8db. REFORZAMIENTO DEL MURO EN APERTURAS: Se agrega bastones de refuerzo alrededor de las	No se presentan aberturas en lo
		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados. REFUERZO DE CONFINAMIENTO: Para muros de corte con relaciones de aspecto mayores que 2 a 1, los elementos de borde serán confinados con espirales o estribos con espaciamiento menor que 8db. REFORZAMIENTO DEL MURO EN APERTURAS: Se agrega bastones de refuerzo alrededor de las aberturas del muro con una dimensión mayor que 3 veces el espesor del muro.	No se presentan aberturas en lo muros
X		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados. REFUERZO DE CONFINAMIENTO: Para muros de corte con relaciones de aspecto mayores que 2 a 1, los elementos de borde serán confinados con espirales o estribos con espaciamiento menor que 8db. REFORZAMIENTO DEL MURO EN APERTURAS: Se agrega bastones de refuerzo alrededor de las	No se presentan aberturas en los
		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados. REFUERZO DE CONFINAMIENTO: Para muros de corte con relaciones de aspecto mayores que 2 a 1, los elementos de borde serán confinados con espirales o estribos con espaciamiento menor que 8db. REFORZAMIENTO DEL MURO EN APERTURAS: Se agrega bastones de refuerzo alrededor de las aberturas del muro con una dimensión mayor que 3 veces el espesor del muro. ESPESOR DEL MURO: El espesor de los muros de carga no será menor que 1/25 la altura entre apoyos o longitud, la que sea más corta, ni menor a 10 cm.	No se presentan aberturas en los muros
		X		VOLTEO: Todos los muros tienen relaciones de aspecto menores que 4 a 1. Pilares de muros no serán considerados. REFUERZO DE CONFINAMIENTO: Para muros de corte con relaciones de aspecto mayores que 2 a 1, los elementos de borde serán confinados con espirales o estribos con espaciamiento menor que 8db. REFORZAMIENTO DEL MURO EN APERTURAS: Se agrega bastones de refuerzo alrededor de las aberturas del muro con una dimensión mayor que 3 veces el espesor del muro. ESPESOR DEL MURO: El espesor de los muros de carga no será menor que 1/25 la altura entre apoyos o	No se presentan aberturas en los muros

С	NC NA D CRITERIO DE EVALUACION		CRITERIO DE EVALUACION	COMENTARIO	
X				CONTINUIDAD DEL DIAFRAGMA: Los diafragmas no están compuestos por pisos con desniveles y no tienen juntas de expansión.	
	X			ABERTURAS EN MUROS DE CORTE: Aberturas del diafragma inmediatamente adyacentes a los muros de corte son menores que el 15% de la longitud del muro	Muros adyacente a las escalera
	X			IRREGULARIDADES EN PLANTA: Se cuenta con la capacidad a tracción para desarrollar las fuerzas del diafragma en esquinas entrantes u otros lugares con irregularidad en planta.	
		X		REFORZAMIENTO DEL DIAFRAGMA EN ABERTURAS: Existe refuerzo alrededor de todas las aberturas mayores al 50% del ancho del edificio en su mayor dimensión en planta.	La unica apertura es el de las escaleras.

La única abertura en el diafragma es debido a la escalera y esta al costado del muro estructural.

Figura 53. Apertura en el diafragma por presencia de escalera

					LISTA DE VERIFICACION NO ESTRUCTURAL PARA RETENCION DE LA	POSICION
					Edificacion: Edificacion Nueva - Bloque A Ubicación: Av. De	la Cultura 773. UNSAAC
					Hecho por: Bach. Gimi Galdos Roman	
					Bach. Roger Nuñez Esquivel	
					C: Cumple NC: No Cumple NA: No Aplicable D	: Desconocido
Sist	emo	as de	Seg	gurio	dad de Vida	
	С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
			X		TUBERIA CONTRA INCENDIO: La tubería contra incendio está anclada y arriostrada.	
			X		ACOPLES FLEXIBLES: La tubería contra incendio tiene acoples flexibles.	
	X				ENERGIA DE EMERGENCIA: El equipo usado para brindar energía o controlar los sistemas de seguridad de vida está anclado o arriostrando.	
	X				ESCALERA Y DUCTOS DE HUMO: Escaleras presurizadas y ductos de control de humo están arriostrados y tienen conexiones flexibles en juntas sísmicas.	
			X		SEPARACION DE LOS ROCIADORES EN FALSO TECHOS: Las perforaciones a través del falso techo, proporcionan una separación adecuada a los dispositivos contra incendio.	
	X				LUCES DE EMERGENCIA: Los equipos de luces de emergencia y salida están anclados y arriostrados.	
Par [ones		_	CRITERIO DE EVALUACION	CONTENTADIO
	С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
				x	ALBAÑILERIA SIN REFUERZO: Albañilería sin refuerzo o particiones de ladrillos huecos de arcilla están arriostrados a una distancia de como máximo 3m en baja y moderada sismicidad, o como máximo 1.80m en alta sismicidad.	No se tiene detalle de los muros de albañileria
			X		PARTICIONES PESADAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de albañilería no están soportadas lateralmente por un sistema integrado de falso techo.	
					DERIVA: Particiones rígidas están detalladas para acomodarse a los siguientes ratios de deriva: en	No se tiene detalle de los muros
				X	pórticos de acero, pórticos de concreto, y edificios de entramados de madera, 0.02; en otros edificios, 0.005.	de albañileria
			X		PARTICIONES LIGERAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de placas de yeso no están soportadas lateralmente por un sistema integrado de techo.	
				x	SEPARACION ESTRUCTURAL: Las particiones que cruzan separaciones estructurales tienen juntas sísmicas o de control.	
Inst	alad	cione	es de	Luz		
		NC			CRITERIO DE EVALUACION	COMENTARIO
	x				SOPORTE INDEPENDIENTE: Las instalaciones de luz que pesen más por pie2 que el falso techo están soportados por soportes independientes del sistema de suspensión del techo por un	
					mínimo de 2 cables en las esquinas diagonalmente opuestas de cada aparato.	
			X		SOPORTES DE SUSPENSION: Las instalaciones de luz sobre soportes colgantes que están ancladas a una distancia igual o menor de 1.8m y, son soportados rígidamente, son libres de	
					moverse con la estructura a la que están unidos sin dañar a los componentes contiguos. CUBIERTA DE LUMINARIAS: Las cubierta de las luminarias en las instalaciones de luz están	
	X				unidas con dispositivos seguros.	
Par	apet	tos, C	orni	sas,	Ornamentación y Apéndices	
	c	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
			x		PARAPETOS O CORNISAS DE ALBAÑILERÍA SIN REFORZAR: Los parapetos de albañilería no reforzada sin soporte lateral o cornisas tienen una relación altura-espesor no mayor que: para seguridad de vida en baja o moderada sismicidad, 2.5; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, 1.5.	
			х		MARQUESINAS: Marquesinas en salidas de los edificios están ancladas a la estructura con un espaciamiento no mayor que: para seguridad de vida en baja y moderada sismicidad, 3m; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad,	
•			х		PARAPETOS DE CONCRETO: Parapetos de concreto con relacione de altura-espesor mayores que 2.5 tienen refuerzo vertical.	

APENDICES: Cornisas, parapetos, anuncios y otros adornos o apéndices que se extienden por encima del punto más alto de anclaje de la estructura o componentes de voladizos están reforzados y anclados al sistema estructural con un espaciamiento igual o menor que 1.80m. Este ítem de la lista de verificación no se aplica a parapetos o cornisas cubiertos por otros ítems

Escaleras

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
x				CAJA DE ESCALERA: Muros de albañilería sin refuerzo alrededor de la escalera están restringidos lateralmente y tienen relaciones de altura-espesor no mayores que: para seguridad de vida en baja o moderada sismicidad, de 15 a 1; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, 12 a 1.	
x				DETALLE DE ESCALERA: En estructuras de pórticos de concreto, las conexiones entre la escalera y la estructura no depende de anclajes de poca profundidad en el concreto.	

Contenido y Mobiliario

ILEIII	· · /		_		
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		ESTANTES DE ALMACENAMIENTO INDUSTRIAL: Estantes de almacenamiento industrial de más de 3.60m de altura cumplen con los requisitos de la norma ANSI/MH 16.1 modificado por el ASCE 7 capítulo 15.	
	X			CONTENIDOS ALTOS Y ESTRECHOS: Contenidos de más de 1.80m de altura con relaciones de altura-espesor o altura-ancho mayores que 3 a 1 serán anclados a la estructura o entre ellos.	
	x			CONTENIDO CON TENDENCIA A CAER: Equipos, artículos almacenados, u otros contenidos que pesen más de 9kg cuyo centro de masa esta 1.20m por encima del piso del nivel serán arriostrados o restringidos de alguna forma.	
		Х		FALSO SUELO: Falso suelos de más de 22 cm de altura serán arriostrados.	
		X		EQUIPOS EN FALSO SUELO: Equipos y otros contenidos soportado por el sistema de falso suelo serán anclados o arriostrados a la estructura independientemente del falso suelo.	
		X		CONTENIDO SUSPENDIDO: Artículos suspendidos sin arrostramiento lateral son libres de balancearse o moverse con la estructura de la que se suspenden sin dañarse o dañar a los componentes contiquo.	

Equipamiento Mecánico y Eléctrico

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		EQUIPOS PROPENSOS A CAERSE: Equipos con peso mayor que 20lb cuyo centro de masa está a más de 1.20m del nivel de piso adyacente, y que no es un equipo en línea, esta arriostrado.	
		x		EQUIPOS EN LINEA: Equipos instalados en línea con un sistema de ductos o tuberías, con un peso operativo de más de 75lb, está apoyado e independientemente arriostrado lateralmente del sistema de ductos o tuberías.	
		x		EQUIPOS ALTOS Y ESTRECHOS: Equipos de más de 1.80 m de altura con una relación alturaespesor o altura-ancho mayor que 3 a 1 están anclados a la losa de piso o a los muros estructurales adyacentes.	
		x		PUERTAS MECANICAS: Puertas operadas mecánicamente están detalladas para operar en ratios de deriva de piso de 0.01.	
		x		EQUIPOS SUSPENDIDOS: Equipos suspendidos sin arriostramiento lateral son libres para balancearse o moverse con la estructura de la que está suspendido sin dañarse o dañar o los componentes contiguos.	
		x		AISLADORES DE VIBRACION: Equipo montado sobre aisladores de vibración están equipados con restricciones horizontales o amortiguadores y con restricciones verticales para resistir volteo.	
		x		EQUIPO PESADO: Equipos pesados soportados por el piso o por plataformas con peso mayor que 400lb están anclados a la estructura.	
		Х		EQUIPO ELECTRICO: Equipo eléctrico esta arriostrado lateralmente a la estructura.	
		x		ACOPLES DE CONDUCTOS: Los conductos con un tamaño operativo mayor que 2.5in que estén unidos a los paneles, gabinetes, u otros equipos y están sometidos a desplazamientos sísmicos relativos tienen acoples o conexiones flexibles.	

Tuberías

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		X		ACOPLES FLEXIBLES: Tuberías de fluidos y gas tiene acoples flexibles.	
		x		TUBERIAS DE FLUIDOS Y GAS: Tuberías de fluidos y gas están andados y arriostrados a la estructura para limitar derrames o fugas.	
X				ABRAZADERAS EN C: Abrazaderas en C que soportan tuberías con diámetros mayores que 2.5in están restringidas.	
		x		TUBERIAS CRUZANDO JUNTAS SISMICAS: Tuberías que cruzan juntas sísmicas o planos aislados o están conectadas a estructuras independientes tienen acoples u otro detallamiento para acomodarse al desplazamiento sísmico relativo.	

Ductos

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		DUCTOS ARRIOSTRADOS: Red de ductos rectangulares con sección transversal mayor que 6ft2 y ductos circulares con diámetros mayores que 28in están arriostrados. El máximo espaciamiento del arriostramiento transversal no excederá de 30ft. El máximo espaciamiento de arriostramiento longitudinal no excederá de 60ft.	
		X		SOPORTE DE LOS DUCTOS: Los ductos no son soportados por tuberías o conductos eléctricos.	
		x		DUCTOS CRUZANDO JUNTAS SISMICAS: Ductos que cruzan juntas sísmicas, planos aislados o están conectados a estructuras independientes tienen acoples u otro detallamiento para acomodarse a los desplazamientos sísmicos relativos.	

Las luces de emergencia están correctamente ancladas a la pared sin peligro de caída. Así mismo, los extintores están correctamente colocados para cualquier emergencia de incendio.

Figura 54. Luces de emergencia y extintor

Los parapetos están arriostrados mediante una columneta al medio y así mismo están aislados de la estructura principal.

Figura 55. Parapetos de las ventanas

Estantes con papeles encima con peligro a caerse ante un movimiento sísmico. Así como estantes que no están debidamente anclados.

Figura 56. Mobiliario sin anclaje.

LISTAS DE VERIFICACION RAPIDA BLOQUE C

HOJA DE RESUMEN DE DATOS INFORMACION DEL EDIFICIO: Nombre del Edificio: Edificacion Nueva - Bloque C Fecha: 05/02/2019 Direccion del Edificio: Universidad Nacional de San Antonio Abad del Cusco - Av. De la Cultura 773 Año de Construccion: 2000-2006 Año de Remodelacion: Longitud: Area: 116 m2 11.82 m Ancho: 11.82 m N° de Pisos: 5 Altura del Piso: 3.35 m Altura Total: 16.15 m Uso: Educacional **INFORMACION DE CONSTRUCCION:** Sistema Estructural de Cargas de Gravedad: Sistema de Porticos de Concreto Armado **Muros Transversales Exteriores:** No ¿Aberturas?: **Muros Longitudinales Exteriores:** No ¿Aberturas?: Material Estructural de Techo: Cubierta de Concreto Armado y sobre ella un sistema de tijerales para cubierta **Estructura Pisos Intermedios:** Losas Aligeradas de Concreto Armado **Piso Primer Nivel:** Losa Aligerada de Concreto Armado Columnas: Forma Especifica Irregular Cimentación: Zapata Corrida Condición General de la Estructura: Presenta rajadura de columnas y vigas en los ultimos niveles Niveles por debajo del nivel de terreno: No presenta Características Especiales y Comentarios: La estructura tiene forma octogonal SISTEMA RESISTENTE A FUERZAS LATERALES Longitudinal Transversal Sistema: Porticos Porticos **Elementos Verticales:** Columnas Columnas Diafragmas: Losas Aligeradas Losas Aligeradas Conexiones: Monoliticas de Concreto Monoliticas de Concreto **DATOS DE EVALUACION:** Factores de Suelo: Clase = Fa= 1.892 Aceleracion de Respuesta Espectral (BSE-1E): 0.832 S_{x1}= 0.431 Nivel de Sismicidad: Nivel de Desempeño: Ocupacion Inmediata Alto Periodo del Edificio T: 0.72 **Aceleracion Espectral Sa:** 0.6 Pseudo Fueral Lateral (V): 377002.39 kg Peso del Edificio: 628337.32 kg Clasificacion del Edificio: Edificacion Esencial Tipo A2 LISTA DE VERIFICACION REQUERIDAS NIVEL 1 Lista de Verificación Configuración Básica: Lista de Verificación Estructural Tipo de Edificio: Lista de Verificación Componentes No-Estructurales: **REQUIERE EVALUACIONES FUTURAS:** SI

				LISTA DE VERIFICACION BASICA PARA OCUPACION INMED	<u>IATA</u>
	Edif	icaci	on:	Edificacion Nueva - Bloque C Ubicación: Av. De	e la Cultura 773. UNSAAC
	Hec	ho po	or:	Bach. Gimi Galdos Roman	
				Bach. Roger Nuñez Esquivel	
				C: Cumple NC: No Cumple NA: No Aplicable I	D: Desconocido
	a de	l Edi	ficio	,	
era C	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
	1	1473		TRAYECTORIA DE CARGA: La estructura deberá tener una trayectoria de carga completa, bien definida,	
X				que incluye elementos estructurales y conexiones, que sirven para transferir las fuerzas de inercia asociadas a la masa de todos los elementos del edificio a la cimentación.	
	X			EDIFICIOS ADYACENTES: La distancia libre entre el edificio siendo evaluado y cualquier edificio	Separacion = 2.5 cm 2.5 cm < 6.7 * 0.04
_		v		adyacente es mayor que el 4% de la altura del edificio más bajo. Mezzanine: Niveles de entreplanta interiores están arriostrados independientemente de la estructura	No presenta entreplantas
		X		principal o están anclados a los elementos resistentes a fuerzas sísmicas de la	No presenta entrepiantas
igu	ıracio	on de	el Ed	<u>ificio</u>	
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				PISO DEBIL: La suma de la resistencia al corte del sistema resistente a fuerzas sísmica en cualquier piso en cada dirección no será menor que el 80 % de la resistencia en el piso adyacente superior.	
.,		PISO BLANDO: La rigidez del sistema resistente a fuerzas sísmicas en cualquier piso no será menor que			
X				el 70% de la rigidez del SRFS en el piso adyacente superior o menor que el 80% de la rigidez promedio de los tres pisos superiores.	
X				IRREGULARIDAD VERTICAL: Todos los elementos verticales del SRFS son continuos hasta la cimentación	1.
X				GEOMETRIA: No hay cambios en la dimensión horizontal de la red del SRFS superiores al 30% en un piso con relación a los pisos adyacentes, excluyendo áticos de un piso y entreplantas.	
Х				MASA: no hay cambios de más del 50% de la masa efectiva de un piso al siguiente. Cubiertas ligeras,	
^				áticos, y entreplantas no serán considerados.	
X				TORSION: la distancia estimada entre el centro de masa y el centro de rigidez del piso es menor que el 20% del ancho del edificio.	
Sis	micio	dad:	Com	pletar los siguientes ítems adicionales a los ítems para muy baja sismicidad.	
gro	s Ged	logi	cos c	del Sitio	
C	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				LICUEFACCION : Suelos granulares sueltos, saturados, susceptibles a licuefacción, que puedan poner en peligro el desempeño sísmico del edificio no existen en el suelo de cimentación en una profundidad de 15 m por debajo del edificio.	
		X		FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de talud provocadas por terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomodarse a los movimiento	s
				esperados sin fallar.	
X				RUPTURA POR FALLA DE LA SUPERFICIE: La ruptura por falla de la superficie y el desplazamiento de la superficie en el sitio del edificio no han sido anticipados	
er	ada y	Alta	Sisn	nicidad: Completar los siguientes ítems adicionales a los ítems para baja sismicidad.	
	_			imentación CRITTRIO DE FIALLACION	601-55-55-6
_	NC	NΑ	D	CRITERIO DE EVALUACION	COMENTARIO
C					
_				VOLTEO: La relación de la menor dimensión horizontal del SRFS en el nivel de fundación con la altura del edificio (base/altura) es mayor que 0.6 Sa.	13/16.81=0.77> 0.498
С				•	13/16.81=0.77> 0.498

La edificación presenta una estructura en base a pórticos de forma octogonal y presenta una trayectoria de carga continua de todos los elementos verticales hasta la cimentación.

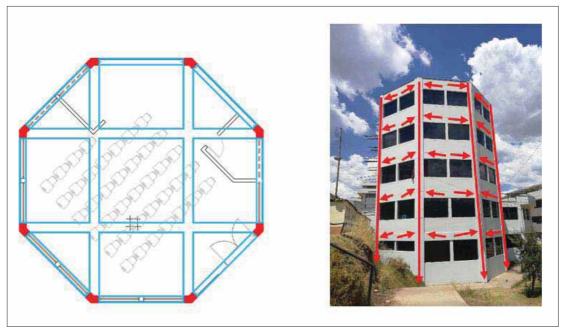


Figura 57. Tipo de estructura y trayectoria de carga. Bloque C

Al igual que en el Bloque A, no presenta una correcta separación entre edificaciones. La separación es menor que 3 cm y no cumple con la norma E.030 ni con la norma del ASCE 41-13.

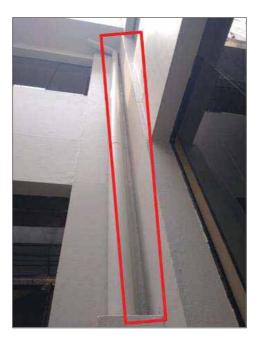


Figura 58. Separación entre el Bloque C y el Bloque B

					CONCR	EIO	
				Edificacion:	dificacion Nueva - Bloque A	Ubicación:	Av. De la Cultura 773. UNSAAC
				Hecho por: Bach.	Gimi Galdos Roman		
				Bach. F	loger Nuñez Esquivel		
				C: Cumple	NC: No Cumple	NA: No Aplicable	D: Desconocido
	_	NA NA	_	a Fuerzas Sismicas	CRITERIO DE EVALUACIO	DN	COMENTARIO
y Baj				<u>nd</u> a Fuerzas Sísmicas			
X					e líneas de pórticos de concreto resis igual a 2. El número de crujías de l		
				momento en cada línea es mo	-	os porticos resistentes u	
Х					Todos los muros de relleno de concr	,	1
				pórticos resistentes a moment	o están aislados de los elementos e	structurales.	
	X				CORTANTE EN COLUMNAS: El esfu ado usando el procedimiento de Ver		El esfuerzo cortante es mucho mayo las 2 direcciones
х				VERIFICACION DEL ESFUERZO	AXIAL: El esfuerzo axial causado pocedimiento de Verificación Rápida,	•	
nexion	nes						
С	NC	NA	D		CRITERIO DE EVALUACIO	ON	COMENTARIO

Baja, Moderada y Alta Sismicidad: Completar los siguientes ítems adicionales a los ítems para muy baja sismicidad.

Sistema Resistente a Fuerzas Sísmicas

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		X		PORTICOS DE LOSA SOLIDA: El SRFS no es un pórtico que consiste de columnas y losa solida o placas sin vigas.	
		X		ELEMENTOS DEL PORTICO PRE-ESFORZADOS: Los pórticos resistentes a fuerzas sísmicas no incluirán ningún elemento pre-esforzado o post-tensado donde el pre-esfuerzo promedio excede al menor de 4.8 MPa o f'c/6 en posibles ubicaciones de rótulas.	
X				COLUMNAS CORTAS: No existen columnas en un nivel con relaciones altura/espesor menor al 75 % de la relación altura/espesor de las columnas típicas de ese nivel.	
			X	EVITAR FALLAS POR CORTE: La capacidad de corte de los miembros del pórtico es capaz de desarrollar la capacidad de momento en los extremos de los miembros.	
			X	COLUMNA FUERTE - VIGA DEBIL: La suma de la capacidad de momento de las columnas es 20% mayor que la de las vigas en los nudos del pórtico.	
X				REFUERZO EN VIGAS: Al menos 2 barras longitudinales en la parte superior y en la base se extienden continuamente a través de la longitud de cada viga del pórtico. Al menos el 25% del refuerzo longitudinal proporcionado en los nudos ya sea para momento negativo o positivo será continuo a través de la longitud de los miembros.	
X				EMPALMES EN COLUMNAS: Las longitudes de traslape en empalmes serán mayores a 50 db y estarán confinados por estribos espaciados a no menos de 8db. Alternativamente, las barras en columnas se empalmarán con acopladores mecánicos con una capacidad de al menos 1.25 el esfuerzo de fluencia de la barra empalmada.	
X				EMPALMES EN VIGAS: Los traslapes de empalme o los acopladores mecánicos para el refuerzo longitudinal en vigas no estarán ubicados a una distancia de lb/4 de los nudos o situados en las proximidades de las posibles ubicaciones de las rótulas.	
X				ESPACIAMIENTO DE ESTRIBOS EN COLUMNAS: Las columnas del pórtico tendrán estribos espaciados a no menos de d/4 a través de su longitud y a no menos de 8db en todas las posibles ubicaciones de las rotulas.	
X				ESPACIAMIENTO DE ESTRIBOS EN VIGAS: Todas las vigas tendrán estribos espaciados a no menos de d/2 a lo largo de su longitud. En posibles ubicaciones de rotulas plásticas, los estribos estarán espaciados a no menos del minino de 8db o d/4.	
X				REFORZAMIENTO TRANSVERSAL DE NUDOS: Nudos viga-columna tendrán estribos espaciados a no menos de 8db.	
X				EXCENTRICIDAD EN LOS NUDOS: No existen excentricidades mayores que el 20% de la menor dimensión en planta de la columna entre los ejes de vigas y columnas.	
X				GANCHOS EN ESTRIBOS: Los estribos de vigas y columnas están anclados dentro del núcleo del miembro con ganchos de 135 grados o más.	
		X		LOSAS SOLIDAS: Las losas solidas que no formen parte del SRFS tienen acero continuo en la base a través de los nudos en columnas.	

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				CONTINUIDAD DEL DIAFRAGMA: Los diafragmas no están compuestos por pisos con desniveles y no tienen juntas de expansión.	
		X		IRREGULARIDADES EN PLANTA: Se cuenta con la capacidad a tracción para desarrollar las fuerzas del diafragma en esquinas entrantes u otros lugares con irregularidad en planta.	
		X		REFORZAMIENTO DEL DIAFRAGMA EN ABERTURAS: Existe refuerzo alrededor de todas las aberturas mayores al 50% del ancho del edificio en su mayor dimensión en planta.	

				Edificacion: Edificacion Nueva - Bloque C Ubicación: Av. Do Hecho por: Bach. Gimi Galdos Roman Bach. Roger Nuñez Esquivel	e la Cultura 773. UNSAAC
				C: Cumple NC: No Cumple NA: No Aplicable	D: Desconocido
m	ıs de	Seg	uric	lad de Vida	
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		X		TUBERIA CONTRA INCENDIO: La tubería contra incendio está anclada y arriostrada.	
		X		ACOPLES FLEXIBLES: La tubería contra incendio tiene acoples flexibles.	
		x		ENERGIA DE EMERGENCIA: El equipo usado para brindar energía o controlar los sistemas de seguridad de vida está anclado o arriostrando.	
		X		ESCALERA Y DUCTOS DE HUMO: Escaleras presurizadas y ductos de control de humo están arriostrado. y tienen conexiones flexibles en juntas sísmicas.	5
		x		SEPARACION DE LOS ROCIADORES EN FALSO TECHOS: Las perforaciones a través del falso techo,	
				proporcionan una separación adecuada a los dispositivos contra incendio.	
		X		LUCES DE EMERGENCIA: Los equipos de luces de emergencia y salida están anclados y arriostrados.	Ningun ambiente tiene
С	NC	NA	D	CRITERIO DE EVALUACION ALBAÑILERIA SIN REFUERZO: Albañilería sin refuerzo o particiones de ladrillos huecos de arcilla están	COMENTARIO
			Х	arriostrados a una distancia de como máximo 3m en baja y moderada sismicidad, o como máximo 1.80m en alta sismicidad.	
		X		PARTICIONES PESADAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de albañilería no están soportadas lateralmente por un sistema integrado de falso techo.	
			x	DERIVA: Particiones rígidas están detalladas para acomodarse a los siguientes ratios de deriva: en pórticos de acero, pórticos de concreto, y edificios de entramados de madera, 0.02; en otros edificios, 0.005.	
		x		PARTICIONES LIGERAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de placo de yeso no están soportadas lateralmente por un sistema integrado de techo.	15
			X	SEPARACION ESTRUCTURAL: Las particiones que cruzan separaciones estructurales tienen juntas sísmicas o de control.	
alac	ione	es de	Luz		
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
x				SOPORTE INDEPENDIENTE: Las instalaciones de luz que pesen más por pie2 que el falso techo están soportados por soportes independientes del sistema de suspensión del techo por un mínimo de 2 cables en las esquinas diagonalmente opuestas de cada aparato.	
				SOPORTES DE SUSPENSION: Las instalaciones de luz sobre soportes colgantes que están	
		X		ancladas a una distancia igual o menor de 1.8m y, son soportados rígidamente, son libres de moverse con la estructura a la que están unidos sin dañar a los componentes contiquos.	

Parapetos, Cornisas, Ornamentación y Apéndices

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		PARAPETOS DE ALBAÑILERIA SIN REFUERZO NO SOPORTADA O CORNISAS: Los parapetos de albañilería no reforzada sin soporte lateral o cornisas tienen una relación altura-espesor no mayor que: para seguridad de vida en baja o moderada sismicidad, 2.5; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, 1.5.	
		x		MARQUESINAS: Marquesinas en salidas de los edificios están ancladas a la estructura con un espaciamiento no mayor que: para seguridad de vida en baja y moderada sismicidad, 3m; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad,	
		x		PARAPETOS DE CONCRETO: Parapetos de concreto con relacione de altura-espesor mayores que 2.5 tienen refuerzo vertical.	
x				APENDICES: Cornisas, parapetos, anuncios y otros adornos o apéndices que se extienden por encima del punto más alto de anclaje de la estructura o componentes de voladizos están reforzados y anclados al sistema estructural con un espaciamiento igual o menor que 1.80m. Este ítem de la lista de verificación no se aplica a parapetos o cornisas cubiertos por otros ítems	

Escaleras

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		X		CAJA DE ESCALERA: Muros de albañilería sin refuerzo alrededor de la escalera están restringidos lateralmente y tienen relaciones de altura-espesor no mayores que: para seguridad de vida en baja o moderada sismicidad, de 15 a 1; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, 12 a 1.	
		X		DETALLE DE ESCALERA: En estructuras de pórticos de concreto, las conexiones entre la escalera y la estructura no depende de anclajes de poca profundidad en el concreto.	

Contenido y Mobiliario

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		ESTANTES DE ALMACENAMIENTO INDUSTRIAL: Estantes de almacenamiento industrial de más de 3.60m de altura cumplen con los requisitos de la norma ANSI/MH 16.1 modificado por el ASCE 7 capítulo 15.	
	x	X CONTENIDOS ALTOS Y ESTRECHOS: Contenidos de más de 1.80m de altura con relaciones de altura-espesor o altura-ancho mayores que 3 a 1 serán anclados a la estructura o entre ellos.			
	x			CONTENIDO CON TENDENCIA A CAER: Equipos, artículos almacenados, u otros contenidos que pesen más de 9kg cuyo centro de masa esta 1.20m por encima del piso del nivel serán arriostrados o restringidos de alguna forma.	
		X		FALSO SUELO: Falso suelos de más de 22 cm de altura serán arriostrados.	
		x		EQUIPOS EN FALSO SUELO: Equipos y otros contenidos soportado por el sistema de falso suelo serán anclados o arriostrados a la estructura independientemente del falso suelo.	
		x		CONTENIDO SUSPENDIDO: Artículos suspendidos sin arrostramiento lateral son libres de balancearse o moverse con la estructura de la que se suspenden sin dañarse o dañar a los componentes contiguo.	

Equipamiento Mecánico y Eléctrico

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				EQUIPOS PROPENSOS A CAERSE: Equipos con peso mayor que 20lb cuyo centro de masa está a más de 1.20m del nivel de piso adyacente, y que no es un equipo en línea, esta arriostrado.	
		x		EQUIPOS EN LINEA: Equipos instalados en línea con un sistema de ductos o tuberías, con un peso operativo de más de 75lb, está apoyado e independientemente arriostrado lateralmente del sistema de ductos o tuberías.	
		x		EQUIPOS ALTOS Y ESTRECHOS: Equipos de más de 1.80 m de altura con una relación alturaespesor o altura-ancho mayor que 3 a 1 están anclados a la losa de piso o a los muros estructurales adyacentes.	
		x		PUERTAS MECANICAS: Puertas operadas mecánicamente están detalladas para operar en ratios de deriva de piso de 0.01.	
		x		EQUIPOS SUSPENDIDOS: Equipos suspendidos sin arriostramiento lateral son libres para balancearse o moverse con la estructura de la que está suspendido sin dañarse o dañar o los componentes contiguos.	
		X		AISLADORES DE VIBRACION: Equipo montado sobre aisladores de vibración están equipados con restricciones horizontales o amortiguadores y con restricciones verticales para resistir volteo.	
		X		EQUIPO PESADO: Equipos pesados soportados por el piso o por plataformas con peso mayor que 400lb están anclados a la estructura.	
		X		EQUIPO ELECTRICO: Equipo eléctrico esta arriostrado lateralmente a la estructura.	
		x		ACOPLES DE CONDUCTOS: Los conductos con un tamaño operativo mayor que 2.5in que estén unidos a los paneles, gabinetes, u otros equipos y están sometidos a desplazamientos sísmicos relativos tienen acoples o conexiones flexibles.	

Tuberías

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		Х		ACOPLES FLEXIBLES: Tuberías de fluidos y gas tiene acoples flexibles.	
		x		TUBERIAS DE FLUIDOS Y GAS: Tuberías de fluidos y gas están anclados y arriostrados a la estructura para limitar derrames o fugas.	
X				ABRAZADERAS EN C: Abrazaderas en C que soportan tuberías con diámetros mayores que 2.5in están restringidas.	
		x		TUBERIAS CRUZANDO JUNTAS SISMICAS: Tuberías que cruzan juntas sísmicas o planos aislados o están conectadas a estructuras independientes tienen acoples u otro detallamiento para acomodarse al desplazamiento sísmico relativo.	

Ductos

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		DUCTOS ARRIOSTRADOS: Red de ductos rectangulares con sección transversal mayor que 6ft2 y ductos circulares con diámetros mayores que 28in están arriostrados. El máximo espaciamiento del arriostramiento transversal no excederá de 30ft. El máximo espaciamiento de arriostramiento longitudinal no excederá de 60ft.	
		X		SOPORTE DE LOS DUCTOS: Los ductos no son soportados por tuberías o conductos eléctricos.	
		x		DUCTOS CRUZANDO JUNTAS SISMICAS: Ductos que cruzan juntas sísmicas, planos aislados o están conectados a estructuras independientes tienen acoples u otro detallamiento para acomodarse a los desplazamientos sísmicos relativos.	

Las principales deficiencias y características más resaltantes del bloque C se detallan a continuación:

Estantes, Muebles no anclados

Estantes, Muebles no anclados

Estantes, Muebles no anclados

Estantes, Muebles no anclados

Fisuras en Viga

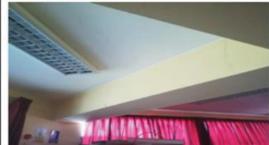
Fisuras en Viga y columna

Estantes no anclados

Fisura en losa y Vigas

Fisura en losa

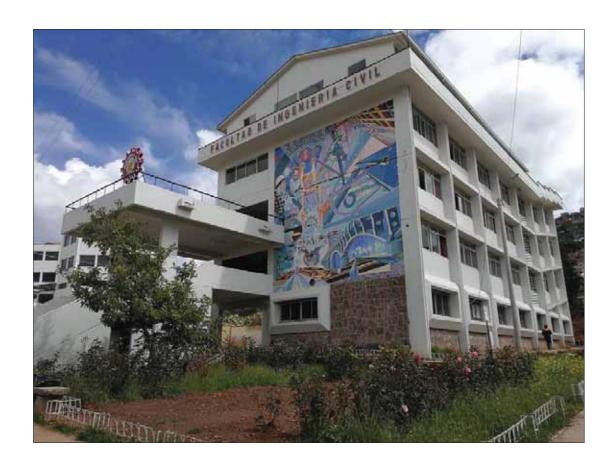
Presencia de humedad


Equipos anclados

Fisuras en vigas y columnas

Equipos anclados

Fisura en losa y Vigas


Fisuras en Viga

Estantes de Biblioteca no anclados (esbeltos y altos)

LISTAS DE VERIFICACION RAPIDA EDIFICACION ANTIGUA

HOJA DE RESUMEN DE DATOS INFORMACION DEL EDIFICIO: Nombre del Edificio: Edificacion Antigua Fecha: 05/02/2019 Direccion del Edificio: Universidad Nacional de San Antonio Abad del Cusco - Av. De la Cultura 773 Año de Construccion: 1981 Año de Remodelacion: Longitud: 43.7 Area: 116 m2 Ancho: 17.9 m N° de Pisos: 5 Altura del Piso: 3.1 m Altura Total: 18.6 m Uso: Educacional **INFORMACION DE CONSTRUCCION:** Sistema Estructural de Cargas de Gravedad: Sistema de Porticos de Concreto Armado **Muros Transversales Exteriores:** No ¿Aberturas?: **Muros Longitudinales Exteriores:** No ¿Aberturas?: Material Estructural de Techo: Cubierta de Concreto Armado y sobre ella un sistema de tijerales para cubierta **Estructura Pisos Intermedios:** Losas Aligeradas y Losa Solida de Concreto Armado Piso Primer Nivel: Losa Aligerada de Concreto Armado y Losa Solida Columnas: Cimentación: Zapata Corrida Condición General de la Estructura: Niveles por debajo del nivel de terreno: No presenta Características Especiales y Comentarios: La estructura tiene forma irregular con esquinas entrantes SISTEMA RESISTENTE A FUERZAS LATERALES Longitudinal Transversal Sistema: Aporticado Aporticado **Elementos Verticales:** Columnas Columnas Diafragmas: Losas Aligeradas y Solidas Losas Aligeradas y Solidas Conexiones: Monoliticas de Concreto Monoliticas de Concreto **DATOS DE EVALUACION:** Clase = E __ Factores de Suelo: Fa= 1.892 Aceleracion de Respuesta Espectral (BSE-1E): 0.832 S_{x1}= 0.431 Nivel de Sismicidad: Alto Nivel de Desempeño: Ocupacion Inmediata Periodo del Edificio: 0.43 Aceleracion Espectral: 1 829244.03 kg Pseudo Fueral Lateral (V): Peso del Edificio: 999089.19 kg Clasificacion del Edificio: Edificacion Esencial Tipo A2 LISTA DE VERIFICACION REQUERIDAS NIVEL 1 Lista de Verificación Configuración Básica: Lista de Verificación Estructural Tipo de Edificio: Lista de Verificación Componentes No-Estructurales: **REQUIERE EVALUACIONES FUTURAS:**

	Edificacion: Hecho por:			Edificacion Antigua Ubica Bach. Gimi Galdos Roman	ción:	Av. De la Cul	tura 773. UNSAAC
		-		Bach. Roger Nuñez Esquivel			
				C: Cumple NC: No Cumple NA: No Ap	licable	D: Desc	conocido
tema neral		l Edi	ficio				
	_	NA	D	CRITERIO DE EVALUACION			COMENTARIO
X				TRAYECTORIA DE CARGA: La estructura deberá tener una trayectoria de carga co que incluye elementos estructurales y conexiones, que sirven para transferir las fu asociadas a la masa de todos los elementos del edificio a la cimentación.			
		x		EDIFICIOS ADYACENTES: La distancia libre entre el edificio siendo evaluado y cua adyacente es mayor que el 4% de la altura del edificio más bajo.	lquier edificio		
		X		Mezzanine: Niveles de entreplanta interiores están arriostrados independienteme principal o están anclados a los elementos resistentes a fuerzas sísmicas de la	nte de la estr	uctura	No presenta entreplanta:
nfigu		-					
С	NC	NA	D	CRITERIO DE EVALUACION			COMENTARIO
X				PISO DEBIL: La suma de la resistencia al corte del sistema resistente a fuerzas sísm en cada dirección no será menor que el 80 % de la resistencia en el piso adyacento		iier piso	
X				PISO BLANDO: La rigidez del sistema resistente a fuerzas sísmicas en cualquier pis el 70% de la rigidez del SRFS en el piso adyacente superior o menor que el 80% de de los tres pisos superiores.			
X				IRREGULARIDAD VERTICAL: Todos los elementos verticales del SRFS son continuo.	s hasta la cim	entación.	
	X			GEOMETRIA: No hay cambios en la dimensión horizontal de la red del SRFS super piso con relación a los pisos adyacentes, excluyendo áticos de un piso y entreplan		en un	
X				MASA: no hay cambios de más del 50% de la masa efectiva de un piso al siguien áticos, y entreplantas no serán considerados.	te. Cubiertas	ligeras,	
X				TORSION: la distancia estimada entre el centro de masa y el centro de rigidez del 20% del ancho del edificio.	piso es meno	r que el	
a Sisı	nicio	dad:	Com	pletar los siguientes ítems adicionales a los ítems para muy baja sismi	cidad.		
$\overline{}$		$\overline{}$		del Sitio			COMPATABLO
_	NC	NA	U	CRITERIO DE EVALUACION			COMENTARIO
X				LICUEFACCION: Suelos granulares sueltos, saturados, susceptibles a licuefacción, peligro el desempeño sísmico del edificio no existen en el suelo de cimentación en 15 m por debajo del edificio.		' I	
		X		FALLA DE TALUD: El edificio está suficientemente alejado de posibles fallas de tal terremotos o caídas de rocas provocadas por dichas fallas, o es capaz de acomod esperados sin fallar.			
X				RUPTURA POR FALLA DE LA SUPERFICIE: La ruptura por falla de la superficie y el superficie en el sitio del edificio no han sido anticipados	desplazamier	to de la	
	-			nicidad: Completar los siguientes ítems adicionales a los ítems para baj	ja sismicida	d.	
_	_	n de NA	_	imentación CRITERIO DE EVALUACION			COMENTARIO
X	IVC	IVA	ט	VOLTEO: La relación de la menor dimensión horizontal del SRFS en el nivel de fun	dación con la	altura	COIVIENTARIO
X				del edificio (base/altura) es mayor que 0.6 Sa. CONEXIÓN ENTRE LOS ELEMENTOS DE LA CIMENTACION: La cimentación esta co adecuadamente para resistir fuerzas sísmicas cuando zapatas, pilotes, y pilas no o vigas logas o suelos clasificados como sitios de clase A. B. o. C.		idos por	Zanatas Corridas

Tiene una geometría en planta en base a pórticos y es de forma irregular, con esquinas entrantes, pero con una trayectoria de carga continua hasta la cimentación. Asi mismo, si bien no se considera como irregularidad de masa en los tiempos por ser azoteas. El sistema de cimentación es en base a zapatas corridas y vigas conectadas.

Figura 59. Sistema Estructural y Trayectoria de Carga – Edificación Antigua

					CONC	CRETO	
	Ed			Edificacion:	Edificacion Antigua	Ubicación:	Av. De la Cultura 773. UNSAAC
					h. Gimi Galdos Roman		
				Bach	. Roger Nuñez Esquivel		
				C: Cumple	NC: No Cumple	NA: No Aplicable	D: Desconocido
		ismi		a <u>d</u> a Fuerzas Sísmicas			
_		NA	_	u ruerzus sisinicus	CRITERIO DE EVALUAC	CION	COMENTARIO
X					de líneas de pórticos de concreto re r o igual a 2. El número de crujías d	sistentes a momento en cado	
X				INTERFERENCIA DE MUROS	: Todos los muros de relleno de con ento están aislados de los elemento.	•	s en
	X				ZO CORTANTE EN COLUMNAS: El e ulado usando el procedimiento de V f'c.	•	que
X					ZO AXIAL: El esfuerzo axial causado procedimiento de Verificación Rápia)
	nes			1			
С	NC	NA	D		CRITERIO DE EVALUAC	CION	COMENTARIO
X					: Todas las columnas de concreto e son capaces de desarrollar la capac		n las
				a Sismicidad: Completa Fuerzas Sísmicas	los siguientes ítems adicional	es a los ítems para muy b	paja sismicidad.
C	NC	_	D	ruerzus sismicus	CRITERIO DE EVALUAC	CION	COMENTARIO
		X		PORTICOS DE LOSA SOLIDA o placas sin vigas.	a: El SRFS no es un pórtico que cons		
		X		incluirán ningún elemento	PRE-ESFORZADOS: Los pórticos resi pre-esforzado o post-tensado dondo 6 en posibles ubicaciones de rótulas	e el pre-esfuerzo promedio ex	ccede
X					xisten columnas en un nivel con relo espesor de las columnas típicas de e		ral
			X		: La capacidad de corte de los mier momento en los extremos de los m		
			X		DEBIL: La suma de la capacidad de gas en los nudos del pórtico.	momento de las columnas es	
X				extienden continuamente d	enos 2 barras longitudinales en la p través de la longitud de cada viga orcionado en los nudos ya sea para gitud de los miembros.	del pórtico. Al menos el 25%	
X				confinados por estribos esp	s: Las longitudes de traslape en em _l aciados a no menos de 8db. Altern on acopladores mecánicos con una arra empalmada.	ativamente, las barras en	
X				longitudinal en vigas no es	traslapes de empalme o los acoplac tarán ubicados a una distancia de l es ubicaciones de las rótulas.		
				ESPACIAMIENTO DE ESTRIE	OS EN COLUMNAS: Las columnas o	dal nártica tandrán astribas	

del miembro con ganchos de 135 grados o más.

base a través de los nudos en columnas.

posibles ubicaciones de las rotulas.

espaciados a no menos de 8db.

X

X

X

espaciados a no menos de d/4 a través de su longitud y a no menos de 8db en todas las

ESPACIAMIENTO DE ESTRIBOS EN VIGAS: Todas las vigas tendrán estribos espaciados a no menos de d/2 a lo largo de su longitud. En posibles ubicaciones de rotulas plásticas, los

EXCENTRICIDAD EN LOS NUDOS: No existen excentricidades mayores que el 20% de la menor

GANCHOS EN ESTRIBOS: Los estribos de vigas y columnas están anclados dentro del núcleo

LOSAS SOLIDAS: Las losas solidas que no formen parte del SRFS tienen acero continuo en la

REFORZAMIENTO TRANSVERSAL DE NUDOS: Nudos viga-columna tendrán estribos

estribos estarán espaciados a no menos del minino de 8db o d/4.

dimensión en planta de la columna entre los ejes de vigas y columnas.

С	C NC NA D CRITERIO DE EVALUACION		COMENTARIO	
	x		CONTINUIDAD DEL DIAFRAGMA: Los diafragmas no están compuestos por pisos con desniveles y no tienen juntas de expansión.	
X			IRREGULARIDADES EN PLANTA: Se cuenta con la capacidad a tracción para desarrollar las fuerzas del diafragma en esquinas entrantes u otros lugares con irregularidad en planta.	
X			REFORZAMIENTO DEL DIAFRAGMA EN ABERTURAS: Existe refuerzo alrededor de todas las aberturas mayores al 50% del ancho del edificio en su mayor dimensión en planta.	

El diafragma cuenta con una inclinación en unos de los ambientes y se repite lo mismo hasta el último piso así como también en la zona de la terraza la cimentación tiene un desnivel con la cimentación de la toda la estructura.

Figura 60. Corte Transversal Arquitectónico Edificación Antigua

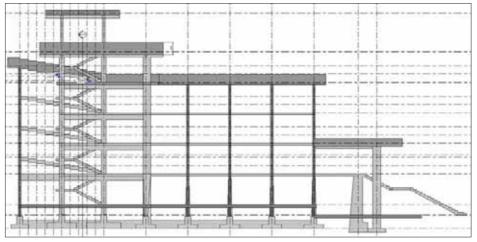


Figura 61. Vista Sur – Estructural Edificación Antigua

Los muros de albañilería están aislados de estructura principal y se puede apreciar claramente en rajaduras del tarrajeo y en la separación de ambientes.

Figura 62. Muros de Albañilería aislados de la estructura principal

La caja de la escalera está aislada de los muros de la edificación brindando un comportamiento aislado frente a un movimiento sísmico.

Figura 63. Caja de escalera aislada de la estructura

				LISTA DE VERIFICACION NO ESTRUCTURAL PARA RETENCION DE L Edificacion: Edificacion Antigua Ubicación: Av. D	A POSICION e la Cultura 773. UNSAAC
		Hecho por:			e la cultura 773. UNSAAC
				C: Cumple NC: No Cumple NA: No Aplicable	D: Desconocido
Sisten	nas d	e Sei	nurio	dad de Vida	
C	$\overline{}$		D	CRITERIO DE EVALUACION	COMENTARIO
Х				TUBERIA CONTRA INCENDIO: La tubería contra incendio está anclada y arriostrada.	
		Х		ACOPLES FLEXIBLES: La tubería contra incendio tiene acoples flexibles.	Tuberia y accesorios de metal
Х				ENERGIA DE EMERGENCIA: El equipo usado para brindar energía o controlar los sistemas de seguridad de vida está anclado o arriostrando.	
		X		ESCALERA Y DUCTOS DE HUMO: Escaleras presurizadas y ductos de control de humo están arriostrado y tienen conexiones flexibles en juntas sísmicas.	s
		X		SEPARACION DE LOS ROCIADORES EN FALSO TECHOS: Las perforaciones a través del falso techo, proporcionan una separación adecuada a los dispositivos contra incendio.	
X		1		LUCES DE EMERGENCIA: Los equipos de luces de emergencia y salida están anclados y arriostrados.	
Partic		_	_		T
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
			X	ALBAÑILERIA SIN REFUERZO: Albañilería sin refuerzo o particiones de ladrillos huecos de arcilla están arriostrados a una distancia de como máximo 3m en baja y moderada sismicidad, o como máximo 1.80m en alta sismicidad.	
		х		PARTICIONES PESADAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de	
-		^		albañilería no están soportadas lateralmente por un sistema integrado de falso techo.	
			x	DERIVA: Particiones rígidas están detalladas para acomodarse a los siguientes ratios de deriva: en pórticos de acero, pórticos de concreto, y edificios de entramados de madera, 0.02; en otros edificios, 0.005.	
		X		PARTICIONES LIGERAS SOPORTADAS POR FALSO TECHOS: La parte superior de las particiones de place de yeso no están soportadas lateralmente por un sistema integrado de techo.	15
X				SEPARACION ESTRUCTURAL: Las particiones que cruzan separaciones estructurales tienen juntas sísmicas o de control.	
nstal	acion	es de	e Luz	Z	
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				SOPORTE INDEPENDIENTE: Las instalaciones de luz que pesen más por pie2 que el falso techo están soportados por soportes independientes del sistema de suspensión del techo por un mínimo de 2 cables en las esquinas diagonalmente opuestas de cada aparato.	
		x		SOPORTES DE SUSPENSION: Las instalaciones de luz sobre soportes colgantes que están ancladas a una distancia igual o menor de 1.8m y, son soportados rígidamente, son libres de	
х				moverse con la estructura a la que están unidos sin dañar a los componentes contiguos. CUBIERTA DE LUMINARIAS: Las cubierta de las luminarias en las instalaciones de luz están	
Ľ				unidas con dispositivos seguros.	
Par <u>ap</u>	etos,	Corn	isas,	Ornamentación y Apéndices	
С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				PARAPETOS DE ALBAÑILERIA SIN REFUERZO NO SOPORTADA O CORNISAS: Los parapetos de albañilería no reforzada sin soporte lateral o cornisas tienen una relación altura-espesor no mayor que: para seguridad de vida en baja o moderada sismicidad, 2.5; para seguridad de vida	
		х		en alta sismicidad y para retención de la posición en cualquier sismicidad, 1.5. MARQUESINAS: Marquesinas en salidas de los edificios están ancladas a la estructura con un espaciamiento no mayor que: para seguridad de vida en baja y moderada sismicidad, 3m; para	
-	+			seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, PARAPETOS DE CONCRETO: Parapetos de concreto con relacione de altura-espesor mayores	
Х	_			que 2.5 tienen refuerzo vertical.	
x				APENDICES: Cornisas, parapetos, anuncios y otros adornos o apéndices que se extienden por encima del punto más alto de anclaje de la estructura o componentes de voladizos están reforzados y anclados al sistema estructural con un espaciamiento igual o menor que 1.80m.	

Este ítem de la lista de verificación no se aplica a parapetos o cornisas cubiertos por otros ítems

Escaleras

С	NC	NA	D	CRITERIO DE EVALUACION COMENTARIO		
x			CAJA DE ESCALERA: Muros de albañilería sin refuerzo alrededor de la escalera están restringidos lateralmente y tienen relaciones de altura-espesor no mayores que: para seguridad de vida en baja o moderada sismicidad, de 15 a 1; para seguridad de vida en alta sismicidad y para retención de la posición en cualquier sismicidad, 12 a 1.			
x				DETALLE DE ESCALERA: En estructuras de pórticos de concreto, las conexiones entre la escalera y la estructura no depende de anclajes de poca profundidad en el concreto.		

Contenido y Mobiliario

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		x		ESTANTES DE ALMACENAMIENTO INDUSTRIAL: Estantes de almacenamiento industrial de más de 3.60m de altura cumplen con los requisitos de la norma ANSI/MH 16.1 modificado por el ASCE 7 capítulo 15.	
	x			CONTENIDOS ALTOS Y ESTRECHOS: Contenidos de más de 1.80m de altura con relaciones de altura-espesor o altura-ancho mayores que 3 a 1 serán anclados a la estructura o entre ellos.	
	x		l	CONTENIDO CON TENDENCIA A CAER: Equipos, artículos almacenados, u otros contenidos que pesen más de 9kg cuyo centro de masa esta 1.20m por encima del piso del nivel serán arriostrados o restringidos de alguna forma.	
		X		FALSO SUELO: Falso suelos de más de 22 cm de altura serán arriostrados.	
		x		EQUIPOS EN FALSO SUELO: Equipos y otros contenidos soportado por el sistema de falso suelo serán anclados o arriostrados a la estructura independientemente del falso suelo.	
		x		CONTENIDO SUSPENDIDO: Artículos suspendidos sin arrostramiento lateral son libres de balancearse o moverse con la estructura de la que se suspenden sin dañarse o dañar a los componentes contiguo.	

Equipamiento Mecánico y Eléctrico

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
X				EQUIPOS PROPENSOS A CAERSE: Equipos con peso mayor que 20lb cuyo centro de masa está a más de 1.20m del nivel de piso adyacente, y que no es un equipo en línea, esta arriostrado.	
		x		EQUIPOS EN LINEA: Equipos instalados en línea con un sistema de ductos o tuberías, con un peso operativo de más de 75lb, está apoyado e independientemente arriostrado lateralmente del sistema de ductos o tuberías.	
		x		EQUIPOS ALTOS Y ESTRECHOS: Equipos de más de 1.80 m de altura con una relación alturaespesor o altura-ancho mayor que 3 a 1 están anclados a la losa de piso o a los muros estructurales adyacentes.	
		x	PUERTAS MECANICAS: Puertas operadas mecánicamente están detalladas para operar en ratios de deriva de piso de 0.01.		
		x		EQUIPOS SUSPENDIDOS: Equipos suspendidos sin arriostramiento lateral son libres para balancearse o moverse con la estructura de la que está suspendido sin dañarse o dañar o los componentes contiguos.	
		x		AISLADORES DE VIBRACION: Equipo montado sobre aisladores de vibración están equipados con restricciones horizontales o amortiguadores y con restricciones verticales para resistir volteo.	
		x		EQUIPO PESADO: Equipos pesados soportados por el piso o por plataformas con peso mayor que 400lb están anclados a la estructura.	
		X		EQUIPO ELECTRICO: Equipo eléctrico esta arriostrado lateralmente a la estructura.	
		x		ACOPLES DE CONDUCTOS: Los conductos con un tamaño operativo mayor que 2.5in que estén unidos a los paneles, gabinetes, u otros equipos y están sometidos a desplazamientos sísmicos relativos tienen acoples o conexiones flexibles.	

Tub	ıberías					
	С	NC NA D CRITERIO DE EVALUACION COMENTARIO				
	X				ACOPLES FLEXIBLES: Tuberías de fluidos y gas tiene acoples flexibles.	
	x				TUBERIAS DE FLUIDOS Y GAS: Tuberías de fluidos y gas están anclados y arriostrados a la estructura para limitar derrames o fugas.	
	x				ABRAZADERAS EN C: Abrazaderas en C que soportan tuberías con diámetros mayores que 2.5in están restringidas.	

TUBERIAS CRUZANDO JUNTAS SISMICAS: Tuberías que cruzan juntas sísmicas o planos aislados o están conectadas a estructuras independientes tienen acoples u otro detallamiento

para acomodarse al desplazamiento sísmico relativo.

Ductos

С	NC	NA	D	CRITERIO DE EVALUACION	COMENTARIO
		X		DUCTOS ARRIOSTRADOS: Red de ductos rectangulares con sección transversal mayor que 6ft2 y ductos circulares con diámetros mayores que 28in están arriostrados. El máximo espaciamiento del arriostramiento transversal no excederá de 30ft. El máximo espaciamiento de arriostramiento longitudinal no excederá de 60ft.	
		X		SOPORTE DE LOS DUCTOS: Los ductos no son soportados por tuberías o conductos eléctricos.	
		x		DUCTOS CRUZANDO JUNTAS SISMICAS: Ductos que cruzan juntas sísmicas, planos aislados o están conectados a estructuras independientes tienen acoples u otro detallamiento para acomodarse a los desplazamientos sísmicos relativos.	

La tubería contra incendio está correctamente anclada y relativamente nueva brindando seguridad a las personas de la edificación. Así como el ascensor está totalmente aislado de la estructura principalmente y fue adicionado a la edificación hace pocos años.

Figura 64. Tubería contra incendio correctamente anclada y moderna al igual que la estructura del ascensor

Figura 65. Estado de los componentes No Estructurales

4.3.2.9. Evaluación Nivel 3 - Sistemática.

En este nivel de evaluación se analizará el comportamiento inelástico de la edificación, así como la respuesta no lineal de los elementos estructurales ante los peligros sísmicos BSE – 1E y BSE – 2E.

En esta sección se realizará un Análisis Lineal Estático basado en la norma E.030 seguido de un Análisis Dinámico Lineal para estimar las propiedades dinámicas como las frecuencias y los modos de vibración de las estructuras. Por último, se realizará un Análisis Estático No Lineal (Pushover) para evaluar el comportamiento no lineal de las estructuras y así determinar si cumple con el objetivo de desempeño seleccionado.

Se utilizó el programa ETABS para poder realizar un modelamiento de las estructuras evaluadas ya que estos nos permitirán predecir desplazamientos en base a un comportamiento no lineal tanto de la estructura como la no linealidad de los materiales.

4.3.2.9.1. Bloque A Edificación Nueva - Evaluación Sistemática

El modelamiento de esta estructura se realizó utilizando el programa ETABS y solo se tomaron en cuentan los elementos resistentes a fuerzas laterales. No se modeló los muros de albañilería presentes ya que estos están notoriamente aislados de la estructura principal y en los planos estructurales no se cuentan como estructurales. Estos elementos se tomaron en cuenta solo como peso muerto de la edificación.

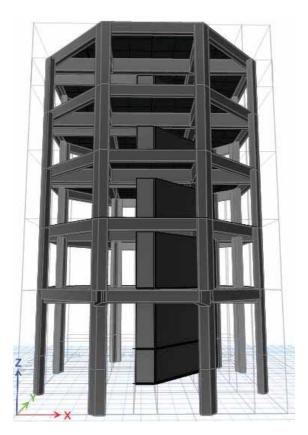
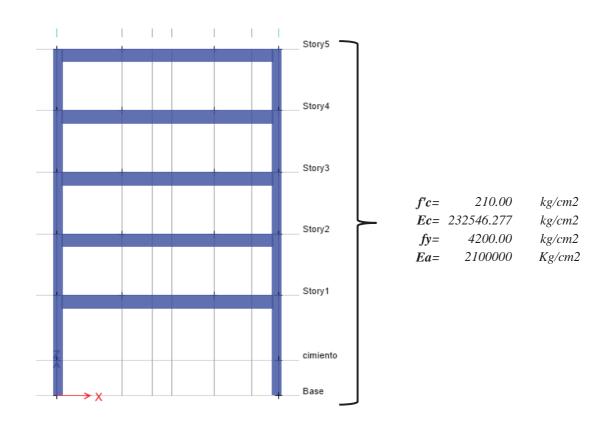


Figura 66. Modelamiento Bloque A en programa ETABS

Fuente: Propia

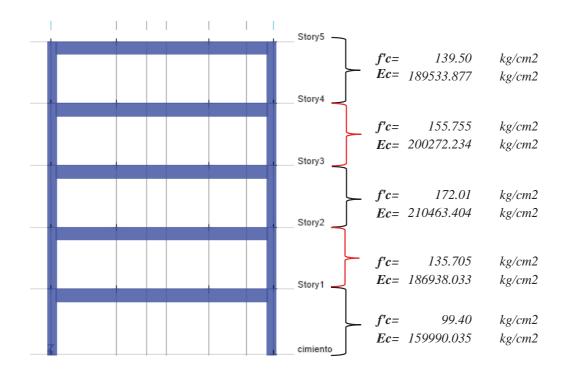


Las características principales de los materiales de la estructura se tomarán en base los planos estructurales y a los ensayos de extracción con diamantina del concreto detalladas en la sección 4.3.2.3.

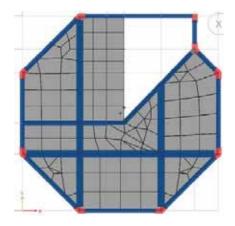
Ya que los resultados obtenidos por los núcleos de concreto son por muy debajo de los de diseño, se utilizaron dos casos de asignación de f'c en el programa para poder determinar diferentes tipos de comportamiento de la estructura y poder realizar una comparación:

Primer Caso

Se utilizará una resistencia de diseño f'c = 210 kg/cm2 en todos los elementos estructurales con un módulo de elasticidad del concreto Ec = 232546.277 kg/cm2 y el acero de refuerzo con fy = 4200 kg/cm2 según los planos estructurales de diseño de la estructura.



Segundo Caso


Se utilizará los resultados de los núcleos de concreto extraídos en cada piso, y en los pisos intermedios de donde no se sacaron las muestras se utilizará un promedio de las resistencias encontradas de los pisos adyacentes. El acero de refuerzo tendrá las mismas características de los planos con fy = 4200 kg/cm2 y Ea = 2100000 kg/cm2

Las secciones de los elementos estructurales se tomarán de acuerdo a los planos estructurales de la edificación.

Las vigas son todas rectangulares y su configuración de refuerzo de acero varía de acuerdo a su ubicación.

La estructura presenta un tipo de columna que se adecua a la forma octogonal de la edificación.

Las secciones de los elementos estructurales de la edificación se detallan a continuación:

Vigas

La estructura está compuesta de 4 tipos de vigas rectangulares con diferente cuantía de acero como se ve a continuación.

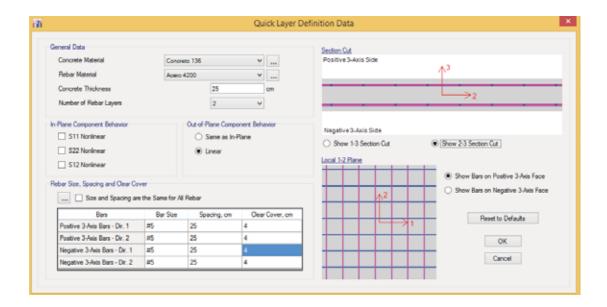
Tabla 46. Secciones de vigas – Bloque A Fuente: Planos Estructurales

V-01	V-02	V-03	V-04	
40x70 cm	40x70 cm	25x50 cm	40x70 cm 10 ø 1"	
12 ø 1"	15 ø 1"	6ø 5/8"		
ρ = 2.19%	ρ = 2.73%	ρ = 0.96%	ρ = 1.82%	
Estribos ø 3/8"	Estribos ø 3/8"	Estribos ø 3/8"	Estribos ø 3/8"	
::				

Columnas

La estructura presenta una configuración en planta con dos secciones diferentes de columnas como se detalla a continuación:

Tabla 47. Secciones de Columnas – Bloque A Fuente: Planos Estructurales


C-1, C-2, C-3, C-4, C-5, C-6, C-7 y C-8	C-9	
Area = 2031.5 cm2	30x50 cm	
12 ø 1"	10 ø 1"	
ρ = 3.01%	ρ = 3.40%	
Estribos ø 3/8"	Estribos ø 3/8"	

Placa

La edificación presenta un muro estructural de concreto armado y se ubica al centro de la edificación. Este muro estructural presenta un refuerzo de acero de 5/8" vertical y horizontalmente espaciados cada 25 cm.

Losas

Las losas son aligeradas de una sola dirección con un espesor de 25 cm en los entrepisos y 20 cm en el techo.

Análisis Estático Lineal

Seguidamente se realizará el Análisis Estático Lineal con el concreto de diseño de 210 kg/cm2 y bajos los parámetros de la norma E.030 y se determinará la cortante basal estática y las irregularidades existentes en la estructura.

Según la norma E.030, existe irregularidad de piso blando cuando en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral de entrepiso inmediato superior o es menor que 80% de la rigidez lateral promedio de los tres nieles superiores adyacentes

Tabla 48. Rigideces por piso – Dirección X - Bloque A

Nivel	Rigidez X	<70% Entrepiso	<80% Tres Niveles
111101	(tonf/mm)	Inmediato Superior	Superiores
Piso 5	13.76		
Piso 4	22.03	9.63	
Piso 3	25.18	15.42	
Piso 2	28.36	17.63	16.26
Piso 1	48.29	19.85	20.15

Tabla 49. Rigideces por piso – Dirección Y - Bloque A

Nivel	Rigidez Y (tonf/mm)	<70% Entrepiso Inmediato Superior	<80% Tres Niveles Superiores
Piso 5	12.19		
Piso 4	20.04	8.53	
Piso 3	23.22	14.03	
Piso 2	26.46	16.25	14.79
Piso 1	44.68	18.52	18.59

Se observa que no existe irregularidad de piso blando y tampoco hay irregularidad de piso débil debido a que en todos los niveles existe los mismos elementos resistentes a las fuerzas laterales.

La irregularidad de masa o peso se da cuando el peso de un piso determinado es mayor que 1.5 veces el peso de un piso adyacente excluyendo azoteas y sótanos.

Tabla 50. Masas por piso – Dirección X y Y

Nivel	Masa (kg) X-Y	1.5xPiso Superior	1.5xPiso Inferior
Piso 5	78614.3		212465.82
Piso 4	141643.88		231729.24
Piso 3	154486.16	212465.82	229953.18
Piso 2	153302.12	231729.24	267291.81
Piso 1	178194.54	229953.18	

La estructura no presenta irregularidad de masa.

Se verifica la irregularidad torsional de la estructura y esta existe cuando en cualquiera de las direcciones de análisis el máximo desplazamiento relativo de entrepiso en un extremo del edificio en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1.3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga.

Tabla 51. Desplazamiento Máximos Relativos y Promedios – Bloque A

Nivel 5	Despla X (cm)	Desplax1.3	Despla Max	Despla Y (cm)	Desplax1.3	Despla Max
Extremo 1	1.11			1.62		
Extremo 2	1.29			1.62		
Extremo 3	1.41			1.52		
Extremo 4	0.99			1.52]	
Extremo 5	0.99	1.58	1.41	1.41	1.90	1.62
Extremo 6	1.11			1.35]	
Extremo 7	1.29			1.35]	
Extremo 8	1.34			1.37	1	
Extremo 9	1.41			1.37	1	
Promedio	1.22			1.46		

Se verifica que no existe irregularidad torsional en base a los desplazamientos máximos y promedios.

Se verifica la discontinuidad en el diafragma ya que tiene una sección transversal del diafragma con un área neta resistente menor que el 25% del área de la sección transversal total de la misma dirección. Por tanto, tendría un factor Ip de 0.85.

También se verificará que tipo de sistema estructural es:

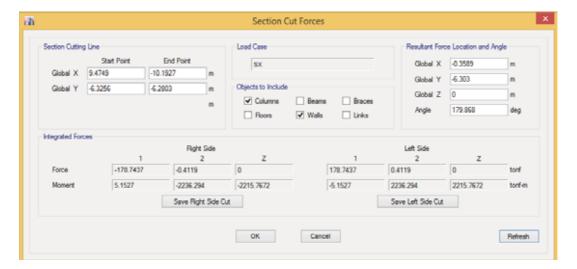
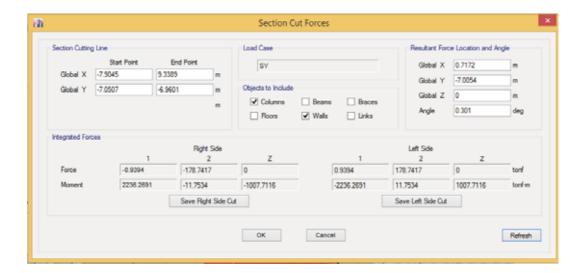


Figura 67. Fuerzas Laterales a Columnas y Placas – Bloque A – Dirección X


Tabla 52. Fuerzas absorbidas por Columnas y Muros – Bloque A – Dirección X

	Columnas	Muros
Fuerza (tn)	48.00	130.74
Porcentaje	26.85%	73.15%

En la Tabla 52. Se verifica en la **dirección X**, que en los muros estructurales actúa más del 70% de la fuerza cortante por tanto es un sistema de **muros estructurales** según la norma E.030 con un factor de reducción sísmica de $R_0 = 6$.

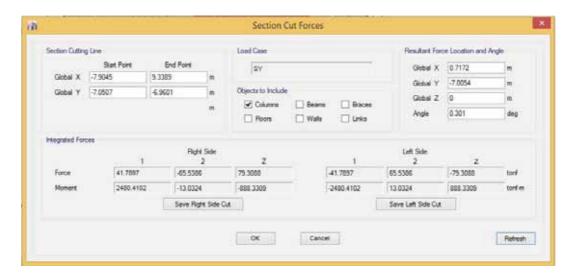


Figura 68. Fuerzas Laterales a Columnas y Placas – Bloque A – Dirección Y

Tabla 53. Fuerzas absorbidas por Columnas y Muros - Bloque A - Dirección Y

	Columnas	Muros
Fuerza (tn)	65.54	113.20
Porce ntaje -	36.67%	63.33%

En la Tabla 53. Se determina en la **dirección Y** la cortante que actúa en el muro esta entre el 20% y 70%, por tanto, es un **sistema dual** según la norma E.030 con un factor de reducción sísmica de $\mathbf{R}_0 = \mathbf{7}$.

Se hallará la cortante basal estática con los datos obtenidos a partir de las irregularidades halladas y del tipo de sistema estructural para las dos direcciones.

 $Tabla\ 54.\ Coeficientes\ de\ fuerzas\ Basal-Bloque\ A-Direcci\'on\ X$

DIRECCION X			
Zona	Z =	0.25	
Uso	U=	1.5	
	S=	1.4	
Suelo	$T_P =$	1	
	$T_L =$	1.6	
David da Evradora antal	T=	0.611	
Periodo Fundamental	k=	1.0555	
Factores de Imagularidad	Ia=	1	
Factores de Irregularidad	Ip=	0.85	
	$R_0=$	6	
Coeficiente Basico de Reduccion	R=	5.1	
Factor de Amplificacion Sismica	C=	2.5	
_			

Tabla 55. Coeficientes de fuerzas Basal – Bloque A – Dirección Y

Coeficiente de Fuerza Basal

0.257

DIRECCION Y			
Zona	Z =	0.25	
Uso	U=	1.5	
	S=	1.4	
Suelo	$T_P=$	1	
	T_L =	1.6	
Periodo Fundamental	T=	0.493	
Periodo Fundamentai	T _L = T= k= Ia= Ip=	0.9965	
Eastenes de Innegularidad	Ia=	1	
Factores de Irregularidad	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.85	
	$R_0=$	7	
Coeficiente Basico de Reduccion	R=	5.95	
Factor de Amplificacion Sismica	C=	2.5	
Coeficiente de Fuerza Basal	C=	0.221	

Se determinar las fuerzas cortantes basales en las dos direcciones de la estructura

Tabla 56. Fuerzas Cortantes Basales Estáticas – Bloque A

Nivel	Vx (tn)	Vy (tn)
Piso 5	-34.355	-29.4471
Piso 4	-85.2502	-73.0715
Piso 3	-128.758	-110.3636
Piso 2	-160.022	-137.1612
Piso 1	-178.744	-153.2091

Análisis Dinámico Lineal

En el análisis dinámico se determinará las derivas si están dentro de lo permisible en la norma E.030 y también se hallará la cortante basal dinámica para utilizarla luego en el Análisis Estático No Lineal.

Según la norma E.030 en estructuras irregulares, la cortante dinámica debe ser por lo menos el 90% de la cortante estática.

Tabla 57. Cortante Basal Dinámico – Bloque A – Dirección X

Nivel	Direccion	Cortante	Cortante	90% CE
Mivei	Direccion	Estatico (tn)	Dinamico (tn)	90% CE
Piso 5	Χ	34.355	17.9454	
Piso 4	Х	85.2502	42.9162	
Piso 3	Х	128.7577	66.7598	
Piso 2	Χ	160.0216	84.7277	
Piso 1	Х	178.7442	93.5594	160.86978

Cortante Dinamico XX =	160.86978

Tabla 58. Cortante Basal Dinámico – Bloque A – Dirección Y

Nivel	Direccion	Cortante Estatico (tn)	Cortante Dinamico (tn)	90% CE
Piso 5	Υ	29.4471	15.7893	
Piso 4	Υ	73.0715	37.8416	
Piso 3	Υ	110.3636	58.2026	
Piso 2	Υ	137.1612	73.5941	
Piso 1	Υ	153.2091	81.3889	137.88819

Cortante Dinamico YY =	137.88819
------------------------	-----------

Seguidamente se verificará los modos de vibración de la estructura y el porcentaje de masas participativas y se verifica la suma de masas participativas que llegan al 100%.

Tabla 59. Modos de vibración y masas participativas – Bloque A

Modo	Periodo (s)	Masa Participativa X	Masa Participativa Y	Masa Acumulada X	Masa Acumulada Y
1	0.611	36.81%	42.77%	36.81%	42.77%
2	0.493	2.63%	0.29%	39.45%	43.06%
3	0.207	40.70%	32.39%	80.14%	75.45%
4	0.189	2.54%	8.76%	82.68%	84.21%
5	0.156	0.74%	0.06%	83.42%	84.27%
6	0.1	1.76%	2.07%	85.18%	86.34%
7	0.087	0.32%	0.05%	85.51%	86.39%
8	0.064	0.49%	1.42%	85.99%	87.81%
9	0.06	0.31%	0.01%	86.31%	87.83%
10	0.055	10.09%	9.26%	96.40%	97.09%
11	0.048	0.15%	0.03%	96.55%	97.12%
12	0.047	0.40%	0.26%	96.94%	97.38%
13	0.028	2.25%	1.97%	99.19%	99.35%
14	0.02	0.67%	0.55%	99.86%	99.90%
15	0.017	0.13%	0.10%	100.00%	100.00%

Las verificaciones de las derivas de la estructura se muestran a continuación:

Tabla 60. Derivas por piso – Bloque A

Nivel	Direccion	Deriva	Deriva Real	Deriva Limite	Observacion
Nivel 5	Χ	0.000543	0.002769	0.007	CUMPLE
Nivel 5	Υ	0.000649	0.003862	0.007	CUMPLE
Nivel 4	Х	0.000961	0.004901	0.007	CUMPLE
Nivel 4	Υ	0.001077	0.006408	0.007	CUMPLE
Nivel 3	Χ	0.001373	0.007002	0.007	NO CUMPLE
Nivel 3	Υ	0.001481	0.008812	0.007	NO CUMPLE
Nivel 2	Χ	0.001579	0.008053	0.007	NO CUMPLE
Nivel 2	Υ	0.001670	0.009937	0.007	NO CUMPLE
Nivel 1	Χ	0.001011	0.005156	0.007	CUMPLE
Nivel 1	Υ	0.001073	0.006384	0.007	CUMPLE

Las derivas no cumplen en el Piso 2 y el Piso 3 según los parámetros de la norma E.030 tanto para la dirección X y para la dirección Y.

Análisis Estático No Lineal

Se aplicará una fuerza lateral la cual se va a ir incrementando gradualmente hasta llegar a la capacidad máxima de la estructura. Se utilizará el cortante dinámico hallado anteriormente y los pesos por piso para hallar el patrón de cargas por piso que se aplicará a la estructura

Tabla 61. Patrón de cargas – Pushover – Dirección X – Bloque A

Cortante Dinamico X=		160.87	tn		
Nivel	Peso W (kg)	h	Wxh	%	Pushover X (tn)
Piso 5	78614.3	18	1415057.4	18.82%	30.28
Piso 4	141643.88	14.8	2096329.424	27.88%	44.86
Piso 3	154486.16	11.6	1792039.456	23.84%	38.35
Piso 2	153302.12	8.4	1287737.808	17.13%	27.56
Piso 1	178194.54	5.2	926611.608	12.33%	19.83
		Σ=	7517775.696		

Tabla 62. Patrón de cargas – Pushover – Dirección Y – Bloque A

Cortante Dinamico Y=		ortante Dinamico Y= 137.89 tn			
Nivel	Peso W (kg)	h	Wxh	%	Pushover Y (tn)
Piso 5	78614.3	18	1415057.4	18.82%	25.95
Piso 4	141643.88	14.8	2096329.424	27.88%	38.45
Piso 3	154486.16	11.6	1792039.456	23.84%	32.87
Piso 2	153302.12	8.4	1287737.808	17.13%	23.62
Piso 1	178194.54	5.2	926611.608	12.33%	17.00
		Σ=	7517775.696		

Seguidamente se crearán los estados de carga. El primero es la carga gravitacional No Lineal (CGNL) el cual considera solo el peso de la estructura y el segundo estado de carga es el patrón de cargas lateral pushover (AENL) para ambas direcciones que será la continuación de CGNL.

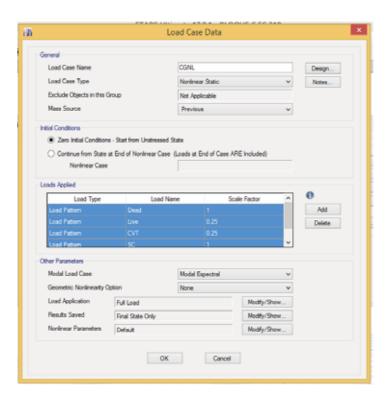


Figura 69. Estado de carga gravitacional – CGNL – Bloque A

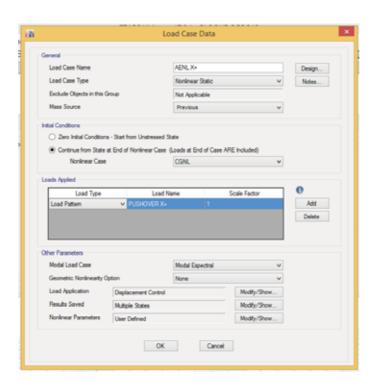


Figura 70. Estado de carga del Pushover en la dirección X y Y – Bloque A

El patrón de carga lateral será en base a un desplazamiento de control como máximo de 30 cm en el centro de masa del techo.

Seguidamente se colocan las características No Lineales del Material como la no linealidad del elemento. Estas características variaran de acuerdo al grado de giro de las columnas como a la ubicación donde estén. Es de resaltar que, en la configuración de la edificación, cada columna tendrá una diferente curva momento-curvatura de acuerdo a su ubicación.

Se utilizará el modelo de Mander para curva esfuerzo – deformación del concreto y del acero. Así mismo, la asignación de rotulas plásticas se dejarán bajo los parámetros del programa.

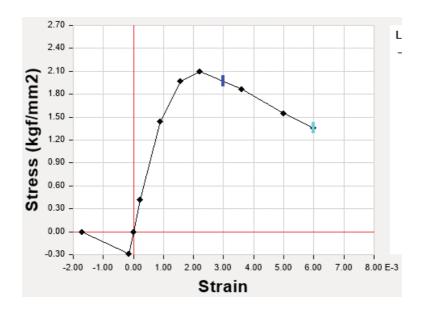


Figura 71. Curva Esfuerzo Deformación del Concreto – Bloque A

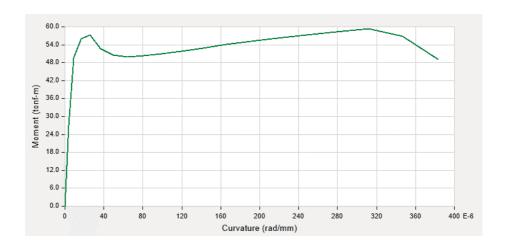
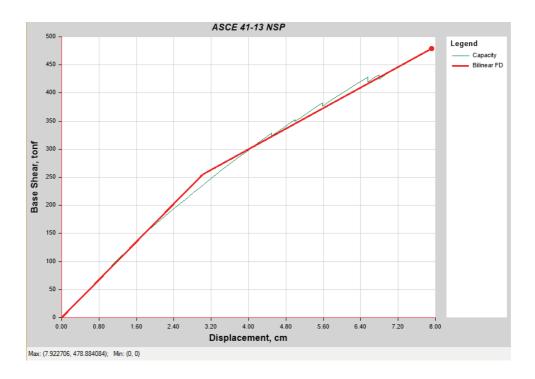
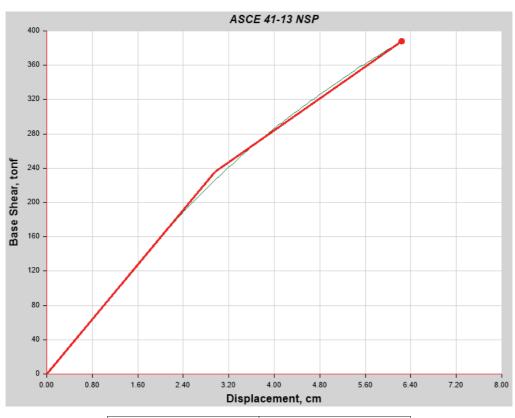



Figura 72. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A

Primer Caso:


Se obtendrá la primera curva de capacidad de la estructura con concreto f'c=210 kg/cm2 en toda la edificación mostrando el desplazamiento máximo y la cortante máxima que logra soportar.

Max Desplazamiento	
XX	Max Fuerza Cortante XX
7.923 cm	478.8841 tn

Figura 73. Curva de capacidad en la dirección X del Bloque A – Primer Caso

Max Desplazamiento YY Max Fuerza Cortante YY
6.239 cm 387.9222 tn

Figura 74. Curva de capacidad en la dirección Y del Bloque A – Primer Caso

Sobre la curva de capacidad se obtiene la curva bilineal a través del programa, la cual nos determinará el Vy (Límite de Fluencia Efectiva) y dy (desplazamiento para el límite de Fluencia Efectiva), con los cuáles procederemos a calcular el desplazamiento objetivo de la edificación.

Tabla 63. Determinación del Objetivo de Desplazamiento – Bloque A – Primer Caso

Objetivo Desplazamiento

	XX		Y	Y
	Tr=225 años	Tr=975 años	Tr=225 años	Tr=975 años
Vy=	254.6312 tn	254.6312 tn	236.0742 tn	236.0742 tn
Yy=	3.02 cm	3.02	2.955 cm	2.955
Rigidez lateral efectiva Ke=	84.31496689	84.314967	79.889746	79.889746
Pendiente de zona elastica	10.8358	10.8358	11.9838	11.9838
i charite de zona ciastica	0.125	0.125	0.15	0.15
Rigidez lateral elastica K≔	86.6864	86.6864	79.892	79.892
Ti=	0.611	0.611	0.611	0.611
Te=	0.619532875	0.6195329	0.6110086	0.6110086
Sa=	0.222352941	0.2758824	0.1905882	0.2364706
Co=	1.4	1.4	1.4	1.4
W=	706241	706241	604863.33	604863.33
Cm=	0.9	0.9	0.9	0.9
ustrength=	0.555043087	0.6886646	0.4394883	0.5452911
C1=	0.980678627	0.9864809	0.974977	0.9797004
C2=	1.000644788	1.0003157	1.0010519	1.0006923
Desplazamiento Objetivo=	0.029135035 m	0.0363509 m	0.024159 m	0.0301095 m
Factor de corrección por torsión	1.161767391	1.161767391	1.111643836	1.111643836
Desplazamiento Objetivo final	3.38 cm	4.22 cm	2.69 cm	3.35 cm

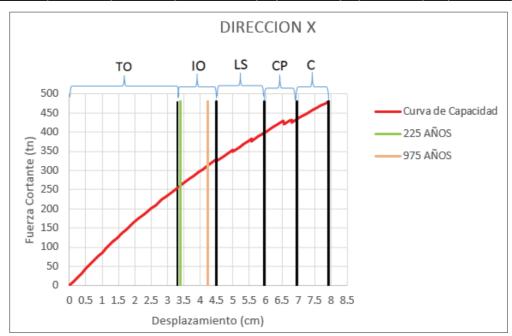


Figura 75. Objetivo de Desempeño de la Estructura en dirección X – Bloque A – Primer Caso

En la fig. 73. Se observa que para un sismo de 225 años y 975 años en la dirección X se encuentran en el rango de Ocupación Inmediata, por tanto, el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de vida respectivamente.

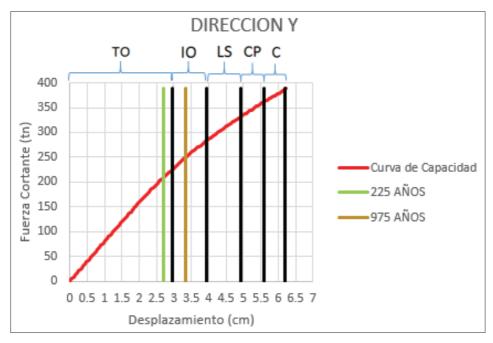
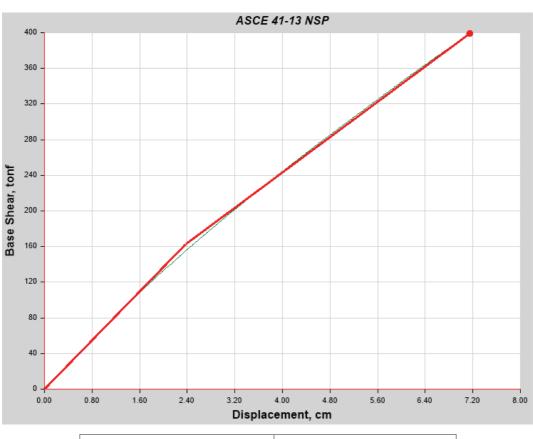


Figura 76. Objetivo de Desempeño de la Estructura en dirección Y – Bloque A – Primer Caso


En la fig. 74. Se observa que para un sismo de 225 años (el cual se encuentra en un rango de totalmente operacional) y 975 años (el cual se encuentra en un rango de Ocupación Inmediata) en la dirección X el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida respectivamente.

Segundo Caso:

Se obtendrá la segunda curva de capacidad de la estructura con concreto f'c variable (de acuerdo a la prueba de diamantina) por piso en toda la edificación mostrando el desplazamiento máximo y la cortante máxima que logra soportar.

Max Desplazamiento XX Max Fuerza Cortante XX
7.1505 cm 398.925 tn

Figura 77. Curva de capacidad en la dirección X del Bloque A – Segundo Caso

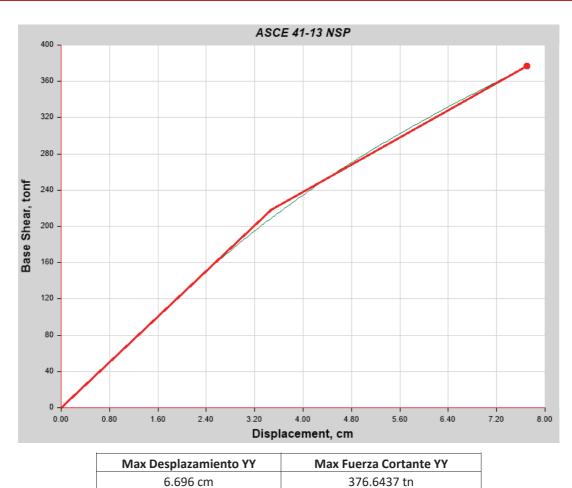


Figura 78. Curva de capacidad en la dirección Y del Bloque A – Segundo Caso

Sobre la curva de capacidad se obtiene la curva bilineal a través del programa, la cual nos determinará el Vy (Límite de Fluencia Efectiva) y dy (desplazamiento para el límite de Fluencia Efectiva), con los cuáles procederemos a calcular el desplazamiento objetivo de la edificación.

Tabla 64. Determinación del Objetivo de Desplazamiento – Bloque A – Segundo Caso

Objetive Deeplesemiente

Objetivo Desplazamiento					
		XX		YY	
	Tr=225 años	Tr=975 años	Tr=225 años	Tr=975 años	
Vy=	162.8279 tn	162.8279 tn	228.2447 tn	228.2447 tn	
Yy=	2.376 cm	2.376	3.467 cm	3.467	
Rigidez lateral efectiva Ke=	68.53026094	68.53026094	65.8334872	65.833487	
Pendiente de zona elastica	2.7155	2.7155	4.8442	4.8442	
Peliciente de Zona elastica	0.04	0.04	0.077	0.077	
Rigidez lateral elastica Ki=	67.8875	67.8875	62.9116883	62.911688	
Ti=	0.688	0.688	0.688	0.688	
Te=	0.684765944	0.684765944	0.67255945	0.6725594	
Sa=	0.222352941	0.275882353	0.19058824	0.2364706	
Co=	1.4	1.4	1.4	1.4	
W=	706241	706241	706241	706241	
Cm=	0.9	0.9	0.9	0.9	
ustrength=	0.867979549	1.076937588	0.530751	0.6585244	
C1=	0.995307485	1.002734658	0.98271017	0.9874181	
C2=	1.000046463	1.00001578	1.00060849	1.0003222	
Desplazamiento Objetivo=	0.036102888 m	0.045127203 m	0.02949065 m	0.036755 m	
Factor de corrección por torsión	1.161767391	1.161767391	1.11164384	1.1116438	
Desplazamiento Objetivo final	4.19431576 cm	5.24273125 cm	3.27831024 cm	4.0858503 cm	

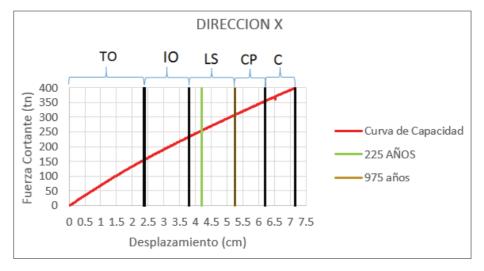
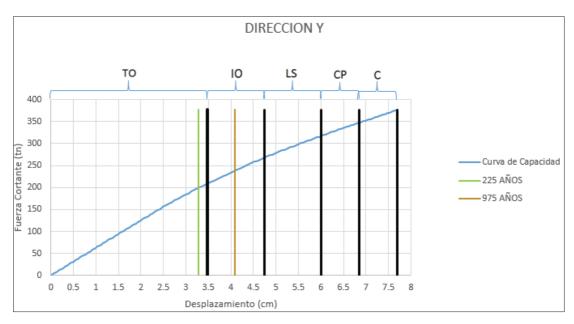
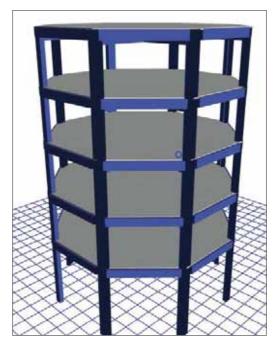


Figura 79. Objetivo de Desempeño de la Estructura en dirección X – Bloque A – Segundo Caso

En la fig. 77. Se observa que para un sismo de 225 años el edificio se encuentra en un rango de Seguridad de Vida y para 975 años en un rango de Prevención al Colapso en la dirección X por ende el edificio no cumple con el Objetivo de desempeño de Ocupación inmediata ni de Seguridad de Vida respectivamente.




Figura 80. Objetivo de Desempeño de la Estructura en dirección Y – Bloque A – Segundo Caso

En la fig. 78. Se observa que para un sismo de 225 años el edificio se encuentra en un rango de totalmente operacional y para 975 años en un rango de Ocupación Inmediata en la dirección Y por ende el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida respectivamente.

4.3.2.9.2. Bloque C Edificación Nueva - Evaluación Sistemática

El modelamiento de esta estructura se realizó utilizando el programa ETABS con los mismos criterios que el Bloque A en tanto lo concerniente a los 2 casos de análisis.

Las secciones de los elementos estructurales de la edificación se detallan a continuación:

Vigas

La estructura está compuesta de 3 tipos de vigas rectangulares con diferente cuantía de acero como se ve a continuación:

Tabla 65. Secciones de vigas – Bloque C Fuente: Planos Estructurales

V-01	V-02	V-03
40x70 cm	40x70 cm	25x50 cm
12 ø 1"	15 ø 1"	6 ø 5/8"
ρ = 2.19%	ρ = 2.73%	$\rho = 0.96\%$
Estribos ø 3/8"	Estribos ø 3/8"	Estribos ø 3/8"
••••	••••	
:	::::	

Columnas

La estructura presenta una configuración en planta con dos secciones diferentes de columnas como se detalla a continuación:

Tabla 66. Secciones de Columnas – Bloque A Fuente: Planos Estructurales

C-1, C-2, C-3, C-4, C- 5, C-6 y C-7	C-8	
Área = 2031.5 cm2	Área = 2031.5 cm2	
12 ø 1"	6 ø 1" + 4 ø 3/4"	
ρ = 3.01%	ρ = 2.06%	
Estribos ø 3/8"	Estribos ø 3/8"	

Losas

Las losas son aligeradas de una sola dirección con un espesor de 25 cm en los entrepisos y 20 cm en el techo.

Análisis Estático Lineal

Seguidamente se realizará el Análisis Estático Lineal con el concreto de diseño de 210 kg/cm2 y bajos los parámetros de la norma E.030 y se determinará la cortante basal estática y las irregularidades existentes en la estructura.

Según la norma E.030, existe irregularidad de piso blando cuando en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral de entrepiso inmediato superior o es menor que 80% de la rigidez lateral promedio de los tres nieles superiores adyacentes

Tabla 67. Rigideces por piso – Dirección X - Bloque C

Nivel	Rigidez X (tonf/mm)	<70% Entrepiso Inmediato Superior	<80% Tres Niveles Superiores
Piso 5	8.41061		
Piso 4	10.34185	5.887427	
Piso 3	10.65044	7.239295	
Piso 2	11.12663	7.455308	7.840773333
Piso 1	15.73739	7.788641	8.565045333

Tabla 68. Rigideces por piso – Dirección Y - Bloque C

Nivel	Rigidez Y (tonf/mm)	<70% Entrepiso Inmediato Superior	<80% Tres Niveles Superiores
Piso 5	7.99319		
Piso 4	9.80936	5.595233	
Piso 3	10.11003	6.866552	
Piso 2	10.59609	7.077021	7.443354667
Piso 1	15.20359	7.417263	8.137461333

Se observa que no existe irregularidad de piso blando y tampoco hay irregularidad de piso débil debido a que en todos los niveles existe los mismos elementos resistentes a las fuerzas laterales.

La irregularidad de masa o peso se da cuando el peso de un piso determinado es mayor que 1.5 veces el peso de un piso adyacente excluyendo azoteas y sótanos.

Tabla 69. Masas por piso – Dirección X y Y

Nivel	Masa X-Y	1.5 x Piso Superior	1.5x Piso Inferior
Piso 5	82657.35	0	182929.44
Piso 4	121952.96	123986.025	182929.44
Piso 3	121952.96	182929.44	179455.095
Piso 2	119636.73	182929.44	237994.995
Piso 1	158663.33	179455.095	0

La estructura no presenta irregularidad de masa.

Se verifica la irregularidad torsional de la estructura y esta existe cuando en cualquiera de las direcciones de análisis el máximo desplazamiento relativo de entrepiso en un extremo del edificio en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1.3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga.

Tabla 70. Desplazamiento Máximos Relativos y Promedios – Bloque C

Nivel 5	Despla X (cm)	Desplax1.3	Despla Max	Despla Y (cm)	Desplax1.3	Despla Max
Extremo 1	2.22			2.46		
Extremo 2	2.23			2.46		
Extremo 3	2.33			2.35		
Extremo 4	2.29	2.95	2.33	2.35	3.10	2.46
Extremo 5	2.29	2.93	2.33	2.33	5.10	2.40
Extremo 6	2.33	1		2.33		
Extremo 7	2.22			2.40		
Extremo 8	2.23			2.40		
Promedio	2.27			2.38		

Se verifica que no existe irregularidad torsional en base a los desplazamientos máximos y promedios.

Se hallará la cortante basal estática considerando R=8 (Sistema aporticado sin irregularidades en planta y en altura).

Tabla 71. Coeficientes de fuerzas Basal – Bloque C – Dirección X e Y

Zona	Z=	0.25
Uso	U=	1.5
	S=	1.4
Suelo	T _P =	1
	T _L =	1.6
	T=	0.611
Periodo Fundamental	T=	0.51935
	k=	1.009675
Factores de Irregularidad	la=	1
ractores de irregularidad	lp=	1
	R ₀ =	8
Coeficiente Basico de Reduccion	R=	8
Factor de Amplificacion Sismica	C=	2.5

Coeficiente de Fuerza Basal	C=	0.164063

Se determinar las fuerzas cortantes basales en las dos direcciones de la estructura

Tabla 72. Fuerzas Cortantes Basales Estáticas – Bloque C

Nivel	Vx (tn)	Vy (tn)
Piso 5	22.6327	22.6327
Piso 4	50.0885	50.0885
Piso 3	71.608	71.608
Piso 2	86.8951	86.8951
Piso 1	98.3581	98.3581

Análisis Dinámico Lineal

En el análisis dinámico se determinará las derivas si están dentro de lo permisible en la norma E.030 y también se hallará la cortante basal dinámica para utilizarla luego en el Análisis Estático No Lineal.

Según la norma E.030 en estructuras regulares, la cortante dinámica debe ser por lo menos el 80% de la cortante estática.

Tabla 73. Cortante Basal Dinámico – Bloque C – Dirección X

Nivel	Direccion	Cortante Estatico (tn)	Cortante Dinamico (tn)	80% CE
Piso 5	Х	22.6327	17.6563	
Piso 4	Х	50.0885	39.2158	
Piso 3	Х	71.608	56.2403	
Piso 2	Х	86.8951	67.9225	·
Piso 1	Х	98.3581	74.9786	78.68648

Cortante Dinamico XX = 78.68648

Tabla 74. Cortante Basal Dinámico – Bloque C – Dirección Y

Nivel	Direccion	Cortante Estatico (tn)	Cortante Dinamico (tn)	80% CE
Piso 5	Υ	22.6327	17.6897	
Piso 4	Υ	50.0885	39.2553	
Piso 3	Υ	71.608	56.2609	
Piso 2	Υ	86.8951	67.9016	
Piso 1	Y	98.3581	74.8896	78.68648

Seguidamente se verificará los modos de vibración de la estructura y el porcentaje de masas participativas y se verifica la suma de masas participativas que llegan al 100%.

Tabla 75. Modos de vibración y masas participativas – Bloque C

Modo	Periodo (s)	Masa Participativa X	Masa Participativa Y	Masa Acumulada X	Masa Acumulada Y
1	0.681	0.00%	82.73%	0.00%	82.73%
2	0.665	82.92%	0.00%	82.92%	82.74%
3	0.478	0.00%	0.01%	82.93%	82.74%
4	0.218	0.00%	11.52%	82.93%	94.26%
5	0.214	11.46%	0.00%	94.38%	94.26%
6	0.152	0.00%	0.00%	94.39%	94.26%
7	0.124	0.00%	4.09%	94.39%	98.35%
8	0.122	4.02%	0.00%	98.40%	98.35%
9	0.086	0.00%	0.00%	98.40%	98.35%
10	0.083	0.00%	1.35%	98.40%	99.70%
11	0.083	1.31%	0.00%	99.71%	99.70%
12	0.063	0.00%	0.29%	99.71%	99.99%
13	0.063	0.28%	0.00%	100.00%	100.00%
14	0.058	0.00%	0.00%	100.00%	100.00%
15	0.045	0.00%	0.00%	100.00%	100.00%

Las verificaciones de las derivas de la estructura se muestran a continuación:

Tabla 76. Derivas por piso – Bloque C

Nivel	Direccion	Deriva	Deriva Real	Deriva Limite	Observacion
Nivel 5	Х	0.000692	0.004152	0.007	Cumple
Nivel 5	Υ	0.000737	0.004422	0.007	Cumple
Nivel 4	Х	0.001261	0.007566	0.007	No Cumple
Nivel 4	Υ	0.001339	0.008034	0.007	No Cumple
Nivel 3	Х	0.001761	0.010566	0.007	No Cumple
Nivel 3	Υ	0.001864	0.011184	0.007	No Cumple
Nivel 2	Х	0.002040	0.012240	0.007	No Cumple
Nivel 2	Υ	0.002151	0.012906	0.007	No Cumple
Nivel 1	Х	0.001539	0.009234	0.007	No Cumple
Nivel 1	Υ	0.001599	0.009594	0.007	No Cumple

Las derivas no cumplen en el Piso 1,2,3 y 4 según los parámetros de la norma E.030 tanto para la dirección X y para la dirección Y.

Análisis Estático No Lineal

Se aplicará una fuerza lateral la cual se va a ir incrementando gradualmente hasta llegar a la capacidad máxima de la estructura. Se utilizará el cortante dinámico hallado anteriormente y los pesos por piso para hallar el patrón de cargas por piso que se aplicará a la estructura

Tabla 77. Patrón de cargas – Pushover – Dirección X – Bloque A

Cortante Dinamico X=			78.69	tn	
Nivel	Peso W (kg)	h	Wxh	%	Pushover X (tn)
Piso 5	82657.35	18	1487832.3	22.76%	17.91
Piso 4	121952.96	14.8	1804903.808	27.61%	21.72
Piso 3	121952.96	11.6	1414654.336	21.64%	17.03
Piso 2	119636.73	8.4	1004948.532	15.37%	12.10
Piso 1	158663.33	5.2	825049.316	12.62%	9.93
		Σ=	6537388.292		

Tabla 78. Patrón de cargas – Pushover – Dirección Y – Bloque A

Cor	tante Dinamico	X=	78.69	tn	
Nivel	Peso W (kg)	h	Wxh	%	Pushover X (tn)
Piso 5	82657.35	18	1487832.3	22.76%	17.91
Piso 4	121952.96	14.8	1804903.808	27.61%	21.72
Piso 3	121952.96	11.6	1414654.336	21.64%	17.03
Piso 2	119636.73	8.4	1004948.532	15.37%	12.10
Piso 1	158663.33	5.2	825049.316	12.62%	9.93
		Σ=	6537388.292		

Seguidamente se crearán los estados de carga. El primero es la carga gravitacional No Lineal (CGNL) el cual considera solo el peso de la estructura y el segundo estado de carga es el patrón de cargas lateral pushover (AENL) para ambas direcciones que será la continuación de CGNL.

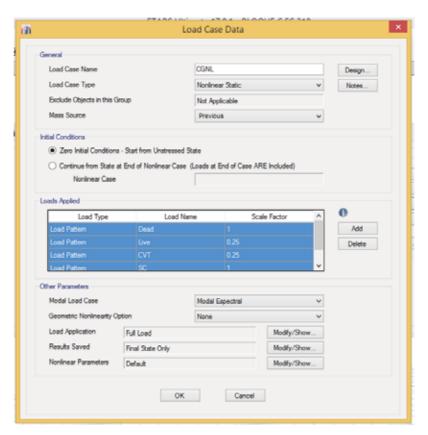


Figura 81. Estado de carga gravitacional – CGNL – Bloque A

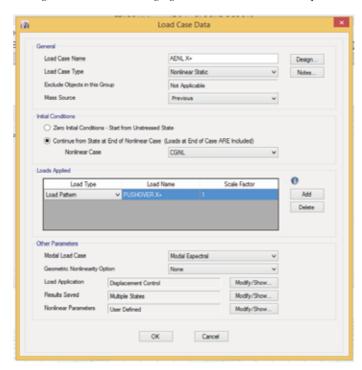


Figura 82. Estado de carga del Pushover en la dirección X y Y – Bloque A

El patrón de carga lateral será en base a un desplazamiento de control como máximo de 30 cm en el centro de masa del techo.

Seguidamente se colocan las características No Lineales del Material como la no linealidad del elemento. Estas características variaran de acuerdo al grado de giro de las columnas como a la ubicación donde estén. Es de resaltar que, en la configuración de la edificación, cada columna tendrá una diferente curva momento-curvatura de acuerdo a su ubicación.

Se utilizará el modelo de Mander para curva esfuerzo – deformación del concreto y del acero. Así mismo, la asignación de rotulas plásticas se dejarán bajo los parámetros del programa.

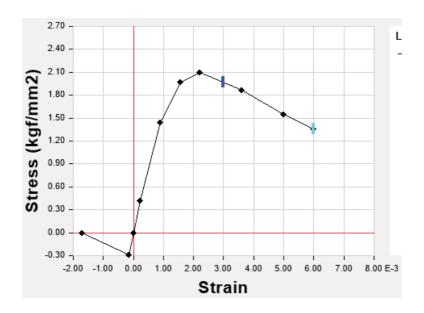


Figura 83. Curva Esfuerzo Deformación del Concreto – Bloque A

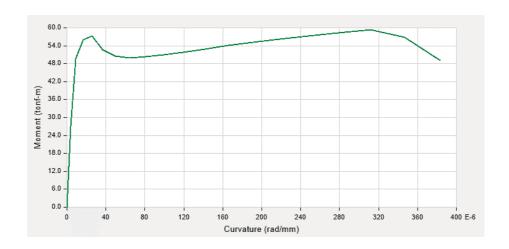
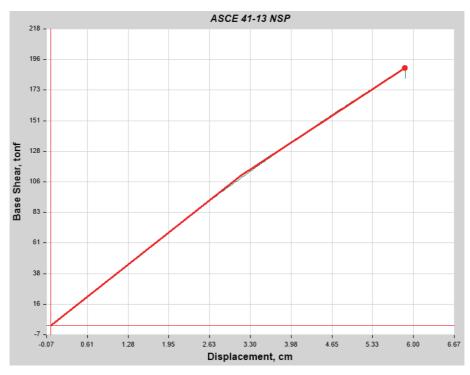



Figura 84. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A

Primer Caso:

Se obtendrá la primera curva de capacidad de la estructura con concreto f'c=210 kg/cm2 en toda la edificación mostrando el desplazamiento máximo y la cortante máxima que logra soportar.

Max Desplazamiento XXMax Fuerza Cortante XX5.866 cm189.4781 tn

Figura 85. Curva de capacidad en la dirección X del Bloque C – Primer Caso

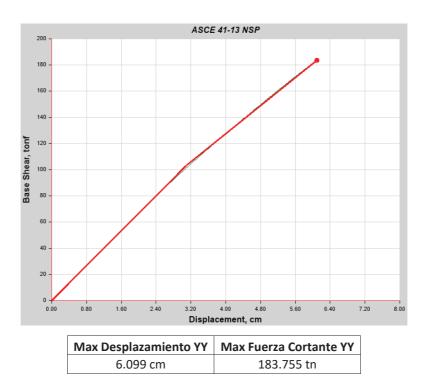


Figura 86. Curva de capacidad en la dirección Y del Bloque C – Primer Caso

Sobre la curva de capacidad se obtiene la curva bilineal a través del programa, la cual nos determinará el Vy y dy, con los cuáles procederemos a calcular el desplazamiento objetivo de la edificación.

Tabla 79. Determinación del Objetivo de Desplazamiento – Bloque C – Primer Caso

	Objetivo Desplazamiento						
		Х	х	YY			
		Tr=225 años	Tr=975 años	Tr=225 años	Tr=975 años		
Vy=		110.1371 tn	110.1371 tn	103.1687 tn	103.1687 tn		
Yy=		3.144 cm	3.144 cm	3.088 cm	3.088 cm		
Rigidez lateral efectiva	(e=	35.03088422	35.03088422	33.4095531	33.40955311		
Pendiente de zona elastica		2.6272	2.6272	2.5058	2.5058		
refluiente de 2011a etastica		0.075	0.075	0.075	0.075		
Rigidez lateral elastica	(i=	35.02933333	35.02933333	33.4106667	33.41066667		
Ti=		0.611	0.611	0.611	0.611		
Te=		0.610986475	0.610986475	0.61101018	0.611010182		
Sa=		0.14175	0.175875	0.14175	0.175875		
Co=		1.4	1.4	1.4	1.4		
W=		604863.33	604863.33	604863.33	604863.33		
Cm=		0.9	0.9	0.9	0.9		
ustrength=		0.700630753	0.86930112	0.74795398	0.92801697		
C1=		0.986634268	0.994164777	0.98874795	0.996786473		
C2=		1.000300097	1.000057199	1.0002127	1.000017349		
Desplazamiento Objetivo=		0.018168123 m	0.022708467 m	0.0182069 m	0.022769211 m		
Factor de amplificación		1.026341894	1.026341894	1.0301059	1.030105948		
Desplazamiento Objetivo Final	,	1.865 cm	2.331 cm	1.876 cm	2.345 cm		

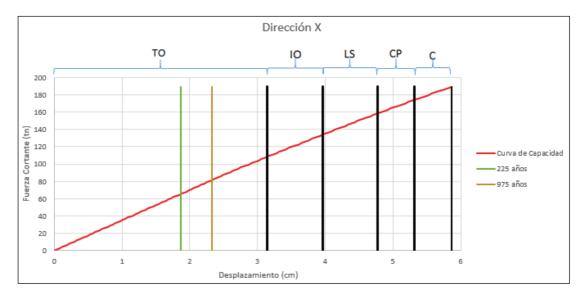
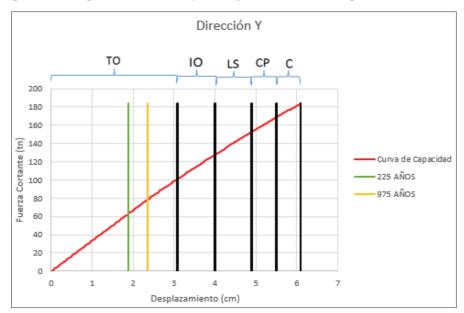
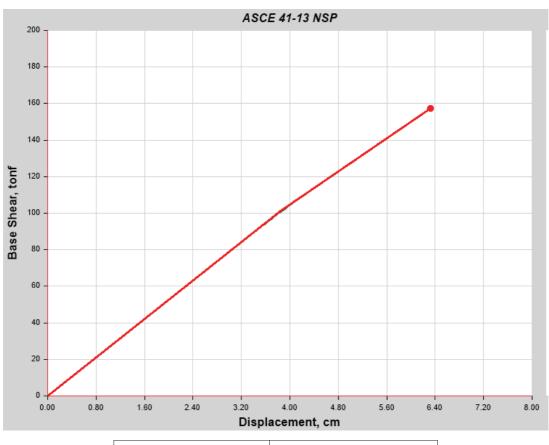


Figura 87. Objetivo de Desempeño de la Estructura en dirección X – Bloque C – Primer Caso

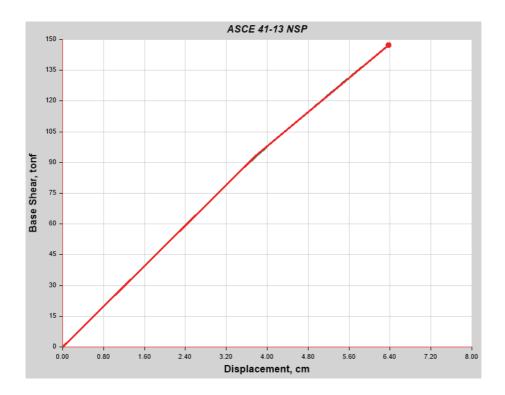
En la fig. 85. Se observa que para un sismo de 225 años y 975 años se encuentran en un rango totalmente operacional en la dirección X por tanto el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida respectivamente.




Figura 88. Objetivo de Desempeño de la Estructura en dirección Y – Bloque C – Primer Caso

En la fig. 86. Se observa que para un sismo de 225 años y 975 años se encuentran en un rango totalmente operacional en la dirección Y por tanto el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida respectivamente.

Segundo Caso:


Se obtendrá la segunda curva de capacidad de la estructura con concreto f'c variable (de acuerdo a la prueba de diamantina) por piso en toda la edificación mostrando el desplazamiento máximo y la cortante máxima que logra soportar.

Max Desplazamiento XX Max Fuerza Cortante XX
6.329 cm 157.4708 tn

Figura 89. Curva de capacidad en la dirección X del Bloque C – Segundo Caso

Max Desplazamiento YY	Max Fuerza Cortante YY
6.375 cm	147.41598 tn

Figura 90. Curva de capacidad en la dirección Y del Bloque C – Segundo Caso

Sobre la curva de capacidad se obtiene la curva bilineal a través del programa, la cual nos determinará el Vy y dy, con los cuáles procederemos a calcular el desplazamiento objetivo de la edificación.

Tabla 80. Determinación del Objetivo de Desplazamiento – Bloque C – Segundo Caso

Objetivo Desplazamiento

		XX	YY		
	Tr=225 años	Tr=975 años	Tr=225 años	Tr=975 años	
Vy=	101.109 tn	101.109 tn	93.5536 tn	93.5536 tn	
Yy=	3.85 cm	3.85	3.781 cm	3.781	
Rigidez lateral efectiva Ke=	26.26207792	26.26207792	24.7430838	24.7430838	
Pendiente de zona elastica	1.9698	1.9698	2.7833	2.7833	
T endiente de 2011a erastica	0.075	0.075	0.113	0.113	
Rigidez lateral elastica Ki=	26.264	26.264	24.6309735	24.6309735	
Ti=	0.798	0.798	0.798	0.798	
Te=	0.798029202	0.798029202	0.79619009	0.79619009	
Sa=	0.14175	0.175875	0.14175	0.175875	
Co=	1.4	1.4	1.4	1.4	
W=	604863.33	604863.33	604863.33	604863.33	
Cm=	0.9	0.9	0.9	0.9	
ustrength=	0.763190609	0.946921682	0.82482597	1.02339519	
C1=	0.993802592	0.998610917	0.99539441	1.00061509	
C2=	1.00011007	1.00000553	1.00006051	1.00000108	
Desplazamiento Objetivo=	0.031213744 m	0.038911475 m	0.0311183 m	0.0388099 m	
Factor de Amplicación por Torsión	1.026341894	1.026341894	1.03010595	1.03010595	
Desplazamiento Objetivo Final	0.032035973	0.039936477	0.03205511	0.0399783	

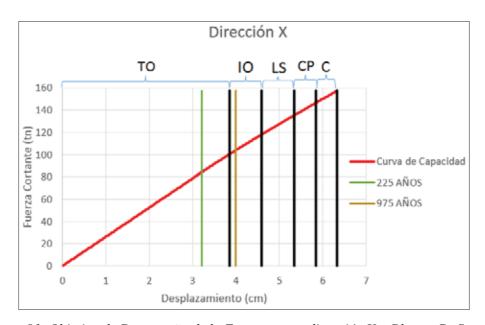


Figura 91. Objetivo de Desempeño de la Estructura en dirección X – Bloque C – Segundo Caso

En la figura 89. Se observa que para un sismo de 225 años el edificio se encuentra en un rango de Totalmente Operacional y para 975 años en un rango de Ocupación Inmediata en la dirección X por ende el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida respectivamente.

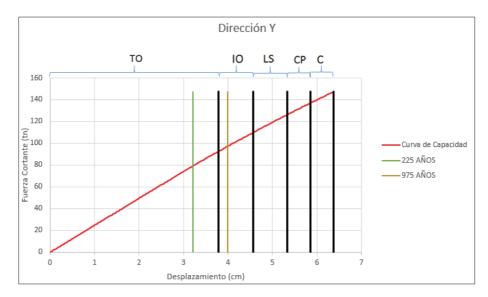


Figura 92. Objetivo de Desempeño de la Estructura en dirección Y – Bloque C –Segundo Caso

Se observa que para un sismo de 225 años el edificio se encuentra en un rango de totalmente operacional y para 975 años en un rango de Ocupación Inmediata en la dirección Y por ende el edificio cumple con el Objetivo de desempeño de Ocupación inmediata y de Seguridad de Vida.

4.3.2.9.3. Edificio Antiguo - Evaluación Sistemática

El modelamiento de esta estructura se realizó con el programa ETABS. Solo se tomaron en cuentan los elementos resistentes a fuerzas laterales. No se modeló los muros de albañilería presentes ya que estos están notoriamente aislados de la estructura principal.

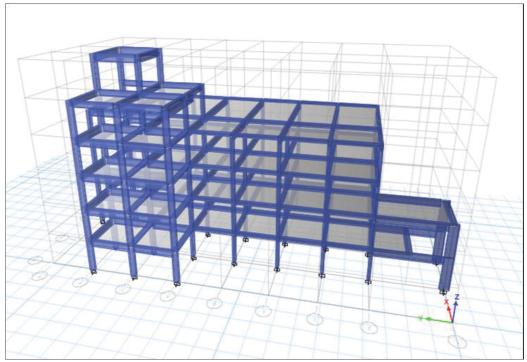


Figura 93. Modelamiento Edificación Antigua

Las características principales de los materiales de la estructura se tomarán en base los planos estructurales y a los ensayos de extracción con diamantina del concreto detalladas en la sección 4.3.2.3.

Según los resultados de los núcleos extraídos de las columnas se deduce que la estructura presenta un concreto con una resistencia mayor a la de diseño, según la sección 4.3.2.3, por tanto, para realizar las demás evaluaciones se tomara como resistencia de diseño fc=210 kg/cm2 ya que sería el caso más crítico para la estructura.

f'c=	210.00	kg/cm2
Ec=	232546.277	kg/cm2
fy=	4200.00	kg/cm2
Ea=	2100000	Kg/cm2

Las secciones principales de modelamiento se detallan a continuación:

Tabla 81. Secciones y reforzamientos de las Columnas de la Edificación Antigua

Frame Property	Long. Rebar Material	Tran. Rebar Material	Long. Configurati on	# Long. Bars 3-axis	# Long. Bars 2-axis	Tran. Rebar Type	Cover	Long. Rebar Area cm²	Corner Bar Area cm²	Tran. Rebar Area cm²	Tran. Rebar Spacing cm	# Tran. Bars 2-axis	# Tran. Bars 3-axis
1. Columna 25*50 a	Acero 4200	Acero 4200	Rectangular	3	3	Ties	4	5.1	5.1	0.71	15	2	3
1. Columna 25*50 b	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	3
1. Columna 25*50 i	Acero 4200	Acero 4200	Rectangular	8	3	Ties	4	5.1	5.1	0.71	15	2	4
1. Columna 25*50 j	Acero 4200	Acero 4200	Rectangular	6	3	Ties	4	5.1	5.1	0.71	15	2	4
1. Columna 25*50 k	Acero 4200	Acero 4200	Rectangular	7	3	Ties	4	5.1	5.1	0.71	15	2	3
1. Columna 25*80 g	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	5
 Columna 35*50 e 	Acero 4200	Acero 4200	Rectangular	7	4	Ties	4	5.1	5.1	0.71	15	4	4
 Columna 35*50 f 	Acero 4200	Acero 4200	Rectangular	6	4	Ties	4	5.1	5.1	0.71	15	4	4
2. Columna 25*50 a	Acero 4200	Acero 4200	Rectangular	7	3	Ties	4	5.1	5.1	0.71	15	2	3
2. Columna 25*50 b	Acero 4200	Acero 4200	Rectangular	4	3	Ties	4	5.1	5.1	0.71	15	2	4
2. Columna 25*50 c	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	3
2. Columna 25*50 d	Acero 4200	Acero 4200	Rectangular	7	3	Ties	4	5.1	5.1	0.71	15	2	3
2. Columna 25*50 e	Acero 4200	Acero 4200	Rectangular	6	3	Ties	4	5.1	5.1	0.71	15	2	4
2. Columna 35*50 f	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	3
2. Columna 35*50 g	Acero 4200	Acero 4200	Rectangular	4	3	Ties	4	5.1	5.1	0.71	15	2	4
3. Columna 25*50 a	Acero 4200	Acero 4200	Rectangular	3	2	Ties	4	5.1	5.1	0.71	15	2	3
3. Columna 25*50 b	Acero 4200	Acero 4200	Rectangular	4	3	Ties	4	5.1	5.1	0.71	15	2	4
3. Columna 25*50 c	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	3
3. Columna 35*50 d	Acero 4200	Acero 4200	Rectangular	5	3	Ties	4	5.1	5.1	0.71	15	2	3
3. Columna 35*50 e	Acero 4200	Acero 4200	Rectangular	3	3	Ties	4	5.1	5.1	0.71	15	2	3
4. Columna 25*50 a	Acero 4200	Acero 4200	Rectangular	3	2	Ties	4	5.1	5.1	0.71	15	2	3
4. Columna 25*50 b	Acero 4200	Acero 4200	Rectangular	3	3	Ties	4	5.1	5.1	0.71	15	2	3
4. Columna 25*50 c	Acero 4200	Acero 4200	Rectangular	4	3	Ties	4	5.1	5.1	0.71	15	2	4
4. Columna 35*50 d	Acero 4200	Acero 4200	Rectangular	3	2	Ties	4	5.1	5.1	0.71	15	2	3
5. Columna 25*50 a	Acero 4200	Acero 4200	Rectangular	3	2	Ties	4	5.1	5.1	0.71	15	2	3
5. Columna 35*50 b	Acero 4200	Acero 4200	Rectangular	3	2	Ties	4	5.1	5.1	0.71	15	2	3
6. Columna 35*50 a	Acero 4200	Acero 4200	Rectangular	2	2	Ties	4	5.1	5.1	0.71	15	2	2

Tabla 82. Secciones y reforzamiento de las Vigas de la Edificación Antigua

Frame Property	Long. Rebar Material	Tran. Rebar Material	Top Cover	Bottom Cover	Top Area I- end	Top Area J- end	Bottom Area I- end	Bottom Area J-end
			cm	cm	cm ²	cm ²	cm²	cm²
1,2,3 Viga (e) 25* 65 c	Acero 4200	Acero 4200	4	4	8.4	8.4	16.8	16.8
1,2,3 Viga (h) 25*50	Acero 4200	Acero 4200	4	4	14	14	16.8	16.8
1,2,3 Viga 20*50 (e) a	Acero 4200	Acero 4200	2	2	11.2	11.2	14	14
1,2,3 Viga 25*65 (b,c,d) a	Acero 4200	Acero 4200	4	4	14	14	5.6	5.6
1,2,3 Viga 25*65 (b,c,d) b	Acero 4200	Acero 4200	4	4	8.4	8.4	14	14
1,2,3 Viga 25*65 (e) b	Acero 4200	Acero 4200	4	4	16.8	16.8	8.4	8.4
1,2,3. Viga 25*65 a	Acero 4200	Acero 4200	4	4	14	14	5.6	5.6
1,2,3. Viga 25*65 b	Acero 4200	Acero 4200	4	4	11.2	11.2	5.6	5.6
4. Viga (h) 25*65	Acero 4200	Acero 4200	4	4	8.4	8.4	14	14
4. Viga 20*50 (e) a	Acero 4200	Acero 4200	2	2	11.2	11.2	14	14
4. Viga 25*50 (b,c,d) a	Acero 4200	Acero 4200	4	4	8.4	8.4	5.6	5.6
4. Viga 25*50 (b,c,d) b	Acero 4200	Acero 4200	4	4	5.6	5.6	11.2	11.2
4. Viga 25*65 (e) b	Acero 4200	Acero 4200	4	4	14	14	8.4	8.4
4. Viga 25*65 (e) c	Acero 4200	Acero 4200	4	4	8.4	8.4	14	14
4. Viga 25*65 a	Acero 4200	Acero 4200	4	4	11.2	11.2	5.6	5.6
4. Viga 25*65 b	Acero 4200	Acero 4200	4	4	5.6	5.6	11.2	11.2
5. Viga (15,16,17) 25*50	Acero 4200	Acero 4200	4	4	14	14	8.4	8.4
5. Viga (e,f) 25*50	Acero 4200	Acero 4200	4	4	14	14	8.4	8.4
5. Viga 25*50 (g)	Acero 4200	Acero 4200	4	4	14	14	11.2	11.2
Viga Y 20*50	Acero 4200	Acero 4200	2	2	14	14	19.6	19.6
Viga Y 20*70	Acero 4200	Acero 4200	2	2	14	14	19.6	19.6
Viga Y 25*65	Acero 4200	Acero 4200	4	4	16.8	16.8	14	14

Losas

Las losas son aligeradas de una sola dirección con un espesor de 25 cm en los entrepisos. En los salones en gradería se tiene losas macizas con espesor de 25 cm.

Análisis Estático Lineal

Seguidamente se realizará el Análisis Estático Lineal con el concreto de diseño de 210 kg/cm2 y bajos los parámetros de la norma E.030 y se determinará la cortante basal estática y las irregularidades existentes en la estructura.

Según la norma E.030, existe irregularidad de piso blando cuando en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral de entrepiso inmediato superior o es menor que 80% de la rigidez lateral promedio de los tres nieles superiores adyacentes

Tabla 83. Rigideces por piso – Dirección X - Edificación Antigua

Nivel	Rigidez X (tonf/mm)	<70% Entrepiso Inmediato Superior	<80% Tres Niveles Superiores
Piso 6	1.61		
Piso 5	20.02	1.13	
Piso 4	15.05	14.02	
Piso 3	21.17	10.53	9.78
Piso 2	29.96	14.82	15.00
Piso 1	47.10	20.97	17.65

Tabla 84. Rigideces por piso – Dirección Y - Edificación Antigua

Nivel	Rigidez Y (tonf/mm)	<70% Entrepiso Inmediato Superior	<80% Tres Niveles Superiores
Piso 6	1.94		
Piso 5	20.12	1.35	
Piso 4	32.41	14.09	
Piso 3	36.59	22.69	14.52
Piso 2	39.23	25.61	23.76
Piso 1	70.17	27.46	28.86

Se observa que no existe irregularidad de piso blando.

La irregularidad de masa o peso se da cuando el peso de un piso determinado es mayor que 1.5 veces el peso de un piso adyacente excluyendo azoteas y sótanos.

Tabla 85. Masas por piso – Dirección X y Y – Edificación Antigua

Nivel	Masa (kg) X-Y	1.5 x Piso Superior	1.5 x Piso Inferior
Piso 6	15280.88		105306.38
Piso 5	70204.25		711301.19
Piso 4	474200.79	105306.38	695010.11
Piso 3	463340.07	711301.19	752677.61
Piso 2	501785.07	695010.11	705038.00
Piso 1	470025.33	752677.61	

Se observa que tiene irregularidad de masa por tanto tendrá un factor Ia=0.9. No tiene irregularidad geométrica vertical ni discontinuidad en los elementos resistentes a fuerzas laterales.

Se verifica la irregularidad torsional de la estructura y esta existe cuando en cualquiera de las direcciones de análisis el máximo desplazamiento relativo de entrepiso en un extremo del edificio en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1.3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga.

Tabla 86. Desplazamiento Máximos Relativos y Promedios – Edificación Antigua

Nivel 5	Despla X (m)	Desplax1.3	Despla Max	Despla Y (m)	Desplax1.3	Despla Max
Extremo 1	0.027			0.022		
Extremo 2	0.034			0.022		
Extremo 3	0.034			0.019		
Extremo 4	0.034			0.017		
Extremo 5	0.030			0.017		
Extremo 6	0.029	0.037	0.034	0.019	0.025	0.022
Extremo 7	0.027			0.019		
Extremo 8	0.027			0.018		
Extremo 9	0.024			0.018		
Extremo 10	0.024			0.019		
Extremo 11	0.027			0.019		
Promedio	0.03			0.02		

Se verifica que no existe irregularidad torsional en base a los desplazamientos máximos y promedios

La estructura tiene irregularidad de esquina entrante en el eje Y, ya que el 20% de su dimensión total en esa dirección es menor que la longitud de la esquina entrante. Por tanto, tiene una irregularidad en planta con un factor Ip=0.90

Así mismo, tiene discontinuidad en el diafragma le da un factor de irregularidad Ip=0.85

Se tomará los factores de irregularidad más bajos tanto en irregularidad en planta como vertical.

Tabla 87. Factores de Irregularidad – Edificación Antigua

la=	0.90
lp=	0.85

Se hallará la cortante basal estática con los datos obtenidos a partir de las irregularidades halladas y del tipo de sistema estructural para las dos direcciones.

Tabla~88.~Coeficientes~de~fuerzas~Basal-Edificaci'on~Antigua-Direcci'on~X

DIRECCION X				
Zona	Z=	0.25		
Uso	U=	1.5		
	S=	1.4		
Suelo	T _P =	1		
	T _L =	1.6		
Periodo Fundamental	T=	0.712		
Feriodo Fundamentai	k=	1.106		
Factores de Irregularidad	la=	0.9		
ractores de irregularidad	lp=	0.85		
	R ₀ =	8		
Coeficiente Basico de Reduccion	R=	6.12		
Factor de Amplificacion Sismica	C=	2.5		
Coeficiente de Fuerza Basal	C=	0.214		

Tabla 89. Coeficientes de fuerzas Basal – Edificación Antigua – Dirección Y

DIRECCION Y				
Zona	Z=	0.25		
Uso	U=	1.5		
	S=	1.4		
Suelo	T _P =	1		
	T _L =	1.6		
Periodo Fundamental	T=	0.573		
Periodo Fundamentai	k=	1.0365		
Factores de Irregularidad	la=	0.9		
ractores de irregularidad	Ia= 0.9 Ip= 0.85			
	R ₀ =	8		
Coeficiente Basico de Reduccion	R=	6.12		
Factor de Amplificacion Sismica	C=	2.5		
Coeficiente de Fuerza Basal	C=	0.214		

Se determinar las fuerzas cortantes basales en las dos direcciones de la estructura

Tabla 90. Fuerzas Cortantes Basales Estáticas – Edificación Antigua

Nivel	Vx (kg)	Vy (kg)
Piso 6	7998.54	7622.53
Piso 5	30295.18	26802.43
Piso 4	212192.07	249920.36
Piso 3	257971.26	283634.88
Piso 2	364572.12	362566.27
Piso 1	411921.98	372303.96

Análisis Dinámico Lineal

En el análisis dinámico se determinará las derivas si están dentro de lo permisible en la norma E.030 y también se hallará la cortante basal dinámica para utilizarla luego en el Análisis Estático No Lineal.

Según la norma E.030 en estructuras irregulares, la cortante dinámica debe ser por lo menos el 90% de la cortante estática.

Tabla 91. Cortante Basal Dinámico – Edificación Antigua – Dirección X

Nivel	Direccion	Cortante Estatico (tn)	Cortante Dinamico (tn)	90% CE
		Estatico (tii)	Dinamico (tii)	
Piso 6	X	7998.54	5463.29	
Piso 5	X	30295.18	17926.65	
Piso 4	X	212192.07	133031.12	
Piso 3	Х	257971.26	171395.37	
Piso 2	Х	364572.12	246978.11	
Piso 1	Х	411921.98	281864.83	370729.782

Cortante Dinamico XX =	370729.782

Tabla 92. Cortante Basal Dinámico – Edificación Antigua – Dirección Y

Nivel	Direccion	Cortante Estatico (tn)	Cortante Dinamico (tn)	90% CE
Piso 6	Υ	7622.53	5924.15	
Piso 5	Υ	26802.43	19592.87	
Piso 4	Υ	249920.36	174274	
Piso 3	Υ	283634.88	205055.37	
Piso 2	Υ	362566.27	262370.37	
Piso 1	Υ	372303.96	269896.3	335073.564

Cortante Dinamico YY = 335073.56

Seguidamente se verificará los modos de vibración de la estructura y el porcentaje de masas participativas y se verifica la suma de masas participativas que llegan al 100%.

Tabla 93. Modos de vibración y masas participativas – Edificación Antigua

Modo	Periodo (s)	Masa	Masa	Masa	Masa
IVIOUO	Periodo (S)	Participativa X	Participativa Y	Acumulada X	Acumulada
1	0.712	73.97%	0.03%	73.97%	0.03%
2	0.573	0.19%	77.33%	74.16%	77.36%
3	0.498	6.60%	3.62%	80.76%	80.99%
4	0.253	10.51%	5.93E-06	91.27%	80.99%
5	0.209	0.06%	9.39%	91.33%	90.38%
6	0.193	0.63%	0.24%	91.95%	90.61%
7	0.166	2.61%	0.27%	94.56%	90.88%
8	0.143	0.02%	1.65%	94.58%	92.53%
9	0.135	1.85%	1.40%	96.43%	93.93%
10	0.126	0.01%	0.01%	96.45%	93.94%
11	0.113	2.32%	0.06%	98.76%	94.00%
12	0.104	0.08%	2.59%	98.85%	96.59%
13	0.094	0.13%	0.38%	98.97%	96.97%
14	0.086	0.04%	0.04%	99.01%	97.02%
15	0.083	0.21%	2.20%	99.22%	99.22%
16	0.078	0.06%	0.01%	99.29%	99.23%
17	0.071	0.07%	0.02%	99.35%	99.25%
18	0.063	2.62E-05	2.92E-05	99.36%	99.25%

Las verificaciones de las derivas de la estructura se muestran a continuación:

Tabla 94. Derivas por piso – Edificación Antigua – Dirección X y Y

Nivel	Dirección	Deriva	Deriva Real	Deriva Limite	Observación
Piso 6	Х	0.001024	0.005327	0.007	CUMPLE
Piso 5	X	0.001338	0.006960	0.007	CUMPLE
Piso 4	X	0.002268	0.011798	0.007	NO CUMPLE
Piso 3	X	0.003423	0.017806	0.007	NO CUMPLE
Piso 2	X	0.003804	0.019788	0.007	NO CUMPLE
Piso 1	X	0.002375	0.012355	0.007	NO CUMPLE
Piso 6	Υ	0.000891	0.004635	0.007	CUMPLE
Piso 5	Υ	0.001304	0.006783	0.007	CUMPLE
Piso 4	Υ	0.001992	0.010362	0.007	NO CUMPLE
Piso 3	Υ	0.002964	0.015419	0.007	NO CUMPLE
Piso 2	Υ	0.003640	0.018935	0.007	NO CUMPLE
Piso 1	Υ	0.001867	0.009712	0.007	NO CUMPLE

Las derivas solo cumplen en los últimos pisos.

Análisis Estático No Lineal

Se aplicará una fuerza lateral la cual se va a ir incrementando gradualmente hasta llegar a la capacidad máxima de la estructura. Se utilizará el cortante dinámico hallado anteriormente y los pesos por piso para hallar el patrón de cargas por piso que se aplicará a la estructura

Tabla 95. Patrón de cargas – Pushover – Dirección X – Edificación Antigua

	Cortante Dinar	nico X=	370729.78	kg	
Nivel	Peso W (kg)	h	Wxh	%	Pushover X (tn)
Piso 6	15280.88	18.6	284224.368	1.76%	6532.70
Piso 5	70204.25	15.5	1088165.875	6.75%	25010.74
Piso 4	474200.79	12.4	5880089.796	36.46%	135149.81
Piso 3	463340.07	9.3	4309062.651	26.72%	99040.84
Piso 2	501785.07	6.2	3111067.434	19.29%	71505.74
Piso 1	470025.33	3.1	1457078.523	9.03%	33489.95
		Σ=	16129688.65		

Tabla 96. Patrón de cargas – Pushover – Dirección Y – Edificación Antigua

(Cortante Dina	mico Y=	335073.56	335073.56 kg			
Nivel	Peso W (kg)	h	Wxh	%	Pushover Y (tn)		
Piso 6	15280.88	18.6		-	5904.40		
Piso 5	70204.25	15.5	1088165.875	6.75%	22605.25		
Piso 4	474200.79	12.4	5880089.796	36.46%	122151.31		
Piso 3	463340.07	9.3	4309062.651	26.72%	89515.24		
Piso 2	501785.07	6.2	3111067.434	19.29%	64628.43		
Piso 1	470025.33	3.1	1457078.523	9.03%	30268.93		
		Σ=	16129688.65				

Seguidamente se crearán los estados de carga. El primero es la carga gravitacional No Lineal (CGNL) el cual considera solo el peso de la estructura y el segundo estado de carga es el patrón de cargas lateral pushover (AENL) para ambas direcciones que será la continuación de CGNL.

El patrón de carga lateral será en base a un desplazamiento de control como máximo de 30 cm en el centro de masa del techo.

Seguidamente se colocan las características No Lineales del Material como la no linealidad del elemento. Estas características variaran de acuerdo al grado de giro de las columnas como a la ubicación donde estén. Es de resaltar que, en la configuración de la edificación, cada columna tendrá una diferente curva momento-curvatura de acuerdo a su ubicación.

Se utilizará el modelo de Mander para curva esfuerzo – deformación del concreto y del acero. Así mismo, la asignación de rotulas plásticas se dejarán bajo los parámetros del programa.

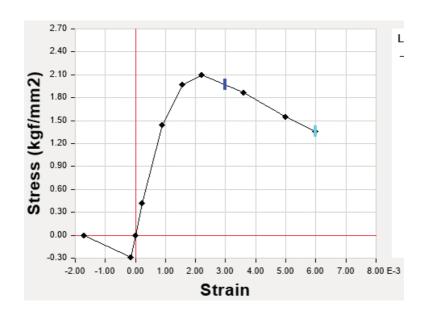


Figura 94. Curva Esfuerzo Deformación del Concreto - Bloque A

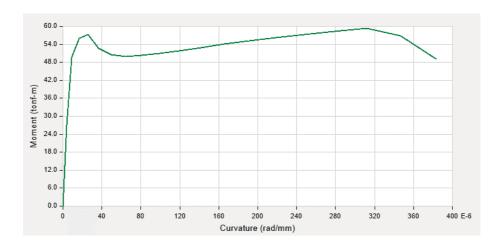


Figura 95. Curva Momento Curvatura de las Secciones de la Edificación – Bloque A

Se obtendrá la primera curva de capacidad de la estructura con concreto f'c=210 kg/cm2 en toda la edificación mostrando el desplazamiento máximo y la cortante máxima que logra soportar.

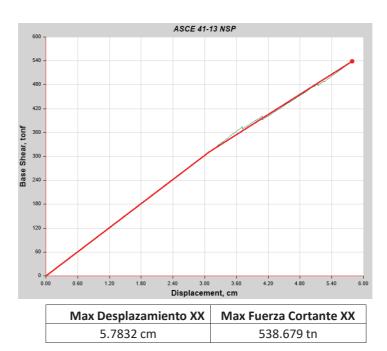
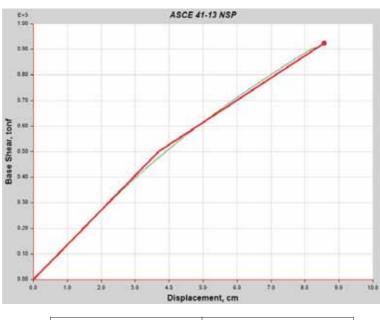



Figura 96. Curva de capacidad en la dirección X – Edificación Antigua

	Max Desplazamiento YY	Max Fuerza Cortante YY
ĺ	8.5653 cm	924.728 tn

Figura 97. Curva de capacidad en la dirección X – Edificación Antigua

Sobre la curva de capacidad se obtiene la curva bilineal a través del programa, la cual nos determinará el Vy (límite de fluencia efectiva) y dy (desplazamiento para el límite de fluencia efectiva), con los cuáles procederemos a calcular el desplazamiento objetivo de la edificación.

Tabla 97. Determinación del Objetivo de Desplazamiento – Edificio Antiguo

Objetivo Desplazamiento

		XX)	ΥY
	Tr=225 años	Tr=975 años	Tr=225 años	Tr=975 años
Vy=	311.7184 tn	311.7184 tn	500.9465 tn	500.9465 tn
Yy=	3.0875 cm	3.0875 cm	3.6787 cm	3.6787 cm
Rigidez lateral efectiva Ke=	100.961425	100.9614251	136.17487	136.174872
Pendiente de zona elastica	3.786 tn	3.786 tn	13.6174 tn	13.6174 tn
i chache de zona ciastica	0.0375 cm	0.0375 cm	0.1 cm	0.1 cm
Rigidez lateral elastica Ki=	100.96	100.96	136.174	136.174
Ti=	0.712	0.712	0.712	0.712
Te=	0.71199497	0.711994975	0.7119977	0.71199772
Sa=	0.18529412	0.229901961	0.1852941	0.22990196
Co=	1.4	1.4	1.4	1.4
W=	1994836.39	1994836.39	1994836.4	1994836.39
Cm=	0.9	0.9	0.9	0.9
ustrength=	1.06720779	1.32412818	0.6640795	0.8239505
C1=	1.0022096	1.010656429	0.988956	0.99421203
C2=	1.00001114	1.000259054	1.0002782	1.00007642
Desplazamiento Objetivo=	0.0327504 m	0.040987353 m	0.032326 m	0.0403134 m
Factor de Correcion por Torsion=	1.186795373	1.186795373	1.170325101	1.170325101
Desplazamiento Objetivo Final =	0.03886799 m	0.048643601 m	0.0378321 m	0.04717978 m

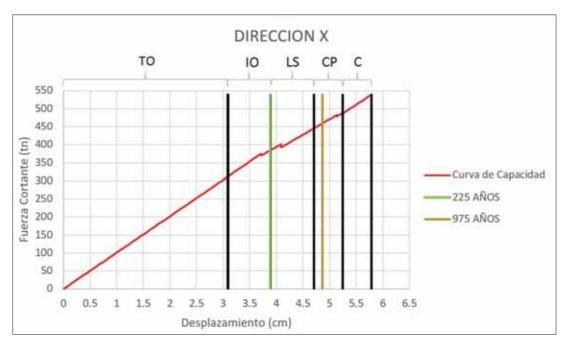


Figura 98. Objetivo de Desempeño de la Estructura en dirección X – Edificio Antiguo

En la fig. 96. Se observa que para un sismo de 225 años se encuentra en un rango de Ocupación Inmediata por tanto el edificio cumple con el objetivo de desempeño de Ocupación Inmediata. Para un sismo con periodo de retorno de 975 años se encuentra en un rango de prevención al colapso por tanto el edificio no cumple con el objetivo desempeño de seguridad de vida.

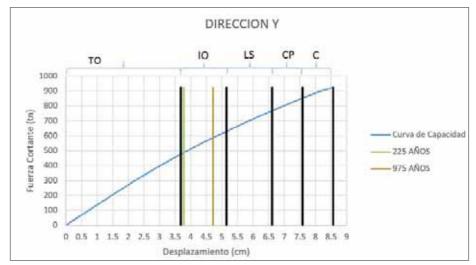


Figura 99. Objetivo de Desempeño de la Estructura en dirección Y – Edificio Antiguo

En la fig. 97. Se observa que, para un peligro sísmico con periodo de retorno de 225 años y 975 años, la estructura se encuentra en un rango de Ocupación Inmediata, cumpliendo con el objetivo de desempeño seleccionado para la dirección Y.

Capítulo 5. Observaciones, Conclusiones, Recomendaciones y Líneas Futuras de Investigación

5.1. Observaciones

- Se ha realizado los ensayos de diamantina mediante un laboratorio externo debido a
 que en el laboratorio de la Escuela Profesional de Ingeniería Civil de la UNSAAC no
 se cuenta con el equipo necesario ni tampoco con la experiencia debida para realizar
 dicho ensayo. Este ensayo es de carácter destructivo y de alto costo, pero muestra
 valores reales de las condiciones del material de los elementos estructurales.
- De la prueba de diamantina en la cual se extrajeron tres núcleos de concreto del Edificio Antiguo y tres núcleos de concreto del Edificio Nuevo, se observa que: En el Edificio Antiguo
 - o Existe buena adherencia del cemento con el agregado.
 - o El agregado grueso tiene formas angulosas y un tamaño máximo de 1" lo cual permite una adecuada compacidad, adherencia y resistencia a la compresión.

En el Edificio Nuevo

- o Hay existencia de limos que no permiten la adherencia del cemento con el agregado, lo cual lo hace frágil y fácil de deshacer.
- El agregado grueso es de canto rodado y tiene un tamaño máximo de ½", teniendo una superficie muy lisa siendo este un factor más para la adherencia y compacidad del concreto.
- El aplicativo web que nos brinda SENCICO fue de utilidad para poder determinar el peligro sísmico probabilístico en el territorio nacional. Este aplicativo solo esta actualizado hasta el 1 de enero del 2016 en base a un análisis de la data del catálogo sísmico. La información de peligro sísmico que brinda es: curvas de probabilidad de excedencia, espectros de peligro de peligro uniforme. Para poder acceder a esta plataforma simplemente hay que registrarse en un formato que está en la misma página.
- Para el análisis sistemático de las edificaciones de la EPIC-UNSAAC, fue de utilidad conseguir los planos estructurales de las edificaciones objetos de evaluación. Estos planos se solicitaron a la oficina de obras de la UNSAAC, así como también los permisos necesarios para poder realizar ensayos de carácter destructivo.
- No se consideró los muros de albañilería no estructural en el Nivel 3 de evaluación con ASCE 41-13 debido a que estos están claramente aislados de los elementos estructurales tanto en los bloques de la edificación Nueva y en la edificación Antigua, pero si se tomaron en cuenta como carga muerta en las estructuras.
- Cada elemento estructural es distinto para el análisis Pushover debido a las fuerzas y cargas a las cuales está sujeto, así que las rotulas asignadas al edificio aparecen independiente una de otra, mostrando los puntos o elementos más vulnerables ante una fuerza externa de un edificio.

5.2. Conclusiones

Conclusión General

	Edificio Nuevo - Bloque A												
Primer Cas	Primer Caso f'c=210 kg/cm2												
Dirección X BPOE OBSERVACIÓN Dirección Y BPOE OBSERVACIÓN VULNERABILIDAD													
BSE-1E	IO	IO	CUMPLE	TO	IO	CUMPLE	BAJA						
BSE-2E	IO	LS	CUMPLE	IO	LS	CUMPLE	DAJA						
Segundo C	aso f'c variable					•	•						
	Dirección X	BPOE	OBSERVACIÓN	Dirección Y	BPOE	OBSERVACIÓN	VULNERABILIDAD						
BSE-1E	LS	IO	NO CUMPLE	TO	IO	CUMPLE	MEDIA						
BSE-2E	CP	LS	NO CUMPLE	IO	LS	CUMPLE	WIEDIA						

	Edificio Nuevo - Bloque C												
Primer Cas	Primer Caso f'c=210 kg/cm2												
Dirección X BPOE OBSERVACIÓN Dirección Y BPOE OBSERVACIÓN VULNERABILIDAD													
BSE-1E	TO	IO	CUMPLE	TO	IO	CUMPLE	BAJA						
BSE-2E	TO	LS	CUMPLE	TO	LS	CUMPLE	DAJA						
Segundo C	aso f'c variable	9											
	Dirección X	BPOE	OBSERVACIÓN	Dirección Y	BPOE	OBSERVACIÓN	VULNERABILIDAD						
BSE-1E	TO	IO	IO	CUMPLE	DATA								
BSE-2E	IO	LS	RA.										

	Edificio Antiguo												
f'c=210 kg	f'c=210 kg/cm2												
	Dirección X BPOE OBSERVACIÓN Dirección Y BPOE OBSERVACIÓN VULNERABILIDAD												
BSE-1E	SSE-1E IO IO CUMPLE IO IO CUMPLE												
BSE-2E	CP	LS	NO CUMPLE	IO	LS	CUMPLE	BAJA						

En base a este cuadro resumen se logra concluir que:

- ➤ El caso más crítico en el Bloque A es tomando en cuenta las resistencias de los núcleos de concreto, lo que hace que en la dirección X no cumpla con el Objetivo de desempeño deseado, sin embargo, en la dirección Y si cumple con el objetivo de desempeño para los dos niveles de peligro sísmico por lo que se puede decir que tiene una vulnerabilidad sísmica media a baja.
- ➤ El bloque C al no poseer alguna irregularidad, cumple con todos los objetivos de desempeño indicando que tiene una vulnerabilidad baja.
- ➤ El caso más crítico para el edificio antiguo es en la dirección X, en la cual no cumple con objetivo de desempeño para un peligro sísmico BSE 2E, sin embargo, al ser un sismo muy raro se puede concluir que tiene una vulnerabilidad baja.

Conclusiones Especificas

- El Bloque B de la Edificación Nueva y los bloques de las edificaciones de los laboratorios de hidráulica y suelos, tienen una vulnerabilidad sísmica baja de acuerdo a la evaluación rápida mediante el procedimiento del FEMA P-154 con una puntuación mayor a la de corte que es "2". Estas estructuras presentan una geometría en planta simétrica sin presentar peligros ante un evento sísmico. Sin embargo, hay que tomar en cuenta la presencia de equipos de gran peso que podrían ocasionar peligro durante un evento sísmico.
- El Bloque A de la Edificación Nueva tiene una puntuación de 0.4 y 0.3 en los formatos de evaluación Moderadamente Alta y Alta respectivamente brindados por el FEMA P-154 que son menores a puntuación de corte. Esta edificación requirió de una evaluación más detallada mediante el procedimiento del ASCE 41-13. Se determinó que esta estructura es un sistema de muros estructurales debido a que el muro absorbe más del 70% de la fuerza cortante basal. Sin embargo, cuenta con pórticos en todo el perímetro. Esta estructura presenta una mayor rigidez en la dirección X debido a la irregularidad en planta y a la inusual posición del muro estructural. El esfuerzo cortante en el muro de corte supera el mayor valor respecto a la norma establecida de 0.70 MPa, ya que la sección del muro estructural (1.71 m2) no es suficiente para absorber la cortante presente (se debería contar con al menos 4 m2 de sección distribuidas simétricamente).
- El Bloque C de la Edificación Nueva tiene una puntuación de 1.5 y 1.4 en los formatos de evaluación Moderadamente Alta y Alta respectivamente brindados por el FEMA P-154 que son menores a puntuación de corte. Esta edificación requirió de una evaluación más detallada mediante el procedimiento del ASCE 41-13. Se determinó que esta estructura es un sistema aporticado. Esta estructura es totalmente regular por tanto su rigidez será igual en las dos direcciones. El esfuerzo cortante en este sistema aporticado es 5 veces mayor el valor establecido por la norma ASCE 41-13. Las secciones de las columnas deberían ser mayores, sin embargo, no sería optimo tener columnas de mucha sección ya que los ambientes se verían reducidos, por tanto, se debería haber incluido muros estructurales en las dos direcciones para rigidizar la estructura.
- La Edificación Antigua tiene una puntuación de 0.3 en ambos formatos de evaluación brindados por el FEMA P-154 que son menores a puntuación de corte. Esta edificación requirió de una evaluación más detallada mediante el procedimiento del ASCE 41-13. Se determinó que esta estructura es un sistema aporticado. Esta estructura es irregular por tanto su rigidez es mayor en la dirección Y. El esfuerzo cortante promedio de la estructura es mucho mayor al admisible dando por hecho que la estructura necesita mayor rigidez. Las secciones de las columnas deberían ser mayores, sin embargo, no sería optimo tener columnas de mucha sección ya que los ambientes se verían reducidos, por tanto, se debería haber incluido muros estructurales en las dos direcciones para rigidizar la estructura.

• El resumen de las listas verificación rápida del ASCE 41-13 se muestra a continuación:

EDIFICIO NUEVO - BLOQUE A												
Lista da Varificación	Cuitanias da Evaluacian	. Condicion										
Lista de Verificacion	Criterios de Evaluacion	Cumple	No Cumple	No Aplicable	Desconocido							
Basica	14	10	2	2	0							
Muros de Corte	21	5	5	9	2							
No Estructural	42	9	2	28	3							
Total	77	24	9	39	5							
		24	9	-	5							
Aplicable	38	63.16%	23.68%	-	13.16%							

	EDIFICIO NUEVO - BLOQUE C												
Lista da Varificación	Criterios de Evaluacion	Condicion											
Lista de Verificacion	Criterios de Evaluación	Cumple	No Cumple	No Aplicable	Desconocido								
Basica	14	11	1	2	0								
Porticos	22	14	1	5	2								
No Estructural	42	4	3	32	3								
Total	78	29	5	39	5								
		29	5	-	5								
Aplicable	39	74.36%	12.82%	-	12.82%								

EDIFICIO ANTIGUO											
Lista da Varificación	Cuitarias da Evaluacian	Condicion									
Lista de Verificacion	Criterios de Evaluacion	Cumple	No Cumple	No Aplicable	Desconocido						
Basica	14	10	1	3	0						
Porticos	22	16	2	2	2						
No Estructural	42	15	2	23	2						
Total	78	41	5	28	4						
		41	5	-	4						
Aplicable	50	82.00%	10.00%	-	8.00%						

Ninguna de las tres edificaciones evaluadas cumple con todos los criterios de evaluación por tanto no alcanzan el nivel de desempeño sísmico esperado.

- En la evaluación con las listas de verificación del ASCE 41-13 se determinaron problemas estructurales y se detallan a continuación:
 - Para el Bloque A del Edificio Nuevo
 - o No posee una correcta trayectoria de carga debido al encuentro de dos vigas,
 - Se puede dar el pounding ya que la junta sísmica con un edificio adyacente es menor a la que se especifica en la norma E.030
 - o Existen fisuras en los elementos estructurales y no estructurales.

Para el Bloque C del Edificio Nuevo

O Se puede dar pounding debido a que la junta sísmica con un edificio adyacente es menor que la que se especifica en la norma y de igual forma hay fisuras en los elementos estructurales y no estructurales.

Para el Edificio Antiguo

- Posee irregularidad en planta, teniendo una discontinuidad en el diafragma, además que el sistema aporticado cuenta en su mayoría con vigas chatas.
- En los problemas no estructurales encontrados de acuerdo a la Metodología del ASCE 41-13 todos los edificios tienen estantes altos y estrechos sin una correcta fijación, los cuales ante un evento sísmico podrían caer, por tanto, no cumplen con el objetivo de desempeño de Retención de Posición.
- De acuerdo a lo Evaluado con la Metodología ASCE 41-13 los edificios deben cumplir con su objetivo de desempeño de ocupación inmediata (BSE – 1E) y seguridad de vida (BSE – 2E).

Para el Bloque A

- Según el análisis estático y dinámico se tienen derivas mayores al límite establecido en la norma en el segundo y tercer piso, y su periodo fundamental de vibración de la estructura es alto (0.611s)
- O Para f'c=210 kg/cm2 en el sentido "X" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 7.923 cm y una cortante basal máxima de 478.884 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.38 cm lo cual cumple con el objetivo de desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 4.22 cm lo cual se encuentra en el rango de Ocupación Inmediata por ende cumple con el Objetivo de Desempeño de Seguridad de Vida.
- o Para f'c=210 kg/cm2 en el sentido "Y" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 6.239 cm y una cortante basal máxima de 387.92 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 2.69 cm lo cual se encuentra en el rango totalmente operacional por lo que cumple con su Objetivo de Desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 3.35 cm lo cual se encuentra en el rango de Ocupación Inmediata por ende cumple con el Objetivo de Desempeño de Seguridad de Vida.
- O Para f'c variable según resultados de ensayos en el sentido "X" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 7.15 cm y una cortante basal máxima de 398.925 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 4.19 cm lo cual se encuentra en un rango de Seguridad de Vida por lo que no cumple con el objetivo de desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 5.24 cm lo cual se encuentra en el rango de Prevención al Colapso por ende no cumple con el Objetivo de Desempeño de Seguridad de Vida.
- O Para f'c variable según resultados de ensayos en el sentido "Y" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 6.70 cm y una cortante basal máxima de 376.64 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.28 cm lo cual se encuentra en el rango totalmente operacional por lo que cumple con su Objetivo de Desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 4.09 cm lo

cual se encuentra en el rango de Ocupación Inmediata por ende cumple con el Objetivo de Desempeño de Seguridad de Vida.

Para el Bloque C

- Según el análisis estático y dinámico se tienen derivas mayores al límite establecido en la norma en el segundo y tercer piso, y su periodo fundamental de vibración de la estructura es alto (0.681s)
- o Para f'c=210 kg/cm2 en el sentido "X" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 5.866 cm y una cortante basal máxima de 189.4781 tn. Para el nivel de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 1.86 cm lo cual indica que estaría totalmente operacional después un sismo con este periodo de retorno. Para el peligro sísmico BSE 2E (975 años) tendrá un desplazamiento objetivo de 2.33 cm lo cual se encuentra en el rango de totalmente operacional después de un sismo con este periodo de retorno.
- o Para f'c=210 kg/cm2 en el sentido "Y" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 6.099 cm y una cortante basal máxima de 183.755 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 1.87 cm lo cual se encuentra en el rango totalmente operacional por lo que cumple con su Objetivo de Desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 2.34 cm lo cual se encuentra en el rango de Totalmente Operacional indicando que cumple con el Objetivo de Desempeño de Seguridad de Vida.
- o Para f'c variable según resultados de ensayos en el sentido "X", el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 6.329 cm y una cortante basal máxima de 157.47 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.2 cm lo cual se encuentra en un rango de Totalmente Operacional por lo que no cumple con el objetivo de desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 3.99 cm lo cual se encuentra en el rango de Ocupación Inmediata cumpliendo con el Objetivo de Desempeño de Seguridad de Vida.
- O Para f'c variable según resultados de ensayos en el sentido "Y" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 6.375 cm y una cortante basal máxima de 147.41 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.20 cm lo cual se encuentra en el rango totalmente operacional por lo que cumple con su Objetivo de Desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 3.99 cm lo cual se encuentra en el rango de Ocupación Inmediata por ende cumple con el Objetivo de Desempeño de Seguridad de Vida.

Para la Edificación Antigua

- O Según el análisis estático y dinámico se tienen derivas mayores al límite establecido en la norma en el segundo y tercer piso, y su periodo fundamental de vibración de la estructura es alto (0.712s)
- o Para f'c=210 kg/cm2 en el sentido "X" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 5.78 cm y una

- cortante basal máxima de 538.679 tn. Para el nivel de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.8 cm lo cual indica que estaría en el rango de Ocupación Inmediata después un sismo con este periodo de retorno. Para el peligro sísmico BSE— 2E (975 años) tendrá un desplazamiento objetivo de 4.8 cm lo cual se encuentra en el rango de prevención de colapso después de un sismo con este periodo de retorno e indicaría que en la dirección X es el caso más crítico de estudio sin cumplir con el objetivo de desempeño que debería tener.
- o Para f'c=210 kg/cm2 en el sentido "Y" el máximo desplazamiento que podrá experimentar la edificación según su curva de capacidad será de 8.56 cm y una cortante basal máxima de 924.74 tn. Para los niveles de peligro sísmico BSE 1E (225 años) tendrá un desplazamiento objetivo de 3.78 cm lo cual se encuentra en el rango Ocupación Inmediata por lo que cumple con su Objetivo de Desempeño de Ocupación Inmediata. Para BSE 2E (975 años) tendrá un desplazamiento objetivo de 4.71 cm lo cual se encuentra en el rango de Ocupación Inmediata indicando que cumple con el Objetivo de Desempeño de Seguridad de Vida.

5.3. Recomendaciones

- En el campo de la Investigación hace de necesidad de la implementación de una
 perforadora para la extracción de testigos de elementos estructurales, así como
 también un Pachómetro para el laboratorio de la Escuela Profesional de Ingeniería
 Civil, para que tesistas o investigadores puedan realizar ensayos de verificación de
 resistencia del concreto y verificación del reforzamiento de acero en los elementos
 estructurales.
- Los elementos estructurales de concreto armado deben tener una resistencia mínima de 17 MPa por lo que si existiese algún elemento estructural con una menor resistencia debe ser reforzada o repuesta. La resistencia determinada por el ensayo de diamantina en la columna del Bloque A muestra una de muy baja resistencia, por lo que se recomienda una reparación, la cual puede ser una demolición y nuevo vaciado o uso de nuevas tecnologías para su mejor funcionamiento, como por ejemplo el sistema MBrace, que son fibras de carbono capaces de soportar cortantes, momentos, y en caso de columnas de funcionamiento excelente en cuanto a una falla sobre armada.
- El período de la estructura, en el Edificio Antiguo y Edificio Nuevo determinados son valores altos, los cuales muestran la falta de rigidez en las estructuras, por lo que se sugiere la construcción de muros de concreto armado en forma uniforme y simétrica.
- Se recomienda buscar financiamiento para investigación en los cuales se realizarán ensayos de altos costos y así no representar una limitante en el muestreo, ya que en esta tesis no se pudo realizar mayores ensayos debido al alto costo de estos.
- Se debe verificar el reforzamiento de acero en todos los elementos estructurales con los planos estructurales mediante el Pachómetro, ya que la evaluación sistemática es peculiar para cada elemento estructural, debido a su reforzamiento y fuerzas que actúan en él.

- Edificaciones esenciales con una antigüedad considerable deben ser reforzadas o demolidas para su remodelación.
- Se recomienda extraer más núcleos de concreto de la edificación nueva para tener un mejor panorama de la estructura, ya que al haber evidencia de bajas resistencias, es muy probable que exista elementos con resistencias f'c menores.

5.4. Líneas Futuras de Investigación

Evaluación de Vulnerabilidad sísmica de cada edificación de UNSAAC.

Las Edificaciones de la Universidad Nacional de San Antonio Abad del Cusco – UNSAAC tienen una antigüedad considerable, siendo estas construídas bajo diferentes normas, además que con la extracción de muestras realizado en los Edificios de la Escuela Profesional de Ingeniería Civil para someterlas a la prueba de compresión dan como resultado resistencias diferentes a la del diseño, tomando como referencia el Edificio Nuevo de la EPIC que tiene resistencias muy bajas, la cual muestra un indicio de cómo estén las estructuras en la Universidad.

• Elaboración de un Procedimiento de Evaluación de Vulnerabilidad Sísmica para Edificios en la Ciudad del Cusco bajo las Normas de Construcción Peruanas.

En el Perú no se tiene un procedimiento de Evaluación de Vulnerabilidad Sísmica de Edificios Existentes reglamentado, que se adecúe a las características de cada zona, ya que nuestro territorio es muy variado al tipo de sismo que pueda ocurrir; por ejemplo: en la zona costera, los sismos serán causados principalmente por la subducción de la placa de Nazca con la placa Sudamericana con epicentros profundos, y en la zona de la sierra, los sismos son causados por las fallas geológicas activas con epicentros superficiales. En la Ciudad del Cusco hay varias fallas geológicas activas lo cual le hace susceptible a movimientos sísmicos, además de ello que muchas de las edificaciones de la ciudad han sido construídas sin asesoría de un profesional, por lo que muchas de las edificaciones serían vulnerables sísmicamente. Por ende, tener un procedimiento de evaluación de Vulnerabilidad Sísmica propio de cada zona es necesario para prevenir mayores riesgos más adelante.

Bibliografía

- Alva Hurtado, J., & Castillo Aedo, J. (1993). Peligro Sísmico en el Perú. *VII Congreso Nacional de Mecánica de Suelos e Ingeniería de Cimentaciones* (pág. 19). Lima: CISMID-FIC-UNI.
- American Society of Civil Engineers. (2013). *Seismic Evaluation and Retrofit of Existing Buildings.*Roston, Virginia: Structural Engineering Institute.
- Anampa Pancca, J. (2018). Curso Análisis Sísmico de Edificaciones de Concreto Armado. *Curso Taller de Análisis Sísmico de Edificaciones de Concreto Armado* (pág. 124). Cusco: CIP-Cusco.
- Barbat, A. H., & Pujades, L. (2004). EVALUACIÓN DE LA VULNERABILIDAD Y DEL RIESGO SÍSMICO EN ZONAS URBANAS. APLICACIÓN A BARCELONA. SÍSMICA 2004 6º Congresso Nacional de Sismologia e Engenharia Sísmica (pág. 24). Barcelona: Universidad Politécnica de Cataluña.
- Basurto Cartulin, R. P. (2010). *Vulnerabilidad Sismica y Mitigacion de desastres en el distrito de San Luis*. Lima: Universidad Ricardo Palma.
- Benavente, R., Fernandez Baca, C., & Gómez, A. (2004). *Estudio del Mapa de Peligros de la Ciudad del Cusco*. Cusco: PNUD-INDECI.
- Benito, B., & Cabañas, L. (1999). *Caracterizacion del Movimiento del Suelo en Ingenieria Sismica*. Madrid.
- Calderón Quispe, G. (s.f.). *Análisis Sísmico Modal Espectral & Tiempo Historia de una Edificación con Mathcad Prime, CSI SAP 2000 y ETABS*. Ayacucho.
- Casimiro Victorio, S. (2012). Desempeño Sismico de Edificaciones bajo el Sismo de Nivel Ocasional. Lima.
- Chacón Alvarez, R., & Paz Fuentes, I. (2016). *Análisis de Desempeño Sísmico de los Edificios Escolares Típicos 780 post 97 de la Costa Peruana*. Lima: PUCP.
- Choque Escalante, D. R. (2017). Evaluación del Desempeño Sísmico del Centro de Salud Santa Rosa de la Ciudad del Cusco Ante la Acción de un Sismo Severo. Cusco: Universidad Nacional de San Antonio Abad del Cusco.
- Federal Emergency Management Agency (FEMA). (2015). *Rapid Visual Screening of Buildings for Potencial Seismic Hazards: A Handbook*. California: NEHRP.
- Fernandez Cruz, O. (2016). Evaluacion de la Vulnerabilidad Estructural en Edificaiones. *Colegio de Ingenierios del Peru*, 574.
- Flores, C. A. (2017). Vulnerabilidad Sísmica del Edificio de la Facultad de Filosofía, Comercio y Administración de la UCE con la Norma Ecuatoriana de la Construcción (NEC SE-RE 2015). Quito: Universidad Central del Ecuador.
- Gómez Prado, W., & Loayza Yañez, A. (2014). Evaluación de la Vulnerabilidad Sísmica de Centros de Salud del Distrito de Ayacucho. Huancavelica: Universidad Nacional de Huancavelica.
- Hernández Velez, A. (2010). *Análisis No Lineal Estático "Pushover" Base Teórica y Aplicación Usando el Programa ETABS. Proceso FEMA-356 y ATC-40.* Puerto Rico: High Level Engineering.

- Maldonado, E., & Chio, G. (2008). *Vulnerabilidad sísmica en centros Urbanos*. Bucaramanga, Colombia: Universidad Industrial de Santander.
- Melendez Ortiz, H. A., & Santisteban Mariño, E. H. (2014). Evaluación de la Vulnerabilidad Sïsmica del Hospital San Ignacio y su Reahabilitación basados en Curvas de Fragilidad. Bogotá: Ponticia Universidad Javeriana.
- Melone, S. (2003). *Vulnerabilidad Sísmica de Edificaciones Esenciales*. Obtenido de https://upcommons.upc.edu/bitstream/handle/2117/93538/13CAPITULO4.pdf
- Ministerio de Vivienda Construccion y Saneamiento. (2018). *Norma E.030 DISEÑO SISMORESISTENTE*. LIMA.
- Ministerio de Vivienda Construccion y Saneamiento. (2018). *Norma E.060 CONCRETO ARMADO.* Lima.
- Norma Técnica Peruana. (2017). *Método para la obtención y ensayo de corazones diamantinos y vigas cortadas de hormigón*. Lima: Comisión de Reglamentos Técnicos y Comerciales.
- PCM, C. d.-E. (2003). *Mapa de Calificación de Provincias según Niveles de Peligros Sísmicos.* CMRRD-DGPM.
- PREDES. (2007). *Plan Regional de Prevención y Atención a los Desastres de la Región Cuzco*. CUSCO: Gobierno Regional Cusco.
- Silva Bustos, N. A. (2011). *Vulnerabilidad Sísmica Estructural en viviendas sociales, y evaluación preliminar de riesgo sísmico en la región Metropolitana*. Chile: Universidad de Chile.
- Vasco López, P. M. (2003). *Guía para Analisis y Diseño Estructural de Edificios de Hormigón Armado.*Ambato: Universidad Técnica de Ambato.
- Visconde Campos, A. (2004). Evaluación de la Vulnerabilidad Sísmica de un Edificio Existente: Clínica San Miguel, Piura. Piura: PIRHUA Universidad de Piura.

Anexos

Anexo 1.

Formatos de Evaluación de FEMA P -154 según región de sismicidad

FEMA P-154 Data Collection Form

Level 1 **VERY HIGH Seismicity**

												Add	ldress:										
																			Z	ip:			
												Oth	her Identif	iers: _									
												Bui	iilding Nan	ne:									
												US	Use: Longitude:										
						р⊔∩т	OGRA	DЦ				Lat	:				L	Longiiu S.	ide:				
						riioi	UGKA	-11				Car	rooper(c).					D	oto/Timo				
												No	. Stories:	Ahove	a Grado	,	Rolov	u Grade	7.	Voa	r Ruilt	Г	T EST
												Tot	tal Floor A	rea (sa	. ft.):		- Delow	V Graue	ž	Code	Year:		LOI
													lditions:	□ No	one [Yes, Ye	ear(s) Bu	uilt:					
												Occ	cupancy:			Commerc			Services	П	istoric	☐ Shelt	er
														Indus		Office		School			overnmen	t	
												l				Warehou			ntial, # Un				
												Soi	il Type:	∐A Hard	∐B Avg	□C Dense	E St	ID [_lE 		NK DNK, assı	ıme Type	D.
												_		Rock	Rock	Soil	Sc	oil S	Soil S	oil			
													ologic Ha										
													ljacency:			ounding			lazards fro	om Taller	Adjacent	Building	
										Irre	egularities	:		ertical (typ an (type)	e/severi	ty) _							
												Ext	terior Falli	ng		nbraced C			☐ Hea	vy Clado	ding or He	eavy Ven	eer
												– Haz	zards:		☐ Pa	arapets			□ Арр				
													OMMENTS	· ·	U Ot	iner:							
												+	OIVIIVILIVI).									
												-											
												-											
												+											
												-											
												-											
												_											
						Sk	KETCH						Additional)				
													ND FIN										
FEN	A BUI	LDING	S TYPI	E		Do Not Know		W1A	W2	S1 (MRF)	S2 (BR)	S3 (LM)	S4 (RC SW)	S5 (URM INF)	C1 (MRF)	C2 (SW)	C3 (URM INF)	PC1 (TU)	PC2	RM1 (FD)	RM2 (RD)	URM	MH
	c Sco						2.1	1.9	1.8		1.4	1.6	1.4	1.2	1.0	1.2	0.9	1.1	1.0	1.1	1.1	0.9	1.1
	ere Ver erate V						-0.9 -0.6	-0.9 -0.5	-0.9		-0.7 -0.4	-0.8 -0.5	-0.7 -0.4	-0.7 -0.3	-0.7 -0.4	-0.8 -0.4	-0.6 -0.3	-0.7 -0.4	-0.7 -0.4	-0.7 -0.4	-0.7 -0.4	-0.6 -0.3	NA NA
	erate v Irregu		-	uiaiily,	VL1		-0.6	-0.5	-0.6		-0.4	-0.5 -0.6	-0.4	-0.3 -0.4	-0.4 -0.4	-0.4	-0.3	-0.4 -0.5	-0.4	-0.4	-0.4	-0.3	NA NA
Pre-	Code	,					-0.3	-0.3	-0.3	-0.3	-0.2	-0.3	-0.2	-0.1	-0.1	-0.2	0.0	-0.2	-0.1	-0.2	-0.2	0.0	0.0
	-Bench						1.9	1.9	2.0		1.1	1.1	1.5	NA 0.2	1.4	1.7	NA 0.1	1.5	1.7	1.6	1.6	NA 0.1	0.5
l	Type A Type E		stories	;)			0.5	0.5 -0.2	-0.4		0.3 -0.2	0.4 -0.2	0.3 -0.2	0.2 -0.1	0.2 -0.1	0.3 -0.2	0.1	0.3 -0.2	0.2 -0.1	0.3 -0.2	0.3	0.1 0.0	0.1 -0.1
	Type E	•		,			-0.4	-0.4	-0.4		-0.3	NA	-0.3	-0.1	-0.1	-0.3	-0.1	NA	-0.1	-0.2	-0.2	0.0	NA
_	mum S						0.7	0.7	0.7	0.5	0.5	0.5	0.5	0.5	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.2	1.0
FIN	AL LE	VEL	1 SC	CORE	, S _{L1}	≥ Smin	1:																
EX	TEN	T OI	RE	VIE	w					OTHE	RHAZA	ARDS	S		ACT	ION RE	QUIR	RED					
	erior:				Partial			s 🔲 Ae					Trigger A		Detaile	ed Struct	ural Eva	aluation	n Require	d?			
	Interior: None Visible Entered Detailed Structure Drawings Reviewed: Yes No														ng type or	other bu	uilding						
	Drawings Reviewed: Yes No Pounding Soil Type Source: cut-off, if k								unless S _{L2} >	·		es, score l es, other h											
Geo	Geologic Hazards Source: Falling hazard					g hazards		taller adjac	ent	☐ No		uzui U3	ווטכווו										
Con	tact P	erson	1:							build Geol		rds or 9	Soil Type F	. [Detaile	ed Nonsti	uctural	Evalua	ation Rec	ommen	ded? (ch	eck one)	
LE	.EVEL 2 SCREENING PERFORMED? Significant dar					ficant dan	nage/de	deterioration						identified				0					
	Yes, F	inal L	evel 2	Score	e, S _{L2}				Vo	the s	tructural s	ystem	1			o, nonstru tailed eva			exist that r ecessary	nay requ	ine mitiga	auon, Dut	d
Non	structu	ral ha	zards	?		Yes			No										ds identifie	ed [DNK		
			V	Vhere	inforr	nation	cannot	be verif	ed, scr	eener shal	I note the		wing: EST				le data	OR	DNK = Do	o Not Kr	now		
Lege	nd:			MR	F = Mo	ment-re	esisting fra	me	RC = R	Reinforced co	ncrete	_	URM INF =	Unreinfor	ced maso	nry infill	MH :	= Manufa	actured Hou	ısina F	D = Flexib	e diaphrac	m

Level 2 (Optional) VERY HIGH Seismicity

FEMA P-154 Data Collection Form

Optional Level 2 data collection to be performed by a civil or structural engineering professional, architect, or graduate student with background in seismic evaluation or design of buildings.

Bldg Name: Final Level 1 Score: $|S_{L1}| = (do \ not \ consider \ S_{MIN})|$

Screener:			Level 1	1 Irregularity Modifiers:	Vertical Irregularity,	V _{1.1} =	T		regularit	v. P _{1.1} =	
Date/Time:				ED BASELINE SCORE:	$S' = (S_{L1} - V_{L1} - P_{L1})$. ogalari.	,, · L1	
Buttor Timo.			7100001	ED BROZENIE GOOKE.	OLI VLI ILI	/					
STRUCTURA	L MODIFIER	RS TO ADD TO ADJU	JSTED BA	SELINE SCORE							
Topic	Statement (I	If statement is true, circle the	he "Yes" mod	lifier; otherwise cross out t	ne modifier.)				Yes	Subtotals	
Vertical	Sloping	W1 building: There is at	least a full sto	ory grade change from one	side of the building to the	other.			-0.9		
Irregularity, V _{L2}	Site	Non-W1 building: There	is at least a f	ull story grade change fror	n one side of the building t	o the oth	er.		-0.2		
	Weak	W1 building cripple wall:	An unbraced	d cripple wall is visible in th	e crawl space.				-0.5		
	and/or	W1 house over garage: I	W1 house over garage: Underneath an occupied story, there is a garage opening without a steel moment frame,								
	Soft Story	and there is less than 8'	າ).	-0.9							
	(circle one		: There are o	penings at the ground stor	y (such as for parking) ove	er at leas	t 50% of	the			
	maximum)	length of the building.							-0.9		
		Non-W1 building: Lengtl story is more than 2.0 tin		stem at any story is less that of the story above	nan 50% of that at story ab	ove or he	eight of a	ny	-0.7		
		Non-W1 building: Lengtl	h of lateral sy	rstem at any story is between the height of the story		t story ab	ove or he	eight	-0.4		
	Setback			n at an upper story are out		helow ca	ausina the	2	-0.4		
	Schack	diaphragm to cantilever a		ir at air apper story are out	board of those at the story	DCIOW CC	adsing the		-0.7		
				n at upper stories are inbo	ard of those at lower storie	S			-0.4		
				al elements that is greater					-0.2		
	Short			ast 20% of columns (or pie			system	have	0.2		
	Column/			he nominal height/depth ra		iatora	. ojoto		-0.4		
	Pier			column depth (or pier width		ne depth	of the spa	andrel,			
				ors that shorten the column					-0.4		
	Split Level	There is a split level at o							-0.4		
	Other			ertical irregularity that obvi					-0.7	V _{L2} =	
81	Irregularity	There is another observa	able moderate	e vertical irregularity that m	ay affect the building's se	ismic per	formance	ł	-0.4	(Cap at -0.9)	
Plan		egularity: Lateral system do			in plan in either or both di	rections.	(Do not		0.5		
Irregularity, P _{L2}		V1A open front irregularity				1 4			-0.5		
		system: There are one or i						ner.	-0.2		
		rner: Both projections from							-0.2 -0.2		
		pening: There is an openiing out-of-plane offset: The				widin at	ınaı ievei		-0.2	D	
		arity: There is another obs				ic norforr	nanco		-0.2	P _{L2} =	
Redundancy		has at least two bays of la				ic periori	nance.		+0.2	(Cap at =0.7)	
Pounding		eparated from an adjacent		The floors do not align v			(Cap tota		-0.7		
1 ounding		1.5% of the height of the s			e stories taller than the oth		pounding		-0.7		
		and adjacent structure and		The building is at the en			modifiers	,	-0.4		
S2 Building		eometry is visible.		,				,	-0.7		
C1 Building		rves as the beam in the mo	oment frame.						-0.3		
PC1/RM1 Bldg		of-to-wall ties that are visib		rom drawings that do not r	ely on cross-grain bending	j. (Do not	combine	with			
		nark or retrofit modifier.)							+0.2		
PC1/RM1 Bldg		has closely spaced, full he	eight interior v	valls (rather than an interio	r space with few walls suc	h as in a	warehou	se).	+0.2		
URM	Gable walls a								-0.3		
MH		ipplemental seismic bracin			e and the ground.				+0.5	M	
Retrofit		sive seismic retrofit is visible							+1.2	M =	
FINAL LEVEL	2 SCORE,	$S_{L2} = (S' + V_{L2} + P_{L2} +$	+ <i>M)</i> ≥ S _{MIN}	:					(Transfer	to Level 1 form)	
		deterioration or another co									
if yes, describe tr	e condition in t	the comment box below an	id indicate on	the Level 1 form that deta	iled evaluation is required	indepen	dent of th	e bullair	ig's score	•	
OBSERVABL	E NONSTRI	UCTURAL HAZARDS	3								
Location		Check "Yes" or "No")				Yes	No		Com	ment	
Exterior		unbraced unreinforced mas	sonry parapet	or unbraced unreinforced	masonry chimney.						
		vy cladding or heavy venee			, ,						
	There is a heavy canopy over exit doors or pedestrian walkways that appears inadequately supported.										
	There is an u	inreinforced masonry appe	endage over e	exit doors or pedestrian wa	lkways.						
		gn posted on the building the									
	There is a tal	ller adjacent building with a	an unanchore	ed URM wall or unbraced L							
	Other observ	ed exterior nonstructural f	alling hazard:								
Interior	There are ho	llow clay tile or brick partiti	ons at any st								
		ved interior nonstructural fa									
Estimated Nons		mic Performance (Check						_	_		
		I nonstructural hazards wit									
		ctural hazards identified wi						ion requ	ııred		
	∐ Low or n	no nonstructural hazard thro	eat to occupa	ınt ııte satety →No Detail	ea Nonstructural Evaluatio	n require	ed				
Comments											

FEMA P-154 Data Collection Form

Level 1 HIGH Seismicity

												Add	lress: _										
													_						Z				
												Oth	er Identi	fiers:									
												Bui	lding Na	me:									
												USE	:					Longiti	ude:				
						DUGT						Lau	tude:				;	Longiii C	uae:				
						PHOT	OGRAF	'H				Scr	eener(s)					э _ї . Г	Date/Time	٥٠			
												N-	Ct!	·	- 0		Dala	L		·	. D!IA		-
												INO.	Stories:	\ADOV Aroa (sc	e Grade • ft V	:	- Relo/	N Grad	e:	Yea Code	r Bullt:		□ ESI
												Add	ditions:	I N	one [7 Yes. \	ear(s) B	uilt:		- Cour	o i cai.		
													upancy			Comme			Services	Пн	istoric	☐ Shelt	ter
													, apanoj		strial	Office		School			overnmer		
														Utilit	у	Wareho	use	Reside	ential, # Un	nits:			
												Soi	Type:	ΠA	□В		C []D [□E []F D	NK	T	
												7		Hard Rock	Avg Rock	Den: Soi		tiff :		oor If	DNK, assi	ume Type	e D.
	+	+										Geo	ologic Ha	azards:		tion: Yes			slide: Yes	/No/DNK	Surf Ri	ınt · Yes/	No/DNK
	+	+											acency:			ounding			Hazards fro				
		+											gularitie		_	0					•		
	+	+										- 1	guiaritic	J.	□ PI	an (type)	persever	··y)					
	-	+										Ext	erior Fal	ling				/S	☐ Hea	avy Clado	ding or H	eavy Ver	neer
	-	-										Haz	ards:	3	☐ Pa	arapets	,		Арр	endages	S	,	
	-	_													<u> </u>	ther:							
		4											MMENT	S:									
						SK	ETCH						Additiona						е				
										RE, MO												ı	
FEMA BL	JILDI	NG T	ГҮРЕ			Do Not Know	W1	W1A	W2	S1 (MRF)	S2 (BR)	S3 (LM)	S4 (RC SW)	S5 (URM INF)	C1 (MRF)	C2 (SW)	C3 (URM INF)	PC1 (TU)	PC2	RM1 (FD)	RM2 (RD)	URM	MH
Basic Sc							3.6	3.2	2.9		2.0	2.6	2.0	1.7	1.5	2.0	1.2	1.6	1.4	1.7	1.7	1.0	1.5
Severe Vo							-1.2 -0.7	-1.2 -0.7	-1.2 -0.7		-1.0 -0.6	-1.1 -0.7	-1.0 -0.6	-0.8 -0.5	-0.9 -0.5	-1.0 -0.6	-0.7 -0.4	-1.0 -0.6	-0.9 -0.5	-0.9 -0.5	-0.9 -0.5	-0.7 -0.4	NA NA
Plan Irreg			9	liailty,	VL1		-0.7	-1.0	-0.7		-0.6	-0.7	-0.6	-0.5	-0.5	-0.8	-0.4	-0.6	-0.5	-0.5	-0.5	-0.4	NA NA
Pre-Code							-1.1	-1.0	-0.9		-0.6	-0.8	-0.6	-0.2	-0.4	-0.7	-0.1	-0.5	-0.3	-0.5	-0.5	0.0	-0.1
Post-Bend							1.6	1.9	2.2	1.4	1.4	1.1	1.9	NA	1.9	2.1	NA	2.0	2.4	2.1	2.1	NA	1.2
Soil Type Soil Type			nrias)				0.1	0.3	0.5	0.4 -0.2	0.6 -0.4	0.1	0.6 -0.1	0.5 -0.4	0.4 0.0	0.5 0.0	0.3 -0.2	0.6 -0.3	0.4 -0.1	0.5 -0.1	0.5 -0.1	0.3 -0.2	0.3 -0.4
Soil Type							-0.3	-0.6	-0.9		-0.4	NA	-0.6	-0.4	-0.5	-0.7	-0.2	NA	-0.4	-0.5	-0.6	-0.2	NA
Minimum	<u> </u>	_					1.1	0.9	0.7	0.5	0.5	0.6	0.5	0.5	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.2	1.0
FINAL L	EV	EL 1	SC	ORE	, S _{L1}	≥ Smin	:																
EXTE	NT (OF	RE	VIE	w					OTHE	R HAZ	ARDS	3		ACT	ION R	EQUIF	RED					
Exterior:					Partia			a ☐ Aer		Are Ther				4	Detaile	ed Struc	tural Ev	aluatio	n Require	d?			
Interior: Drawing	c Do	viou	ıod.		None		Visible No	☐ Ent	ered	Detailed									ing type or	r other b	uilding		
Soil Typ				Ш	103	Ц	INO			☐ Poun	iding pote ff, if knov		niess S _{L2}	>		es, score es, other							
Geologic	: Ha	zard		urce:	:								aller adja	cent			i iazai uS	hiezell	ι				
Contact	Pers	on:							\Box	build	ing	azards from taller adjacent Detailed Nonstructural Evaluation Recommended? (check one) c hazards or Soil Type F											
LEVEL	. 2	sc	REI	ENII	NG I	PERF	ORME	D?		☐ Geol	ogic haza ficant dai	ards or S mage/de	soil Type eterioratio	n to					identified				
☐ Yes,								 □ N	0		tructural								exist that i ecessary	may requ	uire mitiga	ation, but	t a
Nonstruc															□ No	naneu ev D, no nor	aiualion istructura	ıs not n al hazar	ecessary ds identific	ed [DNK		
			14/	lhoro	infor	mation	cannot	oo vorifio	d scr	eener shal	I note th	e follow	/ina· FS	T = Fsti									

Legend:

Rapid Visual Screening of Buildings for Potential Seismic Hazards

FEMA P-154 Data Collection Form

Optional Level 2 data collection to be performed by a civil or structural engineering professional, architect, or graduate student with background in seismic evaluation or design of buildings.

Bldg Name:	Final Level 1 Score:	S _{L1} =	(do not consider S_{MIN})
Screener:	Level 1 Irregularity Modifiers:	Vertical Irregularity, $V_{L1} =$	Plan Irregularity, $P_{L1} =$
Date/Time:	ADJUSTED BASELINE SCORE:	$S' = (S_{L1} - V_{L1} - P_{L1}) =$	

Date/Tillie.	STRUCTURAL MODIFIERS TO ADD TO ADJUSTED BASELINE SCORE												
STRUCTURA	MODIFIE	DS TO ADD TO AD HISTED BASELINE SCOPE											
					Vac	Subtotals							
Topic		f statement is true, circle the "Yes" modifier; otherwise cross out the modifier.)			Yes	Subiolais							
Vertical	Sloping	W1 building: There is at least a full story grade change from one side of the building to the			-1.2	I							
Irregularity, V _{L2}	Site	Non-W1 building: There is at least a full story grade change from one side of the building t	o the oth	er.	-0.3	I							
	Weak	W1 building cripple wall: An unbraced cripple wall is visible in the crawl space.			-0.6	I							
	and/or	W1 house over garage: Underneath an occupied story, there is a garage opening without				1							
	Soft Story	and there is less than 8' of wall on the same line (for multiple occupied floors above, use 1			-1.2	I							
	(circle one	W1A building open front: There are openings at the ground story (such as for parking) over	er at leas	t 50% of the		I							
	maximum)	length of the building.			-1.2	1							
		Non-W1 building: Length of lateral system at any story is less than 50% of that at story ab	ove or h	eight of any		I							
		story is more than 2.0 times the height of the story above.			-0.9	1							
		Non-W1 building: Length of lateral system at any story is between 50% and 75% of that a	t story at	oove or height		I							
		of any story is between 1.3 and 2.0 times the height of the story above.			-0.5	1							
	Setback	Vertical elements of the lateral system at an upper story are outboard of those at the story	below ca	ausing the		1							
		diaphragm to cantilever at the offset.		-	-1.0	I							
		Vertical elements of the lateral system at upper stories are inboard of those at lower storie	S.		-0.5	1							
		There is an in-plane offset of the lateral elements that is greater than the length of the eler			-0.3	1							
	Short	C1,C2,C3,PC1,PC2,RM1,RM2: At least 20% of columns (or piers) along a column line in t		l system have		I							
	Column/	height/depth ratios less than 50% of the nominal height/depth ratio at that level.		.,	-0.5	1							
	Pier	C1,C2,C3,PC1,PC2,RM1,RM2: The column depth (or pier width) is less than one half of the	e depth	of the spandrel.		I							
		or there are infill walls or adjacent floors that shorten the column.		p,	-0.5	I							
	Split Level	There is a split level at one of the floor levels or at the roof.			-0.5	1							
	Other	There is another observable severe vertical irregularity that obviously affects the building's	seismic	performance	-1.0	V _{L2} =							
	Irregularity	There is another observable moderate vertical irregularity that may affect the building's sei			-0.5	(Cap at -1.2)							
Plan		egularity: Lateral system does not appear relatively well distributed in plan in either or both di	rections	(Do not	-0.5	(oup at 1.2)							
Irregularity, P _{L2}		V1A open front irregularity listed above.)	rections.	(DO HOL	-0.7	1							
irregularity, i L2		system: There are one or more major vertical elements of the lateral system that are not orth	nogonal t	n each other	-0.7	1							
	Poontrant co	rner: Both projections from an interior corner exceed 25% of the overall plan dimension in the	hat direct	ion	-0.4	1							
	Diaphragm o	pening: There is an opening in the diaphragm with a width over 50% of the total diaphragm	width at	that lovel	-0.4	1							
			wiulii al	triat ievei.	-0.2	L D							
		ing out-of-plane offset: The exterior beams do not align with the columns in plan.	la parforr	manaa	-0.4	P _{L2} =							
Dadwadanas		arity: There is another observable plan irregularity that obviously affects the building's seism	nance.		(Cap at -1.1)								
Redundancy		has at least two bays of lateral elements on each side of the building in each direction. eparated from an adjacent structure The floors do not align vertically within 2 feet.	/C== t=t=1	+0.3	I								
Pounding		(Cap total	-1.0	I									
		1% of the height of the shorter of the One building is 2 or more stories taller than the oth		pounding	-1.0	1							
00 5 11 11		adjacent structure and: The building is at the end of the block.	:	modifiers at -1.2)	-0.5	1							
S2 Building		eometry is visible.			-1.0	1							
C1 Building		ves as the beam in the moment frame.			-0.4	I							
PC1/RM1 Bldg		of-to-wall ties that are visible or known from drawings that do not rely on cross-grain bending	j. (Do no	t combine with	+0.3	I							
		ark or retrofit modifier.)				1							
PC1/RM1 Bldg		has closely spaced, full height interior walls (rather than an interior space with few walls suc	h as in a	warehouse).	+0.3	1							
URM	Gable walls a				-0.4	1							
MH		pplemental seismic bracing system provided between the carriage and the ground.			+1.2								
Retrofit	Comprehens		+1.4	M =									
FINAL LEVEL	2 SCORE,		(Transfer	to Level 1 form)									
There is observat	le damage or	es 🗌 No											
If yes, describe th	e condition in t	ng's score											
		UCTURAL HAZARDS											
Location		Check "Yes" or "No")	Yes	No	Com	ment							
Exterior		inbraced unreinforced masonry parapet or unbraced unreinforced masonry chimney.											
	There is hear	vy cladding or heavy veneer.											
	There is a he	eavy canopy over exit doors or pedestrian walkways that appears inadequately supported.											
	There is an u	nreinforced masonry appendage over exit doors or pedestrian walkways.											
		gn posted on the building that indicates hazardous materials are present.		1 1									
j	There is a tal	ller adjacent building with an unanchored URM wall or unbraced URM parapet or chimney.											
	Other observ	red exterior nonstructural falling hazard:											
Interior		Illow clay tile or brick partitions at any stair or exit corridor.											
		red interior nonstructural falling hazard:		 									
	J ODJOI V		1	1 1									

Exterior	There is an unbraced unreinforced masonry parapet or unbraced unreinforced masonry chimney.				
	There is heavy cladding or heavy veneer.				
	There is a heavy canopy over exit doors or pedestrian walkways that appears inadequately supported.				
	There is an unreinforced masonry appendage over exit doors or pedestrian walkways.				
	There is a sign posted on the building that indicates hazardous materials are present.				
	There is a taller adjacent building with an unanchored URM wall or unbraced URM parapet or chimney.				
	Other observed exterior nonstructural falling hazard:		<u>i </u>		
Interior	There are hollow clay tile or brick partitions at any stair or exit corridor.				
	Other observed interior nonstructural falling hazard:		<u>i </u>		
Estimated Nonst	ructural Seismic Performance (Check appropriate box and transfer to Level 1 form conclusions)				
	□ Potential nonstructural hazards with significant threat to occupant life safety → Detailed Nonstructur	al Evalua	ation reco	mmended	
	■ Nonstructural hazards identified with significant threat to occupant life safety → But no Detailed Non	structura	ıl Evaluati	ion required	
	□ Low or no nonstructural hazard threat to occupant life safety →No Detailed Nonstructural Evaluation	required	t		
					_
Comments:					

FEMA P-154 Data Collection Form

Level 1 **MODERATELY HIGH Seismicity**

												Add	dress:										
																				Zip:			
												Oth	ner Identif	fiers: _									
												Bui	ilding Nar	me:									
												US6	e: titude:				1	ongiti	ıqe.				
					риот	OCDA	пЦ						inuue										
					PHUI	OGRA	РН					Car	rooper(c).					г	loto/Tim	٥.			
												No.	. Stories:	Abov	e Grade	e:	Belov	v Grade	e:	Yea	r Built:	[EST
												100	tal Floor <i>F</i> ditions:	71 Ca (34	. IL. <i>j</i> .	Yes, Y				Code	Year:		
												Occ	cupancy:	Asse Indu	mbly	Commer Office	cial	Emer. S	Services	☐ G	overnmer		er
												Soi	il Type:	Hard	Avg	□(Dens	; e S]D [□E □	□F D	NK	ume Type	D.
							+	-				-	ologio I lo	Rock	Rock					Soil	Curf D	ınt . Vaall	Ja/DNIV
							+	-					ologic Ha jacency:			ounding			Hazards fr			•	
													egularities		□ V	ertical (typ	e/sever				•	T Dullulling	
												- Fv+	terior Fall	lna		Plan (type) Unbraced (IC		avy Clado	ding or II	ooun Von	oor
													zards:	ing	☐ P	Parapets Other:				pendages		eavy ven	eei
												CC	OMMENTS	S:									
	SKETCH													al skotcho	oc or co	mments o	n conara	ato nado	2				
	BASIC SCORE, MODIFIERS																_						
FEMA BL	ILDIN	G TYF	PΕ		Do Not	_	_	/1A	W2	S1	S2	S3	S4	S5	C1	C2	C3	PC1	PC2	RM1	RM2	URM	MH
					Know					(MRF)	(BR)	(LM)	(RC SW)	(URM INF)	(MRF)		(URM INF)	(TU)		(FD)	(RD)		
Basic Sco		rroquil	ority V			4.1		3.7	3.2		2.2	2.9	2.2	2.0	1.7	2.1	1.4	1.8	1.5	1.8	1.8	1.2	2.2
Severe Ve Moderate						-1.3 -0.8		1.3 0.8	-1.3 -0.8		-1.0 -0.6	-1.2 -0.8	-1.0 -0.6	-0.9 -0.6	-1.0 -0.6	-1.1 -0.6	-0.8 -0.5	-1.0 -0.6	-0.9 -0.6	-1.0 -0.6	-1.0 -0.6	-0.8 -0.5	NA NA
Plan Irreg	ularity,		, ,.			-1.3		1.2	-1.1	-0.9	-0.8	-1.0	-0.8	-0.7	-0.7	-0.9	-0.6	-0.8	-0.7	-0.7	-0.7	-0.5	NA
Pre-Code Post-Bend						-0.8 1.5		0.9 1.9	-0.9	-0.5 1.4	-0.5 1.4	-0.7 1.0	-0.6 1.9	-0.2 NA	-0.4 1.9	-0.7	-0.1 NA	-0.4 2.1	-0.3	-0.5 2.1	-0.5	-0.1	-0.3
Soil Type						0.3		0.6	2.3	0.6	0.9	0.3	0.9	0.9	0.6	2.1 0.8	0.7	0.9	2.4 0.7	0.8	2.1 0.8	NA 0.6	1.2 0.9
Soil Type			s)			0.0		0.1	-0.3		-0.5	0.0	-0.4	-0.5	-0.2	-0.2	-0.4	-0.5	-0.3	-0.4	-0.4	-0.3	-0.5
Soil Type			s)			-0.5		0.8	-1.2	-0.7	-0.7	NA	-0.7	-0.6	-0.6	-0.8	-0.4	NA	-0.5	-0.6	-0.7	-0.3	NA
Minimum						1.6	1	1.2	8.0	0.5	0.5	0.9	0.5	0.5	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.2	1.4
FINAL L	EVE	_1 S	CORE	, S _{L1}	≥ S _{MIN}	:								-									
EXTE	IT O	F RI	EVIE	W						OTHER	RHAZA	ARDS	S		ACT	TION RI	QUIF	RED					
Exterior:			=	Partial		All Side							Trigger A		Detai	led Struct	ural Ev	aluatio	n Require	ed?			
Interior:	s Ravi	אפע	_	None Yes	_	Visible No	Ш	Ente	ered	Detailed						'es, unkno				or other b	uilding		
Soil Type	Type Source:												inless S _{L2} :	>	_	'es, score 'es, other l							
Geologic			ource:	:					二	☐ Fallin	g hazards	vn) Yes, other hazards present Is from taller adjacent No											
Contact	Perso	n:								buildi		rds or ^c	Soil Type F	Detailed Nonstructural Evaluation Recommended? (check one)									
LEVEL	2 S	CRE	ENII	NG F	PERF	ORM	ED?	,	ヿ				eterioration			'es, nonstr							
	Yes, Final Level 2 Score, S _{L2} No the structura															lo, nonstru etailed eva					ure mitiga	ation, but	а
Nonstruc	ural h	azard	s?		Yes		[N	0			detailed evaluation is not necessary No, no nonstructural hazards identified DNK											
		١	Where	inforr	mation	cannot	be ve	erifie	d, scr	eener shal	I note the	e follov	wing: ES	T = Estir	nated o	or unrelia	ole data	OR	DNK = D	o Not Kr	now		
Legend:					ment-re	sisting fr	ame			einforced co hear wall	ncrete		URM INF = TU = Tilt up		ced mas	sonry infill		= Manufa = Light m	actured Ho			le diaphrag diaphragm	

Level 2 (Optional) **MODERATELY HIGH Seismicity**

FEMA P-154 Data Collection Form

Date/Time:

Optional Level 2 data collection to be performed by a civil or st	Optional Level 2 data collection to be performed by a civil or structural engineering professional, architect, or graduate student with background in seismic evaluation or design of buildings.													
Bldg Name:	Final Level 1 Score:	$S_{L1} =$	(do not consider S _{MIN})											
Screener:	Level 1 Irregularity Modifiers:	Vertical Irregularity, $V_{L1} =$	Plan Irregularity, $P_{L1} =$											
Date/Time:	ADJUSTED BASELINE SCORE:	$S' = (S_{L1} - V_{L1} - P_{L1}) =$												

STRUCTURA	L MODIFIER	RS TO ADD TO ADJUSTED BASELINE SCORE					
Topic		If statement is true, circle the "Yes" modifier; otherwise cross out the modifier.)				Yes	Subtotals
Vertical	Sloping	W1 building: There is at least a full story grade change from one side of the building to the	other.			-1.3	
Irregularity, V _{L2}	Site	Non-W1 building: There is at least a full story grade change from one side of the building t		er.		-0.3	
	Weak	W1 building cripple wall: An unbraced cripple wall is visible in the crawl space.				-0.6	
	and/or	W1 house over garage: Underneath an occupied story, there is a garage opening without					
	Soft Story	and there is less than 8' of wall on the same line (for multiple occupied floors above, use 1	6' of wall	minimum).	-1.3	
	(circle one	W1A building open front: There are openings at the ground story (such as for parking) over	er at leas	t 50% of th	he		
	maximum)	length of the building.				-1.3	
		Non-W1 building: Length of lateral system at any story is less than 50% of that at story abstory is more than 2.0 times the height of the story above.	ove or h	eight of an	ıy	1.0	
		Non-W1 building: Length of lateral system at any story is between 50% and 75% of that a	t ctory ok	ovo or bo	iaht	-1.0	
		of any story is between 1.3 and 2.0 times the height of the story above.	i Siory ai	ove of fie	igni	-0.5	
	Setback	Vertical elements of the lateral system at an upper story are outboard of those at the story	below ca	ausina the		0.0	
		diaphragm to cantilever at the offset.				-1.0	
		Vertical elements of the lateral system at upper stories are inboard of those at lower storie	S.			-0.5	
		There is an in-plane offset of the lateral elements that is greater than the length of the eler	nents.			-0.3	
	Short	C1,C2,C3,PC1,PC2,RM1,RM2: At least 20% of columns (or piers) along a column line in t	he latera	l system h	ave		
	Column/	height/depth ratios less than 50% of the nominal height/depth ratio at that level.				-0.5	
	Pier	C1,C2,C3,PC1,PC2,RM1,RM2: The column depth (or pier width) is less than one half of the	e depth	of the spai	ndrel,		
		or there are infill walls or adjacent floors that shorten the column.				-0.5	
	Split Level	There is a split level at one of the floor levels or at the roof.				-0.5	
	Other	There is another observable severe vertical irregularity that obviously affects the building's				-1.0	V _{L2} =
	Irregularity	There is another observable moderate vertical irregularity that may affect the building's set				-0.5	(Cap at -1.3)
Plan		egularity: Lateral system does not appear relatively well distributed in plan in either or both di	rections.	(Do not			
Irregularity, P _{L2}	include the V	V1A open front irregularity listed above.)	1 4	1 41		-0.8	
		system: There are one or more major vertical elements of the lateral system that are not orth			ner.	-0.4	
		orner: Both projections from an interior corner exceed 25% of the overall plan dimension in the pening: There is an opening in the diaphragm with a width over 50% of the total diaphragm.				-0.4 -0.3	
		ing out-of-plane offset: The exterior beams do not align with the columns in plan.	wiuiii ai	ınaı ievei.		-0.3	D.
		arity: There is another observable plan irregularity that obviously affects the building's seism	ic norforr	nanco		-0.4	P _{L2} =
Redundancy		has at least two bays of lateral elements on each side of the building in each direction.	ic periori	nance.		+0.3	(Cap at - 1.3)
Pounding		eparated from an adjacent structure The floors do not align vertically within 2 feet.	- :	(Cap total		-1.0	
1 ounding		0.5% of the height of the shorter of One building is 2 or more stories taller than the oth		pounding		-1.0	
		and adjacent structure and: The building is at the end of the block.		modifiers a		-0.5	
S2 Building		eometry is visible.				-1.0	
C1 Building		rves as the beam in the moment frame.				-0.5	
PC1/RM1 Bldg		of-to-wall ties that are visible or known from drawings that do not rely on cross-grain bending	. (Do no	t combine	with	+0.3	
		nark or retrofit modifier.)	•				
PC1/RM1 Bldg		has closely spaced, full height interior walls (rather than an interior space with few walls suc	h as in a	warehous	se).	+0.3	
URM	Gable walls					-0.4	
MH		applemental seismic bracing system provided between the carriage and the ground.				+1.2	
Retrofit	Comprehens	ive seismic retrofit is visible or known from drawings.				+1.4	M =
		$S_{L2} = (S' + V_{L2} + P_{L2} + M) \ge S_{MIN}$:				(Transfer	to Level 1 form)
		deterioration or another condition that negatively affects the building's seismic performance:					
if yes, describe tr	ne condition in	the comment box below and indicate on the Level 1 form that detailed evaluation is required	ınaepen	dent of the	e bullain	g's score	
OBSERVABL	E NONSTR	UCTURAL HAZARDS					
Location		Check "Yes" or "No")	Yes	No		Com	ment
Exterior		unbraced unreinforced masonry parapet or unbraced unreinforced masonry chimney.					
		vy cladding or heavy veneer.					
		eavy canopy over exit doors or pedestrian walkways that appears inadequately supported.					
		inreinforced masonry appendage over exit doors or pedestrian walkways.					
		gn posted on the building that indicates hazardous materials are present.					
	There is a ta	ller adjacent building with an unanchored URM wall or unbraced URM parapet or chimney.					
	Other observ	ved exterior nonstructural falling hazard:					
Interior		llow clay tile or brick partitions at any stair or exit corridor.					
		ved interior nonstructural falling hazard:					
Estimated Nons	tructural Seisi	mic Performance (Check appropriate box and transfer to Level 1 form conclusions)					
	□ Potentia	I nonstructural hazards with significant threat to occupant life safety Detailed Nonstructural	ral Evalu	ation reco	mmend	ed	
	☐ Nonstru	ctural hazards identified with significant threat to occupant life safety -> But no Detailed No	nstructur	al Evaluat	ion requ	uired	
	∐ Low or r	no nonstructural hazard threat to occupant life safety $\overset{\cdot}{ ightarrow}$ No Detailed Nonstructural Evaluat	on requi	red			
Comments:							
· COURTERING							

FEMA P-154 Data Collection Form

Level 1 **MODERATE Seismicity**

												Add	ress:										
													_						Z	ip:			
												Othe	er Identi	fiers:									
												Buil	ding Na	me:									
												Use	:										
												Lati	tude:				!	Longitu	ıde:				
						PHOT	OGRA	PH				S s:					;	S ₁ :					
												Scre	ener(s)	:				D	ate/Time	e: <u> </u>			
												No.	Stories:	Abov	e Grade	9:	Belov	w Grade	e:	Yea	r Built:	[■ EST
												1016	il Floor / itions:	mica (su	4. IL. <i>j</i> .	Yes, Y				Code	e Year:		
																Commer			Services		lotorio	Chalt	or
												000	upancy		strial	Office	JIdl	School School			overnmen		EI
														Utilit	у	Warehou	se	Resider	ntial, # Ur	nits:			
												Soil	Type:	□А]D []E [NK		
												1		Hard Rock	Avg Rock					oor If	DNK, assı	ume Type	D.
												Gen	logic Ha			ction: Yes					Surf Di	ınt · Vas/l	No/DNK
													acency:			ounding			lazards fr				
																	-	o			,		
												Irreç	gularitie	S:	☐ P	ertical (typ lan (type)	e/sever	ııy) <u> </u>					
													rior Fal	ling	U	Inbraced (☐ Hea	avy Clado	ding or H	eavy Ver	eer
												Haz	ards:			arapets			☐ App	endages	5		
												CO	MMENT	C.		ther:							
												100	IVIIVILINI	J.									
												-											
												_											
						Sk	CETCH						Additiona	al sketch	es or cor	mments or	n separa	ate page)				
	BASIC SC										DIFIER	S, Al	ND FIN	IAL LE	EVEL	1 SCOI	RE, S	L1					
FEN	IA BUI	LDING	TYPI	E	I	Do Not Know		W1A	W2	S1 (MRF)	S2 (BR)	S3 (LM)	S4 (RC	S5 (URM	C1 (MRF)	C2 (SW)	C3 (URM	PC1 (TU)	PC2	RM1 (FD)	RM2 (RD)	URM	МН
Bas	ic Sco	re					5.1	4.5	3.8	2.7	2.6	3.5	SW) 2.5	INF) 2.7	2.1	2.5	2.0	2.1	1.9	2.1	2.1	1.7	2.9
l			regula	rity, VL	.1		-1.4	-1.4	-1.4		-1.2	-1.4	-1.1	-1.2	-1.1	-1.2	-1.0	-1.1	-1.0	-1.1	-1.1	-1.0	NA
			9	ularity,	V_{L1}		-0.9	-0.9	-0.9		-0.7	-0.9	-0.7	-0.7	-0.7	-0.7	-0.6	-0.7	-0.6	-0.7	-0.7	-0.6	NA
	Irregu Code	larity,	P _{L1}				-1.4 -0.3	-1.3 -0.5	-1.2		-0.9	-1.2	-0.9	-0.9	-0.8	-1.0	-0.8	-0.9	-0.8	-0.8	-0.8	-0.7 -0.1	NA
	coae -Bencl	nmark					1.4	2.0	-0.6 2.5		-0.2 1.5	-0.2 0.8	-0.3 2.1	-0.3 NA	-0.3 2.0	-0.4 2.3	-0.3 NA	-0.2 2.1	-0.2 2.5	-0.2 2.3	-0.2 2.3	-0.1 NA	-0.5 1.2
	Type A						0.7	1.2	1.8		1.4	0.6	1.5	1.6	1.1	1.5	1.3	1.6	1.3	1.4	1.4	1.3	1.6
	Type E		stories)			-1.2	-1.3	-1.4		-0.9	-1.0	-0.9	-0.9	-0.7	-1.0	-0.7	-0.8	-0.7	-0.8	-0.8	-0.6	-0.9
Soil	Type E	(> 3 s	stories)			-1.8	-1.6	-1.3	-0.9	-0.9	NA	-0.9	-1.0	-0.8	-1.0	-0.8	NA	-0.7	-0.7	-0.8	-0.6	NA
Mini	Winimum Score, S_{MIN} 1.6 1.2 0.9 0											0.8	0.6	0.6	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.2	1.5
FIN	AL LI	EVEL	.1 SC	ORE	, S _{L1}	≥ Smin	ı:																
EX	TEN	ТОГ	FRE	VIE	W					OTHE	R HAZA	RDS			ACT	ION RE	QUIF	RED					
	erior:				Partial			s 🔲 Ae			e Hazards			١	Detail	ed Struct	ural Ev	aluatior	n Require	d?			
	rior:	David			Vone			☐ Er	tered		Structura					es, unkno				r other b	uilding		
	wings Type				ı ez		No				nding poter		lless S _{L2}	>	Yes, score less than cut-off								
				urce:							off, if known		allor adi-	cont	Yes, other hazards present								
	itact P			ui UC.	_					Fallir 🔲 . build	ng hazards ing	iiom ta	mer adja	_									
_					16 -				=	☐ Geol	ogic hazar												
LE	LEVEL 2 SCREENING PERFORMED?										ificant dam		terioratio	n to									а
	Yes, F	inal L	evel 2	Score						the s	tructural s	ystem			de	etailed eva	luation	is not ne	rards exist that may require mitigation, but a not necessary				u
Non	structu	ıral ha	ızards	?		⁄es			Vo							o, no nons				ed [DNK		
			V	/here	inforn	nation	cannot	be verif	ed, scr	eener sha	II note the	follow	ing: ES	T = Esti	mated o	r unreliat	le data	<u>OR</u>	DNK = D	o Not Kr	now		

Comments:

Rapid Visual Screening of Buildings for Potential Seismic Hazards

FEMA P-154 Data Collection Form

Optional Level 2 data collection to be performed by a civil or structural engineering professional, architect, or graduate student with background in seismic evaluation or design of buildings.

Bldg Name:	Final Level 1 Score:	S _{L1} =	(do not consider S _{MIN})
Screener:	Level 1 Irregularity Modifiers:	Vertical Irregularity, $V_{L1} =$	Plan Irregularity, $P_{L1} =$
Date/Time:	ADJUSTED BASELINE SCORE:	$S' = (S_{L1} - V_{L1} - P_{L1}) =$	
			·

Date/Time:		ADJUSTED BASELINE SCORE: $S' = (S_{L1} - V_{L1} - P_{L1})$	1) =											
STRUCTURA	STRUCTURAL MODIFIERS TO ADD TO ADJUSTED BASELINE SCORE Topic Statement (If statement is true, circle the "Yes" modifier; otherwise cross out the modifier.) Vortical Sloping W1 building: There is at least a full story grade change from one side of the building to the other.													
				Yes	Subtotals									
Vertical	Sloping	W1 building: There is at least a full story grade change from one side of the building to the	e other.	-1.4										
Irregularity, V _{L2}	Site	Non-W1 building: There is at least a full story grade change from one side of the building t		-0.4										
	Weak	W1 building cripple wall: An unbraced cripple wall is visible in the crawl space.		-0.7										
	and/or	W1 house over garage: Underneath an occupied story, there is a garage opening without	a steel moment frame,											
	Soft Story	and there is less than 8' of wall on the same line (for multiple occupied floors above, use 1		-1.4										
	(circle one	W1A building open front: There are openings at the ground story (such as for parking) over	er at least 50% of the											
	maximum)	length of the building.		-1.4	ļ									
		Non-W1 building: Length of lateral system at any story is less than 50% of that at story at	pove or height of any	1 1										
		story is more than 2.0 times the height of the story above. Non-W1 building: Length of lateral system at any story is between 50% and 75% of that a	at stany above or beight	-1.1	{									
		of any story is between 1.3 and 2.0 times the height of the story above.	at story above or neight	-0.6										
	Setback	Vertical elements of the lateral system at an upper story are outboard of those at the story	helow causing the	-0.0										
	Sciback	diaphragm to cantilever at the offset.	below causing the	-1.2										
		Vertical elements of the lateral system at upper stories are inboard of those at lower stories	2S.	-0.6										
		There is an in-plane offset of the lateral elements that is greater than the length of the eler		-0.4										
	Short	C1,C2,C3,PC1,PC2,RM1,RM2: At least 20% of columns (or piers) along a column line in t		†										
	Column/	height/depth ratios less than 50% of the nominal height/depth ratio at that level.	ý	-0.5										
	Pier	C1,C2,C3,PC1,PC2,RM1,RM2: The column depth (or pier width) is less than one half of the	he depth of the											
		spandrel, or there are infill walls or adjacent floors that shorten the column.		-0.5										
	Split Level	There is a split level at one of the floor levels or at the roof.		-0.6										
	Other	There is another observable severe vertical irregularity that obviously affects the building's		-1.2	V _{L2} =									
DI	Irregularity	There is another observable moderate vertical irregularity that may affect the building's se	ismic performance.	-0.6	(Cap at -1.4)									
Plan		gularity: Lateral system does not appear relatively well distributed in plan in either or both di	irections. (Do not	1.0										
Irregularity, P _{L2}		V1A open front irregularity listed above.)system: There are one or more major vertical elements of the lateral system that are not ortl	haganal to each other	-1.0 -0.5										
		rner: Both projections from an interior corner exceed 25% of the overall plan dimension in t		-0.5										
		pening: There is an opening in the diaphragm with a width over 50% of the total diaphragm		-0.3										
		ng out-of-plane offset: The exterior beams do not align with the columns in plan.	Width at that level.	-0.4	P _{L2} =									
		arity: There is another observable plan irregularity that obviously affects the building's seism	nic performance.	-1.0	(Cap at -1.4)									
Redundancy	The building has at least two bays of lateral elements on each side of the building in each direction. +0.4													
Pounding		eparated from an adjacent structure The floors do not align vertically within 2 feet.	(Cap total	-1.2										
3	by less than	0.25% of the height of the shorter of One building is 2 or more stories taller than the other		-1.2										
	the building a	and adjacent structure and: The building is at the end of the block.	modifiers at -1.4)	-0.6										
S2 Building		eometry is visible.		-1.2										
C1 Building		ves as the beam in the moment frame.		-0.5										
PC1/RM1 Bldg		of-to-wall ties that are visible or known from drawings that do not rely on cross-grain bending	g. (Do not combine with	+0.4										
D04/D144 D14		ark or retrofit modifier.)		0.4										
PC1/RM1 Bldg		has closely spaced, full height interior walls (rather than an interior space with few walls suc	ch as in a warenouse).	+0.4	}									
URM MH	Gable walls a	pplemental seismic bracing system provided between the carriage and the ground.		-0.5 +1.2										
Retrofit		ive seismic retrofit is visible or known from drawings.		+1.4	M =									
		$S_{L2} = (S' + V_{L2} + P_{L2} + M) \ge S_{MIN}$:			er to Level 1 form)									
Thoro is observat	olo damago or e	deterioration or another condition that negatively affects the building's seismic performance:	Yes No	(Transie	1 to Level 1 tollil)									
If ves describe th	ne uarriage or the condition in t	he comment box below and indicate on the Level 1 form that detailed evaluation is required	Lindependent of the build	ling's scor	·e									
ii yes, describe ii	c condition in t	The comment box below and indicate on the Ecver From that detailed evaluation is required	rindependent of the build	111g 3 3001	· ·									
OBSERVABL		JCTURAL HAZARDS												
Location		Check "Yes" or "No")	Yes No	Cor	mment									
Exterior		inbraced unreinforced masonry parapet or unbraced unreinforced masonry chimney.												
		vy cladding or heavy veneer.												
	There is a heavy canopy over exit doors or pedestrian walkways that appears inadequately supported.													
		Inreinforced masonry appendage over exit doors or pedestrian walkways.												
		on posted on the building that indicates hazardous materials are present. ler adjacent building with an unanchored URM wall or unbraced URM parapet or chimney.												
		ner augacent bunding with an unanchored oraw wan of unbraced oraw parapet of chimney. The exterior nonstructural falling hazard:												
Interior		llow clay tile or brick partitions at any stair or exit corridor.												
IIILEIIOI		ed interior nonstructural falling hazard:												
Estimated Nons		nic Performance (Check appropriate box and transfer to Level 1 form conclusions)												
Estimated Nons		I nonstructural hazards with significant threat to occupant life safety → Detailed Nonstructu	ural Evaluation recomme	nded										
		ctural hazards identified with significant threat to occupant life safety \longrightarrow But no Detailed No												
		o nonstructural hazard threat to occupant life safety $\stackrel{\longrightarrow}{ o}$ No Detailed Nonstructural Evaluati												

FEMA P-154 Data Collection Form

Level 1 **LOW Seismicity**

												Add	dress:										
																			Z	ip:			
												Oth	ner Identif	iers:									
												Bui	liding ivar	ne:									
												Use	e:										
												Lati	itude:				<u>'</u>	.ongitu `	ıde:				
						DUOT						Ss:					— `	o1:	hoto/Time				
						PHOT	OGRAP	Н				SCI	eener(s):						ate/Time	e:			
												No.	Stories:	Abov	e Grade	:	Below	/ Grade	9:	Year	r Built:		EST
												Δdc	Stories: al Floor <i>F</i> ditions:	Area (sq	. π.): 	7 Vas V	ar(s) Ri	ıilt-		_ Code	e year:		
												Occ	cupancy:	Δςςε	embly	Commer			Services				
													cuparicy.	Indu	strial	Office		School		☐ G	overnmen		OI .
													1.7	Utilit					ntial, # Un				
				1	1							501	I Type:	∐A Hard	□B Avg	□C Dens	e St	ID L	□E □ Soft Po	JF D oor If	NK DNK, assı	ume Type	D.
														Rock	Rock	Soil	Sc	oil S	Soil S	oil			
													ologic Ha	zards:								•	No/DNK
												Adj	jacency:			ounding		0	łazards fro		,	0	
												Irre	gularities	: :	□ Ve	ertical (typ an (type)	e/severi	ty) _					
												Ext	erior Falli	ina		nbraced C	himney	S	☐ Hea	avy Clado	ding or H	eavy Ven	eer
													zards:	3	☐ Pa	arapets	_		☐ App			,	
												_			□ 01	ther:							
													OMMENTS	5 :									
						Sk	KETCH					\mathbb{I}_{\Box}	Additiona	l sketche	es or con	nments or	n separa	te page)				
							В	ASIC	sco	RE, MO	DIFIER												
FEN	A BUI	LDING	ТҮР	E		Do Not	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	C3	PC1	PC2	RM1	RM2	URM	МН
						Know				(MRF)	(BR)	(LM)	(RC SW)	(URM INF)	(MRF)	(SW)	(URM INF)	(TU)		(FD)	(RD)		
	c Sco						6.2	5.9	5.7		3.9	4.4	4.1	4.5	3.3	4.2	3.5	3.8	3.3	3.7	3.7	3.2	4.6
				arity, V ularity,			-1.5 -1.0	-1.5 -0.9	-1.5 -0.9		-1.3 -0.8	-1.6 -1.0	-1.2 -0.7	-1.3 -0.7	-1.3 -0.7	-1.2 -0.7	-1.1 -0.6	-1.3 -0.8	-1.1 -0.6	-1.1 -0.6	-1.1 -0.6	-1.2 -0.7	NA NA
	Irregu		9	ularity,	VLI		-1.6	-1.4	-1.3		-1.1	-1.4	-1.0	-1.1	-1.0	-1.0	-0.9	-1.2	-0.9	-0.9	-0.9	-1.0	NA
	Code	.,.					NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Post	-Bench	ımark					2.2	2.4	2.5	2.0	1.6	1.4	2.1	NA	2.3	2.2	NA	1.9	2.6	2.3	2.3	NA	1.8
Soil	Type A	or B					0.9	1.1	1.3	1.0	1.2	8.0	1.3	1.4	0.9	1.2	1.2	1.3	1.3	1.4	1.4	1.3	0.9
	Type E	•		,			-1.2	-1.7	-2.3		-1.4	-1.0	-1.7	-2.0	-1.4	-2.0	-1.6	-1.7	-1.6	-1.7	-1.7	-1.5	-2.1
_	Type E num S	_		5)			-1.7 2.7	-2.0 2.1	-2.2 1.5		-1.4 0.8	NA 1.2	-1.7 0.8	-1.9 0.9	-1.3 0.5	-1.9 0.6	-1.6 0.5	0.6	-1.6 0.4	-1.6 0.6	-1.7 0.5	-1.4 0.4	NA 2.5
_				CORF	S _{1.1}	≥ Smin		۷.۱	1.3	0.7	0.0	1.2	υ.υ	U.7	0.0	0.0	0.0	0.0	0.4	0.0	0.0	U.4	۷.ن
_						_ JIVIII	v •			OT:::=					40=	10N 5-							
		ı Ol	- KE	VIE			All C' '		.	OTHER						ION RE			. D.	-10			
Exte Inte	rior:			_	Partial None		All Sides Visible			Are Ther Detailed			Trigger A			ed Struct							
		Revie	wed.	H		H			ereu						H Y∈	es, unknov	vn FEM	A buildi	ng type oi :	r other bu	uilding		
	Type			_	20						ding poter ff, if knowr		nless S _{L2} >	Yes, score less than cut-off Yes, other hazards present									
				ource	_								taller adjac										
Con	tact P	erson	1:							buildi	ng		-		_		uctural	Evalua	ation Rec	ommen	ded? (ch	eck one)	
15	/E1	2 64	PE	ENII	אופ י	DED	ORME	D2	\dashv	Geol	ogic hazar	hazards or Soil Type F at damage/deterioration to Detailed Nonstructural Evaluation Recommended? (check one) Yes, nonstructural hazards identified that should be evaluated that should be evaluated.											
							OKIVIE							ı lU	☐ No	o, nonstru	ctural ha	azards e	exist that i				а
		165, 1 IIIai Level 2 3cole, 3[2								a acturur 3	detailed evaluation is not necessary												
Non	structu	ıral ha			□ `			□ N													DNK		
			V							eener shal													
Lege	nd:			MR	F = Mo	ment-re	esisting fran	ne	RC = R	einforced co	ncrete		URM INF =	Unreinfo	rced maso	onry infill	MH :	= Manufa	actured Ho	using F	D = Flexib	le diaphrag	jm

Level 2 (Optional) LOW Seismicity

FEMA P-154 Data Collection Form

Comments:

Optional Level 2 data collection to be performed by a civil or structural engineering professional, architect, or graduate student with background in seismic evaluation or design of buildings.

Bldg Name:	Final Level 1 Score:	S _{L1} =	(do not consider S_{MIN})
Screener:	Level 1 Irregularity Modifiers:	Vertical Irregularity, $V_{L1} =$	Plan Irregularity, $P_{L1} =$
Date/Time:	ADJUSTED BASELINE SCORE:	$S' = (S_{L1} - V_{L1} - P_{L1}) =$	

Date/Time:		ADJUSTED BASELINE SCORE: $ S' = (S_{L1} - V_{L1} - P_{L1}) =$							
STRUCTURA	L MODIFIE	RS TO ADD TO ADJUSTED BASELINE SCORE							
Topic		f statement is true, circle the "Yes" modifier; otherwise cross out the modifier.)				Yes	Subtotals		
Vertical	Sloping	W1 building: There is at least a full story grade change from one side of the building to the other	er			-1.5			
Irregularity, V _{L2}	Site	Non-W1 building: There is at least a full story grade change from one side of the building to the	-0.4						
mogularity, vez	Weak	W1 building cripple wall: An unbraced cripple wall is visible in the crawl space.	-	-0.7					
	and/or	W1 house over garage: Underneath an occupied story, there is a garage opening without a ste	ame	0.7					
	Soft Story	and there is less than 8' of wall on the same line (for multiple occupied floors above, use 16' of		-1.5					
	(circle one	W1A building open front: There are openings at the ground story (such as for parking) over at							
	maximum)	length of the building.	-1.5						
		Non-W1 building: Length of lateral system at any story is less than 50% of that at story above or height of any							
		story is more than 2.0 times the height of the story above.							
		Non-W1 building: Length of lateral system at any story is between 50% and 75% of that at store							
		of any story is between 1.3 and 2.0 times the height of the story above.		-0.6					
	Setback	Vertical elements of the lateral system at an upper story are outboard of those at the story belo							
		diaphragm to cantilever at the offset.	-1.3						
		Vertical elements of the lateral system at upper stories are inboard of those at lower stories.				-0.6			
		There is an in-plane offset of the lateral elements that is greater than the length of the elements		-0.4					
	Short	C1,C2,C3,PC1,PC2,RM1,RM2: At least 20% of columns (or piers) along a column line in the la	ateral	system	have				
	Column/	height/depth ratios less than 50% of the nominal height/depth ratio at that level.				-0.6			
	Pier	C1,C2,C3,PC1,PC2,RM1,RM2: The column depth (or pier width) is less than one half of the de	epth o	t the		0.7			
	Culit Laval	spandrel, or there are infill walls or adjacent floors that shorten the column.				-0.6			
	Split Level Other	There is a split level at one of the floor levels or at the roof. There is another observable severe vertical irregularity that obviously affects the building's seis	omio n	orformo	2000	-0.6 -1.3	M		
	Irregularity					-0.6	V _{L2} = (Cap at -1.5)		
Plan		There is another observable moderate vertical irregularity that may affect the building's seismic equiarity: Lateral system does not appear relatively well distributed in plan in either or both directive.				-0.0	(Cap at -1.5)		
Irregularity, P _{L2}		rgularity. Lateral system does not appear relatively well distributed in plan in either of both direction. V1A open front irregularity listed above.)	10115.	וטוו טע)		-1.1			
irregularity, FL2		system: There are one or more major vertical elements of the lateral system that are not orthogo	nal to	each n	ther	-0.6			
		rner: Both projections from an interior corner exceed 25% of the overall plan dimension in that d			IIICI.	-0.6			
	Dianhragm o	pening: There is an opening in the diaphragm with a width over 50% of the total diaphragm widt	th at th	nat leve		-0.4			
		ng out-of-plane offset: The exterior beams do not align with the columns in plan.	ur at ti	iut icvo		-0.5	P _{L2} =		
			-1.1	(Cap at - 1.6)					
Redundancy		arity: There is another observable plan irregularity that obviously affects the building's seismic pe has at least two bays of lateral elements on each side of the building in each direction.	31101111	411001		+0.4	(oup at mo)		
Pounding		eparated from an adjacent structure The floors do not align vertically within 2 feet.	(0	ap total		-1.3			
J		0.1% of the height of the shorter of One building is 2 or more stories taller than the other.	_	unding		-1.3			
		and adjacent structure and: The building is at the end of the block.	mo	odifiers a	at -1.5)	-0.6			
S2 Building	"K" bracing g	eometry is visible.				-1.3			
C1 Building	Flat plate ser	ves as the beam in the moment frame.				-0.6			
PC1/RM1 Bldg	There are ro	of-to-wall ties that are visible or known from drawings that do not rely on cross-grain bending. (Do	o not	combine	e with	+0.4			
_		ark or retrofit modifier.)							
PC1/RM1 Bldg		has closely spaced, full height interior walls (rather than an interior space with few walls such as	inav	warehou	ıse).	+0.4			
URM	Gable walls a					-0.6			
MH		pplemental seismic bracing system provided between the carriage and the ground.				+1.8	N 4		
Retrofit		ive seismic retrofit is visible or known from drawings.				+1.6	M =		
		$S_{L2} = (S' + V_{L2} + P_{L2} + M) \ge S_{MIN}$:				(Transfe	r to Level 1 form)		
There is observab	ole damage or		Ye:		No				
If yes, describe th	e condition in t	the comment box below and indicate on the Level 1 form that detailed evaluation is required inde	epend	ent of th	ıe buildi	ng's score	€.		
OBSERVARI	F NONSTR	UCTURAL HAZARDS							
Location			'es	No		Com	nment		
Exterior		inbraced unreinforced masonry parapet or unbraced unreinforced masonry chimney.	00	110			illone		
Exterior		vy cladding or heavy veneer.							
		eavy canopy over exit doors or pedestrian walkways that appears inadequately supported.							
		inreinforced masonry appendage over exit doors or pedestrian walkways.							
		gn posted on the building that indicates hazardous materials are present.	1						
		ller adjacent building with an unanchored URM wall or unbraced URM parapet or chimney.							
ĺ		red exterior nonstructural falling hazard:							
Interior		llow clay tile or brick partitions at any stair or exit corridor.							
		red interior nonstructural falling hazard:							
Estimated Nonst		mic Performance (Check appropriate box and transfer to Level 1 form conclusions)							
		I nonstructural hazards with significant threat to occupant life safety $ o$ Detailed Nonstructural E							
		ctural hazards identified with significant threat to occupant life safety $ o$ But no Detailed Nonstru			ation red	ղuired			
	☐ Low or n	o nonstructural hazard threat to occupant life safety $ ightarrow$ No Detailed Nonstructural Evaluation re	equire	d					

Anexo 2.

Formatos de Evaluación Utilizados de FEMA P - 154

FORMATO: NIVEL 1

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS

FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	os											_	MODE			
A PART OF THE PART			27.4					DIREC	CIÓN:	Univer	sidad N	acional	de San	Antoni) Abad	del Cus	co
		1			- 644	100			Av. de	La Culti	ıra 773						
						OTROS IDENTIFICADORES: Campus Universitario - Perayoq											
						NOMBRE DEL EDIFICIO: Edificacion Antigua - EPIC											
1111						USO: Educación Universitaria											
								LATITUD: 179644.56 m E LONGITUD: 8503371.52 m S									
		1	ш	N		~							aldos R	oman			
										_	Roger	Augusto	o Nuñez	Esquiv	2/		
of the same of the					NO.			FECHA	:	19/09/				-			
THE PARTY NAMED IN	36		8117		784	M.		N° NIV	'ELES:	Superio	res	5	Inferio	0			
	Mag		10000					N° NIVELES: Superiores 5 Inferior 0 AÑO CONSTRUIDO: 1981 □ EST AÑO DE NORMA: 1970									
STATE OF THE PARTY OF					P.S.	80							512.66				
The second second	-		480			ONE.								constr	uido	2016	
A STATE OF THE PARTY OF THE PAR				BIO COLOR	A AL	ents Kin			ACIÓN:		1BLEA		ERCIAL		DE EMERO		-
	100					100					STRIAL			ESCUEL		_	>
E Contractor Contracto	100	236				g(1)					ALM		CIIII		NCIAL		
10000000000000000000000000000000000000					TO THE	1			X REF	IGIO		HISTO	ÓRICO		□GOBI		
								TIDO D	E SUEL				DIVICO		S GEOL		c.
								_	A A		ID A				ACCIÓN:		
		-	-	_					В	ROCA D	JKA				ACCION: AMIENTO		
7 7	HILL	CITIES .	- The supplied of												RUP.:		
7 8		cmm [m	HIII.	1				C			SO Y ROC	A SUAVE	SUP. DI	KUP.:	31/1/2	20111
11 31		(222)	10	777		4			D	SUELOF							
AF B		-	H	100				×	Е	SUELO		A SUAVE					
, W M	- 1	_	-	10	т -	771			F	SUELO P							
1 10 1020-01			-	H.H.		V	13.			ASUMIR							
Vista en Planta		Vist	a Latei	ral Izqi	uierda			ADYA	CENCIA:	_	POUND						
														UNA EDIF			
								IRREGU	JLARID/					DAD) _			
m mm m		214	THE PERSON NAMED IN					HORIZONTAL (TIPO) Esquinas entrantes									
TOTAL NAME OF THE OWNER, THE OWNE		100						RIESGOS DE CAIDAS EXTERIORES:									
1000	5. 1077 770						☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS										
									PARAPETOS ACCESORIOS								
									OTROS								
									COMENTARIOS:								
12900000																	
Vista Frontal	ta Lateral Derecha																
10001707000		7 1.5	iti Liii	ruibe	recru			l _									
			,										ARIOS EN	UNA PAG	INA SEPA	ARADA	
	NTUAC		_								$\overline{}$		1				1
FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	C3	PC1	PC2	RM1	RM2	URM	MH
PUNTUACIÓN BÁSICA	4.1	3.7	3.2	2.3	2.2	2.9	2.2	2.0	1.7	2.1	1.4	1.8	1.5	1.8	1.8	1.2	2.2
IRREGULARIDAD VERTICAL SEVERA, V _{L1}	-1.3	-1.3	-1.3	-1.1	-1.0	-1.2	-1.0	-0.9	-1.0	-1.1	-0.8	-1.0	-0.9	-1.0	-1.0	-0.8	NA
IRREGULARIDAD VERTICAL MODERADA, VL1	-0.8	-0.8	-0.8	-0.7	-0.6	-0.8	-0.6	-0.6	-0.6	-0.6	-0.5	-0.6	-0.6	-0.6	-0.6	-0.5	NA
IRREGULARIDAD EN PLANTA, PL1	-1.3	-1.2	-1.1	-0.9	-0.8	-1.0	-0.8	-0.7	-0.7	-0.9	-0.6	-0.8	-0.7	-0.7	-0.7	-0.5	NA
PRE-CÓDIGO	-0.8	-0.9	-0.9	-0.5	-0.5	-0.7	-0.6	-0.2	-0.4	-0.7	-0.1	-0.4	-0.3	-0.5	-0.5	-0.1	-0.3
POST-CÓDIGO	1.5	1.9	2.3	1.4	1.4	1.0	1.9	NA	1.9	2.1	NA	2.1	2.4	2.1	2.1	NA	1.2
SUELO TIPO A o B	0.3	0.6	0.9	0.6	0.9	0.3	0.9	0.9	0.6	0.8	0.7	0.9	0.7	8.0	0.8	0.6	0.9
SUELO TIPO E (1-3 NIVELES)	0.0	-0.1	-0.3	-0.4	-0.5	0.0	-0.4	-0.5	-0.2	-0.2	-0.4	-0.5	-0.3	-0.4	-0.4	-0.3	-0.5
SUELO TIPO E (>3 NIVELES)	-0.5	-0.8	-1.2	-0.7	-0.7	NA	-0.7	-0.6	-0.6	-0.8	-0.4	NA	-0.5	-0.6	-0.7	-0.3	NA
PUNTUACIÓN TOTAL S _{L1}									1.3								
												0.3	0.2	0.3	0.3	0.2	1.4
PUNTUACIÓN MÍNIMA, S _{MIN}	1.6	1.2	0.8	0.5	0.5	0.9	0.5	0.5	0.3	0.3	0.3	0.5		0.0			
	1.6	1.2	0.8	0.5	0.5	0.9	0.5	0.5	0.3 1.3	0.3	0.3	0.5					
PUNTUACIÓN MÍNIMA, S _{MIN}			OTROS	PELIGE	ROS				1.3		0.3 N REQU						
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}	00 🗆	AEREO	OTROS	PELIGF	ROS UE DESEI	NCADENA			1.3	ACCIÓ	N REQU	ERIDA		TURAL DE	'	A ?	
PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, $S_{L1} \ge S_{MIN}$ ALCANCE DE LA EVALUACIÓN	00 🗆		OTROS ¿HAY RI ESTRUC	PELIGF ESGOS Q TURAL D	ROS UE DESEI ETALLAD	NCADENA A?	AN UN EV	/ALUACI	1.3	ACCIÓ ¿REQUI	N REQU ERE EVAL SI, TIPO	ERIDA UACIÓN DE EDIFIG	ESTRUCT		TALLADA		O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: ☐ PARCIAL ☑ TODOLA	00 🗆	AEREO	OTROS ¿HAY RI ESTRUC	PELIGI ESGOS Q TURAL DI	ROS UE DESEI ETALLAD	NCADENA A? OUNDING	AN UN E V	/ALUACI	1.3 ÓN	ACCIÓ ¿REQUI	N REQU ERE EVAL SI, TIPO	ERIDA UACIÓN	ESTRUCT	TURAL DE	TALLADA		O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR:	00 🗆	AEREO	OTROS ¿HAY RI ESTRUC	PELIGI ESGOS Q TURAL DI	ROS UE DESEI ETALLAD	NCADENA A? OUNDING	AN UN E V	/ALUACI	1.3 ÓN	ACCIÓ ¿REQUI	N REQU ERE EVAL SI, TIPO OTRA ED	ERIDA UACIÓN DE EDIFIO	ESTRUCT CACIÓN E ÓN	TURAL DE	TALLADA CIDA PAR	RA FEMA	O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO	00 0	AEREO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR	ROS UE DESEI ETALLAD IAL DE PO UCCION	NCADENA PA? DUNDING ADYACEN	AN UN EV G POR UN ITE (A ME	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓI ¿REQUII	N REQU ERE EVAL SI, TIPO OTRA EC	ERIDA UACIÓN DE EDIFIO DIFICACIÓN	ESTRUCT CACIÓN E ÓN	TURAL DE DESCONO A QUE LA	TALLADA CIDA PAR	RA FEMA	O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos	DO 🗆	AEREO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR CORTE)	ROS UE DESEI ETALLAD IIAL DE PO UCCION	NCADENA PA? DUNDING ADYACEN	AN UN EN G POR UN ITE (A ME	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓ	N REQU ERE EVAL SI, TIPO OTRA EC	ERIDA UACIÓN DE EDIFIO DIFICACIÓN	ESTRUCT CACIÓN E ÓN MAS BAJ	TURAL DE DESCONO A QUE LA	TALLADA CIDA PAR	RA FEMA	O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: S S FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS: INGEMÍN	DO 🗆	AEREO	OTROS ¿HAY RI ESTRUC	PELIGR JESGOS Q TURAL DI POTENC CONSTR CORTE) RIESGOS	ROS UE DESEI ETALLAD IAL DE PO UCCION S DE CAID	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓ	N REQU ERE EVAL SI, TIPO OTRA ED SI, PUNT SI, OTRO	ERIDA UACIÓN DE EDIFICACIÓ DIFICACIÓN TUACIÓN DS RIESGO	ESTRUCT CACIÓN I ÓN MAS BAJ OS PRESE	TURAL DE DESCONO A QUE LA	TALLADA CIDA PAF DE CORT	RA FEMA	
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NOBUNA FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE TIPO DE FUENCO SECUÓGICOS: INGEMÍN PERSONA DE CONTACTO: Oficina de Obras - UNS ¿EVALUACIÓN DE NIVEL 2 REQUERIDA?	DO	AEREO	OTROS ¿HAY RI ESTRUC	PELIGR JESGOS Q TURAL DI POTENC CONSTR CORTE) RIESGOS	ROS UE DESEI ETALLAD IJAL DE PO UCCION IS DE CAID IGNIFICA	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓ	N REQUERE EVAL SI, TIPO OTRA EC SI, PUNT SI, OTRO NO	IERIDA UACIÓN DE EDIFIO DIFICACIÓN TUACIÓN DS RIESGO VALUAC	ESTRUCT CACIÓN E ÓN MAS BAJ OS PRESE	FURAL DE DESCONO A QUE LA NTES	TALLADA CIDA PAF DE CORT	RA FEMA	
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS: INGEMÍN PERSONA DE CONTACTO: Oficina de Obras - UNS ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	DO	AEREO TODO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR CORTE) RIESGOS DAÑO S	ROS UE DESEI ETALLAD IJAL DE PO UCCION IS DE CAID IGNIFICA	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓI ¿REQUII	N REQUERE EVAL SI, TIPO OTRA EE SI, PUNT SI, OTRO NO HIENDA E SI, RIESG NO, RIESG	UACIÓN DE EDIFICACIÓ FUACIÓN OS RIESGO VALUAC GOS NO E	ESTRUCT CACIÓN E ÓN MAS BAJ OS PRESE CIÓN NO E CISTRUCTU	TURAL DE DESCONO A QUE LA NTES ESTRUCTU IRALES ID	TALLADA CIDA PAR DE CORT	RA FEMA TE TALLADA NDOS QUE REQU	.? JIEREN
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{1,1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS: INGEMIN PERSONA DE CONTACTO: Oficina de Obras - UNS ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? SI, PUNTUACIÓN FINAL NIVEL 2, S _{1,2}	0.3	AEREO TODO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR CORTE) RIESGOS DAÑO S	ROS UE DESEI ETALLAD IJAL DE PO UCCION IS DE CAID IGNIFICA	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓI ¿REQUII	N REQUERE EVAL SI, TIPO OTRA EE SI, PUNT SI, OTRO NO HIENDA E SI, RIESG NO, RIESG MITIGAG	UACIÓN DE EDIFICACIÓN DE EDIFICACIÓN DE RIESGO VALUACO SONO E GOS NO EGOS NO CIÓN, PER	ESTRUCT CACIÓN E ÓN MAS BAJ OS PRESE CIÓN NO E CISTRUCTU	DESCONO A QUE LA NTES ESTRUCTL	TALLADA CIDA PAR DE CORT	RA FEMA TE TALLADA NDOS QUE REQU	.? JIEREN
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{1,1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS: INGEMIN PERSONA DE CONTACTO: Oficina de Obras - UNS ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? SI, PUNTUACIÓN FINAL NIVEL 2, S _{1,2}	0.3	AEREO TODO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR CORTE) RIESGOS DAÑO S	ROS UE DESEI ETALLAD IJAL DE PO UCCION IS DE CAID IGNIFICA	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓ ¿REQUII	N REQUERE EVAL SI, TIPO OTRA EE SI, PUNT SI, OTRO NO HIENDA E SI, RIESG NO, RIES MITIGAG NECESAI	ERIDA UACIÓN DE EDIFICACIÓ FUACIÓN DS RIESGO VALUAC GOS NO E GGOS NO E GGO	ESTRUCT CACIÓN I MAS BAJ OS PRESE CIÓN NO E ESTRUCTL ESTRUCT RO UNA E	DESCONO A QUE LA NTES ESTRUCTL URALES ID TURALES ESTALUACI	TALLADA CIDA PAR DE CORT BRAL DET ENTIFICA XISTEN C ÓN DETA	RA FEMA TE TALLADA NDOS QUE REQU	.? JIEREN O ES
PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{1,1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LA INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE OP PELIGROS GEOLÓGICOS: INGEMIN PERSONA DE CONTACTO: Oficina de Obras - UNS ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? X SI, PUNTUACIÓN FINAL NIVEL 2, S _{1,2}	0.3	AEREO TODO	OTROS ¿HAY RI ESTRUC	POTENC CONSTR CORTE) RIESGOS DAÑO S	ROS UE DESEI ETALLAD IJAL DE PO UCCION IS DE CAID IGNIFICA	NCADENA NA? DUNDING ADYACEN DA DE UN GICOS O S	AN UN EN	/ALUACI	1.3 ÓN ES ₁₂ >	ACCIÓ ¿REQUII	N REQUERE EVAL SI, TIPO OTRA EE SI, PUNT SI, OTRO NO HIENDA E SI, RIESG NO, RIES MITIGAG NECESAI	ERIDA UACIÓN DE EDIFICACIÓ FUACIÓN DS RIESGO VALUAC GOS NO E GGOS NO E GGO	ESTRUCT CACIÓN I MAS BAJ OS PRESE CIÓN NO E ESTRUCTL ESTRUCT RO UNA E	TURAL DE DESCONO A QUE LA NTES ESTRUCTU IRALES ID	TALLADA CIDA PAR DE CORT BRAL DET ENTIFICA XISTEN C ÓN DETA	RA FEMA TE TALLADA NDOS QUE REQU	.? JIEREN O ES

				GOS POTENCIALES SÍSN	FONIO ABAD DEL CUSCO, DISTRITO DE CU MICOS	,			ATO: NIVEL		
FEMA P-154 FORMUI	LARIO DE RECO	LECCIÓN I	DE DATO	os	SISM	VICIDAL	MODE	RADAN	IENTE ALTA		
NOMBRE DE LA EDIFI	CACION:	Edificacio	on Antig	ua - EPIC	PUNTAJE FINAL NIVEL 1 S_{L1} : $S_{L1} =$		1.	4			
EVALUADORES:	GJGR - RANE MODIFICADORES DE IRREGULARIDAD NIVEL 1: Irreg. Vertical, V _{L1} = -1.0								Planta, Pt0.7		
FECHA/HORA:	19/09/2018 PUNTAJE BASICO AJUSTADO: $S' = (S_{L1} - V_{L1} - P_{L1}) = 0$								3.1		
MODIFICADORES EST	1										
CARACTERISTICA	ENUNCIADO	1			i <mark>rculo el modificador de la columna "SI"; de otra manera tachar el mo</mark> leto que cambia de nivel de un lado a otro.	odificado	ır)	SI	SUBTOTAL		
	SITIO INCLINADO	\vdash	-1.3 -0.3	l							
		+	EDIFICIOS NO W1: Hay al menos una piso completo que cambia de nivel de un lado a otro. EDIFICIOS W1 CRIPPLE WALL: Una crippe wall sin refuerzo es visible en el espacio de inferior de la estructura								
	PISO DEBIL Y/O		EDIFICIOS W1 CASA SOBRE GARAGE: Debajo de un piso ocupado, hay una abertura de garaje sin un portico de acero								
	SUAVE (maximo un	EDIFICIOS V	-1.3 -1.3	l							
	modificador)	EDIFICIOS	EDIFICIOS NO W1: Edificaciones donde el primer piso tiene mas de 2 veces la altura del los pisos superiores.								
	<u> </u>	+			mer piso tiene entre 1.3 y 2 veces las altura de los pisos superiores			-0.5	l		
IRREGULARIDAD					centricidad en la estructura.			-1.0	$V_{L2} = -3.80$		
VERTICAL V _{L2}	SETBACK			de un piso es menor que l		· ··- nice	: =tro	-0.5	(max. score -1		
*LZ					cturales, es decir que hay un desfase de elementos estructurales de l menos el 20% de columnas en una linea de columnas laterales del			-0.3	1		
	COLUMNA			is cortas que el resto.	menos el 20% de columnas en una imea de columnas la terares der	Sistema		-0.5	ı		
	CORTA	EDIFICIOS ·	C1, C2, C	3, PC1, PC2, RM1, RM2: El :	ancho de la columna es menos de la mitad que el ancho del peralte	e de la vi	ga o	$\dot{\frown}$	V _{L2} = -1.3		
ı					an la longitud de la columna.			-0.5			
ı	NIVEL DIVIDIDO	Se aplica c	:uando lo	os pisos del edificio no est	tan alineados o cuando hay una subdivision en el ultimo piso.			0.5	I		
i	OTRA		_		rvable que obviamente afecta el rendimiento sísmico del edificio			-1.0	I		
		•	1	dad vertical moderada ob	bservable que puede afectar el rendimiento sísmico del edificio			28.5	——		
	IRREGULARIDAD	ra excent	-0.8								
IRREGULARIDAD	SISTEMA NO PA		-0.4	$P_{L2} = \underline{-2}$ (max. score -1.)							
EN PLANTA	DIAFRAGMA AI		-	la configuracion en planta apertura en el diafragma		-0.4	(Iliux. score				
P _{L2}	EDIFICACIONE				neadas con las columnas en el plano.		\neg	-0.4	P _{L2} = -1.3		
ı	OTRA IRREGUL	LARIDAD			bservable que obviamente afecta el rendimiento sísmico del edific	io		-0.8			
REDUNDANCIA	El edificio tiene a	al menos do	os vanos	de elementos laterales e	en cada del edificio en cada direccion.			0.3			
	La edificacion es una estructura a	-10	I								
POUNDING	de 1% de la altur		ficacion		o mas pisos mas alto que el otro			1.0	I		
EDIE: CIO C1	de menor altura			El edificio esta al final de	un bloque de edificios		-	-0.5	0.5		
EDIFICIO C1 EDIFICIO PC1/RM1	1			structura aporticada re el techo y las paredes q	que sean visibles o conocidas mediante planos.		-	0.5	M = <u>-0.5</u>		
EDIFICIO PC1/RM1	+				cubriendo toda altura de los vanos.		\neg	0.3	I		
REFUERZO	Existe refuerzos	en la estrur	ctura que	son visibles o conocidos	mediante planos disponibles.			1.4	I		
PUNTUACION FINAL	NIVEL 2, S _{L2} = ($S' + V_{L2}$	+ P _{L2} -	$+ M) \ge S_{MIN} =$	0.0	0.3		_			
Existe un daño o deterior	o u otra condicior	n que afecta	negativo	amente el comportamient	to sismico de la estructrurc 🔲 SI 🔀 NO						
Si existiera, describir la c	ondicion en la caj	a de coment	tarios en	la parte inferior e indicar e	en el formato Nivel 1 que es requerido una evalucion detallada.						
PELIGROS NO ESTRUC	CTUDALES ORSE	DVARIES									
LOCALIZACION	ENUNCIADO	KVADLLS				SI	NO	cor	MENTARIO		
		de mampc	ostería no	reforzado sin armadura,	, o una chimenea de mampostería no reforzada sin armadura	<u> </u>	×		VIL. 17		
	Hay un revestim			<u>_</u>		\times	m				
İ	Hay un dosel per	sel pesado sobre las puertas de salida o las aceras peatonales que parece estar mal apoyado									
EXTERIOR		péndice de mampostería no reforzado sobre las puertas de salida o los pasillos peatonales									
İ		un cartel publicado en el edificio que indica que hay materiales peligrosos presentes									
İ	<u> </u>	ay un edificio adyacente más alto con una pared URM sin anclaje o un parapeto o una chimenea URM sin abrazaderas tro peligro de caída no estructural exterior observado									
<u> </u>	+										
INTERIOR	INTERIOR Hay tabiques de division mal reforzados Otro peligro de caída no estructural interior observado										
DESEMPEÑO SISMICO					e el casillero adecuado y ponerlo en las conclusiones del formato de N	livel 1					
					dad de vida del ocupante Se recomienda una evaluación n		tural deta	allada			
Riesgo no estruc	ctural identificado	o con una a	menaza s	significativa para la segur	ridad de vida de los ocupantes <table-cell-rows> Pero no se requiere una evaluaci</table-cell-rows>	ión no es	tructural	detalla	da		
☐ Bajo o nulo ries	go de amenaza no	estructura	l para la	seguridad de vida de los o	ocupantes No se requiere una evaluación no	o estruct	ural deta	ıllada			
COMENTARIOS:											
İ											

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE

LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Edificacion Antigua - EPIC USO: Educación Universitaria LATITUD: 179644.56 m E LONGITUD: 8503371.52 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel 19/09/2018 FECHA: N° NIVELES: Superiores <u>5</u> Inferio <u>0</u> AÑO CONSTRUIDO: <u>1981</u> □ EST AÑO DE NORMA: <u>1970</u> AREA TOTAL CONSTRUIDA (m2): 512.66 m2 ADICIONALES: Ninguno 🔀 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA
INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND: X REFUGIO HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: LIQUEFACCIÓN: NO DNK
DESLIZAMIENTO: SI NO DNK A ROCA DURA B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI MONK D SUELO RIGIDO E SUELO DE ARCILLA SUAVE F SUELO POBRE П DNK ASUMIR TIPO "D ADYACENCIA: DOUNDING Vista en Planta Vista Lateral Izquierda ☐ RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: 🛛 VERTICAL (TIPO/SEVERIDAD) _____ Columna Corta / Severo MORIZONTAL (TIPO) Esquinas entrantes m mm m RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS 8 M PARAPETOS ☐ ACCESORIOS □ OTROS COMENTARIOS: Vista Frontal Vista Lateral Derecha BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 S3 S4 S5 PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, VL -1 2 -1 2 -1 2 -1.0 -1.0 -1.1 -1 0 -n s -0.9 -1.0 -0.7 -1 0 -0.9 -0.9 -0.9 -0.7 IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.6 -0.5 -0.5 -0.6 -0.4 -0.6 -0.5 -0.5 -0.5 -0.4 NA IRREGULARIDAD EN PLANTA, PL1 -1.1 -1.0 -1.0 -0.8 -0.7 -0.9 -0.7 -0.6 -0.8 -0.5 -0.7 -0.6 -0.7 -0.7 -0.4 NΑ -0.6 PRE-CÓDIGO -1.1 -0.9 -0.7 0.0 -0.1 -1.0 -0.6 -0.6 -0.8 -0.6 -0.2 -0.4 -0.1 -0.5 -0.3 -0.5 -0.5 POST-CÓDIGO 1.6 1.9 2.2 1.9 2.1 SUELO TIPO A o B 0.1 0.3 0.5 0.4 0.6 0.1 0.6 0.5 0.4 0.5 0.3 0.6 0.4 0.5 0.5 0.3 0.3 SUELO TIPO E (1-3 NIVELES) 0.2 0.2 0.1 -0.2 -0.4 0.2 -0.1 -0.4 0.0 0.0 -0.2 -0.3 -0.1 -0.1 -0.1 -0.2 -0.4 SUELO TIPO E (>3 NIVELES) -0.3 -0.6 -0.6 -0.6 -0.5 NA PUNTUACIÓN TOTAL S_{L1} 1.4 PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MII} ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA ESTRUCTURAL DETALLADA? ☐ NINGUNA 🗵 VISIBLE ☐ TODO SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES ☐ POTENCIAL DE POUNDING POR UNA □ NO OTRA EDIFICACIÓN PLANOS REVISADOS: 🗵 SI CONSTRUCCION ADYACENTE (A MENOS QUE S., > SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE ☐ SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC П мо ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} 0.3 N SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS NO, RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN X si □no ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NECESARIO NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

					S EDIFICIOS DE LA ESCUELA PROFESIONA FONIO ABAD DEL CUSCO, DISTRITO DE CI				CIVIL DE
	_			OS POTENCIALES SÍSN	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2010		1ATO: NIVEL 2
FEMA P-154 FORMUI									MICIDAD ALTA
NOMBRE DE LA EDIFI	CACION:	Edificacio	n Antig	ua - EPIC	PUNTAJE FINAL NIVEL 1 S_{L1} : S_{L1} =		1.	4	
EVALUADORES:	GJGR - RANE				MODIFICADORES DE IRREGULARIDAD NIVEL 1: Irreg. V			Irreg. en F	Planta, P0.6
FECHA/HORA:	19/09/2018				PUNTAJE BASICO AJUSTADO: S' = ($S_{L1} - V_{L1}$	$-P_{L_1}) =$		2.9
CARACTERISTICA	ENUNCIADO				the state of the s			SI	SUBTOTAL
CARACTERISTICA	SITIO	1			i rculo el modificador de la columna "SI"; de otra manera tachar el n leto que cambia de nivel de un lado a otro.	поатлісаа	or)	-1.2	SUBTUTAL
	INCLINADO				mpleto que cambia de nivel de un lado a otro.			-0.3	1
		EDIFICIOS	W1 CRIP	PLE WALL: Una crippe wal	Il sin refuerzo es visible en el espacio de inferior de la estructura			-0.6	1
	PISO DEBIL Y/O	EDIFICIOS	W1 CASA	SOBRE GARAGE: Debajo d	le un piso ocupado, hay una abertura de garaje sin un portico de a	cero		-1.2	1
	SUAVE (maximo un	EDIFICIOS	W1A-FRE	NTERA ABIERTA: Hay abert	turas en el primer piso (como para estacionar) en al menos el 50%	de la lon	gitud del	-1.2	1
	modificador)	EDIFICIOS	NO W1: E	dificaciones donde el pri	mer piso tiene mas de 2 veces la altura del los pisos superiores.			0.9	1
		 			mer piso tiene entre 1.3 y 2 veces las altura de los pisos superiore	·S.		-0.5	
IRREGULARIDAD VERTICAL	SETBACK			de un piso es menor que l	centricidad en la estructura.			-1.0 -0.5	$V_{L2} = -3.80$ (max. score -1.2)
VLKITCAL VL2	SEIBACK				cturales, es decir que hay un desfase de elementos estructurales	de un piso	a otro.	-0.3	(IIIUX. SCOTE -1.2
		-			menos el 20% de columnas en una linea de columnas laterales de				
	COLUMNA			s cortas que el resto.				-0.5	
	CORTA	EDIFICIOS	C1, C2, C	3, PC1, PC2, RM1, RM2: El	ancho de la columna es menos de la mitad que el ancho del peral	te de la vi	ga o	-0.5	$V_{L2} = -1.2$
		hay prese	ncia pare	des de relleno que acort	an la longitud de la columna.				
	NIVEL DIVIDIDO	-			tan alineados o cuando hay una subdivision en el ultimo piso.			0.5	1
	OTRA		_		rvable que obviamente afecta el rendimiento sísmico del edificio bservable que puede afectar el rendimiento sísmico del edificio		-	-1.0	1
	IRREGULARIDAD		1		a cantidad de elementos resistentes en una direccion que en la o	ra u gono	ra evcent	-0.7	
	SISTEMA NO PA		oc a pine		ales que no son ortogonales con los otros.	.ia y gene	ia exceiii	-0.4	P _{L2} = <u>-1.8</u>
IRREGULARIDAD	ESQUINA EN	TRANTE			ta de una edificacion tiene una esquina interior.			-0.4	(max. score -1.1
EN PLANTA P _{L2}	DIAFRAGMA A	PERTURA	Hay una	apertura en el diafragma	a con un ancho de mas del 50% del total del diafragma en esa dire	ccion.		-0,2	.
1 12	EDIFICACIONE	S C1, C2	Las viga	s exteriores no estan alir	neadas con las columnas en el plano.			-0.4	$P_{L2} = \underline{\text{-1.1}}$
	OTRA IRREGUI	LARIDAD	Hay otra	irregularidad del plan ol	bservable que obviamente afecta el rendimiento sísmico del edifi	cio	(-0.7	
REDUNDANCIA	El edificio tiene a				en cada del edificio en cada direccion.			0.3	1
POUNDING	una estructura a				an alineadas horizontalmente o mas pisos mas alto que el otro			-1.0 -1.0	1
POUNDING	de 1% de la altur de menor altura		icacion	El edificio esta al final de				-0.5	1
EDIFICIO C1			en una es	tructura aporticada	·			-0.4	M = -0.4
EDIFICIO PC1/RM1	Existe una conex	ción estruct	ural entr	e el techo y las paredes o	que sean visibles o conocidas mediante planos.			0.3	
EDIFICIO PC1/RM1	La edificacion tie	ene espacio	s cerrad	os con muros de relleno o	cubriendo toda altura de los vanos.			0/3	1
REFUERZO	l .				mediante planos disponibles.			1.4	
PUNTUACION FINAL					0.2	0.3			
					to sismico de la estructrurc				
Si existiera, aescribii ia ci	onaicion en la caj	a ac comen	turios en	ia parte injerior e maicar	en er jornato wver 1 que es requertao una evalueron detanada.				
PELIGROS NO ESTRUC	CTURALES OBSE	RVABLES							
LOCALIZACION	ENUNCIADO					SI	NO	CO	MENTARIO
	Hay un parapeto	de mampo	stería no	reforzado sin armadura,	, o una chimenea de mampostería no reforzada sin armadura		\times		
	Hay un revestim			.,		\times			
EVTERIOR			_		peatonales que parece estar mal apoyado	1			
EXTERIOR	<u> </u>				rtas de salida o los pasillos peatonales eriales peligrosos presentes	+-	10	-	
					nclaje o un parapeto o una chimenea URM sin abrazaderas	+-	戻		
				exterior observado		1	$\stackrel{\sim}{\times}$		
INTERIOR	Hay tabiques de	division ma	ıl reforza	dos			\times		
				interior observado			\times		
					e el casillero adecuado y ponerlo en las conclusiones del formato de				
					dad de vida del ocupante → Se recomienda una evaluación ridad de vida de los ocupantes → Pero no se requiere una evalua				da
				agnificativa para la segur seguridad de vida de los i					ıa
- Bajo o nulo ries	50 de amenaza NO	estructura	ı para ia	segunuau ue viua ue ios i	occipantes - No se requiere una evaluación	no estruc	curar ueti	anaud	
COMENTARIOS:									
1									

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS SISMICIDAD MODERADAMENTE ALTA DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Edificacion Nueva de la EPIC -BLOQUE A USO: Educación Universitaria LATITUD: 179597.33 m E LONGITUD: 8503381.91 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel FECHA: 20/09/2018 N° NIVELES: Superiores _____5 Inferior ____0 AÑO CONSTRUIDO: 2001 EST AÑO DE NORMA: 1977 AREA TOTAL CONSTRUIDA (m2): _____118 ADICIONALES: 🛛 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA
INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ X REFUGIO HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: ☐ A ROCA DURA LIQUEFACCIÓN: X NO DNK DESLIZAMIENTO: SI MONK B ROCA 3 1 DE MINISTRA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NO D SUELO RIGIDO E SUELO DE ARCILLA SUAVE Т 3 E 00 00 F SUELO POBRE DNK ASUMIR TIPO "D" ADYACENCIA: M POUNDING Vista Frontal ☐ RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) Columna Corta / Severo Vista en Planta MORIZONTAL (TIPO) Esquina Entrante RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS ☐ PARAPETOS ACCESORIOS 31 31 31 ☐ OTROS OTTOWN. COMENTARIOS: Vista Posterior Vista Lateral Derecha BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 S3 S4 S5 C1 C3 PC1 PC2 RM1 RM2 URM МН PUNTUACIÓN BÁSICA 3.2 IRREGULARIDAD VERTICAL SEVERA, V -1 3 -1.3 -1.1 -1.0 -1 2 -1.0 -0.9 -1.0 -1.1 -0.8 -1.0 -0.8 IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.8 -0.8 -0.7 -0.6 -0.8 -0.6 -0.5 -0.6 -0.8 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 NA IRREGULARIDAD EN PLANTA, P_{L1} -0.8 -0.6 -1.2 -0.9 -1.0 -0.8 -0.7 -0.9 -0.8 -0.7 -0.7 -0.7 -0.5 PRE-CÓDIGO -0.8 -0.9 -0.9 -0.5 -0.5 -0.7 -0.6 -0.2 -0.4 -0.7 -0.1 -0.4 -0.3 -0.5 -0.5 -0.1 -0.3 POST-CÓDIGO 1.5 2.3 1.9 2.1 2.1 2.1 2.1 1.9 1.4 1.4 1.0 1.9 NA 2.4 NA 1.2 SUELO TIPO A o B 0.3 0.9 0.6 0.9 0.3 0.8 0.7 0.9 0.7 0.8 0.6 0.9 0.9 0.6 0.8 0.6 0.9 SUELO TIPO E (1-3 NIVELES) 0.0 -0.1 -0.4 -0.5 -0.4 -0.3 -0.4 -0.4 -0.3 0.0 -0.5 -0.2 -0.4 -0.5 -0.3 -0.5 SUELO TIPO E (>3 NIVELES) -0.5 -0.8 -0.7 -0.7 NA -0.7 -0.6 -0.8 NA -0.5 -0.6 NA PUNTUACIÓN TOTAL S_{L1} 1.3 PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MIT} ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN EXTERIOR: ☐ PARCIAL 🂢 TODO LADO ☐ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? ☐ NINGUNA ☒ VISIBLE □ торо SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES OTRA EDIFICACIÓN POTENCIAL DE POUNDING POR UNA □ NO PLANOS REVISADOS: 🗵 SI SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} 0.4 DNG NO. RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN ĭ si □ no ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

DNK

					S EDIFICIOS DE LA ESCUELA PROFES ONIO ABAD DEL CUSCO, DISTRITO D					CIVIL DE
INSPECCIÓN VISUAL	RÁPIDA DE EDIF	ICIOS PAR	A RIESO	OS POTENCIALES SÍSN	AICOS					1ATO: NIVEL 2
FEMA P-154 FORMUI							MICIDAI			IENTE ALTA
NOMBRE DE LA EDIFI		Edificacio	n Nueva	de la EPIC -BLOQUE A	PUNTAJE FINAL NIVEL 1 S _{L1} :		41134	1		Name D 0.7
FECHA/HORA:	GJGR - RANE 20/09/2018				MODIFICADORES DE IRREGULARIDAD NIVEL 1: PUNTAJE BASICO AJUSTADO:				irreg. en F	3 -0.7
FECHA/HORA.	20/03/2018				FONTAJE BASICO AJOSTADO.	0 - (5)	,1 *L1	*LD -		
MODIFICADORES EST	RUCTURALES P/	ARA AFIN	AR LA E	VALUACION						
CARACTERISTICA	ENUNCIADO	(Si el enun	ciado es	verdadero, poner en un cir	rculo el modificador de la columna "SI"; de otra manera taci	har el mo	odificado	or)	SI	SUBTOTAL
	SITIO	EDIFICIOS '	W1: Hay	al menos una piso compl	eto que cambia de nivel de un lado a otro.				-1.3	
	INCLINADO				npleto que cambia de nivel de un lado a otro.				-0.3	1
	nico nenu vio	-			l sin refuerzo es visible en el espacio de inferior de la estru				-0.6	i
	PISO DEBIL Y/O SUAVE				e un piso ocupado, hay una abertura de garaje sin un portio				-1.8	i
	(maximo un				uras en el primer piso (como para estacionar) en al menos mer piso tiene mas de 2 veces la altura del los pisos superi		ie ia iong	jitua aei	-13	i
	modificador)				mer piso tiene entre 1.3 y 2 veces las altura de los pisos super				-0.5	i
IRREGULARIDAD		_			centricidad en la estructura.				-1.0	V _{L2} = -0.50
VERTICAL	SETBACK	El area cor	nstruida	de un piso es menor que l	a de un piso anterior.				0.5	(max. score -1.2
V _{L2}		Hay discor	ntinuida	l en los elementos estruc	turales, es decir que hay un desfase de elementos estructi	urales d	e un pisc	a otro.	-0.3	
					menos el 20% de columnas en una linea de columnas later	rales del	sistema		-0.5	
	COLUMNA	-		s cortas que el resto.					1	
	CORTA				ancho de la columna es menos de la mitad que el ancho de an la longitud de la columna.	el peralte	e de la vi	ga o	-0.5	$V_{L2} = -0.5$
	NIVEL DIVIDIDO				an alineados o cuando hay una subdivision en el ultimo pi:	50			-0.5	i
					vable que obviamente afecta el rendimiento sísmico del e				-1.0	1
	OTRA IRREGULARIDAD	— —			servable que puede afectar el rendimiento sísmico del edi				0.5	1
	IRREGULARIDAD		Se aplic	a cuando no hay la misma	a cantidad de elementos resistentes en una direccion que	en la otr	a y gene	ra excent	-0.8	
	SISTEMA NO PA	RALELOS			les que no son ortogonales con los otros.				-0.4	P _{L2} = <u>-1.6</u>
IRREGULARIDAD EN PLANTA	ESQUINA ENT	FRANTE	Cuando	la configuracion en planta	a de una edificacion tiene una esquina interior.				-0.4	(max. score -1.1
P _{L2}	DIAFRAGMA AI				a con un ancho de mas del 50% del total del diafragma en e	sa direc	cion.		-0.7	
	EDIFICACIONE				neadas con las columnas en el plano.			\longrightarrow	-9.4	$P_{L2} = -1.1$
	OTRA IRREGUL		.,		oservable que obviamente afecta el rendimiento sísmico d	el edific	io	-	-0.8	
REDUNDANCIA	La edificacion es				n cada del edificio en cada direccion. en alineadas horizontalmente			\dashv	1.0	İ
POUNDING	una estructura a	idyacente n	nenos		o mas pisos mas alto que el otro				-1.0	İ
	de 1% de la altur de menor altura		icacion	El edificio esta al final de					-0.5	ı
EDIFICIO C1			en una es	structura aporticada					-0.5	M = <u>-1.0</u>
EDIFICIO PC1/RM1	Existe una conex	ión estruct	ural entr	e el techo y las paredes q	ue sean visibles o conocidas mediante planos.				0.3	İ
EDIFICIO PC1/RM1	 				ubriendo toda altura de los vanos.				0.3	İ
REFUERZO					mediante planos disponibles.				1.4	
PUNTUACION FINAL					0.4	<u> </u>	0.4			
					o sismico de la estructrurc 🛛 SI 🔲 NO en el formato Nivel 1 que es requerido una evalucion detalla.	da.				
Si existiera, deseribir ia el	ondicion ciria caji	3 00 00 110 11		Ta parte injerior e marear e	and formation were a que estrequente una evaluation actual					
PELIGROS NO ESTRUC	CTURALES OBSE	RVABLES								
LOCALIZACION	ENUNCIADO						SI	NO	COI	MENTARIO
	Hay un parapeto	de mampo	stería no	reforzado sin armadura,	o una chimenea de mampostería no reforzada sin armadu	ra		\times		
	Hay un revestim							\geq		
EVERNOR			_		peatonales que parece estar mal apoyado			$\stackrel{\sim}{\sim}$		
EXTERIOR					rtas de salida o los pasillos peatonales eriales peligrosos presentes			\ominus		
					claje o un parapeto o una chimenea URM sin abrazaderas			$\widehat{>}$		
				exterior observado	, , , , , , , , , , , , , , , , , , , ,			$\stackrel{\sim}{\sim}$		
INITERIOR	Hay tabiques de	division ma	al reforza	dos				\times		
INTERIOR	Otro peligro de c	aída no est	ructural	interior observado				\times		
					el casillero adecuado y ponerlo en las conclusiones del form					
_					dad de vida del ocupante					
					idad de vida de los ocupantes → Pero no se requiere una					Ja
Bajo o nulo riesg	zo de amenaza no	estructura	l para la	seguridad de vida de los o	ocupantes No se requiere una evalu	Jación n	o estruci	ural deta	illada	
COMENTARIOS:										
COMENTARIOS.										

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PA															FORM		
FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	os														VICIDAI	
								DIRECC	-		sidad N		de San	Antoni	o Abad	del Cus	со
				×					Av. de	La Cult	ura 773						
			No. of London	P	1						DRES:						
		- 1			-IN		100	NOMB	RE DEL	EDIFICI	0:	Edifica	cion Nu	eva de	la EPIC	-BLOQU	IE A
		- 41		п	- 10	1		USO:	Educad	ión Un	iversitar	ria					
		ı				ker	- 4	LATITU	ID:	179597	7.33 m E		LONG	TUD: _	8503	381.91	m S
				-		NE		EVALU	ADOR (s):	Gimi Jo	seph G	aldos R	oman			
					-	100	A)				Roger	August	o Nuñez	Esquiv	el		
						1	4	FECHA	:	20/09,	/2018						
				п		JET	W				ores _						
Committee of the latest and the late						100	N.	AÑO C	ONSTR	UIDO:	20	01 C	EST	AÑO D	E NOR	νA:	1977
		14/-	100		€	-10	M	AREA 1	OTAL C	ONSTR	UIDA (n	n2): _	118				
	- 1	A CONTRACTOR	1 1		i i	A 2		ADICIO	NALES	X	Ningur	10 🗆	Si, año	constr	uido _		
	ě		_	1	157	65 (4	OCUPA	ACIÓN:	ASAN	/BLEA	COME	ERCIAL	SERV. I	DE EMERO	SENCIA	
				-	i in mi	EAR V				INDU	STRIAL	OFI	CINA <	ESCUEL	.A/UNIVE	RSIDAD	>
	-		-05	100	16.0	A Maria					ALM	ACÉN		RESID	ENCIAL	#UND:	
									🔀 REFI	JGIO		☐ HISTO	ÓRICO		GOBI	ERNO	
								TIPO D	E SUELO) :				RIESGO	S GEOL	.ógico:	S:
	T			-1					Α	ROCA D	URA			LIQUEF	ACCIÓN:	X NO	DNK
CANAL FOR A		H		Ц_	_		-		В	ROCA				DESLIZ	AMIENTO	:SI 💢	DNK
	-	EU			100		310		С	SUELO	MUY DENS	SO Y ROC	A SUAVE	SUP. DI	E RUP.:	SI ⋈	DNK
		121	1	-	-					SUELOF							
	/		1		- Bed.			×			DE ARCILL	A SUAVE					
				4	-	1			F	SUELOF							
1 1 1		H		1413	-11-		щ		DNK		TIPO "D'						
(-0110-)							_	_	ENCIA:		POUND						
V.H.				Vista F	rontal	!		ADIAC	LIVCIA.	_	RIESGO		DAS DOD	LINIA EDIE	. NANC AL	TA ADVA	CENTE
Water Blands								IDDECI	II A DIDA		VERTI						
Vista en Planta		-	No.		-	100		INNEGO	LANDA		M HORE			_			Severo
	2		100		-		1113	DIESCO	S DE C		XTERIO		(111 0)	Loquiii	a Liitiai	nc.	
	Ы				-1.		-				ARMADU			REVESTI	NAIENTOS	DECADO	c
	Al I					E	E3		PARAPE		HRIVIADO	n.a	_	ACCESO		FE3ADO.	3
	4	- 1			-7				OTROS				П	ACCESO	KIUS		
		- 10	-		-8-			_		_							
			100	10000	-1		Ħ	_	NTARIO	S:							
			(m)	1999				_		S:							
Vista Lateral Derecha			- 110-	ta Post	erior	10	n)	_		S:							
Vista Lateral Derecha	8		- 110-		erior		rij	COME	NTARIO								
		ZIÁN B	Vist	ta Post		DEC. V	DUNE	COME	BOSQUE	EJO ADIC	IONAL O		ARIOS EN	UNA PAG	GINA SEP	ARADA	
PUI		1	Vist ÁSICA,	ta Post	FICADO			COME	BOSQUE DN FIN	EJO ADIC	/EL 1, S	L1	,				
PUI FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	Vist ÁSICA, W2	MODII	FICADO S2	S3	S4	COMEI	BOSQUE ON FIN	EJO ADICI	C3	L1 PC1	PC2	RM1	RM2	URM	MH
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA	W1 3.6	W1A 3.2	Vist ÁSICA, W2 2.9	MODII S1 2.1	S2	S3 2.6	S4 2.0	COMEI	BOSQUE ON FIN	EJO ADICI AL NIV C2 2.0	C3	PC1 1.6	PC2	RM1	RM2	URM 1.0	1.5
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1}	W1 3.6 -1.2	W1A 3.2 -1.2	Vist ÁSICA, W2 2.9 -1.2	MODII S1 2.1 -1.0	S2 2.0 -1.0	\$3 2.6 -1.1	S4 2.0 -1.0	COMEI	BOSQUE ON FIN	C2	C3 1.2 -0.7	PC1 1.6 -1.0	PC2 1.4 -0.9	RM1 1.7 -0.9	RM2 1.7 -0.9	URM 1.0 -0.7	1.5 NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1}	W1 3.6 -1.2 -0.7	W1A 3.2 -1.2 -0.7	Vist ÁSICA, W2 2.9 -1.2 -0.7	MODII \$1 2.1 -1.0 -0.6	\$2 2.0 -1.0 -0.6	\$3 2.6 -1.1 -0.7	S4 2.0 -1.0 -0.6	COMEI	BOSQUE 5N FIN C1 1.5 -0.9 -0.5	C2 2.0 -1.0 -0.6	C3 1.2 -0.7 -0.4	PC1 1.6 -1.0 -0.6	PC2 1.4 -0.9 -0.5	RM1 1.7 -0.9 -0.5	RM2 1.7 -0.9 -0.5	URM 1.0 -0.7 -0.4	1.5 NA NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1}	W1 3.6 -1.2 -0.7 -1.1	W1A 3.2 -1.2 -0.7 -1.0	Vist ÁSICA, W2 2.9 -1.2 -0.7 -1.0	MODII S1 2.1 -1.0 -0.6 -0.8	\$2 2.0 -1.0 -0.6 -0.7	S3 2.6 -1.1 -0.7 -0.9	\$4 2.0 -1.0 -0.6 -0.7	COMEI	BOSQUE ON FIN C1 1.5 -0.9 -0.5	C2 -0.6	C3 1.2 -0.7 -0.4 -0.5	PC1 1.6 -1.0 -0.6 -0.7	PC2 1.4 -0.9 -0.5 -0.6	RM1 1.7 -0.9 -0.5 -0.7	RM2 1.7 -0.9 -0.5 -0.7	URM 1.0 -0.7 -0.4 -0.4	1.5 NA NA NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO	W1 3.6 -1.2 -0.7 -1.1 -1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0	Vist ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6	\$2 2.0 -1.0 -0.6 -0.7 -0.6	\$3 2.6 -1.1 -0.7 -0.9 -0.8	\$4 2.0 -1.0 -0.6 -0.7 -0.6	TUACIÓ \$5 1.7 -0.8 -0.5 -0.6 -0.2	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4	C2 2.0 -1.0 -0.6 -0.8 -0.7	C3 1.2 -0.7 -0.4 -0.5 -0.1	PC1 1.6 -1.0 -0.6 -0.7 -0.5	PC2 1.4 -0.9 -0.5 -0.6 -0.3	RM1 1.7 -0.9 -0.5 -0.7 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5	URM 1.0 -0.7 -0.4 -0.4 0.0	1.5 NA NA NA -0.1
FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9	Vist ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9	COMEI	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1	URM 1.0 -0.7 -0.4 -0.4 0.0 NA	1.5 NA NA NA -0.1 1.2
FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3	Visto ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6	COMEI FUACIO S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9 0.4	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1 0.5	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3	1.5 NA NA NA -0.1 1.2
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES)	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2	Vista ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4 -0.2	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1	COMEI FUACIO S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9 0.4	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1 0.5 0.0	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4
PUI FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES)	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3	Visto ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6	COMEI FUACIO S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9 0.4 0.0 -0.5	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3	1.5 NA NA NA -0.1 1.2
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO SUELO TIPO A 0 B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES)	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6	Visi ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	COMEI FUACIÓ S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9 0.4 0.0 -0.5	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7 1.6	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN}	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2	Vista ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4 -0.2	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1	COMEI FUACIO S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3	C2 2.0 -1.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4
PUM FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6	Visi ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9	MODII S1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	COMEI FUACIÓ S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4	BOSQUE ON FIN C1 1.5 -0.9 -0.5 -0.6 -0.4 1.9 0.4 0.0 -0.5	C2 2.0 -1.0 -0.6 -0.8 -0.7 -0.5 -0.0 -0.5 -0.7 -1.6 -0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUM FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (3NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6	Vision Vi	MODIII 51 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 -0.5	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	TUACIC \$5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4	BOSQUE BOSQUE C1 1.5 -0.9 -0.5 -0.4 1.9 0.0 0.0 1.4 0.3 1.4	C2 2.0 -1.0 -0.6 -0.8 -0.7 -0.5 -0.0 -0.5 -0.7 -1.6 -0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUT FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: □ PARCIAL ☒ TODO LAD	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Visica, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9 0.7 OTROSS	MODIII 51 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	TUACIC \$5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4	BOSQUE BOSQUE C1 1.5 -0.9 -0.5 -0.4 1.9 0.0 0.0 1.4 0.3 1.4	C2 2.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7 1.6 0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUTUACIÓN EXTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD ENTICAL MODERADA, V _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO A o B SUELO TIPO E (>3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: □ PARCIAL ☑ TODO LAD INTERIOR: □ NINGUNA ☑ VISIBLE	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6	Visit ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9 OTROS ZHAY RI ESTRUCT	MODII S1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5	52 2.0 -1.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	TUACIÓ S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4	BOSQUE BOSQUE C1 1.5 -0.9 -0.5 -0.4 1.9 0.0 0.0 1.4 0.3 1.4	C2 2.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7 1.6 0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 DERIDA UACIÓN DE EDIFICA D	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4 0.2 ESTRUCT	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUT FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: □ PARCIAL ☒ TODO LAD	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Visit ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9 OTROS ZHAY RI ESTRUCT	MODII S1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRE POTENC	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 -0.6 -0.4 -0.6 0.5	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	TUACIC \$5 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.5	BOSQUE BOSQUE C1 1.5 0.9 0.5 0.6 0.4 1.9 0.0 0.0 0.5 1.4 0.3 1.4	C2 2.0 ADIC C2 2.0 -0.6 -0.7 -0.5 -0.0 -0.6 -0.3 ACCIÓ &REQUI	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 UACIÓN	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4 0.2 ESTRUCT	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUTUACIÓN EXTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD ENTICAL MODERADA, V _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO A o B SUELO TIPO E (>3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: □ PARCIAL ☑ TODO LAD INTERIOR: □ NINGUNA ☑ VISIBLE	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Visit ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9 OTROS ZHAY RI ESTRUCT	MODII S1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRE POTENC	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 -0.6 -0.4 -0.6 0.5	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6	TUACIC \$5 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.5	BOSQUE BOSQUE C1 1.5 0.9 0.5 0.6 0.4 1.9 0.0 0.0 0.5 1.4 0.3 1.4	C2 2.0 -0.6 -0.8 -0.7 2.1 0.5 0.0 -0.7 1.6 0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO OTRA EC	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 DERIDA UACIÓN DE EDIFICACIÓ	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4 0.2 ESTRUCT CACIÓN I	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
FEMA TIPO DE ESTRUCTURA PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO A o B SUELO TIPO E (>3 NIVELES) SUELO TIPO E (>3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LAD INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: S _I NO	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Visit Visit	MODIII S1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRE ESGOS Q TURAL DI POTENC CONTE) CONTE	\$2 2.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6 0.5 COS UE DESENTALIAD IIAL DE PCP UUCCION	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	COMEI TUACIC 55 1.7 -0.8 -0.5 -0.6 -0.2 NA -0.5 -0.4 -0.4 -0.5	BOSQUE BOSQUE C1 1.5 -0.9 -0.5 -0.6 -0.4 0.0 0.5 1.4 0.3 1.4	C2 2.0 ADIC C2 2.0 -0.6 -0.7 -0.5 -0.0 -0.6 -0.3 ACCIÓ &REQUI	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO OTRACES SI, PUNTING SI	L1 PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 ERIDA DE EDIFICACIÓN TUACIÓN	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 0.4 -0.1 -0.4 0.2 ESTRUCT CACIÓN I	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO SUELO TIPO A o B SUELO TIPO E (2-3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN ENTERIOR: PARCIAL TODO LAD INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NINGUNA FUENTE TIPO DE SUELO: ESTUDIO de Suelos	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3 1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Visit Visit	MODIII S1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRE ESGOS Q TURAL DI POTENC CONSTE	\$2 2.0 -0.6 -0.7 -0.6 1.4 0.6 -0.4 -0.6 0.5 COS UE DESENTALIAD HALLAD H	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE BOSQUE C1 1.5 -0.9 -0.5 -0.6 -0.4 0.0 0.5 1.4 0.3 1.4	C2 2.0 -0.6 -0.7 -0.5 -0.7 -0.1 -0.3 -0.7 -0.3	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO OTRACES SI, PUNTING SI	L1 PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 ERIDA DE EDIFICACIÓN TUACIÓN	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 -0.2 ESTRUCT CACIÓN I N MAS BAJ	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6	URM 1.0 -0.7 -0.4 -0.4 0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUI FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: □ PARCIAL ▼ TODO LAD INTERIOR: □ PINGUNA ▼ VISIBLE PLANOS REVISADOS: ▼ SI □ NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS:	W1 3.6 -1.2 -0.7 -1.1 -1.1 1.6 0.1 0.2 -0.3 1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	Vista ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 2.2 0.5 0.1 -0.9 0.7 OTROS ∠HAY RIL ∠HAY	MODII \$1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4 -0.2 -0.6 0.5 PELIGRAL DI POTENC CONSTRI RIESGOS RIESCOS RIESGOS RIESGOS RIESGOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS	\$2 2.0 -1.0 -0.6 -0.7 -0.6 1.4 -0.6 -0.4 -0.6 0.5	2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3 1.4	2.0	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 N REQUERE EVAL SI, TIPO OTRA EC SI, PUNTA SI, OTRC	PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 DEERIDA UACIÓN DE EDIFI- DIFICACIÓ UJACIÓN DE RESEGO	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 -0.1 -0.4 0.2 ESTRUCT CACCIÓN ID N MAS BAIA SS PRESE	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6 0.3	URM 1.0 -0.7 -0.4 -0.4 -0.0 NA 0.3 -0.2 -0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUM FEMA TIPO DE ESTRUCTURA DNK PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO SUELO TIPO A o B SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (3NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODOLAD INTERIOR: NINGUNA TODOLAD PUENTE TIPO DE SUELO: Estudio de Suelos FUENTE DE PELIGROS GEOLÓGICOS: INGEMM PERSONA DE CONTACTO: Officina de Obras - UNSA ¿EVALUACIÓN DE NIVEL 2 REQUERIDA?	W1 3.6 -1.2 -0.7 -1.1 1.6 0.1 0.2 -0.3	W1A 3.2 -1.2 -0.7 -1.0 -1.0 1.9 0.3 0.2 -0.6 0.9	ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 -1.2 0.5 0.1 -0.9 OTROS ZHAY RI RI □	MODII \$1 2.1 -1.0 -0.6 -0.8 -0.6 1.4 0.4 -0.2 -0.6 0.5 PELIGRAL DI POTENC CONSTRI RIESGOS RIESCOS RIESGOS RIESGOS RIESGOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS RIESCOS	\$2	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3 1.4	2.0	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 O.3 N REQUE REF EVAL SI, TIPO OTRAEC NO MIENDA E	PC1 1.6 -1.0 -0.6 -0.7 -0.5 -0.5 -0.3 NA -0.2	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 -0.2 ESTRUCT CACCIÓN I D MAS BAIA DOS PRESE	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	RM2 1.7 -0.9 -0.5 -0.7 -0.5 -0.1 -0.6 0.3 TALLADÍO PAR DE CORTI	URM 1.0 -0.7 -0.4 -0.4 -0.0 NA 0.3 -0.2 -0.2 0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA
PUNTUACIÓN BÁSICA RREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LAD INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE PELIGROS GEOLÓGICOS: INGEMM PERSONA DE CONTACTO: Oficina de Obras - UNISA ZEVALUACIÓN DE NIVEL 2 REQUERIDA? X SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2} X SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	W1 3.6 -1.2 -0.7 -1.1 1.6 0.1 0.2 -0.3 1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 -1.0 0.3 0.2 -0.6 0.9 AEREO TODO	ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 -1.2 0.5 0.1 -0.9 OTROS ZHAY RI RI □	MODIII 51 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRESGOS Q. CONSTR. CO	\$2	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3 1.4	C2 2.0 -0.6 -0.7 -0.7 -0.6 -0.3 -0.7 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 O.3 O.3 N REQU UERRE EVAL SI, TIPO OTRA EC SI, PUNITA NO NO NO RIES NO, RIES NO, RIES NO, RIES NO, RIES	L1 PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 URLINGTON OF RESERVALUACIÓN NO RESERVALUACIÓN NO RESERVALUACIÓN SO RIESGOS NO DE GGOS NO D	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 0.2 ESTRUCT. CACIÓN NO IS ESTRUCTE. ESTRUCTE.	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6 0.3	URM 1.0 -0.7 -0.4 -0.4 -0.3 -0.2 -0.2 0.2 0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA 1.0
PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (3-3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN MÍNIMA, S _{MIN} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LAD INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE PELIGROS GEOLÓGICOS: INGEMM PERSONA DE CONTACTO: Oficina de Obras - UNSA ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? X SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	W1 3.6 -1.2 -0.7 -1.1 1.6 0.1 0.2 -0.3 1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 -1.0 0.3 0.2 -0.6 O.9	ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 -1.2 0.5 0.1 -0.9 OTROS ZHAY RI RI □	MODIII 51 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRESGOS Q. CONSTR. CO	\$2	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3 1.4	2.1 0.5 0.0 0.7 1.6 0.3 ACCIÓ &REQUI	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 -0.2 -0.3 0.3 N REQU ERE EVAL SI, IPPO NO MIENDA E SI, PUNT NO NO, RIESES NO, RIESES NO, RIESES	L1 PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 URLINGTON SERIES GO VALUACIÓN VAL	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 0.2 ESTRUCT. CACIÓN NO IS ESTRUCTE. ESTRUCTE.	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3 TURAL DESCONC A QUELA	RM2 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.6 0.3	URM 1.0 -0.7 -0.4 -0.4 -0.3 -0.2 -0.2 0.2 0.2	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA 1.0
PUNTUACIÓN BÁSICA RREGULARIDAD VERTICAL SEVERA, V _{L1} IRREGULARIDAD VERTICAL MODERADA, V _{L1} IRREGULARIDAD EN PLANTA, P _{L1} PRE-CÓDIGO POST-CÓDIGO SUELO TIPO E (1-3 NIVELES) SUELO TIPO E (3 NIVELES) PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN TOTAL S _{L1} PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN} ALCANCE DE LA EVALUACIÓN EXTERIOR: PARCIAL TODO LAD INTERIOR: NINGUNA VISIBLE PLANOS REVISADOS: SI NO FUENTE TIPO DE SUELO: Estudio de Suelos FUENTE PELIGROS GEOLÓGICOS: INGEMM PERSONA DE CONTACTO: Oficina de Obras - UNISA ZEVALUACIÓN DE NIVEL 2 REQUERIDA? X SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2} X SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	W1 3.6 -1.2 -0.7 -1.1 1.6 0.1 0.2 -0.3 1.1	W1A 3.2 -1.2 -0.7 -1.0 -1.0 -1.0 0.3 0.2 -0.6 0.9 AEREO TODO	ASICA, W2 2.9 -1.2 -0.7 -1.0 -0.9 -1.2 0.5 0.1 -0.9 0.7 OTROS ZHAY RI RI □	MODIII 51 2.1 -1.0 -0.6 -0.8 -0.6 1.4 -0.2 -0.6 0.5 PELIGRESGOS Q. CONSTR. CO	\$2	\$3 2.6 -1.1 -0.7 -0.9 -0.8 1.1 0.1 0.2 NA 0.6	\$4 2.0 -1.0 -0.6 -0.7 -0.6 1.9 0.6 -0.1 -0.6 0.5	TUACIC S5 1.7 -0.8 -0.5 -0.6 -0.2 NA 0.5 -0.4 -0.4 -0.4 0.5	BOSQUE 5N FIN C1 1.5 -0.9 -0.5 -0.4 1.9 0.4 0.0 -0.5 1.4 0.3 1.4	2.1 0.5 0.0 0.7 1.6 0.3 ACCIÓ &REQUI	C3 1.2 -0.7 -0.4 -0.5 -0.1 NA 0.3 0.3 0.3 N REQUEERE EVAL SI, TIPO OTRA EC SI, PUNTI SI, OTRC NO MITIGACM SI, RIESS NO, RIESS	L1 PC1 1.6 -1.0 -0.6 -0.7 -0.5 2.0 0.6 -0.3 NA 0.2 DEERIDA UUACIÓN DE EDIFICACICIÓN, PEI	PC2 1.4 -0.9 -0.5 -0.6 -0.3 2.4 -0.1 -0.4 -0.2 ESTRUCTU E	RM1 1.7 -0.9 -0.5 -0.7 -0.5 2.1 0.5 -0.1 -0.5 0.3	1.7 -0.9 -0.5 -0.7 -0.5 2.1 -0.6 -0.1 -0.6 -0.3 TALLAD PAIL DET CONTROL OF THE C	URM 1.0 -0.7 -0.4 -0.4 -0.0 NA 0.3 -0.2 -0.2 0.2 1.1 APPROXIMATION TO SERVICE TO SERV	1.5 NA NA NA -0.1 1.2 0.3 -0.4 NA 1.0

	LA UNIVERS	SIDAD N	NACIO	NAL DE SAN ANT	S EDIFICIOS DE LA ESCUELA PROFESIONA FONIO ABAD DEL CUSCO, DISTRITO DE CU				
INSPECCIÓN VISUAL I FEMA P-154 FORMUL				GOS POTENCIALES SÍSM OS	IICOS	Į			MATO: NIVEL 2
NOMBRE DE LA EDIFI				de la EPIC -BLOQUE A	PUNTAJE FINAL NIVEL 1 S_{L1} : S_{L1} =		1.		IIICIDAL AL
	GJGR - RANE				MODIFICADORES DE IRREGULARIDAD NIVEL 1: Irreg. Ver	rtical, V _{L1} =			Planta, P0.6
FECHA/HORA:	20/09/2018				PUNTAJE BASICO AJUSTADO: $S' = (S_L)$	_1 - V _{L1} -	- P _{L1}) =		2.9
MODIFICADORES EST	T								
CARACTERISTICA	ENUNCIADO	1			rculo el modificador de la columna "SI"; de otra manera tachar el ma	odificado	r)	SI	SUBTOTAL
	SITIO INCLINADO	-			eto que cambia de nivel de un lado a otro. npleto que cambia de nivel de un lado a otro.		-	-1.2 -0.3	
		+			npieto que camoia de nivei de un iado a otro. I sin refuerzo es visible en el espacio de inferior de la estructura		-+	-0.3	
l	PISO DEBIL Y/O	-			e un piso ocupado, hay una abertura de garaje sin un portico de ace	ero	$\neg \neg$	-1.2	
	SUAVE (maximo un	—			uras en el primer piso (como para estacionar) en al menos el 50% d		gitud del	-12	
	modificador)				mer piso tiene mas de 2 veces la altura del los pisos superiores.			-0.9	
	<u> </u>	+			mer piso tiene entre 1.3 y 2 veces las altura de los pisos superiores	-		-0.5	
IRREGULARIDAD	SEEDACK				centricidad en la estructura.		-	-1.0	
VERTICAL V _{L2}	SETBACK	—		de un piso es menor que la d en los elementos estruct	a de un piso anterior. turales, es decir que hay un desfase de elementos estructurales de	o un niso	a otro.	0.5	(max. score -1.2
*12	 				menos el 20% de columnas en una linea de columnas laterales del				
	COLUMNA CORTA	estructura	al son ma	as cortas que el resto.				-0.5	
	CUNIA				ancho de la columna es menos de la mitad que el ancho del peralte an la longitud de la columna.	e de la vi	да о	-0.5	V _{L2} = <u>-0.5</u>
	NIVEL DIVIDIDO	Se aplica c	uando lo	os pisos del edificio no esta	an alineados o cuando hay una subdivision en el ultimo piso.			-0.5	
	OTRA		_		vable que obviamente afecta el rendimiento sísmico del edificio			-1.0	
	IRREGULARIDAD		T .		oservable que puede afectar el rendimiento sísmico del edificio			0.5	
	SISTEMA NO PA				a cantidad de elementos resistentes en una dirección que en la otra	a y gener	a excent	-0.7	B - 15
IRREGULARIDAD	ESQUINA ENT				lles que no son ortogonales con los otros. a de una edificacion tiene una esquina interior.		-	-0.4 -0.4	$P_{L2} = -1.5$ (max. score -1.1)
EN PLANTA	DIAFRAGMA AF		_		a con un ancho de mas del 50% del total del diafragma en esa direcc	cion.	-	-0.2	
P _{L2}	EDIFICACIONE	S C1, C2	Las viga	s exteriores no estan aline	neadas con las columnas en el plano.			-9.4	$P_{L2} = -1.1$
	OTRA IRREGUL	LARIDAD	Hay otr	a irregularidad del plan ob	bservable que obviamente afecta el rendimiento sísmico del edifici	io		-0.7	
REDUNDANCIA					n cada del edificio en cada direccion.			0.3	
	La edificacion es una estructura a				an alineadas horizontalmente			1.0	
POUNDING	de 1% de la altur	ra de la edif			o mas pisos mas alto que el otro		-	-1.0	
EDIFICIO C1	de menor altura		en una e	El edificio esta al final de structura aporticada	un bloque de edificios		-	-0.5 -0.4	M = -10
EDIFICIO C1 EDIFICIO PC1/RM1	 				ue sean visibles o conocidas mediante planos.		\dashv	0.3	M = <u>-1.0</u>
EDIFICIO PC1/RM1					subriendo toda altura de los vanos.		$\neg \uparrow$	0.3	
REFUERZO	Existe refuerzos	en la estruc	ctura que	son visibles o conocidos i	mediante planos disponibles.			1.4	
PUNTUACION FINAL	NIVEL 2, S _{L2} = ($S' + V_{L2}$	+ P _{L2} -	$+ M) \ge S_{MIN} =$	0.3	0.3			
				amente el comportamiento					
Si existiera, describir la co	ondicion en la cajo	a de coment	tarios en	la parte inferior e indicar e	en el formato Nivel 1 que es requerido una evalucion detallada.				
PELIGROS NO ESTRUC	CTURALES OBSE	PVARIES							
LOCALIZACION	ENUNCIADO	UANDELL				SI	NO	cor	MENTARIO
		de mampo	ostería n	o reforzado sin armadura,	o una chimenea de mampostería no reforzada sin armadura		\sim		*******
	Hay un revestimi				,		<u></u>		
İ	Hay un dosel pes	sado sobre	las puer	tas de salida o las aceras p	peatonales que parece estar mal apoyado		\times		
EXTERIOR	Hay un apéndice	de mampo	stería no	o reforzado sobre las puert	tas de salida o los pasillos peatonales		\times		
					eriales peligrosos presentes	<u> </u>	\times		
					claje o un parapeto o una chimenea URM sin abrazaderas		\geq		
				exterior observado		<u> </u>	\geq		
INTERIOR	Otro peligro de c			interior observado		├			
DESEMBEÑO SISMICO	L ' "				el casillero adecuado y ponerlo en las conclusiones del formato de N	livel 1			
Riesgos no estru	ucturales potencia	iales con am	nenaza si	ignificativa para la segurid	dad de vida del ocupante Se recomienda una evaluación no	o estruct			
₩					idad de vida de los ocupantes → Pero no se requiere una evaluaci				da
Bajo o nulo riesg	go de amenaza no	estructura	l para la	seguridad de vida de los o	ocupantes No se requiere una evaluación no	o estruct	ural deta	illada	
COMENTARIOS:									

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PA	RA RIES	GOS PO	OTEN CIA	LES SÍS	MICOS										FORN	/ATO: N	IIVEL 1
FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	os										SISN	VICIDAI	O MODE	RADAN	IENTE A	LTA
2.0			- 12	ab all		40.00		DIREC			sidad N		de San	Antoni	o Abad	del Cus	со
			小僧			25					ura 773						
And the second		120	71		_						DRES:						
											0:		cion Nu	eva de	la EPIC	-BLOQU	IE B
		=	7			2					iversitar						
1		20		1		1					2.11 m E			TUD: _	8503	3372.36	m S
	100				70			EVALU	IADOR	(s):	Gimi Jo						
												August	o Nuñe	z Esquiv	el		
			1			a.		FECHA		21/09							
Title In									ELES:				Inferio –				
				-	_	illada			ONSTR						DE NORI	MA:	1977
			$\overline{}$								RUIDA (r						
		ь.	1	h-					ONALES		Ningur				_		
		100	niem.			-104		OCUP	ACIÓN:		ИBLEA		ERCIAL		DE EMER	_	
2000				и.						INDU	STRIAL		CINA C		LA/UNIVE		
						,			M			ACÉN	,		ENCIAL		
		- 10						L	X REF			HISTO	ORICO	T	GOBI		
									E SUEL						OS GEOI		
	Γ.			. 3					Α	ROCA D	URA				ACCIÓN:	=	
	1	H		Ц_	- 111				В	ROCA					AMIENTO E RUP.:		
		1.1		ц	H		115		C -		MUY DEN:	SO Y ROC	A SUAVE	SUP. D	E RUP.:	31	DIVIN
Shifteen C.	1	H			-		-		D F	SUELO	RIGIDO DE ARCILL						
		17.0					0.0		F	SUELO		ASUAVE					
* () E		川									TIPO "D'						
					_				CENCIA:		POUND						
				Vista I	Fronta	l		ADTA	JEINCIA.		RIESGO		AS DOD	LINIA EDIE	- NAAC AI	TA ADVA	CENTE
Tr . Di .								IDDECI	II A DID		✓ VERT						
Vista en Planta								IKKEG	JLAKID		HORI			LIDAD) _	Column	a corta /	Severo
			100					DIECCO	OC DE C		XTERIO		(TIPO)				
7-110		- 6									ARMADU			DEL/ECTI	MIENTOS	DECADO	c
(ep)		- 1	1						PARAPE		AKIVIADU	KA		ACCESO		PESADO	5
4		E	T	-	4				OTROS	103				ACCESO	INIU3		
		- 1	- 1					-	NTARIC	ıs.							
		- 1			_			COIVIL	i i Aidio	· J.							
		F															
Vista Lateral Derecha		Vi	sta Lai	eral Iz	quiera	la			BOSQUI	EJO ADIC	IONAL O	COMENTA	ARIOS EN	UNA PA	GINA SEP	ARADA	
PUI	NTUAC	IÓN B	ÁSICA,	MODI	FICAD	ORES, '	Y PUN	TUACIO									
FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	СЗ	PC1	PC2	RM1	RM2	URM	МН
PUNTUACIÓN BÁSICA	4.1	3.7	3.2	2.3	2.2	2.9	2.2	2.0	1.7	2.1	1.4	1.8	1.5	1.8	1.8	1.2	2.2
IRREGULARIDAD VERTICAL SEVERA, V _{L1}	-1.3	-1.3	-1.3	-1.1	-1.0	-1.2	-1.0	-0.9	-1.0	-1.1	-0.8	-1.0	-0.9	-1.0	-1.0	-0.8	NA
IRREGULARIDAD VERTICAL MODERADA, VL1	-0.8	-0.8	-0.8	-0.7	-0.6	-0.8	-0.6	-0.6	-0.6	-0.6	-0.5	-0.6	-0.6	-0.6	-0.6	-0.5	NA
IRREGULARIDAD EN PLANTA, PL1	-1.3	-1.2	-1.1	-0.9	-0.8	-1.0	-0.8	-0.7	-0.7	-0.9	-0.6	-0.8	-0.7	-0.7	-0.7	-0.5	NA
PRE-CÓDIGO	-0.8	-0.9	-0.9	-0.5	-0.5	-0.7	-0.6	-0.2	-0.4	-0.7	-0.1	-0.4	-0.3	-0.5	-0.5	-0.1	-0.3
POST-CÓDIGO	1.5	1.9	2.3	1.4	1.4	1.0	1.9	NA	1.9	2.1	NA	2.1	2.4	2.1	2.1	NA	1.2
SUELO TIPO A o B	0.3	0.6	0.9	0.6	0.9	0.3	0.9	0.9	0.6	0.8	0.7	0.9	0.7	0.8	0.8	0.6	0.9
SUELO TIPO E (1-3 NIVELES)	0.0	-0.1	-0.3	-0.4	-0.5	0.0	-0.4	-0.5	-0.2	-0.2	-0.4	-0.5	-0.3	-0.4	-0.4	-0.3	-0.5
SUELO TIPO E (>3 NIVELES)	-0.5	-0.8	-1.2	-0.7	-0.7	NA	-0.7	-0.6	-0.6	-0.8	-0.4	NA	-0.5	-0.6	-0.7	-0.3	NA
PUNTUACIÓN TOTAL S _{L1}									2.4								
PUNTUACIÓN MÍNIMA, S _{MIN}	1.1	0.9	0.7	0.5	0.5	0.6	0.5	0.5	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.2	1.0
PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}									2.4								
ALCANCE DE LA EVALUACIÓN			OTROS	PELIG	ROS					ACCIÓ	n requ	ERIDA					
EXTERIOR: PARCIAL X TODO LAD	0 🗆	AEREO					AN UN E	VALUACI	ÓN	¿REQU	ERE EVAL	UACIÓN	ESTRUC	TURAL DE	ETALLAD	A?	
INTERIOR: NINGUNA VISIBLE		TODO			ETALLAD						SI, TIPO	DE EDIFI	CACIÓN I	DESCONO	OCIDA PA	RA FEMA	O ES
PLANOS REVISADOS: X SI NO			×			OUNDING			· ·	l	OTRA ED	IFICACIÓ	Ń				
FUENTE TIPO DE SUELO: Estudio de Suelos				CONSTR	OCCION	AUTACE	vic (A Mi	ENOS QUI	- 3 _{LZ} >		SI, PUN	TUACIÓN	MAS BA	A QUE LA	A DE CORT	ΓE	
FUENTE DE PELIGROS GEOLÓGICOS: INGEMM	ET		×	RIESGO	S DE CAID	A DE UN	EDIFICIO	ADYACE	NTE	×	SI, OTRO	S RIESGO	OS PRESE	NTES			
PERSONA DE CONTACTO: Oficina de Obras - UNSA				RIESGO	S GEOLÓ	GICOS O S	SUELO TII	PO F			NO						
¿EVALUACIÓN DE NIVEL 2 REQUERIDA?			+					EN EL SIST	EMA	¿RECON	/IENDA E	VALUAC	IÓN NO I	ESTRUCTI	URAL DET	ALLADA	?
SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	1.9	⊠ NO		ESTRUC		,									DENTIFICA		
	sı 🗆	_													EXISTEN (
										l	MITIGA		RO UNA E	VALUACI	IÓN DETA	LLADA N	O ES
										×			ESTRUCT	TURALES I	NO IDENT	TFICADO:	s .
			1							ΙĒ	DNK						

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE

LA UNIVERSIDAD I							D DE	L CUS	sco,	DISTR	RITO E	DE CU	sco,	2018			
INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PA			OTENCIA	ALES SIS	MICOS											/ATO: I	
FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	US					_	DIREC	nón∙	Univer	sidad N	acional	de San	Antoni		del Cus	
2					-	1				La Cult			ac san	7 11710777	071000	acr cas	
1 The second second				\neg				OTROS	DENT	IFICADO	DRES:	Campi	ıs Unive	ersitario	- Perav	oa	
		100				4				EDIFICI							JE B
					_					ción Un							
The same of the sa		The same				1				179592			LONG	ITUD:	850.	3372.36	5 m S
1			-	4					_	(s):				_			
		-	-	_		2								z Esquiv	el		
DECT MAN				1			1	FECHA	.:	21/09		- 3		- 1			
Section 1		_			_			_	_	Superi	_	2	Inferio	1 0			
a			1000		<u> </u>					UIDO:			-			MA:	1977
										CONSTR						_	
					_				ONALES					o consti	uido		
		100		1		TIL.	1		ACIÓN:		ИBLEA		ERCIAL		DE EMER	GENCIA	
DAME:						-37					STRIAL			ESCUE		_	>
			_									ACÉN				#UND:	
		-							☑ REF	UGIO		HISTO	ÓRICO		□GOB		
								TIPO D	E SUEL					RIESGO		LÓGICO	S:
			-					l	A	ROCA D	URA					NC	
	L.	-			-		-1-	Ιō	В	ROCA						:SI 🔀	
70000 - 5000				7		-	-		С	SUELO	MUY DEN:	SO Y ROC	A SUAVE			SI	
1000 - 159 E			44						D	SUELO F	RIGIDO						
		曲			- 100			X	Е	SUELO	DE ARCILI	.A SUAVE					
1 2									F	SUELO F	OBRE						
		144	-	-	-				DNK	ASUMIR	TIPO "D'						
1 1 1				Vista 1	Eronta	1		ADYA	CENCIA	: 🛛	POUND	ING					
				v isiti 1	топи	ı				×	RIESGO	S DE CAII	DAS POR	UNA EDII	F. MAS AL	TA ADYA	CENTE
Vista en Planta								IRREGI	JLARID	ADES:							
		-	-								☐ HORI	ZONTAL	(TIPO)				
		į.						RIESGO	OS DE C	AIDAS E	XTERIO	RES:					
[212]		F							CHIME	NEAS SIN	ARMADU	RA		REVESTI	MIENTO	PESADO	JS
(TE)		- [_					PARAPE	TOS			×	ACCESO	RIOS		
-		- }	-		-				OTROS								
		1	1					COME	NTARIC	S:							
		- 1															
		- 1			_												
Vista Lateral Derecha		Vi	sta Lai	teral Iz	auiera	la											
					_			_		EJO ADIC			ARIOS EN	I UNA PA	GINA SEP	ARADA	
PUI	NTUAC	IÓN B	ÁSICA,	MODI	FICAD	ORES,	Y PUN	TUACIO	ÓN FIN	IAL NIV	/EL 1, S	L1					
FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	С3	PC1	PC2	RM1	RM2	URM	MH
PUNTUACIÓN BÁSICA	3.6	3.2	2.9	2.1	2.0	2.6	2.0	1.7	1.5	2.0	1.2	1.6	1.4	1.7	1.7	1.0	1.5
IRREGULARIDAD VERTICAL SEVERA, V _{L1}	-1.2	-1.2	-1.2	-1.0	-1.0	-1.1	-1.0	-0.8	-0.9	-1.0	-0.7	-1.0	-0.9	-0.9	-0.9	-0.7	NA
IRREGULARIDAD VERTICAL MODERADA, V _{L1}	-0.7	-0.7	-0.7	-0.6	-0.6	-0.7	-0.6	-0.5	-0.5	-0.6	-0.4	-0.6	-0.5	-0.5	-0.5	-0.4	NA
IRREGULARIDAD EN PLANTA, PL1	-1.1	-1.0	-1.0	-0.8	-0.7	-0.9	-0.7	-0.6	-0.6	-0.8	-0.5	-0.7	-0.6	-0.7	-0.7	-0.4	NA
PRE-CÓDIGO	-1.1	-1.0	-0.9	-0.6	-0.6	-0.8	-0.6	-0.2	-0.4	-0.7	-0.1	-0.5	-0.3	-0.5	-0.5	0.0	-0.1
POST-CÓDIGO	1.6	1.9	2.2	1.4	1.4	1.1	1.9	NA	1.9	2.1	NA	2.0	2.4	2.1	2.1	NA	1.2
SUELO TIPO A o B	0.1	0.3	0.5	0.4	0.6	0.1	0.6	0.5	0.4	0.5	0.3	0.6	0.4	0.5	0.5	0.3	0.3
SUELO TIPO E (1-3 NIVELES)	0.2	0.2	0.1	-0.2	-0.4	0.2	-0.1	-0.4	0.0	0.0	-0.2	-0.3	-0.1	-0.1	-0.1	-0.2	-0.4
SUELO TIPO E (>3 NIVELES)	-0.3	-0.6	-0.9	-0.6	-0.6	NA	-0.6	-0.4	-0.5	-0.7	-0.3	NA	-0.4	-0.5	-0.6	-0.2	NA
PUNTUACIÓN TOTAL S _{L1}	┷								2.5								_
PUNTUACIÓN MÍNIMA, S _{MIN}	1.1	0.9	0.7	0.5	0.5	0.6	0.5	0.5	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.2	1.0
PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}			т						2.5								
ALCANCE DE LA EVALUACIÓN				PELIGI					á.		N REQU						
EXTERIOR: PARCIAL X TODO LAD		AEREO		TURAL D			AN UN E	VALUACI	ON	¿REQUI	ERE EVAL	.UACIÓN	ESTRUC	TURAL DI	ETALLAD	A?	
INTERIOR: NINGUNA VISIBLE	Ш	TODO		POTENC			C DOD III	чΛ						DESCONO	OCIDA PA	RA FEMA	O ES
PLANOS REVISADOS: SI NO			JA					enos qui	E S ₁₂ >			DIFICACIO					
FUENTE TIPO DE SUELO: Estudio de Suelos				CORTE)										IA QUE LA	A DE COR	TE	
FUENTE DE PELIGROS GEOLÓGICOS: INGEMM	ET							ADYACE	NTE	X	SI, OTRO	OS RIESGO	OS PRESE	NTES			
PERSONA DE CONTACTO: <u>Oficina de Obras - UNSA</u>	<u>4AC</u>		↓ □	RIESGO:	S GEOLÓ	GICOS O	SUELO TI	PO F			NO						
¿EVALUACIÓN DE NIVEL 2 REQUERIDA?						ANTE/DET	ERIORO	EN EL SIST	EMA					ESTRUCT			.?
SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	1.9	_ 🔀 NC)	ESTRUC	TURAL									JRALES IE			
¿RIESGOS NO ESTRUCTURALES?	SI 🗆] ио												TURALES EVALUAC			
										l	NECESA		UINA	LVALUAC	JIN DE IA	LOUM IV	O LJ
										×	NO, RIES	GOS NO	ESTRUC	TURALES	NO IDEN	TIFICADO	S

□ DNK

EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Edificacion Nueva de la EPIC -BLOQUE C USO: Educación Universitaria LATITUD: 179581.27 m E LONGITUD: 8503384.40 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel 21/09/2018 FECHA: N° NIVELES: Superiores _____5 Inferior ___0 AREA TOTAL CONSTRUIDA (m2): ______116 ADICIONALES: 💢 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND: GOBIERNO X REFUGIO ☐ HISTÓRICO TIPO DE SUELO: RIESGOS GEOLÓGICOS: LIQUEFACCIÓN: X NO DNK DESLIZAMIENTO: SI X DNK A ROCA DURA П B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NICOLO П П D SUELO RIGIDO X E SUELO DE ARCILLA SUAVE F SUELO POBRE DNK ASUMIR TIPO "D ADYACENCIA: M POUNDING Vista Frontal ☐ RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) Columna Corta / Severo ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: ☐ REVESTIMIENTOS PESADOS ☐ CHIMENEAS SIN ARMADURA □ PARAPETOS ACCESORIOS ☐ OTROS _ COMENTARIOS: Vista Posterior Vista Lateral Izquierda BOSQUEIO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA W1 W1A W2 S1 S2 **S3 S4** S5 C3 PC1 PC2 RM1 RM2 URM PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, VL -1.3 -1.3 -1.3 -1.1 -1.0 -1.2 -1.0 -0.9 -1.0 -1.1 -0.8 -1.0 -0.9 -1.0 -1.0 -0.8 NA IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.6 -0.8 -0.7 -0.6 -0.8 -0.6 -0.8 -0.8 -0.6 -0.5 -0.6 -0.6 -0.6 -0.5 IRREGULARIDAD EN PLANTA, PL1 -1.3 -1.2 -1.1 -0.9 -0.8 -1.0 -0.8 -0.7 -0.7 -0.9 -0.6 -0.8 -0.7 -0.7 -0.7 -0.5 NA PRE-CÓDIGO -0.8 -0.9 -0.9 -0.5 -0.5 -0.7 -0.6 -0.2 -0.4 -0.7 -0.1 -0.4 -0.3 -0.5 -0.1 -0.3 POST-CÓDIGO 1.5 1.9 2.3 1.4 1.4 1.0 1.9 NA 1.9 2.1 NA 2.1 2.4 2.1 2.1 NA 1.2 SUELO TIPO A o B 0.3 0.7 0.7 0.8 0.6 0.9 0.6 0.9 0.3 0.9 0.9 0.6 0.8 0.9 0.8 0.6 0.9 SUELO TIPO E (1-3 NIVELES) 0.0 -0.1 -0.3 -0.4 -0.5 0.0 -0.4 -0.5 -0.2 -0.2 -0.4 -0.5 -0.3 -0.4 -0.4 -0.3 -0.5 SUELO TIPO E (>3 NIVELES) -0.8 NA -0.5 -0.5 -1.2 -0.7-0.7-0.7 -0.6 -0.6 -0.8 -0.4NA -0.6 -0.7-0.3 NA PUNTUACIÓN TOTAL S₁₁ 2.0 2.3 PUNTUACIÓN MÍNIMA, S_{MIN} 0.9 0.6 PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MIN} ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ZHAY RIESGOS OLIF DESENCADENAN LIN EVALUACIÓN ☐ PARCIAL 💢 TODO LADO ☐ AEREO EXTERIOR: REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? □ NINGUNA X VISIBLE □ TODO INTERIOR: SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES POTENCIAL DE POUNDING POR UNA PLANOS REVISADOS: X SI CONSTRUCCION ADYACENTE (A MENOS QUE S_{1.2} > SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE ✓ SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} NO, RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES ¿RIESGOS NO ESTRUCTURALES? X si □no NECESARIO

П

☐ DNK

NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

	LA UNIVERS	SIDAD N	IACIO	NAL DE SAN ANT	ONIO ABAD DEL CUSCO, DISTRITO DE CU				CIVIL DE
INSPECCIÓN VISUAL F	RÁPIDA DE EDIF	ICIOS PAR	RA RIESO	OS POTENCIALES SÍSN	ліcos			FORM	IATO: NIVEL 2
FEMA P-154 FORMUL					•	MICIDAI			IENTE ALTA
NOMBRE DE LA EDIFIC		Edificacio	n Nueva	de la EPIC -BLOQUE B	PUNTAJE FINAL NIVEL 1 S _{L1} : S _{L1} =	41134	2		North D. O
FECHA/HORA:	GJGR - RANE 21/09/2018				MODIFICADORES DE IRREGULARIDAD NIVEL 1: $Irreg. Vei$ PUNTAJE BASICO AJUSTADO: $S' = (S_I$			Irreg. en F	Planta, PL 0
FECHA/HORA.	21/03/2018				FUNTAJE BASICO AJOSTADO. 0 – (or	,1 *L1	*LD		
MODIFICADORES ESTE	RUCTURALES PA	ARA AFINA	AR LA E	ALUACION					
CARACTERISTICA	ENUNCIADO	(Si el enun	ciado es	verdadero, poner en un cir	culo el modificador de la columna "SI"; de otra manera tachar el mo	odificado	or)	SI	SUBTOTAL
	SITIO	EDIFICIOS	W1: Hay	al menos una piso compl	eto que cambia de nivel de un lado a otro.			-1.2	
	INCLINADO				npleto que cambia de nivel de un lado a otro.			-0.3	
	PISO DEBIL Y/O				sin refuerzo es visible en el espacio de inferior de la estructura			-0.6	
	SUAVE				e un piso ocupado, hay una abertura de garaje sin un portico de aco uras en el primer piso (como para estacionar) en al menos el 50% o		ritud del	-1.2 -1.2	
	(maximo un modificador)				mer piso tiene mas de 2 veces la altura del los pisos superiores.			-0.9	
	,	EDIFICIOS	NO W1: E	dificaciones donde el prir	ner piso tiene entre 1.3 y 2 veces las altura de los pisos superiores			-0.5	
IRREGULARIDAD		Hay prese	ncia de v	oladizos ocasionando exc	entricidad en la estructura.			0	$V_{L2} = \underline{-0.50}$
VERTICAL V _{L2}	SETBACK			de un piso es menor que l					(max. score -1.2
V _{L2}					turales, es decir que hay un desfase de elementos estructurales d		_	0.3	
	COLUMNA			s cortas que el resto.	menos el 20% de columnas en una linea de columnas laterales del	sistema		-0.5	
	CORTA	EDIFICIOS	C1, C2, C	3, PC1, PC2, RM1, RM2: El :	ancho de la columna es menos de la mitad que el ancho del peralto	e de la vi	ga o		$V_{L2} = -0.5$
		hay prese	ncia pare	des de relleno que acorta	an la longitud de la columna.			-0.5	
	NIVEL DIVIDIDO	<u> </u>			an alineados o cuando hay una subdivision en el ultimo piso.			-0.5	
	OTRA				vable que obviamente afecta el rendimiento sísmico del edificio			-1/0	
	IRREGULARIDAD IRREGULARIDAD	•			servable que puede afectar el rendimiento sísmico del edificio			-0.7	
	SISTEMA NO PA				cantidad de elementos resistentes en una direccion que en la otr les que no son ortogonales con los otros.	a y gene	ra excent	-0./	$P_{L2} = 0$
IRREGULARIDAD	ESQUINA ENT				a de una edificacion tiene una esquina interior.			-0.4	(max. score -1.1
EN PLANTA P _{L2}	DIAFRAGMA AI	PERTURA	Hay una	apertura en el diafragma	con un ancho de mas del 50% del total del diafragma en esa direc	cion.		-0.2	
. [2	EDIFICACIONE		Las viga	s exteriores no estan alin	eadas con las columnas en el plano.			0.4	$P_{L2} = \underline{0}$
	OTRA IRREGUL				oservable que obviamente afecta el rendimiento sísmico del edific	io		-0.7	
REDUNDANCIA	El edificio tiene a La edificacion es				n cada del edificio en cada direccion. In alineadas horizontalmente			0.3	
POUNDING	una estructura a	dyacente n	nenos		p mas pisos mas alto que el otro			-1.0	
	de 1% de la altur de menor altura		icacion	El edificio esta al final de	un bloque de edificios			-0.5	
EDIFICIO C1	La losa funciona	como viga	en una es	tructura aporticada				-0.4	M = <u>-1.0</u>
					ue sean visibles o conocidas mediante planos.			0.3	
EDIFICIO PC1/RM1 REFUERZO					ubriendo toda altura de los vanos.			0.3	
PUNTUACION FINAL					mediante planos disponibles.	1.5		1.4	
					o sismico de la estructrurc 🔀 SI 🔲 NO	1.5			
Si existiera, describir la co	ondicion en la caj	a de comen	tarios en	la parte inferior e indicar o	en el formato Nivel 1 que es requerido una evalucion detallada.				
PELIGROS NO ESTRUC		RVABLES					_		
LOCALIZACION	ENUNCIADO	4				SI	NO	col	MENTARIO
	Hay un revestim			-	o una chimenea de mampostería no reforzada sin armadura		$\widehat{\sim}$		
					peatonales que parece estar mal apoyado		$\stackrel{\sim}{\sim}$		
EXTERIOR	Hay un apéndice	de mampo	stería no	reforzado sobre las puer	tas de salida o los pasillos peatonales		\sim		
	Hay un cartel pu	blicado en e	el edifici	que indica que hay mate	eriales peligrosos presentes		\times		
					claje o un parapeto o una chimenea URM sin abrazaderas		\geq		
				exterior observado			\sim		
INTERIOR	Hay tabiques de			interior observado		_			
DESEMPEÑO SISMICO					el casillero adecuado y ponerlo en las conclusiones del formato de N	ivel 1			
-					dad de vida del ocupante		tural deta	allada	
☐ Riesgo no estruc	tural identificado	con una a	menazas	ignificativa para la segur	idad de vida de los ocupantes → Pero no se requiere una evaluac	ión no es	tructural	l detalla	da
☐ Bajo o nulo riesg	go de amenaza no	estructura	l para la	seguridad de vida de los o	ocupantes No se requiere una evaluación n	o estruct	ural deta	allada	
COMENTARIOS:									

EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Edificacion Nueva de la EPIC -BLOQUE C USO: Educación Universitaria LATITUD: 179581.27 m E LONGITUD: 8503384.40 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel 21/09/2018 N° NIVELES: Superiores 5 Inferior 0 AÑO CONSTRUIDO: 2001 DEST AÑO DE NORMA: 1977 AREA TOTAL CONSTRUIDA (m2): 116 ADICIONALES: X Ninguno Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ X REFUGIO GOBIERNO ☐ HISTÓRICO TIPO DE SUELO: RIESGOS GEOLÓGICOS: LIQUEFACCIÓN: M NO DNK DESLIZAMIENTO: SI M DNK ☐ A ROCA DURA B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: D SUFLORIGIDO X E SUELO DE ARCILLA SUAVE ☐ F SUELO POBRE DNK ASUMIR TIPO "D ADYACENCIA: X POUNDING Vista Frontal RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) Columna Corta / Severa Vista en Planta ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS □ PARAPETOS ☐ ACCESORIOS COMENTARIOS: Vista Posterior Vista Lateral Izquierda BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 S3 S4 S5 C3 PC1 PC2 RM1 RM2 URM МН PUNTUACIÓN BÁSICA 2.9 1.7 3.6 3.2 2.1 2.0 2.6 2.0 1.6 1.7 1.5 RREGULARIDAD VERTICAL SEVERA, VL1 -1.2 -1.0 -1.0 -1.1 -1.0 -0.8 -0.9 -0.7 RREGULARIDAD VERTICAL MODERADA, VL1 -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.5 -0.6 -0.4 -0.6 -0.5 -0.5 -0.5 -0.6 -0.5 -0.4 NA IRREGULARIDAD EN PLANTA, PL1 -1.1 -1.0 -1.0 -0.8 -0.7 -0.9 -0.7 -0.6 -0.6 -0.8 -0.5 -0.7 -0.6 -0.7 -0.7 NA -0.4 PRE-CÓDIGO -1.0 -0.6 -0.8 -0.2 -0.4 -0.7 -0.1 -0.5 -0.3 -0.5 0.0 -1.1 -0.9 -0.6 -0.6 -0.5 -0.1 POST-CÓDIGO 1.6 1.9 2.2 1.4 1.4 1.1 1.9 NA 1.9 2.1 NA 2.0 2.4 2.1 2.1 NA 1.2 SUELO TIPO A o B 0.1 0.3 0.5 0.4 0.6 0.1 0.6 0.5 0.4 0.5 0.3 0.6 0.4 0.5 0.5 0.3 0.3 SUELO TIPO E (1-3 NIVELES) 0.2 0.2 0.1 -0.2 -0.4 0.2 -0.1 -0.4 0.0 0.0 -0.2 -0.3 -0.1 -0.1 -0.1 -0.2 -0.4 SUELO TIPO E (>3 NIVELES) -0.3 -0.6 -0.6 -0.6 NΑ -0.5 -0.7 -0.3 NΑ -0.4 -0.5 -0.6 NA PUNTUACIÓN TOTAL S_{L1} 2.0 2.4 PUNTUACIÓN MÍNIMA, S_{MIN} 1.1 0.9 0.5 0.3 PUNTUACIÓN FINAL NIVEL 1, $S_{L1} \ge S_{MIN}$ ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN ☐ PARCIAL X TODO LADO ☐ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? □ NINGUNA X VISIBLE □ торо SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES OTRA EDIFICACIÓN PLANOS REVISADOS: SI □ NO CONSTRUCCION ADYACENTE (A MENOS QUE S12 > SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F □ NO PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? 1.4 X NO **ESTRUCTURAL** SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS ☐ SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} NO. RIESGOS NO ESTRUCTURALES EXISTEN OUE REQUIEREN ¿RIESGOS NO ESTRUCTURALES? X sı □ NO MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO E

NECESARIO

NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

					S EDIFICIOS DE LA ESCUELA PROFESIONA TONIO ABAD DEL CUSCO, DISTRITO DE CU				CIVIL DE
				GOS POTENCIALES SÍSN	•				1ATO: NIVEL 2
FEMA P-154 FORMUL									MICIDAD ALTA
NOMBRE DE LA EDIFIC		Edificacio	n Nueva	de la EPIC-BLOQUE B	PUNTAJE FINAL NIVEL 1 S _{L1} : S _{L1} = _	N11/ -	- 0.0		
EVALUADORES:	GJGR - RANE 21/09/2018				MODIFICADORES DE IRREGULARIDAD NIVEL 1: Irreg. Ve PUNTAJE BASICO AJUSTADO: S' = (S			Irreg. en H	2.9
FECHA/HORA:	21/09/2010				PUNTAJE DAJICO AJUJTADO.	Li - vLi	- rL1/		2.3
MODIFICADORES EST	RUCTURALES PA	ARA AFIN	AR LA E	VALUACION					
CARACTERISTICA	ENUNCIADO				irculo el modificador de la columna "SI"; de otra manera tachar el m	odificado	or)	SI	SUBTOTAL
	SITIO				leto que cambia de nivel de un lado a otro.			-1.2	
	INCLINADO	_			mpleto que cambia de nivel de un lado a otro.		$\overline{}$	-0.3	,
	PISO DEBIL Y/O	-			ll sin refuerzo es visible en el espacio de inferior de la estructura le un piso ocupado, hay una abertura de garaje sin un portico de ac	ero		-0.6 -1.2	,
	SUAVE (maximo un				turas en el primer piso (como para estacionar) en al menos el 50%		gitud del	-1.2	,
	(maximo un modificador)				imer piso tiene mas de 2 veces la altura del los pisos superiores.			-0.9	,
	<u> </u>	_			mer piso tiene entre 1.3 y 2 veces las altura de los pisos superiore	s.		-0.5	ı
IRREGULARIDAD	SEEDACK	.,,			centricidad en la estructura.		\longrightarrow	-1.0	$V_{L2} = -0.50$
VERTICAL V _{L2}	SETBACK			de un piso es menor que l d en los elementos estruc	la de un piso anterior. cturales, es decir que hay un desfase de elementos estructurales d	le un pisc	n a otro.	0.5	(max. score -1.2
	—	<u> </u>			l menos el 20% de columnas en una linea de columnas laterales de				
	COLUMNA			as cortas que el resto.				-0.5	
	CORTA				ancho de la columna es menos de la mitad que el ancho del peralt	e de la vi	ga o	-0.5	$V_{L2} = \underline{0.5}$
	NIVEL DIVIDIDO				tan la longitud de la columna.		-	<u> </u>	ı
					tan alineados o cuando hay una subdivision en el ultimo piso. rvable que obviamente afecta el rendimiento sísmico del edificio		-	-0.5 -1.0	ı
'	OTRA IRREGULARIDAD				bservable que puede afectar el rendimiento sísmico del edificio			0.5	ı <u></u>
	IRREGULARIDAD	TORSIONAL	Se a plic	a cuando no hay la misma	a cantidad de elementos resistentes en una direccion que en la oti	ra y gene	ra excent	-0.7	
IRREGULARIDAD	SISTEMA NO PA		+ -		ales que no son ortogonales con los otros.			-0.4	P _{L2} =
EN PLANTA	ESQUINA ENT		+		ta de una edificacion tiene una esquina interior. a con un ancho de mas del 50% del total del diafragma en esa direc	ion	-	-0.4 -0.2	(max. score -1.1
P _{L2}	EDIFICACIONE				a con un ancno de mas dei 50% dei total dei diatragma en esa direc neadas con las columnas en el plano.	:Cion.	-	0.4	$P_{1,2} = 0$
'	OTRA IRREGUL		— <u> </u>		bservable que obviamente afecta el rendimiento sísmico del edific	cio		-0.7	1L2
REDUNDANCIA				de elementos laterales e	en cada del edificio en cada direccion.			0.3	
	La edificacion es una estructura a			-	an alineadas horizontalmente			1.0	
POUNDING	de 1% de la altur	ra de la edif		Uno de los edificios es 2 d El edificio esta al final de	o mas pisos mas alto que el otro		$\overline{}$	-1.0 -0.5	
EDIFICIO C1	de menor altura La losa funciona		en una e	structura aporticada	s un bioque de edificios		-	-0.5	M =1.0
EDIFICIO PC1/RM1					que sean visibles o conocidas mediante planos.			0.3	N1 —
EDIFICIO PC1/RM1	+				cubriendo toda altura de los vanos.			0.3	
REFUERZO					s mediante planos disponibles.			1.4	
PUNTUACION FINAL					to sismico de la estructrurc 🔀 SI 🔲 NO	1.4			
					to sismico de la estructrurα 🔀 SI 🔲 NO en el formato Nivel 1 que es requerido una evalucion detallada.				
PELIGROS NO ESTRUC	1	RVABLES				-	-		
LOCALIZACION	ENUNCIADO	1mn/	-t-r(n n	fdin armadura	' d	SI	NO ×	COI	MENTARIO
	Hay un parapeto Hay un revestimi			-	, o una chimenea de mampostería no reforzada sin armadura	+-	$ \Leftrightarrow $	\vdash	
	<u> </u>				peatonales que parece estar mal apoyado	+	\leq		
EXTERIOR	Hay un apéndice	de mampo	ostería ne	ə reforzado sobre las puer	rtas de salida o los pasillos peatonales		\times		
					eriales peligrosos presentes	 	\geq	Ī	
				con una pared URM sin an exterior observado	nclaje o un parapeto o una chimenea URM sin abrazaderas	+	\leq	 	
<u> </u>	Hay tabiques de					+-	$ \Leftrightarrow $	\vdash	
INTERIOR				interior observado		$\overline{}$			
					e el casillero adecuado y ponerlo en las conclusiones del formato de N				
					idad de vida del ocupante				
				significativa para la segur seguridad de vida de los c	ridad de vida de los ocupantes> Pero no se requiere una evaluación n ocupantes> No se requiere una evaluación n				la
□ Bajo o nuio nese	30 de amenaza no	estructura	Грагаза	seguridad de vida de ios c	ocupantes - No se requiere una evaruación in	10 estruci	IUrai uece	Illaua	
COMENTARIOS:									
CONIECTION									

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCION VISUAL RAPIDA DE EDIFICIOS PA			TENCIA	LES 313	IVIICOS											/IATO: N	
FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	os						DIDECC	IÓN.	11-5	-:					MENTE A	
									-				de San	Antoni	o Abad	del Cus	sco
		1									ıra 773						
		1				1	1				RES:						
3 1 2 2		40	1				-				o:			e Hidrau	ılica - E	PIC	
The second second			1	-			-	USO:	Educac	ión Uni	versitar	ia					
			1				8	LATITU	D:	179525	.72 m E		LONG	TUD: _	8503	3374.09	9 m S
District Control	-	HILL			W.	7	~7	EVALU	ADOR (s):	Gimi Jo	seph G	aldos R	oman			
THE NAME OF BE	IDRAI	Trans.	2	-		30	anne				Roger	August	o Nuñez	Esquiv	el		
IABORATORIO DE H	200	出版	i late				800	FECHA	:	20/09/	/2018						
- TARREST	1000				b			N° NIV	ELES:	Superio	ores	1	Inferio	. 0			
The state of the s	188		-				907									MA:	1977
					- 23		60				UIDA (n						
		-	W		lie s						Ningur				uido		
THE RESERVE OF THE PARTY OF THE		*		100	No.		0.00		CIÓN:				RCIAL		DE EMER	GENCIA	
		Market .	100	100	CO.			000.7			STRIAL					RSIDAD	
THE RESERVE OF THE PARTY OF THE	-		4	200	An.	(NA, 84)				INDO		ACÉN	LIIVA			#UND:	
									X REF				4				
												HISTO	DRICO		GOBI		_
									E SUELO							LÓGICO	
- 321				-					Α	ROCA D	URA					NO	
. 1 1		LAN	KORATO	BIO DE	Hilliam	MUCA			В	ROCA						:SI 🗽	
0 1 1		133	1111111	mili	HIII	нин			С	SUELO N	AUY DENS	SO Y ROC	A SUAVE	SUP. D	E RUP.:	SI	SIDNK
				. 1					D	SUELO P	IGIDO						
						_		×	Е	SUELO E	E ARCILL	.A SUAVE					
			Visto	i Fron	tal				F	SUELO P	OBRE						
3h 6									DNK	ASUMIR	TIPO "D"						
			1					ADYAC	ENCIA:	×	POUND	ING					
Vista en Planta		-								×	RIESGO	S DE CAII	DAS POR	UNA EDIF	. MAS AL	TA ADYA	CENTE
	1111					E .		IRREGL	JLARID/							a Corta /	
									, , , , , , , ,		HORE			_	COIGIIII	u cortu,	, 50000
								DIECCO	S DE C		XTERIO		, i ii O j				
			Vista	Poster	ior												
			7 1010	1 Obier							ARMADU	RA				PESADO)S
		++++	1111		ш	1111			PARAPE					ACCESO	RIOS		
the state of the s	and the same					-					ura par	a tanqı	ie de ag	<u>ua</u>			
-	-							COME	NTARIO	S:							
DESCRIPTION FOR THE PROPERTY OF THE PROPERTY O	1	1111	******	шш	шш	1111											
				- 1													
					-	$\overline{}$											
Vista Late		_						_			ONAL O		ARIOS EN	UNA PAC	SINA SEP	ARADA	
PU	NTUAC	CIÓN B	ÁSICA,	MODI	FICADO	ORES, \	Y PUN	TUACIÓ	N FIN	AL NIV	EL 1, S	L1					
FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	C3	PC1	PC2	RM1	RM2	URM	MH
PUNTUACIÓN BÁSICA	4.1	3.7	3.2	2.3	2.2	2.9	2.2	2.0	(1.7)	2.1	1.4	1.8	1.5	1.8	1.8	1.2	2.2
IRREGULARIDAD VERTICAL SEVERA, V _{L1}	-1.3	-1.3	-1.3	-1.1	-1.0	-1.2	-1.0	-0.9	-1.0	-1.1	-0.8	-1.0	-0.9	-1.0	-1.0	-0.8	NA
IRREGULARIDAD VERTICAL MODERADA, V _{L1}	-0.8	-0.8	-0.8	-0.7	-0.6	-0.8	-0.6	-0.6	-0.6	-0.6	-0.5	-0.6	-0.6	-0.6	-0.6	-0.5	NA
IRREGULARIDAD EN PLANTA, P _{L1}	-1.3	-1.2	-1.1	-0.9	-0.8	-1.0	-0.8	-0.7	-0.7	-0.9	-0.6	-0.8	-0.7	-0.7	-0.7	-0.5	NA
PRE-CÓDIGO	-0.8	-0.9	-0.9	-0.5	-0.5	-0.7	-0.6	-0.2	-0.4	-0.7	-0.1	-0.4	-0.3	-0.5	-0.5	-0.1	-0.3
POST-CÓDIGO	1.5	1.9	2.3	1.4	1.4	1.0	1.9	NA	1.9	2.1	NA	2.1	2.4	2.1	2.1	NA	1.2
SUELO TIPO A o B	0.3	0.6	0.9	0.6	0.9	0.3	0.9	0.9	0.6	0.8	0.7	0.9	0.7	0.8	0.8	0.6	0.9
SUELO TIPO E (1-3 NIVELES)	0.0	-0.1	-0.3	-0.4	-0.5	0.0	-0.4	-0.5	-0.2	-0.2	-0.4	-0.5	-0.3	-0.4	-0.4	-0.3	-0.5
SUELO TIPO E (>3 NIVELES)	-0.5	-0.8	-1.2	-0.7	-0.7	NA	-0.7	-0.6	-0.6	-0.8	-0.4	NA	-0.5	-0.6	-0.7	-0.3	NA
PUNTUACIÓN TOTAL S _{1.1}	0.5	0.0	1.2	J.,	5.7	14/4	5.7	0.0	2.4	0.0	J.4	14/1	0.5	0.0	5.7	0.5	INA
		+							_								
PUNTUACIÓN MÍNIMA, S _{MIN}	1.6	1.2	8.0	0.5	0.5	0.9	0.5	0.5	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.2	1.4
PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}			1						2.4								
ALCANCE DE LA EVALUACIÓN				PELIGE					6		N REQU						
EXTERIOR: PARCIAL TODO LAD		AEREO			UE DESEI ETALLAD		AN UN E\	ALUACIO	JN	¿REQUI	ERE EVAL	.UACIÓN	ESTRUCT	TURAL DE	TALLAD	Α?	
INTERIOR: NINGUNA VISIBLE		TODO												DESCONO	CIDA PA	RA FEMA	O ES
PLANOS REVISADOS: X SI NO						DUNDING		NA ENOS QUE	c -	1	OTRA ED	DIFICACIÓ	ĎΝ				
FUENTE TIPO DE SUELO: Estudio de Suelos				CONSTR	OCCION	AD TACEN	∗≀⊏ (A IVIÈ	.14U3 QUE	J ₁₂ >		SI, PUNT	TUACIÓN	MAS BAJ	A QUE LA	DE CORT	TE	
FUENTE DE PELIGROS GEOLÓGICOS: INGEMIN	IET				DE CAID	A DE UN	EDIFICIO	ADYACE	NTE		SI, OTRO	S RIESGO	OS PRESE	NTES			
PERSONA DE CONTACTO: Oficina de Obras - UNSA						GICOS O S				×	NO						
¿EVALUACIÓN DE NIVEL 2 REQUERIDA?			ł					EN EL SIST	F8.44				16N ***	CTD:	IDAL ST	TALLADA	
		⊠ NO		DANO S		in It/DETI	EKIURO E	IN EL SIST	EIVIA	¿RECON				IRALES ID			4.5
SI, PUNTUACIÓN FINAL NIVEL 2, S ₁₂		_			. J					×						ADUS QUE REQL	UIERFN
¿RIESGOS NO ESTRUCTURALES?	SI 🗆	ON														LLADA N	
										i							
										_	NECESA						
													ESTRUCT	URALES	NO IDENT	ΠFICADO)S

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Laboratorio de Hidraulica - EPIC USO: Educación Universitaria LATITUD: 179525.72 m E LONGITUD: 8503374.09 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel FECHA: 20/09/2018 N° NIVELES: Superiores _____1_ Inferior AÑO CONSTRUIDO: 1986 SET AÑO DE NORMA: 1977 AREA TOTAL CONSTRUIDA (m2): 689.91 m2 ADICIONALES: 🛛 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA
INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ X REFUGIO ☐ HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: ☐ A ROCA DURA LIQUEFACCIÓN: NO DNK DESLIZAMIENTO: SI MONK B ROCA LABORATORIO DE HIDRAULICA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NO DNK D SUELO RIGIDO E SUELO DE ARCILLA SUAVE F SUELO POBRE Vista Frontal DNK ASUMIR TIPO "D" ADYACENCIA: M POUNDING Vista en Planta RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE Berrritter generationes IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) Columna Corta / Severa ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: Vista Posterior ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS ☐ PARAPETOS ☐ ACCESORIOS OTROS <u>Estructura para tanque de agua</u> COMENTARIOS: Vista Lateral Izquierda ☐ BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 **S3 S4** S5 СЗ PC1 C2 PC2 RM1 RM2 URM МН PUNTUACIÓN BÁSICA 2.9 1.7 3.2 2.1 2.0 2.6 2.0 1.6 IRREGULARIDAD VERTICAL SEVERA. VI -1.2 -1.0 -1.0 IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.6 -0.5 -0.5 -0.6 -0.4 -0.6 -0.5 -0.5 -0.5 -0.4 NA IRREGULARIDAD EN PLANTA, PL1 -0.7 -1.0 -0.8 -0.9 -0.7 -0.8 -0.7 -0.7 PRE-CÓDIGO -1.1 -1.0 -0.9 -0.6 -0.6 -0.8 -0.6 -0.2 -0.4 -0.7 -0.1 -0.5 -0.3 -0.5 -0.5 0.0 -0.1 POST-CÓDIGO 1.6 1.9 2.2 1.4 1.4 1.1 1.9 1.9 2.1 2.0 2.1 2.1 1.2 SUELO TIPO A o B 0.1 0.4 0.3 0.4 0.5 0.3 0.5 0.6 0.1 0.6 0.5 0.4 0.5 0.6 0.5 0.3 0.3 SUELO TIPO E (1-3 NIVELES) 0.2 -0.4 -0.1 0.2 0.1 -0.2 0.2 -0.1 -0.4 0.0 0.0 -0.2 -0.3 -0.1 -0.1 -0.2 -0.4 SUELO TIPO E (>3 NIVELES) -0.3 -0.6 -0.9 -0.6 -0.6 NA -0.6 -0.5 -0.7 -0.3 NA -0.4 -0.5 NA PUNTUACIÓN TOTAL S_{L1} 2.5 PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S₁ ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN EXTERIOR: ☐ PARCIAL 💢 TODO LADO ☐ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? ☐ NINGUNA ☒ VISIBLE ☐ TODO SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES OTRA EDIFICACIÓN POTENCIAL DE POUNDING POR UNA □ _{NO} PLANOS REVISADOS: 🗵 SI CONSTRUCCION ADYACENTE (A MENOS QUE S₁₂ > SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI. OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} ΧN × NO, RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN X sı □no ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NECESARIO NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

DNK

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS SISMICIDAD MODERADAMENTE ALTA DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 LABORATORIO DE MECÁNICA DE T OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Laboratorio de Hidraulica y Suelos-Bloque E USO: Educación Universitaria LATITUD: 179540.70 m E LONGITUD: 8503393.45 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel FECHA: 20/09/2018 N° NIVELES: Superiores _____2 Inferior AÑO CONSTRUIDO: 1986 SET AÑO DE NORMA: 1977 AREA TOTAL CONSTRUIDA (m2): 310.43 m2 ADICIONALES: 🛛 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA
INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ X REFUGIO HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: ☐ A ROCA DURA LIQUEFACCIÓN: X NO DNK DESLIZAMIENTO: SI MONK B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NO DNK D SUELO RIGIDO E SUELO DE ARCILLA SUAVE F SUELO POBRE DNK ASUMIR TIPO "D" ADYACENCIA: M POUNDING Vista en Planta Vista Frontal □ RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: 💢 VERTICAL (TIPO/SEVERIDAD) _____ Columna Corta / Severa ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS ☐ PARAPETOS ACCESORIOS ☐ OTROS COMENTARIOS: Vista Posterior BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 S3 **S4** S5 C1 C2 C3 PC1 PC2 RM1 RM2 URM МН PUNTUACIÓN BÁSICA IRREGULARIDAD VERTICAL SEVERA, V -1 3 -13 -1.1 -1 0 -1 2 -1 0 -0.9 -1 0 -1.1 -0.8 -1.0 -n 9 -0.8 -13 -1 0 IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.8 -0.8 -0.7 -0.8 -0.6 -0.6 -0.5 -0.6 -0.5 -0.8 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 NA IRREGULARIDAD EN PLANTA, P_{L1} -0.8 -0.9 -0.7 -0.7 -1.3 -1.2 -1.1 -0.9 -1.0 -0.8 -0.7 -0.7 -0.6 -0.8 -0.7 -0.5 PRE-CÓDIGO -0.8 -0.9 -0.9 -0.5 -0.5 -0.7 -0.6 -0.2 -0.4 -0.7 -0.1 -0.4 -0.3 -0.5 -0.5 -0.1 -0.3 POST-CÓDIGO 1.5 1.9 2.3 1.0 1.9 2.1 2.1 2.1 2.1 NA 1.2 1.4 1.4 NΑ 1.9 NA 2.4 SUELO TIPO A o B 0.3 0.6 0.9 0.6 0.9 0.3 0.9 0.8 0.7 0.9 0.7 0.8 0.8 0.9 0.9 0.6 0.6 SUELO TIPO E (1-3 NIVELES) 0.0 -0.1 -0.4 -0.5 0.0 -0.4 -0.2 -0.4 -0.5 -0.3 -0.4 -0.4 -0.3 -0.5 -0.2 -0.3 -0.5 SUELO TIPO E (>3 NIVELES) -0.5 -0.8 -0.7 -0.7 NA -0.7 -0.6 -0.8 NA -0.5 -0.6 NA PUNTUACIÓN TOTAL S_{L1} 2.1 PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MIT} ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN EXTERIOR: ☐ PARCIAL 🂢 TODO LADO ☐ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? ☐ NINGUNA ☒ VISIBLE □ торо SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES OTRA EDIFICACIÓN POTENCIAL DE POUNDING POR UNA □ NO PLANOS REVISADOS: 🗵 SI П SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} X N ĭ sı □ no X NO. RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

DNK

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE

LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 LABORATORIO DE MECÁNICA DE 1 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Laboratorio de Hidraulica y Suelos-Bloque E USO: Educación Universitaria LATITUD: 179540.70 m E LONGITUD: 8503393.45 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel FECHA: 20/09/2018 N° NIVELES: Superiores _____2 Inferio: _____ AÑO CONSTRUIDO: ____1986 ___□ EST AÑO DE NORMA: ____1977 AREA TOTAL CONSTRUIDA (m2): 310.43 m2 ADICIONALES: 🛛 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA
INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ 🔀 REFUGIO ☐ HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: LIQUEFACCIÓN: X NO DNK ☐ A ROCA DURA DESLIZAMIENTO: SI MODNK B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NO D SUELO RIGIDO X E SUELO DE ARCILLA SUAVE F SUELO POBRE DNK ASUMIR TIPO "D ADYACENCIA: M POUNDING Vista en Planta Vista Frontal RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) _____ Columna Corta / Severa ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS □ PARAPETOS ACCESORIOS ☐ OTROS COMENTARIOS Vista Posterior BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA W1 W1A S5 C2 СЗ W2 S1 S2 **S3 S4** PC1 PC2 RM1 RM2 URM МН 3.6 3.2 2.1 2.0 2.6 2.0 1.7 2.0 1.2 1.6 1.7 1.7 RREGULARIDAD VERTICAL SEVERA. VI -1.2 -1.0 -1.0 -0.8 RREGULARIDAD VERTICAL MODERADA, VL1 -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.6 -0.5 -0.5 -0.6 -0.4 -0.6 -0.5 -0.5 -0.5 -0.4 IRREGULARIDAD EN PLANTA, P_{L1} -1.0 -0.8 -0.7 -0.9 -0.7 -0.6 -0.8 -0.6 -0.7 -0.7 PRE-CÓDIGO -1.1 -1.0 -0.9 -0.6 -0.6 -0.8 -0.6 -0.2 -0.4 -0.7 -0.1 -0.5 -0.3 -0.5 -0.5 0.0 -0.1 POST-CÓDIGO 2.1 2.1 1.6 2.2 2.1 2.0 1.2 1.9 1.4 1.4 1.1 1.9 NA 1.9 NA 2.4 NA SUELO TIPO A o B 0.5 0.1 0.3 0.5 0.4 0.6 0.1 0.6 0.5 0.4 0.5 0.3 0.6 0.4 0.5 0.3 0.3 SUELO TIPO E (1-3 NIVELES) 0.2 0.2 0.1 -0.2 -0.4 0.2 -0.1 0.0 -0.2 -0.3 -0.1 -0.1 -0.1 -0.4 0.0 -0.2 -0.4 SUELO TIPO E (>3 NIVELES) -0.3 -0.6 -0.9 -0.6 -0.6 NA -0.6 -0.5 -0.7 -0.3 NA -0.4 -0.5 -0.6 NA PUNTUACIÓN TOTAL S_{L1} 2.3 PUNTUACIÓN MÍNIMA, S_{MIN} 0.3 PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MIN} 2.3 ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN FXTFRIOR: ☐ PARCIAL ▼ TODO LADO □ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? □ NINGUNA 🗵 VISIBLE □ торо SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES POTENCIAL DE POUNDING POR UNA □ _{NO} OTRA EDIFICACIÓN PLANOS REVISADOS: X CONSTRUCCION ADYACENTE (A MENOS QUE S₁₂ > SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI. OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET X NO PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA EVALUACIÓN DE NIVEL 2 REQUERIDA? RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} X NC × NO, RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN X sı □no ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NECESARIO

DNK

NO. RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS

EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018" INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PARA RIESGOS POTENCIALES SÍSMICOS FORMATO: NIVEL 1 FEMA P-154 FORMULARIO DE RECOLECCIÓN DE DATOS SISMICIDAD MODERADAMENTE ALTA DIRECCIÓN: Universidad Nacional de San Antonio Abad del Cusco Av. de La Cultura 773 OTROS IDENTIFICADORES: Campus Universitario - Perayoq NOMBRE DEL EDIFICIO: Laboratorio de Hidraulica y Suelos-Bloque USO: Educación Universitaria LATITUD: 179534.34 m E LONGITUD: 8503419.18 m S EVALUADOR (s): Gimi Joseph Galdos Roman Roger Augusto Nuñez Esquivel FECHA: 20/09/2018 N° NIVELES: Superiores _____1 Inferior ____0 AÑO CONSTRUIDO: 1986 SEST AÑO DE NORMA: 1977 AREA TOTAL CONSTRUIDA (m2): 850 ADICIONALES: 🛛 Ninguno 🗆 Si, año construido OCUPACIÓN: ASAMBLEA COMERCIAL SERV. DE EMERGENCIA INDUSTRIAL OFICINA ESCUELA/UNIVERSIDAD ALMACÉN RESIDENCIAL #UND:_ X REFUGIO HISTÓRICO GOBIERNO TIPO DE SUELO: RIESGOS GEOLÓGICOS: LIQUEFACCIÓN: M NO DNK DESLIZAMIENTO: SI M DNK ☐ A ROCA DURA B ROCA C SUELO MUY DENSO Y ROCA SUAVE SUP. DE RUP.: SI NO DNK D SUELO RIGIDO E SUELO DE ARCILLA SUAVE F SUELO POBRE DNK ASUMIR TIPO "D" Vista en Planta ADYACENCIA: M POUNDING Vista Frontal ☐ RIESGOS DE CAIDAS POR UNA EDIF. MAS ALTA ADYACENTE IRREGULARIDADES: X VERTICAL (TIPO/SEVERIDAD) Columna Corta / Severa ☐ HORIZONTAL (TIPO) RIESGOS DE CAIDAS EXTERIORES: ☐ CHIMENEAS SIN ARMADURA ☐ REVESTIMIENTOS PESADOS ☐ PARAPETOS ACCESORIOS ☐ OTROS COMENTARIOS: Vista Lateral Derecha BOSQUEJO ADICIONAL O COMENTARIOS EN UNA PAGINA SEPARADA PUNTUACIÓN BÁSICA, MODIFICADORES, Y PUNTUACIÓN FINAL NIVEL 1, SL1 FEMA TIPO DE ESTRUCTURA DNK W1 W1A W2 S1 S2 S3 S5 C2 C3 PC1 **S4** PC2 RM1 RM2 URM МН PUNTUACIÓN BÁSICA 3.2 1.8 IRREGULARIDAD VERTICAL SEVERA, V. -1 3 -1.3 -1.1 -1.0 -1 2 -1.0 -0.9 -1.0 -1.1 -0.8 -1.0 -1 0 -0.8 IRREGULARIDAD VERTICAL MODERADA, V_{L1} -0.8 -0.8 -0.7 -0.5 -0.8 -0.6 -0.8 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 IRREGULARIDAD EN PLANTA, P_{L1} -0.8 -1.2 -0.9 -1.0 -0.8 -0.7 -0.7 -0.9 -0.6 -0.8 -0.7 -0.7 -0.7 -0.5 PRE-CÓDIGO -0.8 -0.9 -0.9 -0.5 -0.5 -0.7 -0.6 -0.2 -0.4 -0.7 -0.1 -0.4 -0.3 -0.5 -0.5 -0.1 -0.3 POST-CÓDIGO 1.5 2.3 1.9 2.1 2.1 2.1 1.9 1.4 1.4 1.0 NA 1.9 NA 2.1 2.4 NA 1.2 SUELO TIPO A o B 0.3 0.9 0.6 0.9 0.3 0.9 0.8 0.7 0.9 0.7 0.8 0.6 0.9 0.6 0.8 0.6 0.9 SUELO TIPO E (1-3 NIVELES) 0.0 -0.1 -0.5 -0.4 -0.2 -0.3 -0.4 -0.3 -0.4 0.0 -0.5 -0.2 -0.4 -0.5 -0.4 -0.3 -0.5 SUELO TIPO E (>3 NIVELES) -0.5 -0.8 -0.7 -0.7 NA -0.7 -0.6 -0.8 NA -0.5 -0.6 NA PUNTUACIÓN TOTAL S_{L1} 2.4 PUNTUACIÓN MÍNIMA, S_{MIN} PUNTUACIÓN FINAL NIVEL 1, S_{L1} ≥ S_{MIT} ALCANCE DE LA EVALUACIÓN OTROS PELIGROS ACCIÓN REQUERIDA ¿HAY RIESGOS QUE DESENCADENAN UN EVALUACIÓN EXTERIOR: ☐ PARCIAL 🂢 TODO LADO ☐ AEREO REQUIERE EVALUACIÓN ESTRUCTURAL DETALLADA? ESTRUCTURAL DETALLADA? □ NINGUNA ☒ VISIBLE □ TODO SI, TIPO DE EDIFICACIÓN DESCONOCIDA PARA FEMA O ES OTRA EDIFICACIÓN POTENCIAL DE POUNDING POR UNA □ NO PLANOS REVISADOS: X SI CONSTRUCCION ADYACENTE (A MENOS QUE S12 > П SI, PUNTUACIÓN MAS BAJA QUE LA DE CORTE FUENTE TIPO DE SUELO: Estudio de Suelos CORTE) RIESGOS DE CAIDA DE UN EDIFICIO ADYACENTE SI, OTROS RIESGOS PRESENTES FUENTE DE PELIGROS GEOLÓGICOS: INGEMMET ☐ RIESGOS GEOLÓGICOS O SUELO TIPO F PERSONA DE CONTACTO: Oficina de Obras - UNSAAC ¿EVALUACIÓN DE NIVEL 2 REQUERIDA? ☐ DAÑO SIGNIFICANTE/DETERIORO EN EL SISTEMA RECOMIENDA EVALUACIÓN NO ESTRUCTURAL DETALLADA? ESTRUCTURAL SI, RIESGOS NO ESTRUCTURALES IDENTIFICADOS SI, PUNTUACIÓN FINAL NIVEL 2, S_{L2} X N ĭ sı □ no X NO. RIESGOS NO ESTRUCTURALES EXISTEN QUE REQUIEREN ¿RIESGOS NO ESTRUCTURALES? MITIGACIÓN, PERO UNA EVALUACIÓN DETALLADA NO ES NO, RIESGOS NO ESTRUCTURALES NO IDENTIFICADOS DNK

"EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO, DISTRITO DE CUSCO, 2018"

INSPECCIÓN VISUAL RÁPIDA DE EDIFICIOS PA	RA RIES	GOS PC	TENCIA	ALES SÍS	MICOS										FORN	ATO: N	NIVEL :
FEMA P-154 FORMULARIO DE RECOLECCIÓN	DE DAT	os														MICIDA	
		100					1						de San	Antoni	o Abad	del Cus	co
		3				411					ıra 773						
	и		/		_	11	1				RES:						
1	題				-								torio de	: Hidrau	ılica y S	iuelos-B	loque
	ы	100		и.	100		n .				versitar						
		68	1110				10							_	8503	3419.18	3 m S
The second second			100	1	-	•	М.	EVALU	ADOR (s):	Gimi Jo	seph G	aldos R	oman			
The second second				200						_	Roger	August) Nuñez	Esquiv	el		
								FECHA	:	20/09,	/2018						
	-			-0							ores						
			_		a Heer										E NORI	MA:	1977
The second second			= 57					AREA T	TOTAL (CONSTR	UIDA (n	n2): _	850				
			_						NALES		Ningur	10 🗆	Si, año	constr	uido _		
				ALC: N	0.00	1		OCUPA	ACIÓN:	ASAN	/IBLEA	COME	RCIAL	SERV. I	DE EMER	GENCIA	
No.	-	100		6						INDU	STRIAL	OFI	CINA <	ESCUEL	.A/UNIVE	RSIDAD	>
and the same of th		(a)	200		200						ALM	ACÉN		RESID	ENCIAL	#UND:	
	D: 76	N. State of			MICH TO				X REF	UGIO		☐ HISTO	ÓRICO		GOB	IERNO	
								TIPO D	E SUEL) :				RIESGO	S GEOI	LÓGICO	S:
		-			-				Α	ROCA D	URA					X NO	
1	-								В	ROCA						ı:SI 🗽	
1 1 11111	HHH			шш	111111		IIII		С	SUELO	/UY DENS	SO Y ROC	A SUAVE	SUP. D	E RUP.:	SI 💢	DNK
- 4									D	SUELO F	IGIDO						
								×	Е	SUELO	E ARCILL	.A SUAVE					
									F	SUELO F	OBRE						
									DNK	ASUMIR	TIPO "D"						
Vista en Planta			Y 7: - 4	Fronte	. 1			ADYAC	ENCIA:	X	POUNDI	ING					
visia en Fianta			Vista .	Fronta	!!								OAS POR	UNA EDIF	. MAS AL	TA ADYA	CENTE
								IRREGL	JLARIDA							a Corta /	
									, , , , , , , ,		HORI:				coranni	u cortu y	Severe
Emiliar III and a second and a second							7	RIESGO	S DE C		XTERIO		,				
							1.				ARMADU		П	REVESTI	MIENTOS	5 PESADO	ıs
Thursday	effect.	cree		(live			11	_	PARAPE		AITIVIADO	IVA		ACCESO) I LJADO	
	9 1333			-			#	_	OTROS					ACCESO	MOS		
							i i	_	NTARIO								
							-	COIVILI	VIANO	Э.							
***	1.10	,															
Vista Late	ral De	recha															
									BOSQUE	JO ADICI	ONAL O	COMENTA	ARIOS EN	UNA PAG	GINA SEP.	ARADA	
PU	NTUAC	IÓN B	ÁSICA,	MODI	FICADO	ORES, \	Y PUN	TUACIÓ	ÓN FIN	AL NIV	'EL 1, S	L1					
FEMA TIPO DE ESTRUCTURA DNK	W1	W1A	W2	S1	S2	S3	S4	S5	C1	C2	C3	PC1	PC2	RM1	RM2	URM	МН
PUNTUACIÓN BÁSICA	3.6	3.2	2.9	2.1	2.0	2.6	2.0	1.7	1.5	2.0	1.2	1.6	1.4	1.7	1.7	1.0	1.5
IRREGULARIDAD VERTICAL SEVERA, V _{L1}	-1.2	-1.2	-1.2	-1.0	-1.0	-1.1	-1.0	-0.8	-0.9	-1.0	-0.7	-1.0	-0.9	-0.9	-0.9	-0.7	NA
IRREGULARIDAD VERTICAL MODERADA, VL1	-0.7	-0.7	-0.7	-0.6	-0.6	-0.7	-0.6	-0.5	-0.5	-0.6	-0.4	-0.6	-0.5	-0.5	-0.5	-0.4	NA
IRREGULARIDAD EN PLANTA, PL1	-1.1	-1.0	-1.0	-0.8	-0.7	-0.9	-0.7	-0.6	-0.6	-0.8	-0.5	-0.7	-0.6	-0.7	-0.7	-0.4	NA
PRE-CÓDIGO	-1.1	-1.0	-0.9	-0.6	-0.6	-0.8	-0.6	-0.2	-0.4	-0.7	-0.1	-0.5	-0.3	-0.5	-0.5	0.0	-0.1
POST-CÓDIGO	1.6	1.9	2.2	1.4	1.4	1.1	1.9	NA	1.9	2.1	NA	2.0	2.4	2.1	2.1	NA	1.2
SUELO TIPO A o B	0.1	0.3	0.5	0.4	0.6	0.1	0.6	0.5	0.4	0.5	0.3	0.6	0.4	0.5	0.5	0.3	0.3
SUELO TIPO E (1-3 NIVELES)	0.1	0.3	0.1	-0.2	-0.4	0.2	-0.1	-0.4	0.0	0.0	-0.2	-0.3	-0.1	-0.1	-0.1	-0.2	-0.4
SUELO TIPO E (>3 NIVELES)	-0.3	-0.6	-0.9	-0.6	-0.6	NA	-0.6	-0.4	-0.5	-0.7	-0.3	NA	-0.4	-0.5	-0.6	-0.2	NA
PUNTUACIÓN TOTAL S _{L1}	0.3	0.0	0.5	0.0	0.0	14/1	0.0	J.4	2.5	5.7	0.5	. 14/1	J.4	0.5	0.0	J.2	INA
	1.1	0.0	0.7	0.5	0.5	0.6	0.5	0.5		0.3	0.3	0.3	0.3	0.3	0.3	0.2	1.0
PUNTUACIÓN MÍNIMA, S _{MIN}	1.1	0.9	0.7	0.5	0.5	0.6	0.5	0.5		0.3	0.3	0.2	0.2	0.3	0.3	0.2	1.0
PUNTUACIÓN FINAL NIVEL 1, S _{L1} ≥ S _{MIN}			OTRO	DELIC	205				2.5	۸۵۵۱۸	NI DEO:	IEDID A					
ALCANCE DE LA EVALUACIÓN				PELIGE		VCADEN/	AN LIN F	/ALUACIO	ÓN		N REQU						
EXTERIOR: ☐ PARCIAL ☒ TODO LAD INTERIOR: ☐ NINGUNA ☒ VISIBLE				TURAL D			5 2.				ERE EVAL						
		TODO	M	POTENC	IAL DE PO	DUNDING	3 POR UN	۱A			SI, TIPO OTRA ED			DESCONO	CIDA PA	RA FEMA	O ES
PLANOS REVISADOS: SI NO			~					NOS QUE	S _{L2} >								
FUENTE TIPO DE SUELO: Estudio de Suelos			I _	CORTE)							SI, PUNT				DE COR	TE	
FUENTE DE PELIGROS GEOLÓGICOS:INGEMIN								ADYACE	NTE		SI, OTRO	S RIESGO	OS PRESE	NTES			
PERSONA DE CONTACTO: <u>Oficina de Obras - UNS</u>	1AC		□	RIESGO	GEOLÓG	SICOS O S	SUELO TIF	POF		×	NO						
				~					ENAN	¿RECON	1IFNDΔ F	ναιτιας	IÓN NO E	STRUCTU	JRAL DET	TALLADA	2
¿EVALUACIÓN DE NIVEL 2 REQUERIDA?						NTE/DETI	ERIORO E	IN EL SIST	LIVIA								
¿EVALUACIÓN DE NIVEL 2 REQUERIDA? SI, PUNTUACIÓN FINAL NIVEL 2, S _{1.2}		_ X NO		ESTRUC		NTE/DETI	ERIORO E	:N EL SIST	LIVIA		SI, RIESO	GOS NO E		IRALES ID	ENTIFICA	ADOS	
SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	SI 🗆	_ ⊠ no] no				NTE/DETI	ERIORO E	:N EL 5151	LIVIA		SI, RIESO NO, RIES	GOS NO E	ESTRUCT	TURALES ID	ENTIFICA EXISTEN (ADOS QUE REQU	JIEREN
SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	sı 🗆					NTE/DETI	ERIORO E	:N EL SIST	EIVIA		SI, RIESO NO, RIES	GOS NO E GOS NO CIÓN, PEI	ESTRUCT	TURALES ID	ENTIFICA EXISTEN (ADOS	JIEREN
SI, PUNTUACIÓN FINAL NIVEL 2, S _{L2}	SI C					NTE/DETI	ERIORO E	:N EL SIST	EIVIA	×	SI, RIESO NO, RIES MITIGAO NECESAI	GOS NO E GGOS NO CIÓN, PEI RIO	ESTRUCT RO UNA E	TRALES ID TURALES I	ENTIFICA EXISTEN (ÓN DETA	ADOS QUE REQU	JIEREN O ES

Anexo 3. Ensayo de Perforación con diamantina

INFORME DE EVALUACION ESTRUCTURAL OBTENCIÓN Y ENSAYO DE CORAZONES DIAMANTINOS

INFORME N° 1810 - 3395

"EVALUACION DE LA VULNERABILIDAD SISMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERIA CIVIL DE LA UNSAAC, DISTRITO DE CUSCO, 2018"

SOLICITANTE

: ROGER AUGUSTO NUÑEZ ESQUIVEL, GIMI JOSEPH GALDOS ROMAN

RESPONSABLE

: SERGIO I. LIENDO VARGAS

INGENIERO CIVIL CIP 65074

UBICACIÓN

: LUGAR : ESCUELA PROFESIONAL DE INGENIERÍA CIVIL - UNSAAC.

CUSCO : CUSCO PROVINCIA : CUSCO REGIÓN : CUSCO

OCTUBRE DE 2018

TABLA DE CONTENIDO

- 1. ALCANCE
- 2. NORMATIVIDAD
- 3. METODOLOGIA
- 4. MEMORIA DESCRIPTIVA
 - 4.1 RESUMEN DE LAS PRUEBAS DE CAMPO Y LABORATORIO
 - 4.2 UBICACIÓN DE LOS PUNTOS DE INVESTIGACION
- 5. MARCO TEORICO
 - 5.1 CORAZONES DIAMANTINOS
 - 5.1.1 CONDICIONES DE HUMEDAD: LOS ESPECÍMENES DEBERÁN SER ENSAYADOS EN CONDICIONES REPRESENTATIVAS DE HUMEDAD DE LA OBRA O SEGÚN LO EXIJA LA AUTORIDAD RESPONSABLE DE SUPERVISIÓN.
 - 5.1.2 EQUIPO UTILIZADO
 - 5.1.3 DETERMINACION DE ESPACIAMIENTO DEL REFUERZO DE ACERO
 - 5.1.4 CAMPO DE APLICACIÓN
 - 5.1.5 FACTORES QUE INCIDEN EN LA PRUEBA
 - 5.1.6 EQUIPO UTILIZADO
- 6. TRABAJO DE CAMPO
 - 6.1 EVALUACIÓN PRELIMINAR
 - 6.3 TRABAJOS PRELIMINARES
 - 6.4 DETERMINACION DEL ESPACIAMIENTO DEL REFUERZO DE ACERO
- 7. TRABAJO DE LABORATORIO
 - 7.1 EVALUACION DE LOS RESULTADOS OBTENIDOS MEDIANTE EL ENSAYO CON ESCLEROMETRO
 - 7.2 RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS
- ANALISIS VISUAL DE LAS MUESTRAS DE CONCRETO
- 9. CONCLUSIONES
 - 9.1 DEL ENSAYO DE EXTRACCIÓN Y COMPRESION DE TESTIGO
- 10. PANEL FOTOGRAFICO

Sergio Ivan Liendo Vargas
Sergio Ivan Liendo Vargas

DECYCON SILVEE S.C.D.L. Laboratorio de Suelos y Materiales

1. ALCANCE

A petición de Los Sres. ROGER AUGUSTO NUÑEZ ESQUIVEL y GIMI JOSEPH GALDOS ROMAN, se ha realizado la evaluación estructural de la escuela profesional de ingeniería civil, con fines de tesis: "EVALUACION DE LA VULNERABILIDAD SISMICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE INGENIERIA CIVIL DE LA UNSAAC, DISTRITO DE CUSCO, 2018". Esta evaluación se ha realizado específicamente en las estructuras de concreto armado, que vienen a ser las columnas de los pórticos; tres (03) puntos en el pabellón antiguo y tres (03) puntos en el pabellón nuevo.

En esta evaluación se busca descartar las observaciones de una baja resistencia en el concreto utilizado en dichas edificaciones, por lo que se han realizado ensayos de la Obtención y Ensayo de Corazones Diamantinos

2. NORMATIVIDAD

Para el desarrollo de los diferentes ensayos en la presente evaluación nos referimos a las siguientes normas:

٠	Método para La Obtención y Ensayo de	NTP 339.059-2001
	Corazones Diamantinos	1417 333.033-2001

- Método de Ensayo para Determinar el Esfuerzo a Compresión en Muestras Cilindricas NTP 334.034-2001 de Concreto
- Toma de Núcleos y Vigas en Concretos
 MTC E 707-2000
 Endurecidos
- Norma de Concreto Armado RNE E-060

3. METODOLOGIA

Dentro del plan implementado para el desarrollo del presente trabajo se ha tomado en cuenta lo siguiente:

- a) La realización de ensayos in situ (extracción de diamantina, espaciamiento entre barras de acero.
- b) La realización de pruebas en laboratorio (resistencia a la compresión simple de testigos de concreto endurecido.)
- c) Y finalmente la evaluación de los resultados obtenidos.

Sergio Ivan Liendo Vargas

4. MEMORIA DESCRIPTIVA

4.1 RESUMEN DE LAS PRUEBAS DE CAMPO Y LABORATORIO

- · Obtención de Corazón Diamantino.
- Ensayo para Determinar el Esfuerzo a Compresión en Muestras Cilíndricas de Concreto.

4.2 UBICACIÓN DE LOS PUNTOS DE INVESTIGACION PABELLON ANTIGUO

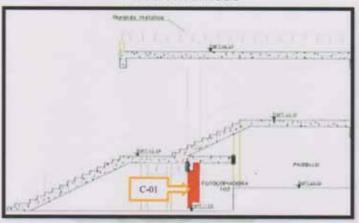


Imagen (01)

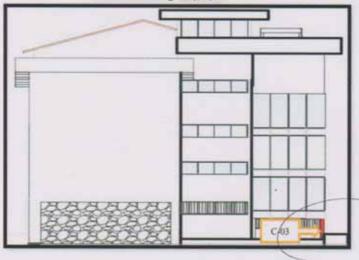


Imagen (02)

PROYCON SILVER S.C.P.L.

Laboratorio de Suelos y Materiales

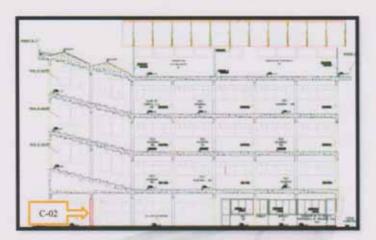


Imagen (03)

PABELLON NUEVO

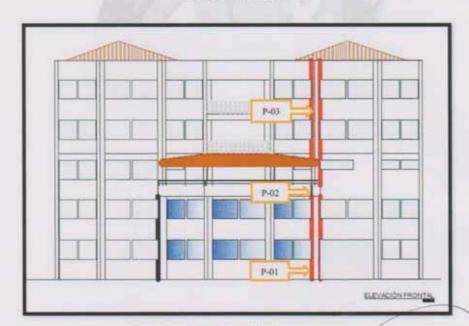


Imagen (04)

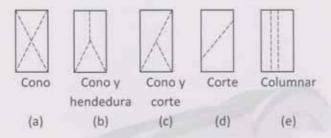
5. MARCO TEORICO

5.1 CORAZONES DIAMANTINOS

Corazones Diamantinos para Resistencia a la Compresión

Espécimen de prueba: El diámetro nominal de corazón diamantino para la determinación de la resistencia a la compresión deberá ser por lo menos 95 mm (3.75 pulgada). Corazones diamantinos con diámetros menores de 95 mm (3.75 pulgada) serán permitidos cuando es imposible obtener corazones diamantinos con ratio de longitud a diámetro (L/D) ≥ 1 para la evaluación de la resistencia a la compresión a la compresión pura. Para hormigones (concretos) con un tamaño máximo nominal de agregado mayor a 37.5 mm (1 ½ pulgada), el diámetro nominal deberá sr preferentemente por lo menos tres veces el tamaño nominal de agregado grueso, y será por lo menos dos veces el tamaño máximo nominal del agregado grueso. La longitud ideal del espécimen refrentado estará entre 1.9 y 2.1 veces el diámetro. Si la ratio de la longitud del diámetro del corazón diamantino excede 2.1 reducir la longitud del espécimen de tal manera que es ratio este entre 2.1 y 1.9. Especimenes con ratios longitud - diámetro menores a 1.8 requieres correcciones en la resistencia a la compresión medida. No se ensayarán corazones diamantinos con una longitud menos al 95% de su diámetro antes del refrentado o una longitud menos a su diámetro después del refrentado.

TABLA N° 01 FACTOR DE CORRECCIÓN POR L/D


Ratio longitud/diámetro L/D	Factor de corrección de resistencia
1.75	0.98
1.50	0.96
1.25	0.93
1.0	0.87

Sergio Ivan Liendo Vargus

5.1.1 CONDICIONES DE HUMEDAD: LOS ESPECÍMENES DEBERÁN SER ENSAYADOS EN CONDICIONES REPRESENTATIVAS DE HUMEDAD DE LA OBRA O SEGÚN LO EXIJA LA AUTORIDAD RESPONSABLE DE SUPERVISIÓN.

Esquemas de los tipos de Falla.

5.1.2 EQUIPO UTILIZADO

PERFORADORA SACANÚCLEOS PORTÁTIL ELÉCTRICA

Potencia de 2.5 kW. De operación manual para uso en campo. Con accionamiento por medio de palanca y perillas para subir y bajar la broca hasta la profundidad deseada. Para brocas de hasta 6 pulgadas de diámetro (2",3",4",6"). Con informe de inspección. Marca: Pinzuar.

PRENSA DIGITAL PARA ENSAYOS A COMPRESION - SEGÚN NORMA ASTM

La máquina para Ensayos de Concretos Modelo PC-42 ha sido diseñada para la realización de ensayos de laboratorio de muestras de concretos, bloques de adoquines otros elementos de albañilería, asegurando ensayos a compresión, flexión y tracción indirecta.

Características:

- ➤ MODELO: PC 42
- RANGO DE MEDICION: 1200KN (Opcional hasta 2000kn)
- CLASE DE EXACTITUD: 1% DESDE EL 10% DEL RANGO
- DIVISION DE ESCALA: 0.01KN HASTA 100KN

0.1 KN HASTA CARGA MAX.

Sergio Ivan Liendo Vargas

5.1.3 DETERMINACION DE ESPACIAMIENTO DEL REFUERZO DE ACERO

Detector de barras de acero y medidor de recubrimiento

La detección de las barras de refuerzo de acero y los conductos metálicos es fundamental para la construcción y el mantenimiento de las estructuras.

El Profoscope utiliza tecnología de inducción de impulsos electromagnéticos para detectar las barras de refuerzo de acero.

Las bobinas de la sonda se cargan periódicamente mediante impulsos de corriente, lo que genera un campo magnético. En la superficie de cualquier material conductor de corriente eléctrica dentro del campo magnético se producen corrientes de remolino. Dichas corrientes inducen un campo magnético en sentido opuesto. El cambio de tensión resultante puede utilizarse para la medición.

Este aparato permite:

- Localizar una barra de refuerzo.
- Localizar los puntos medios entre las barras de refuerzo
- Determinar el recubrimiento de concreto.
- Calcular el diámetro de la barra de acero.

Este método de detección no se ve afectado por los materiales no conductores como el concreto, la madera, el plástico, los ladrillos, bloquetas, etc.

Dentro de los métodos no destructivos, los de dureza superficial son los más generalizados, por su economía y facilidad de ejecución, entre ellos el método del esclerómetro es empleado por el mayor número de países.

5.1.4 CAMPO DE APLICACIÓN

- Evaluar la presencia de la armadura de acero en estructura de concreto armado.
- Delimitar la cuadricula del armado de acero.
- Determinar el diámetro de las barras de acero.
- Determinar el recubrimiento de concreto sobre las estructucas de acero.

Sergio Ivan Liendo Vargas

EDGYCON SILVED S.C.E.L.

Laboratorio de Suelos y Materiales

5.1.5 FACTORES QUE INCIDEN EN LA PRUEBA

Errores provocados por barras adyacentes

Todas las barras de refuerzo que se encuentran dentro del campo de influencia afectan a la lectura.

Las barras adyacentes situadas cerca de la barra analizada provocan una infravaloración del valor de recubrimiento y una sobrevaloración del diámetro de la barra.

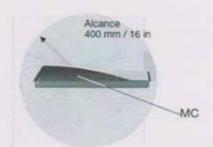
La señal más fuerte se genera cuando la línea central de la sonda es paralela a una barra. La línea central en el dispositivo Profoscope es el eje más largo del instrumento. Esta propiedad se usa para ayudar a determinar la orientación de las barras de refuerzo.

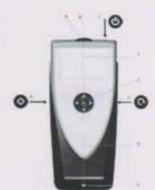
5.1.6 EQUIPO UTILIZADO

Ensayos con Profoscope.-

Estos ensayos fueron realizados para determinar la cuadrícula de los elementos de acero y su diámetro correspondiente.

Fue realizado con el equipo de las siguientes características:


- Detector de barras de acero PROFOSCOPE COMPONENTES:
 - 1 Paritalia
- 5 Indicador LED
- 2 Navegacion
- 6 Tecla de función
- 3 Tecla de reinicio.
- 7 Tecla de encendido y apagado
- 4 Centro de medición 8 Compartimiento de las plas
 - 9 Linea central


6. TRABAJO DE CAMPO

6.1 EVALUACIÓN PRELIMINAR

La evaluación preliminar comienza con una inspección visual de las estructuras a evaluar y la determinación de la ubicación de los puntos de interés, así tenemos:

 Para el Ensayo de extracción de Corazones Diamantinos se de propinto ses politica. puntos de extracción en la estructura. Por tanto, la ubicación de los puntos de ensayo quedo como sigue: Sergia Ivan Liendo Vargas ogeniero Chris - CLP, Antita ..

DECYCON SILVED S.C.E.L.

Laboratorio de Suelos y Materiales

TABLA N° 02

UBICACIÓN DI	E PUNTOS EVALUADOS
 Punto de Ensayo P-01: Elemento: Columna Ubicación: Primer Nivel- Pabellón Nuevo. 	 Punto de Ensayo C-01: Elemento: Columna Ubicación: Primer Nivel- Pabellón Antiguo.
Punto de Ensayo P-02: Elemento: Columna Ubicación: Tercer Nivel- Pabellón Nuevo.	 Punto de Ensayo C-02: Elemento: Muro Estructural Ubicación: Primer Nível- Pabellón Antiguo.
 Punto de Ensayo P-03: Elemento: Columna Ubicación: Quinto Nivel- Pabellón Nuevo. 	 Punto de Ensayo C-03: Elemento: Muro Estructural Ubicación: Primer Nivel- Pabellón Antiguo.

a. IDENTIFICACIÓN DE LOS PUNTOS DE EXTRACCION DE CORAZONES DIAMANTINOS:

CUADRO N° 01 IDENTIFICACION DE LOS PUNTOS EVALUADOS

		PUNTOS EV	ALUADOS CON DIAMANTINA
Punto	Elemento	Descripción	Fotografia
P-01	Columna	Ubicación: Primer Nivel- Pabellón Nuevo. Dirección de Ensayo: Horizontal.	

Sergio Ivan Liendo Vargas

DECYCON SILVER S.C.D.L.

Laboratorio de Suelos y Materiales

P-02	Columna	Ubicación: Tercer Nivel- Pabellón Nuevo. Dirección de Ensayo: Horizontal.	ACCOMPANIES COMPANIES ------	---------	--	--
P-03	Columna	Ubicación: Quinto Nivel- Pabellón Nuevo. Dirección de Ensayo: Horizontal.				
C-01	Columna	Ubicación: Primer Nivel- Pabellón Antiguo, Dirección de Ensayo: Horizontal.	\$79.0 × \$70.700 × 10.			
C-02	Columna	Ubicación: Primer Nivel- Pabellón Antiguo. Dirección de Ensayo: Horizontal.	Eval de le Voin. Sisse, en de constitut de la Sac. Proj. de la Constitut de la Constitut de la Constitut de la Constitut de la Constitut de Constitu			
C-03	Columna	Ubicación: Primer Nivel- Pabellón Antiguo. Dirección de Ensayo: Horizontal.	CED tallet of materiales			

Sergio Ivan Liendo Vargas inguotato Chri. CLP. 65014

6.3 TRABAJOS PRELIMINARES

Para la realización de extracción de corazones diamantinos, posteriormente a la evaluación preliminar y ubicación de los puntos a ensayar, se realizó la limpieza y el resanado de cada punto. Dentro de estos trabajos se ha realizado la limpieza superficial de todos los elementos evaluados.

Para su realización se ha utilizado cincel, combas y finalmente una amoladora que permitió obtener una superficie lisa sobre el concreto.

6.4 DETERMINACION DEL ESPACIAMIENTO DEL REFUERZO DE ACERO

La determinación del espaciamiento del refuerzo se ha realizado sobre los elementos evaluados con esclerómetro, sobre las superficies limpias y pulidas para mayor precisión, para este trabajo se hizo uso del Pacómetro ProfoScope, que nos permite determinar la ubicación de las barras de acero que nos ayuda a determinar el espaciamiento de la armadura. De esta evaluación se determinó lo siguiente:

CUADRO N° 02

DETERMINACION DEL ESPACIAMIENTO DEL ACERO DE REFUERZO

PUNTOS EVALUADOS									
Elemento	Descripción	Fotografía							
Columna	Ubicación: Pabellón Nuevo y Pabellón Antiguo								

7. TRABAJO DE LABORATORIO

7.1 EVALUACION DE LOS RESULTADOS OBTENIDOS MEDIANTE EL ENSAYO CON ESCLEROMETRO

DESCRIPCIÓN DEL CONCRETO EN EL PROYECTO

- La resistencia de diseño del concreto utilizado para los elementos estructurales del proyecto tiene una resistencia de diseño f'c = 210 kg/cm².
 Información proporcionada por el solicitante.
- Dentro de la composición del concreto se desconoce el uso de aditivos y tipo de agregados.

7.2 RESUMEN DE RESULTADOS

CARACTERISTICAS DEL ESPECIMEN (TESTIGO CILINDRICO)

TABLA N° 03
CARACTERISTICAS GEOMETRICAS DEL CORAZON DE CONCRETO

	CÓDIGO	P-01	P-02	P-03	C-01	C-02	C-03
	TOMAI	7.680	7.100	7.050	7,020	6.980	7.000 7.020 6.980
ETRO	TOMAII	7,670	7.150 7.050	7.100	7.030	6.950	
DIAMETRO	TOMA III	7.660		7.120	7,000	6.970	
	PROMEDIO	7.670	7.100	7.090	7.017	6.967	7.000
55000	ITUD DESPUES	8.240	11.540	12.640	10.500	7.040	7.100
AREA DE LA CARA PLANA		46.20	39.59	39.48	38,67	38.12	38.48
RELACION L/D		1.07	1.63	1.78	1.50	1.01	1.01

FUENTE: Elaboración Propia

CONDICIONES DE ENSAYO DEL ESPECIMEN (TESTIGO CILINDRICO) TABLA N° 04

DESCRIPCION DE LAS CONDICIONES DE ENSAYO

CÓDIGO	P-1	P-2	P-3	C-01	C-02	C-03
FACTOR DE CORRECCIÓN POR L/D	0.87	0.97	0.99	0.96	0.87	0.87
CONDICION DE HUMEDAD AL MOMENTO DEL ENSAYO	SECA A LA INTERPERIE	SECA A LA INTERPERIE	SECA A LA INTERPERIE	SECA A LA INTERPERIE	SECA A LA INTERPERIE	SECA A LA INTERPERIE
DIRECCION DE APLICACIÓN DE LA CARGA RESPECTO AL PLANO HORIZONTAL DEL VACIADO	PERPENDICULAR	PERPENDICULAR	PERPENDICULAR	PERPENDICULAR	PERPENDICULAR	PERPENDICULAR
TAMAÑO MAXIMO NOMINAL DEL AGREGADO GRUESO DEL CONCRETO	1/2*	1/2"	1/2*	1*	37	1"
FECHA DE EXTRACCIÓN DE TESTIGO	16/10/2018	16/10/2018	16/10/2018	16/10/2018	16/10/2018	16/10/2018
FECHA DE ENSAYO - RESISTENCIA A LA COMPRESIÓN	19/10/2018	19/10/2018	19/10/2018	19/10/2018	19/10/2018	19/10/2018

FUENTE: Elaboración Propia

7.2 RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS

Datos de las Muestras f'c de Diseño: 210 kg/cm²

TABLA N° 05 RESISTENCIAS OBTENIDAS DEL ENSAYO DE COMPRESION

(tm	100 NOTICE	new across	19	NA.	(0)90	0440	(ski excrempt	PERMITTING	SWANTER	3000 (5)		
	Ananan	1777737	UNITACH!	ROTORA	16ml	(MES)	CHRECORN.	Milesima.	1010/1550	MERSIAL	tem nack	DESTANDAMENTO.
	(111,111,111,111,111,111,111	Printer Study	(all or	-		17.76	995	105.00	110.00	11,11%	mine	- securities
	housements)	Value Name	2001.	(9/1/2014)	6430	ja ale	007	2000	19100	Hirry.	Deles.	HICTORIZ.
	I COMPANIE	Control No.	9=0	De particular.	2179	TELE	220	ma	meet	67.52%	No. in last	Sections.
	(0)000000000000000000000000000000000000	Printer Scott	2001	1031774	5457	mile	196	READI	nille	20,100	lim into	sucretain.
	- TOTAL STATE	Print NA	100	1971	000	-	9,67	18221	1	123,349	1000	phones
	Charles in	Provident Section	1861	VMINSON	2175	11,160	N/AU	272.00	Van.	(2810)	100.00%	21 COMPANY

FUENTE: Elaboración Propia (SE ADJUNTA HOJA DE ENSAYO COMPLETA)

Sergio Ivan Liendo Vargas
leguniaro Chri. CLP. 88874

8. ANALISIS VISUAL DE LAS MUESTRAS DE CONCRETO

PABELLON NUEVO

- No existe buena adherencia entre el agregado y la pasta de cemento, se debió posiblemente a razón de un diseño de mezcla deficiente.
- No existe agregado grueso con mayor dimensión, Se aprecia mayor presencia de agregado fino. Aproximadamente de ½ ".
- No existe compacidad, debido a la carencia de ciertos tamaños de agregado grueso.
- Agregado grueso y fino corresponden a material del tipo angular.

PABELLON ANTIGUO

- Existe compacidad debido a una buena dosificación entre el agregado grueso y fino.
- Presencia de tamaño máximo de agregado grueso de 1".
- Agregado grueso del material del tipo redondo y Agregado fino del material del tipo angular.

Imagen (05)

9. CONCLUSIONES

9.1 DEL ENSAYO DE EXTRACCIÓN Y COMPRESION DE TESTIGO

- Se evalúa el resultado de la Rotura de 06 especimenes de concreto endurecido extraído mediante perforación con diamantina correspondiente a las columnas.
- Las muestras fueron extraídas mediante perforadora saca-núcleos portátil, fueron talladas y perfiladas en laboratorio, sometidas a resistencia a la compresión.
- Los datos para la evaluación de resultados fueron proporcionados por la entidad solicitante v son:
 - o Resistencia de Diseño: 210 Kg/cm²
- La rotura de las muestras extraídas de las columnas del primer, tercer y quinto nivel, correspondientes al pabellón nuevo; No llegan a la resistencia de compresión según diseño. Presentando valores de 108.05, 166.47 133.36 Kg/cm2 correspondientemente.
- La rotura del espécimen de la escalera de la columna NO CUMPLE con la resistencia de diseño a la edad de rotura, presentando un valor de 118.94 kg/cm2.
- Se observó patologías (fisuras) en la columna del quinto nivel, que es debido a la baja resistencia a la compresión en el concreto.
- Referente al pabellón antiguo, la columna C-3 se encuentra confinada en acero, que imposibilita la extracción de corazón diamantina, con la relación mínima de L/D >1.
 Para el cálculo de la resistencia a la compresión de este elemento, se realizó a través de factores de corrección al valor obtenido por el esclerómetro en ese punto.

DECYCON SHEVER S.C.D.L.

Laboratorio de Suelos y Materiales

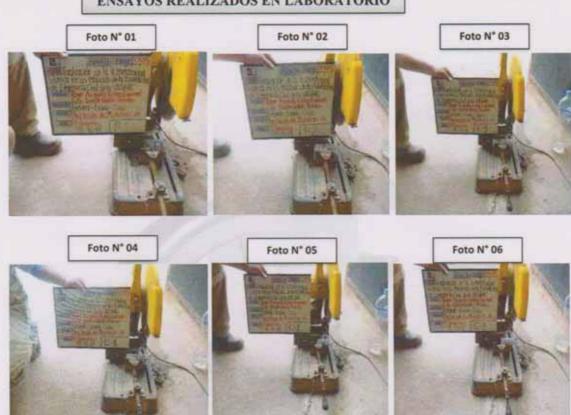
10. PANEL FOTOGRAFICO

ENSAYOS REALIZADOS IN SITU

DIAMANTINA

Foto N° 01

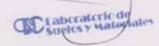
Foto N° 02

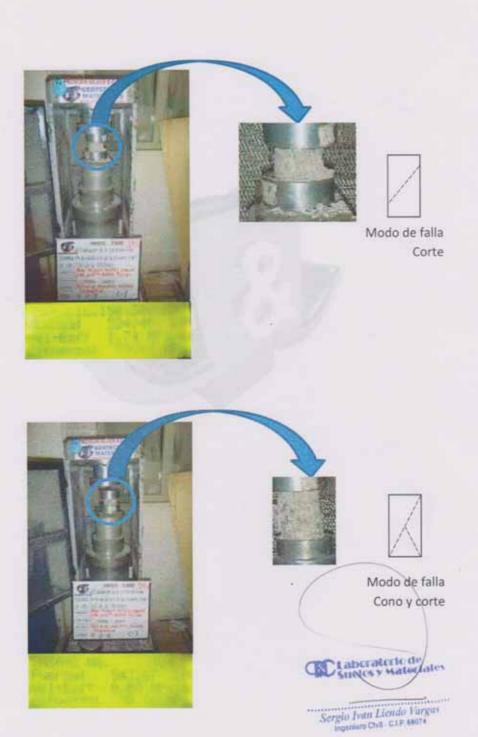


Cabcraterio de Sueles y Materiales

Sergio Ivan Liendo Vargas Inguniaro Civit. GLR 85074

ENSAYOS REALIZADOS EN LABORATORIO


PROYECN SILVER S.C.D.L. Laboratorio de Suelos y Materiales



Modo de falla Cono y corte

Sergio Ivan Liendo Vargas Ingusiaro Chin. CLP, 65074

CALCULO DE ENSAYOS EN LABORATORIO

PROACO

Calla Popel 200 - Cassos, Talf. 001-254726, Col. Monistrar: 901-923409, Claro 900-727700

DETENCIÓN Y ENSAYO DE CORAZONES DIAMANTINOS NTP 33.050-2001, Basado en la Norma ASTM C 42/C 42 M-99

EVALUACION DE LA VILLIGRABILIDAD SIGNICA EN LOS EDIFICIOS DE LA ESCUELA PROFESIONAL DE RUBENERA CIVIL DE LA UNIDAD, DICTIONO DE CURCO, DOLE

Unicados: Escuela Profesional de Ingeneria Ciul(Unicad) - Cucol Soleita: RDGER ALAGUSTO NUREZ ESCULVEIL GIMI JOSEPH GALDOS ROMAN Fecha: Viernes, 15 de octubre de 2018 Muerre: Testigos Clindricos de Concreto Responsable: Ing. Sergio I. Liendo Vargas

CARACTERISTICAS DE LOS ESPECIMENES L'ESTIGOS OLINDRICOS)

coesso		Pills	F-02	P-03	6-81	C-62	C-01
A217	TOMAT	7.680	7.500	7.050	7.020	6.980	7.000
081	TOMA P	7,670	7.150	7,100	7.090	8.950	7.020
100	TOMA III	3.660	7.050	7.120	7.000	5.970	8,990
150	PROMEDIO	7.670	7.100	7,010	7.417	6,967	7,000
LONGITUD DESP	JES DEL MOLDEO	8.240	31.540	12.640	10.500	7.040	7.100
AREA DE LA CARA PLANA		46.20	39.59	26.40	26.67	88.12	38.46
HELACION L/D		1.07	1.61	176	130	1.01	3.01

CONDITIONES DE ENSAYO DE LOS ESPECIMENES (TESTIGOS CUINORICOS)

CODIGO	P.E	И	8-3	C-01.	C-0.0	C-01
ACTOR DE CORRECCIÓN POR L/D	10.87	0.07	0.99	0.96	-0.87	6.87
CONDICION DE HUMEDIAD AL MOMENTO DEL ENSAYO	SECA A LA INTERPERIE	SICK A LA INTERPENE	SECA A LA INTERPENE	SECA A LA INTERPERIE	SECA A LA INTERPERE	SECA A LA INTERPENIE
DIRECCION DE APLICACIÓN DE LA CARILA RESPECTO AL PLANO HORIZONTAL DEL FACIADO	PERPENDICULAR	PERPENDICIAN	PERPENDICULAR	PERPENDICULAR	Mendinochree	PERPENDICULAR
TAMAÑO MAXIMO NOMINAL DEL AGREGADO GRUESO DEL CONCRETO	1/2*	1/2"	1/2"	17	17	r
ECHA DE EXTRACÇÃON DE TESTIGO.	55/10/2018	38/50/2038	18/18/2018	36/30/2018	16/10/2019	58/20/2038
ECHA DE ENSAYO - RESISTENCIA A LA COMPRESIÓN	19/10/2018	18/30/2018	19/35/2018	19/10/2018	18/10/2018	28/30/2018

Diaberaterie de Sergio Ivan Liendo Vargas Ingeniaro Chia - CLIP 85074

mail C -2 - Cossoli, Telft (884-258735), Cell, Missister: 984-625489, Clara: 984-7277

RESTRINGA A LA COMPRESIÓN DE TESTIBOS CUMPRICOS NEP 238 034 MIC E 704 - 2000,ATC E 707 - 2000, Basadis en la Rizema ASTM C-33 y AASHTO E-22

Proyecto: EVALUACION DE LA VILLABRABILIDAD SISSICA EN LOS EDIFICIOS DE LA DICURLA PROPESIONAL DE HIGENERIA CIVIL DE LA UNIGAAC, DICIRITO DE CUSCO, SIDIS

Ubicación: Escuela Profesional de Ingenieria Cuellillinearch: Cozto Solicita: Rodet Augusto Hullet Esquives, Gine solicite Galson Admiany Facha: Hennes, 13 de octubre do 2018
Westras: Testigas Climinista de Conveto
Responsable: Ing. Sergio 1 Lierato Vingas:

Dates	de la Muestra
Folia Diseño:	210 kg/om*

EVALUACION INDIVIDUAL DEL TESTIGO DIAMANTINO

coo.	ELEMENTO	UBICACIÓN	FECHA		EDAD	D DIAG	FACTOR DE	RESISTENCIAS (kg/cm2)		N.DEFE.		CONTRACTOR OF STREET
100		UNICHCION	VACIADO	ROTURA	Dilet	(MPA)	COMMECCIÓN	MUESTRA	DESETENER	MUESTRA	DESC TENES	DESERVACION
12	COLUMNA (F-1)	Friner Nivel Pubelian Numb	2001	19/30/2038	6500	12.190	0.87	108.05	210.00	\$1.45%	100.00%	(NICEPTARE)
10	COLUMNA (F-2)	Tercer filivel Patention Number	2001	18/10/2018	6433	16.830	0.97	116.42	310.00	79.27%	100.00%	- SWACEPEARLE
(4)	COLUMNA (F-3)	Quints Nivel-Patiettin Nivel	2001	19/10/2018	6410	11.210	0.99	13336	210.00	63.30%	100.00%	SHAPER
+	COLUMNIA (C-E)	French Nivel Pabation Antigias	1001	19/10/2018	6457	12.150	2.56	115.94	210.00	36.61%	100.00%	MACHINE
	COTTANITY (C-S)	Primer Nivel Pakellon Antigon	2001	19/30/2019	6456	29,670	0.87	20121	210.00	131.34%	100.00%	SI CUMPLE
3	COLUMNATOR	Fremer Nivel Patrollón Artigue	7001	18/10/2018	9495	30,360	0.87	272.00	210.00	125.54%	300.00%	SECUMPLE

La resistencia del tectigo es igual o Superior a la resistencia de Diseño. La resistencio del teorigo es igual o Superior al 15% de la resistencia de Diseño. La Hosintencia de la terqueta es inferior al 15% pero mayor al 15% de la resistencia de Ciseño. La resistencia de la terqueta es inferior al 15% de la resistencia de Diseño. SI CUMPLE NO CLEANUE

Cabcrateric de Sueles y Matuylates Sergio Ivan Liendo Vargas togonaro Civil - CLP 85974