Universidad Nacional de San Antonio Abad del Cusco

FACULTAD DE INGENIERIA GEOLOGICA, MINAS Y METALURGICA ESCUELA PROFESIONAL DE INGENIERIA GEOLOGICA

TESIS:

"ESTUDIO DE RIESGO GEOLOGICO POR MOVIMIENTOS EN MASA, PARA LA CONSTRUCCION DEL PUESTO DE SALUD DE HUAYLLATI, DEL DISTRITO DE HUAYLLATI, PROVINCIA DE GRAU, REGION APURIMAC"

PRESENTADO POR:

BACH. MELIZA MILAGROS ZAMALLOA PILCO
BACH. LUZ ANGELA MEDINA JANAMPA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO GEOLOGO

ASESOR:

ING. EDISON MATTOS OJEDA

DEDICADO

Con cariño a mis tesoros Marco Junior, Samin Adriano y Victoria Isabella, a mis padres Marco Zamalloa, Maria Pilco, a mis hermanas Yuli y Maria Antonieta. Y a las personas que aprecio y siempre han estado a mi lado.

AGRADECIMIENTOS

A Dios por su amor y bondad que no tienen fin, que me permiten sonreír ante todos mis logros, que son resultados de su ayuda.

A mis padres que me formaron con reglas y algunas libertades, donde siempre me motivaron constantemente para alcanzar mis anhelos.

A mis hermanos, por su apoyo incondicional, que me ayudaron a llegar hasta aquí.

A la Ing. Bertha Pumayali Saloma, por su gran aporte con conocimientos en la geotecnia, así como su apoyo incondicional durante mis estudios en la Universidad.

Un agradecimiento especial a todos los docentes de mi querida escuela profesional de Ingeniería Geológica.

Finalmente, a todas las personas magnificas que han sido participes de esta obra tan importante que resalta en mi vida profesional.

Meliza Milagros Zamalloa Pilco

DEDICATORIA

Con mucho cariño para mis padres Beatriz y Fredy, para mis hermanos Angie y Carlos; dedicado también a la luz de mis ojos mi pequeña bebé Zirel Asunta, a mi esposo Bill Bazan y a mi tierra querida de la cual me siento muy orgullosa de ser, mi amado "Chuquibambilla Grau Apurímac"

AGRADECIMIENTO

Doy las gracias a Dios por permitirme alcanzar una meta más y darme la gran familia que tengo.

A mis padres Beatriz y Fredy por su apoyo, comprensión, su cariño y también por el gran esfuerzo que hicieron para yo poder estudiar lejos de casa, lo que soy se los debo a ellos son mi gran tesoro.

A mi esposo Ing. Bill Bazan por el amor y apoyo incondicional, a mi suegra señora Ernestina Kehuarucho por acompañarme en esta etapa.

A mi tía Judith Medina Warthon que es como una segunda madre aquí en la ciudad de Cusco, sus palabras y cariño.

A mis primas, primos, tíos amigos a toda mi gran familia gracias por todo.

A mi tricentenario Universidad San Antonio Abad por acogerme en sus aulas y a mis docentes quienes inculcaron en mí el amor por la Geología.

Luz Ángela Medina Janampa

RESUMEN

El estudio de riesgo geológico en movimiento en masa, se realizó en el distrito de Huayllati, provincia de Grau, Region Apurímac.

El área de la zona de estudio es de 1.5 Ha aproximadamente, a una altitud de 3535 m.s.n.m., geomorfológicamente se encuentra entre laderas y terrazas coluviales, litológicamente está conformada por gravas y arenas mal seleccionadas en matriz limo arenosas pertenecientes a depósitos cuaternarios cono aluviales.

Las unidades estructurales locales no tienen implicancia de primer orden en el procesos de desarrollo del proyecto, la región Apurimac se encuentra en la Zona 2 de acuerdo a la zonificación sísmica nacional con un factor de 0.25.

En la zona de estudio se tiene programada la construcción del puesto de Salud de Huayllati, el cual constara de un solo piso, se realizo una evaluación geotécnica haciendo la apertura de 02 calicatas, de las cuales se determinaron sus propiedades mecánicas y de resistencia del suelo. Llegando a identificar el tipo de suelo que de acuerdo a la clasificación Unificada de Suelos (SUCS) corresponde a un suelo GC-GM (suelo grava arcillosa- limosa con arena), en la prospección realizada nose identifico la presencia de nivel freático.

El análisis mediante un SIG del cartografiado de los movimientos en masa, la topografía, litología, datos hidrológicos de precipitaciones, también usando el Proceso de Análisis Jerárquico (AHP) en la zona de Estudio, ha permitido obtener un mapa de peligros de movimientos en masa.

Con datos de tipología de viviendas se pudo construir un mapa de vulnerabilidad. Posteriormente se realizó el mapa de riesgo que se obtuvo de unir el mapa de peligros con el de vulnerabilidad.

Como resultado se observa que el lugar de estudio está en una zona de riesgo medio, donde también se aprecia que el proyecto se emplazara en una unidad geomorfológicamente conocida como un cono aluvial.

INDICE

1.	CAP	ITUL	O I: GENERALIDADES	.5
	1.1.	INT	RODUCCIÓN	.5
	1.2.	UBI	CACIÓN	.6
	1.3.	ACC	ESIBILIDAD	.6
	1.4.	CLIN	ЛА	.7
	1.5.	DES	CRIPCIÓN DE PROBLEMA	.7
	1.6.	FOR	MULACIÓN DEL PROBLEMA	.8
	1.7.	OBJ	ETIVOS	.8
	1.7.	1.	OBJETIVO GENERAL	.8
	1.7.2	2.	OBJETIVOS ESPECÍFICOS	.8
	1.8.	JUS	TIFICACIÓN	.9
	1.9.	HIP	OTESIS	.9
	1.10.	Α	NTECEDENTES	10
	1.11.	N	1ARCO CONCEPTUAL	10
	1.11	.1.	MOVIMIENTOS EN MASA	10
	1.11	.2.	CLASIFICACIÓN DE MOVIMIENTOS EN MASA	11
	1.11	3.	RIESGOS POR MOVIMIENTOS EN MASA	16
	1.11	.4.	PELIGRO	17
	1.11	5.	VULNERABILIDAD	18
	1.11	.6.	METODO MULTICRITERIO	18
	1.11	.7.	SISTEMAS DE INFORMACIÓN GEOGRÁFICA	19
	1.11	.8.	RIESGO	20
	1.12.	N	1ARCO LEGAL	21
	1.13.	N	1ETODOLOGIA	21
2.	CAP	ITUL	O II: GEOLOGIA	24
	2.1.	GEC	DMORFOLOGIA	24
	2.1.	1.	GEOMORFOLOGIA REGIONAL	24
	2.1.2	2.	GEOMORFOLOGIA LOCAL	29
	2.2.	UNI	DADES GEOLOGICAS	32
	2.2.	1.	UNIDADES GEOLOGICA REGIONALES	32
	2.2.2	2.	UNIDADES GEOLOGICAS LOCALES	38

	2.3.	GEO	DLOGIA ESTRUCTURAL	42
	2.3.	1.	GEOLOGIA ESTRUCTURAL REGIONAL	42
	2.3.	2.	GEOLOGIA ESTRUCTURAL LOCAL	43
	2.4.	GEO	DDINAMICA INTERNA	46
	2.4.	1.	SISMICIDAD	46
	2.4.	2.	ZONIFICACION SISMICA	48
	2.4.	3.	SISMICIDAD HISTORICA	49
	2.5.	GEO	DDINAMICA EXTERNA	50
3.	CAP	ITULO	O III: HIDROLOGIA	54
	3.1.	ANÁ	ÁLISIS REGIONAL DE PRECIPITACIÓN	55
4.	CAP	ITULO	O IV: GEOTECNIA	56
	4.1.	INV	ESTIGACIONES EXPLORATORIAS Y MUESTREO	56
	4.2.	REG	ISTRO DE PERFIL ESTRATIGRÁFICO NORMA ASTM D 2487	57
	4.3.	ENS	AYO DE DENSIDAD DEL SUELO NORMA ASTM D1556-64	59
	4.4.	ENS	AYOS DE LABORATORIO	59
	4.4.	1.	CONTENIDO DE HUMEDAD, SEGÚN NTP 339. 127(ASTM D 2216)	59
	4.4.	2.	LIMITE LÍQUIDO Y PLÁSTICO, SEGÚN NTP 339. 129(ASTM D 4318)	60
	4.4.	3.	ANÁLISIS GRANULOMÉTRICO, SEGÚN NTP 339. 128(ASTM D 422)	61
	4.4.	4.	CORTE DIRECTO, SEGÚN NTP 339. 167 (ASTM D2166)	62
	4.5.	NIVI	EL FREATICO.	62
	4.6.	CAP	ACIDAD PORTANTE	63
	4.6.	1.	PARÁMETROS PARA EL CÁLCULO DE CAPACIDAD PORTANTE	63
	4.7.	ASE	NTAMIENTO	64
	4.8.	PRO	FUNDIDAD DE CIMENTACIÓN (DF)	66
5.	CAP	ITULO	O V: PELIGROS PARA MOVIMIENTOS EN MASA	67
	5.1.	ANA	ALISIS DE PELIGRO	67
	5.1.	1.	IDENTIFICACION DE PELIGROS	67
	5.1.	2.	REGISTROS ESTADISTICOS DE REPORTES DE EMERGENCIA EN EL DISTRITO DE HUAYL 68	LATI
	5.1.	3.	ASPECTOS GENERALES SOBRE LA OCURRENCIA DE PELIGROS EN LA ZONA	70
	5.2.	MO	VIMIENTOS EN MASA	74
	5.2	1	PARAMETROS DE EVALUACION	74

6.	CA	APITUL	O VI: ANALISIS DE SUCEPTIBILIDAD DE MOVIMIENTOS EN MASA	81
	6.1.	SUC	EPTIBILIDAD	81
	6.	1.1.	FACTORES CONDICIONANTES	81
	6.	1.2.	FACTORES DESENCADENANTES	87
7.	CA	APITUL	O VII: CÁLCULO DE LOS NIVELES DE PELIGROSIDAD EN FUNCION A LA SUCEPTIBILIDAD	91
	7.1.	PELI	GROSIDAD PARA MOVIMIENTOS EN MASA	91
	7.2.	MA	TRIZ DE LOS NIVELES DE PELIGROSIDAD POR MOVIMIENTO EN MASA	93
8.	CA	APITUL	O VIII: VULNERABILIDAD	95
	8.1.	VUL	NERABIIDAD	95
	8.2.	ANA	ALISIS DE ELEMENTOS EXPUESTOS EN ZONAS SUSCEPTIBLES	95
	8.3.	DIM	IENSIÓN SOCIAL	96
	8.	3.1.	FRAGILIDAD SOCIAL	97
	8.	<i>3.2</i> .	RESILIENCIA SOCIAL	103
	8.	3.3.	RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN SOCIAL	109
	8.4.	DIM	IENSIÓN ECONÓMICA	110
	8.	4.1.	FRAGILIDAD ECONÓMICA	110
	8.	4.2.	RESILIENCIA ECONÓMICA	116
	8.	4.3.	RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN ECONÓMICA	122
	8.5.	DIM	IENSIÓN AMBIENTAL	123
	8.	5.1.	FRAGILIDAD AMBIENTAL	124
	8.	5.2.	RESILIENCIA AMBIENTAL	130
	8.	5.3.	RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN AMBIENTAL	134
	8.6.	ANÁ	ÁLISIS DE VULNERABILIDAD	135
	8.	6.1.	ANÁLISIS DE LA VULNERABILIDAD ACTUAL PARA EL PROYECTO	136
	8.	6.2.	MATRIZ DE VULNERABILIDAD	138
9.	CA	APITUL	O IX: EVALUACION DEL RIESGO	139
	9.1.	RIES	GGO	139
	9.	1.1.	CALCULO DE RIESGO PARA MOVIMEINTO EN MASA	139
	9	1 2	MATRIZ DE RIESGO POR MOVIMIENTOS DE REMOCIÓN EN MASA	1/11

CONCLUSIONES	143
RECOMENDACIÓN	145
BIBLIOGRAFIA	146
ANEXOS	1/18

4

1. CAPITULO I: GENERALIDADES

1.1. INTRODUCCIÓN

de rocas y volcamiento de rocas.

La zona de estudio se ubica en el distrito de Huayllati, provincia de Grau, región de Apurímac.

La geología y la geodinámica van de par en el proceso del modelamiento y la configuración de la superficie terrestre, ya que mediante el proceso de desarrollo de los eventos geodinámicas surgen nuevas superficies, pendientes, unidades geomorfológicas locales, depósitos litológicos e incluso nuevas combinaciones de suelos. Todas estas son producto de los eventos originados por movimientos de remoción en masa, tales como deslizamientos, flujos de lodo, reptaciones, caída

Los movimientos de remoción en masa se originan por diversos factores, tales como pendiente del terreno, geomorfología, litología, geología local, geología estructural, erosión del suelo, cobertura vegetal, topografía, precipitaciones pluviales y la tectónica de placas, todos estos son elementos contribuyentes para la génesis de cada tipo de evento geodinámico externo, además de acuerdo al tipo de Movimiento de remoción en masa se categoriza el nivel de peligrosidad y su magnitud, siendo los flujos de lodos como eventos más comunes en la región de Apurímac.

El riesgo puede reducirse si se entiende como el resultado de relacionar la amenaza o probabilidad de ocurrencia de un evento y la vulnerabilidad de los elementos expuestos, factor interno de selectividad de la severidad de los efectos sobre dichos elementos. Medidas estructurales, como el desarrollo de obras de protección y la intervención de la vulnerabilidad de los elementos bajo riesgo y medidas no estructurales, como la regulación de usos del suelo, la incorporación de aspectos preventivos en los presupuestos de inversión pública y la realización de preparativos para la atención de emergencias pueden reducir las consecuencias de un evento sobre una región o una población.

Este estudio se enfoca en describir metodológicamente la manera de evaluar la amenaza, la vulnerabilidad y el riesgo. Reflexiona acerca del nivel de resolución o detalle que se debe tener en cuenta en la elaboración de instrumentos tales como mapas, que serán utilizados para la toma de decisiones dentro del proceso de desarrollo del proyecto.

1.2. UBICACIÓN

La zona de proyecto está ubicada en el Distrito de Huayllati, Provincia de Grau y Departamento de Apurímac, geográficamente se encuentra en el flanco occidental de la cordillera oriental sur central de los andes, regionalmente en laderas medias altas, a continuación, se muestra un cuadro de ubicación en coordenadas UTM y Geográficas:

ZONA DE PROYECTO		DENADAS JTM v		ENADAS AFICAS Longitud	COTA PROM. APROX.	SISTEMA DE POSICIÓN
Puesto de Salud Huayllati	772350	8458875	13°55'38.16"S	72°28'46.34"O	3535 m.s.n.m.	Coordinate System WGS 1984 UTM Zone 18s Proyection Transverse Mercator Datum WGS 1984

Coordenadas de Ubicación (elaboración propia)

1.3. ACCESIBILIDAD

Para llegar a la zona de estudios se tienen dos vías de acceso, los cuales son:

- Cusco-Cotabambas vía asfaltada, Cotabambas-Coyllurqui-Huayllati trocha carrozable. (8 horas de viaje).
- Cusco-Abancay-Chuquibambilla-Progreso vía asfaltada, Progreso-Huayllati trocha carrozable. (10 horas de viaje).

1.4. CLIMA

El clima en el distrito de Huayllati es suave, generalmente cálido y templado. En comparación con el invierno, los veranos tienen mucha más lluvia. Esta ubicación está clasificada como Cwb por Köppen y Geiger. La temperatura media anual es 10.8 ° C en Huayllati. La precipitación media aproximada es de 817 mm (Fuente Climate date ORG.).

A una temperatura media de 12.1 $^{\circ}$ C, octubre es el mes más caluroso del año. A 8.6 $^{\circ}$ C en promedio, julio es el mes más frío del año.

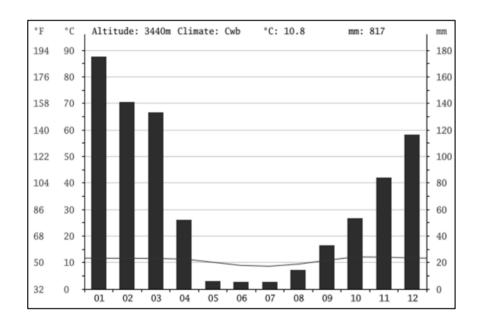


IMAGEN 1.- Climograma del Distrito de Huayllati (Climate Data org.)

1.5. DESCRIPCIÓN DE PROBLEMA

La zona de estudios se encuentra en un ladera media alta de categoría regional, y localmente en cono aluvial, emplazada sobre suelos de clasificación caótica, la cuales consisten en gravas y arenas suspendidas en un matriz limo arcillosa, donde el peligro y riesgo registrado es por movimiento en masa, tales como deslizamientos, derrumbes y caídas de rocas, desencadenan un

efecto negativo para el libre proceso de desarrollo del proyecto antes mencionado y además afectando a las zona circundantes al proyecto.

1.6. FORMULACIÓN DEL PROBLEMA

Frente a la problemática planteada anteriormente surge la necesidad de conocer:

¿Cuál es el riesgo geológico al que está expuesto la zona de estudios y circundantes a ello, por movimientos en masa, ubicada en el distrito de Huayllati, Provincia de Grau, Departamento de Apurímac?

1.7. OBJETIVOS

1.7.1. OBJETIVO GENERAL

Realizar el estudio de riesgo geológico por movimiento en masa para la construcción del puesto de salud de Huayllati.

1.7.2. OBJETIVOS ESPECÍFICOS

- Realizar un mapeo geológico, geomorfológico y estructural (regional y local) e identificar los principales problemas geodinámicos.
- Realizar la investigación geotécnica del subsuelo, mediante calicatas, muestras, análisis in-situ y laboratorio.
- Evaluar y zonificar los sectores expuestos al riesgo originado por movimientos en masa en la zona de proyecto, donde se construirá la nueva posta de salud de HUAYLLATI, tomando en cuenta el peligro y la vulnerabilidad.

 Elaborar un mapa de zonificación de riesgo de desastres originado por movimientos en masa, de la zona de proyecto y circundante, analizando la vulnerabilidad física de las zonas expuestas al peligro.

1.8. JUSTIFICACIÓN

Con este estudio pretendemos conocer los peligros existentes, las zonas vulnerables, dándole un uso para la mejor planificación del proyecto y su libre desarrollo, fundamentalmente proteger la inversión, a las personas, las viviendas y la infraestructura actualmente expuesta y en proyección. Asimismo adecuar la metodología propuesta en el "Manual para la evaluación de riesgos originados por fenómenos naturales" presentada por el Centro Nacional de Estimación, Prevención y Reducción de Riesgos de Desastres (CENEPRED), para un sector relativamente pequeño, como es la zona de proyecto, de esta manera se podrá tener un punto de partida para la prevención y mitigación de desastres, en concordancia a la Ley N.º 29664, que crea el Sistema Nacional de Gestión del Riego de Desastres (SINAGERD), el cual tiene como fin minimizar los riesgos existentes.

1.9. HIPOTESIS

Mediante el estudio de las características de los movimientos en masa, se podrá determinar
el riesgo geológico medio, para garantizar la seguridad física de la Construcción del puesto
de salud de Huayllati durante la vida útil de dicha estructura.

1.10. ANTECEDENTES

Para la elaboración de este estudio se ha revisado una serie de definiciones anteriores, ya sea regionalmente o localmente, las cuales son:

- La provincia de Grau, es una de las zonas críticas por flujos debido a la vulnerabilidad de las poblaciones ubicadas aguas debajo. Fuente -INFORME TÉCNICO N° A6624.- SEGUNDO REPORTE DE ZONAS CRÍTICAS POR PELIGROS GEOLÓGICOS Y GEOHIDROLÓGICOS EN LA REGIÓN DE APURÍMAC.
- Los peligros geológicos que mayor incidencia tienen en la región Apurímac en su mayoría están relacionados a la actividad fluvio-aluvial, glaciar y gravitacional Fuente. ANÁLISIS DE PELIGROS GEOLÓGICOS EN LA REGIÓN APURÍMAC: ORIGEN, CARACTERÍSTICAS Y TRATAMIENTO

1.11. MARCO CONCEPTUAL

En este ítem, y con el fin de facilitar el seguimiento del presente documento, se ha considerado oportuno tocar conceptos referidos al riesgo de desastres y los movimientos en masa, también a los sistemas de información geográfica (SIG) que es la herramienta utilizada para el proceso de los mapas de riesgo.

1.11.1. MOVIMIENTOS EN MASA

El término movimientos en masa incluye todos aquellos movimientos ladera abajo de una masa de roca, de detritos o de tierras por efectos de la gravedad (Cruden D., 1991). Algunos autores consideran que el agua puede ser un factor acompañante de la gravedad para su ocurrencia (Sharpe, 1938); otros (Croizer M., 1986) consideran que los movimientos en masa se desarrollan sin la ayuda del agua como agente de transporte y aún otros autores señalan que existe un tránsito gradual

entre los procesos fluviales y los movimientos en masa (Bodoque, 2005). Algunos movimientos en masa, como la reptación de suelos, son lentos, a veces imperceptibles y difusos, en tanto que otros, como algunos deslizamientos pueden desarrollar velocidades altas y pueden definirse con límites claros, determinados por superficies de rotura (Croizer & Glade, 1999).

1.11.2. CLASIFICACIÓN DE MOVIMIENTOS EN MASA

En la literatura científica se encuentran muchas clasificaciones de movimientos en masa; la mayoría de ellas se basan en el tipo de materiales, los mecanismos de movimiento, el grado de deformación del material y el grado de saturación.

La clasificación de movimientos en masa de Varnes (1958, 1978) y Hutchinson (1968, 1988) son hoy en día, los sistemas más ampliamente aceptados en el mundo de habla inglesa e hispana. Varnes (1958 y 1978) emplea como criterio principal la clasificación, el tipo de movimiento y en segundo lugar el tipo de material. Así divide los movimientos en masa en cinto tipos: caídas, vuelcos, deslizamientos, propagaciones y flujos. Además, divide los materiales en dos clases: rocas y suelos, éstos últimos subdivididos en detritos y tierra. De esta manera, presenta definiciones para varias posibles combinaciones de tipo de movimiento y material.

Tipos de movimientos en masa

TIPO	SUBTIPO
Caídas	Caídas de roca (Detritos o suelo)
Volcamientos	Volcamiento de roca (Bloque) Volcamiento flexural de roca o del macizo
voicumientos	rocoso
Deslizamiento	Deslizamiento traslacional, deslizamiento en cuña
de roca o suelo	Deslizamiento rotacional
Duonagasión	Propagación lateral lenta
Propagación	Propagación lateral por licuación (rápida)
	Flujo de detrito Crecida de detritos
	Flujo de lodo
	Flujo de tierra
	Flujo de turba
Flujos	Avalancha de detritos
	Avalancha de rocas
	Deslizamiento por flujo o deslizamiento por licuación (de arena, limo, detritos,
	roca fracturada)
D / '/	Reptación de suelos
Reptación	Solifluxión, gelifluxion (en permafrost)

Cuadro 1.- Tipos de Movimientos en Masa (CENEPRED)

Escala de velocidades según Cruden y Varnes (1996)

Escala de velocidad	Descripción	Velocidad (mm/seg.)	Velocidad típica
7	Extremadamente rápido	$5x10^3$	5m/s
6	Muy rápido	$5x10^{1}$	3m/min
5	Rápido	$5x10^{-1}$	1.8m/h
4	Moderada	$5x10^{-3}$	13m/mes
3	Lenta	$5x10^{-5}$	1.6m/año
2	Muy lenta	$5x10^{-7}$	16mm/año
1	Extremadamente lenta	$<5x10^{-7}$	<16mm/año

Cuadro 2.- Velocidades de Movimientos en Masa (CENEPRED)

Caídas. - La caída es un tipo de movimiento en masa en el cual uno o varios bloques de suelo o

roca se desprenden de una ladera, sin que a lo largo de esta superficie ocurra desplazamiento cortante apreciable. Una vez desprendido, el material cae desplazándose principalmente por el aire pudiendo efectuar golpes, rebotes y rodamiento (Varnes D. J., 1978). Dependiendo del material desprendido se habla de una caída de roca, o una caída de suelo. El movimiento es muy rápido a extremadamente rápido (Cruden & Varnes, 1996), es decir con velocidades mayores a 5x10 mm/s. el

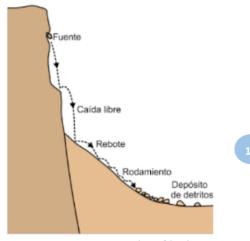
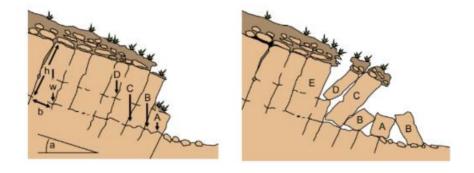



Imagen 1.- Esquema de caída de rocas (CENEPRED)

estudio de casos históricos ha mostrado que las velocidades alcanzadas por las caídas de rocas pueden exceder los 100 m/s.

Volcamiento. - Se denomina así a un tipo de movimiento en masa en el cual hay una rotación generalmente hacia delante de uno o varios bloques de roca o suelo, alrededor de un punto o pivote en su parte inferior. Este movimiento ocurre por acción de la gravedad, por empujes de las unidades adyacentes o por la presión de fluidos en grietas (Varnes D. J., 1978). El volcamiento puede ser en bloque, flexional (o flexural).

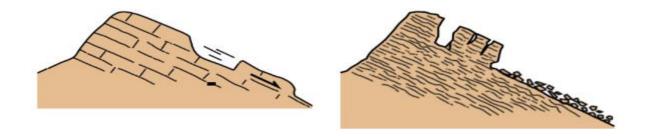


Imagen 2.- Esquema de vuelco en bloque (Freitas & Watters, 945-514)

Deslizamiento. - Es un movimiento ladero abajo de una masa de suelo o roca cuyo desplazamiento ocurre predominantemente a lo largo de una superficie de falla, o de una delgada zona en donde ocurre una gran deformación cortante.

En el sistema de Varnes (1978), se clasifican los deslizamientos, según la forma de la superficie de falla por la cual se desplaza el material, en traslacionales y rotacionales. Los deslizamientos traslacionales a su vez pueden ser planares o en cuña. Sin embargo, las superficies de rotura de movimientos en masa son generalmente más complejas que las de los dos tipos anteriores, pues pueden consistir de varios segmentos planares y curvos, caso en el cual se hablará de deslizamientos compuestos (Hutchinson, 1988).

Deslizamiento traslacional. - Es un tipo de deslizamiento en el cual la masa se mueve a lo largo de una superficie de falla plana u ondulada. En general, estos movimientos suelen ser más superficiales que los rotacionales y el desplazamiento ocurre con frecuencia a lo largo de discontinuidades como fallas, diaclasas, planos de estratificación o planos de contacto entre la roca y el suelo residual o transportado que yace sobre ella (Cruden & Varnes, 1996). En un macizo rocoso, este mecanismo de falla ocurre cuando una discontinuidad geológica tiene una dirección aproximadamente paralela a la de la cara del talud y buza hacia ésta con un ángulo mayor que el ángulo de fricción (Hoek & Bray, 1981).

Imagen 3.- Esquema de Deslizamiento Traslacional (CENEPRED)

En los casos en que la traslación se realiza a través de un sólo plano se denomina deslizamiento planar (Hoek & Bray, 1981). El deslizamiento en cuña, es un tipo de movimiento en el cual el cuerpo del deslizamiento está delimitado por dos planos de discontinuidad que se intersecan entre si e intersecan la cara de la ladera o talud, por lo que el cuerpo se desplaza bien siguiendo la dirección de la línea de intersección de ambos planos, o el buzamiento de uno de ellos.

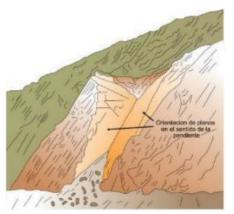
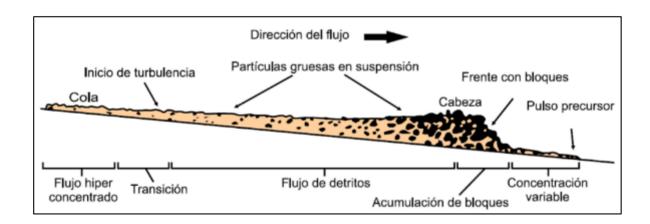


Imagen 4.- Esquema de un Deslizamiento en Cuña(CENEPRED)

Deslizamiento rotacional. - Es un tipo de deslizamiento en el cual la masa se mueve a lo largo de una superficie de falla curva y cóncava. Los movimientos en masa rotacionales muestran una morfología distintiva caracterizada por un escarpe principal pronunciado y un contrapendiente de

Imagen 5.- Esquema de un Deslizamiento Rotacional
(CENEPRED)

la superficie de la cabeza del deslizamiento hacia el escarpe principal. La deformación interna de la masa desplazada es usualmente muy poca. Debido a que el mecanismo rotacional es


auto-estabilizante, y éste ocurre en rocas

poco competentes, la tasa de movimiento es con frecuencia baja, excepto en presencia de materiales altamente frágiles como las arcillas sensitivas (GEMMA, 2007).

Algunos deslizamientos tienen superficies de falla que no son ni rotacionales ni planares. Este tipo de deslizamiento es denominado por Hutchinson (1988) deslizamiento compuesto. La superficie

de ruptura se desarrolla a lo largo de planos de plegamiento, o por la intersección de varias discontinuidades planares o por la combinación de superficies de ruptura y de planos de debilidad de la roca. El movimiento a lo largo de superficies de deslizamiento compuestas no es cinemáticamente posible sin que ocurra cizalla interna significativa en el cuerpo del deslizamiento (Hutchinson, 1988).

Flujo. - Es un tipo de movimiento en masa que durante su desplazamiento exhibe un comportamiento semejante al de un fluido; puede ser rápido o lento, saturado o seco. En muchos casos se originan a partir de otro tipo de movimiento, ya sea un deslizamiento o una caída (Varnes D. J., 1978).

Imagen 6.- Esquema de un Flujo de Detritos (CENEPRED)

1.11.3. RIESGOS POR MOVIMIENTOS EN MASA

El riesgo ante los movimientos en masa involucra la estimación de esta mediante la utilización de un parámetro de intensidad, la identificación de los elementos expuestos y la calificación de su vulnerabilidad frente a estos fenómenos.

Para efectos de la investigación, la acción de los movimientos en masa se evaluará en términos de parámetros de intensidad que refleje de forma adecuada la severidad de aquel, que pueda medirse, estimarse, compararse y predecirse con algún grado de confiabilidad.

Así mismo es necesario identificar los elementos expuestos que pueden sufrir un determinado efecto o impacto cuando los movimientos en masa se presentan. Entonces se requiere, conocer la ubicación y las características principales de los elementos expuestos, que para esta investigación sólo se tomará el aspecto físico de las estructuras y equipamiento existente, entendiéndose como vulnerabilidad física. La vulnerabilidad física corresponde a la susceptibilidad o predisposición que dichos elementos tienen de sufrir daños si se presentan eventos con una intensidad determinada.

En términos matemáticos el riesgo es definido por la siguiente ecuación:

R: PxV siendo, R: Riesgo, P: Peligro y V: Vulnerabilidad

1.11.4. PELIGRO

El Peligro, de acuerdo al SINAGERD se considera como la probabilidad de que un fenómeno físico, potencialmente dañino, de origen natural o inducido por la acción humana, se presente en un lugar específico, con una cierta intensidad y en un período de tiempo y frecuencia definidos.

Para el presente estudio estos fenómenos físicos potencialmente dañinos, y de origen natural son los movimientos en masa.

1.11.5. VULNERABILIDAD

La vulnerabilidad, de acuerdo a la terminología del SINAGERD, es la susceptibilidad de la población, la estructura física o las actividades socioeconómicas, de sufrir daños por acción de un peligro o amenaza.

Para el presente estudio, se han considerado la estructura física de las viviendas aledañas a la zona de peligro.

1.11.6. METODO MULTICRITERIO

PROCESO DE ANALISIS JERARQUICO

Este método fue desarrollado por el matemático Thomas L. Saaty (1980) diseñado para resolver problemas complejos de criterios múltiples, mediante la construcción de un modelo jerárquico, que le permite a los actores (tomadores de decisiones) estructurar el problema de forma visual.

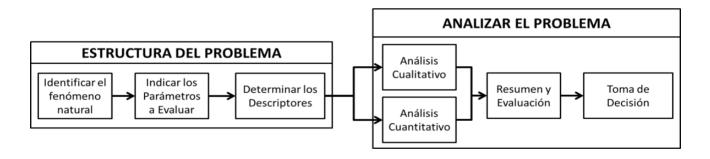


Imagen 7. Flujo metodológico de toma de decisiones para evaluación de peligros.

(CENEPRED)

Para la estimación del valor de la importancia relativa de cada uno de los indicadores se recurre a una metodología de comparación de pares, en este caso se empleó el PAJ (Saaty, 1990) por sus ventajas, flexibilidad y por la facilidad de involucrar a todos los actores en el proceso de decisión (Garfi et al., 2011), la escala es la que se muestra a continuación:

Escala Numérica	Escala Verbal	Explicación
9	Absolutamente o muchísimo más importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo más importante que el segundo.
7	Mucho más importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho más importante o preferido que el segundo.
5	Más importante o preferido que	Al comparar un elemento con el otro, el primero se considera más importante o preferido que el segundo.
3	Ligeramente más importante o preferido que	Al comparar un elemento con el otro, el primero es ligeramente más importante o preferido que el segundo.
1	Igual a	Al comparar un elemento con otro, hay indiferencia entre ellos.
1/3	Ligeramente menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera ligeramente menos importante o preferido que el segundo.
1/5	Menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera menos importante o preferido que el segundo.
1/7	Mucho menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho menos importante o preferido que el segundo.
1/9	Absolutamente o muchísimo menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo menos importante o preferido que el segundo.
Valores intermedios entre dos juicios adyacente, que cuando es necesario un término medio entre dos de l intensidades anteriores.		ntre dos juicios adyacente, que se emplean n término medio entre dos de las

Cuadro 3. Matriz de comparación de pares (fuente Thomas L. Saaty)

1.11.7. SISTEMAS DE INFORMACIÓN GEOGRÁFICA

El uso y la importancia de los Sistemas de Información Geográfica (SIG), es cada vez más común, ya que aproximadamente el 70% de la información que manejamos en cualquier disciplina está georeferenciada. Es decir que se trata de información a la cual se puede asignar una posición

geográfica, y es por tanto información que viene acompañada de otra información adicional relativa a su localización (Olava, 2012).

Según F. J. Moldes (Moldes, 1995) un SIG es un "conjunto de programas y aplicaciones informáticas que permiten la gestión de datos organizados en base de datos, referenciados espacialmente y que pueden ser visualizados mediante mapas".

Cabe aclarar que no se trata sólo de un sistema de software. En efecto, como señala la NCGIA, un SIG es "un sistema de hardware, software y procedimientos elaborados para facilitar la obtención, gestión, manipulación, análisis, modelado, representación y salida de datos espacialmente referenciados para resolver problemas complejos de planificación y gestión" (NCGIA, 1990).

Además de la capacidad propia de los SIG, técnicas ajenas a éstos han sido integrados a los mismos, como son las técnicas de evaluación multicriterio, importante para la elaboración de mapas de susceptibilidad (Barredo Cano & Gómez Delgado, 2006).

Estos SIG usan bases de datos espaciales para organizarlos. Siendo el formato vectorial el que representar la realidad, utilizando puntos, líneas y polígonos. Y el formato ráster divide el espacio geográfico en celdas de igual tamaño que se asocian a un dato temático.

1.11.8. **RIESGO**

Una vez identificados y analizados los peligros a los que está expuesta el ámbito geográfico de estudio mediante la evaluación de la intensidad, la magnitud, la frecuencia o periodo de recurrencia, y el nivel de susceptibilidad ante los fenómenos de origen natural, y realizado el respectivo análisis de los componentes que inciden en la vulnerabilidad explicada por la exposición, fragilidad y resiliencia, la identificación de los elementos potencialmente vulnerables,

el tipo y nivel de daños que se puedan presentar, se procede a la conjunción de éstos para calcular el nivel de riesgo del área en estudio.

Siendo el riesgo el resultado de relacionar el peligro con la vulnerabilidad de los elementos expuestos, con el fin de determinar los posibles efectos y consecuencias sociales, económicas y ambientales asociadas a uno o varios fenómenos peligrosos. Cambios en uno o más de estos parámetros modifican el riesgo en sí mismo, es decir, el total de pérdidas esperadas y las consecuencias en un área determinada. (Carreño et. al. 2005).

1.12. MARCO LEGAL

En el Perú, se ha instaurado a partir del 19 de febrero del 2011, la ley del Sistema Nacional de Gestión del Riesgo de Desastres, la Ley N° 29664, cuya finalidad "es identificar y reducir los riesgos asociados a peligros o minimizar sus efectos, así como evitar la generación de nuevos riesgos, y preparación y atención ante situaciones de desastre mediante el establecimiento de principios, lineamientos de política, componentes, procesos e instrumentos de la Gestión del Riesgo de Desastres" (SINAGERD, 2011).

1.13. METODOLOGIA

El presente trabajo se ha desarrollado tomado en cuenta los siguientes puntos:

- Información bibliográfica existente.
- Salidas de campo y cartografiado geológico del área de estudio.
- Entrevistas a los pobladores y profesionales de la zona de emplazamiento del proyecto.
- Análisis de muestra en campo.
- Cálculo e interpretación de acuerdo al manual del CENEPRED.

ETAPAS DE EVALUACION

RECOPILACION DE INFORMACION EXISTENTE

Consistió en la recopilación de la mayor cantidad posible de información contenida en estudios, antecedentes y/o similares, relacionada básicamente a geología, geomorfología, evaluación geodinámica externa e interna y otros para diversos puntos de investigación específicos dentro del área de interés y sus alrededores.

Para el desarrollo de cada uno de los estudios básicos: Geología, geomorfología y geodinámica, se ha recopilado información de interés existente, entre los que destacan los documentos que se indica a continuación:

- Estudio geodinámico y suelos del Valle de Abancay. (Ing. Dimas Apaza. 1997).
- Informe Geológico en Tamburco provincia de Abancay departamento de Apurímac. (Ing. Juan C. Gomez A.).
- Geología y Geodinámica del Río Mariño. (Ing. Serrano C. 1986).
- Boletín del cuadrángulo de Abancay, Andahuaylas y Cotabambas INGEMMET, serie 27
 A.

INVESTIGACION EN CAMPO

Son aquellos trabajos que se desarrollaron en el área de interés con la finalidad de obtener información precisa "in situ" referida a aspectos geológicos, geomorfológicos, que permitieron desarrollar los estudios básicos correspondientes. En el estudio geológico se han desarrollado las siguientes actividades:

- Reconocimiento de la litología, estructuras, geomorfología y fenómenos de origen climático y geológico-climático de mayor ocurrencia en la zona urbana, alrededores de la zona de proyecto-Distrito de Huayllati.
- Reconocimiento geológico-geodinámico de las quebradas cercanas a la zona de proyecto considerando el área de influencia de la zona de proyecto.
- Reconocimiento y cartografiado geológico local de la zona de interés.

• TRABAJO DE GABINETE

Son aquellos trabajos que tomando como información base la recopilada en las fases de campo y laboratorio permitieron determinar los fenómenos geológicos y geológico climáticos que podrían producirse y afectar al proyecto en estudio, así como determinar su amplitud y área de influencia para finalmente servir a la preparación de los mapas temáticos y mapas de peligros y riesgos que conforman el presente estudio.

2. CAPITULO II: GEOLOGIA

2.1. GEOMORFOLOGIA

La zona de estudios pose un espacio geográfico caracterizado con una topografía regularmente variada, sin embargo, entorno a lo regional es muy variada, con laderas de fuertes pendientes, quebradas estrechas y profundas, ondulaciones alto andinas frías y desoladas y está presidida por una cadena de imponentes picos y contrafuertes andinos, la zona donde se ubica el proyecto está emplazada en una topografía de zona ligeramente llana.

2.1.1. GEOMORFOLOGIA REGIONAL

El área materia del presente estudio se encuentra situada geográficamente en la vertiente Oriental de la Cordillera Oriental de los Andes Peruanos, al este de la Divisoria Continental, conformada por una cadena de montañas denominada Cordillera de Huanzo, por lo que todo su sistema de drenaje desagua a los grandes ríos que van hacia el Océano Atlántico.

Dentro de este panorama el rasgo geomorfológico más importante es una gran llanura andina ubicada entre los 3,800 y 4,500 m.s.n.m., denominado por (MCLAUGHLIN, 1924) Superficie Puna, que, a consecuencia de los agentes geológicos modeladores, se presenta como una topografía accidentada, con valles profundos y encañonados como el de Santo Tomás, Colca, Vilcabamba, Pachachaca, rio Vilcabamba, etc. por donde discurren los ríos mayores, que van socavando más profundamente los valles. Sobre los 4,600 a 4,800 m.s.n.m., se aprecia una serie de picos tales como el Malmanya, Suparausa, Piste, etc., que fácilmente superan los 5,000 m.s.n.m.

Este paisaje peculiar y característico es el resultado de los diferentes agentes erosivos asociados con el levantamiento general de los andes, iniciado en el Mioceno, rellenado y cubierto

con el levantamiento general de los andes, iniciado en el Miloceno, relienado y cubierto

24

posteriormente por productos volcánicos del Terciario Superior, Cuaternario, en donde se han diferenciado tres unidades geomorfológicas: Relieve Montañoso, Altiplanicie y Valles, que concuerda con lo establecido por MCLAUGHLIN (1924). Continuación se describen las unidades geomorfológicas regionales:

2.1.1.1. LADERAS DE MONTAÑAS ALTAS

Regionalmente la zona estudios está ubicado en laderas de montañas altas, (INGEMMET, Geomorfologia Regional de Cuadrangulo 28r3), esta unidad es las más extensa en la zona de estudios y áreas de influencia, por lo general se extiende por todo el valle del rio Vilcabamba.

Esta unidad se ubica por los flancos derecho e izquierdo del rio antes mencionado, sin embargo, la peculiaridad de esta unidad es que se sitúa en las partes intermedias de las altas montañas, las cuales pueden alcanzar hasta los 5000 msnm.

La génesis de esta unidad es producto de diversos eventos geodinámicos externos e internos, ya que estos factores son responsables de moldear el relieve de la superficie, teniendo como resultados las unidades y sub unidades locales, cuyo grado de inclinación son variables y esto de acuerdo a grado de severidad del impacto de dichos eventos.

2.1.1.2. *ALTAS MESETAS*

Bajo el nombre de Altas Mesetas (MEGARD, 1968), se describe una zona de relieve suave truncada por una superficie de erosión que queda a una altura que varía de 4,200 a 4,700 m.s.n.m. Esta superficie de erosión es la "superficie Puna" descrita por (Browman 1916 & Mac Laughlin 1924, 1916-1924).

La superficie Puna ha sido disectada por la erosión, esencialmente glaciar; las huellas de las glaciaciones se observan por encima de los 3,500 m.s.n.m. (valles en U, depósitos morrénicos, etc.). Se puede distinguir por lo menos dos etapas de glaciaciones que posiblemente se correlacionen con las glaciaciones g1 y g2 del Centro del Perú (Dollfus, 1965). La sucesión de las fases glaciares se nota bien en las partes centrales de las hojas de Andahuaylas y Abancay, donde es frecuente observar valles glaciares y morrenas (g2), cortando estructuras glaciares más antiguas (g1). Esta disposición se nota en la laguna Antacocha (hoja Andahuaylas, 13° 46' y 73° 13').

2.1.1.3. CORDILLERA ORIENTAL

Al Norte de la unidad Altas Mesetas y separada de ella por una zona de falla orientada Este-Oeste, queda la unidad "Cordillera Oriental" que corresponde a las estribaciones occidentales de la Cordillera Oriental del Sur del Perú.

La unidad Cordillera Oriental se diferencia de la precedente por su morfología, pues los relieves son muy agudos y ya no se notan colinas de formas suaves como en la unidad Altas Mesetas.

La morfología joven de la unidad Cordillera Oriental se debe al juego reciente de la zona de fallas E-W (Falla de Abancay). El levantamiento plio-Cuaternario de los Andes se realizó por intermedio de fallas de juego normal que cortaron la superficie Puna. En la región estudiada ciertas porciones de dicha superficie se levantaron más que otras. Las partes levantadas (Cordillera Oriental) sufrieron una reactivación de la erosión y se encuentran rejuvenecidas. La historia geológica muestra que, desde fines del Paleozoico, la Cordillera Oriental fue una zona móvil positiva y sufrió varias etapas de erosión

seguidas de levantamiento, Fuente (INGEMMET, BOLETIN del Cuadrangulo de Cotabambas, Andahuaylas y Abancay SERIE 27A).

2.1.1.4. *LOS VALLES*

Las unidades "Altas Mesetas" y "Cordillera Oriental" se encuentran disectadas por valles profundos y a menudo encañonados. Dentro de los valles de la región estudiada, los principales son los del Río Apurímac y de sus tributarios (Río Santo Tomás, Río Antilla, Río Pachachaca, Río Pincos, etc.). Todos presentan un encañonamiento importante (más de 1,000 m.) en ciertas partes de su recorrido. Los flancos muestran una fuerte pendiente y frecuentemente están cubiertos por mantos gruesos de aluviones.

La gran velocidad del agua indica que todavía los ríos no alcanzaron su perfil de equilibrio. En cuanto al río Apurímac, vemos que sus tributarios no han tenido el tiempo de regularizar su curso y tienen un nivel de base muy abrupto. Esto se traduce en el terreno por una zona de rápidos en las cercanías de la confluencia. Ciertos valles muestran una exageración de este fenómeno: se trata de los valles colgados, cuyos mejores ejemplos son el valle de C5urahuasi (72° 42' - 13° 33') y el valle de Sahuinto (8 km al Sur de la ciudad de Abancay) fuente. - (INGEMMET, Geomorfologia Regional de Cuadrangulo 28r3).

2.1.1.5. *ALTIPLANICIES FLUVIOGLACIARES*

Esta unidad geomorfológica regional se sitúa en la partes altas e intermedias de las altas montañas, alcanzando hasta 4200 msnm, regionalmente en la zona de estudios se evidencia la presencia de esta unidad, ya que estamos situados en la zona alto andina de la cordillera oriental.

Esta unidad geomorfológica representa una gran superficie de erosión, y es la más

Esta superficie está labrada en rocas sedimentarias del mesozoico, y volcánicos del Grupo Tacaza; estando en la actualidad cubierta por una potente secuencia de lavas y piroclásticos de la Formación Sencea y rocas del Grupo Barroso.

2.1.1.6. **RELIEVE MONTAÑOSO**

Esta unidad geomorfológica constituye las partes más altas de es tos cuadrángulos y está formado por cadenas de cerros y nevados alineados según el curso general de los Andes, que emerge por encima de una superficie levemente horizontal ubicada entre los 4,000 y 4,600 m.s.n.m. denominada Superficie Puna por (MCLAUGHLIN, 1924).

Estas cumbres alcanzan mayores alturas de 5,000 m. siendo el resultado de la intensa actividad emergente y erosiva durante el levantamiento y desarrollo de las etapas Valle y Cañón, así como de la glaciación durante el pleistoceno, originando una morfología de picos y cumbres bastante agudas, los más importantes de estos cuadrángulos son los siguientes Suparaura (5,115 m.s.n.m.) constituido por stocks de granodioritas y tonalita, el cerro Ramarumayoc (4,890 m.s.n.m.), Cerro Piste (5,185 m.s.n.m.), Cucche (5,075 m.s.n.m.) constituido por lutitas y areniscas del grupo Yura y otros, corresponden a estructuras volcánicas del Grupo Barroso como el nevado Malmanya (5,200 m.s.n.m.).

2.1.2. GEOMORFOLOGIA LOCAL

De acuerdo a la visita de campo se registraron 4 unidades geomorfológicas locales, las cuales son considerados para la evaluación en el presente estudio, a continuación, se describen las siguientes unidades:

2.1.2.1. LADERAS MODERADAS

Esta unidad geomorfológica está situado al sur y al noreste de la zona de proyecto, teniendo en cuenta las principales características morfogenéticas, como pendientes mayores a 30°, vegetación pobre, zonas de erosión laminar intenso.

FOTO 1.- Se observa la zona de laderas moderadas al sur de la zona de estudios (Fuente propia)

2.1.2.2. TERRAZAS COLUVIALES

Esta unidad geomorfológica está situada al suroeste y noroeste de la zona de proyecto, caracterizado por relieves de bajo a muy bajo, donde la pendiente oscila entre 0-12° como máximo, siendo el deposito principal para suelos coluviales de pie de monte.

FOTO 2.- Se muestra la zona de terraza coluvial, ubicado al norte de la zona de proyecto (Fuente propia)

2.1.2.3. *CONO ALUVIAL*

Sobre esta unidad geomorfológica está situado la zona de proyecto, presentando características peculiares como pendientes bajas a muy bajas 0°-12°, vegetación pobre, tipo de suelo caótica, propia de un medio de depositacion aluvial, la cuales son producto de los flujos o deslizamientos ubicados en las partes altas de la zona de estudios.

FOTO 3.- Se muestra zona Aluvial, con tipo de suelo caótico (Fuente propia)

2.1.2.4. LADERAS ESCARPADAS

La principal unidad de enfoque en la zona de estudios, donde hay mayor presencia de eventos geodinámicos, como movimiento de remoción en masa (Deslizamientos, Flujos, derrumbe y caída de rocas). Esta unidad está situado al sur de la zona de estudios, teniendo como características morfogenéticas de origen exógena, es así que se aprecian pendientes variables de Alto a Muy Alto mayores a 30°, vegetación moderada.

Foto 4.- Se muestra ladera escarpada ubicada al sur de la zona de estudios, mostrando paquetes de estratos de rocas existentes en la zona de estudios (Fuente propia)

2.2. UNIDADES GEOLOGICAS

2.2.1. UNIDADES GEOLOGICA REGIONALES

El entorno geológico regional se describe el boletín 27ª serie de la carta nacional geológica, (INGEMMET, BOLETIN del Cuadrangulo de Cotabambas, Andahuaylas y Abancay SERIE 27A). Para la zona de estudios se ha considerado algunas unidades geológicas más cercanas al entorno de estudio, a continuación, se describen las siguientes:

2.2.1.1. *GRUPO YURA*

Este grupo, constituido por más de 2,200 m. de grosor, las rocas sedimentarias marinas; ha sido dividido en tres formaciones. La más antigua presenta una secuencia de aproximadamente 700 m. de lutitas negras bituminosas, con bancos potentes de calizas negras a la que se le denomina Formación Piste. Descansando sobre la anterior se encuentran areniscas, lutitas y calizas negras lenticulares con un grosor de 800 m. a las que se les da el nombre de Formación Chuquibambilla. Por último, la parte superior del grupo está constituida por cuarcitas y areniscas cuarzosas con más de 700 m. de grosor y a la que se le asigna el nombre de Formación Soraya.

Las unidades litológicas de este grupo guardan cierta similitud con las de la región de Arequipa por no haber tenido los mismos ambientes de sedimentación cronológicamente, con contemporáneos; por esta razón en el presente trabajo, se ha denominado a las formaciones que se correlacionan paleontológicamente con otros nombres, de acuerdo al lugar típico donde se presentan los mejores afloramientos.

2.2.1.2. FORMACIÓN PISTE

Se asigna el nombre de Piste a esta formación, por encontrarse los mejores afloramientos en el Nevado Piste, situado al noreste del pueblo de Caraibamba, en el cuadrángulo de Chalhuanca.

Sus afloramientos se presentan en los profundos cañones labrados por los principales ríos que drenan esta región; así se observan en ciertas partes de los ríos Chalhuanca, Antabamba, Pachaconas y otros.

A consecuencia del tectonismo también aflora esta formación en las partes altas del cuadrángulo de Chalhuanca, tal como se observa en los cerros Piste, Cucche, Patari y Yanaquilca, cuyas cotas pasan de los 4,200 m.s.n.m.

Litológicamente, la Formación Piste consiste en un 70% de lutitas negras, lutitas gris oscuras y material carbonoso. Areniscas lutáceas y areniscas de grano fino, de color negro a gris oscuro y de estratificación delgada, se presentan irregularmente intercaladas con las anteriores. Completando la secuencia, en la parte inferior de esta unidad se observan bancos compactos de caliza negra que constituyen los afloramientos más antiguos de la región. Localmente, la parte superior de la formación también presenta bancos de caliza negra bituminosa, compactos y recristalizados, como puede observarse en los alrededores de la laguna de Huanzo, al norte del nevado Piste, donde las calizas negras se intercalan con lutitas y están intruídas por dioritas y granodioritas, así como por diques de naturaleza andesítica y en el extremo sureste del cuadrángulo de Chalhuanca, en los cerros de Yanama y Yanapaccha y en la laguna Ticllia. En el valle de Chalhuanca, cerca de Huampuchaca, las calizas de la parte superior de la Formación Piste se extienden hacia el oeste hasta la

laguna de Yauricocha y alrededores. Otro afloramiento notable de estas calizas se aprecia en la margen derecha del río Chalhuanca, en la quebrada Acobamba y en el cerro Charca.

El grosor de esta formación no ha podido ser determinado por medición directa, al no haberse encontrado una secuencia completa por estar bastante perturbada estructuralmente; en otros casos se encuentra afectada por intrusivos. Su espesor se le calcula en más de 700 m. en los alrededores de los cerros Piste y Cucchi.

2.2.1.3. FORMACIÓN CHUQUIBAMBILLA

Se asigna el nombre de Chuquibambilla a esta formación porque los principales afloramientos se observan en los alrededores del pueblo de Chuquibambilla.

La secuencia de esta formación está constituida por un 60 a 70% de areniscas y el resto por lutitas y calizas, se observan también afloramientos importantes a lo largo de ambas márgenes del río del mismo nombre.

La litología de esta unidad se caracteriza, por la predominancia de areniscas de grano fino a grueso, de color generalmente gris oscuro con algunos niveles que varían de gris claro a rojizo, principalmente en la parte superior. Dentro de esta formación se han encontrado capas calcáreas que se intercalan con las areniscas, fundamentalmente en la parte superior y consisten en calizas negras y gris claras, a veces bastante arenosas; presentándose en forma lenticular y con un grosor que llega a los 50 m. Todo este conjunto litológico se halla bastante plegado o constituyendo grandes ondulaciones.

En el cuadrángulo de Chalhuanca esta formación se presenta principalmente en dos grandes zonas. La primera se extiende en una faja desde las proximidades de Chalhuanca

s n s

hacia el este hasta Pachaconas; formando una serie de anticlinales y sinclinales bastante apretados, fallados e intruídos por andesitas, dacitas, granodioritas y tonalitas, que pueden verse en las inmediaciones de Pachaconas. La otra zona de consideración se encuentra en la parte sureste de este mismo cuadrángulo, constituyendo los flancos de los valles de los ríos Chalhuanca y Cotaruse. Estos afloramientos se encuentran también plegados y forman anticlinales y sinclinales bien apretados y fallados, con rumbos NO-SE. Afloramientos similares.

Se extienden en el fondo del río Caraibamba, afluente por la margen derecha del río Chalhuanca. En este lugar esta formación se expone en la margen izquierda y conforma núcleos de anticlinales y sinclinales asimétricos.

La litología de las dos zonas es similar y se caracterizan por su abundante contenido fosilífero. Las calizas son gruesas y se intercalan con areniscas y lutitas como se observa a lo largo del valle del Colca y otros lugares aledaños.

2.2.1.4. FORMACIÓN SORAYA

Esta unidad tiene su mayor extensión en la parte central del cuadrángulo de Santo Tomás, en el de Antabamba se le ha reconocido en la parte norte y oeste y en el Chalhuanca en la parte centro-oriental circundando a los cuerpos intrusivos que la han afectado.

Litológicamente, la Formación Soraya, está constituida por una secuencia monótona de cuarcitas y areniscas cuarcíticas de grano fino a medio; aunque existen con granos gruesos de cuarzo. El color varía de gris blanquecino en la base a rosado en el tope, presenta buena estratificación, en bancos medianos a gruesos (desde 0.30 m. a más de 5 m.), bien

compactos y macizos, que forman notables aristas topográficas que resaltan a gran distancia, como el cerro Utupara ubicado en el cuadrángulo de Antabamba.

2.2.1.5. *FORMACION MARA*

Esta formación fue denominada así, por W. JENKS (1951) al referirse a unos afloramientos rojizos que se encuentran en los alrededores del pueblo de Mara.

Litológicamente en la Formación Mara se puede distinguir tres miembros. El inferior se caracteriza por la predominancia de areniscas, el intermedio es lutáceo con algunas intercalaciones de areniscas y conglomerados con clastos de cuarcita y el superior está constituido por areniscas y lutitas abigarradas y termina hacia el tope, en algunos lugares, con calizas amarillentas. El color predominante de esta formación es rojo a marrón rojizo.

2.2.1.6. FORMACION FERROBAMBA

J. JENKS (1951), describe con este nombre a una secuencia potente de calizas que aflora en el área del proyecto minero de Ferrobamba situado más o menos a 16 km al noroeste de Haquira, en el cuadrángulo de Santo Tomás.

Litológicamente, la Formación Ferrobamba es una secuencia monótona de calizas negras a gris oscuras, aunque en ciertos niveles presentan bancos calcáreos de color amarillento. Las calizas son masivas, bastante compactas, estratificadas en bancos de 0.30 m. a 2 m. En el tope, generalmente se observan calizas arenosas, de color gris claro con tintes rojizos y en la base niveles de lutitas carbonosas. Asimismo, contiene nódulos de chert de forma alargada de más de 15 cm. de longitud.

2.2.1.7. **DEPÓSITOS CUATERNARIOS**

Los depósitos recientes están constituidos por depósitos glaciáricos (morrenas) y fluvioglaciares, el Volcánico Santo Tomás y depósitos Aluviales.

2.2.1.8. DEPÓSITOS GLACIARES Y FLUVIOGLACIARES

Los depósitos morrénicos más recientes se encuentran bien expuestos en los tres cuadrángulos, ocupando áreas aproximadamente desde 4,200 hasta más de 5,000 m.s.n.m., así puede verse en los nevados Malmanya (Santo Tomás) y Suparaura, (Chalhuanca).

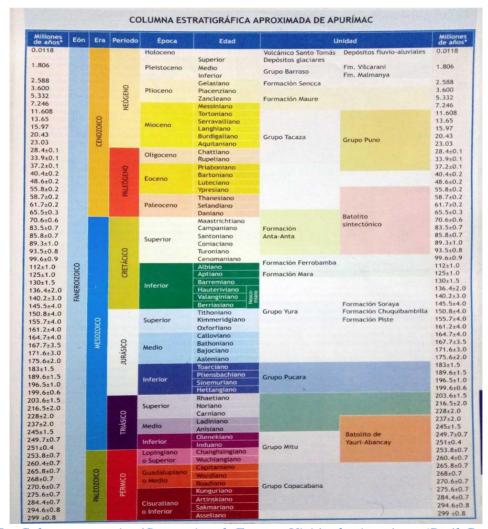


Imagen 9.- Columna estratigráfica regional, Fuente: Visión de Apurímac (Raúl Carreño y Susana Kalafatovich 2008)

2.2.2. UNIDADES GEOLOGICAS LOCALES

En el ámbito local de la zona de estudios se han identificado 04 unidades geológicas locales, las cuales se describen a continuación:

2.2.2.1. FORMACION ARCURQUINA

Esta unidad geológica se ubica al sur de la zona de estudios, el cual consiste tres sub unidades (Miembros) las cuales se describen de acuerdo a la coloración y variación de potencia de cada una de ellas, Miembro A.- Consiste en calizas grises. Miembro B.- Calizas de coloración gris con potencias delgadas y bien estratificadas. Miembro C.- Calizas grises con potencias gruesas estratificación no muy definida.

Foto 5.- En la parte superior de la imagen se observa calizas de la formación Arcurquina (Fuente propia)

2.2.2.2. ROCA PLUTONICA – GRANODIORITA

Esta roca es consistente de un Plutón, cuyas características litológicas son de tipo intermedia a acida, la roca competente está compuesta por la serie de feldespatos, cuarzo y algunas micas oscuras que la mayoría de ellas son ferruginosas.

Esta unidad se ubica al este de la zona de proyecto, cubriendo regular área de extensión y emplaza sobre relieve de ladera moderada.

Foto 6.- Muestra la zona este del proyecto, donde la roca dioritica se ubica con tonalidad amarillenta (Fuente propia)

2.2.2.3. **DEPOSITOS ALUVIALES**

Localmente estos suelos son de gran importancia ya que el proyecto está emplazado sobre esta unidad, consistente en bloques de rocas (calizas y dioritas), arenas suspendidas en medio de una matriz limo arcillosa, teniendo un orden granulométrico caótico y muy deleznable, a la vez muy permeable. Esta unidad generalmente está ubicada en los conos aluviales, las cuales son suelos producto del transporte media, realizado por un agente exógeno, como es caso de flujos o huaycos.

Foto 7.- Suelo Aluvial ubicado al suroeste del proyecto (Fuente propia)

2.2.2.4. **DEPOSITOS COLUVIALES**

Esta unidad geológica está situado al pie de monte, suelos que son producto de la acción de los eventos geodinámicos externos como son los deslizamientos, derrumbes, caída de rocas y flujo de detritos.

Este tipo de suelo se caracteriza por presentar formas granulométricas angulosas, el cual indica en corto transporte y la depositación inmediata al pie de talud, además en la zona de estudios se presenta de manera caótica con bloques líticos, como es caso de la caliza en la mayoría.

El área de extensión de esta unidad es considerable ya que la zona de estudios está ubicado principalmente muy cercana a la terraza coluvial.

COLUMNA ESTRATIGRAFICA LOCAL						
EDAD		SIMB.	UNIDAD			
	VARIO		DEPOSITO COLUVIAL			
	CUATERNARIO	$\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}$	DEPOSITO ALUVIAL			
ALBIANO	CRETACICO		FORMACION ARCURQUINA			

Imagen 10.-Columna Estratigráfica local; (FUENTE: ELABORACION PROPIA)

2.3. GEOLOGIA ESTRUCTURAL

2.3.1. GEOLOGIA ESTRUCTURAL REGIONAL

De acuerdo al mapa regional realizado por SIGBTP estructural regional, se describen las siguientes unidades estructurales regionales:

- ALINEAMIENTO DE FALLAS; Esta unidad estructural se caracteriza por presentar ojos de agua, quebradas, zonas de geodinámica externa activa, vegetación alineada, escarpas de movimientos de remoción en masa y entre otros.
- FALLAS DIRECCIONALES; Son tipo de fallas con movimientos horizontales, las cuales son poco perceptibles a simple vista en superficie, sin embargo, en la zona de estudios se ha registrado algunas de ellas.
- FALLA INFERIDA; Este tipo de fallas son más comunes en la zona de estudios, ya que se basan se acuerdo a la hipótesis de percepción en campo, estas no aseguran una actividad peligrosa comprobada, ya que no están definidas exactamente el tipo ni clase de falla.
- FALLA INVERSA; Las fallas inversas son fallas con desplazamiento vertical en las cuales el bloque de techo se mueve hacia arriba con respecto al bloque de muro. Dado que el bloque de techo se mueve hacia arriba y sobre el bloque de muro, las fallas inversas reflejan un acortamiento de la corteza estas fallas se ubican 1-2 km. Como mínimo hacia oeste y noroeste de la zona de estudios, las cuales son catalogadas como estructuras activas.

2.3.2. GEOLOGIA ESTRUCTURAL LOCAL

De acuerdo a la fuente de información bibliografía y las visitas de campo se han definido las estructuras geológicas más cercanas, consistente en pliegue sinclinal, pliegue anticlinal, alineamiento de fallas, fallas inversas, falla inferida y falla direccional, fuente (INGEMMET, Geologia Estructural), Las unidades estructurales locales no tienen implicancia de primer orden en el proceso de desarrollo del proyecto, ya que el emplazamiento de estas unidades no coincide con la ubicación de la zona de interés, sin embargo, cabe destacar que, por la reactivación de algunas fallas circundantes, ya sea regionales o locales podrían generar nuevas estructuras secundarias, como tensionales entre sí. También se observan que la mayoría de ellas están ubicadas hacia NW, W y SW de la zona de estudios, todas ellas catalogadas como fallas no activas, a continuación, se describen las unidades estructurales definidas localmente.

• PLIEGUES SINCLINALES; Esta unidad se extiende con mayor densidad hacia el noroeste y este de la zona de estudios, distando a 4.5 km como mínimo, esta unidad se caracteriza por presentar deformaciones en los paquetes de rocas que se encuentran en la zona de estudios o circundantes, Al sur de la zona de estudios se observó una deformación tipo sinclinal, tratándose de la estructura sinsedimentario, es decir que la deformación ocurrió durante la sedimentación de los paquetes de rocas sedimentarias. Este paquete de rocas se aprecia con

nivel de fractura miento regular, en algunas capas presentan óxidos de Fe, tipo limoniticas, indicando que la alteración de estos niveles es más fuerte o intenso. Las rocas que se encuentran localmente en la zona de estudios, son rocas de tipo sedimentario y plutónico, eso indica que cada tipo de litología tiene peculiaridades a ser deformados, muchas de ellas como las calizas al sur de la zona de estudios son muy susceptibles a ser fracturadas o craqueladas, sin embargo, algunas como las rocas areniscas plutónicas tienden a deformarse de forma plástica. A continuación, se muestra una imagen en el cual se nota claramente la deformación en pliegues del paquete de rocas.

Foto 8.- Deformación sinclinal con algunos niveles de alteración por el óxido de Fe (Fuente propia)

 PLIEGUES ANTICLINALES; Estas estructuras son evidencias de las deformaciones de las fuerzas compresivas, ya sea de forma local o regional, sin embargo, en la zona de estudios se aprecian una variedad de este tipo de estructuras, esto de acuerdo al mapa estructural local. Don la mayor parte se encuentran hacia noroeste y noreste, distando al menos 4.5 km., ver el mapa

estructural local. Los anticlinales presentes en la zona de estudios son de formas opuestas a los sinclinales. Donde algunas de ellas que se presentan cercanas a la zona de proyecto no comprometen en el proceso de desarrollo del proyecto, ya que las manifestaciones de estas son muy puntuales y presentes en paquetes de menor potencia.

- ALINEAMIENTO DE FALLAS; Estas estructuras se evidencian en el entorno de la zona de
 estudios, donde las características de estas estructuras son básicamente representadas por la
 presencia de bofedales, escarpas continuas a lo largo de la zona, vegetación alineadas y
 algunas quebradas o ríos, todos estos elementos son producto de un alineamiento de una falla
 ya se regional o local. Estas estructuras dista al menos 4 kilómetros hacia este, con dirección
 NW-SE, ver el mapa estructural local.
- FALLAS INFERIDAS; Estructuras no definidas ya se forma local o regional, sin embargo, cumplen con algunas características o elemento de este tipo de fallas, en el entorno más cercano de la zona de estudios se han evidenciado algunos alineamientos, presencia de bofedales y quebradas alineadas, indicando como una posible falla ya sea normal o inversa. Las unidades más cercanas distan 3.8 hacia SE de la zona de proyecto. Cabe destacar que la presencia de esta no afecta en el proceso de desarrollo del proyecto, ver mapa estructural local. Muchas de estas fallas inferidas están orientadas N-S, NW-SE y NE-SW, ya que podrían tratarse de las tensionales de las fallas principales consideradas en el ámbito regional, el cual es de NW-SE.

- FALLAS NORMALES; Estas fallas normales muestran un desplazamiento horizontal y vertical, sin embargo, estas podrían estar combinadas con otros sistemas de fallas o tipo de movimientos como sinestral o dextral.
- FALLA INVERSAS; En el ámbito local estas fallas se presentan al noroeste y oeste de la zona del emplazamiento del proyecto, mostrando extensiones de hasta 4km como mínimo, y con respecto al área de estudios distan como 5-7 km como mínimo. Este tipo de fallas presentan movimientos verticales, teniendo en cuenta que el desplazamiento puede ser combinado de manera sinestral y dextral.
- FALLAS DE RUMBO O DIRECCIONALES; Llamados también de rumbo o direccional, debido al movimiento horizontal con respeto a un eje de fallas, es decir no influyen movimientos verticales, sin embargo, estas fallas pueden ser combinadas con movimientos sinestrales y dextrales, es decir hacia la derecha o izquierda. En el ámbito local de la zona de estudios, de acuerdo al mapa de geología estructural local se ha evidenciado la presencia de este tipo de falla al SW, que dista 10km al menos, ver el mapa de geología estructural local.

2.4. GEODINAMICA INTERNA

2.4.1. SISMICIDAD

Dentro del contexto sismo tectónico mundial, el Perú se encuentra ubicado en lo que se denomina "el Cinturón del Fuego Circumpacífico", que es el ámbito territorial mundial donde se originan alrededor del 80% de los sismos del mundo. El entorno tectónico del Perú, está encuadrado dentro de lo que se denomina "La Tectónica de placas" que pone a la placa de nazca frente a la placa continental o sudamericana con colisión y subducción de la primera sobre a la segunda. Este desplazamiento convergente de placas explica la

formación de la Cordillera de los Andes y la deformación continental, así como las grandes depresiones del fondo marino.

De acuerdo a la norma E-030 del diseño sismorresistente, el territorio nacional se considera dividido en cuatro zonas, basada en la distribución espacial de la sismicidad observada, las características generales de los movimientos sísmicos y la atenuación de estos con la distancia epicentral, así como en información neotectónica. A cada zona se le asigna un factor Z. Este factor se interpreta como la aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 50 años. El factor Z se expresa como una fracción de la aceleración de la gravedad.

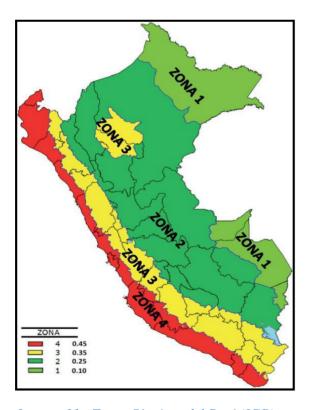


Imagen 11.- Zonas Sísmicas del Perú (IGP)

ZONA	Z
4	0.45
3	0.35
2	0.25
1	0.10

Cuadro 5.- Factores de zona "Z" (IGP)

La región de Apurímac se encuentra en la zona 2, de acuerdo a la zonificación sísmica nacional con un factor de zona de 0.25.

2.4.2. ZONIFICACION SISMICA

La zona de proyecto-Huayllati se encuentra rodeado de una serie de fallas y plegamientos los cuales presentan niveles de peligro alto, además estos son factores desencadenantes para la ocurrencia de eventos sísmicos por reactivación de la mismas, sin embargo, de acuerdo al mapa estructural está área esta distante a menos 4.5km, implicando el poco impacto al área de interés.

La sismicidad asociada al proceso de subducción de la placa de Nazca por debajo de la Placa Continental, existe también otra sismicidad, de carácter local, producida por deformaciones y está asociada a las fallas tectónicas activos existentes en el Perú. Estos sismos locales y regionales tienen una menor frecuencia y magnitudes moderadas, pero por producirse muy cerca de la superficie, tienen un gran poder destructivo. La región de Apurímac se halla dentro del área de influencia de estos últimos tipos de sismos.

En la zona andina, hay una tendencia general al levantamiento de la corteza, como resultado de la compresión lateral que produce por el oeste, la placa de Nazca y por el este, el escudo brasilero. La Cordillera de Ausangate, junto con la cordillera Blanca, Huaytapallana, Vilcabamba, están en un proceso de levantamiento significativo asociados con fallas geológicas activas.

De acuerdo a la Zonificación Sísmica del Perú, establecido en la Norma de Diseño Sismo Resistente E – 030 del Reglamento Nacional de Edificaciones, la zona de estudios se

encuentra en la zona 3 (Sismicidad Media), con aceleraciones máximas que varían entre 0.18 a 0.19, del mapa de Aceleraciones Máximas Normalizadas.

2.4.3. SISMICIDAD HISTORICA

La actividad sísmica de la región es registrada por la estación sísmica de Chalhuanca a 2,900 m.s.n.m. a 110 Km al Sur Oeste de Abancay, las coordenadas geográficas son: 14°17'40" Latitud Sur: 73°14'64" Longitud Oeste. Los datos reportados por Instituto Geofísico del Perú y que aparecen en otras fuentes han sido recopilados ordenados cronológicamente y presentados en el cuadro que se muestra a continuación.

LUGAR	DAÑOS Y AREA AFECTADA	FECHA	INTENSIDAD
Cusco	Terremoto del Cuzco, cuyos efectos se ha notado en la ciudad de Abancay y Andahuaylas.	1650-01-31	
Aymaraes	Terremoto en el pueblo de Santa Catalina provincia de Aymaraes y poblaciones aledañas.	1739-03-24	
Huancarama	Terremoto destruye el pueblo de Huancarama al oeste de Abancay.	1847-01-01	
Andahuaylas	Terremoto ocasionado en Andahuaylas, Talavera y San Jerónimo.	1862-04-13	
Cotabambas	Sismo de regular intensidad con destrucción de algunas viviendas y daños materiales.	1870-07-10	
Abancay	Fuerte sismo en Abancay a las 21.30 produciendo averías en muchas edificaciones con 27 réplicas hasta las 06 a.m. del día siguiente, fue percibido en forma notoria en Curahuasi.	1875-12-05	
Abancay		1876-01-04	IX MM
Abancay	Terremoto ocasionado en Huamanmarca, al SW de Abancay, cuyo pueblo quedo desolado a consecuencia de este fenómeno.	1905-01-20	
Aymaraes	Violento sismo en la provincia de Aymaraes, puente Huayquipa, Sañayca, con daños en Colcabamba, Amoray, murieron más de 150 personas con replicas	1913-11-04	

	en Chalhuanca, Abancay con daños en las		
	construcciones.		
Abancay	Sismo de gran intensidad con extensos daños	1925-01-05	VI MM
Cusco	Gran sismo que afecto fuertemente la zona urbana.	1941-09-18	VI – VII
Cusco	Histórico sismo que asoló la ciudad y alrededores.	1950-05-21	VI MM
Aymaraes	Terremoto que afectó las viviendas de comunidades en toda la zona	1964-07-01	(5.3) MM
Chalhuanca	Sismo de proporciones con consecuencias en toda la zona.	1965-12-19	(5.1) MM
Chuquibambilla	Fuerte temblor sentido en la población y alrededores.	1969-06-12	(5.2) MM
Aymaraes	Sismo destructor en Soraya, Mosecco, Sañayca, Toraya: ubicados al margen izquierdo del río Pachachaca. Los deslizamientos destruyeron diversos tramos en la carretera Abancay Chalhuanca.	1971-10-14	
Cotaruse – Aymaraes	Sismo de regular intensidad con afectación de construcciones.	1994-06-16	(4.4) MM
Antabamba	Sismo de 6.2 en la escala de Richter con daños materiales en construcciones de viviendas.	2001-08-08	

Cuadro 6.- Cuadro de sismos históricos en la región de Apurímac (GOREA, Gobierno Regional De Apurímac)

2.5. GEODINAMICA EXTERNA

• **DESLIZAMIENTO**

El deslizamiento que se pudo identificar es de hace 11 años que ocurrió dentro de la población, causando destrozos, ahora ya estabilizado por la vegetación.

Este deslizamiento ubicado al Sur Este de la zona de estudio, de una altitud que va desde 3300 hasta los 3600 msnm, llegando a tener una amplitud aproximadamente de 300 metros de diferencia de altitud, entre su base y la corona del deslizamiento, implica una gran masa sujeta a procesos de

remoción, vemos que este deslizamiento llegó a un nivel de reposo en relación a sus condiciones geométricas y propiedades mecánicas del suelo.

Los deslizamientos se intensifican en gran medida debido a la conformación geomorfológica, debido a los factores topográficos y sobre todo climáticos e hidrogeológicos.

La Geología expresada en la estratigrafía nos muestra las distintas formaciones como lutitas y calizas, que presentan bajos niveles de resistencia frente a los procesos erosivos y que facilitan la infiltración de aguas superficiales, alterando y saturando los suelos tanto física como químicamente. Es una zona donde se genera material suelto relacionado a la calidad de la roca.

Foto 9 .- Deslizamiento (Fuente propia)

CAIDA DE ROCAS

Se puede observar en la zona de estudio bloques de roca caliza probablemente desprendida de la parte superior, intensamente diaclasadas y alterada; las que se activan por la fuerza de la gravedad, lluvias torrenciales o movimientos sísmicos.

Foto 10.- Caída de Rocas (Fuente propia)

DERRUMBES

La trocha carrozable que esta sobre material suelto no compacto presenta problemas de derrumbes.

Foto 11.- Derrumbes (Fuente propia)

• EROSIÓN DE LADERAS

Se encuentran a manera de surcos y cárcavas, comienzan con canales muy delgados que a medida que persiste la erosión pueden profundizarse, ocasionados por infiltración de precipitaciones pluviales en suelos sueltos y desprovistos de vegetación, se desarrolla siguiendo los patrones de drenaje los cuales son controlados por la estructura geológica, la dureza de los materiales, la carga fluvial.

Foto 12.- erosión (Fuente propia)

3. CAPITULO III: HIDROLOGIA

El tipo de drenaje común de la zona de estudios son detríticos donde uno de ellos cruza hacia el lado este de la zona de proyectos. Todos estos drenajes que se observan en el siguiente mapa de drenajes desembocan alimentando al rio Vilcabamba de primer orden.

Para el desarrollo del presente estudio se revisó la información existente en el ámbito del proyecto luego del cual se decidió utilizar las estaciones que cuentan con información pluviométrica.

Ítem	Nombre	Distrito	Provincia	Región	Ubicación		
100111	rvomere	District	Trovincia		Latitud	Longitud	Altitud
1	Abancay	Abancay	Abancay	Apurímac	13°36'	72°53'	2,398
2	Paruro	Paruro	Paruro	Cusco	13°45'	71°51'	3,084
3	Andahuaylas	Andahuaylas	Andahuaylas	Apurímac	13°39'	73°22'	2,944
4	Chalhuanca	Chalhuanca	Aymaraes	Apurímac	14°17'	73°15'	2,902
5	Antabamba	Antabamba	Antabamba	Apurímac	14°23'	72°52'	3,636

Cuadro 7.-Estaciones Meteorológicas (SENAMHI)

3.1. ANÁLISIS REGIONAL DE PRECIPITACIÓN

Con los datos de precipitación se realiza una regionalización por el método de regresión lineal de la siguiente forma:

NOMBRE ESTACION		PRECIPITACION MEDIA ANUAL	ECUACION DE REGRESION $P^2 = B_0 + B_1 * H$				RECIPITACION CORREGIDA
	msnm	mm	\mathbf{X}^2	\mathbf{Y}^2	X*Y ²	Y^4	mm
ABANCAY	2,398.00	618.49	5.75E+06	3.83E+05	9.17E+08	1.46E+11	594.51
PARURO	3,084.00	864.84	9.51E+06	7.48E+05	2.31E+09	5.59E+11	792.51
ANDAHUAYLAS	2,944.00	634.42	8.67E+06	4.02E+05	1.18E+09	1.62E+11	756.32
CHALHUANCA	2,902.00	758.84	8.42E+06	5.76E+05	1.67E+09	3.32E+11	745.12
ANTABAMBA	3,636.00	921.42	1.32E+07	8.49E+05	3.09E+09	7.21E+11	921.44
SUMA	14,964.00	3,798.00	45,570,696.00	2,957,804.39	9,166,959,423	1,920,149,138,142	3,809.91
n	5	5	5	5	5	5	5
PROMEDIO	2,992.80	759.60	9.11E+06	5.92E+05	1.83E+09	3.84E+11	761.98
FORMULAS PAR	A EL CALCU	LO DE PARAME	TROS DE REGRI	ESION VALORES DE PARAMETROS DE REGRESION			
A= SUM X	1.50E+04	$G = C-(A^2)/n$	7.86E+05	COEF. INDEP	ENDIENTE	Bo =	-606578.00
B= SUM Y	3.80E+03	H = F-A*D/n	3.15E+08	COEF. DEPE	NDIENTE	B1 =	400.34
C= SUM X^2	4.56E+07	$I = F-(D^2)/n$	1.70E+11	COEF. DE CO	ORRELACION	r =	0.860
D= SUM Y^2	2.96E+06	J = H/G	4.00E+02				
E= SUM X*Y^2	9.17E+09	K = (D-J*A)/n	-6.07E+05	PRE	CIP. MEDIA AN	UAL PROYECTO (AP	ROX.)
F= SUM Y^4	1.92E+12			CUENCA		ALTITUD MEDIA	
FORMULAS DE PARAMETROS DE REGRESION							
COEF. INDEPENDIENTE		Bo= (D-J*A)/n					
COEF. DEPENDIENTE		B1= H/G		CUENCA DE INFLUENCIA DIRECTA		3,718.26	939.14
COEF. DE CORRELACION		r = H/SQRT(G*I)		DIRECTI			
DESVIACION ESTANDAR		$S = (D-A^2/n)-(K^*)$	(A*D-A*B)/n)				

Cuadro 8.- Regionalización por el método de regresión lineal (elaboración propia).

4. CAPITULO IV: GEOTECNIA

4.1. INVESTIGACIONES EXPLORATORIAS Y MUESTREO.

Con la finalidad de identificar y realizar la evaluación geotécnica del sub suelo existente en el área de estudio, se llevó a cabo un programa de exploración en campo, con la excavación de 02 calicatas y la recolección de las muestras para ser ensayada en laboratorio.

Ubicación de Calicatas.

Se realizó la prospección de 02 calicatas a cielo abierto de forma rectangular, con la finalidad de determinar la capacidad portante del Suelo. A las calicatas realizadas se les denominó C-01 y C-02, y se procedido a la evaluación de acuerdo a la norma ASTM D – 420.

La profundidad de prospección alcanzada en la calicata ha sido aproximadamente de 3.00 m, evidenciando la presencia de suelos gravosos con arena.

Fotografía. Ubicación de la calicata 01

Fotografía. Ubicación de la calicata 02

4.2. REGISTRO DE PERFIL ESTRATIGRÁFICO NORMA ASTM D 2487.

Tomando como referencia la información obtenida en campo y en laboratorio, se realizó el perfil estratigráfico característico del terreno en estudio:

CALICATA 01:

- Primer Estrato de 0.00 a -0.50 m. corresponde a un relleno antrópico constituido por gravas, arenas, piedras, limos y raíces en matriz arcillosa.
- Segundo Estrato de -0.50 m. a -3.00 m corresponde a un material granular, identificado como una GRAVA ARCILLOSO- LIMOSA CON ARENA GC-GM, según SUCS, que
- Presenta una coloración marrón. No se ha evidenciado Nivel Freático superficial.

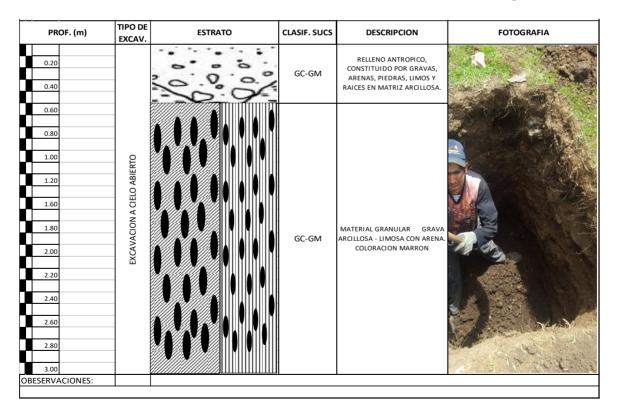


Imagen 12.- Descripción estratigráfica de la calicata 01 (Fuente: Elaboración propia)

CALICATA 02:

- Primer Estrato de 0.00 a -0.40 m. corresponde a un relleno antrópico constituido por gravas, arenas, piedras, limos y raíces en matriz arcillosa.
- Segundo Estrato de -0.40 m. a -3.00 m corresponde a un material granular, identificado como una GRAVA ARCILLOSO- LIMOSA CON ARENA GC-GM, según SUCS, que presenta una coloración marrón.
- No se ha evidenciado Nivel Freático superficial.

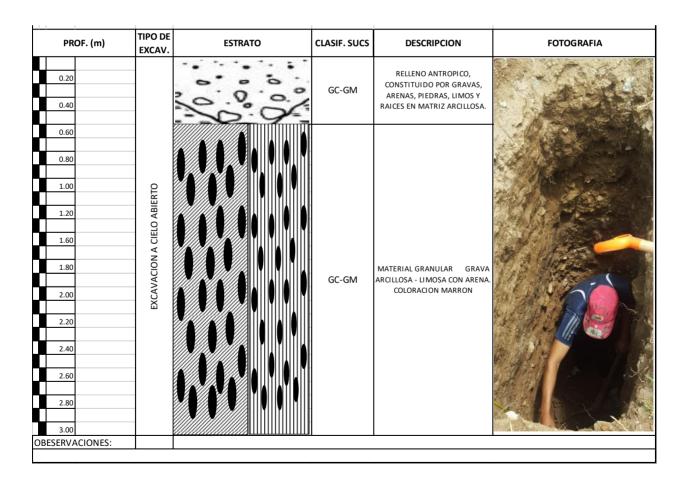


Imagen 13.- Descripción estratigráfica de la calicata 02 (Fuente: Elaboración propia)

59

4.3. ENSAYO DE DENSIDAD DEL SUELO NORMA ASTM D1556-64

El Ensayo de densidad por el método del cono de arena permite obtener la densidad del terreno.

Fotografía. Ensayo de Densidad Natural.

4.4. ENSAYOS DE LABORATORIO.

De acuerdo al nivel de estudio requerido, se procedió a la realización de ensayos y análisis de las muestras siguiendo las normas y procedimientos de la American Societyfor Testing and Materials (A.S.T.M).

En cuanto a los ensayos considerados, se puede realizar una breve explicación de los ensayos y los objetivos de cada uno de ellos. Cabe anotar que los ensayos físicos corresponden a aquellos que determinan las propiedades índices de los suelos y que permiten su clasificación.

4.4.1. CONTENIDO DE HUMEDAD, SEGÚN NTP 339. 127(ASTM D 2216).

Este ensayo tiene como finalidad determinar el contenido de humedad de una muestra de suelo. Esta muestra es secada en estufa, expresada como tanto por ciento.

Fotografía 7. Ensayo de Contenido de Humedad de la muestra.

4.4.2. LIMITE LÍQUIDO Y PLÁSTICO, SEGÚN NTP 339. 129(ASTM D 4318).

Se conoce como plasticidad de un suelo a la capacidad de este de ser moldeable. Esta depende de la cantidad de arcilla que contiene el material que pasa la malla N° 200, porque es este material el que actúa como ligante.

Un material, de acuerdo al contenido de humedad que tenga, pasa por tres estados definidos: líquidos, plásticos y secos.

Cuando el agregado tiene determinado contenido de humedad en la cual se encuentra húmedo de modo que no puede ser moldeable, se dice que está en estado semilíquido. Conforme se le va quitando agua, llega un momento en el que el suelo, sin dejar de estar húmedo, comienza adquirir una consistencia que permite moldearlo o hacerlo trabajable, entonces se dice que está en estado plástico. Al seguir quitando agua, llega un momento en el que el material pierde su trabajabilidad y se cuartea al tratar de moldearlo, entonces se dice que está en estado semi seco.

Fotografía 8. Ensayo de Límite Liquido.

Fotografía 9. Ensayo de Límite Plástico.

4.4.3. ANÁLISIS GRANULOMÉTRICO, SEGÚN NTP 339. 128(ASTM D 422).

El análisis granulométrico de acuerdo a la Norma ASTM D-422, tiene por objetivo adquirir criterios para poder tener una clasificación de tipo cualitativo y cuantitativo del tipo de suelo según sus características volumétricas por tamaño. Es recomendable utilizar los tamaños de zarandas de acuerdo a las normativas vigentes.

Fotografía 10. Análisis Granulométrico por medio de tamizado.

4.4.4. CORTE DIRECTO, SEGÚN NTP 339. 167 (ASTM D2166)

El ensayo permite determinar la resistencia al esfuerzo cortante o capacidad portante del suelo en estudio, utilizando el ensayo de Corte Directo.

Los objetivos específicos son:

- Obtener la gráfica de distribución de esfuerzos cortantes vs deformación para unas determinadas cargas aplicadas a dichas muestra.
- Determinar el ángulo de fricción interna.
- Determinar la cohesión.
- Determinar capacidad portante del suelo.

4.5. NIVEL FREATICO.

En todo proyecto para construcción de obras civiles es necesario conocer con propiedad de la existencia, o no, de las aguas subterráneas, habida cuenta que con su presencia y dependiendo de su profundidad y régimen hidráulico (entre otros parámetros), se podrá establecer su incidencia negativa en la estabilidad de las obras. En los estudios de campo no se ha encontrado nivel freático hasta la profundidad investiga, pero si un incremento del contenido de humedad.

4.6. CAPACIDAD PORTANTE.

Se denomina capacidad portante a la capacidad del terreno para soportar las cargas aplicadas sobre él. Técnicamente la capacidad portante es la máxima presión media de contacto entre la cimentación y el terreno tal que no se produzcan un fallo por cortante del suelo o un asentamiento diferencial excesivo.

4.6.1. PARÁMETROS PARA EL CÁLCULO DE CAPACIDAD PORTANTE.

a.- Parámetros del Suelo.

Las propiedades físicas del suelo del proyecto son determinados a partir de los ensayos de laboratorio, las cuales se resume a continuación.

Calicata	01	02
Clasificación SUCS	GC - GM	GC - GM
Limite Liquido %	22.10 %	24.93 %
Índice de Plasticidad %	6.42	6.80 %
Angulo de Fricción.	32.78	32.78
Densidad Natural gr/cm3	1.82	1.85
Cohesión kg/cm2	15.24	15.24

b.- Cálculo de Capacidad de Carga de Falla por Corte Local.

Se presenta a continuación el análisis de la Cimentación, que incluye recomendaciones para su diseño, realizado sobre la base de las características del terreno y al tipo de estructura proyectada.

La capacidad de Carga, comprendida como el máximo esfuerzo que es capaz de soportar el suelo antes de fallar por corte, ha sido calculada en base a la Teoría de Terzaghi, y afectada por el cálculo de coeficiente de seguridad que para este caso se considera 3.

PARA EL CÁLCULO.

ZAPATA AISLADA.

$$qc=cN_c + \gamma DFN_q + 0.5\gamma BN_\gamma$$

$$q_{adm} = q_c / F.s$$

Factores de Capacidad de Carga Terzaghi.

DF	1,00 m,
В	1,0m
Y	1.83gr/cm3
С	15.24 kg/cm2
Φ	32.78

A -1.00 m q_{adm} = 1.35 kg/cm

Calicata	Suelo de Cimentación	Profundidad mínima de Cimentación (m)	Qadm. Kg/cm2	
C-01	GC-GM	1.00 m	1.35 kg/cm ²	
C-02	GC-GM	1.00 m	1.35 kg/cm ²	

4.7. ASENTAMIENTO

En todo análisis de cimentaciones, se distinguen dos clases de asentamientos: asentamientos totales y diferenciales, de los cuales estos últimos son los que podrían

comprometer la seguridad de la estructura. Para edificaciones convencionales, el asentamiento total tolerable aceptado es de 1 pulgada (2.54 cm.).

La zona de influencia de la cimentación está conformada por suelos finos de arcillas de baja plasticidad con arena.

En todo EMS se deberá indicar el asentamiento que se ha considerado para la estructura.

$$S = \Delta q s \frac{B(1 - \mu 2)}{Es} I w$$

Dónde:

S= Asentamiento Probable (cm).

 $\Delta qs = Esfuerzo Neto Transmitido (kg/cm2).$

B= Ancho de Cimentación.

Es= Modulo de Elasticidad (kg/cm2).

μ= Relación de Poisson.

Iw= Factor de Influencia que depende de la forma y rigidez de la cimentación (Bowles, 1977).

Las propiedades elásticas del suelo de cimentación fueron asumidas a partir de tablas publicadas con valores para el tipo de suelo existente donde ira desplantada la cimentación.

Para suelos finos.

E=80 Kg/cm2.

 $\mu = 0.35$

Los cálculos de asentamiento se han realizado considerando cimentación rígida, además los esfuerzos transmitidos son iguales a la Capacidad de Carga Admisible de carga. A continuación se presentan los siguientes cálculos, con los resultados obtenidos para el presente estudio.

Los trabajos realizados comprenden la prospección geotécnica, ensayos "in situ" y en Laboratorio, con el objeto de proporcionar información sobre las características litológicas y geomecánicas del subsuelo a nivel de fundación, hasta los 3.00m.

4.8. PROFUNDIDAD DE CIMENTACIÓN (DF).

Existen clasificaciones empíricas que permiten distinguir las cimentaciones según su posición en el terreno; se basa en la relación que existe entre el ancho B (dimensión menor de la superficie de apoyo), y la profundidad en la que se ubica el desplante o plano de implantación D. Así a modo nada más que orientativo.

66

5. CAPITULO V: PELIGROS PARA MOVIMIENTOS EN MASA

5.1. ANALISIS DE PELIGRO

Para el desarrollo de este estudio se ha tenido en cuenta la metodología de CENEPRED, que básicamente engloba parámetros y descriptores de evaluación, el cual, llamado también Proceso de Análisis Jerárquico, a continuación, se muestra el flujo metodológico para esta evaluación.

Imagen 14.- Flujo metodológico de toma de decisiones para evaluación de peligros.

(CENEPRED)

5.1.1. IDENTIFICACION DE PELIGROS

El peligro, es la probabilidad de ocurrencia de un fenómeno potencialmente destructivo que puede afectar a un área poblada y/o infraestructura física y medio ambiente de una magnitud dada, en una zona determinada, pudiendo ser de carácter natural o tecnológico, se identifica en la mayoría de los casos con el apoyo de la ciencia y tecnología.

Para una buena identificación de los peligros es necesario tener un escenario de estos y para su evaluación es importante conocer lo siguiente:

- Donde y cuando ocurre el proceso.
- La intensidad y magnitud del proceso.
- Zonas aledañas que pueden ocurrir procesos futuros.
- La frecuencia de ocurrencia.
- Antecedentes de la ocurrencia de cada tipo de peligros registrados.

Los peligros son por movimiento en masa, caída de rocas, derrumbes, deslizamientos.

El escenario por peligros de origen natural/antrópico para el distrito de Huayllati, está elaborado con un argumento sólido referenciados en datos y o registros históricos de ocurrencia de los fenómenos de la geodinámica externa eventos meteorológicos, donde estos han sido generados a partir de la plataforma informativa de SINPAD-INDECI, desarrollado su caracterización que ayudara a conocer su comportamiento en un espacio y tiempo determinado. Se procedió a integrar la información estadística de años de la población, así como de sus elementos expuestos para determinar los peligros más frecuentes de ocurrencia a nivel del distrito de Huayllati, así para más adelante tener en claro el escenario de peligros a evaluar.

5.1.2. REGISTROS ESTADISTICOS DE REPORTES DE EMERGENCIA EN EL DISTRITO DE HUAYLLATI

Considerando estas alternativas, para identificar los peligros más recurrentes que pueden impactar en la zona de estudios, es importante tomar una base de datos como

referencia, los eventos y/o emergencias más frecuentes originadas por fenómenos naturales y/o antrópicos, así como las observaciones y mediaciones de campo de análisis y revisión de información científica disponible, (Mapas, imágenes aéreas, imágenes satelitales, informes y reportes), con el fin de familiarizarse con la probable ubicación y severidad delos fenómenos naturales peligrosos, así como la probabilidad de ocurrencia en un tiempo y área específica.

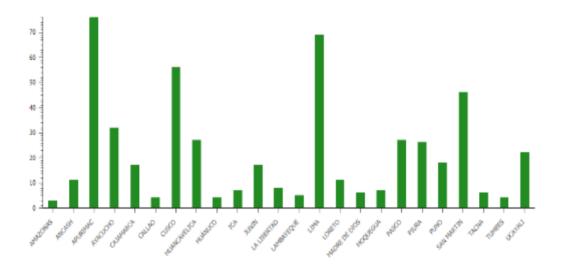
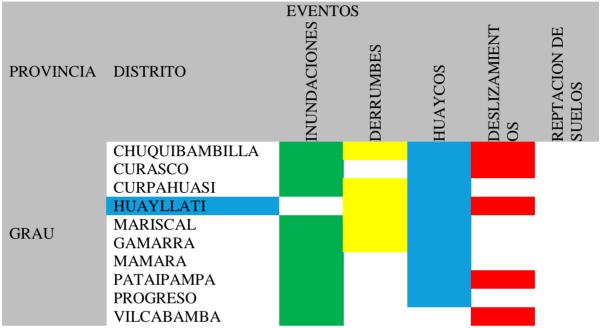



Imagen 15.- Se muestra la estadística de emergencias por departamento, (fuente http://sinpad.indeci.gob.pe/sinpad-js/.)

Esta información tiene como resultado un escenario general, el cual representa al distrito de Huayllati, siendo un insumo imprescindible para la elaboración en la identificación de peligros, que servirá como herramienta esencial en las decisiones tomadas por parte de equipo técnico del proyecto, además esto garantizará el libre proceso constructivo de la posta de salud de Huayllati. La región de Apurímac fue reportada con 76 emergencias de ocurrencia de fenómenos naturales.

Cuadro 9.- Eventos ocurridos por lluvias intensas en la región Apurímac (Fuente: plan de contingencia de las lluvias intensas en la región de Apurímac 2014)

5.1.3. ASPECTOS GENERALES SOBRE LA OCURRENCIA DE PELIGROS EN

LA ZONA

¿Existen antecedentes de peligros en la zona en la cual se pretende ejecutar el proyecto?				ia de	pelig	ue pronostican la probable ros en la zona bajo análisis? os?	
	Si	No	Comentarios		Si	No	Comentarios
nundaciones		х	Según la evaluación en campo y en gabinete si podría darse el caso de inundaciones en las zonas llanas	Inundaciones		x	Carecen de datos locales

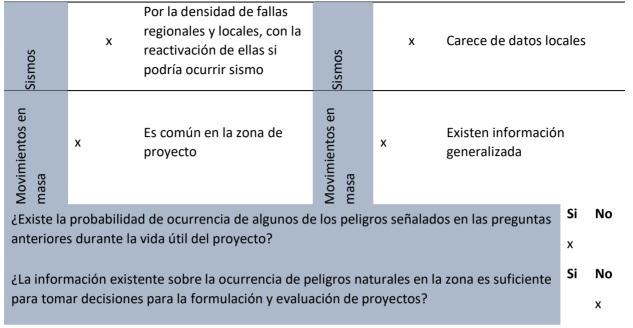
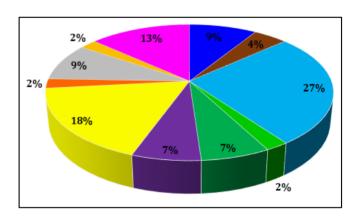



Imagen 14.- Identificación de peligros en la zona de ejecución del proyecto.

FENOMENOS	CANTIDAD
DERRUMBE	4
DESLIZAMIENTO	2
HELADA	12
HUAYCO	1
INCENDIO URBANO	3
PRECIPITACIONES - GRANIZO	3
PRECIPITACIONES - LLUVIA	8
PRECIPITACIONES - NEVADA	1
SEQUIA	4
TORMENTA ELECTRICA	1
VIENTOS FUERTES	6
TOTAL	45

■ DERRUMBE	■ DESLIZAMIENTO	■ HELADA
■ HUAYCO	■ INCENDIO URBANO	■ PRECIPIT ACIONES - GRANIZO
PRECIPITACIONES - LLUVIA	■ PRECIPITACIONES - NEVADA	= SEQUIA
TORMENTA ELECTRICA	■ VIENTOS FUERTES	

Cuadro 10.- Fenómenos naturales ocurridos en la localidad de Huayllati, (fuente Indeci desde 2003 al 2016.)

FECHA	EMERGENCIA	DISTRITO	FENOMENO
TECHA	LIVERGEIVEIN	DISTRITO	LIVOMENO
24/04/2003	Lluvias intensas en el distrito de Huayllati - Grau - a	Huayllati	Precipitaciones - lluvia
04/06/2003	Derrumbe en Huayllati - Grau - Apurímac	Huayllati	Derrumbe
07/10/2003	Incendio en tenería - Huayllati - Grau - Apurímac	Huayllati	Incendio urbano
30/12/2003	Incendio en rocca - Huayllati - Grau - Apurímac	Huayllati	Incendio urbano
13/01/2004	Lluvias intensas en cc. Pampahuite y, dist. Huayllati, pr	Huayllati	Precipitaciones - lluvia
01/07/2004	Helada en Huayllati	Huayllati	Helada
15/02/2005	Sequía en Huayllati	Huayllati	Sequia
19/04/2005	Helada en Huayllati	Huayllati	Helada
15/06/2005	Helada en el distrito de Huayllati	Huayllati	Helada
18/11/2005	Vendavales en pampahuite	Huayllati	Vientos fuertes
01/01/2006	Sequia Huayllati.	Huayllati	Sequia
01/01/2006	Humedad en pampahuite Huayllati Grau	Huayllati	Precipitaciones - lluvia
05/01/2006	Deslizamiento de tierra en la localidad de tambo	Huayllati	Deslizamiento
05/01/2006	Derrumbe en tambo Huayllati Grau	Huayllati	Derrumbe
06/02/2006	Deslizamiento de tierra en la localidad de yanarico	Huayllati	Deslizamiento
06/02/2006	Derrumbe en yanarico Huayllati Grau	Huayllati	Derrumbe
26/02/2007	Granizada en Huayllati Grau	Huayllati	Precipitaciones - granizo
27/02/2007	Granizada en Huayllati Grau	Huayllati	Precipitaciones - granizo
27/02/2007	Vientos fuertes en Huayllati Grau	Huayllati	Vientos fuertes
17/06/2007	Heladas en Palcca chico Huayllati Grau	Huayllati	Helada
12/05/2008	Heladas meteorológicas en las comunidades del distrito	Huayllati	Helada
16/06/2009	Bajas temperaturas en la localidad de Huayllati - región	Huayllati	Helada
25/01/2010	Vientos fuertes afecta centro educativo	Huayllati	Vientos fuertes

31/01/2010	Derrumbes de rocas obstruye transito Manasqui a progres	Huayllati	Derrumbe
20/03/2010	Incendio de vivienda en la localidad de Huayllati Grau	Huayllati	Incendio urbano
29/07/2010	Bajas temperaturas están afectando población del distrito	Huayllati	Helada
26/02/2011	Lluvias intensas afecta a la población del distrito Huayllati	Huayllati	Precipitaciones - lluvia
24/03/2011	Cultivos afectados por las lluvias torrenciales en Huayllati	Huayllati	Precipitaciones - lluvia
03/04/2011	Viviendas afectadas en localidades de Huayllati	Huayllati	Huayco
30/01/2012	Vientos fuertes destruye vivienda en Huayllati	Huayllati	Vientos fuertes
04/03/2012	Inundación de la población de Huayllati	Huayllati	Precipitaciones - lluvia
13/03/2012	Cultivos afectados por lluvias en Huayllati	Huayllati	Precipitaciones - lluvia
10/06/2012	Las intensas bajas temperaturas afectan al área pecuaria	Huayllati	Helada
01/03/2013	Deslizamiento afecta la localidad de Huayllati	Huayllati	Precipitaciones - lluvia
06/08/2013	Bajas temperaturas afectan la localidad de Huayllati	Huayllati	Helada
28/08/2013	Presencia de fuertes nevadas afectan ganado pecuario en	Huayllati	Precipitaciones - nevada
24/10/2013	Fuertes vientos destrozaron techo de I.E.P. N° 54514 yanar	Huayllati	Vientos fuertes
09/06/2014	Bajas temperaturas afectan la localidad de Huayllati	Huayllati	Helada
24/06/2015	Bajas temperaturas afectan el distrito de Huayllati	Huayllati	Helada
24/11/2015	Descarga eléctrica afecta institución educativa N° 5451	Huayllati	Tormenta eléctrica (tempestad
11/12/2015	Fuertes vientos afectan puesto de salud en la localidad	Huayllati	Vientos fuertes
07/01/2016	Granizadas afecta cultivos en la localidad de Huayllati	Huayllati	Precipitaciones - granizo
25/01/2016	Sequias afectan cultivos en la localidad de Huayllati	Huayllati	Sequia
30/06/2016	Heladas afectan el distrito de Huayllati	Huayllati	Helada
16/11/2016	Sequias afecta diversas localidades del distrito de Huayllati.	Huayllati	Sequia

Cuadro 11.- Cuadro estadístico de la ocurrencia de los fenómenos naturales en la localidad de Huayllati, Fuente Indeci 2003-2016

5.2. MOVIMIENTOS EN MASA

Los movimientos en masa en laderas, son procesos de movilización lenta o rápida que involucran suelo, roca o ambos, causados por exceso de agua en el terreno y/o por efecto de la fuerza de gravedad.

Los deslizamientos consisten en un descenso masivo o relativamente rápido, a veces de carácter catastrófico, de materiales, a lo largo de una pendiente. El deslizamiento se efectúa a lo largo de una superficie de deslizamiento, o plano de cizalla, que facilita la acción de la gravedad.

5.2.1. PARAMETROS DE EVALUACION

Para esta evaluación se han considerado los siguientes parámetros:

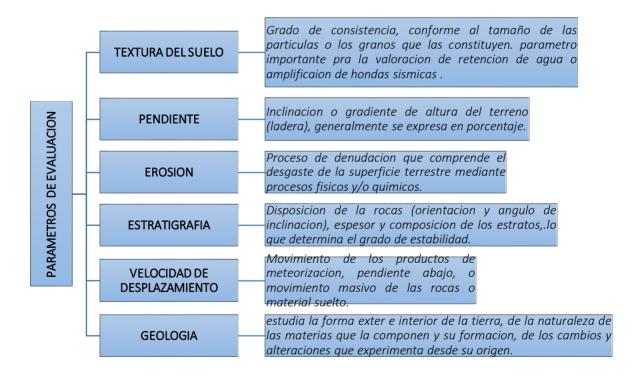


Imagen 17.- Parámetros de evaluación, para movimientos en masa, Fuente CENEPRED

Para nuestro caso de evaluación de acuerdo a la disponibilidad de información se han considerado 4 parámetros, las cuales han sido materia de investigación en campo.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	PENDIENTES	GEOMORFOLOGIA	GEOLOGIA LITOLOGIA	ESTRUCTURAL			
PENDIENTES	1.00	7.00	5.00	3.00			
GEOMORFOLOGIA	0.14	1.00	0.50	0.33			
GEOLOGIA LITOLOGIA	0.20	2.00	1.00	0.20			
ESTRUCTURAL	0.33	3.00	5.00	1.00			
SUMA	1.68	13.00	11.50	4.53			
1/SUMA	0.597	0.077	0.087	0.221			

MATRIZ DE NORMALIZACION								
PARAMETROS DE EVALUACION	PENDIENTES	GEOMORFOLOGIA	GEOLOGIA LITOLOGIA	ESTRUCTURAL	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
PENDIENTES	0.60	0.54	0.43	0.66	0.56	55.79		
GEOMORFOLOGIA	0.09	0.08	0.04	0.07	0.07	6.98		
GEOLOGIA LITOLOGIA	0.12	0.15	0.09	0.04	0.10	10.11		
ESTRUCTURAL	0.20	0.23	0.43	0.22	0.27	27.13		

INDICE DE CONSISTENCIA (IC)	0.062
RELACION DE CONSISTENCIA (RC)	0.070

PARAMETROS		PESO PONDERADO	%				
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°	0.56	56.00
ESTRUCTURAL	Normal	Inversa	Direccional	Pliegues	Inferida	0.27	27.00
GEOLOGIA	Kis-ar_i	PN-coy-coy/to,gd	Qh-al	Qh-co	-	0.10	10.00
GEMORFOLOGIA	Laderas escarpadas	Laderas moderadas	Cono aluvial	Terraza coluvial	-	0.07	7.00

Cuadro 12.- Matriz de comparación de pares normalización de parámetros.

Las ponderaciones de los descriptores se han realizado para cada uno de los parámetros. A continuación, se muestran los cuadros de valores con su respectiva relación de consistencia:

MATRIZ DE COMPARACION DE PARES								
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°			
0°-3°	1.00	0.50	0.33	0.25	0.14			
3°-12°	2.00	1.00	0.50	0.33	0.25			
12°-30°	3.00	2.00	1.00	0.50	0.33			
30°-45°	4.00	3.00	2.00	1.00	1.00			
>45°	7.00	4.00	3.00	1.00	1.00			
SUMA	17.00	10.50	6.83	3.08	2.73			
1/SUMA	0.059	0.095	0.146	0.324	0.367			

MATRIZ DE NORMALIZACION							
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
0°-3°	0.06	0.05	0.05	0.08	0.05	0.058	5.774
3°-12°	0.12	0.10	0.07	0.11	0.09	0.097	9.717
12°-30°	0.18	0.19	0.15	0.16	0.12	0.160	15.954
30°-45°	0.24	0.29	0.29	0.32	0.37	0.301	30.097
>45°	0.41	0.38	0.44	0.32	0.37	0.385	38.458

INDICE DE CONSISTENCIA (IC)	0.085
RELACION DE CONSISTENCIA (RC)	0.077

PARAMETROS	RANGO DE PENDIENTES			PONDERADO = 0.56
RES	0°-3°	Muy suave	PP1	0.058
JO.	3°-12°	Suave	PP2	0.097
RIPI	12°-30°	Moderadamente inclinado	PP3	0.160
	30°-45°	Inclinado	PP4	0.301
DES	>45°	Muy inclinada	PP5	0.385

Cuadro 13.- Matriz de comparación de pares y normalización de los descriptores de pendientes.

MATRIZ DE COMPARACION DE PARES								
ESTRUCTURAL	Normal	Inversa	Direccional	Pliegues	Estructuras Inferidas			
Normal	1.00	1.00	2.00	3.00	7.00			
Inversa	1.00	1.00	2.00	3.00	3.00			
Direccional	0.50	0.50	1.00	2.00	3.00			
Pliegues	0.33	0.33	0.50	1.00	0.50			
Estructuras Inferidas	0.14	0.33	0.33	2.00	1.00			
SUMA	2.98	3.17	5.83	11.00	14.50			
1/SUMA	0.336	0.316	0.171	0.091	0.069			

MATRIZ DE NORMALIZACION								
PENDIENTES	Normal	Inversa	Direccional	Pliegues	Estructuras Inferidas	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Normal	0.34	0.32	0.34	0.27	0.48	0.350	35.003	
Inversa	0.34	0.32	0.34	0.27	0.21	0.295	29.485	
Direccional	0.17	0.16	0.17	0.18	0.21	0.177	17.721	
Pliegues	0.11	0.11	0.09	0.09	0.03	0.086	8.567	
Estructuras Inferidas	0.05	0.11	0.06	0.18	0.07	0.092	9.224	

INDICE DE CONSISTENCIA (IC)	0.057
RELACION DE CONSISTENCIA (RC)	0.051

PARAMETROS	UNIDA	DES ESTRUCTURALES	PESO PONDERADO = 0.27		
80	Normal	Falla regional local actva/inactiva	PGE1	0.350	
TORES	Inversa	Falla regional local actva/inactiva	PGE2	0.295	
_	Direccional	Falla regional local actva/inactiva	PGE3	0.177	
DESCR	Pliegues	Estructural locales	PGE4	0.086	
_	Estructuras Inferidas	Estructuras locales/ regionales	PGE5	0.092	

Cuadro 14.- Matriz de comparación de pares y normalización de los descriptores de Geología estructural.

MATRIZ DE COMPARACION DE PARES							
GEOLOGIA	Kis-ar_i	PN-coy-coy/to,gd	Qh-al	Qh-co			
Kis-ar_i	1.00	0.50	0.14	0.11			
PN-coy-coy/to,gd	2.00	1.00	0.17	0.25			
Qh-al	7.00	6.00	1.00	0.33			
Qh-co	9.00	4.00	3.00	1.00			
SUMA	19.00	11.50	4.31	1.69			
1/SUMA	0.053	0.087	0.232	0.590			

MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION	Kis-ar_i	PN-coy-coy/to,gd	Qh-al	Qh-co	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Kis-ar_i	0.05	0.04	0.03	0.07	0.05	4.87	
PN-coy-coy/to,gd	0.11	0.09	0.04	0.15	0.09	9.46	
Qh-al	0.37	0.52	0.23	0.20	0.33	32.97	
Qh-co	0.47	0.35	0.70	0.59	0.53	52.70	

INDICE DE CONSISTENCIA (IC)	0.072
RELACION DE CONSISTENCIA (RC)	0.081

PARAMETROS	UNIDADES GEOLOGICAS			PONDERADO = 0.10
RES	Kis-ar_i	Formacion Arcurquina (Calizas grises oscuras)	PG1	0.05
CRIPTO	PN-coy-coy/to,gd	Intrusivo Coyllurqui (tonalita, granodiorita)	PG2	0.09
DESC	Qh-al	Suelos aluviales (recientes)	PG3	0.33
<u> </u>	Qh-co	Suelos coluviales (recientes)	PG4	0.53

Cuadro 15.- Matriz de comparación de pares y normalización de los descriptores de Geología.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	LADERAS ESCARPADAS	LADERAS MODERADAS	CONO ALUVIAL	TERRAZA ALUVIAL			
LADERAS ESCARPADAS	1.00	2.00	3.00	3.00			
LADERAS MODERADAS	0.50	1.00	2.00	2.00			
CONO ALUVIAL	0.33	0.50	1.00	2.00			
TERRAZA ALUVIAL	0.33	0.50	0.50	1.00			
SUMA	2.17	4.00	6.50	8.00			
1/SUMA	0.462	0.250	0.154	0.125			

MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION	LADERAS ESCARPADAS	LADERAS MODERADAS	CONO ALUVIAL	TERRAZA ALUVIAL	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
LADERAS ESCARPADAS	0.46	0.50	0.46	0.38	0.45	44.95	
LADERAS MODERADAS	0.23	0.25	0.31	0.25	0.26	25.96	
CONO ALUVIAL	0.15	0.13	0.15	0.25	0.17	17.07	
TERRAZA ALUVIAL	0.15	0.13	0.08	0.13	0.12	12.02	

INDICE DE CONSISTENCIA (IC)	0.024
RELACION DE CONSISTENCIA (RC)	0.027

PARAMETROS	UNIDADES GEOMORFOLOGICAS			PESO PONDERADO = 0.07		
ORES	LADERAS ESCARPADAS	Laderas escarpadas (local)	PGM1	0.45		
T4I	LADERAS MODERADAS	Laderas moderadas (local)	PGM2	0.26		
SCRI	CONO ALUVIAL	Cono aluvial (lcoal)	PGM3	0.17		
DES	CONO ALUVIAL TERRAZA ALUVIAL	Terraza aluvial (local)	PGM4	0.12		

Cuadro 16.- Matriz de comparación de pares y normalización de los descriptores de Geomorfología local.

PARÁMET	ROS	TEXTURA DEL SUELO	PESO PON 0.0548	NDERADO
	TX1	Fina: Suelos arcillosos (arcilloso arenoso, arcilloso limoso, arcilloso).	PTX1	0.503
	TX2	Moderadamente fina: Suelos francos (franco arcilloso, franco limoso arcillosos y/o franco limoso arcilloso).	PTX2	0.260
SES .	TX3	Mediana: suelos francos (franco, franco limoso y/o limoso).	PTX3	0.134
ESCRIPTORES	TX4	Moderadamente gruesa: suelos francos (franco arenoso).	PTX4	0.068
DESCR	TX5	Gruesa: suelos arenosos, franco arenoso.	PTX5	0.0.35

Cuadro 17.- Textura del suelo, fuente FAO-USDA, modificada CENEPRED.

PARÁM	ETROS	PENDIENTE	PESO PONDE	ERADO 0.306
	PN1	30-45°	PN1	0.503
	PN2	25-45°	PN2	0.260
DESCRIPTORES	PN3	20-30°	PN3	0.134
RIPT	PN4	10-20°	PN4	0.068
DESC	PN5	Menor a 5°	PN5	0.0.35

Cuadro 18.- Pendiente de la zona de estudio, Fuente INGEMMET, Modificada CENEPRED

PARÁMET	ΓROS	EROSIÓN	PESO PONI 0.101	DERADO
	E1	Zonas muy inestables. Laderas con zonas de falla, masas de rocas intensamente meteorizadas y/o alteradas; saturadas y muy fracturadas y depósitos superficiales inconsolidados y zonas con intensa erosión (cárcavas).	E1	0.503
	E2	Zonas inestables, macizos rocosos con meteorización y/o alteración intensa a moderada, muy fracturadas; depósitos superficiales inconsolidados, materiales parcialmente a muy saturados, zonas de intensa erosión	E2	0.260
	E3	Zonas de estabilidad marginal, laderas con erosión intensa o materiales, parcialmente saturados, moderadamente meteorizados.	E3	0.134
	E4	Laderas con materiales poco fracturados, moderada a poca meteorización parcialmente erosionadas, no saturadas.	E4	0.068
DESCRIPTORES	E5	Laderas con substrato rocoso no meteorizado. Se pueden presentar inestabilidades en las laderas adyacentes a los ríos y quebradas, por socavamiento y erosión	E5	0.0.35

Cuadro 19.- Erosión de suelo, Fuente Modificado CENEPRED.

PARAMETROS		VELOCIDAD DE	PESO PONDERADO	
		DESPLAZAMIENTO	0.	045
	VD1	Extremadamente rápido (v= 5m/s)	VD1	0.503
	VD2	Muy rápido (v= 0.05m/s)	VD2	0.260
ORES	VD3	Rápido (v= 0.0033 m/s)	VD3	0.134
DESCRIPTORES	VD4	Moderada(v=3.009x10-"m/s)	VD4	0.068
DES		Lenta a extremadamente lenta		
	VD5	(v=5.144x1O ⁻⁸ m/año a 5.144x1O ⁻¹⁰ miaño)	VD5	0.0.35

Cuadro 20.- Velocidad de Desplazamiento, Fuente Modificado CENEPRED.

6. CAPITULO VI: ANALISIS DE SUCEPTIBILIDAD DE MOVIMIENTOS EN MASA

6.1. SUCEPTIBILIDAD

La susceptibilidad está referida a la mayor o menor predisposición a que un evento suceda u ocurra sobre determinado ámbito geográfico (depende de los factores condicionantes y desencadenantes del fenómeno y su respectivo ámbito geográfico), fuente CENEPRED.

6.1.1. FACTORES CONDICIONANTES

Son parámetros propios del ámbito geográfico de estudio (ver mapas de susceptibilidad), el cual contribuye de manera favorable o no al desarrollo del fenómeno de origen natural (magnitud e intensidad), así como su distribución espacial.

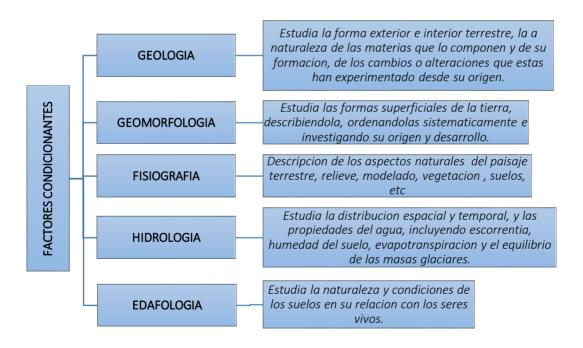


Imagen 18.- Factores condicionantes del peligro, fuente CENEPRED

6.1.1.1. EVALUACION DE PARAMETROS DE LOS FACTORES CONDICIONANTES PARA MOVIMIENTOS EN MASA.

Los valores numéricos (pesos) fueron obtenidos mediante el proceso de análisis Jerárquico.

MATRIZ DE COMPARACION DE PARES								
PARAMETROS DE EVALUACION	PENDIENTES	GEOMORFOLOGIA	GEOLOGIA LITOLOGIA	ESTRUCTURAL				
PENDIENTES	1.00	4.00	5.00	5.00				
GEOMORFOLOGIA	0.25	1.00	2.00	3.00				
GEOLOGIA LITOLOGIA	0.20	0.50	1.00	1.00				
ESTRUCTURAL	0.20	0.33	1.00	1.00				
SUMA	1.65	5.83	9.00	10.00				
1/SUMA	0.606	0.171	0.111	0.100				

MATRIZ DE NORMALIZACION								
PARAMETROS DE EVALUACION	PENDIENTES	GEOMORFOLOGIA	GEOLOGIA LITOLOGIA	ESTRUCTURAL	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
PENDIENTES	0.61	0.69	0.56	0.50	0.59	58.68		
GEOMORFOLOGIA	0.15	0.17	0.22	0.30	0.21	21.13		
GEOLOGIA LITOLOGIA	0.12	0.09	0.11	0.10	0.10	10.45		
ESTRUCTURAL	0.12	0.06	0.11	0.10	0.10	9.74		

INDICE DE CONSISTENCIA (IC)	0.024
RELACION DE CONSISTENCIA (RC)	0.028

PARAMETROS		PESO PONDERADO	%				
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°	0.59	58.68
ESTRUCTURAL	Normal	Inversa	Direccional	Pliegues	Inferida	0.21	21.13
GEOLOGIA	Kis-ar_i	PN-coy-coy/to,gd	Qh-al	Qh-co	-	0.10	10.45
GEMORFOLOGIA	Laderas escarpadas	Laderas moderadas	Cono aluvial	Terraza coluvial	-	0.10	9.74

Cuadro 21.- Matriz de comparación de pares y normalización de los parámetros para movimientos en masa.

6.1.1.2. EVALUACION DE DESCRIPTORES DE LOS FACTORES CONDICIONANTES PARA MOVIMIENTOS EN MASA.

MATRIZ DE COMPARACION DE PARES								
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°			
0°-3°	1.00	0.33	0.33	0.25	0.11			
3°-12°	3.00	1.00	0.50	0.33	0.33			
12°-30°	3.00	2.00	1.00	0.50	0.33			
30°-45°	4.00	3.00	2.00	1.00	1.00			
>45°	9.00	3.00	3.00	1.00	1.00			
SUMA	20.00	9.33	6.83	3.08	2.78			
1/SUMA	0.050	0.107	0.146	0.324	0.360			

MATRIZ DE NORMALIZACION									
PENDIENTES	0°-3°	3°-12°	12°-30°	30°-45°	>45°	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
0°-3°	0.05	0.04	0.05	0.08	0.04	0.051	5.112		
3°-12°	0.15	0.11	0.07	0.11	0.12	0.112	11.168		
12°-30°	0.15	0.21	0.15	0.16	0.12	0.159	15.856		
30°-45°	0.20	0.32	0.29	0.32	0.36	0.300	29.969		
>45°	0.45	0.32	0.44	0.32	0.36	0.379	37.896		

INDICE DE CONSISTENCIA (IC)	0.099
RELACION DE CONSISTENCIA (RC)	0.088

PARAMETROS	RANGO DE PENDIENTES			PONDERADO = 0.59
RES	0°-3°	Muy suave	PP1	0.051
JOR J	3°-12°	Suave	PP2	0.112
ZIP7	12°-30°	Moderadamente inclinado	PP3	0.159
5	<i>30°-45°</i>	Inclinado	PP4	0.300
DESC	>45°	Muy inclinada	PP5	0.379

Cuadro 22.- Matriz de comparación de pares y normalización de los descriptores -pendiente.

MATRIZ DE COMPARACION DE PARES								
ESTRUCTURAL	Normal	Inversa	Direccional	Pliegues	Estructuras Inferidas			
Normal	1.00	1.00	2.00	3.00	7.00			
Inversa	1.00	1.00	2.00	3.00	3.00			
Direccional	0.50	0.50	1.00	2.00	3.00			
Pliegues	0.33	0.33	0.50	1.00	0.50			
Estructuras Inferidas	0.14	0.33	0.33	2.00	1.00			
SUMA	2.98	3.17	5.83	11.00	14.50			
1/SUMA	0.336	0.316	0.171	0.091	0.069			

MATRIZ DE NORMALIZACION							
PENDIENTES	Normal	Inversa	Direccional	Pliegues	Estructuras Inferidas	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
Normal	0.34	0.32	0.34	0.27	0.48	0.350	35.003
Inversa	0.34	0.32	0.34	0.27	0.21	0.295	29.485
Direccional	0.17	0.16	0.17	0.18	0.21	0.177	17.721
Pliegues	0.11	0.11	0.09	0.09	0.03	0.086	8.567
Estructuras Inferidas	0.05	0.11	0.06	0.18	0.07	0.092	9.224

INDICE DE CONSISTENCIA (IC)	0.057
RELACION DE CONSISTENCIA (RC)	0.051

PARAMETROS	UNIDA	ADES ESTRUCTURALES	PESO 1	PONDERADO = 0.21
80	Normal	Falla regional local actva/inactiva	PGE1	0.350
ORES	Inversa	Falla regional local actva/inactiva	PGE2	0.295
IPT	Direccional	Falla regional local actva/inactiva	PGE3	0.177
DESCR	Pliegues	Estructural locales	PGE4	0.086
_	Estructuras Inferidas	Estructuras locales/ regionales	PGE5	0.092

Cuadro 23.- Matriz de comparación de pares y normalización de los descriptores-Geología estructural.

MATRIZ DE COMPARACION DE PARES						
GEOLOGIA	Kis-ar_i	PN-coy- coy/to,gd	Qh-al	Qh-co		
Kis-ar_i	1.00	0.50	0.14	0.11		
PN-coy-coy/to,gd	2.00	1.00	0.17	0.25		
Qh-al	7.00	6.00	1.00	0.33		
Qh-co	9.00	4.00	3.00	1.00		
SUMA	19.00	11.50	4.31	1.69		
1/SUMA	0.053	0.087	0.232	0.590		

MATRIZ DE NORMALIZACION						
PARAMETROS DE EVALUACION	Kis-ar_i	PN-coy- coy/to,gd	Qh-al	Qh-co	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
Kis-ar_i	0.05	0.04	0.03	0.07	0.05	4.87
PN-coy-coy/to,gd	0.11	0.09	0.04	0.15	0.09	9.46
Qh-al	0.37	0.52	0.23	0.20	0.33	32.97
Qh-co	0.47	0.35	0.70	0.59	0.53	52.70

INDICE DE CONSISTENCIA (IC)	0.072
RELACION DE CONSISTENCIA (RC)	0.081

PARAMETROS	UNIDADES GEOLOGICAS			PESO PONDERADO = 0.10		
RES	Kis-ar_i	Formacion Arcurquina (Calizas grises oscuras)	PG1	0.05		
RIPTO	PN-coy-coy/to,gd	Intrusivo Coyllurqui (tonalita, granodiorita)	PG2	0.09		
DESC	Qh-al	Suelos aluviales (recientes)	PG3	0.33		
۵	Qh-co	Suelos coluviales (recientes)	PG4	0.53		

Cuadro 24.- Matriz de comparación de pares y normalización de los descriptores-Geología.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	LADERAS ESCARPADAS	LADERAS MODERADAS	CONO ALUVIAL	TERRAZA ALUVIAL			
LADERAS ESCARPADAS	1.00	2.00	3.00	5.00			
LADERAS MODERADAS	0.50	1.00	3.00	3.00			
CONO ALUVIAL	0.33	0.33	1.00	2.00			
TERRAZA ALUVIAL	0.20	0.33	0.50	1.00			
SUMA	2.03	3.67	7.50	11.00			
1/SUMA	0.492	0.273	0.133	0.091			

MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION	LADERAS ESCARPADAS	LADERAS MODERADAS	CONO ALUVIAL	TERRAZA ALUVIAL	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
LADERAS ESCARPADAS	0.49	0.55	0.40	0.45	0.47	47.30	
LADERAS MODERADAS	0.25	0.27	0.40	0.27	0.30	29.78	
CONO ALUVIAL	0.16	0.09	0.13	0.18	0.14	14.25	
TERRAZA ALUVIAL	0.10	0.09	0.07	0.09	0.09	8.67	

INDICE DE CONSISTENCIA (IC)	0.022
RELACION DE CONSISTENCIA (RC)	0.025

PARAMETROS	UNIDADES GEOMORFOLOGICAS			PESO PONDERADO = 0.10		
LADERAS MODERADAS	LADERAS ESCARPADAS	Laderas escarpadas (local)	PGM1	0.47		
	LADERAS MODERADAS	Laderas moderadas (local)	PGM2	0.30		
SCRI	CONO ALUVIAL	Cono aluvial (lcoal)	PGM3	0.14		
DES	TERRAZA ALUVIAL	Terraza aluvial (local)	PGM4	0.09		

Cuadro 25.- Matriz de comparación de pares y normalización de los descriptores-Geomorfología.

6.1.2. FACTORES DESENCADENANTES

Son parámetros que desencadenan eventos y/o sucesos asociados que pueden generar peligros en un ámbito geográfico específico, Por ejemplo: las lluvias generan deslizamiento de material suelto o meteorizado, los sismos de gran magnitud Ocurridos en el mar (locales) ocasionan tsunamis, etc.

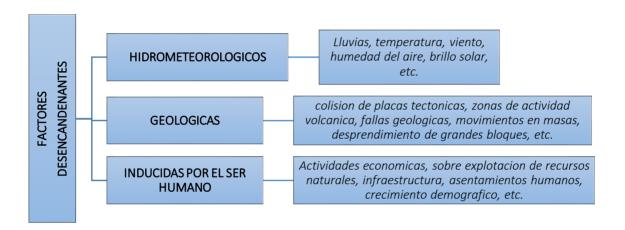


Imagen 19.- Factores desencadenantes del peligro; fuente CENEPRED

6.1.2.1. EVALUACION DE PARAMETROS DE LOS FACTORES DESENCADENANTES PARA MOVIMIENTO EN MASA.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE	PRECIPITACION	GEOLOGIA	ACTIVIDAD				
EVALUACION	ES PLUVIALES	GEOLOGIA	HUAMANA				
PRECIPITACIONES PLUVIALES	1.00	1.00	0.20				
GEOLOGIA	1.00	1.00	0.50				
ACTIVIDAD HUAMANA	5.00	2.00	1.00				
SUMA	7.00	4.00	1.70				
1/SUMA	0.143	0.250	0.588				

MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION	PRECIPITACION ES PLUVIALES	GEOLOGIA	ACTIVIDAD HUAMANA	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
PRECIPITACIONES PLUVIALES	0.14	0.25	0.12	0.17	17.02		
GEOLOGIA	0.14	0.25	0.29	0.23	22.90		
ACTIVIDAD HUAMANA	0.71	0.50	0.59	0.60	60.08		

INDICE DE CONSISTENCIA (IC)	0.048
RELACION DE CONSISTENCIA (RC)	0.091

PARAMETROS		PESO PONDERADO	%				
PRECIPITACIONES PLUVIALES	100-200 mm	200-400mm	400-600mm	600-700mm	700-800mm	0.17	17.02
GEOLOGIA	CHOQUE DE PLACAS TECTONICAS	ZONA VOLCANICA	FALLAS GEOLOGICAS	MOVIMIENTOS DE MASA	DESPRENDI MIENTO DE BLOQUE	0.23	22.90
ACTIVIDAD HUAMANA	ACTIVIDADES ECONOMICAS	AGRICULTURA	EXPANSION URBANA	INFRAESTRUCT URA PUBLICA	-	0.60	60.08

Cuadro 26.- Matriz de comparación de pares y normalización de los parámetros.

6.1.2.2. EVALUACION DE DESCRIPTORES DE LOS FACTORES DESENCADENANTES PARA MOVIMIENTO EN MASA.

MATRIZ DE COMPARACION DE PARES								
PRECIPITACIONES PLUVIALES	100-200 mm	200-400mm	400-600mm	600-700mm	700- 800mm			
100-200 mm	1.00	0.25	0.20	0.14	0.14			
200-400mm	4.00	1.00	0.50	0.20	0.33			
400-600mm	5.00	2.00	1.00	0.33	0.50			
600-700mm	7.00	5.00	3.00	1.00	0.50			
700-800mm	7.00	3.00	2.00	2.00	1.00			
SUMA	24.00	11.25	6.70	3.68	2.48			
1/SUMA	0.042	0.089	0.149	0.272	0.404			

MATRIZ DE NORMALIZACION								
PRECIPITACIONES PLUVIALES	100-200 mm	200-400mm	400-600mm	600-700mm	700- 800mm	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
100-200 mm	0.04	0.02	0.03	0.04	0.06	0.038	3.806	
200-400mm	0.17	0.09	0.07	0.05	0.13	0.104	10.384	
400-600mm	0.21	0.18	0.15	0.09	0.20	0.166	16.559	
600-700mm	0.29	0.44	0.45	0.27	0.20	0.332	33.156	
700-800mm	0.29	0.27	0.30	0.54	0.40	0.361	36.095	

INDICE DE CONSISTENCIA (IC)	0.093
RELACION DE CONSISTENCIA (RC)	0.083

PARAMETROS	PRECIPITAC	IONES MAXIMAS ANUALES	PESO PONDERADO = 0.17		
ORES	100-200 mm	Lluvias bajas	PPMA1	0.038	
OR	200-400mm	Lluvias moderadas	PPMA2	0.104	
III.	400-600mm	Lluvias ligeramente moderadas	PPMA3	0.166	
SCRII	600-700mm	Lluvias fuertes	PPMA4	0.332	
DE	700-800mm	Lluvias Intensas	PPMA5	0.361	

Cuadro 27.- Matriz de comparación de pares y normalización de los descriptores-Precipitaciones anuales máximas.

MATRIZ DE COMPARACION DE PARES							
GEOLOGIA	CHOQUE DE PLACAS TECTONICAS	ZONA VOLCANICA	FALLAS GEOLOGICAS	MOVIMIENTOS DE MASA	DESPRENDIMIENTO DE BLOQUE		
CHOQUE DE PLACAS TECTONICAS	1.00	1.00	0.20	0.50	1.00		
ZONA VOLCANICA	1.00	1.00	0.33	0.33	1.00		
FALLAS GEOLOGICAS	5.00	3.00	1.00	1.00	0.50		
MOVIMIENTOS DE MASA	2.00	3.00	1.00	1.00	1.00		
DESPRENDIMIENTO DE BLOQUE	1.00	1.00	2.00	1.00	1.00		
SUMA	10.00	9.00	4.53	3.83	4.50		
1/SUMA	0.100	0.111	0.221	0.261	0.222		

GEOLOGIA	CHOQUE DE PLACAS TECTONICAS	ZONA VOLCANICA	FALLAS GEOLOGICAS	MOVIMIENTOS DE MASA	DESPRENDIMIENTO DE BLOQUE	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
CHOQUE DE PLACAS TECTONICAS	0.10	0.11	0.04	0.13	0.22	0.122	12.158
ZONA VOLCANICA	0.10	0.11	0.07	0.09	0.22	0.119	11.876
FALLAS GEOLOGICAS	0.50	0.33	0.22	0.26	0.11	0.285	28.518
MOVIMIENTOS DE MASA	0.20	0.33	0.22	0.26	0.22	0.247	24.740
DESPRENDIMIENTO DE BLOQUE	0.10	0.11	0.44	0.26	0.22	0.227	22.708

INDICE DE CONSISTENCIA (IC)	0.038
RELACION DE CONSISTENCIA (RC)	0.034

PARAMETROS		GEOLOGIA	PESO PONDERADO = 0.23		
	CHOQUE DE PLACAS TECTONICAS	Por la sudccion de las placas tectonicas.	PGEO1	0.122	
ORES	ZONA VOLCANICA	Actividades volcanicas cercanas.	PGEO2	0.119	
DESCRIPTORES	FALLAS GEOLOGICAS	Reactivacion de fallas locales y regionales.	PGEO3	0.285	
DESC	MOVIMIENTOS DE MASA DE MASA Eventos activos de movimientos de remocion en masa.		PGEO4	0.247	
	DESPRENDIMIEN TO DE BLOQUE	Alteraciones quimicas y fisicas de las rocas.	PGEO5	0.227	

Cuadro 28.- Matriz de comparación de pares y normalización de los descriptores, geología.

MATRIZ DE COMPARACION DE PARES							
ACCION HUMANA	ACTIVIDADES ECONOMICAS	AGRICULTURA	EXPANSION URBANA	INFRAESTRUCTURA PUBLICA			
ACTIVIDADES ECONOMICAS	1.00	1.00	0.14	0.33			
AGRICULTURA	1.00	1.00	0.20	0.33			
EXPANSION URBANA	7.00	5.00	1.00	1.00			
INFRAESTRUCTURA PUBLICA	3.00	3.00	1.00	1.00			
SUMA	12.00	10.00	2.34	2.67			
1/SUMA	0.083	0.100	0.427	0.375			

MATRIZ DE NORMALIZACION								
ACCION HUMANA	ACTIVIDADES ECONOMICAS	AGRICULTURA	EXPANSION URBANA	INFRAESTRUCTURA PUBLICA	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
ACTIVIDADES ECONOMICAS	0.08	0.10	0.06	0.13	0.09	9.23		
AGRICULTURA	0.08	0.10	0.09	0.13	0.10	9.84		
EXPANSION URBANA	0.58	0.50	0.43	0.38	0.47	47.13		
INFRAESTRUCTURA PUBLICA	0.25	0.30	0.43	0.38	0.34	33.80		

INDICE DE CONSISTENCIA (IC)	0.023
RELACION DE CONSISTENCIA (RC)	0.026

PARAMETROS	ACTIV	/IDAD ANTROPICA	PESO PONDERADO = 0.60		
Si	ACTIVIDADES ECONOMICAS	extraccion de recursos minerales.	PAT1	0.09	
ORI	AGRICULTURA	Uso descontrolado de riego.	PAT2	0.10	
DESCRIPTORES	EXPANSION URBANA	Desarrollo desorganizado de la zonas urbanas.	PAT3	0.47	
DESC	INFRAESTRUCTU RA PUBLICA	Corte de taludes e instalacion de obras publicas de forma no controlada.	PAT4	0.34	

Cuadro 29.- Matriz de comparación de pares y normalización de los descriptores, Actividad antrópica.

91

7. CAPITULO VII: CÁLCULO DE LOS NIVELES DE PELIGROSIDAD EN FUNCION A LA SUCEPTIBILIDAD

7.1. PELIGROSIDAD PARA MOVIMIENTOS EN MASA

	SUMATORIA DE SUSCEPTIBILIDAD PESO PAR1*DESC+PESO PAR2*DESC++=VALOR								
			FACTORES	CONDICIONAN	ITES				
PENDI	ENTES	ESTRUC	TURAL	GEOLOGIA		GEOMORFOLOGIA		VALOR	
PARAMETRO	DESCRIPTOR	<i>PARAMETROS</i>	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
	0.379		0.350		0.53		0.47	0.397	
	0.300		0.295		0.33		0.30	0.301	
0.59	0.159	0.21	0.177	0.10	0.09	0.10	0.14	0.154	
	0.112		0.092		0.05		0.09	0.099	
	0.051		0.086					0.048	

FACTORES DESENCADENANTES								
PRECIPITACIONES		GEOLOGIA		ACTIVIDA	VALOR			
PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR			
	0.361		0.285		0.47	0.410		
	0.332	0.23	0.247	0.60	0.34	0.316		
0.17	0.166		0.227		0.10	0.139		
	0.104		0.122		0.09	0.101		
	0.038		0.119			0.034		

FACTORES CONDICIONANTES		FACTO DESENCAD	VALOR	
	VALORES		VALORES	
	0.397	0.410	0.403	
0.50	0.301	0.50	0.316	0.309
0.50	0.154		0.139	0.147
	0.099		0.101	0.100
	0.048		0.034	0.041

CALCULO DE PELIGRO (FENOMENO*0.5+SUSCEPTIBILIDAD*0.5=VALOR)						
FENOMENO		SUSCEPTIBILIDAD		VALOR DEL PELIGRO		
	0.394	0.50	0.403	0.399		
	0.299		0.309	0.304		
0.50	0.159		0.147	0.153		
	0.093		0.100	0.096		
	0.055		0.041	0.048		

RANGOS DE PELIGROSIDAD						
0.304	≤P≤	0.399	MUY ALTO			
0.153	≤P<	0.304	ALTO			
0.096	≤P<	0.153	MEDIO			
0.048	≤P<	0.096	BAJO			

Cuadro 30.- Rangos de peligrosidad por movimientos en masa (Fuente CENEPRED)

PELIGROSIDAD PARA MOVIMIENTOS EN MASA.

SUMATORIA DE SUSCEPTIBILIDAD								
PESO PAR1*DESC+PESO PAR2*DESC++=VALOR								
FACTORES CONDICIONANTES								
PENDI	PENDIENTES ESTRUCTURAL		TURAL	GEOL	.OGIA	GEOMOR	FOLOGIA	VALOR
PARAMETRO	DESCRIPTOR	PARAMETROS	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR	
0.59	0.112	0.10	0.086	0.100	0.33	0.21	0.09	0.125

FACTORES DESENCADENANTES							
PRECIPIT	ACIONES	GEOLOGIA		ACTIVIDAI	VALOR		
PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
0.170	0.166	0.230	0.247	0.600	0.34	0.288	

RESUMEN DE LA SUSCEPTIBILIDAD					
FACTORES CONDICIONANTES		FACTORES DESENCADENANTES		WALOD	
	VALORES		VALORES	VALOR	
0.50	0.125	0.50	0.288	0.207	

CALCULO DE PELIGRO (FENOMENO*0.5+SUSCEPTIBILIDAD*0.5=VALOR)						
FENOMENO		SUSCEPTI	VALOR DEL PELIGRO			
0.50	0.119	0.50	0.207	0.163		
La zona de proyecto esta ubicado en un medio de peligro alto por remocion en masa, cuyo valor de es de 0.163						

El nivel de peligrosidad para la zona de estudios corresponde a alta (0.163), ya que los factores y condicionantes y desencadenantes juegan a favor de la ocurrencia de los movimientos de remoción en masa.

FOTO 13.- En la imagen se muestra la parte alta de la zona de estudios, observándose zonas de deslizamientos y caída de rocas. (Fuente propia)

7.2. MATRIZ DE LOS NIVELES DE PELIGROSIDAD POR MOVIMIENTO EN MASA.

MATRIZ	Z DE DESCRIPTIVO DE LOS NIVELES DE PELIGROSIDAD POR MOVIMIENTOS DE REMOCION EN MASA	RANGOS		
PELIGROSIDAD MUY ALTA	Geomorfológicamente estas áreas se encuentras en laderas moderadas y empinadas con actividad de geodinámica externa alta, como hacia el sur en las laderas y pendientes altas se muestran algunos deslizamientos y caída de rocas. La pendiente en estas zonas es mayor a 30°, cubiertas por material cuaternario o roca fracturada, además estas zonas son atravesadas por fallas locales, producto de ello se muestran algunos plegamientos en las rocas.	0.304	≤P≤	0.399

PELIGROSIDAD ALTA	Geomorfológicamente estas áreas se encuentras en laderas moderadas con geodinámica externa inactiva, como hacia el sur en las laderas y pendientes altas se muestran algunos deslizamientos y caída de rocas, la cuales han dejado como evidencias algunas escarpas, además la zona de proyecto está considerado dentro de este contexto ya que las geoformas y algunos parámetros como geomorfología y la geología juegan a favor de la ocurrencia de MRM. La pendiente en estas zonas es mayor a 30°-45°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja.	0.153	≤P≺	0.304
PELIGROSIDAD MEDIA	Geomorfológicamente estas áreas se encuentras en laderas moderadas y suaves con geodinámica externa baja sin embargo por las características geológicas y el tipo de suelo son propicias para la ocurrencia de los fenómenos de geodinámica externa como son MRM La pendiente en estas zonas es mayor a 12°-30°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja.	0.096	≤P<	0.153
PELIGROSIDAD BAJA	Geomorfológicamente estas áreas se encuentras en terrazas y conos aluviales sin la presencia de la geodinámica externa. La pendiente en estas zonas es mayor a 0°-12°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja.	P<		0.096

Cuadro 31.- Descripción y Rangos de peligrosidad por movimientos en masa (Fuente propia)

8. CAPITULO VIII: VULNERABILIDAD

8.1. VULNERABIIDAD

Es el grado en que las personas pueden ser susceptibles a las pérdidas, los daños, el sufrimiento y la muerte, en casos de desastre o siniestro. Se da en función de las condiciones físicas, económicas, sociales, políticas, técnicas, ideológicas, culturales, educativas, ecológicas e institucionales. La vulnerabilidad se relaciona con la capacidad de un individuo o de una comunidad para enfrentar eventos peligrosos o dañinos específicos en un momento dado.

Imagen 20.- Flujo metodológico de toma de decisiones para evaluación de vulnerabilidad. (CENEPRED)

8.2. ANALISIS DE ELEMENTOS EXPUESTOS EN ZONAS SUSCEPTIBLES

Para el análisis de vulnerabilidad, se utilizó el análisis multi criterio, denominado Proceso Jerárquico Analítico de Saaty (1980), que desarrolla el cálculo de los pesos ponderados de los descriptores cuyo resultado busca indicar la importancia relativa en comparación de pares.

Foto 14.-Exposición de infraestructuras adyacentes a la zona de proyecto.

8.3. DIMENSIÓN SOCIAL

El análisis de la dimensión social nos permite identificar las características intrínsecas de la población de la zona de evaluación y su resultado en la contribución para el análisis de la vulnerabilidad.

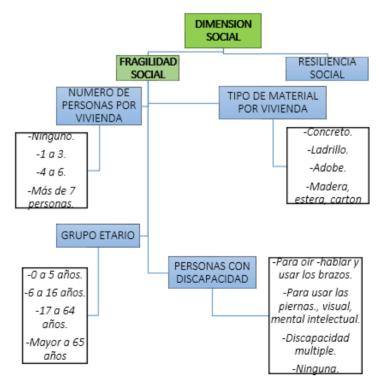


Imagen 21.-Flujograma que muestra los indicadores para el cálculo de la fragilidad social- dimensión social.

8.3.1. FRAGILIDAD SOCIAL

Para el análisis de (fragilidad social), se han considerado los indicadores que se mencionan a continuación:

- Grupo etario.
- Personas con discapacidad.
- Número de personas por vivienda.
- Tipo de material por vivienda.

Cada uno de estos indicadores se determinará sus descriptores.

Foto 15.- Muestra a los pobladores de la localidad de Huayllati, donde la oscilación de edades es de 20 a 50 años en promedio. (Fuente propia)

Foto 16.- Muestra el tipo de material (Adobe) de la edificación de la posta de salud Huayllati en estado actual. (Fuente propia)

8.3.1.1. PONDERACIÓN DE LOS INDICADORES PARA LA FRAGILIDAD

SOCIAL.

Para esta evaluación se ha tomado en cuenta cuatro indicadores.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	TIPO DE MATERIAL DE LAS VIVIENDAS	NUMERO DE PERSONAS POR VIVIENDA	GRUPO ETARIO	PERSONAS CON DISCAPACIDAD			
TIPO DE MATERIAL DE LAS VIVIENDAS	1.00	2.00	0.33	0.25			
NUMERO DE PERSONAS POR VIVIENDA	0.50	1.00	0.50	0.33			
GRUPO ETARIO	3.00	2.00	1.00	1.00			
PERSONAS CON DISCAPACIDAD	4.00	3.00	1.00	1.00			
SUMA	8.50	8.00	2.83	2.58			
1/SUMA	0.118	0.125	0.353	0.387			

	MATRIZ DE NORMALIZACION								
PARAMETROS DE EVALUACION	TIPO DE MATERIAL DE LAS VIVIENDAS	NUMERO DE PERSONAS POR VIVIENDA	GRUPO ETARIO	PERSONAS CON DISCAPACIDAD	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %			
TIPO DE MATERIAL DE LAS VIVIENDAS	0.12	0.25	0.12	0.10	0.15	14.55			
NUMERO DE PERSONAS POR VIVIENDA	0.06	0.13	0.18	0.13	0.12	12.23			
GRUPO ETARIO	0.35	0.25	0.35	0.39	0.34	33.57			
PERSONAS CON DISCAPACIDAD	0.47	0.38	0.35	0.39	0.40	39.64			

INDICE DE CONSISTENCIA (IC)	0.052
RELACION DE CONSISTENCIA (RC)	0.059

PARAMETROS		PESO PONDERADO	%			
TIPO DE MATERIAL DE LAS VIVIENDAS	CONCRETO	ADOBE	LADRILLO	MADERA U OTROS	0.146	14.552
NUMERO DE PERSONAS POR VIVIENDA	0 a 3	4 a 5	6 a 7	> 7	0.122	12.233
GRUPO ETARIO	< 3 y > 65 años	a 10 año	11 a 20 años	21 a 64 años	0.336	33.574
PERSONAS CON DISCAPACIDAD	Para oir y Hablar	Visuale	Motricidad	Ninguna	0.396	39.641

Cuadro 32.- Matriz de comparación de pares y normalización de los parámetros para la fragilidad social.

8.3.1.2. PONDERACIÓN DE DESCRIPTORES PARA LA FRAGILIDAD SOCIAL

MATRIZ DE COMPARACION DE PARES						
TIPO DE MATERIALES DE LAS VIVIENDAS	CONCRETO	ADOBE	LADRILLO	MADERA U OTROS		
CONCRETO	1.00	0.33	1.00	0.20		
ADOBE	3.00	1.00	3.00	0.33		
LADRILLO	1.00	0.33	1.00	0.25		
MADERA U ØTROS	5.00	3.00	4.00	1.00		
SUMA	10.00	4.67	9.00	1.78		
1/SUMA	0.100	0.214	0.111	0.561		

MATRIZ DE NORMALIZACION								
TIPO DE MATERIALES DE LAS VIVIENDAS	CONCRETO	ADOBE	LADRILLO	DERA U ØTRO	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
CONCRETO	0.10	0.07	0.11	0.11	0.10	9.87		
ADOBE	0.30	0.21	0.33	0.19	0.26	25.86		
LADRILLO	0.10	0.07	0.11	0.14	0.11	10.57		
MADERA U ØTROS	0.50	0.64	0.44	0.56	0.54	53.70		

INDICE DE CONSISTENCIA (IC)	0.022
RELACION DE CONSISTENCIA (RC)	0.025

PARAMETROS	TIPO DE MATERIALES DE LAS VIVIENDAS		PESO PONDERA	DO = 0.146
RES	CONCRETO	Comun	PTMC1	0.099
PTOI	ADOBE	Muy comun	PTMC2	0.259
CRII	LADRILLO	Comun	PTMC3	0.106
DES	MADERA U OTROS	Poco comun	PTMC4	0.537

Cuadro33.- Matriz de comparación de pares y normalización de los descriptores-Tipo de materiales de las viviendas.

Foto 17.- En la zona de estudios existen mayormente edificaciones con material de adobe. (Fuente propia)

MATRIZ DE COMPARACION DE PARES						
# DE PERSONAS POR VIVIENDA	0 a 3	4 a 5	6 a 7	>7		
0 a 3	1.00	0.33	0.25	0.20		
4 a 5	3.00	1.00	0.50	0.25		
6 a 7	4.00	2.00	1.00	0.33		
> 7	5.00	4.00	3.00	1.00		
SUMA	13.00	7.33	4.75	1.78		
1/SUMA	0.077	0.136	0.211	0.561		

MATRIZ DE NORMALIZACION						
# DE PERSONAS POR VIVIENDA	0 a 3	4 a 5	6 a 7	> 7	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
0 a 3	0.08	0.05	0.05	0.11	0.072	7.18
4 a 5	0.23	0.14	0.11	0.14	0.153	15.31
6 a 7	0.31	0.27	0.21	0.19	0.244	24.45
> 7	0.38	0.55	0.63	0.56	0.531	53.06

INDICE DE CONSISTENCIA (IC)	0.040
RELACION DE CONSISTENCIA (RC)	0.045

PARAMETROS	NUMERO DE PERS	SONAS POR VIVIENDA	PESO PONDERADO = 0.122	
RES	0 a 3	Comun	PNPV1	0.072
P.T0I	4 a 5	Comun	PNPV2	0.153
GR	6 a 7	Comun	PNPV3	0.244
DES	> 7	Comun	PNPV4	0.531

Cuadro34.- Matriz de comparación de pares y normalización de los descriptores-Número de personas por vivienda.

MATRIZ DE COMPARACION DE PARES					
GRUPO ETARIO	< 3 y > 65 años	6 a 10 años	11 a 20 años	21 a 64 años	
< 3 y > 65 años	1.00	3.00	7.00	9.00	
6 a 10 años	0.33	1.00	2.00	3.00	
11 a 20 años	0.14	0.50	1.00	0.50	
21 a 64 años	0.11	0.33	2.00	1.00	
SUMA	1.59	4.83	12.00	13.50	
1/SUMA	0.630	0.207	0.083	0.074	

MATRIZ DE NORMALIZACION						
GRUPO ETARIO	< 3 y > 65 años	6 a 10 años	11 a 20 años	21 a 64 años	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
< 3 y > 65 años	0.63	0.62	0.58	0.67	0.625	62.52
6 a 10 años	0.21	0.21	0.17	0.22	0.201	20.14
11 a 20 años	0.09	0.10	0.08	0.04	0.078	7.85
21 a 64 años	0.07	0.07	0.17	0.07	0.095	9.49

INDICE DE CONSISTENCIA (IC)	0.047
RELACION DE CONSISTENCIA (RC)	0.053

PARAMETROS	GRUP	O ETARIO	PESO PONDERA	DO = 0.336
RES	< 3 y > 65 años	Muy comun	PGE1	0.625
PTOF	6 a 10 años	Comun	PGE2	0.201
CRI	11 a 20 años	Comun	PGE3	0.078
DES	21 a 64 años	Comun	PGE4	0.095

Cuadro 35.- Matriz de comparación de pares y normalización de los descriptores-Grupo etario.

MATRIZ DE COMPARACION DE PARES					
PERSONAS CON DISCAPACIDAD	Para oir y Hablar	Visuales	Motricidad	Ninguna	
Para oir y Hablar	1.00	3.00	4.00	7.00	
Visuales	0.33	1.00	3.00	3.00	
Motricidad	0.25	0.33	1.00	3.00	
Ninguna	0.14	0.33	0.33	1.00	
SUMA	1.73	4.67	8.33	14.00	
1/SUMA	0.579	0.214	0.120	0.071	

MATRIZ DE NORMALIZACION						
PERSONAS CON	Para oir y	Visuales	Motricidad	Ninguna	VECTOR PRIORIZACION	PORCENTAJE
DISCAPACIDAD	Hablar	Visuales	Mourcidad	Miligulia	(PONDERACION)	%
Para oir y Hablar	0.58	0.64	0.48	0.50	0.551	55.05
Visuales	0.19	0.21	0.36	0.21	0.245	24.54
Motricidad	0.14	0.07	0.12	0.21	0.138	13.76
Ninguna	0.08	0.07	0.04	0.07	0.066	6.64

INDICE DE CONSISTENCIA (IC)	0.048
RELACION DE CONSISTENCIA (RC)	0.054

PARAMETROS	PERSONAS CON DISCAPACIDAD		PESO PONDERADO = 0.396	
DESCRIPTORES	Para oir y Hablar	Muy frecuente	PPD1	0.551
	Visuales	Muy frecuente	PPD2	0.245
	Motricidad	Poco frecuente	PPD3	0.138
	Ninguna	Comun	PPD4	0.066

Cuadro 36.- Matriz de comparación de pares y normalización de los descriptores-Personas con discapacidad.

8.3.2. RESILIENCIA SOCIAL

Se midió el nivel de resiliencia de la zona de proyecto considerando parámetros de capacidad y conocimiento general de los pobladores en Huayllati y los trabajadores de la posta de salud.

Foto 18.- La población se organiza para enfrentar cualquier tipo de desastre. (Fuente propia)

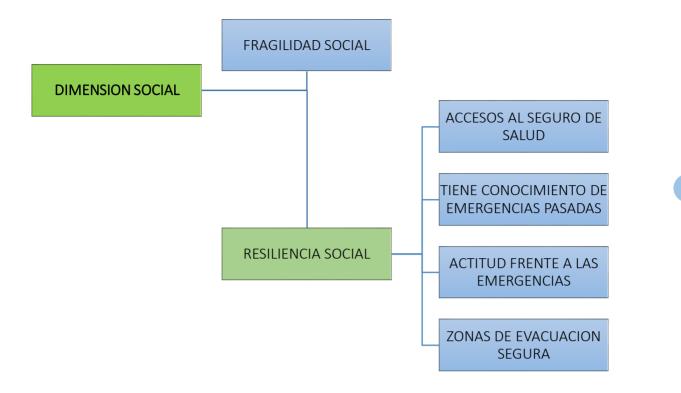


Imagen 22.-Flujograma, que muestra los indicadores para el cálculo de la resiliencia socialdimensión social, fuente: elaboración propia.

8.3.2.1. PONDERACIÓN DE LOS INDICADORES PARA LA RESILIENCIA SOCIAL.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	ACCESO AL SEGURO DE SALUD	CONOCIMIENTO DE EMERGENCIAS PASADA	ACTITUD FRENTE A LAS EMERGENCIAS	ZONAS DE EVACUACION SEGURO			
ACCESO AL SEGURO DE SALUD	1.00	3.00	4.00	0.33			
CONOCIMIENTO DE EMERGENCIAS PASADA	0.33	1.00	2.00	0.20			
ACTITUD FRENTE A LAS EMERGENCIAS	0.25	0.50	1.00	0.20			
ZONAS DE EVACUACION SEGURO	3.00	5.00	5.00	1.00			
SUMA	4.58	9.50	12.00	1.73			
1/SUMA	0.218	0.105	0.083	0.577			

H	z	-
1	1	ь

	MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION	VALUACION ACCESO AL SEGURO DE SALUD		ACTITUD FRENTE A LAS EMERGENCIAS	ZONAS DE EVACUACION SEGURO	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
ACCESO AL SEGURO DE SALUD	0.22	0.32	0.33	0.19	0.265	26.49		
CONOCIMIENTO DE EMERGENCIAS PASADA	0.07	0.11	0.17	0.12	0.115	11.50		
ACTITUD FRENTE A LAS EMERGENCIAS	0.05	0.05	0.08	0.12	0.076	7.65		
ZONAS DE EVACUACION SEGURO	0.65	0.53	0.42	0.58	0.544	54.36		

INDICE DE CONSISTENCIA (IC)	0.037
RELACION DE CONSISTENCIA (RC)	0.042

PARAMETROS		DESCRIPTORES					
ACCESO AL SEGURO DE SALUD	SIS	ESSALUD	PRIVADO	NINGUNO	0.265	26.490	
CONOCIMIENTO DE EMERGENCIAS PASADA	NO CONOCE	POCO	REGULAR	SI CONOCE	0.115	11.501	
ACTITUD FRENTE A LAS EMERGENCIAS	FATALISTA	PARC.PREVISORA	PREVISORA	CONFORMISTA	0.076	7.647	
ZONAS DE EVACUACION SEGURO	SEÑALIZADA	NO SEÑALIZADA	ASIG. NO SEÑALIZADA	SIN ZONA SEGURA	0.544	54.361	

Cuadro 37.- Matriz de comparación de pares y normalización de los parámetros para la Resiliencia social.

8.3.2.2. PONDERACIÓN DE DESCRIPTORES PARA LA RESILIENCIA SOCIAL

MATRIZ DE COMPARACION DE PARES						
ACCESO AL SEGURO DE SALUD	SIS	ESSALUD	PRIVADO	NINGUNO		
SIS	1.00	1.00	5.00	0.20		
ESSALUD	1.00	1.00	5.00	0.20		
PRIVADO	0.20	0.20	1.00	0.11		
NINGUNO	5.00	5.00	9.00	1.00		
SUMA	7.20	7.20	20.00	1.51		
1/SUMA	0.139	0.139	0.050	0.662		

	MATRIZ DE NORMALIZACION							
ACCESO AL SEGURO DE SALUD	SIS	ESSALUD	PRIVADO	NINGUNO	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
SIS	0.14	0.14	0.25	0.13	0.165	16.50		
ESSALUD	0.14	0.14	0.25	0.13	0.165	16.50		
PRIVADO	0.03	0.03	0.05	0.07	0.045	4.48		
NINGUNO	0.69	0.69	0.45	0.66	0.625	62.52		

INDICE DE CONSISTENCIA (IC)	0.045
RELACION DE CONSISTENCIA (RC)	0.051

PARAMETROS	ACCESO AI	PESO PONDERADO = 0.265		
RES	SIS	Poco comun	PASS1	0.165
PTOI	ESSALUD	Comun	PASS2	0.165
CRI	PRIVADO	Poco comun	PASS3	0.045
DES	NINGUNO	Muy Comun	PASS4	0.625

Cuadro 38.- Matriz de comparación de pares y normalización de los descriptores-Acceso al seguro de salud.

MATRIZ DE COMPARACION DE PARES							
CONOCIMIENTO DE EMERGENCIAS PASADAS	NO CONOCE	РОСО	REGULAR	SI CONOCE			
NO CONOCE	1.00	2.00	4.00	9.00			
POCO	0.50	1.00	3.00	5.00			
REGULAR	0.25	0.33	1.00	3.00			
SI CONOCE	0.11	0.20	0.33	1.00			
SUMA	1.86	3.53	8.33	18.00			
1/SUMA	0.537	0.283	0.120	0.056			

MATRIZ DE NORMALIZACION						
CONOCIMIENTO DE EMERGENCIAS PASADAS	NO CONOCE	POCO	REGULAR	SI CONOCE	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %
NO CONOCE	0.54	0.57	0.48	0.50	0.521	52.08
POCO	0.27	0.28	0.36	0.28	0.297	29.74
REGULAR	0.13	0.09	0.12	0.17	0.129	12.88
SI CONOCE	0.06	0.06	0.04	0.06	0.053	5.30

INDICE DE CONSISTENCIA (IC)	0.013
RELACION DE CONSISTENCIA (RC)	0.014

PARAMETROS	CONOCIMIENTO I	DE EMERGENCIAS PASADAS	PESO PONDERADO = 0.115		
RES	NO CONOCE	NO CONOCE Muy Comun		0.521	
PTOI	РОСО	Comun	PCEP2	0.297	
DESCRIP	REGULAR	Comun	PCEP3	0.129	
	SI CONOCE	Poco Comun	PCEP4	0.053	

Cuadro 39.- Matriz de comparación de pares y normalización de los descriptores-Conocimiento de emergencias pasadas.

MATRIZ DE COMPARACION DE PARES								
ACTITUD FRENTE A EMERGENCIAS	FATALISTA	PARC.PREVISO RA	PREVISORA	CONFORMISTA				
FATALISTA	1.00	3.00	9.00	1.00				
PARC.PREVISORA	0.33	1.00	7.00	0.33				
PREVISORA	0.11	0.14	1.00	0.14				
CONFORMISTA	1.00	3.00	7.00	1.00				
SUMA	2.44	7.14	24.00	2.48				
1/SUMA	0.409	0.140	0.042	0.404				

MATRIZ DE NORMALIZACION									
ACTITUD FRENTE A EMERGENCIAS	FATALISTA	PARC.PREVISO RA	PREVISORA	CONFORMISTA	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %			
FATALISTA	0.41	0.42	0.38	0.40	0.402	40.20			
PARC.PREVISORA	0.14	0.14	0.29	0.13	0.176	17.57			
PREVISORA	0.05	0.02	0.04	0.06	0.041	4.12			
CONFORMISTA	0.41	0.42	0.29	0.40	0.381	38.12			

INDICE DE CONSISTENCIA (IC)	0.043
RELACION DE CONSISTENCIA (RC)	0.049

PARAMETROS	ACTITUD FREM	ITE A LAS AMERGENCIAS	PESO PONDERA	D0 = 0.076
RES	FATALISTA	Muy comun	PAFA1	0.402
PTOI	PARC.PREVISORA Comun		PAFA2	0.176
CRI	PREVISORA	Poco comun	PAFA3	0.041
DES	CONFORMISTA	Muy comun	PAFA4	0.381

Cuadro 40.- Matriz de comparación de pares y normalización de los descriptores-Actitud frente a emergencias.

Foto 19.-. En la localidad de Huayllati existen áreas y zonas seguras para la evacuación ante emergencias de sismos y movimientos en masa.

MATRIZ DE COMPARACION DE PARES								
ZONAS DE EVACUACION SEGURA	SEÑALIZADA	NO SEÑALIZADA	ASIG. NO SEÑALIZADA	SIN ZONA SEGURA				
SEÑALIZADA	1.00	0.11	0.14	0.11				
NO SEÑALIZADA	9.00	1.00	1.00	1.00				
ASIG. NO SEÑALIZADA	7.00	1.00	1.00	0.33				
SIN ZONA SEGURA	9.00	1.00	3.00	1.00				
SUMA	26.00	3.11	5.14	2.44				
1/SUMA	0.038	0.321	0.194	0.409				

MATRIZ DE NORMALIZACION									
ZONAS DE EVACUACION SEGURA	SEÑALIZADA	NO SEÑALIZADA	ASIG. NO SEÑALIZADA	SIN ZONA SEGURA	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %			
SEÑALIZADA	0.04	0.04	0.03	0.05	0.037	3.69			
NO SEÑALIZADA	0.35	0.32	0.19	0.41	0.318	31.78			
ASIG. NO SEÑALIZADA	0.27	0.32	0.19	0.14	0.230	23.04			
SIN ZONA SEGURA	0.35	0.32	0.58	0.41	0.415	41.50			

INDICE DE CONSISTENCIA (IC)	0.042
RELACION DE CONSISTENCIA (RC)	0.048

PARAMETROS	ZONAS DE I	EVACUACION SEGURA	PESO PONDERADO = 0.544		
RES	SEÑALIZADA	Poco comun	PZES1	0.037	
PTOI	NO SEÑALIZADA	Muy comun	PZES2	0.318	
CR	ASIG. NO SEÑALIZADA	Comun	PZES3	0.230	
DES	SIN ZONA SEGURA	Muy comun	PZES4	0.415	

Cuadro 41.- Matriz de comparación de pares y normalización de los descriptores-Zona de evacuación segura.

8.3.3. RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN SOCIAL

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR									
TIPO DE MATERIAL DE CONSTRUCCION		# DE PERSONAS POR VIVIENDA		GRUPO ETARIO		PERSONAS CON DISCAPACIDAD		VALOR	
PARAMETRO	DESCRIPTOR	PARAMETROS	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
	0.537		0.531		0.625	0.006	0.551	0.571	
0.146	0.259	0.122	0.244	0.226	0.201		0.245	0.232	
0.140	0.106	0.122	0.153	0.336	0.396	0.138	0.121		
0.099	0.099		0.072		0.078		0.066	0.076	

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR									
ACCESO AL SEGURO DE SALUD		CONOCIMIENTO DE EMERGENCIAS PASADA		ACTITUD FRENTE A LAS EMERGENCIAS		ZONAS DE EVACUACION SEGURO		VALOR	
PARAMETRO	DESCRIPTOR	PARAMETROS	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
	0.625		0.521		0.402	0.544	0.415	0.482	
0.265	0.165	0.115	0.297	0.076	0.381		0.318	0.280	
0.205	0.165	0.115	0.129	0.076	0.176	0.544	0.230	0.197	
	0.045		0.053		0.041		0.037	0.041	

D	VULNERABILIDAD SOCIAL PESO PAR1*DESC+PESO PAR2*DESC++=VALOR					
PESUPART DESC+PESUPARZ DESC++=VALUR						
FRAGILIDA	FRAGILIDAD SOCIAL RESILIENCIA SOCIAL					
	VALORES		VALORES	VULNERABILIDAD		
	0.571		0.482	0.527		
0.50	0.232	0.50	0.280	0.256		
	0.121	0.197	0.159			
	0.076		0.041	0.058		

BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

109

VULNERABILIDAD SOCIAL				
0.527				
0.256				
0.159				
0.058				

Cuadro 42.- Vulnerabilidad social ante movimientos de remoción en masa.

110

8.4. DIMENSIÓN ECONÓMICA

El análisis de la dimensión económica permite identificar las características de acuerdo a la fragilidad y resiliencia económica.

8.4.1. FRAGILIDAD ECONÓMICA

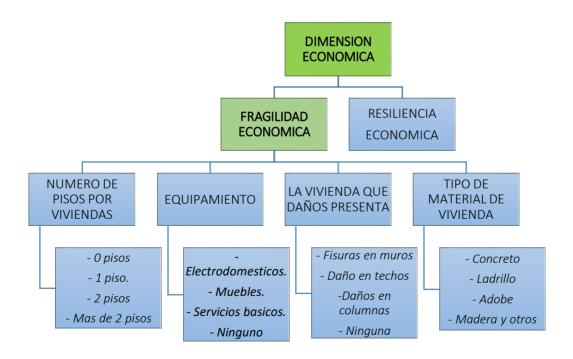


Imagen 23.-Flujograma, que muestra los indicadores para el cálculo de la fragilidad económica- dimensión económica, (CENEPRED).

8.4.1.1. PONDERACIÓN DE LOS INDICADORES PARA LA FRAGILIDAD

ECONÓMICA.

Para esta evaluación se ha tomado en cuenta cuatro indicadores.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	# DE PISOS POR VIVIENDA	EQUIPAMIENTO	DAÑOS QUE PRESENTA LA VIVIENDA	TIPO DE MATERIAL VIVIENDA			
# DE PISOS POR VIVIENDA	1.00	2.00	0.33	0.14			
EQUIPAMIENTO	0.50	1.00	0.33	0.20			
DAÑOS QUE PRESENTA LA VIVIENDA	3.00	3.00	1.00	0.50			
TIPO DE MATERIAL VIVIENDA	7.00	5.00	2.00	1.00			
SUMA	11.50	11.00	3.67	1.84			
1/SUMA	0.087	0.091	0.273	0.543			

MATRIZ DE NORMALIZACION									
PARAMETROS DE EVALUACION	# DE PISOS POR VIVIENDA	EQUIPAMIENTO	DAÑOS QUE PRESENTA LA VIVIENDA	TIPO DE MATERIAL VIVIENDA	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %			
# DE PISOS POR VIVIENDA	0.09	0.18	0.09	0.08	0.109	10.93			
EQUIPAMIENTO	0.04	0.09	0.09	0.11	0.083	8.35			
DAÑOS QUE PRESENTA LA VIVIENDA	0.26	0.27	0.27	0.27	0.269	26.94			
TIPO DE MATERIAL VIVIENDA	0.61	0.45	0.55	0.54	0.538	53.78			

INDICE DE CONSISTENCIA (IC)	0.035
RELACION DE CONSISTENCIA (RC)	0.039

PARAMETROS		PESO PONDERADO	%			
# DE PISOS POR VIVIENDA	0 PISOS	1 PISO	2 PISOS	MAS DE 2 PISOS	0.109	10.930
EQUIPAMIENTO	ELECTRODOMESTICO	MUEBL ES	SERV. BASICOS	NINGUNO	0.083	8.346
DAÑOS QUE PRESENTA LA VIVIENDA	Fisuras en muros	ĩo en teci	ños en column	Ninguna	0.269	26.941
TIPO DE MATERIAL VIVIENDA	Concreto	Ladrillo	Adobe	Madera y otros	0.538	53.783

Cuadro 43.- Matriz de comparación de pares y normalización de los parámetros para la fragilidad económica.

112

8.4.1.2. PONDERACIÓN DE DESCRIPTORES PARA LA FRAGILIDAD ECONÓMICA

MATRIZ DE COMPARACION DE PARES						
# DE PISOS POR VIVIENDA	0 PISOS	1 PISO	2 PISOS	MAS DE 2 PISOS		
0 PISOS	1.00	0.50	0.33	0.20		
1 PISO	2.00	1.00	0.50	0.33		
2 PISOS	3.00	2.00	1.00	0.50		
MAS DE 2 PISOS	5.00	3.00	2.00	1.00		
SUMA	11.00	6.50	3.83	2.03		
1/SUMA	0.091	0.154	0.261	0.492		

MATRIZ DE NORMALIZACION							
# DE PISOS POR VIVIENDA	0 PISOS	1 PISO	2 PISOS	MAS DE 2 PISOS	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
0 PISOS	0.09	0.08	0.09	0.10	0.088	8.83	
1 PISO	0.18	0.15	0.13	0.16	0.158	15.75	
2 PISOS	0.27	0.31	0.26	0.25	0.272	27.18	
MAS DE 2 PISOS	0.45	0.46	0.52	0.49	0.482	48.24	

INDICE DE CONSISTENCIA (IC)	0.005
RELACION DE CONSISTENCIA (RC)	0.005

PARAMETROS	# DE PISOS P	OR VIVIENDA	PESO PONDERA	DO = 0.109
RES	0 PISOS	Poco comun	PNPV1	0.088
PTOI	1 PISO	Muy comun	PNPV2	0.158
CRI	2 PISOS	Comun	PNPV3	0.272
DES	MAS DE 2 PISOS		PNPV4	0.482

Cuadro 44.- Matriz de comparación de pares y normalización de los descriptores- número de pisos por vivienda.

MATRIZ DE COMPARACION DE PARES							
EQUIPAMIENTO	ELECTROD OMESTICO	MUEBLES	SERV. BASICOS	NINGUNO			
ELECTRODOMESTICO	1.00	1.00	0.25	7.00			
MUEBLES	1.00	1.00	0.25	7.00			
SERV. BASICOS	4.00	4.00	1.00	9.00			
NINGUNO	0.14	0.14	0.11	1.00			
SUMA	6.14	6.14	1.61	24.00			
1/SUMA	0.163	0.163	0.621	0.042			

MATRIZ DE NORMALIZACION							
EQUIPAMIENTO ELECTROD OMESTICO MUEBLES SERV. NINGUNO (PONDERACION) (PONDERACION)						PORCENTAJE %	
ELECTRODOMESTICO	0.16	0.16	0.16	0.29	0.193	19.31	
MUEBLES	0.16	0.16	0.16	0.29	0.193	19.31	
SERV. BASICOS	0.65	0.65	0.62	0.38	0.575	57.45	
NINGUNO	0.02	0.02	0.07	0.04	0.039	3.93	

INDICE DE CONSISTENCIA (IC)	0.056
RELACION DE CONSISTENCIA (RC)	0.063

PARAMETROS	EQUIPA	MIENTO	PESO PONDERA	DO = 0.083
CRIPTORES	ELECTRODOMESTICO	Comun	PE1	0.193
	MUEBLES	Comun	PE2	0.193
	SERV. BASICOS	Comun	PE3	0.575
DES	NINGUNO	Comun	PE4	0.039

Cuadro 45.- Matriz de comparación de pares y normalización de los descriptores-Equipamiento.

MATRIZ DE COMPARACION DE PARES							
DAÑOS QUE PRESENTA LA VIVIENDA	Fisuras en muros	Daño en techos	Daños en columnas	Ninguna			
Fisuras en muros	1.00	1.00	0.33	7.00			
Daño en techos	1.00	1.00	0.33	5.00			
Daños en columnas	3.00	3.00	1.00	9.00			
Ninguna	0.14	0.20	0.11	1.00			
SUMA	5.14	5.20	1.78	22.00			
1/SUMA	0.194	0.192	0.563	0.045			

MATRIZ DE NORMALIZACION								
DAÑOS QUE PRESENTA LA VIVIENDAFisuras en murosDaño en techosDaños en columnasNingunaVECTOR PRIORIZAG (PONDERACION)						PORCENTAJE %		
Fisuras en muros	0.19	0.19	0.19	0.32	0.223	22.31		
Daño en techos	0.19	0.19	0.19	0.23	0.200	20.04		
Daños en columnas	0.58	0.58	0.56	0.41	0.533	53.30		
Ninguna	0.03	0.04	0.06	0.05	0.044	4.35		

INDICE DE CONSISTENCIA (IC)	0.023
RELACION DE CONSISTENCIA (RC)	0.026

PARAMETROS	DAÑOS QUE PRES	ENTA LA VIVIENDA	PESO PONDERA	DO = 0.269
RES	Fisuras en muros	Muy Comun	PDPV1	0.223
PTOI	Daño en techos	Comun	PDPV2	0.200
CRI	Daños en columnas	Comun	PDPV3	0.533
DES	Ninguna	Comun	PDPV4	0.044

Cuadro 46.- Matriz de comparación de pares y normalización de los descriptores- Daños que presenta la vivienda.

MATRIZ DE COMPARACION DE PARES							
TIPO DE MATERIAL DE LA VIVIENDA	Concreto	Ladrillo	Adobe	Madera y otros			
Concreto	1.00	0.50	0.20	0.14			
Ladrillo	2.00	1.00	0.33	0.20			
Adobe	5.00	3.00	1.00	0.50			
Madera y otros	7.00	5.00	2.00	1.00			
SUMA	15.00	9.50	3.53	1.84			
1/SUMA	0.067	0.105	0.283	0.543			

MATRIZ DE NORMALIZACION								
TIPO DE MATERIAL	Concreto	to Ladrillo Adobe ^N	Madera y	VECTOR PRIORIZACION	PORCENTAJE			
DE LA VIVIENDA	Concreto	Luuriilo Auobe		otros	(PONDERACION)	%		
Concreto	0.07	0.05	0.06	0.08	0.063	6.34		
Ladrillo	0.13	0.11	0.09	0.11	0.110	11.04		
Adobe	0.33	0.32	0.28	0.27	0.301	30.09		
Madera y otros	0.47	0.53	0.57	0.54	0.525	52.54		

INDICE DE CONSISTENCIA (IC)	0.007
RELACION DE CONSISTENCIA (RC)	0.008

PARAMETROS	TIPO DE MATERIA	AL DE LA VIVIENDA	PESO PONDERA	D0 = 0.538
RES	Concreto	Poco comun	PTMV1	0.063
PTOI	Ladrillo	Poco comun	PTMV2	0.110
CRII	Adobe	Muy comun	PTMV3	0.301
DES	Madera y otros	Poco comun	PTMV4	0.525

Cuadro 47.- Matriz de comparación de pares y normalización de los descriptores- Tipo de material de la vivienda.

8.4.2. RESILIENCIA ECONÓMICA

Es la capacidad de reposición económica ante un evento de desastre, este indicador nos ayudará a identificar la cantidad de viviendas a ser repuestas en el menor tiempo posible.

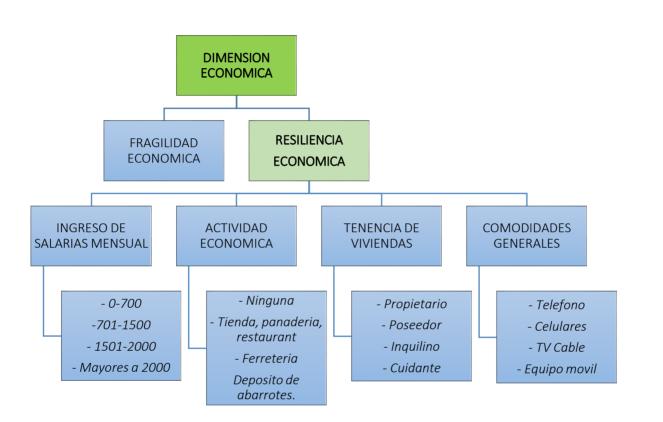


Imagen 24.-Flujograma, que muestra los indicadores para el cálculo de la resiliencia económica- dimensión económica, (CENEPRED).

117

8.4.2.1. PONDERACIÓN DE LOS INDICADORES PARA LA RESILIENCIA ECONÓMICA.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	INGRESO DE	ACTIVIDAD	TENENCIA DE	COMODIDADES			
	SALARIAL MENS.	ECONOMICA	VIVIENDAS	GENERALES			
INGRESO DE SALARIAL MENS.	1.00	1.00	3.00	7.00			
ACTIVIDAD ECONOMICA	1.00	1.00	4.00	5.00			
TENENCIA DE VIVIENDAS	0.33	0.25	1.00	3.00			
COMODIDADES GENERALES	0.14	0.20	0.33	1.00			
SUMA	2.48	2.45	8.33	16.00			
1/SUMA	0.404	0.408	0.120	0.063			

MATRIZ DE NORMALIZACION							
PARAMETROS DE EVALUACION INGRESO DE SALARIAL MENS. ECONOMICA TENENCIA DE VIVIENDAS GENERALES (PONDERACION) POR							
INGRESO DE SALARIAL MENS.	0.40	0.41	0.36	0.44	0.402	40.24	
ACTIVIDAD ECONOMICA	0.40	0.41	0.48	0.31	0.401	40.11	
TENENCIA DE VIVIENDAS	0.13	0.10	0.12	0.19	0.136	13.60	
COMODIDADES GENERALES	0.06	0.08	0.04	0.06	0.060	6.05	

INDICE DE CONSISTENCIA (IC)	0.022
RELACION DE CONSISTENCIA (RC)	0.025

PARAMETROS		PESO PONDERADO	%			
INGRESO DE SALARIAL MENS.	0-700	701-1500	1501-2000	Mayor a 2000	0.402	40.238
ACTIVIDAD ECONOMICA	Ninguna	Tienda, Panaderia y restaurant	Ferreteria	Deposito de Abarrotes	0.401	40.113
TENENCIA DE VIVIENDAS	Propietario	Poseedor	Inquilino	Cuidante	0.136	13.604
COMODIDADES GENERALES	Telefono	Celular	Tv. Cable	Equipos Movil	0.060	6.046

Cuadro 48.- Matriz de comparación de pares y normalización de los parámetros para la Resiliencia Económica.

11

8.4.2.2. PONDERACIÓN DE DESCRIPTORES PARA LA RESILIENCIA

ECONÓMICA

MATRIZ DE COMPARACION DE PARES						
INGRESO SALARIAL MENSUAL	0-700	701-1500	1501-2000	Mayor a 2000		
0-700	1.00	3.00	4.00	5.00		
701-1500	0.33	1.00	3.00	0.33		
1501-2000	0.25	0.33	1.00	3.00		
Mayor a 2000	0.20	0.33	0.33	1.00		
SUMA	1.78	4.67	8.33	9.33		
1/SUMA	0.561	0.214	0.120	0.107		

MATRIZ DE NORMALIZACION							
INGRESO SALARIAL MENSUAL	0-700	701-1500	1501-2000	Mayor a 2000	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
0-700	0.56	0.64	0.48	0.54	0.555	55.48	
701-1500	0.19	0.21	0.36	0.04	0.199	19.92	
1501-2000	0.14	0.07	0.12	0.32	0.163	16.33	
Mayor a 2000	0.11	0.07	0.04	0.11	0.083	8.27	

INDICE DE CONSISTENCIA (IC)	0.009
RELACION DE CONSISTENCIA (RC)	0.010

PARAMETROS	INGRESO	SALARIAL MENSUAL	PESO PONDERADO = 0.402	
10F	0-700	Mayoria	PISM1	0.555
Ĭ.	701-1500	Pocos	PISM2	0.199
ESCE	1501-2000	Pocos	PISM3	0.163
DE	Mayor a 2000	Muy pocos	PISM4	0.083

Cuadro 49.- Matriz de comparación de pares y normalización de los descriptores- Ingreso salarial mensual.

MA	MATRIZ DE COMPARACION DE PARES						
ACTIVIDAD ECONOMICA	Ninguna	Tienda, Panaderia y restaurant	Ferreteria	Deposito de Abarrotes			
Ninguna	1.00	4.00	5.00	5.00			
Tienda, Panaderia y restaurant	0.25	1.00	3.00	4.00			
Ferreteria	0.20	0.33	1.00	1.00			
Deposito de Abarrotes	0.20	0.25	1.00	1.00			
SUMA	1.65	5.58	10.00	11.00			
1/SUMA	0.606	0.179	0.100	0.091			

MATRIZ DE NORMALIZACION							
ACTIVIDAD ECONOMICA	Ninguna	Tienda, Panaderia y restaurant	Ferreteria	Deposito de Abarrotes	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Ninguna	0.61	0.72	0.50	0.45	0.569	56.93	
Tienda, Panaderia y restaurant	0.15	0.18	0.30	0.36	0.249	24.86	
Ferreteria	0.12	0.06	0.10	0.09	0.093	9.30	
Deposito de Abarrotes	0.12	0.04	0.10	0.09	0.089	8.92	

INDICE DE CONSISTENCIA (IC)	0.047
RELACION DE CONSISTENCIA (RC)	0.054

PARAMETROS	ACTIVI	PESO PONDERA	D0 = 0.401	
RES	Ninguna	Muy pocos	PAE1	0.569
uPTO	Tienda, Panaderia y restaurant	Mayoria	PAE2	0.249
ESCF	Ferreteria	Muy pocos	PAE3	0.093
DE	Deposito de Abarrotes	Muy pocos	PAE4	0.089

Cuadro 50.- Matriz de comparación de pares y normalización de los descriptores – Actividad económica.

MATRIZ DE COMPARACION DE PARES							
TENENCIA DE VIVIENDAS	Propietario	Poseedor	Inquilino	Cuidante			
Propietario	1.00	3.00	4.00	5.00			
Poseedor	0.33	1.00	3.00	4.00			
Inquilino	0.25	0.33	1.00	3.00			
Cuidante	0.20	0.25	0.33	1.00			
SUMA	1.78	4.58	8.33	13.00			
1/SUMA	0.561	0.218	0.120	0.077			

MATRIZ DE NORMALIZACION								
TENENCIA DE VIVIENDAS	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %						
Propietario	0.56	0.65	0.48	0.38	0.520	52.00		
Poseedor	0.19	0.22	0.36	0.31	0.268	26.82		
Inquilino	0.14	0.07	0.12	0.23	0.141	14.09		
Cuidante	0.11	0.05	0.04	0.08	0.071	7.09		

INDICE DE CONSISTENCIA (IC)	0.061
RELACION DE CONSISTENCIA (RC)	0.069

PARAMETROS	TENEN	CIA DE VIVIENDAS	PESO PONDERADO = 0.136		
RES	Propietario	Muy comun	PTV1	0.520	
PTOF	Poseedor	Comun	PTV2	0.268	
CRI	Inquilino	Comun	PTV3	0.141	
DES	Cuidante	Poco	PTV4	0.071	

Cuadro 51.- Matriz de comparación de pares y normalización de los descriptores – Tenencia de viviendas.

MATRIZ DE COMPARACION DE PARES									
COMODIDADES GENERALES	Telefono	Celular	Tv. Cable	Equipos Movil					
Telefono	1.00	0.20	0.25	1.00					
Celular	5.00	1.00	1.00	5.00					
Tv. Cable	4.00	1.00	1.00	6.00					
Equipos Movil	1.00	0.20	0.17	1.00					
SUMA	11.00	2.40	2.42	13.00					
1/SUMA	0.091	0.417	0.414	0.077					

MATRIZ DE NORMALIZACION										
COMODIDADES GENERALES	Telefono Celular Tv. Cable Equipos Movil					PORCENTAJE %				
Telefono	0.09	0.08	0.10	0.08	0.089	8.87				
Celular	0.45	0.42	0.41	0.38	0.417	41.74				
Tv. Cable	0.36	0.42	0.41	0.46	0.414	41.39				
Equipos Movil	0.09	0.08	0.07	0.08	0.080	8.00				

INDICE DE CONSISTENCIA (IC)	0.005
RELACION DE CONSISTENCIA (RC)	0.006

PARAMETROS	COMODI	DADES GENERALES	PESO PONDERADO = 0.060		
ORI	Telefono	Muy pocos	PCG1	0.089	
IPT	Celular	Celular Mayoria		0.417	
8	Tv. Cable	Mayoria	PCG3	0.414	
DES	Equipos Movil	Muy pocos	PCG4	0.080	

Cuadro 52.- Matriz de comparación de pares y normalización de los descriptores – Comodidades generales.

122

8.4.3. RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN ECONÓMICA

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR									
# DE PISOS P	POR VIVIENDA EQUIPAMIENTO DAÑOS QUE PRESENTA LA TIPO DE MATERIAL VIVIENDA VIVIENDA				VALOR				
PARAMETRO	DESCRIPTOR	PARAMETROS	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
	0.482		0.575		0.533	0.538	0.525	0.527	
0.109	0.272	0.083	0.193	0.260	0.223		0.301	0.268	
0.109	0.158	0.083	0.193	0.269	0.200		0.110	0.147	
	0.088		0.039		0.044		0.063	0.059	

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR									
INGRESO DE SALARIAL MENS.		ACTIVIDAD E	ACTIVIDAD ECONOMICA		TENENCIA DE VIVIENDAS		IDADES RALES	VALOR	
PARAMETRO	DESCRIPTOR	PARAMETROS	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR		
	0.555		0.569		0.520	0.060	0.417	0.548	
0.402	0.199	0.401	0.249	0.126	0.268		0.414	0.241	
0.402	0.163	0.401	0.093	0.136	0.141		0.089	0.128	
	0.083		0.089		0.071		0.080	0.084	

VULNERABILIDAD ECONOMICA						
PESO PAR1*DESC+PESO PAR2*DESC++=VALOR						
FRAGILIDAD	FRAGILIDAD ECONOMICA		RESILIENCIA ECONOMICA			
	VALORES		VALORES	VULNERABILIDAD		
	0.527		0.548	0.537		
0.50	0.268	0.50	0.241	0.255		
	0.147		0.128	0.137		
	0.059		0.084	0.071		

VULNERABILIDAD ECONOMICA
0.537
0.255
0.137
0.071

Cuadro 53.- Vulnerabilidad económica ante movimientos de remoción en masa.

8.5. DIMENSIÓN AMBIENTAL

El análisis de la dimensión ambiental permite identificar las características de desventaja y nivel de asimilación para recuperarse de la zona de acuerdo a la fragilidad ambiental y resiliencia ambiental.

Foto 20.- Muestra la acumulación de desmonte producto de las edificaciones.

8.5.1. FRAGILIDAD AMBIENTAL

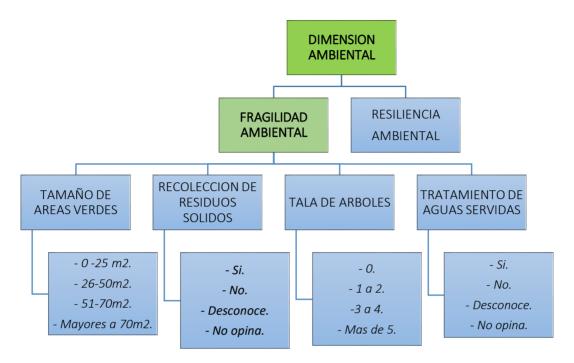


Imagen 25.-Flujograma, que muestra los indicadores para el cálculo de la fragilidad Ambientaldimensión Ambiental, (CENEPRED)

Este elemento nos permite identificar la debilidad que posee la zona de evaluación entre los pobladores y sus medios de vida frente al peligro.

BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

124

8.5.1.1. PONDERACIÓN DE LOS INDICADORES PARA LA FRAGILIDAD AMBIENTAL.

MA	TRIZ DE COMPA	RACION DE PAR	ES	
PARAMETROS DE EVALUACION	TAMAÑO DE AREAS VERDES	RECOLECCION DE RESIDUOS SOLIDOS	TALA DE ARBOLES	TRATAMIENTO AGUAS SERVIDAS
TAMAÑO DE AREAS VERDES	1.00	0.33	0.20	2.00
RECOLECCION DE RESIDUOS SOLIDOS	3.00	1.00	0.33	3.00
TALA DE ARBOLES	5.00	3.00	1.00	5.00
TRATAMIENTO AGUAS SERVIDAS	0.50	0.33	0.20	1.00
SUMA	9.50	4.67	1.73	11.00
1/SUMA	0.105	0.214	0.577	0.091

MATRIZ DE NORMALIZACION										
PARAMETROS DE EVALUACION	TAMAÑO DE AREAS VERDES	RECOLECCION DE RESIDUOS SOLIDOS	TALA DE ARBOLES	TRATAMIENTO AGUAS SERVIDAS	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %				
TAMAÑO DE AREAS VERDES	0.11	0.07	0.12	0.18	0.118	11.85				
RECOLECCION DE RESIDUOS SOLIDOS	0.32	0.21	0.19	0.27	0.249	24.88				
TALA DE ARBOLES	0.53	0.64	0.58	0.45	0.550	55.02				
TRATAMIENTO AGUAS SERVIDAS	0.05	0.07	0.12	0.09	0.083	8.26				

INDICE DE CONSISTENCIA (IC)	0.035
RELACION DE CONSISTENCIA (RC)	0.040

PARAMETROS		PESO PONDERADO	%			
TAMAÑO DE AREAS VERDES	0-25m2	26-50m2	51-70m2	>70m2	0.118	11.847
RECOLECCION DE RESIDUOS SOLIDOS	Si	No	Desconoce	No opina	0.249	24.878
TALA DE ARBOLES	Ninguno	1 a 2	3 a 4	Mas de 5	0.550	55.016
TRATAMIENTO AGUAS SERVIDAS	Si	No	Desconoce	No opina	0.083	8.259

Cuadro 54.- Matriz de comparación de pares y normalización de los parámetros para la Fragilidad Ambiental.

8.5.1.2. PONDERACIÓN DE DESCRIPTORES PARA LA FRAGILIDAD

AMBIENTAL

MATRIZ DE COMPARACION DE PARES						
TAMAÑO DE AREAS VERDES	0-25m2	26-50m2	51-70m2	>70m2		
0-25m2	1.00	0.33	0.20	0.20		
26-50m2	3.00	1.00	0.33	0.33		
51-70m2	5.00	3.00	1.00	0.50		
>70m2	5.00	3.00	2.00	1.00		
SUMA	14.00	7.33	3.53	2.03		
1/SUMA	0.071	0.136	0.283	0.492		

MATRIZ DE NORMALIZACION							
TAMAÑO DE AREAS VERDES	0-25m2	26-50m2	51-70m2	>70m2	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
0-25m2	0.07	0.05	0.06	0.10	0.068	6.80	
26-50m2	0.21	0.14	0.09	0.16	0.152	15.22	
51-70m2	0.36	0.41	0.28	0.25	0.324	32.38	
>70m2	0.36	0.41	0.57	0.49	0.456	45.60	

INDICE DE CONSISTENCIA (IC)	0.035
RELACION DE CONSISTENCIA (RC)	0.040

PARAMETROS	TAMAÑO DE A	REAS VERDES	PESO PONDERA	DO = 0.118
RES	0-25m2	Poco comun	PTAV1	0.068
PTOI	26-50m2	Poco comun	PTAV2	0.152
CCRII	51-70m2	Poco comun	PTAV3	0.324
DES	>70m2	Muy comun	PTAV4	0.456

Cuadro 55.- Matriz de comparación de pares y normalización de los descriptores-Tamaño de áreas verdes.

MATRIZ DE COMPARACION DE PARES						
RECOLECCION DE RESIDUOS SOLIDOS	Si	No	Desconoce	No opina		
Si	1.00	0.33	0.20	0.20		
No	3.00	1.00	0.25	0.33		
Desconoce	5.00	4.00	1.00	3.00		
No opina	5.00	3.00	0.33	1.00		
SUMA	14.00	8.33	1.78	4.53		
1/SUMA	0.071	0.120	0.561	0.221		

MATRIZ DE NORMALIZACION							
RECOLECCION DE RESIDUOS SOLIDOS	Si	No	Desconoce	No opina	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Si	0.07	0.04	0.11	0.04	0.067	6.69	
No	0.21	0.12	0.14	0.07	0.137	13.70	
Desconoce	0.36	0.48	0.56	0.66	0.515	51.49	
No opina	0.36	0.36	0.19	0.22	0.281	28.12	

INDICE DE CONSISTENCIA (IC)	0.064
RELACION DE CONSISTENCIA (RC)	0.072

PARAMETROS	RECOLECCION DE	RESIDUOS SOLIDOS	PESO PONDERA	DO = 0.249
RES	Si	Poco comun	PRRS1	0.067
PTOF	No	Comun	PRRS2	0.137
CRI	Desconoce	Muy comun	PRRS3	0.515
DES	No opina	Muy comun	PRRS4	0.281

Cuadro 56.- Matriz de comparación de pares y normalización de los descriptores-Recolección de residuos sólidos.

MATRIZ DE COMPARACION DE PARES							
TALA DE ARBOLES	Ninguno	1 a 2	3 a 4	Mas de 5			
Ninguno	1.00	0.50	0.25	0.14			
1 a 2	2.00	1.00	0.33	0.25			
3 a 4	4.00	3.00	1.00	0.33			
Mas de 5	7.00	4.00	3.00	1.00			
SUMA	14.00	8.50	4.58	1.73			
1/SUMA	0.071	0.118	0.218	0.579			

WARRIED BANGRANA GAON							
MATRIZ DE NORMALIZACION							
TALA DE ARBOLES	Ninguno	1 a 2	3 a 4	Mas de 5	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Ninguno	0.07	0.06	0.05	0.08	0.067	6.69	
1 a 2	0.14	0.12	0.07	0.14	0.120	11.95	
3 a 4	0.29	0.35	0.22	0.19	0.262	26.25	
Mas de 5	0.50	0.47	0.65	0.58	0.551	55.11	

INDICE DE CONSISTENCIA (IC)	0.024
RELACION DE CONSISTENCIA (RC)	0.027

PARAMETROS	TALA DE	ARBOLES	PESO PONDERA	D0 = 0.550
RES	Ninguno	Poco Comun	PTA1	0.067
PTOI	1 a 2	Comun	PTA2	0.120
CRI	3 a 4	Comun	PTA3	0.262
DES	Mas de 5	Muy comun	PTA4	0.551

Cuadro 57.- Matriz de comparación de pares y normalización de los descriptores-Tala de árboles.

MATRIZ DE COMPARACION DE PARES							
TRATAMIENTO DE AGUAS SERVIDAS	Si	No	Desconoce	No opina			
Si	1.00	0.33	0.20	0.20			
No	3.00	1.00	0.25	0.33			
Desconoce	5.00	4.00	1.00	3.00			
No opina	5.00	3.00	0.33	1.00			
SUMA	14.00	8.33	1.78	4.53			
1/SUMA	0.071	0.120	0.561	0.221			

MATRIZ DE NORMALIZACION								
TRATAMIENTO DE AGUAS SERVIDAS	Si	No	Desconoce	No opina	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
Si	0.07	0.04	0.11	0.04	0.067	6.69		
No	0.21	0.12	0.14	0.07	0.137	13.70		
Desconoce	0.36	0.48	0.56	0.66	0.515	51.49		
No opina	0.36	0.36	0.19	0.22	0.281	28.12		

INDICE DE CONSISTENCIA (IC)	0.064
RELACION DE CONSISTENCIA (RC)	0.072

PARAMETROS	TRATAMIENTO DI	E AGUAS SERVIDAS	PESO PONDERA	DO = 0.083
RES	Si	Poco comun	PTAS1	0.067
PTOI	No	Muy comun	PTAS2	0.137
CRI	Desconoce	Muy comun	PTAS3	0.515
DES	No opina	Muy comun	PTAS4	0.281

Cuadro 58.- Matriz de comparación de pares y normalización de los descriptores-Tratamiento de aguas servidas.

8.5.2. RESILIENCIA AMBIENTAL

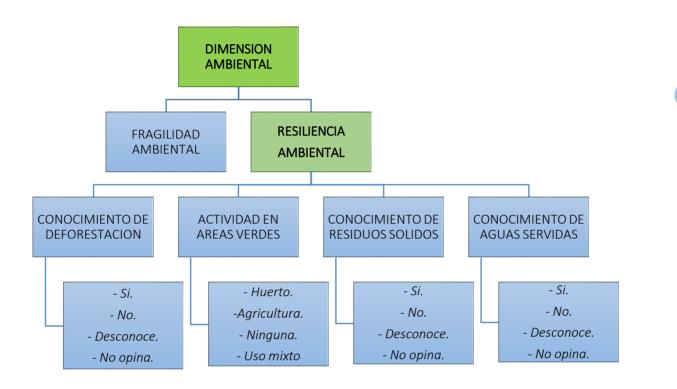


Imagen 26.-Flujograma, que muestra los indicadores para el cálculo de la Resiliencia Ambiental- dimensión Ambiental, (CENEPRED)

8.5.2.1. PONDERACIÓN DE LOS INDICADORES PARA LA RESILIENCIA

AMBIENTAL.

MATRIZ DE COMPARACION DE PARES							
PARAMETROS DE EVALUACION	CONOC. DE	ACT. EN AREAS	CONOC.	CONOC. AGUAS			
Third I Ros DE L'INDORGION	DEFORESTACION	VERDES	RESIDUOS SOL.	SERVIDAS			
CONOC. DE DEFORESTACION	1.00	0.33	3.00	5.00			
ACT. EN AREAS VERDES	3.00	1.00	5.00	7.00			
CONOC. RESIDUOS SOL.	0.33	0.20	1.00	3.00			
CONOC. AGUAS SERVIDAS	0.20	0.14	0.33	1.00			
SUMA	4.53	1.68	9.33	16.00			
1/SUMA	0.221	0.597	0.107	0.063			

BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

130

MATRIZ DE NORMALIZACION								
PARAMETROS DE EVALUACION	CONOC. DE DEFORESTACION	ACT. EN AREAS VERDES	CONOC. RESIDUOS SOL.	CONOC. AGUAS SERVIDAS	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
CONOC. DE DEFORESTACION	0.22	0.20	0.32	0.31	0.263	26.33		
ACT. EN AREAS VERDES	0.66	0.60	0.54	0.44	0.558	55.79		
CONOC. RESIDUOS SOL.	0.07	0.12	0.11	0.19	0.122	12.19		
CONOC. AGUAS SERVIDAS	0.04	0.09	0.04	0.06	0.057	5.69		

INDICE DE CONSISTENCIA (IC)	0.039
RELACION DE CONSISTENCIA (RC)	0.045

PARAMETROS		PESO PONDERADO	%			
CONOC. DE DEFORESTACION	Si	No	Desconoce	No opina	0.263	26.335
ACT. EN AREAS VERDES	Huerto	Agricultura	Mixta	Ninguna	0.558	55.789
CONOC. RESIDUOS SOL.	Si	No	Desconoce	No opina	0.122	12.187
CONOC. AGUAS SERVIDAS	Si	No	Desconoce	No opina	0.057	5.689

Cuadro 59.- Matriz de comparación de pares y normalización de los parámetros para la Resiliencia Ambiental.

8.5.2.2. PONDERACIÓN DE DESCRIPTORES PARA LA RESILIENCIA

AMBIENTAL

MATRIZ DE COMPARACION DE PARES						
CONOCIMIENTO DE DEFORESTACION	Si	No	Desconoce	No opina		
Si	1.00	0.20	0.25	0.33		
No	5.00	1.00	3.00	4.00		
Desconoce	4.00	0.33	1.00	3.00		
No opina	3.00	0.25	0.33	1.00		
SUMA	13.00	1.78	4.58	8.33		
1/SUMA	0.077	0.561	0.218	0.120		

MATRIZ DE NORMALIZACION								
CONOCIMIENTO DE DEFORESTACION	Si	No	Desconoce	No opina	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %		
Si	0.08	0.11	0.05	0.04	0.071	7.09		
No	0.38	0.56	0.65	0.48	0.520	52.00		
Desconoce	0.31	0.19	0.22	0.36	0.268	26.82		
No opina	0.23	0.14	0.07	0.12	0.141	14.09		

INDICE DE CONSISTENCIA (IC)	0.061
RELACION DE CONSISTENCIA (RC)	0.069

PARAMETROS	CONOCIMIENT	PESO PONDERA	D0 = 0.263	
RES	Si	Si Muy pocos		0.071
DESCRIPTOI	No	Mayoria	PCDF2	0.520
	Desconoce	Mayoria	PCDF3	0.268
	No opina	Muchos	PCDF4	0.141

Cuadro 60.- Matriz de comparación de pares y normalización de los descriptores-Conocimiento de deforestación.

MATRIZ DE COMPARACION DE PARES						
ACTIVIDAD EN AREAS VERDES	Huerto	Agricultura	Mixta	Ninguna		
Huerto	1.00	3.00	5.00	7.00		
Agricultura	0.33	1.00	3.00	5.00		
Mixta	0.20	0.33	1.00	3.00		
Ninguna	0.14	0.20	0.33	1.00		
SUMA	1.68	4.53	9.33	16.00		
1/SUMA	0.597	0.221	0.107	0.063		

MATRIZ DE NORMALIZACION							
ACTIVIDAD EN AREAS Huerto Agricultura Mixta Ninguna VECTOR PRIORIZACION PO							
VERDES	Huerto	Agriculturu	MIXW	Winguna	(PONDERACION)	%	
Huerto	0.60	0.66	0.54	0.44	0.558	55.79	
Agricultura	0.20	0.22	0.32	0.31	0.263	26.33	
Mixta	0.12	0.07	0.11	0.19	0.122	12.19	
Ninguna	0.09	0.04	0.04	0.06	0.057	5.69	

INDICE DE CONSISTENCIA (IC)	0.039
RELACION DE CONSISTENCIA (RC)	0.045

PARAMETROS	ACTIVIDA	PESO PONDERADO = 0.558		
RES	Huerto	Mayoria	PAAV1	0.558
PTOF	Agricultura	Mayoria	PAAV2	0.263
CRI	Mixta	Pocos	PAAV3	0.122
DES	Ninguna	Muy pocos	PAAV4	0.057

Cuadro 61.- Matriz de comparación de pares y normalización de los descriptores- Actividades en áreas verdes.

MATRIZ DE COMPARACION DE PARES						
CONOCIMIENTO DE RESIDUOS SOLIDOS	Si	No	Desconoce	No opina		
Si	1.00	0.20	0.25	0.25		
No	5.00	1.00	2.00	4.00		
Desconoce	4.00	0.50	1.00	3.00		
No opina	4.00	0.25	0.33	1.00		
SUMA	14.00	1.95	3.58	8.25		
1/SUMA	0.071	0.513	0.279	0.121		

MATRIZ DE NORMALIZACION							
CONOCIMIENTO DE Si No Desconoce No opina VECTOR PRIORIZACION P (PONDERACION)						PORCENTAJE %	
Si	0.07	0.10	0.07	0.03	0.069	6.85	
No	0.36	0.51	0.56	0.48	0.478	47.82	
Desconoce	0.29	0.26	0.28	0.36	0.296	29.62	
No opina	0.29	0.13	0.09	0.12	0.157	15.70	

INDICE DE CONSISTENCIA (IC)	0.065
RELACION DE CONSISTENCIA (RC)	0.073

PARAMETROS	CONOCIMIENT	PESO PONDERADO = 0.122		
PTORES	Si	Muy pocos	PCRS1	0.069
	No	Muchos	PCRS2	0.478
CRI	Desconoce	Mayoria	PCRS3	0.296
DES	No opina	Pocos	PCRS4	0.157

Cuadro 62.- Matriz de comparación de pares y normalización de los descriptores-Conocimiento de residuos sólidos.

MATRIZ DE COMPARACION DE PARES						
CONOCIMIENTO AGUAS SERVIDAS	Si	No	Desconoce	No opina		
Si	1.00	0.20	0.25	0.25		
No	5.00	1.00	2.00	4.00		
Desconoce	4.00	0.50	1.00	3.00		
No opina	4.00	0.25	0.33	1.00		
SUMA	14.00	1.95	3.58	8.25		
1/SUMA	0.071	0.513	0.279	0.121		

MATRIZ DE NORMALIZACION							
CONOCIMIENTO AGUAS SERVIDAS	Si	No	Desconoce	No opina	VECTOR PRIORIZACION (PONDERACION)	PORCENTAJE %	
Si	0.07	0.10	0.07	0.03	0.069	6.85	
No	0.36	0.51	0.56	0.48	0.478	47.82	
Desconoce	0.29	0.26	0.28	0.36	0.296	29.62	
No opina	0.29	0.13	0.09	0.12	0.157	15.70	

INDICE DE CONSISTENCIA (IC)	0.065
RELACION DE CONSISTENCIA (RC)	0.073

PARAMETROS	CONOCIMIE	PESO PONDERADO = 0.057		
RES	Si	Muy pocos	PCAS1	0.069
PTOF	No	Muchos	PCAS2	0.478
CRI	Desconoce	Mayoria	PCAS3	0.296
DES	No opina	Pocos	PCAS4	0.157

Cuadro 63.- Matriz de comparación de pares y normalización de los descriptores-Conocimiento de aguas servidas.

8.5.3. RESUMEN DE LOS RESULTADOS DE LA DIMENSIÓN AMBIENTAL

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR								
TAMAÑO DE AREAS VERDES			ECOLECCION DE SIDUOS SOLIDOS TALA DE ARBO		ARBOLES	TRATAMIEI SERV		VALOR
PARAMETRO	DESCRIPTOR	<i>PARAMETROS</i>	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR	
	0.456		0.515	0.515 0.281 0.137 0.067	0.551		0.515	0.528
0.110	0.324	0.249	0.281		0.262	0.002	0.281	0.276
0.118	0.152	0.249	0.137		0.120	0.083	0.137	0.129
	0.068		0.067		0.067		0.067	0.067

PESO PAR1*DESC+PESO PAR2*DESC++=VALOR								
	CONOC. DE DEFORESTACION ACT. EN AREAS VERDES CONOC. RESIDUOS SOL. CONOC. AGUAS SERV		ACT. EN AREAS VERDES CONOC. RESIDUOS SOL.		AS SERVIDAS	VALOR		
PARAMETRO	DESCRIPTOR	<i>PARAMETROS</i>	DESCRIPTOR	PARAMETRO	DESCRIPTOR	PARAMETRO	DESCRIPTOR	
	0.520		0.558	0.558 0.478 0.263 0.122 0.122 0.157 0.057 0.069	0.478		0.478	0.534
0.263	0.268	0.558	0.263		0.296	0.057	0.296	0.270
0.203	0.141	0.336	0.122		0.157	0.057	0.157	0.133
	0.071		0.057		0.069		0.069	0.063

VULNERABILIDAD AMBIENTAL PESO PAR1*DESC+PESO PAR2*DESC++=VALOR					
FRAGILIDAD AMBIENTAL		RESILIENCIA AMBIENTAL		VULNERABILIDAD	
	VALORES		VALORES	VULNEKABILIDAD	
	0.528		0.534	0.531	
0.50	0.276	0.50	0.270	0.273	
	0.129		0.133	0.131	
	0.067		0.063	0.065	

VULNERABILIDAD AMBIENTAL
0.531
0.273
0.131
0.065

Cuadro 64.- Vulnerabilidad Ambiental ante movimientos de remoción en masa.

8.6. ANÁLISIS DE VULNERABILIDAD

Para el cálculo de vulnerabilidad se consideran las siguientes:

- Vulnerabilidad social.
- Vulnerabilidad económica.
- Vulnerabilidad ambiental.

La vulnerabilidad social, económica y ambiental en la zona de Huayllati fue alto, ya que la población se encontraba desactualizado de algunas normas y reglas de contingencia ante cualquier emergencia, sin embargo, con el procedimiento de la concientización poblacional se logró que la mayoría tomara importancia en los temas de riesgos ocasionados por los fenómenos naturales como movimientos de remoción en masa, sismos e inundaciones.

	ľa

VULNERABILIDAD TOTAL							
VULNERABILIDAD	VULNERABILIDAD	VULNERABILIDAD	NIVELES DE				
SOCIAL	ECONOMICA	AMBIENTAL	VULNERABILIDAD				
0.527	0.537	0.531	0.531				
0.256	0.255	0.273	0.261				
0.159	0.137	0.131	0.142				
0.058	0.071	0.065	0.065				

	RANGOS DE VULNERABILIDAD					
0.261	≤V≤	0.531	MUY ALTO			
0.142	≤V<	0.261	ALTO			
0.065	≤V<	0.142	MEDIO			
	V<	0.065	BAJO			

Cuadro 65.- Estos rango y niveles de vulnerabilidad serán considerados para movimientos de remoción en masa.

8.6.1. ANÁLISIS DE LA VULNERABILIDAD ACTUAL PARA EL PROYECTO

Para la construcción del nuevo centro de salud de Huayllati se ha tenido una evaluación exhaustiva y muy particular, ya que para ello se ha enfocado en los parámetros que involucran directamente en la parte social, económica y ambiental, a continuación, se detalla los procesos de evaluación:

VULNERABILIDAD SOCIAL PARA EL PROYECTO					
PESO PAR1*DESC+PESO PAR2*DESC++=VALOR					
FRAGILIDAD SOCIAL		RESILIENCIA SOCIAL		VIII NED ADII IDAD	
0.50	VALORES			VALORES	VULNERABILIDAD
0.50	0.081	0.50	0.041	0.061	

VULNERABILIDAD ECONOMICA PARA EL PROYECTO					
PESO PAR1*DESC+PESO PAR2*DESC++=VALOR					
FRAGILIDAD ECONOMICA		RESILIENCIA ECONOMICA		VULNERABILIDAD	
0.50	VALORES	0.50	VALORES	VULNEKABILIDAD	
0.50	0.117	0.50	0.127	0.122	

VULNERABILIDAD AMBIENTAL PARA EL PROYECTO				
PESO PAR1*DESC+PESO PAR2*DESC++=VALOR				
FRAGILIDAD AMBIENTAL		RESILIENCIA AMBIENTAL		WILL MED ADIL IDAD
VALORES		0.50	VALORES	VULNERABILIDAD
0.50	0.102	0.50	0.063	0.082

VULNERABILIDAD TOTAL PARA EL PROYECTO			
VULNERABILIDAD	VULNERABILIDAD	VULNERABILIDAD	NIVELES DE
SOCIAL	ECONOMICA	AMBIENTAL	VULNERABILIDAD
0.061	0.122	0.082	0.088

Cuadro 66.- Vulnerabilidad total de la zona de estudios, ante movimientos de remoción en masa,

RANGOS DE VULNERABILIDAD			
0.261	≤V≤	0.531	MUY ALTO
0.142	≤V<	0.261	ALTO
0.065	≤V<	0.142	MEDIO
	V<	0.065	BAJO

La zona donde se emplazará el proyecto. La nueva construcción del centro de salud de Huayllati está situado en condiciones de vulnerabilidad medio, ante amenazas de movimientos de remoción en masa, sismos e inundaciones.

Sin embargo, para reducir estas condiciones se deberán plantear algunas medidas estructurales, y así garantizar la seguridad de la población y el tiempo de vida útil de dicha posta de salud en proyecto.

8.6.2. MATRIZ DE VULNERABILIDAD

MATRIZ	MATRIZ DE VULNERABILIDAD PARA MOVIMIENTOS DE REMOCION EN MASA		RANGOS	
VULNERABILIDAD ALTA VULNERABILIDAD MUY ALTA	Grupo etario de 0 a 5 años y mayores de 65 años de edad, más de 7 personas por vivienda, las cuales están construidas de adobe con algunas fallas estructuras como fisuras en las paredes, techos en mal estado. Personas con poca información acerca de la normas y reglas de contingencia ante cualquier emergencia, sin conocimiento de cuidado de medio ambiente y actividad desordenada en las áreas verdes. Además, no cuentan con un sistema de seguro de salud ni ingresos mayores a 700 nuevos soles, con equipamientos de costos menores.	0.261	≤V≤	0.531
VULNERABILIDAD ALTA	Personas de 6 a 10 años 6 a 10 años con poco conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de adobe y algunas de ellas con concreto que son más de 3 niveles. Personas con poco conocimiento del cuidado de medio ambiente, uso común de áreas verdes. Además, cuentan con ingresos mensuales de 701 a 1500 nuevos soles. Con actividades económicas de forma esporádica como tiendas y panaderías.	0.142	≤V<	0.261
VULNERABILIDAD MEDIA	Personas de 21 a 64 con regular conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de concreto que no son más de 3 niveles. Personas con regular conocimiento del cuidado de medio ambiente, uso mixto de áreas verdes. Además, cuentan con ingresos mensuales de 1501 a 2000 nuevos soles actividades económicas en ferretería y tienda, seguro de salud SIS y Es salud.	0.065	≤V<	0.142
VULNERABILIDAD BAJA	Personas de 11 a 20 con conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de concreto que no son más de 3 niveles. Personas con conocimiento del cuidado de medio ambiente, uso adecuado y controlado de áreas verdes. Además, cuentan con ingresos mensuales mayor a 2000 nuevos soles actividades económicas mixtas tiendas, panaderías y ferretería con atención más constante, seguro de salud Privada.	V·	<	0.065

Cuadro 67.- Matriz de vulnerabilidad para movimiento de remoción en masa.

9. CAPITULO IX: EVALUACION DEL RIESGO

9.1. RIESGO

Riesgo es una medida de la magnitud de los daños frente a una situación peligrosa. El riesgo se mide calculando una determinada vulnerabilidad frente a cada tipo de peligro. Si bien no siempre se hace, debe distinguirse adecuadamente entre peligrosidad (probabilidad de ocurrencia de un peligro), vulnerabilidad (probabilidad de ocurrencia de daños dado que se ha presentado un peligro) y riesgo (propiamente dicho).

$$R = p * v$$

9.1.1. CALCULO DE RIESGO PARA MOVIMEINTO EN MASA

El cálculo de riesgo se dará para movimientos de remoción en masa, inundación y sismicidad, los cuales se detallan a continuación:

RIESGO PARA MOVIMIENTOS EN MASA $R = Pmrm * V$			
PELIGRO MRM	VULNERABILIDAD	RIESGO	
0.399	0.531	0.212	
0.304	0.261	0.079	
0.153	0.142	0.022	
0.048	0.065	0.003	

Rangos y niveles de riesgo para movimientos en masa			
0.079	<r≤< td=""><td>0.212</td><td>MUY ALTO</td></r≤<>	0.212	MUY ALTO
0.022	<r≤< td=""><td>0.079</td><td>ALTO</td></r≤<>	0.079	ALTO
0.003	<r≤< td=""><td>0.022</td><td>MEDIO</td></r≤<>	0.022	MEDIO
	R≤	0.003	BAJO

Cuadro 68.- Rangos y niveles de Riesgo para movimientos en masa.

	MATRIZ DE RIESGO PARA MOVIMIENTOS EN MASA						
PMA	0.399	0.026	0.057	0.104	0.212		
PA	0.304	0.020	0.043	0.079	0.162		
PM	0.153	0.010	0.022	0.040	0.081		
PB	0.048	0.003	0.007	0.013	0.026		
		0.065	0.142	0.261	0.531		
		VB	VM	VA	VMA		

Cuadro 69.- Matriz de riesgo para movimientos en masa.

PARA LA ZONA DE PROYECTO RMR

RIESGO PARA MOVIMIENTOS EN MASA DE LA ZONA DE PROYECTO						
		R = Pmrm * V				
	PELIGRO MRM	VULNERABILIDAD	RIESGO	RIESGO		
	0.163	0.088	0.014	MEDIO		

Cuadro 70.- Matriz de riesgo para movimientos en masa en la zona de proyecto.

La zona de estudios está emplazada en un contexto de riesgo medio ante movimientos de remoción en masa, debido a que los factores condicionantes y desencadenantes juegan de manera favorable a la ocurrencia de este fenómeno, sin embargo, esto se puede prevenir realizando algunas obras o estructuras de protección y regulación, para así garantizar la seguridad poblacional y el cumplimiento del tiempo de la vida útil de la nueva posta de salud Huayllati.

9.1.2. MATRIZ DE RIESGO POR MOVIMIENTOS DE REMOCIÓN EN MASA.

MATRIZ	DE RIESGO POR MOVIMIENTOS DE REMOCIÓN EN MASA	RANGOS	5	
RIESGO MUY ALTO	Geomorfológicamente estas áreas se encuentras en laderas moderadas y empinadas con actividad de geodinámica externa alta, como hacia el sur en las laderas y pendientes altas se muestran algunos deslizamientos y caída de rocas. La pendiente en estas zonas es mayor a 30°, cubiertas por material cuaternario o roca fracturada, además estas zonas son atravesadas por fallas locales, producto de ello se muestran algunos plegamientos en las rocas. Grupo etario de 0 a 5 años y mayores de 65 años de edad, más de 7 personas por vivienda, las cuales están construidas de adobe con algunas fallas estructuras como fisuras en las paredes, techos en mal estado. Personas con poca información acerca de las normas y reglas de contingencia ante cualquier emergencia, sin conocimiento de cuidado de medio ambiente y actividad desordenada en las áreas verdes. Además, no cuentan con un sistema de seguro de salud ni ingresos mayores a 700 nuevos soles, con equipamientos de costos	0.079	≤V≤	0.212
RIESGO ALTO	Geomorfológicamente estas áreas se encuentras en laderas moderadas con geodinámica externa inactiva, como hacia el sur en las laderas y pendientes altas se muestran algunos deslizamientos y caída de rocas, la cuales han dejado como evidencias algunas escarpas, además la zona de proyecto está considerada dentro de este contexto ya que las geoformas y algunos parámetros como geomorfología y la geología juegan a favor de la ocurrencia de MRM. La pendiente en estas zonas es mayor a 30°-45°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja. Personas de 6 a 10 años 6 a 10 años con poco conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de adobe y algunas de ellas con concreto que son más de 3 niveles. Personas con poco conocimiento del cuidado de medio ambiente, uso común de áreas verdes. Además, cuentan con ingresos mensuales de 701 a 1500 nuevos soles. Con actividades económicas de forma esporádica como tiendas y panaderías.	0.022	≤V <	0.079

BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

141

RIESGO MEDIO	Geomorfológicamente estas áreas se encuentras en laderas moderadas y suaves con geodinámica externa baja sin embargo por las características geológicas y el tipo de suelo son propicias para la ocurrencia de los fenómenos de geodinámica externa como son MRM. La pendiente en estas zonas varia de 3°-30°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja. Personas de 21 a 64 con regular conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de concreto que no son más de 3 niveles. Personas con regular conocimiento del cuidado de medio ambiente, uso mixto de áreas verdes. Además, cuentan con ingresos mensuales de 700 a 1500 nuevos soles actividades económicas en agricultura y ganaderia, seguro de salud SIS y Es salud.	0.003	≤V <	0.022
RIESGO BAJO	Geomorfológicamente estas áreas se encuentras en terrazas y conos aluviales sin la presencia de la geodinámica externa. La pendiente en estas zonas es mayor a 0°-12°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja. Personas de 11 a 20 con conocimiento de las emergencias pasadas y normas de contingencia antes ellas, viviendas con material de concreto que no son más de 3 niveles. Personas con conocimiento del cuidado de medio ambiente, uso adecuado y controlado de áreas verdes. Además, cuentan con ingresos mensuales mayores a 2000 nuevos soles actividades económicas mixtas tiendas, panaderías y ferretería con atención más constante, seguro de salud Privada. Cuadro 71 Matriz de rieseo por movimientos en	V<		0.003

Cuadro 71.- Matriz de riesgo por movimientos en masa.

BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

142

CONCLUSIONES

Geológicamente la zona de estudio se encuentra sobre depósitos aluviales (gravas y arenas mal seleccionadas en matriz limo arenosa), no se identificó fallas activas cercanas, pero si estructuras con deformación de esfuerzos tectónicos antiguos, producto de ello tenemos la presencia de la diorita alterada y suelo caótico. Geomorfológicamente se encuentra emplazada en un cono aluvial.

- De acuerdo a la evaluación geotécnica, con un factor de Seguridad 3, el suelo presenta los siguientes parámetros de resistencia.

CAL.	SUELO DE FUNDACIÓN	Df (m)	Cohesion (Kpa)	Peso Específico (t/m³)	Φ (°)	Asiento Total (cm)	Q adm. (Kg/cm²)	Kv	N.F (m)
01	GC-GM	1.50	15.24	1.92	32.78°	0.325	1.35	2.83	NP
02	GC-GM	1.50		1.93		0.322	1.35	2.83	NP

- El terreno de fundación corresponde a un material granular, identificado como una
 GRAVA ARCILLOSO- LIMOSA CON ARENA GC-GM, según SUCS, que presenta una coloración marrón.
- Por las condiciones de pendiente, geomorfología, geología, estructural y presencia de la actividad de la geodinámica externa como caídas de rocas, derrumbes y deslizamientos, la zona del emplazamiento del proyecto se encuentra en un peligro alto, por movimientos en masa, cuyo valor numérico es de 0. 163...
- Las vulnerabilidades evaluadas tanto para la parte social económica y ambiental, tomando en primer orden, los campos de fragilidad y resiliencia, para movimientos en masa,

obteniéndose como valor ponderado de **0.088** y situado en una **vulnerabilidad media** de acuerdo a los rangos de la misma.

- De la evaluación de vulnerabilidad y peligros resulta el riesgo por movimientos en masa para la zona del emplazamiento del proyecto, es así que se tienen la siguiente característica:
 Geomorfológicamente estas áreas se encuentran en laderas moderadas y suaves con geodinámica externa baja sin embargo por las características geológicas y el tipo de suelo son propicias para la ocurrencia de los fenómenos de geodinámica como son movimientos en masa.
- La pendiente en esta zona varia de 3°-30°, cubiertas por material cuaternario o roca fracturada, presenta también cobertura vegetal baja.
- Personas de 21 a 64 con regular conocimiento de las emergencias pasadas y normas de contingencia ante ellas, viviendas con material de concreto que no son más de 3 niveles. Personas con regular conocimiento del cuidado de medio ambiente, uso mixto de áreas verdes. Además, cuentan con ingresos mensuales de 700 a 1500 soles teniendo como actividad económica en agricultura y ganaderia, con seguro de salud SIS y Es salud. Ante estas condiciones de evaluación para la zona de emplazamiento del nuevo puesto de salud se tiene un **riesgo medio** por movimientos en masa cuyo valor es de **0.014**.

RECOMENDACIONES

- Realizar zanjas de coronación en los taludes ubicados al sur de la zona del proyecto,
 debidamente revestida hacia el ducto principal, el cual derivara la recolección de las aguas
 pluviales no menor a 250 metros con respecto al punto de proyecto.
- Realizar drenajes para aguas pluviales en el área del proyecto, esto para evitar posibles inundaciones e infiltraciones de las aguas en el subsuelo, ya que dicha infiltración podría causar asentamientos diferenciales.
- Se recomienda realizar reforestación en los taludes ya que las raíces ayudan a consolidar el suelo, además de disminuir el grado de erosión superficial.
- Se recomienda eliminar todo material contaminado y de desmonte existentes en la zona de estudio, previo a la construcción de obras civiles.
- La edificación deberá ser diseñada de acuerdo a las especificaciones de la norma E-030,
 ya que en el riesgo por fenómenos de movimientos en masa se encuentra en un contexto de riesgo medio.
- Se recomienda realizar un muro de contención, para proteger la infraestructura del colegio,
 ya que se realizarán cortes de talud a la colindancia con la I.E., además deberá ser diseñada
 con sub drenes para garantizar la funcionalidad de dicha estructura.
- Las Autoridades Locales y organismos involucrados deberán poner a disposición los mecanismos necesarios para capacitar a la población vulnerable, con el fin de prepararlos ante los fenómenos naturales como (movimientos en masa, inundación y sismos), así mismo formar brigadas de contingencia ante emergencias.

145

BIBLIOGRAFIA

Acosta Jorge & Devsi Paico (2010). Metalogenia y Geologia Economica del Peru.

Ayala Carcedo, F. J. (2002). Una reflexión sobre los mapas de susceptibilidad a los movimientos de ladera. Su naturaleza, funciones, problemáticas y límites. España: Instituto Gelogico y Minero de España.

Ayala Carcedo, F.J., & Olcinas, J. (2002). Riesgos Naturales. Barcelona: Ariel.

Ayala Carcedo. (1993). Estrategias para la reducción de desastres naturales. Investigación y Ciencia, 6-13.

Barreno Cano, J. I., & Gómez Delgado, M. (2006), Sistemas de información geográfica y evaluación multicriterio en la ordenación del territorio. Alfaomega – Ra – Ma.

Bodoque, J. Y. (2005). Resúmenes del VI Congreso Nacional de Geomorfología de España.

Santiago de Compostela. España: Sociedad Geológica de España.

Browman 1916, & Mac Laughlin 1924. (1916-1924). Superficie Puna.

Carreño C. Raul Y Susana Kalafatovich C. (2008). Visión Apurímac.

Catillo Aedo, J., & Alva Hurtado, J. (1993). Peligro Simico en el Peru.

CENEPRED. (2014). Manual para la Elaboración de Riesgos originados por Fenómenos Naturales.

Díaz Alfonso (2014). Informe final de susceptibilidad a la ocurrencia de movimientos en masa de la microcuenca de Sahuanay-Tamburco, Abancay, Apurímac.

Dollfus. (1965). Correlacion con las Glaciaciones.

E-030. (2014). Norma tecnica "Diseño Sismorresistente".

GEMMA. (2007). Movimientos en Masa en la Región Andina: Una guía para la evaluación de amenazas.

INEI. (2007). Censos Nacionales 2007: XI de Población y VI de vivienda.

INGEMMET. (s.f.). BOLETIN del Cuadrangulo de Cotabambas, Andahuaylas y Abancay SERIE 27A. LIMA: Carta Nacional de INGEMMET.

INGEMMET. (2016). Evolución sedimentaria y tectónica de la formación ferrobamba.

INGEMMET. (s.f.). Geologia Estructural.

INGEMMET. (s.f.). Geomorfologia Regional de Cuadrangulo 28r3. INGEMMET.

MCLAUGHLIN. (1924). Geomorfologia.

MEGARD. (1968). Altas Mesetas.

Publico, D. G. (s.f.). Pautas Metodologicas para la incorporacion del analisis del riesgo de desastres en los Proyectos de Inversion Publica.

Rivera Mantilla Hugo. (2005). Geología General.

SINAGERD. (2011). Ley del Sistema Nacional de Gestión del Riesgo de Desastres. Ley N 29664. Diario Oficial el Peruano.

SINPAD. (s.f.). Emergencias por departamentos.

Torres Gonzales Daniel Enrrique (2011). Estratigrafía Sedimentología de la Cuenca Condoroma.

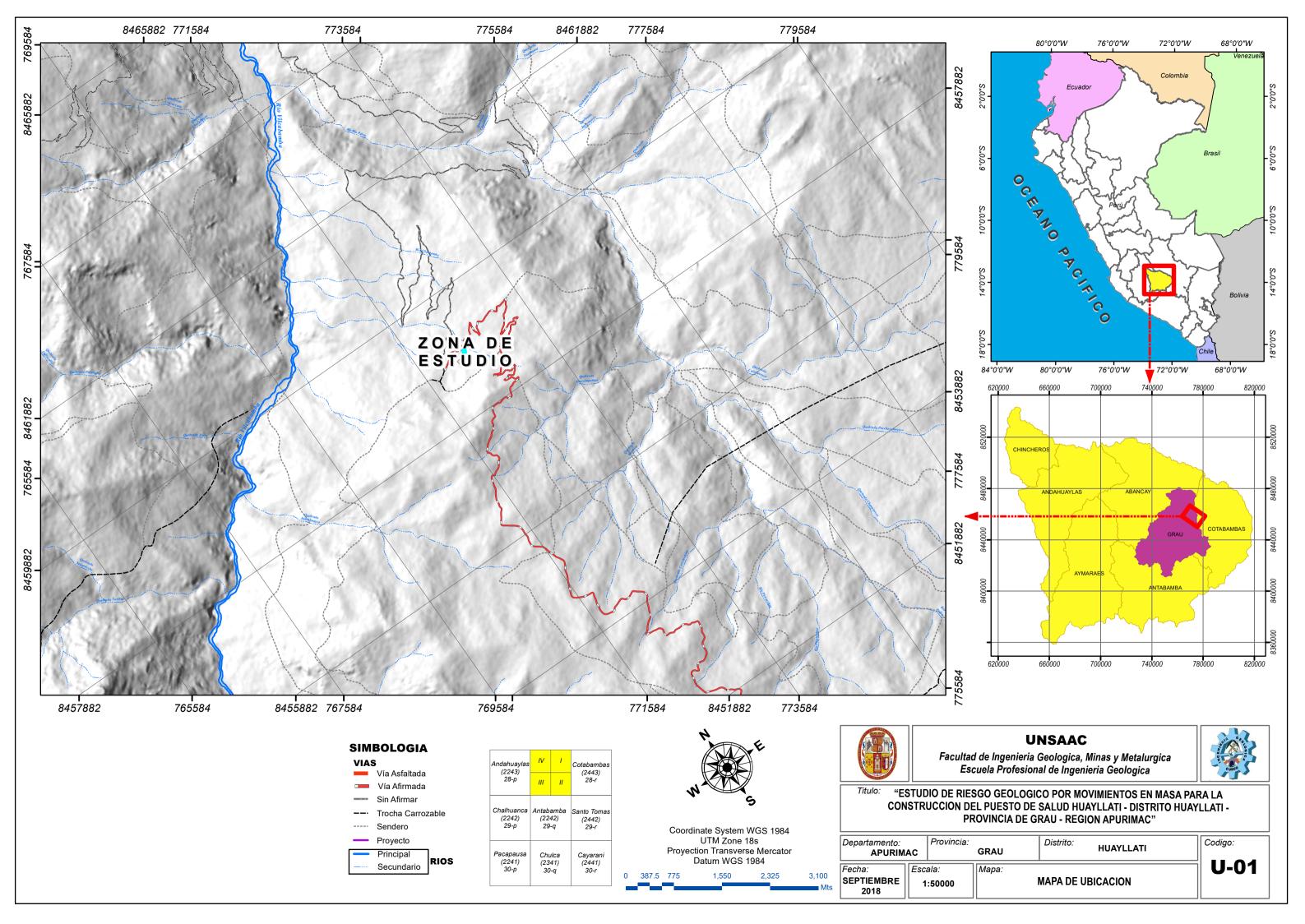
BACH. MELIZA ZAMALLOA BACH. LUZ A. MEDINA

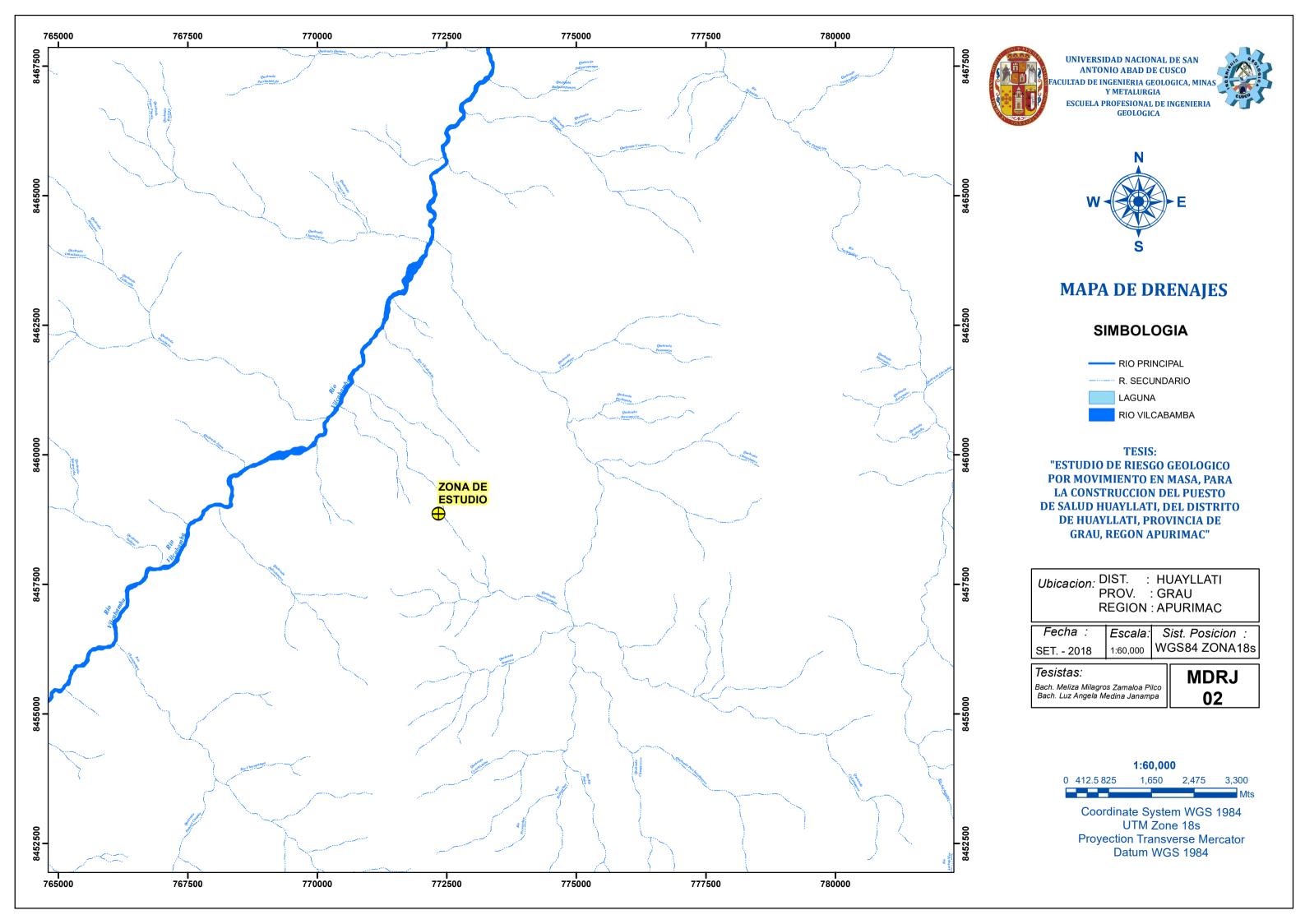
147

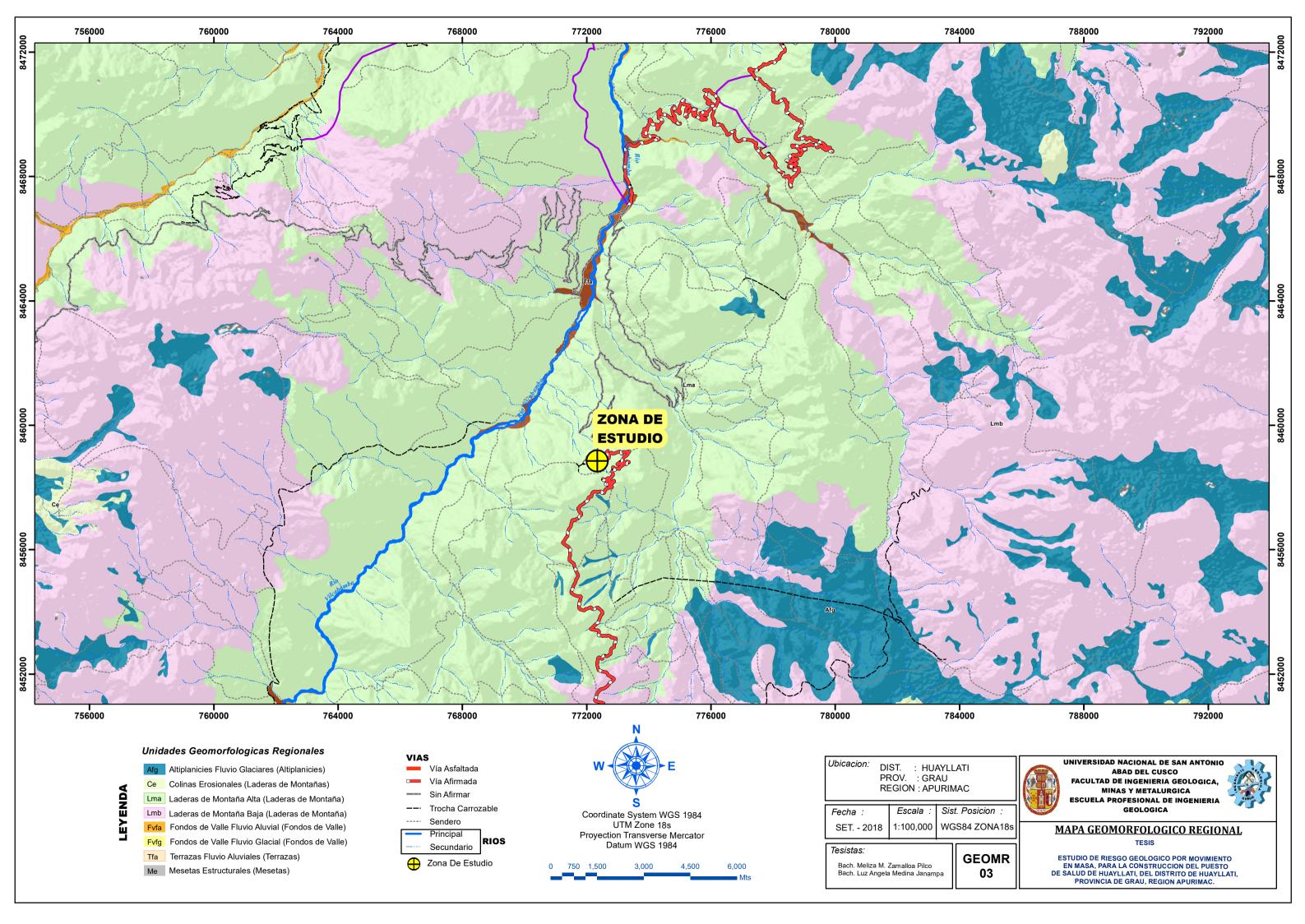
ANEXOS

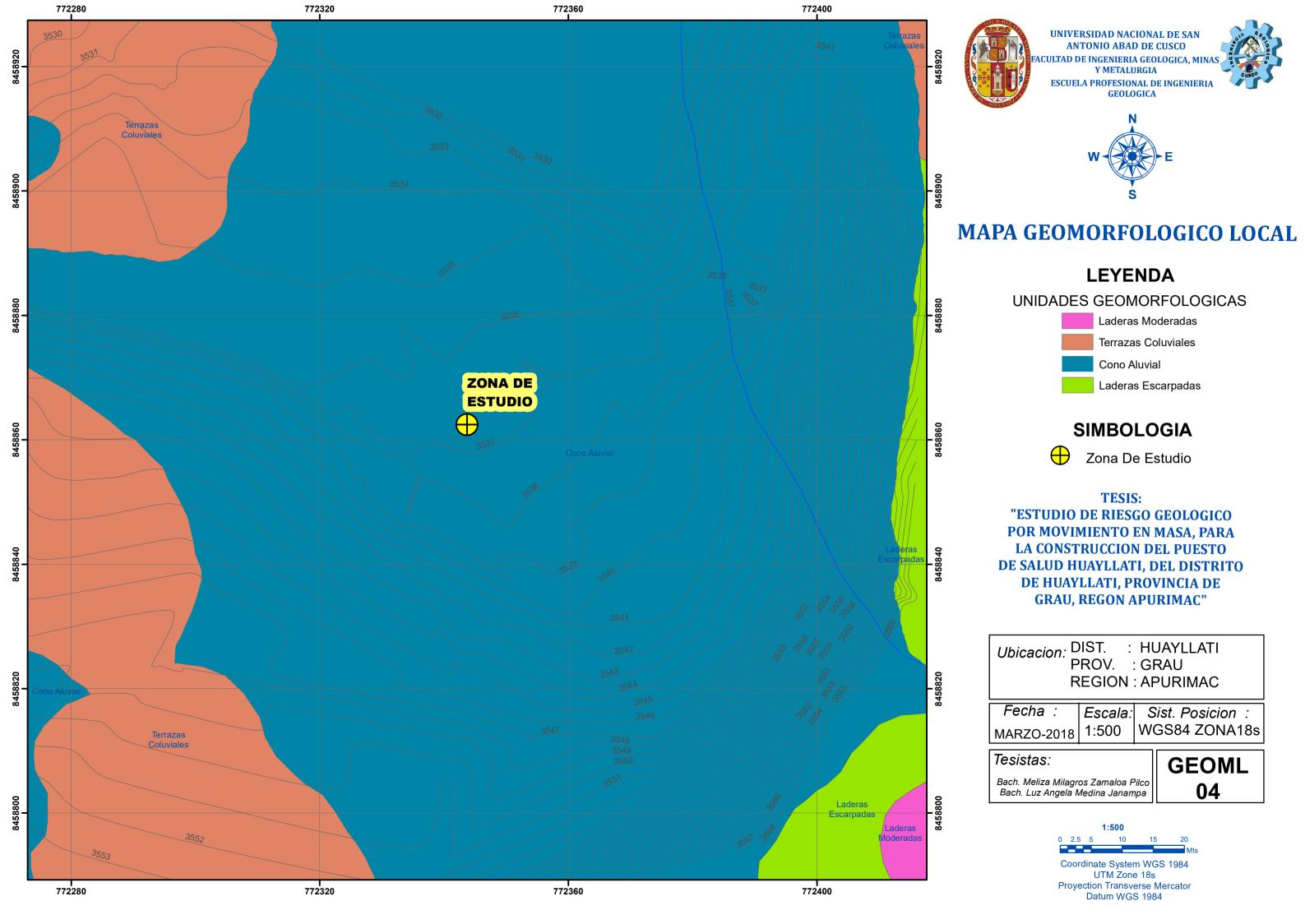
ANEXO 1: MAPAS

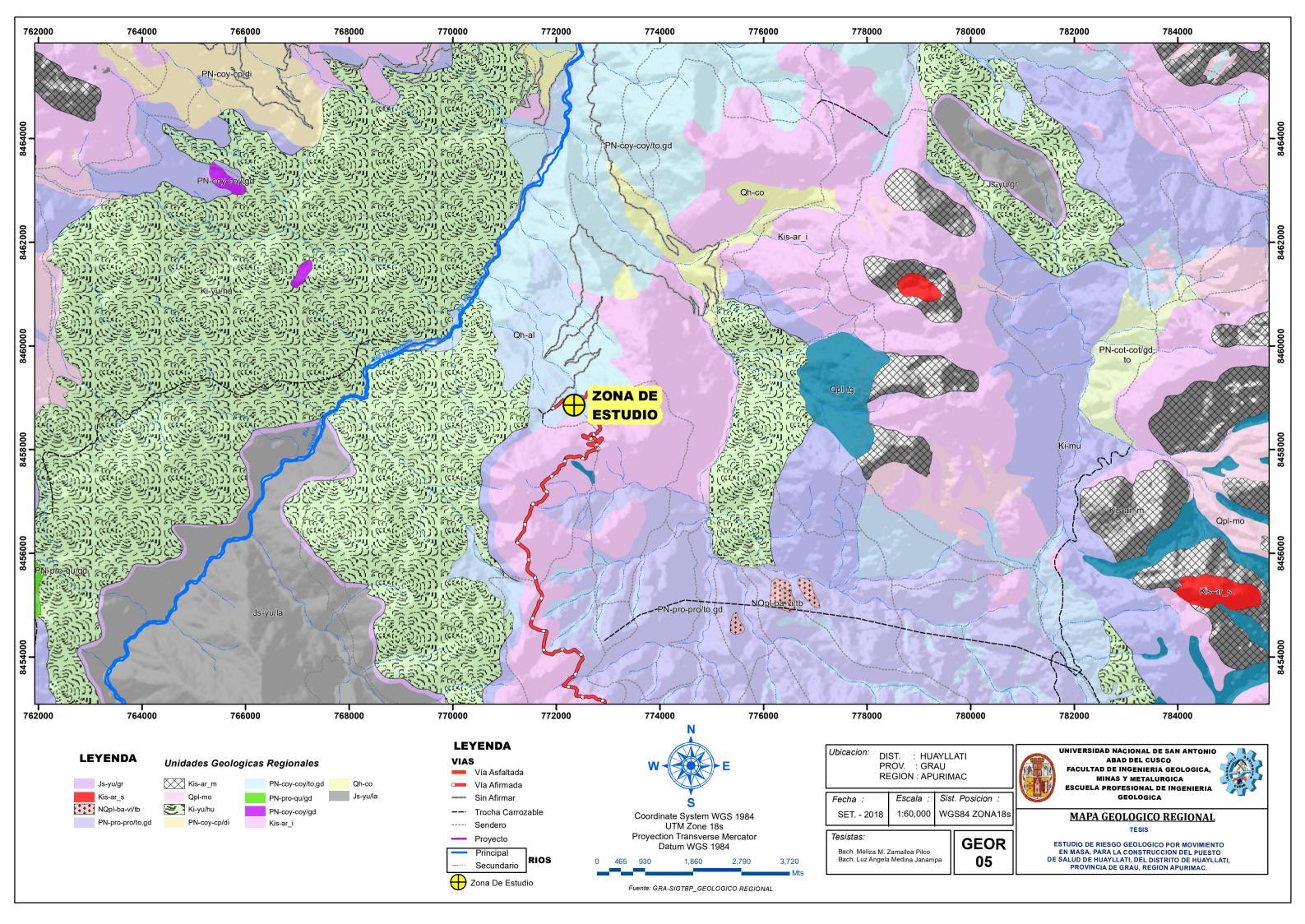
- 01 UBICACIÓN
- 02 DRENAJES
- 03 GEOMORFOLOGIA REGIONAL
- 04 GEOMORFOLOGIA LOCAL
- 05 GEOLOGIA REGIONAL
- 06 GEOLOGIA LOCAL
- 07 ESTRUCTURAL REGIONAL
- 08 ESTRUCTURAL LOCAL
- 09 PENDIENTES REGIONAL
- 10 PENDIENTES LOCAL
- 11 GEODINAMICA REGIONAL
- 12 GEODINAMICO LOCAL
- 13 MAPA DE SUCEPTIBILIDAD POR MRM
- 14 MAPA DE PELIGROS POR MRM
- 15 MAPA DE VULNERABILIDAD
- 16 MAPA DE RIESGO

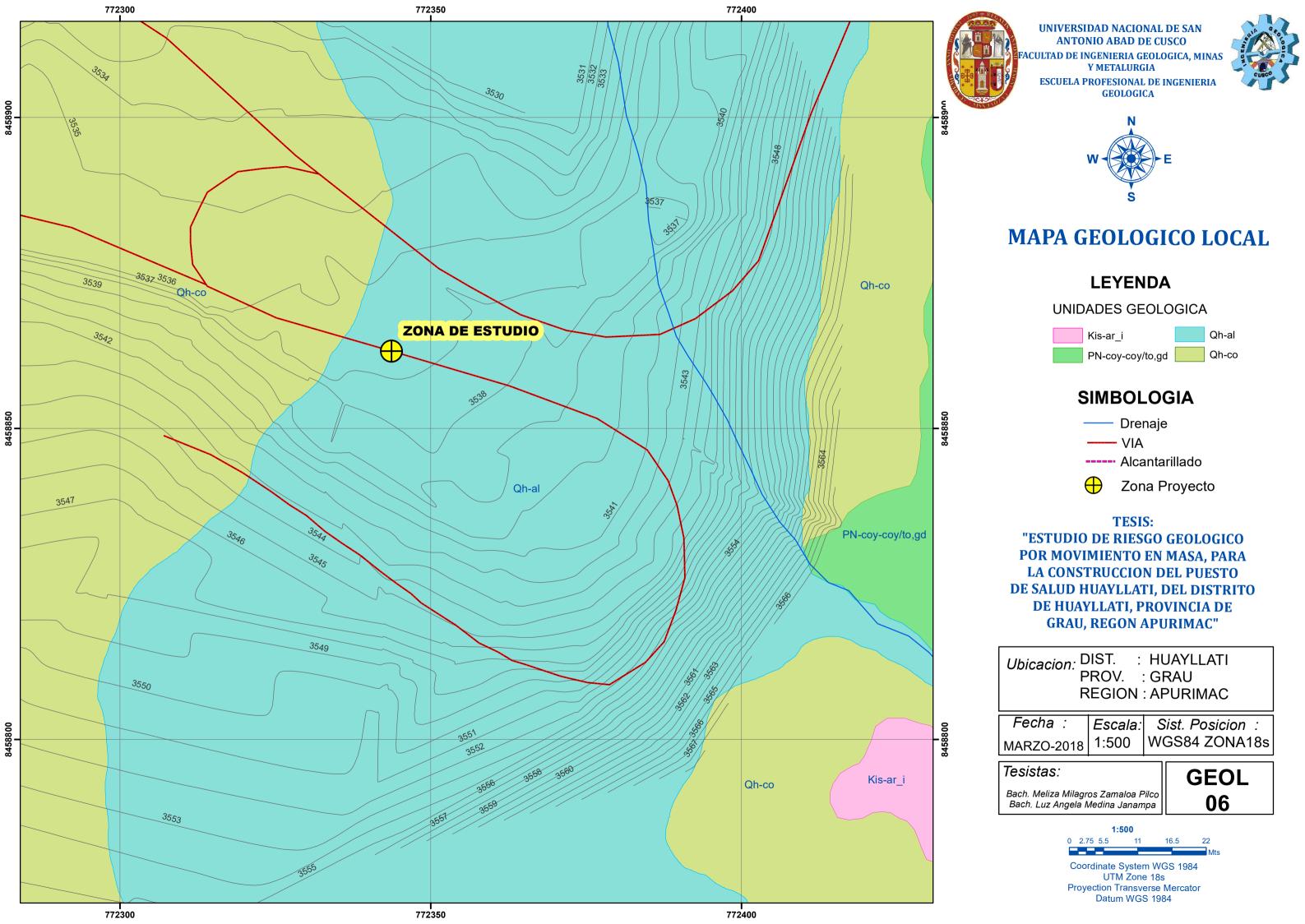

148

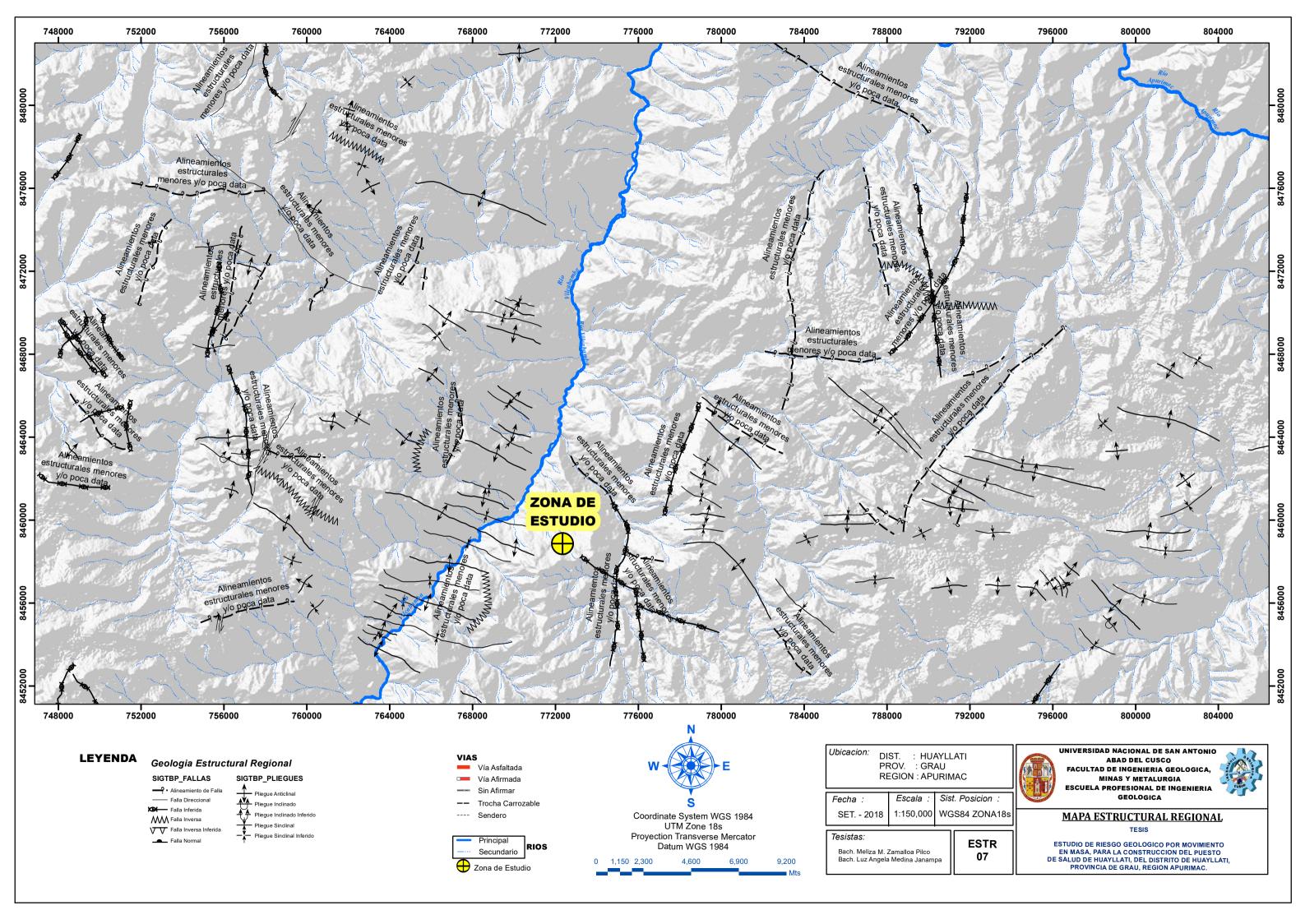

ANEXO 2: PERFIL ESTRATIGRAFICO, ENSAYOS GEOTECNICOS DE CAMPO Y LABORATORIO

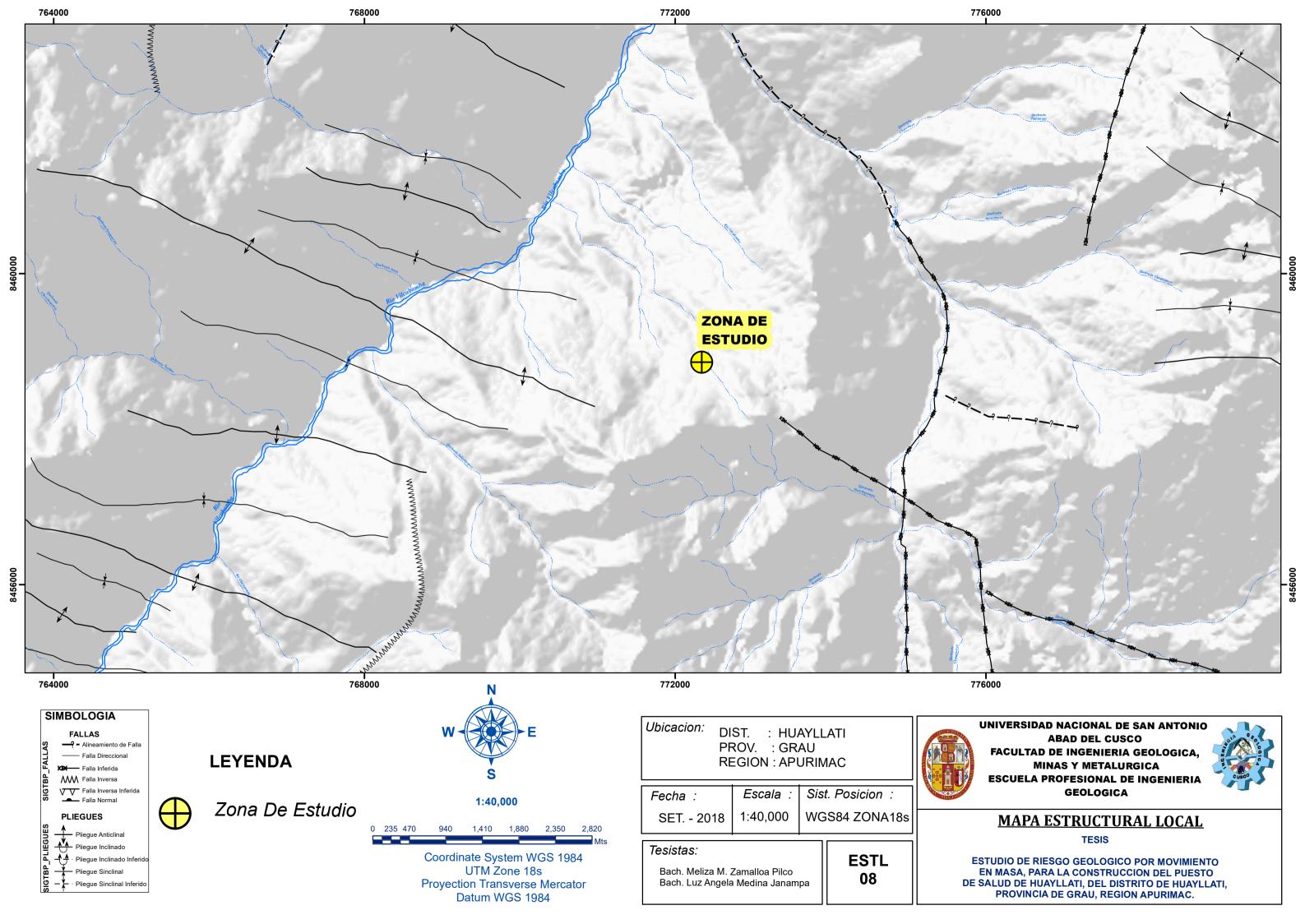

- 01 PERFIL ESTRATIGRAFICO
- 02 ENSAYO DE DENSIDAD DE CAMPO
- 03 CONTENIDO DE HUMEDAD
- 04 ENSAYO DE LIMITES DE CONSISTENCIA
- 05 ANALISIS GRANULOMETRICO
- 06 ENSAYO DE CORTE DIRECTO

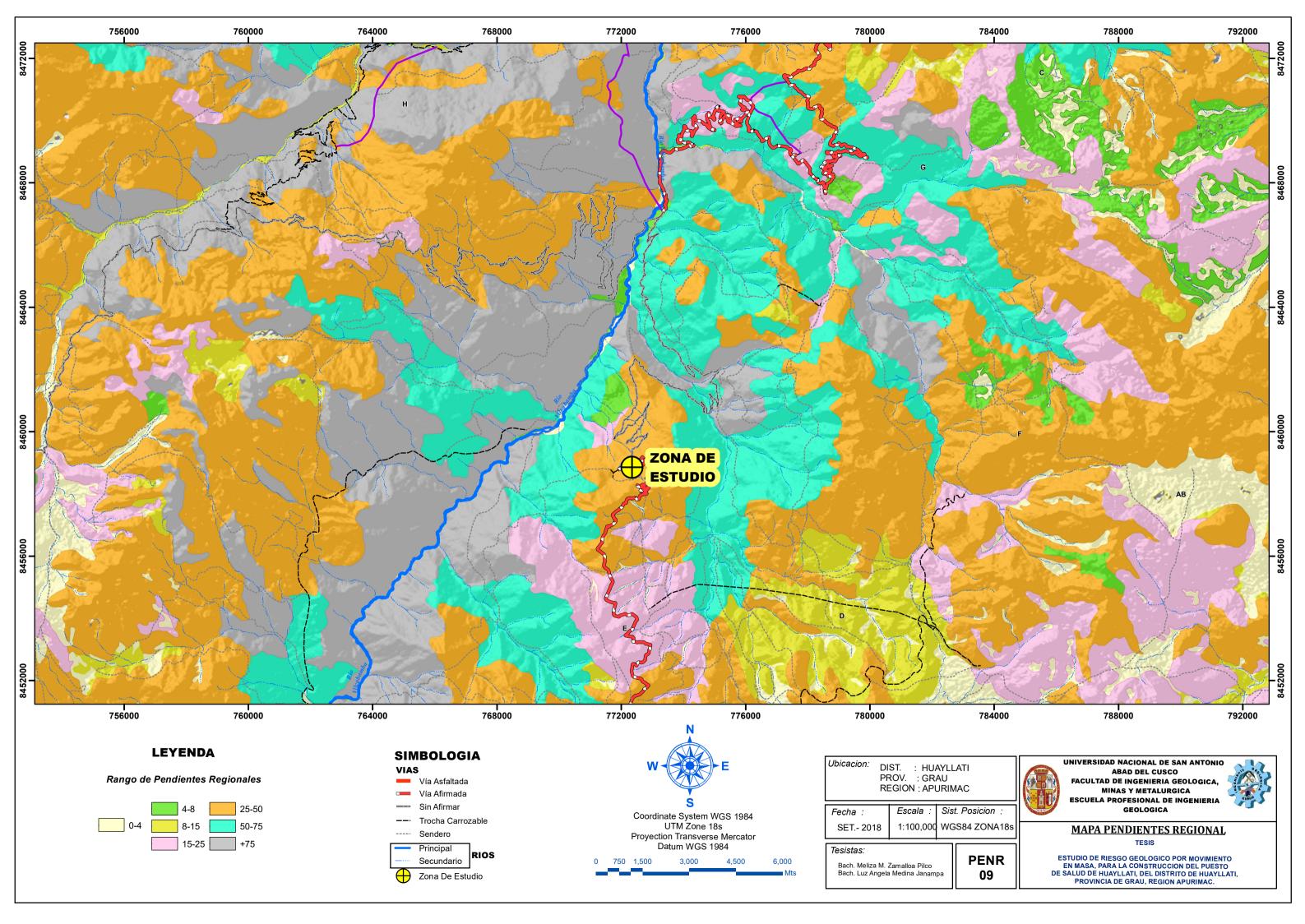

ANEXO 3: DATOS DE PRESIPITACION

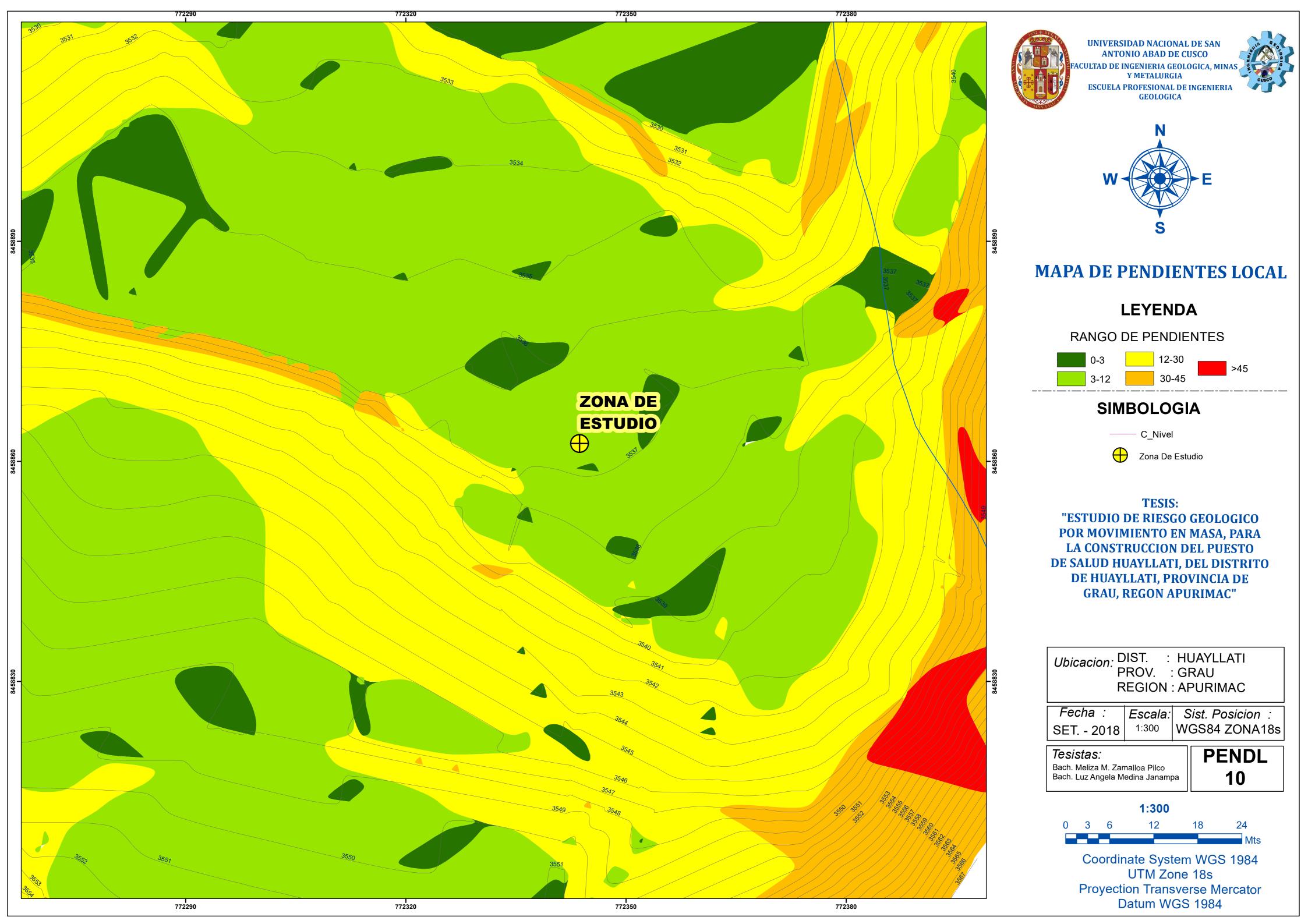

ANEXO I MAPAS

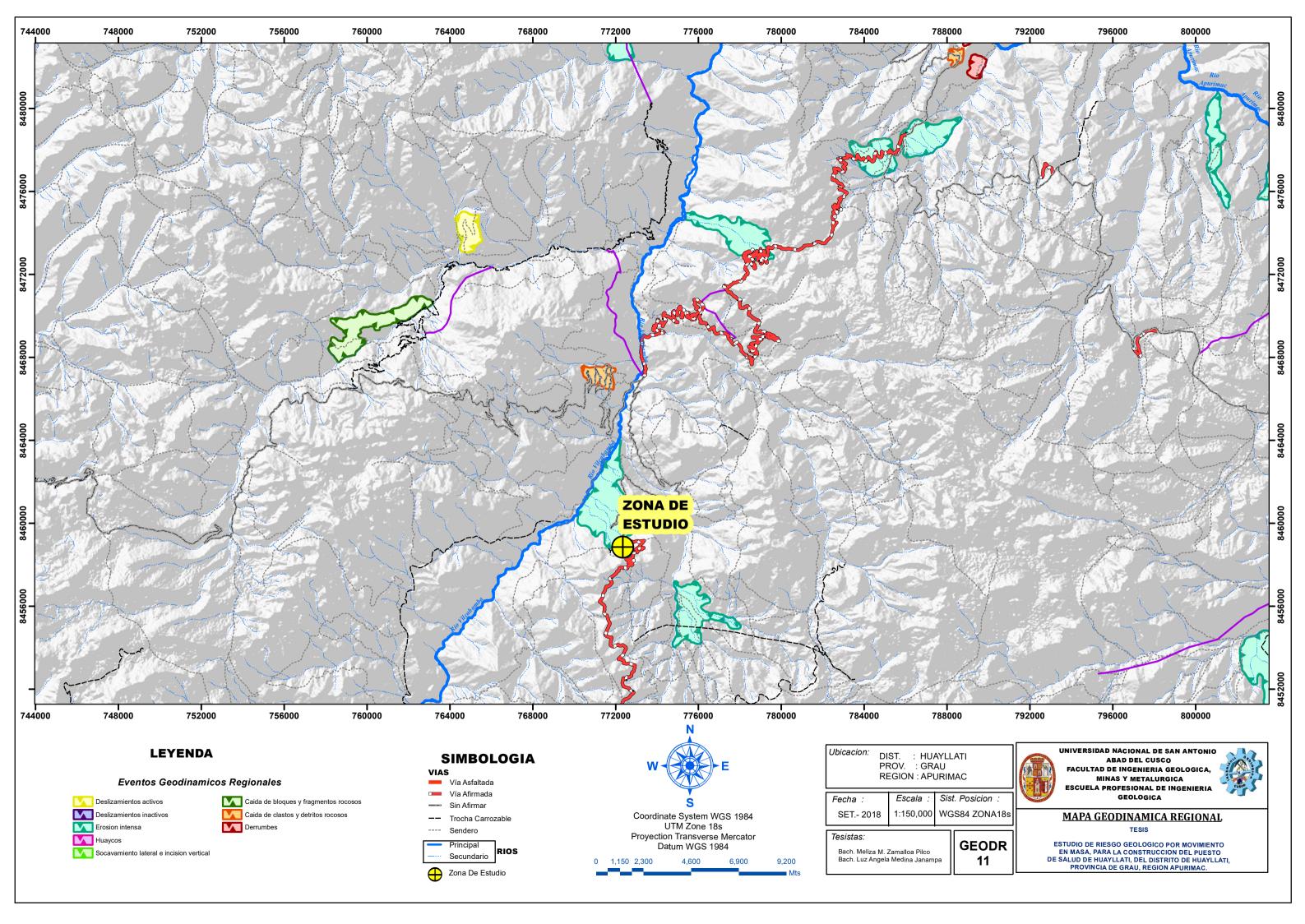


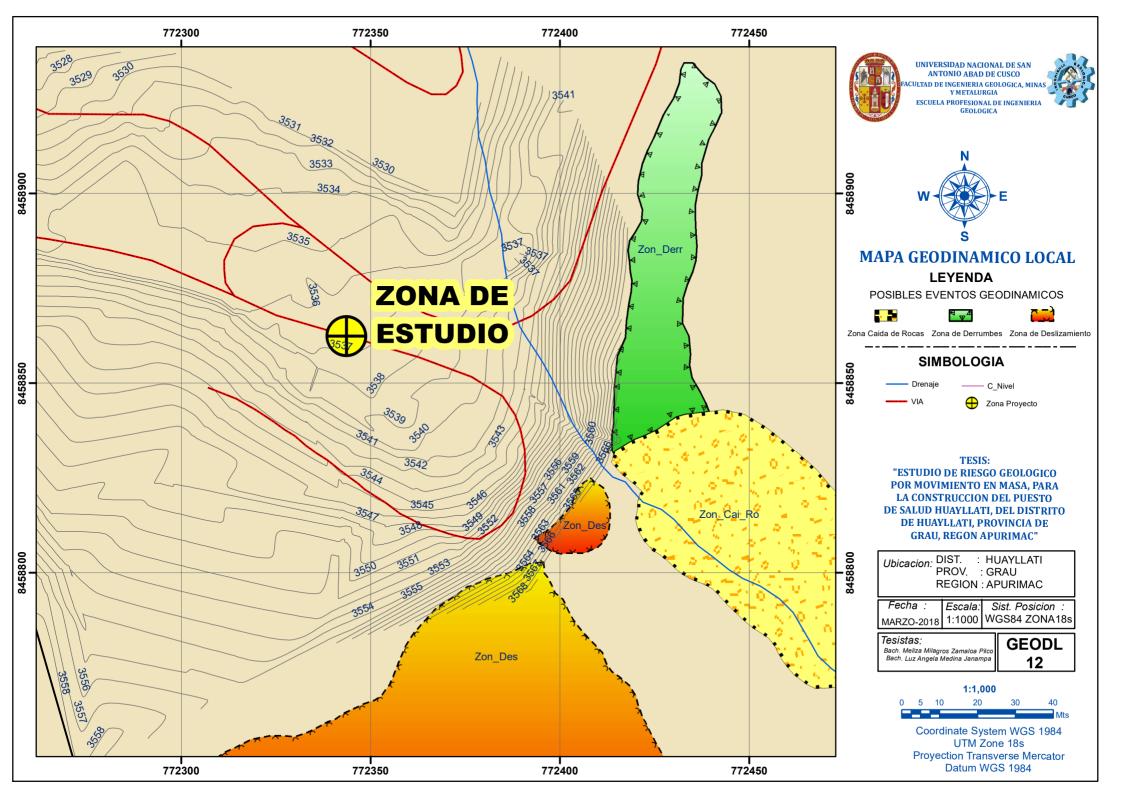


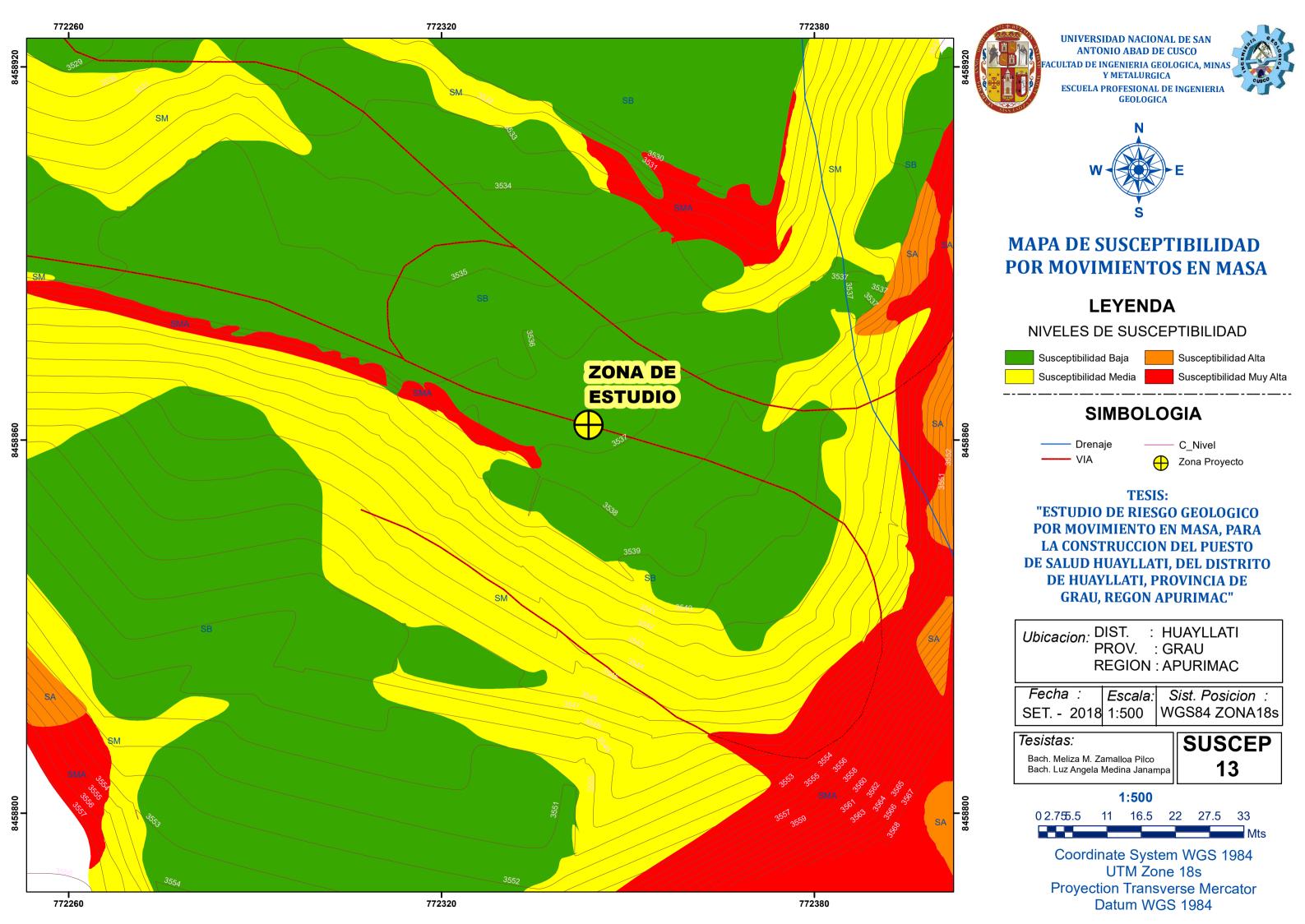


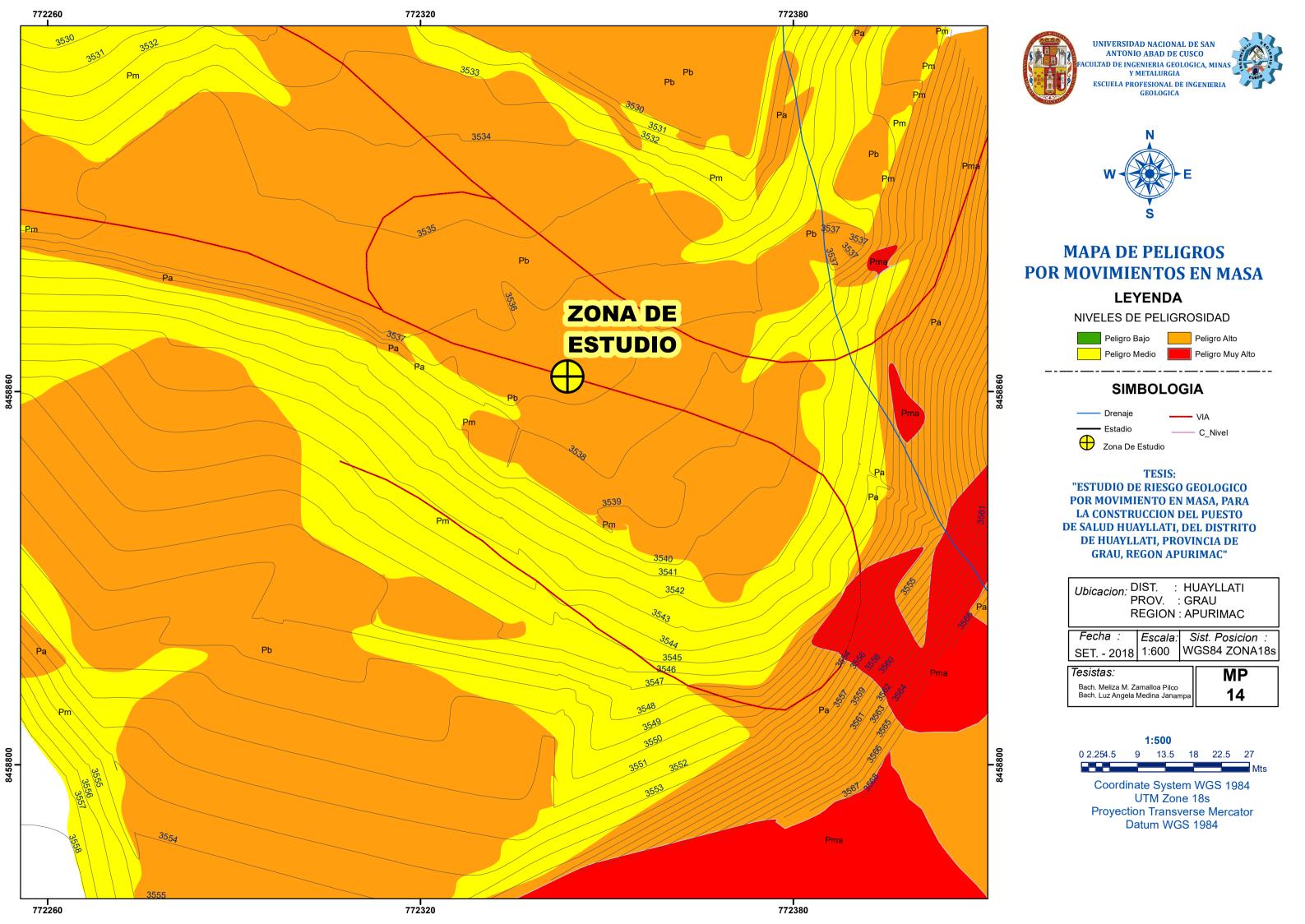


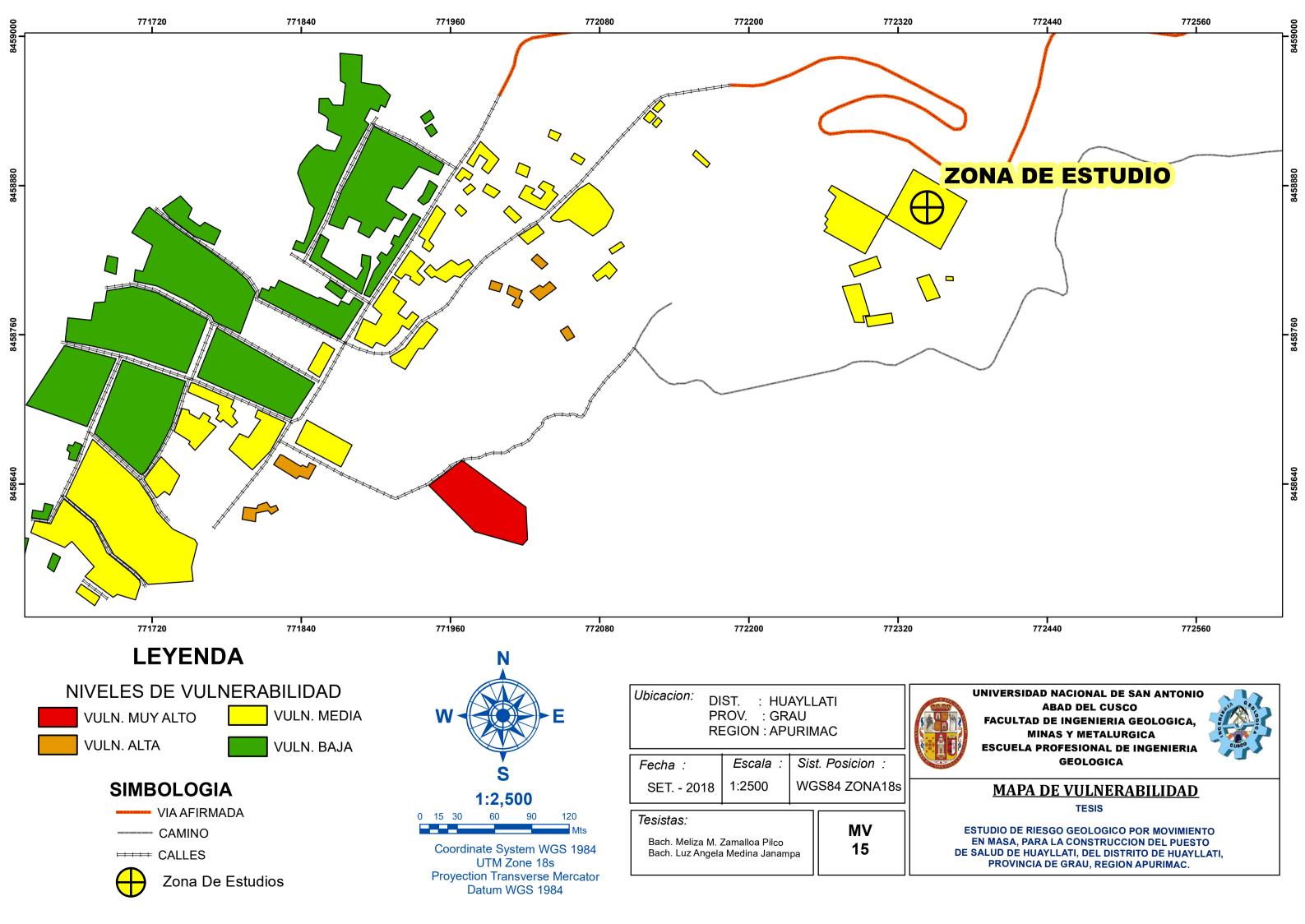


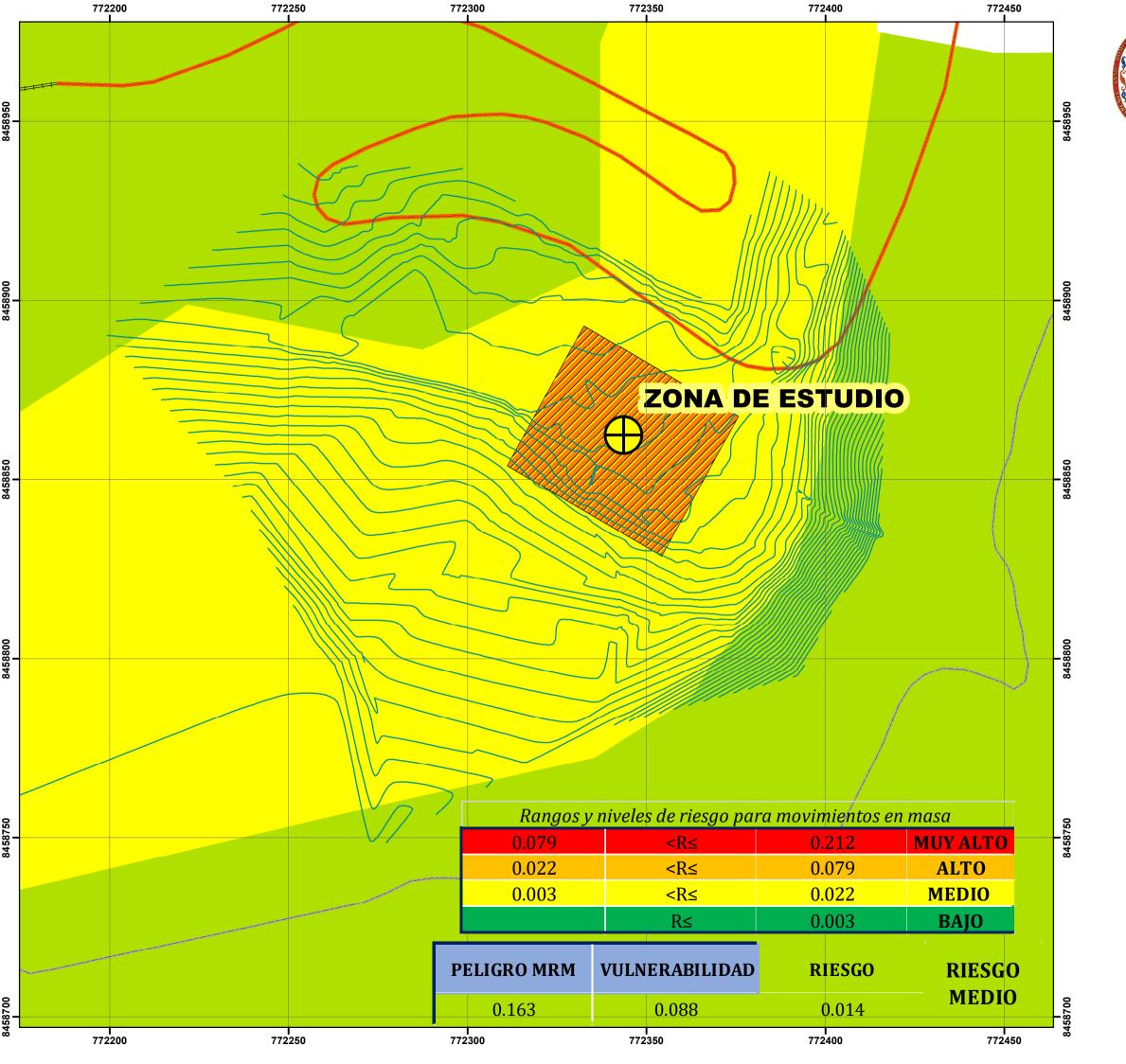












MAPA DE RIESGO POR MRM

LEYENDA

NIVELES DE RIESGO POR MRM

SIMBOLOGIA

Via Afirmada

TESIS:

"ESTUDIO DE RIESGO GEOLOGICO
POR MOVIMIENTO EN MASA, PARA
LA CONSTRUCCION DEL PUESTO
DE SALUD HUAYLLATI, DEL DISTRITO
DE HUAYLLATI, PROVINCIA DE
GRAU, REGON APURIMAC"

Ubicacion: DIST. : HUAYLLATI PROV. : GRAU REGION : APURIMAC

Fecha: Escala: Sist. Posicion:
SET. - 2018 1:1000 WGS84 ZONA18s

Tesistas:

Bach. Meliza Milagros Zamaloa Pilco Bach. Luz Angela Medina Janampa MR 16

Coordinate System WGS 1984 UTM Zone 18s Proyection Transverse Mercator Datum WGS 1984

ANEXO 2 PERFIL ESTRATIGRAFICO, ENSAYOS GEOTECNICOS DE CAMPO Y LABORATORIO

UBICACIÓN DE LAS CALICATAS

COORDENADAS:

CALICATA 1

E: 772383.00 m.

N: 8458839.00 m.

CALICATA 2

E:772347.00 m.

N: 8458853.00 m.

			TRO DE EXCA		
	***************************************		ESTRATIGRA		
PROYECTO:	"Estudio d	de Riesgo Geologico por movi	miento en masa, p	oara la construccion del Puest	o de Salud de Huayllati, del
	Distrito de	Huayllati, Provincia de Grau, R	tegion Apurimac.		
JBICACIÓN :	Distrito de	Huayllati, Provincia de Grau, R	egion Apurimac		
ALICATA :	C-01	,,			
ROFUNDIDAD:	3.00m				
IIVEL FREATICO :	No prese	nta			
ECHA :	Set 2018	3			
PROF. (m)	TIPO DE EXCAV.	ESTRATO	CLASIF. SUCS	DESCRIPCION	FOTOGRAFIA
0.20			GC-GM	RELLENO ANTROPICO, CONSTITUIDO POR GRAVAS, ARENAS, PIEDRAS, LIMOS Y RAICES EN MATRIZ ARCILLOSA.	
0.60					
1.00	EXCAVACION A CIELO ABIERTO				
1.80	ACION A C		GC-GM	MATERIAL GRANULAR GRAVA ARCILLOSA - LIMOSA CON ARENA.	
2.00	(A		Y	COLORACION MARRON	
2.20					
2.40					
2.60					
2.80					
3.00					THE PROPERTY OF THE PARTY OF TH

REGISTRO DE EXCAVACION PERFIL ESTRATIGRAFICO C-02 "Estudio de Riesgo Geologico por movimiento en masa, para la construccion del Puesto de Salud de Huayllati, del PROYECTO: Distrito de Huayllati, Provincia de Grau, Region Apurimac. UBICACIÓN : Distrito de Huayllati, Provincia de Grau, Region Apurimac. CALICATA : C-02 PROFUNDIDAD: 3.00m NIVEL FREATICO: No presenta FECHA Set.- 2018 **TIPO DE** PROF. (m) **ESTRATO CLASIF. SUCS DESCRIPCION FOTOGRAFIA** EXCAV. RELLENO ANTROPICO, 0.20 CONSTITUIDO POR GRAVAS, GC-GM ARENAS, PIEDRAS, LIMOS Y 0.40 RAICES EN MATRIZ ARCILLOSA. 0.60 0.80 1.00 **EXCAVACION A CIELO ABIERTO** 1.20 1.60 1.80 MATERIAL GRANULAR GRAVA GC-GM ARCILLOSA - LIMOSA CON ARENA. COLORACION MARRON 2.00 2.20 2.40 2.60 2.80 3.00 **OBESERVACIONES:**

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS

DENSIDAD DEL SUELO (IN SITU) - ASTM D1556-64

Proyecto : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de

Salud de Huayllati, del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

Ubicación : Distrito de Huayllati, Provincia de Grau, Region Apurimac.

Fecha : Set-18
Calicata : C-01.

DATOS DE LABORATORIO DEL ENSAYO DEL TERRENO:

	ENS	AYO I		
W cap.	50.47	50.78		
W cap.+ suelo hum.	99.31	98.25		
W cap.+ suelo seco	92.45	91.65		
W suelo hum.	48.84	47.47		
W suelo seco	41.98	40.87		
Cont. de Humedad	16.34	16.15		
Promedio de W%	16	16.24		

DATOS DEL TERRENO:

Pozo Nº	C - 01
W. Del suelo humedo	3095.00
Peso Unitario Arena	1.41
W frasco+cono antes de usarlo	6784.00
W frasco+cono desp de usarlo	2845.00
W arena usada (hueco+cono)	3939.00
W arena en cono (de calibracion)	1535.00
W arena en el hueco	2404.00
Volumen del hueco	1704.96

Densidad Natural del Suelo 1.82 gr/cm3

Densidad Seca del Suelo 1.56 gr/cm3

DENSIDAD DEL SUELO (IN SITU) - ASTM D1556-64

Proyecto : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de

Salud de Huayllati, del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

Ubicación : Distrito de Huayllati, Provincia de Grau, Region Apurimac.

Fecha : Set-18 Calicata : C-02

DATOS DE LABORATORIO DEL ENSAYO DEL TERRENO:

	ENS	AYO I	
W cap.	50.47	50.64	
W cap.+ suelo hum.	97.45	96.24	
W cap.+ suelo seco	91.24	90.14	
W suelo hum.	46.98	45.6	
W suelo seco	40.77	39.5	
Cont. de Humedad	15.23	15.44	
Promedio de W%	15	15.34	

DATOS DEL TERRENO:

Pozo Nº	C - 02
W. Del suelo humedo	2451.00
Peso Unitario Arena	1.41
W frasco+cono antes de usarlo	6687.00
W frasco+cono desp de usarlo	3283.00
W arena usada (hueco+cono)	3404.00
W arena en cono (de calibracion)	1535.00
W arena en el hueco	1869.00
Volumen del hueco	1325.53

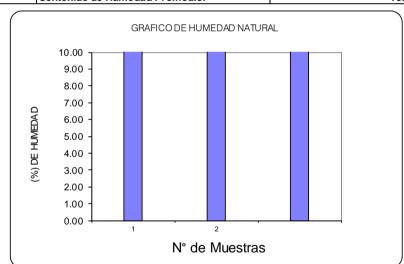
Densidad Natural del Suelo 1.85 gr/cm3

Densidad Seca del Suelo 1.60 gr/cm3

LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS

ENSAYO DE HUMEDAD NATURAL

PROYECTO : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de


Huayllati, del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

UBICACIÓN: Distrito de Huayllati, Provincia de Grau, Region Apurimac.

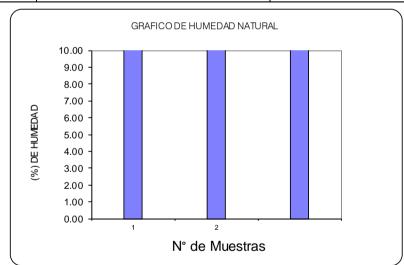
CALICATA : C-01

FECHA : Set-18

PORCENTAJE DE HUMEDAD					
Muestra:		1	2		
	Capsula N⁰	1	5		
1	Peso del tarro:	50.47	50.78		
2	Peso del T + Suelo humedo:	99.31	98.25		
3	Peso del T + Suelo Seco::	92.45	91.65		
4	Peso del Agua:	6.86	6.60		
5	Peso del suelo seco:	41.98	40.87		
6	Contenido de Humedad:	16.34	16.15		
_	Contenido de Humedad Promedio:		16.24		

LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS

ENSAYO DE HUMEDAD NATURAL


PROYECTO : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de

Huayllati, del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

UBICACIÓN : Distrito de Huayllati, Provincia de Grau, Region Apurimac.

CALICATA: C-02 FECHA : Set-18

PORCENTAJE DE HUMEDAD					
Muestra:		1	2		
	Capsula Nº	1	5		
1	Peso del tarro:	50.47	50.64		
2	Peso del T + Suelo humedo:	97.45	96.24		
3	Peso del T + Suelo Seco::	91.24	90.14		
4	Peso del Agua:	6.21	6.10		
5	Peso del suelo seco:	40.77	39.5		
6	Contenido de Humedad:	15.23	15.44		
	Contenido de Humedad Promedio:		15.34		

LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS.

ENSAYO DE LIMITES DE ATTEMBERTG

PROYECTO : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de Huayllati,

del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

UBICACIÓN : Distrito de Huayllati, Provincia de Grau, Region Apurimac.

FECHA :Setiembre 2018

MUESTRA : Calicata C-01.

LIMITE LIQUIDO NTP-339.129							
Muestra N°	1	2	3	4			
Peso de la capsula	16.50	16.50	16.10	15.20			
Peso capsula. + suelo humec	26.70	27.70	28.00	26.90			
Peso capsula + suelo seco	24.98	25.73	25.83	24.70			
Numero de golpes	38	29	24	18			
Peso suelo seco	8.48	9.23	9.73	9.5			
Peso agua	1.72	1.97	2.17	2.20			
% humedad	20.28%	21.34%	22.30%	23.16%			

RESULTADO	os
LIMITE LIQUIDO	22.10%

OBSERVACIONES:

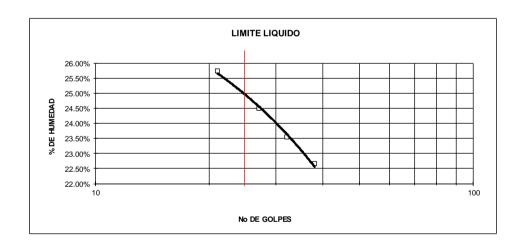
STICO NT	P.339.129.	
1	2	3
9.10	9.00	8.00
10.00	9.60	8.50
9.88	9.52	8.43
0.78	0.52	0.43
0.12	0.08	0.07
15.38%	15.38%	16.28%
	1 9.10 10.00 9.88 0.78 0.12	10.00 9.60 9.88 9.52 0.78 0.52 0.12 0.08

ENSAYO DE LIMITES DE ATTEMBERTG

PROYECTO : "Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de

Huayllati, del Distrito de Huayllati, Provincia de Grau, Region Apurimac"

UBICACIÓN : Distrito de Huayllati, Provincia de Grau, Region Apurimac.

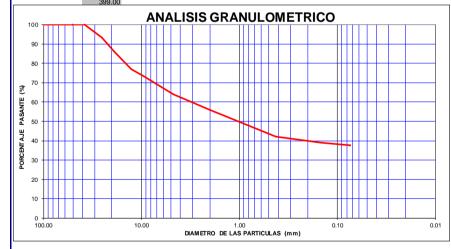

FECHA :Setiembre 2018
MUESTRA : Calicata C-02

LIMITE LIQUIDO NTP-339.129							
Muestra N°	1	2	3	4			
Peso de la capsula	15.20	15.80	16.60	16.20			
Peso capsula. + suelo humed	30.90	31.70	32.20	28.90			
Peso capsula + suelo seco	28.00	28.67	29.13	26.30			
Numero de golpes	38	32	27	21			
Peso suelo seco	12.8	12.87	12.53	10.1			
Peso agua	2.9	3.03	3.07	2.60			
% humedad	22.66%	23.54%	24.50%	25.74%			

LIMITE PLA	STICO NTI	P.339.129.	
Muestra	1	2	3
Peso de la capsula	7.80	9.30	7.90
Peso capsula. + suelo humec	10.70	11.70	10.50
Peso capsula + suelo seco	10.27	11.32	10.10
Peso suelo seco	2.47	2.02	2.20
Peso agua	0.43	0.38	0.40
% humedad	17.41%	18.81%	18.18%

RESULTADO	OS
LIMITE LIQUIDO	24.93%
LIMITE PLASTICO	18.13%
INDICE PLASTICO	6.80%

OBSERVACIONES:


LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS

ENSAYO DE ANALISIS GRANULOMETRICO POR TAMIZADO NTP-339.128.

PROYECTO	:	"Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de Huayllati,
		del Distrito de Huayllati, Provincia de Grau, Region Apurimac"
UBICACIÓN	:	Distrito de Huayllati, Provincia de Grau, Region Apurimac.
FECHA		Set - 2018

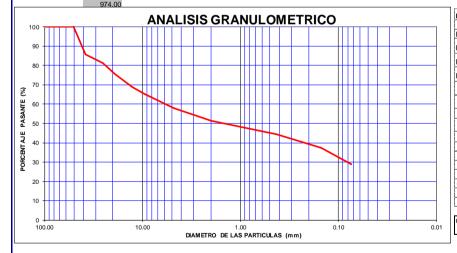
FECHA : Set. - 2016 CALICATA : C-01.

TAMAÑ	O DE	PESO	PORCENTAJE	PORCENTAJE	ESPECIFICACIONES		ANALISIS GRANULOMETRICO POR TAMIZADO MTC E 107- 2000					OMETRICO POR TAMIZADO MTC E 107- 2000
TAMIZ	ŒS	RETENIDO	RETENIDO	QUE PASA	TECNICAS		SISTEMA UNIFICADO DE CLASIFICACION DE SUELOS			ICADO DE CLASIFICACION DE SUELOS		
(Pulg.)	(mm.)	(gr)	(%)	(%)	(%)	20%		SUELO	e del	a N°4	GW	Gravas bien graduadas , mezclas de grava y arena con poco o nada de finos
4"	101.60			100.00		MAS DEL	1° 200	Y SUE	3RAVOSO, más del	50% retiene malla N°4	GP	Gravas mal graduadas, mezcla de grava y arena con poco o nada de finos
2"	50.80		0.00	100.00		O, MA	RETENIDO EN LA MALLA Nº 200	GRAVA	AVOS	retien	GM	Gravas Limosas, mezclas de grava, arena y limo
1 1/2"	38.10		0.00	100.00		GRUESO,	LA M	0	g.	20%	GC	Gravas Arcillosas, mezclas de grava, arena y arcilla
1"	25.40	38.80	2.84	93.34		GRANO G	OEN	SUELO	sdel	°A	SW	Arenas bien graduadas, arenas con grava con poco o nada de finos
3/4"	19.10	41.50	3.04	86.22		E GRA	END	Y SUI	O, má	malla	SP	Arenas mal graduadas, arenas con grava con poco o nada de finos
1/2"	12.70	53.60	3.92	77.02		SUELODI	R	ARENA	ARENOSO, más del	50% pasa malla N° 4	SM	Arenas Limosas, mezcla de arena y limo
3/8"	9.52	21.20	1.55	73.38		SUE		Ą	AR	20%	sc	Arenas Arcillosas, mezcla de arena y arcilla
Nº 4	4.76	54.80	4.01	63.97	4	0 % 0	200	>	AS	~	ML	Limo Inorgánicos, polvo de roca, limo arenosos, o arcillosos ligeramente plásticos
Nº 10	2.00	47.50	3.47	55.82	4	GRANO FINO, 50%	LA N	LIMOS Y	ARCILLAS	(4,50)	CL	Arcillas Inorgánicas de baja plasticidad, arcillas con grava, arcillas areno-limosas,
Nº 40	0.43	80.10	5.86	42.07	4	NO FI	A MAL	Ľ	₹		OL	Limos Orgánicos y Arcillas Limosas Orgánicas de baja plasticidad
Nº 100	0.15	39.90	2.92	39.15	4	GRA	SA LA	>	AS	_ ~	МН	Limos Inorgánicos, Limos micáceos, o diamtomizados, Limos elásticos
Nº 200	0.07	21.60	1.58	37.57	4	SUELO DE	MAS PASA LA MALLA N°200	LIMOS Y	ARCILLAS	(LL>50)	СН	Arcillas Inorgánicas de alta plasticidad, arcillas francas
CAZUELA	0.01	393.00	28.75	8.82	4	SUE	Σ		₹		ОН	Arcillas Orgánicas de media a alta plasticidad, Limos orgánicos de media plasticidad
тот	AL:	1,367.00	100			Alt	Altamente Orgánico		Pt	Turba y otros suelos altamente orgánicos		

DATOS PARA CLASIFICACION						
PASA N° 4	63.97					
PASA N°10	55.82					
PASA N°40	42.07					
PASA N°200	37.57					
D10						
D30						
D60						
Cu						
Сс						
LL	22.10%					
LP	15.68%					
ΙP	6.42%					
CLASIFICACION						
AASHTO						
SUCS	GC-GM					

Grava arcillosa limosa con arena.

LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS


ENSAYO DE ANALISIS GRANULOMETRICO POR TAMIZADO NTP-339.128.

PROYECTO	:	"Estudio de riesgo Geologico por movimieto en masa, para la construccion del puesto de Salud de Huayllati,	
		del Distrito de Huayllati, Provincia de Grau, Region Apurimac"	
LIBICACIÓN		Distrito de Huavilati Provincia de Grau Pegion Anurimas	

FECHA: Set. - 2018

CALICATA : C-02.

TAMAÑ	IO DE	PESO	PORCENTAJE	PORCENTAJE	ESPECIFICACIONES		ANALISIS GRANULOMETRICO POR TAMIZADO MTC E 107- 2000					OMETRICO POR TAMIZADO MTC E 107- 2000
TAMIZ	ZES	RETENIDO	RETENIDO	QUE PASA	TECNICAS				SIST	TEM	A UNIF	ICADO DE CLASIFICACION DE SUELOS
(Pulg.)	(mm.)	(gr)	(%)	(%)	(%)	20%		2	le s	a N°4	GW	Gravas bien graduadas , mezclas de grava y arena con poco o nada de finos
4"	101.60			100.00		GRANO GRUESO, MAS DEL	° 200	Y SUELO	GRAVOSO, más del	50% retiene malla N°4	GP	Gravas mal graduadas, mezcla de grava y arena con poco o nada de finos
2"	50.80		0.00	100.00		,0 MA	RETENIDO EN LA MALLA N°	GRAVA	AVOS	retien	GM	Gravas Limosas, mezclas de grava, arena y limo
1 1/2"	38.10	196.30	14.36	85.64		RUES	LAM	0	 F	20%	GC	Gravas Arcillosas, mezclas de grava, arena y arcilla
1"	25.40	58.80	4.30	81.34		NOG	O EN	SUELO	s del	° S	SW	Arenas bien graduadas, arenas con grava con poco o nada de finos
3/4"	19.10	78.70	5.76	75.58			END	>	J, má	malla	SP	Arenas mal graduadas, arenas con grava con poco o nada de finos
1/2"	12.70	90.00	6.58	69.00		SUELO DE	RE	ARENA	ARENOSO, más del	50% pasa malla N° 4	SM	Arenas Limosas, mezcla de arena y limo
3/8"	9.52	51.80	3.79	65.21		SGE		Ą	AR	20%	sc	Arenas Arcillosas, mezcla de arena y arcilla
Nº 4	4.76	101.60	7.43	57.78	4	20%0	200	>	AS	6	ML	Limo Inorgánicos, polvo de roca, limo arenosos, o arcillosos ligeramente plásticos
Nº 10	2.00	86.50	6.33	51.45	4	NO, 5	LA N	LIMOS Y	ARCILLAS	(LL<50)	CL	Arcillas Inorgánicas de baja plasticidad, arcillas con grava, arcillas areno-limosas,
Nº 40	0.43	95.80	7.01	44.44	4	GRANO FINO,	A MAL	Ľ	₹		OL	Limos Orgánicos y Arcillas Limosas Orgánicas de baja plasticidad
Nº 100	0.15	95.40	6.98	37.46	4	GRA	ASA L	>	AS	~	МН	Limos Inorgánicos, Limos micáceos, o diamtomizados, Limos elásticos
Nº 200	0.07	119.10	8.71	28.75	4	SUELODE	MAS PASA LA MALLA N°200	LIMOS Y	ARCILLAS	(LL>50)	СН	Arcillas Inorgánicas de alta plasticidad, arcillas francas
CAZUELA	0.01	393.00	28.75	0.00	4	SUE			⋖		ОН	Arcillas Orgánicas de media a alta plasticidad, Limos orgánicos de media plasticidad
тот	AL:	1,367.00	100			Alta	amen	te Or	gánic	со	Pt	Turba y otros suelos altamente orgánicos

DATOS PARA CLAS	IFICACION
PASA Nº 4	57.78
PASA N°10	51.45
PASA N°40	44.44
PASA N°200	28.75
D10	
D30	
D60	
Cu	
Cc	
LL	24.93%
LP	18.13%
IΡ	6.80%
CLASIFICACION	
AASHTO	
SUCS	GC-GM

Grava arcillosa limosa con arena.

ENSAYO DE CORTE DIRECTO

CALICATA 1

DESCRPCION DEL SUELO:

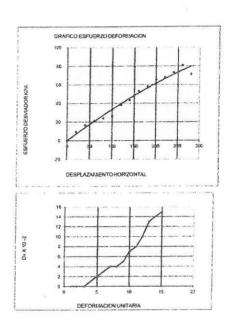
MUESTRA MOLDEADA

PROFUNDIDAD:

2.50M

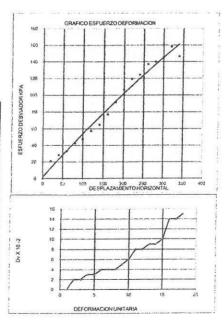
DENSIDAD DE SUELO:

1.82 Tn/m3

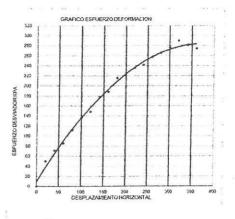

CONTENIDO DE HUMEDAD: 16.24 %

DATOS DE LA MUI	ESTRA	
Lado	6	126
Area=	36.00	

DATOS DEL EQUIPO		
C.D.D.=	0.001	CONSTANTE DIAL DE DEFORMACION
LR.C=	0.86	CONSTANTE DIAL DE CARGA
Volumen=	126.00	
Peso≃	228.06	


RESULTADOS

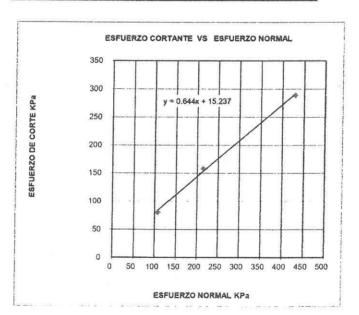
P.V		4 kg	; ESF. VERTIC	'AL	
Lect. Def. x10-2	Lec. carga div	Deform. Muestra mm	Area cm2	esfuerzo cortante Kpa	Lectura Def. Vertica x 0.01mm
0	0.00	0.00	36.00	0.00	0.00
20	4.00	0.20	35.88	9.41	0.00
40	7.00	0.40	35.76	16.51	0.00
60	9.00	0.60	35.64	21.30	1.00
30	10.00	0.80	35,52	23.75	2.00
100	11.00	1.00	35.40	26.22	3.00
120	16.00	1.20	35.28	38.26	4.00
140	18.00	1.40	35.16	43.19	4.00
160	22.00	1.60	35.04	52.97	5.00
180	24.00	1.80	34.92	57.98	7.00
200	27.00	2.00	34.80	65.46	8.00
220	28.00	2.20	34.68	68.12	10.00
240	30.00	2.40	34.56	73.23	13.00
260	33.00	2.60	34.44	80.84	14.00
280	29.00	2.80	34.32	71.29	15.00


DATOS DE LA MUES	TRA	
Lado	6	
Area=	36.00	
C.D.D.=	0.001	
L.R.C=	0.85	
Volumen=	126.00	
Peso=	207.22	

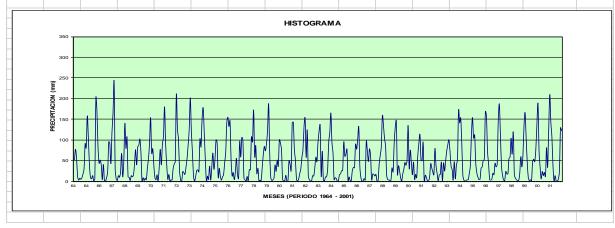
P.V		a kg	:ESF. VERTIC	AL	
Lect. Def. ×10°	Lec. carga div	Deform. Muestra	Area	Carga Tot. S/muestra Kpa	Lectura Def. Vertica x 0.01mm
0	0.00	0.00	36.00	0.00	0.00
20	9.00	0.20	35.88	21.16	2.00
40	12.00	0.40	35.76	28.31	2.00
60	14.00	0.60	35.64	33.14	3.00
80	18.00	0.80	35.52	42.75	3.00
100	20.00	1.00	35.40	47.66	4.00
120	24.00	1.20	35.28	57.39	4.00
140	27.00	1.40	35.16	64.79	4.00
160	32.00	1.60	35.04	77.05	5.00
180	38.00	1.80	34.92	91.81	6.00
200	44.00	2.00	34.80	106.67	8.00
220	49.00	2.20	34.68	119.20	8.00
240	51.00	2.40	34.56	124.50	9.00
260	56.00	2.60	34.44	137.18	9.00
280	57.00	2.80	34.32	140.12	10.00
300	59.00	3.00	34.20	145.54	14.00
320	64,00	3.20	34.08	158.43	14.00
340	59.00	3.40	33.96	146.57	15.00

Lado	6	
Area=	36.00	
C.D.D.=	0.001	
LR.C≈	0.86	1000
Yolumen=	126.00	
Peso=	216.22	

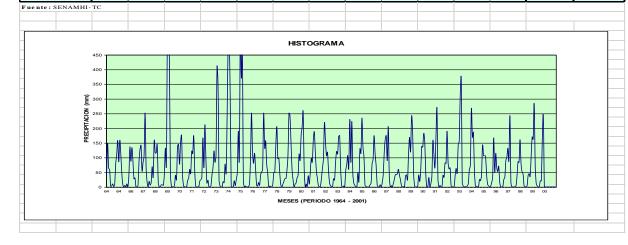
.A		16 kg	: ESF.VERTI	CAL	
Lect. Def. x10 ⁴	Lec. carga div	Deform. Muestra	Area	Carga Tot. S/muestra Kpa	Def. Vertica a 0.01mm
0	0	0.00	36.00	0.00	0.00
20	21	0.20	35.88	49.38	2.00
40	30	0.40	35.76	70.78	4.00
60	36	0.60	35.64	85.22	5.00
80	47	0.80	35.52	111.63	8.00
100	57	1.00	35.40	135.84	9.00
120	62	1.20	35.28	148.26	9.00
140	74	1.40	35.16	177.56	9.00
160	78	1.60	35.04	187.80	10.00
180	89	1.80	34.92	215.02	10.00
200	93	2.00	34.80	225.46	11.00
220	97	2.20	34.68	235.97	12.00
240	99	2.40	34.56	241.67	14.00
260	105	2.60	34.44	257.21	16.00
280	108	2.80	34.32	265.49	18.00
300	112	3.00	34.20	276.29	20.00
320	117	3.20	34.08	289.64	22.00
340	113	3.40	33.96	280.72	23.00
360	110	3.60	33.84	274.24	25.00



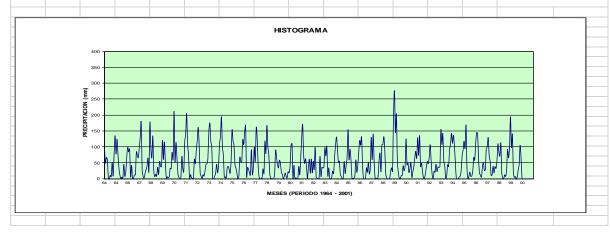
RESUMEN


Nro.	ESFUERZO NORMAL Kpa	ESFUERZO TANGENCIAL Kpa	φ	C Kpa
1	107.18	80.84		
2	214.37	158.43	32.7815	15.24
3	428.73	289.64		

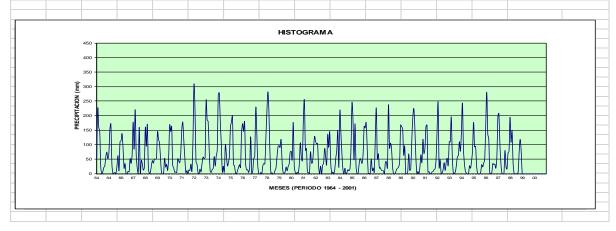
Dv X 10 -2

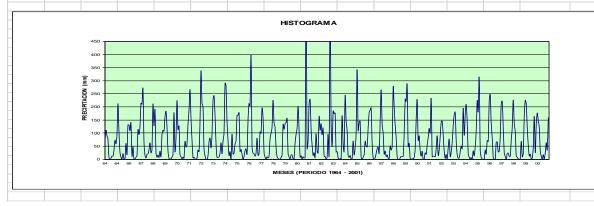


ANEXO 3 DATOS DE PRESIPITACION


					REGI	STRO	HIDRO	METI	EOROI	LOGIC	Э С				
					P	recipitac	ión Men	sual Acu	mulada ((mm)					
	ESTACIO		ABANCA			LAT:	13° 36′	S		Departame		Apurimac			
	CUENCA	.:	APURIMA	vC		LONG:	72° 53′	W		Provincia	:	Abancay			_
						ALT:	2,398.00	m s.n.m.m	1.	Distrito:		Abancay			
ITEM	AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	TOTAL	MEDIA
1	1974	51.0	52.0	77.0	55.0	10.0	2.0	7.0	4.0	8.0	17.0	30.0	91.0	404.00	33.67
2	1975	80.0	158.0	105.0	39.0	8.0	5.0	13.0	0.0	5.0	201.0	169.0	82.0	865.00	72.08
3	1976	43.0	51.0	40.0	3.0	40.0	0.0	0.0	8.0	23.0	95.0	91.0	42.0	436.00	36.33
4	1977	118.0	165.0	241.0	28.0	5.0	1.0	13.0	9.0	21.0	67.0	10.0	47.0	725.00	60.42
6	1978	140.0	79.0	106.0	10.0	9.0	1.0	13.0	10.0	14.0	40.0	76.0	39.0	537.00	44.75
7	1979	83.0	86.0	102.0	69.0	0.0	8.0	1.0	7.0	3.0	31.0	54.0	91.0	535.00	44.58
8	1980	154.0	67.0	79.0	39.0	8.0	3.0	15.0	•	32.0	77.0	39.0	89.0	602.00	50.17
9	1981	109.0	180.0	90.0	41.0	4.0	16.0	0.0	3.0	2.0	30.0	41.0	48.0	564.00	47.00
10	1982	210.0	128.0	100.0	25.0	2.0	0.0	23.0	20.0	16.0	34.0	55.0	88.0	701.00	58.42
11	1983	126.0	202.0	120.0	70.0	11.0	0.0	11.0	26.0	27.0	22.0	102.0	83.0	800.00	66.67
12	1984	152.0	178.0	117.0	52.0	0.0	12.0	4.0	36.0	2.0	33.0	68.0	28.0	682.00	56.83
13	1985	53.0	100.0	93.0	9.0	31.0	11.0	2.0	10.0	15.0	44.0	70.0	142.0	580.00	48.33
14	1986	155.0	132.0	146.0	53.0	12.0	21.0	3.0	22.0	55.0	15.0	6.0	96.0	716.00	59.67
15	1987	58.0	106.0	99.0	7.0	3.0	0.0	11.0	0.0	28.0	27.0	107.0	95.0	541.00	45.08
16	1988	172.0	59.0	86.0	18.0	31.0	0.0	2.0	0.0	32.0	63.0	84.0	73.0	620.00	51.67
17	1989	90.0	123.0	187.0	68.0	8.0	1.0	3.0	7.0	39.0	23.0	51.0	36.0	636.00	53.00
18	1990	100.0	92.0	75.0	3.0	1.0	0.0	14.0 5.0	0.0	0.0 29.0	49.0 57.0	41.0	25.0	400.00	33.33
19	1991	142.0	143.0	77.0	49.0	3.0	0.0		ţ			76.0	132.0	731.00	60.92
20 21	1992 1993	152.0 93.0	57.0 120.0	124.0 136.0	12.0 11.0	3.0 72.0	0.0 2.0	0.0	13.0 10.0	12.0 10.0	31.0 28.0	58.0 94.0	47.0 117.0	509.00 693.00	42.42 57.75
22	1994	165.0	94.0	68.0	3.0	8.0	6.0	0.0	1.0	15.0	17.0	25.0	25.0	427.00	35.58
23	1995	95.0	60.0	65.0	77.0	0.0	10.0	1.0	<u> </u>	25.0	33.0	32.0	89.0	488.00	40.67
24	1996	77.0	100.0	131.0	36.0	8.0	0.0	0.0	6.0	2.0	95.0	73.0	47.0	575.00	47.92
25	1997	78.0	61.0	3.0	17.0	16.0	12.0	16.0	0.0	0.0	40.0	62.0	83.0	388.00	32.33
26	1998	158.0	136.0	103.0	84.0	14.0	3.0	3.0	0.0	2.0	32.0	22.0	90.0	647.00	53.92
27	1999	130.0	146.0	16.0	37.0	25.0	8.0	0.0	17.0	28.0	45.0	38.0	50.0	540.00	45.00
28	2000	135.0	30.0	75.0	46.0	15.0	46.0	4.0	16.0	8.0	61.0	90.0	113.0	639.00	53.25
29	2001	51.0	49.0	94.0	0.0	14.0	9.0	0.0	0.0	9.0	42.0	32.0	22.0	322.00	26.83
30	2002	15.0	79.0	37.0	19.0	0.0	15.0	16.0	46.0	0.0	44.0	24.0	50.0	345.00	28.75
31	2003	73.0	88.0	100.0	73.0	36.0	28.0	2.0	47.0	5.0	39.0	53.0	171.0	715.00	59.58
32	2004	141.0	153.0	92.0	14.0	2.0	0.0	1.0	3.0	3.0	18.0	38.0	112.0	577.00	48.08
33	2005	154.0	104.0	112.0	45.0	20.0	10.0	3.0	4.0	31.0	34.0	50.0	53.0	620.00	51.67
34	2006	168.0	157.0	73.0	41.0	3.0	2.0	4.0	19.0	15.0	43.0	34.0	40.0	599.00	49.92
35	2007	146.0	187.0	114.0	37.0	14.0	2.0	1.0	23.0	17.0	17.0	55.0	58.0	671.00	55.92
36	2008	104.0	65.0	119.0	15.0	7.0	3.0	1.0	1.0	17.0	59.0	34.0	63.0	488.00	40.67
37	2009	133.0	166.0	104.0	47.0	8.0	1.0	3.0	1.0	46.0	53.0	47.0	76.0	685.00	57.08
38	2010	136.0	188.0	74.0	34.0	5.0	23.0	13.0	21.0	11.0	81.0	33.0	123.0	742.00	61.83
39	2011	163.0	114.0	116.0	25.0	33.0	1.0	19.0	16.0	6.0	21.0	21.0	66.0	601.00	50.08
40	2012	126.0	202.0	134.0	68.0	23.0	3.0	58.0	16.0	63.0	82.0	86.0	130.0	991.00	82.58
41	2013	208.0	182.0	200.0	21.0	7.0	0.0	1.0	36.0	36.0	95.0	36.0	137.0	959.00	79.92
42	2014	136.0	217.0	82.0	39.0	11.0	22.0	37.0	18.0	35.0	23.0	40.0	145.0	805.00	67.08
43	2015	79.0	131.0	37.0	57.0	71.0	0.0	16.0	0.0	25.0	83.0	69.0	137.0	705.00	58.75
44	2016	210.0	143.0	107.0	37.0	0.0	13.0	0.0	0.0	4.0	24.0	129.0	122.0	789.00	65.75
	ATOS	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
	DIA	120.05	119.30	98.98	35.65	13.98	6.98	7.88	11.51	18.05	48.02	56.86	81.23	618.49	51.54
~~~~~~~~~~	V.STD	46.07	49.31	43.26	22.61	16.36	9.46	11.04	12.40	15.20	32.91	32.15	38.21	149.68	12.47
	.V.	0.38	0.41	0.44	0.63	1.17	1.36	1.40	1.08	0.84	0.69	0.57	0.47	0.24	0.24
	XIMA	210.00	217.00	241.00	84.00	72.00	46.00	58.00	47.00	63.00	201.00	169.00	171.00	991.00	82.58
P.MII		15.00	30.00	3.00	0.00	0.00	0.00	0.00	0.00	0.00	15.00	6.00	22.00	322.00	26.83
ruente: S	SENAMHI-	1 C													
															T




					REC	SISTRO	HIDR	омет	EORO	LOGIC	Ю				
						Precipita	ción Me	nsual Ac	umulada	(mm)					
	ESTACIO	N:	PARURO	)		LAT:		S		Departame	ento:	Cusco			
	CUENCA	i.	APURIMA	vC		LONG:	71° 51'	W		Provincia	:	Paruro			
						ALT:	3,084.00	m s.n.m.m		Distrito:		Paruro			
ITEM	AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	TOTAL	MEDIA
1	1974	40.0	148.0	64.0	59.0	2.0	3.0	10.0	1.0	7.0	78.0	111.0	158.0	681.00	56.75
2	1975	85.0	159.0	113.0	48.0	8.0	0.0	5.0	0.0	10.0	0.0	38.0	136.0	602.00	50.17
3	1976	87.0	134.0	89.0	27.0	31.0	0.0	0.0	4.0	86.0	128.0	141.0	54.0	781.00	65.08
<u>4</u> 5	1977 1978	84.0 115.0	106.0 116.0	252.0 143.0	67.0 14.0	16.0	0.0	19.0 7.0	6.0 7.0	14.0 5.0	69.0 42.0	33.0 132.0	158.0 71.0	824.00 652.00	68.67 54.33
6	1979	513.0	591.0	426.0	45.0	2.0	0.0	0.0	4.0	40.0	24.0	137.0	145.0	1927.00	160.58
7	1980	77.0	149.0	174.0	38.0	3.0	0.0	0.0	0.0	22.0	29.0	60.0	45.0	597.00	49.75
8	1981	122.0	113.0	174.0	53.0	2.0	0.0	0.0	0.0	20.0	24.0	32.0	167.0	707.00	58.92
9	1982	65.0	212.0	97.0	13.0	23.0	0.0	0.0	4.0	40.0	65.0	123.0	83.0	725.00	60.42
10	1983	108.0	409.0	345.0	22.0	3.0	0.0	0.0	18.0	14.0	78.0	46.0	253.0	1296.00	108.00
11	1984	498.0	514.0	307.0	0.0	0.0	0.0	21.0	4.0	25.0	50.0	190.0	92.0	1701.00	141.75
12	1985	534.0	370.0	465.0	16.0	0.0	3.0	0.0	0.0	0.0	10.0	92.0	252.0	1742.00	145.17
13	1986	121.0	80.0	115.0	65.0	6.0	2.0	15.0	5.0	40.0	51.0	59.0	251.0	810.00	67.50
14	1987	132.0	157.0	78.0	47.0	0.0	3.0	0.0	0.0	8.0	49.0	49.0	142.0	665.00	55.42
15	1988	205.0	96.0	98.0	42.0	5.0	0.0	9.0	19.0	28.0	28.0	57.0	108.0	695.00	57.92
16	1989	251.0	242.0	150.0	61.0	24.0	0.0	9.0	13.0	31.0	40.0	112.0	90.0	1023.00	85.25
17	1990	177.0	205.0	255.0	62.0	0.0	10.0	0.0	38.0	9.0	49.0	98.0	84.0	987.00	82.25
18	1991	159.0	188.0	117.0	56.0	30.0	4.0	0.0	2.0	28.0	63.0	97.0	219.0	963.00	80.25
19	1992	155.0	106.0	118.0	57.0	14.0	4.0	0.0	1.0	28.0	23.0	85.0	121.0	712.00	59.33
20	1993	112.0	171.0	175.0	60.0	3.0	0.0	3.0	0.0	55.0	76.0	107.0	63.0	825.00	68.75
21	1994	230.0	83.0	223.0	46.0	12.0	5.0	0.0	0.0	49.0	17.0	130.0	114.0	909.00	75.75
22	1995	235.0	136.0	102.0	6.0	1.0	0.0	0.0	0.0	7.0	13.0	78.0	95.0	673.00	56.08
23 24	1996 1997	175.0 174.0	112.0 89.0	73.0 206.0	7.0 34.0	0.0	0.0 4.0	7.0 0.0	0.0 12.0	14.0 26.0	42.0 42.0	117.0 41.0	163.0 45.0	710.00 673.00	59.17 56.08
25	1997	60.0	40.0	24.0	4.0	0.0	1.0	0.0	37.0	41.0	24.0	113.0	169.0	513.00	42.75
26	1999	120.0	242.0	188.0	43.0	3.0	0.0	0.0	0.0	41.0	18.0	58.0	138.0	851.00	70.92
27	2000	135.0	183.0	152.0	43.0	0.0	0.0	32.0	0.0	11.0	36.0	158.0	111.0	861.00	71.75
28	2001	65.0	164.0	268.0	26.0	0.0	5.0	0.0	1.0	40.0	32.0	82.0	80.0	763.00	63.58
29	2002	190.0	83.0	61.0	65.0	3.0	1.0	0.0	0.0	40.0	63.0	46.0	143.0	695.00	57.92
30	2003	156.0	314.0	371.0	13.0	3.0	0.0	0.0	2.0	3.0	12.0	60.0	74.0	1008.00	84.00
31	2004	267.0	169.0	186.0	56.0	2.0	2.0	0.0	0.0	25.0	21.0	40.0	142.0	910.00	75.83
32	2005	106.0	106.0	105.0	42.0	9.0	3.0	0.0	2.0	15.0	33.0	167.0	49.0	637.00	53.08
33	2006	115.0	66.0	52.0	70.0	13.0	0.0	0.0	0.0	25.0	33.0	89.0	101.0	564.00	47.00
34	2007	76.0	114.0	56.0	68.0	25.0	1.0	0.0	0.0	34.0	33.0	115.0	128.0	650.00	54.17
35	2008	138.0	181.0	282.0	62.0	7.0	3.0	0.0	0.0	39.0	58.0	44.0	79.0	893.00	74.42
36	2009	185.0	93.0	188.0	35.0	0.0	0.0	0.0	5.0	18.0	57.0	90.0	239.0	910.00	75.83
37	2010	83.0	239.0	243.0	18.0	2.0	0.0	0.0	2.0	7.0	50.0	54.0	129.0	827.00	68.92
38	2011	121.0	163.0	241.0	0.0	0.0	3.0	0.0	5.0	33.0	85.0	80.0	197.0	928.00	77.33
39	2012	201.0	126.0	142.0	51.0	17.0	····	0.0	2.0	29.0	65.0	69.0	99.0	802.00	66.83
40 41	2013 2014	254.0 132.0	170.0 89.0	233.0 243.0	72.0 15.0	1.0	0.0	1.0	4.0 1.0	7.0 3.0	43.0 35.0	140.0 86.0	166.0 83.0	1091.00	90.92 57.25
41	2014	132.0 161.0	89.0 79.0	243.0 51.0	15.0 43.0	0.0 4.0	1.0	0.0	1.0 4.0	3.0	35.0 45.0	86.0 35.0	83.0 107.0	687.00 569.00	57.25 47.42
43	2016	171.0	162.0	284.0	69.0	11.0	3.0	0.0	1.0	21.0	20.0	35.0 164.0	243.0	1149.00	95.75
	ATOS	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
	DIA	167.21	173.70	179.74	40.47	6.63	1.44	3.21	4.74	25.05	43.09	89.65	129.91	864.84	72.07
	V.STD	110.12	112.69	102.91	21.73	8.66	2.07	6.83	8.52	16.89	24.21	41.17	58.40	302.67	25.22
~~~~~~~~~	.V.	0.66	0.65	0.57	0.54	1.31	1.44	2.13	1.80	0.67	0.56	0.46	0.45	0.35	0.35
P.MA		534.00	591.00	465.00	72.00	31.00	10.00	32.00	38.00	86.00	128.00	190.00	253.00	1927.00	160.58
P.MI	NIMA	40.00	40.00	24.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.00	45.00	513.00	42.75
		TC													


					RE	EGISTR	O HID	ROME	TEOR	OLOG	ICO				
						Precip	itación M	Iensual A	Acumula	da (mm)					
	ESTACIC		ANDAH			LAT:	13° 39′	S		Departam		Apurimac			
	CUENCA	١:	APURIM/	/C		LONG:	73° 22′	W		Provincia	:	Andahuay			
						ALT:	2944	m s.n.m.m	1.	Distrito :		Andahuay	las		
	~														
ITEM	AÑO 1974	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	TOTAL	MEDIA
1	1974	97.0	+	67.0 76.0	60.0 32.0			11.0 5.0	6.0 1.0	}	8.0 7.0	79.0	135.0	566.00	47.17
2	1975	77.0	124.0	 	j	11.0 42.0		<u> </u>	1.0	<u> </u>		20.0	65.0	463.00	38.58
<u>3</u>	1977	99.0 96.0	84.0 131.0	93.0 177.0	6.0 28.0	42.0 8.0	0.0 2.0	1.0 17.0	28.0	40.0	84.0 65.0	73.0 23.0	66.0 177.0	572.00 792.00	47.67 66.00
5	1978	93.0		134.0	24.0	6.0	ş	8.0	28.0 36.0	ţ	54.0	23.0 38.0	37.0	522.00	43.50
6	1979	120.0	·	115.0	53.0	0.0		3.0	6.0		31.0	83.0	60.0	570.00	47.50
7	1980	211.0	*	114.0	65.0	фиоопоопоопоопоо	·	000000000000000000000000000000000000000	\$00000000000000000000	\$	33.0	21.0	114.0	701.00	58.42
8	1981	140.0		110.0	71.0	2.0	400000000000000000000000000000000000000	4.0	1.0	0.0	61.0	47.0	89.0	742.00	61.83
9	1982	120.0	·	103.0	18.0	8.0	1	8	8.0	<u> </u>	45.0	47.0	64.0	611.00	50.92
10	1983	149.0	·	117.0	99.0	0.0	0.0	8.0	17.0	45.0	18.0	41.0	108.0	777.00	64.75
11	1984	133.0	·	102.0	73.0	4.0		2.0	34.0	39.0	29.0	17.0	57.0	690.00	57.50
12	1985	153.0	+	104.0	45.0	33.0	18.0	0.0	7.0	67.0	53.0	51.0	122.0	772.00	64.33
13	1986	106.0	145.0	166.0	7.0	35.0	30.0	19.0	11.0	91.0	13.0	36.0	99.0	758.00	63.17
14	1987	54.0	160.0	126.0	40.0	5.0	0.0	1.0	1.0	31.0	16.0	117.0	79.0	630.00	52.50
15	1988	167.0	101.0	75.0	16.0	0.0	1.0	0.0	0.0	13.0	89.0	66.0	46.0	574.00	47.83
16	1989	34.0	58.0	50.0	20.0	13.0	0.0	7.0	18.0	7.0	3.0	22.0	18.0	250.00	20.83
17	1990	40.0	104.0	110.0	0.0	42.0	0.0	3.0	0.0	0.0	39.0	12.0	63.0	413.00	34.42
18	1991	126.0	170.0	76.0	48.0	63.0	37.0	1.0	38.0	61.0	17.0	62.0	18.0	717.00	59.75
19	1992	55.0	29.0	99.0	6.0	2.0	0.0	0.0	70.0	7.0	36.0	33.0	37.0	374.00	31.17
20	1993	97.0	71.0	101.0	9.0	34.0	2.0	0.0	3.0	24.0	16.0	65.0	102.0	524.00	43.67
21	1994	131.0	96.0	51.0	55.0	13.0	7.0	0.0	2.0	54.0	16.0	42.0	68.0	535.00	44.58
22	1995	154.0	60.0	93.0	60.0	2.0	1.0	2.0	8.0	59.0	20.0	39.0	82.0	580.00	48.33
23	1996	120.0	·	130.0	40.0	0.0	<u> </u>	0.0	34.0	20.0	52.0	14.0	32.0	547.00	45.58
24	1997	130.0		140.0	51.0	2.0		1.0	4.0	54.0	80.0	21.0	106.0	649.00	54.08
25	1998	107.0	÷	88.0	15.0	2.0		0.0	0.0	22.0	34.0	23.0	194.0	617.00	51.42
26	1999	275.0	• • • • • • • • • • • • • • • • • • • •	202.0	56.0	19.0		0.0	10.0		41.0	24.0	40.0	824.00	68.67
27	2000	125.0	· 	50.0	19.0	32.0		4.0	22.0	37.0	65.0	86.0	64.0	598.00	49.83
28	2001	129.0	+	135.0	38.0	49.0	23.0	3.0	1.0	-	37.0	54.0	47.0	605.00	50.42
29	2002	69.0	·	53.0 141.0	12.0	0.0 40.0	ļ	20.0	46.0 44.0	22.0	37.0 90.0	35.0 110.0	38.0	463.00	38.58
30 31	2003	153.0 111.0	·	104.0	57.0 50.0	1.0	 	8.0 0.0	44.0 5.0	38.0 9.0	90.0 25.0		142.0 90.0	932.00	77.67
	2004	111.0	<u> </u>	168.0	32.0	1.0		21.0	7.0	9.0	25.0 24.0	73.0 67.0	58.0	604.00	50.33
32	2005	156.0	4	112.0	57.0	9.0	 	5.0	38.0	24.0	35.0	45.0	33.0	608.00 668.00	50.67 55.67
34	2007	217.0	·	105.0	39.0	14.0		3.0	54.0	4	33.0	84.0	53.0	775.00	64.58
35	2007	160.0	*	86.0	51.0	0.0	\$0000000000000000000000000000000000000	1.0	1.0	\$	42.0	41.0	68.0	541.00	45.08
36	2009	113.0		126.0	46.0	7.0		13.0	1.0	Q	33.0	37.0	82.0	703.00	58.58
37	2010	144.0	·	114.0	21.0	6.0		19.0	17.0	22.0	112.0	40.0	97.0	812.00	67.67
38	2011	214.0	·	148.0	28.0	73.0		19.0	ţ		32.0	59.0	99.0	827.00	68.92
39	2012	74.0	- 	126.0	39.0			31.0	 	48.0	45.0	50.0	100.0	692.00	57.67
40	2013	109.0		142.0	60.0	*	4	5.0	ţ	&	25.0	29.0	94.0	724.00	60.33
41	2014	100.0	129.0	71.0	54.0	10.0	12.0	39.0	18.0	38.0	32.0	54.0	109.0	666.00	55.50
42	2015	84.0	71.0	112.0	18.0	3.0	0.0	12.0	7.0	26.0	92.0	65.0	97.0	587.00	48.92
43	2016	194.0	97.0	139.0	20.0	4.0	7.0	0.0	5.0	27.0	45.0	105.0	62.0	705.00	58.75
N° D	ATOS	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
MI	DIA	124.51	112.05	110.49	38.09	15.33	7.72	7.19	16.49	32.21	41.02	50.00	79.33	634.42	52.87
DES	v.std	48.22	44.24	34.09	21.72	18.12	11.15	8.99	17.17	22.32	25.15	26.01	38.13	131.39	10.95
C	.V.	0.39	0.39	0.31	0.57	1.18	1.44	1.25	1.04	0.69	0.61	0.52	0.48	0.21	0.21
P.MA	XIMA	275.00	204.00	202.00	99.00	73.00	51.00	39.00	70.00	91.00	112.00	117.00	194.00	932.00	77.67
	NIMA	34.00	29.00	50.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	12.00	18.00	250.00	20.83
Fuente:	SENAMHI-	TC													

	REGISTRO HIDROMETEOROLOGICO Precipitación Mensual Acumulada (mm)														
						Precipit	ación M	ensual Ac	cumulad	a (mm)					
	ESTACIO		CHALHU			LAT:	14° 17′	S		Departame		Apurimac			
	CUENCA	:	APURIMA	vC		LONG:	73° 15′	W		Provincia	:	Aymaraes			
						ALT:	2,902.00	m s.n.m.m		Distrito:		Chalhuano	a		
ITEM	AÑO	ENE	EED	MAR	ABR	MAY		****	AGO	SET	ост	NOV	DIC	TOTAL	MEDIA
11EM 1	1974	52.0	FEB 224.0	MAR 159.0	145.0	MAY 24.0	JUN 0.0	JUL 6.0	21.0	SE 1 26.0	58.0	74.0	50.0	839.00	69.92
2	1975	70.0	-	170.0	32.0	24.0	2.0	4.0	1.0	26.0	62.0	10.0	109.0	638.00	53.17
3	1976	112.0	§	89.0	19.0	35.0	0.0	1.0	8.0	6.0	52.0	35.0	67.0	562.00	46.83
4	1977	177.0	g	220.0	66.0	20.0	3.0	159.0	5.0	45.0	34.0	12.0	20.0	845.00	70.42
5	1978	159.0		169.0	19.0	1.0	5.0	28.0	45.0	36.0	50.0	49.0	52.0	707.00	58.92
6	1979	143.0	ŧ	105.0	53.0	0.0	}	ŧ	53.0	23.0	32.0	11.0	55.0	594.00	49.50
7	1980	167.0		162.0	30.0	20.0	5.0	ĝecococococococococ	4.0	51.0	43.0	38.0	72.0	743.00	61.92
8	1981	153.0		112.0	54.0	3.0			13.0	11.0	33.0	9.0	112.0	688.00	57.33
9	1982	306.0		42.0	33.0	4.0	1.0		6.0	36.0	57.0	51.0	55.0	830.00	69.17
10	1983	251.0	}	179.0	85.0	9.0	}	}	19.0	59.0	26.0	61.0	83.0	975.00	81.25
11	1984	270.0	278.0	178.0	100.0	6.0	26.0	6.0	99.0	65.0	27.0	39.0	60.0	1154.00	96.17
12	1985	160.0		198.0	31.0	28.0	3.0		11.0	21.0	31.0	21.0	141.0	822.00	68.50
13	1986	172.0		177.0	33.0	13.0	14.0	4.0	21.0	127.0	2.0	8.0	53.0	769.00	64.08
14	1987	58.0	ŧ	145.0	28.0	0.0	0.0	ŧ	1.0	27.0	35.0	33.0	123.0	681.00	56.75
15	1988	214.0	281.0	211.0	72.0	2.0	3.0	0.0	0.0	11.0	20.0	59.0	93.0	966.00	80.50
16	1989	97.0	90.0	117.0	42.0	4.0	2.0	6.0	23.0	10.0	25.0	34.0	74.0	524.00	43.67
17	1990	77.0	49.0	176.0	27.0	4.0	1.0	5.0	2.0	34.0	106.0	55.0	44.0	580.00	48.33
18	1991	185.0	252.0	80.0	87.0	5.0	4.0	0.0	75.0	36.0	38.0	81.0	128.0	971.00	80.92
19	1992	112.0	103.0	104.0	26.0	0.0	26.0	0.0	29.0	36.0	87.0	57.0	32.0	612.00	51.00
20	1993	135.0	90.0	144.0	37.0	2.0	6.0	0.0	15.0	54.0	82.0	148.0	22.0	735.00	61.25
21	1994	216.0	143.0	72.0	16.0	0.0	19.0	0.0	4.0	14.0	10.0	17.0	87.0	598.00	49.83
22	1995	243.0	182.0	47.0	171.0	26.0	0.0	0.0	32.0	52.0	44.0	36.0	70.0	903.00	75.25
23	1996	163.0	157.0	175.0	89.0	2.0	1.0	0.0	51.0	11.0	20.0	5.0	122.0	796.00	66.33
24	1997	225.0	50.0	69.0	19.0	21.0	12.0	10.0	10.0	1.0	41.0	41.0	20.0	519.00	43.25
25	1998	237.0	88.0	105.0	88.0	25.0	0.0	0.0	4.0	15.0	19.0	23.0	39.0	643.00	53.58
26	1999	167.0	161.0	154.0	64.0	94.0	2.0	0.0	7.0	68.0	11.0	17.0	112.0	857.00	71.42
27	2000	191.0	224.0	161.0	59.0	1.0	8.0	0.0	22.0	65.0	38.0	118.0	69.0	956.00	79.67
28	2001	87.0	162.0	167.0	5.0	7.0	1.0	0.0	6.0	7.0	14.0	17.0	50.0	523.00	43.58
29	2002	151.0	244.0	21.0	48.0	0.0	3.0	15.0	38.0	11.0	39.0	53.0	28.0	651.00	54.25
30	2003	110.0	109.0	195.0	58.0	3.0	1.0	g	28.0	58.0	63.0	110.0	77.0	818.00	68.17
31	2004	142.0	***************************************	88.0	34.0	7.0	2.0	0.0	0.0	27.0	19.0	42.0	82.0	685.00	57.08
32	2005	176.0	}	94.0	27.0	0.0	0.0	0.0	4.0	31.0	23.0	36.0	49.0	532.00	44.33
33	2006	166.0	}	137.0	119.0	0.0	1.0	}	35.0	31.0	33.0	19.0	57.0	882.00	73.50
34	2007	196.0	207.0	101.0	35.0	1.0	0.0	1.0	80.0	24.0	16.0	71.0	77.0	809.00	67.42
35	2008	221.0	Q	112.0	9.0	0.0	0.0	Q	0.0	0.0	28.0	14.0	166.0	638.00	53.17
36	2009	186.0	270.0	177.0	69.0	6.0	12.0	9.0	18.0	51.0	65.0	14.0	118.0	995.00	82.92
37	2010	251.0	\$	213.0	48.0	10.0		\$	20.0	9.0	42.0	35.0	96.0	991.00	82.58
38	2011	276.0	214.0	120.0	69.0	35.0	2.0	26.0	31.0	20.0	67.0	38.0	53.0	951.00	79.25
39	2012	135.0	***************************************	165.0	59.0	6.0		75.0	15.0	28.0	84.0	79.0	92.0	923.00	76.92
40	2013	117.0	\$***********	236.0	34.0	14.0	0.0	4.0	22.0	24.0	29.0	33.0	109.0	746.00	62.17
41	2014	108.0	g	19.0	45.0	1.0	14.0	31.0	16.0	35.0	23.0	21.0	66.0	579.00	48.25
42	2015	148.0	112.0	73.0	38.0	0.0	0.0	5.0	8.0	50.0	14.0	38.0	152.0	638.00	53.17
43	2016	194.0	108.0	148.0	37.0	1.0	0.0		1.0	4.0	74.0	118.0	77.0	762.00	63.50
	ATOS	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
~~~~~~~~~	DIA	166.88	165.49	134.56	52.53	10.28	4.60	10.81	21.00	32.00	39.91	43.72	77.05	758.84	63.24
	V.STD	59.83	65.39	53.70	34.43	16.36	6.58	26.34	22.35	23.70	23.24	32.53	35.47	157.43	13.12
***************************************	.V.	0.36	0.40	0.40	0.66	1.59	1.43	2.44	1.06	0.74	0.58	0.74	0.46	0.21	0.21
~~~~~~~~~	XIMA	306.00	281.00	236.00	171.00	94.00	26.00	159.00 0.00	99.00	127.00	106.00	148.00	166.00	1154.00	96.17
	NIMA	52.00	49.00	19.00	5.00	0.00	0.00	0.00	0.00	0.00	2.00	5.00	20.00	519.00	43.25
ruente: S	SENAMHI-	IC													

					REGI	STRO	HIDRO	METE	OROL	OGIC)				
					P	recipitac	ión Men	sual Acu	mulada (mm)					
	ESTACION:		ANTABAMBA			LAT:	14° 23′	S		Departame	ento:				
	CUENCA	:	APURIMA	vC		LONG:	72° 52′	W		Provincia	:	Antabamb			
						ALT:	3,636.00	m s.n.m.m		Distrito:		Antabamb	a		
ITEM	AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	TOTAL	MEDIA
1	1974	70.0	111.0	90.0	77.0	8.0	0.0	4.0	13.0	12.0	34.0	(paavaaavaaavaaavaaavaaa)	59.0	551.00	45.92
2	1975	93.0	212.0	106.0	27.0	9.0	1.0	22.0	1.0	0.0	61.0	\$	132.0	683.00	56.92
3	1976	131.0	109.0	138.0	13.0	49.0	0.0	2.0	8.0	13.0	113.0	94.0	125.0	795.00	66.25
4	1977	214.0	210.0	268.0	69.0	16.0	5.0	19.0	21.0	36.0	63.0		38.0	983.00	81.92
5	1978	210.0	127.0	189.0	26.0	8.0	17.0	7.0	31.0	11.0	94.0	111.0	107.0	938.00	78.17
6	1979	160.0	183.0	124.0	32.0	4.0	2.0	1.0	9.0	18.0	178.0		82.0	823.00	68.58
7	1980	224.0	114.0	127.0	18.0	10.0	2.0	9.0	4.0	68.0	46.0	·	133.0	814.00	67.83
8	1981	188.0	266.0	155.0	74.0	5.0	8.0	3.0	0.0	4.0	36.0		142.0	910.00	75.83
9	1982	337.0	213.0	201.0	41.0	14.0	0.0	1.0	14.0	67.0	81.0		98.0	1110.00	92.50
10	1983	227.0	243.0	168.0	60.0	7.0	7.0	9.0	24.0	63.0	21.0	}	103.0	1001.00	83.42
11	1984	290.0	281.0	142.0	72.0	15.0	30.0	1.0	96.0	20.0	24.0	59.0	72.0	1102.00	91.83
12	1985	168.0	168.0	178.0	30.0	38.0	19.0	0.0	11.0	33.0	40.0	20.0	151.0	856.00	71.33
13	1986	213.0	204.0	395.0	49.0	23.0	22.0	12.0	24.0	81.0	15.0	 	105.0	1165.00	97.08
14	1987	99.0	196.0	157.0	26.0	9.0 10.0	0.0	10.0	5.0	13.0	78.0		124.0	817.00	68.08
15 16	1988 1989	225.0 136.0	139.0 140.0	121.0 156.0	45.0 23.0	9.0	4.0	1.0 17.0	1.0 17.0	7.0 2.0	18.0 3.0	133.0 62.0	114.0 95.0	818.00 661.00	68.17 55.08
~~~~~	1989	136.0	202.0	156.0		9.0 14.0	1.0		5.0	}	639.0	ļ			-
17 18	1990	212.0	202.0	109.0	8.0 55.0	14.0 15.0	26.0	10.0 7.0	98.0	6.0 32.0	639.0 24.0	42.0 163.0	71.0 111.0	1227.00 1088.00	102.25 90.67
19	1991	136.0	93.0	116.0	11.0	11.0	26.0	7.0 8.0	96.0	32.0 17.0	607.0	137.0	48.0	1283.00	106.92
20	1993	184.0	174.0	177.0	28.0	30.0	6.0	0.0	3.0	2.0	166.0		31.0	861.00	71.75
21	1994	242.0	147.0	109.0	15.0	7.0	15.0	1.0	2.0	70.0	17.0		100.0	769.00	64.08
22	1995	342.0	111.0	142.0	146.0	7.0	0.0	8.0	18.0	69.0	50.0	47.0	119.0	1059.00	88.25
23	1996	178.0	188.0	196.0	63.0	6.0	1.0	6.0	23.0	40.0	47.0		142.0	914.00	76.17
24	1997	265.0	134.0	100.0	20.0	32.0	10.0	17.0	5.0	3.0	51.0	35.0	49.0	721.00	60.08
25	1998	274.0	202.0	131.0	84.0	8.0	0.0	0.0	5.0	12.0	11.0		97.0	835.00	69.58
26	1999	230.0	220.0	283.0	48.0	62.0	3.0	0.0	3.0	1.0	8.0	40.0	150.0	1048.00	87.33
27	2000	227.0	72.0	90.0	33.0	12.0	31.0	0.0	2.0	25.0	19.0	56.0	82.0	649.00	54.08
28	2001	118.0	101.0	232.0	10.0	12.0	12.0	10.0	40.0	90.0	16.0	37.0	87.0	765.00	63.75
29	2002	143.0	146.0	92.0	31.0	4.0	19.0	1.0	44.0	77.0	11.0	29.0	66.0	663.00	55.25
30	2003	128.0	170.0	180.0	70.0	17.0	4.0	5.0	29.0	51.0	40.0	195.0	91.0	980.00	81.67
31	2004	168.0	209.0	141.0	20.0	9.0	1.0	7.0	0.0	33.0	13.0		111.0	761.00	63.42
32	2005	224.0	182.0	311.0	35.0	7.0	2.0	1.0	0.0	36.0	20.0	72.0	68.0	958.00	79.83
33	2006	224.0	248.0	136.0	83.0	6.0	1.0	1.0	66.0	66.0	28.0	31.0	85.0	975.00	81.25
34	2007	214.0	222.0	121.0	26.0	11.0	1.0	23.0	24.0	12.0	11.0	76.0	122.0	863.00	71.92
35	2008	226.0	138.0	104.0	13.0	8.0	2.0	1.0	1.0	69.0	9.0	23.0	167.0	761.00	63.42
36	2009	225.0	210.0	122.0	54.0	13.0	20.0	2.0	5.0	46.0	164.0		135.0	1021.00	85.08
37	2010	280.0	279.0	142.0	26.0	14.0	5.0	2.0	57.0	29.0	168.0		134.0	1168.00	97.33
38	2011	320.0	188.0	224.0	52.0	25.0	15.0	18.0	22.0	8.0	112.0		100.0	1126.00	93.83
39	2012	188.0	231.0	169.0	72.0	11.0	1.0	2.0	11.0	9.0	511.0	<del>  </del>	109.0	1389.00	115.75
40	2013	198.0	233.0	147.0	24.0	17.0	3.0	22.0	27.0	99.0	45.0	74.0	118.0	1007.00	83.92
41	2014	135.0	247.0	114.0	28.0	10.0	19.0	16.0	16.0	61.0	12.0	52.0	84.0	794.00	66.17
42	2015	177.0	147.0	122.0	31.0	12.0	0.0	18.0	2.0	26.0	64.0	37.0	159.0	795.00	66.25
43	2016	318.0 43.00	173.0	186.0	90.0	6.0	1.0	2.0	13.0	5.0	133.0	74.0	113.0	1114.00	92.83
	N° DATOS		43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
	MEDIA		181.67	158.81	43.21	14.42	7.40	7.12	20.84	33.53	90.72	58.81	103.00	921.42	76.78
	DESV.STD		52.00	62.24	27.86	11.72	8.91	7.08	25.60	28.14	144.41	39.49	32.23	184.28	15.36
~~~~~~~~~	C.V.		0.29	0.39	0.64	0.81	1.20	1.00	1.23	0.84	1.59	0.67	0.31	0.20	0.20
~~~~~~~~~	P.MAXIMA P.MINIMA		281.00	395.00	146.00	62.00	31.00	23.00	98.00	99.00	639.00	195.00	167.00	1389.00	115.75
		70.00	72.00	90.00	8.00	4.00	0.00	0.00	0.00	0.00	3.00	11.00	31.00	551.00	45.92
Fuente:	SENAMHI-	TC													

