UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CIENCIAS DE LA SALUD ESCUELA PROFESIONAL DE FARMACIA Y BIOQUÍMICA

TESIS

ESTUDIO ETNOBOTANICO, ETNOFARMACOLOGICO Y ANALISIS FITOQUIMICO DE TRES PLANTAS MEDICINALES MAS USADAS EN AFECCIONES PREVALENTES EN CINCO CASERIOS DEL POBLADO ECHARATI (LA CONVENCION)

PRESENTADA POR:

Br. EDY SEGOVIA ARAOZ

PARA OPTAR AL TÍTULO PROFESIONAL DE QUIMICO FARMACÉUTICO

ASESORA:

INGRID VERA FERCHAU

CUSCO - PERÚ

2025

Universidad Nacional de San Antonio Abad del Cusco **INFORME DE SIMILITUD**

(Aprobado por Resolución Nro.CU-321-2025-UNSAAC)

abajo de inves	quien aplica el software de detecci stigación/tesistitulada: ESTUDIO ETNOBOTANICO, ETNO	on de similitud FARMACOLOGI
ANALISIS	FITOQUIMICO DE TRES PLANTAS MEDICINALES	MAS USADAS
EN AFECCIO	NES PREVALENTES EN CINCO CASERIOS DEL PO	RIADA
ECHARATI	(LA CONVENCION)) L (100
resentado por	EDY SEGOVIA ARAOZ	3954642
resentado por	:	(
ara optar el tít	ulo Profesional/Grado Académico do	
QUIMICO 1	-ARMACEUTICO	
younco 1	AKMACEUTICO	
nformo que el	trabajo de investigación ha sido sometido a revisión por .02. vo	eces, mediante
oftware de Si	trabajo de investigación ha sido sometido a revisión por <u>02</u> vo militud, conforme al Art. 6° del <i>Reglamento para Uso del Siste</i>	eces, mediante e
nformo que el oftware de Si imilitud en la	trabajo de investigación ha sido sometido a revisión por .02 vomilitud, conforme al Art. 6° del Reglamento para Uso del Siste UNSAAC y de la evaluación de originalidad se tiene un porcentaje de	eces, mediante d ma Detección d e%.
nformo que el oftware de Si imilitud en la	trabajo de investigación ha sido sometido a revisión por .02 vomilitud, conforme al Art. 6° del <i>Reglamento para Uso del Siste UNSAAC</i> y de la evaluación de originalidad se tiene un porcentaje de cciones del reporte de coincidencia para trabajos de investigación	eces, mediante d ma Detección d e%.
nformo que el oftware de Si imilitud en la l Evaluación y a	trabajo de investigación ha sido sometido a revisión por	eces, mediante d ma Detección d e%.
nformo que el oftware de Si imilitud en la	trabajo de investigación ha sido sometido a revisión por .02 vomilitud, conforme al Art. 6° del <i>Reglamento para Uso del Siste UNSAAC</i> y de la evaluación de originalidad se tiene un porcentaje de cciones del reporte de coincidencia para trabajos de investigación	ma Detección de
nformo que el oftware de Si imilitud en la l Evaluación y a	trabajo de investigación ha sido sometido a revisión por	eces, mediante e ma Detección d e%. conducentes a
nformo que el oftware de Si imilitud en la Evaluación y a	trabajo de investigación ha sido sometido a revisión por	ma Detección de

Cusco, 67 de NOVIEMBRE

Post firma INGRID VERA

Nro. de DNI 06291305

Se adjunta:

1. Reporte generado por el Sistema Antiplagio.

2. Enlace del Reporte Generado por el Sistema de Detección de Similitud: oid: ... 27259: 505310083

TESIS EDY_SEGOVIA_ARAOZ.pdf

🕽 Universidad Nacional San Antonio Abad del Cusco

Detalles del documento

Identificador de la entrega

trn:oid:::27259:505310083

Fecha de entrega

29 sep 2025, 4:52 p.m. GMT-5

Fecha de descarga

29 sep 2025, 4:57 p.m. GMT-5

Nombre del archivo

TESIS EDY_SEGOVIA_ARAOZ.pdf

Tamaño del archivo

2.5 MB

187 páginas

25.863 palabras

151.034 caracteres

10% Similitud general

El total combinado de todas las coincidencias, incluidar las ruentes superpuestas, nara ca...

Página 2 de 193 - Descripción general de integridad

Filtrado desde el informe

- Bibliografía
- Texto citado
- Texto mencionado
- Coincidencias menores (menos de 15 palabras)

Fuentes principales

Fuentes de Internet

2% Publicaciones

🎎 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alertas de integridad para revisión

No salicin detectado manipulaciones de texto sospecios-

Los algoritmos de nuestro sistema analizan un documento en profundidad para-buscar inconsistencias que permurian distinguirio de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo:

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo recomendamos que preste atención y la revise.

DEDICATORIAS

A mi madre y a mi esposa por haberme sostenido y acompañado todo este tiempo.

AGRADECIMIENTOS

A la comunidad de Echarati por haberme adoptado y aceptado.

A mis maestros universitarios por su guía incansable.

A todos los colaboradores de este trabajo.

Gracias.

ESTUDIO ETNOBOTANICO Y ETNOFARMACOLOGICO Y ANALISIS FITOQUIMICO DE TRES PLANTAS MEDICINALES MAS USADAS EN AFECCIONES PREVALENTES EN CINCO CASERIOS DEL POBLADO ECHARATI (LA CONVENCION)

RESUMEN

Este estudio se realizó en cuatro etapas: búsqueda y obtención de datos oficiales, trabajo de campo etnobotánico y etnofarmacológico de las plantas medicinales más usadas en cinco caseríos del poblado de Echarati, La Convención, Cusco, Perú. Identificación taxonómica y clasificación de datos, finalmente análisis fitoquímico y espectrofotométrico con comparación y evaluación de los resultados.

Para el estudio etnobotánico, etnofarmacológico de plantas medicinales se utilizó encuestas semiestructuradas identificándose 42 plantas medicinales distribuidas en 27 familias botánicas, Asteraceae y Malvaceae fueron las más usuales. Se clasificó de acuerdo al uso terapéutico, se determinó que hoja y tallo son las partes más utilizadas por medio de infusiones y cocimientos, con una frecuencia de dos veces al día por siete días.

Se realizó el análisis fitoquímico cualitativo de Botoncillo, Muyucaya y Piquipichana por el método espectrofotométrico UV visible, hallándose metabolitos en diferentes rangos de absorción característicos.

La comparación grafica de los espectros obtenidos en nuestro estudio frente a espectros de otros estudios recientes evidenció una correlación positiva corroboramos así la presencia de los metabolitos hallados en forma cualitativa con las reacciones químicas de caracterización.

Este estudio aspira a contribuir con el conocimiento y promover la cobertura sanitaria universal integrando la medicina tradicional en los sistemas de salud de nuestro país. Además de buscar la preservación del conocimiento ancestral.

Palabras clave: Etnobotánico, Etnofarmacológico, Fitoquímico, Metabolitos.

INDICE

CAPITULO I	1
GENERALIDADES	1
1.1. Planteamiento del Problema	1
1.2. Formulación del Problema	5
1.3. Objetivos	6
1.3.1. Objetivo general	6
1.3.2. Objetivos Específicos	6
1.4. Justificación Del Estudio	6
1.4.1. Justificación Teórica	6
1.4.2 Justificación Práctica	7
CAPITULO II	8
MARCO TEÓRICO CONCEPTUAL	8
2.1. Visión Histórica	8
2.2. Antecedentes	11
2.2.1. Antecedentes Internacionales	11
2.2.2. Antecedentes Nacionales	15
2.2.3. Antecedentes Locales	19
2.3. Estado de la Cuestión	24
2.4. Bases Teórico Científicas	25
2.4.1. El Hombre Amazónico: Su Cosmovisión, relación con la ecología y	
tecnologías de conservación de su medio ambiente	25
2.4.2. Medicina Tradicional Alternativa	27
2.4.3. Etnobotánica	28
2.4.4. Plantas Medicinales	28
2.4.4.1 Recolección, Desecación y Conservación de las Plantas Medicinales	29
2.4.5. Etnofarmacología	34
2.4.6. Farmacognosia	36
2.4.6.1. Droga	36
2.4.6.2. Principio Activo	37

2.4.6.3.	Metabolito Primario	37
2.4.6.4.	Metabolito Secundario	38
2.4.7.	Fitoquímica	38
2.4.8.	Análisis Fitoquímico Cualitativo	39
2.4.9.	Métodos Espectrofotométricos: Espectrofotometría UV-Visible	39
2.5. Glosa	rio De Términos	48
CAPITULO	O III	53
MATERIA	LES Y MÉTODOS	53
3.1. Mater	iales	53
3.1.1. M	ateriales de Campo	53
3.1.2. M	ateriales de Escritorio	53
3.1.3. M	aterial de Laboratorio	53
3.1.4. E	quipos e Instrumentos	54
3.1.5. M	aterial de Investigación	55
3.2. Diseñ	o Metodológico	55
3.2.1. Ti	po de Estudio	55
3.2.2. Defi	nición Operacional de Variables	55
3.2.3. P	oblación	59
3.2.4. C	riterios De Inclusión y Exclusión para la Recolección de Datos	59
3.2.4.1.	Criterios de Inclusión	59
3.2.4.2.	Criterios de Exclusión	59
3.2.5. To	écnicas e Instrumentos de Recolección de Datos	59
3.3. Proce	dimiento	61
	ujograma de Procedimiento de Recolección de Datos para el Estudio de	
_	D IV	
4.1. Datos	Generales:	66
4.2. Recol	ección de las plantas mencionadas para determinar su identidad científi	са
	el Herbario Vargas Cusco	
4.3 Conoc	simientos populares para el uso de plantas medicinales en cinco caserío	s
del pobla	do Echarati (La Convención) - Cusco	74

4.4. Clasificación de plantas medicinales de acuerdo al uso o afecciones				
terapéuticas, parte usada y manera de uso a partir de su conocimiento				
4.5. Análisis fitoquímico cualitativo de las plantas medicinales más usadas en enfermedades prevalentes y análisis por el método espectrofotométrico UV visible. 94				
RECOMENDACIONES	34			
Bibliografía13	35			
ANEXOS	10			
ÍNDICE DE TABLAS				
Tabla 1. Longitudes de onda donde absorben los diferentes grupos 4	ŀ6			
Tabla 2. Principios activos y coeficiente de extinción4	18			
Tabla 3. Definición operacional de variables5	56			
Tabla 4. Variables no Implicadas - Intervinientes5	59			
Tabla 5 . Edad de los pobladores encuestados6	5			

Tabla 6. Género de los pobladores encuestados66
Tabla 7. Lugar de nacimiento de los pobladores encuestados67
Tabla 8. Estado civil de los pobladores encuestados68
Tabla 9. Grado de instrucción de los pobladores encuestados69
Tabla 10. Identificación taxonómica de plantas medicinales recolectadas70
Tabla 11. Relación de especies vegetales medicinales de acuerdo a la clasificación popular cálido-fresco74
Tabla 12. Clasificación de las plantas medicinales utilizadas por los pobladores según el tipo de especie vegetal77
Tabla 13. Clasificación de las plantas medicinales utilizadas por los pobladores según el origen de la especie78
Tabla 14. Clasificación de las plantas medicinales utilizadas por los pobladores según el estado de crecimiento de la especie78
Tabla 15. Frecuencia de uso de las plantas medicinales79
Tabla 16. Uso terapéutico de las plantas recolectadas y usadas por los pobladores82
•
Tabla 17. Partes utilizadas de las plantas medicinales87
•
Tabla 17. Partes utilizadas de las plantas medicinales87
Tabla 17. Partes utilizadas de las plantas medicinales
Tabla 17. Partes utilizadas de las plantas medicinales
Tabla 17. Partes utilizadas de las plantas medicinales
Tabla 17. Partes utilizadas de las plantas medicinales
Tabla 17. Partes utilizadas de las plantas medicinales
Tabla 17. Partes utilizadas de las plantas medicinales

Figura 3. Fundamentos de medida en espectroscopia UV/VIS 42
Figura 4. Espectros y rangos longitud de onda encontrados en Botoncillo . 95
Figura 5. Espectros y rangos longitud de onda encontrados Piquipichana 96
Figura 6. Espectros y rangos longitud de onda encontrados en Muyucaya 96
Figura 7. Comparación de los espectros de absorbancia de las síntesis
realizadas a 80 °C y variando la conc. de glucosa como agente reductor97
Figura 8. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Azúcares Reductores: Glucosa98
Figura 9. Espectros y rangos de longitud de onda encontrados en Piquipichana comparados con estudio de Azúcares Reductores: Glucosa.99
Figura 10. Espectros y rangos de longitud de onda encontrados en Muyucaya comparados con estudio de Azúcares Reductores: Glucosa100
Figura 11. Bandas características de los flavonoides en los espectros UV.102
Figura 12. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Flavonoides103
Figura 13. Espectros y rangos de longitud de onda encontrados en
Piquipichana comparados con los del estudio de Flavonoides104
Figura 14. Espectros y rangos de longitud de onda encontrados en
Muyucaya comparados con los del estudio de Flavonoides105
Figura 15. Espectrofotometría de los principales compuestos bioactivos del
grano de café107
Figura 16. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Compuestos Fenólicos108
Figura 17. Espectros y rangos de longitud de onda encontrados en
Piquipichana comparados con los del estudio de Compuestos Fenólicos.109
Figura 18. Espectros y rangos de longitud de onda encontrados en
Muyucaya comparados con los del estudio de Compuestos Fenólicos110

Figura 19. La descomposición de muestras de goma arábiga durante el
período de envejecimiento artificial y sus espectros UV
Figura 20. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Resinas113
Figura 21. Espectros y rangos de longitud de onda encontrados en Piquipichana comparados con los del estudio de Resinas114
Figura 22. Espectros y rangos de longitud de onda encontrados en
Muyucaya comparados con los del estudio de Resinas115
Figura 23. Espectro Ultravioleta de Alcaloides furoquinolínicos 118
Figura 24. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Alcaloides118
Figura 25. Espectros y rangos de longitud de onda encontrados en Piquipichana comparados con los del estudio de Alcaloides119
Figura 26. Espectros y rangos de longitud de onda encontrados en Muyucaya comparados con los del estudio de Alcaloides120
Figura 27. Espectros UV de recetas de tintas ferro-gálicas 123
Figura 28. Espectros y rangos de longitud de onda encontrados en Botoncillo comparados con los del estudio de Taninos123
Figura 29. Espectros y rangos de longitud de onda encontrados en Piquipichana comparados con los del estudio de Taninos124
Figura 30. Espectros y rangos de longitud de onda encontrados en Muyucaya comparados con los del estudio de Taninos125
Figura 31. Espectro de barrido del estándar de saponinas, obtención de la
longitud máxima de Onda128
Figura 32. Espectros y rangos de longitud de onda encontrados en Piquipichana comparados con los del estudio de Saponinas128
Figura 33. Espectros y rangos de longitud de onda encontrados en Muyucaya comparados con los del estudio de Saponinas129

ÍNDICE DE ANEXOS

Anexo 1. Resolución con fines de investigación científica de flora silvestre, otorgada por SERFOR141
Anexo 2. Consentimiento de autoridades de la comunidad para realizar el estudio143
Anexo 3. Información oficial y datos estadísticos sobre enfermedades prevalentes en la zona de estudio del 2017 al 2022 (Minsa)144
Anexo 4. Mapas de ubicación de los caseríos de Echarati La Convención.146
Anexo 5. Certificación de determinación taxonómica y depósito en Herbario /argas CUZ149
Anexo 6. Ficha etnofarmacológica153
Anexo 7. Ficha etnobotánica155
Anexo 8. Procedimiento para las pruebas fitoquimicas cualitativas157
Anexo 9. Flujograma fotográfico del trabajo en campo y laboratorio159
Anexo 10.Catálogo de plantas medicinales utilizadas por los pobladores de os cinco caserio de Echarati163

INTRODUCCIÓN

La medicina tradicional es una parte importante y con frecuencia subestimada de los servicios de salud. En algunos países suele denominarse medicina complementaria. Históricamente, la medicina tradicional se ha utilizado para mantener la salud, y prevenir y tratar enfermedades, en particular enfermedades crónicas. La estrategia de la OMS sobre medicina tradicional 2014-2023 se desarrolló en respuesta a la resolución de la Asamblea Mundial de la Salud sobre medicina tradicional, cuyos objetivos consisten en prestar apoyo a los Estados miembros a fin de que aprovechen la contribución potencial de la medicina tradicional a la salud, el bienestar y la atención de salud centrada en las personas, y promuevan su utilización segura y eficaz a través de la reglamentación y la investigación, así como mediante la incorporación de productos, profesionales y prácticas en los sistemas de salud, según proceda. (1)

La Medicina tradicional peruana agrupa prácticas saludables empleadas por nuestra población desde épocas ancestrales para mantener su buen vivir, a través del uso de recursos naturales tradicionales y repertorios terapéuticos ancestrales y particulares, ejecutados por sabios o agentes de la medicina tradicional, o por miembros de las familias. (2)

Es fundamental aplicar un enfoque basado en las pruebas; incluso si derivan de una práctica establecida desde hace tiempo y son naturales, por lo tanto, es importante establecer su eficacia y seguridad a través de ensayos clínicos rigurosos. Esto no solo hace que los tratamientos sean efectivos y seguros, sino que proporciona las

pruebas necesarias para que la OMS recomiende la medicina tradicional en sus directrices. (3)

Una de las principales opciones sanitarias a lo largo del tiempo ha sido el uso de hierbas medicinales. A pesar de tener una enorme diversidad, Perú cuenta con algunas investigaciones realizadas a lo largo de nuestro territorio nacional que, al respecto, se pueden analizar en los trabajos de Castillo et al. (2017); Quintana (2016); Hurtado y Albán (2018); Mostacero et al. (2019); puesto que el empleo de estos recursos medicinales, tienen como único y fin, mejorar la calidad de vida de aquella persona que las consuma. (4)

Algunos de los mayores desafíos al respecto son el registro adecuado de las plantas, la protección de la biodiversidad, la inversión en investigación, y la garantía de calidad y seguridad de su uso. (5)

La investigación en este campo está empezando a emerger en el Perú y mucho más en nuestra amazonia que nos brinda una amplia posibilidad de beneficios. Respecto de las perspectivas de la etnobotánica y la etnofarmacología, Richard Evans Schultes nos decía "es obvio que un vasto reservorio de información aún virgen sobre las propiedades de las plantas queda por ser explorado y salvado. Esta información etnofarmacológica tiene no solamente interés académico, sino también puede ser de uso práctico para beneficio de toda la humanidad." (5)

Es así como en los últimos años se nota un repunte notable en la investigación de los tres reinos de la naturaleza, para descubrir nuevos principios activos que sirvan como medicamentos para las dolencias del ser humano. Por esta misma actitud, los médicos han comenzado a interesarse por el quehacer de los "empíricos" y se ha llegado a plantear en reuniones científicas si no sería posible y útil, integrarlos en

las acciones de salud, pues está demostrada su aceptación por la población en general, que los busca unas veces en primera instancia, dependiendo de factores como disponibilidad y creencias, y otras cuando agotadas las esperanzas en los procedimientos científicos ortodoxos, la gente busca cualquier otro medio de ayuda.

(6)

CAPITULO I

GENERALIDADES.

1.1. Planteamiento del Problema

Las especies de plantas utilizadas en la medicina tradicional se han identificado en investigaciones similares realizadas en otras partes del Perú y en el extranjero, mas no han sido examinados los beneficios de las mismas en la mejoría del nivel de sanidad de la gente. Estas investigaciones sirven como antecedente de otros estudios que buscan profundizar su análisis relacionado con los efectos y riesgos que pueden haber generado el consumo de estas plantas en el tratamiento de las enfermedades, más aún cuando, desafortunadamente, se conoce que en algunos casos el uso incorrecto de determinados remedios herbarios puede ser dañino, o incluso mortal. (7)

Según Richard Ford (7) a etnobotánica se centra en las interacciones culturales entre el hombre y su entorno de vegetación. "El ámbito de la etnobotánica debe comprender el lugar absoluto de las plantas dentro de la cultura y las correlaciones directas entre el hombre y las plantas" (7) En los últimos tiempos la industria farmacéutica ha desarrollado gran cantidad de medicamentos a partir de la investigación de recursos naturales vegetales de los cuales se aíslan los principios activos medicinales para luego sintetizar y desarrollar un nuevo medicamento. Sin embargo, este proceso lleva muchos años hasta su comercialización. Para Pedro Angulo (8) "el conocimiento tradicional debe ser la

base para el desarrollo de drogas, ya que ello incluye el valor terapéutico de la flora.

Por tanto, el conocimiento de las prácticas médicas tradicionales juega un rol crucial para la selección de especies a ser posteriormente consideradas como fuentes potenciales de drogas universalmente aplicables"

En el caso de la política educativa boliviana se observa que: Una feria educativa de medicina tradicional, educación para la vida, se realiza en el ámbito escolar con el objetivo de potenciar la interculturalidad en términos de diálogo y reciprocidad de saberes y conocimientos en temas de salud intercultural. Chuquisaca - Bolivia. Teniendo como resultado la revalorización y vigorización de la medicina ancestral desde el contexto escolar. La conservación de las prácticas y conocimientos sobre el uso de plantas medicinales dada su importancia en nuestra sociedad debiera convertirse a ejemplo de otros países en una política de estado, cuyos objetivos de revalorización y preservación pueden ir ligados a la investigación científica dirigida a solucionar las enfermedades prevalentes en nuestro país. (8)

En un contexto nacional, para la Dra. Emma Cerrate (8) la etnobotánica "estudia la botánica de una etnia, es decir, de un grupo humano cuyos miembros tienen la misma cultura y hablan el mismo idioma". La diversidad cultural de nuestro país trasciende no solamente el idioma y las lenguas originarias en las diferentes regiones naturales de nuestro territorio; sino también las costumbres de vida como pueden ser, la manera de vestirnos, la preferencia por algunos alimentos, las tradiciones folklóricas y por supuesto la manera de curar nuestras enfermedades. La diversidad botánica ha ido de la mano de nuestra diversidad cultural en nuestra

historia, dejando un legado ancestral de usos y costumbres de plantas medicinales en cada lugar del Perú. (8)

La población que reside fuera de las urbes y se dedica mayoritariamente a la agricultura mantiene por tradición oral el uso de plantas medicinales que forman parte de su entorno natural. Las grandes migraciones del campo a la ciudad producto de la globalización en las últimas décadas, está provocando la desaparición paulatina de este conocimiento ancestral. Según la Organización Mundial de la Salud (OMS) 80% de la población mundial todavía usan plantas medicinales para su atención primaria de la salud. (8)

Un estudio realizado en Cusco revela que más del 75% de la población mencionó haber utilizado plantas medicinales en alguna ocasión en su vida, además el 85.7% preferiría que el médico le prescriba plantas medicinales. (9)

Las poblaciones de esta investigación están ubicadas en el Perú, región Cusco, provincia La Convención, distrito Echarati, en los caseríos alrededor del poblado Echarati, ésta es una comunidad enclavada al pie de una montaña denominada Urusayhua y a orillas del rio Urubamba en la Provincia La Convención – Cusco. Su ubicación en plena ceja de selva le provee de una riqueza basta en flora y fauna, posee un clima cálido y lluvioso por temporadas. Echarati no solo es el nombre del distrito y la capital sino además es el centro de distribución y comercio, paso indispensable de camino para salir a Quillabamba, capital de la provincia La Convención y para entrar al bajo Urubamba en la selva donde se ubica las reservas gasíferas del Camisea. Los caseríos alrededor del poblado de Echarati son:

- Calzada, Condormocco, Pispitayoc, Puente Echarati, Palmanayoc, Urusayhua.
- Alcuzama baja, Terebinto, Piedra Blanca.
- Calcapampa, Matacatorce, Pampa Echarati.
- Sicllabamba, Masapata, Aputinya, Ramospata.
- Cocabambilla, Miraflores baja, Pan de azúcar, Pampa Concepción, San Agustín. (10)

De ellos se escogieron cinco caseríos para la investigación: Calcapampa, Aputinya, Miraflores, Pampa Echarati y Puente Echarati, los cuales cuentan con una población distribuida en parcelas agrícolas alejadas unas de otras, con gente dedicadas en su mayoría al cultivo de café, cacao y frutas de la zona. Las vías de acceso son por lo general pequeñas trochas carrozables y caminos de herradura. La mayoría de las familias se desplazan al centro poblado de Echarati para sus atenciones de salud, educación, seguridad y otras necesidades sociales.

Por lo tanto, el problema es que no se tiene referencias de un estudio etnobotánico con validación científica para especies vegetales con usos medicinales que se haya hecho en la zona de selva alta del distrito de Echarati. Esto se debe a que no existe un estudio que haya hecho la recolección del conocimiento tradicional sobre el cómo y para que se utilicen las plantas medicinales, siendo muy variada la manera de uso de una misma planta para diferentes afecciones.

También se conoce que no hay un inventario de plantas medicinales que permita identificar y clasificar científicamente las especies que se vienen usando en

la zona de estudio. Además, no hay estudios fitoquímicos de las especies con mayor uso medicinal que validen científicamente la presencia de metabolitos terapéuticos en las mismas.

De seguir el problema se habría generado la pérdida total de los conocimientos tradicionales.

Por lo tanto, este trabajo de investigación tuvo la finalidad de recolectar información sobre usos y costumbres de utilización de plantas medicinales, recurriendo a fuentes confiables como son los curanderos y las personas de edad avanzada con conocimientos de medicina tradicional, en los caseríos alrededor del poblado Echarati. También a través de la realización de un estudio de recolección, identificación y clasificación de plantas medicinales con apoyo del Herbario Vargas y biólogos especializados en taxonomía vegetal. Además, la determinación fitoquímica de metabolitos en las especies vegetales mencionadas con mayor frecuencia para comprobar y relacionar su efecto terapéutico.

1.2. Formulación del Problema

¿Será importante el estudio etnobotánico, etnofarmacológico y análisis fitoquímico de tres plantas medicinales más usadas en afecciones prevalentes de la zona en cinco caseríos del poblado Echarati La Convención – Cusco, 2021?

1.3. Objetivos

1.3.1. Objetivo general

Realizar el estudio etnobotánico, etnofarmacológico y análisis fitoquímico de las plantas medicinales más usadas en afecciones prevalentes de la zona en cinco caseríos del poblado Echarati – La Convención – Cusco en el año 2021.

1.3.2. Objetivos Específicos

- Realizar la recolección de las plantas medicinales en cinco caseríos del poblado Echarati para proceder a su identificación.
- Sistematizar los conocimientos populares en general sobre el uso de plantas medicinales en caseríos del poblado Echarati.
- Clasificar la información de las plantas medicinales de acuerdo al uso terapéutico o afecciones terapéuticas, parte utilizada y forma de uso a partir del conocimiento de los pobladores.
- Realizar el análisis fitoquímico cualitativo de las plantas medicinales más usadas en enfermedades prevalentes por el método espectrofotométrico UV visible.

1.4. Justificación Del Estudio

1.4.1. Justificación Teórica

Gracias a los resultados del presente estudio se han podido identificar las plantas medicinales más populares en afecciones prevalentes en caseríos del poblado Echarati (La Convención) y luego se determinó las características etnobotánicas, etnofarmacológicas y fitoquímicas de dichas plantas, contribuyendo

a que se incremente, documente y actualice la información de las plantas medicinales utilizadas en la Medicina Complementaria. (Anexo 05)

Este estudio es necesario para contribuir con información relevante ya que las plantas medicinales son fundamentales en el desarrollo de la medicina moderna y su aplicación en la terapéutica de diversas enfermedades.

1.4.2 Justificación Práctica

Esta investigación buscó determinar la presencia de metabolitos secundarios mediante reacciones de caracterización en las especies vegetales más utilizadas en enfermedades prevalentes de la zona, mediante el análisis fitoquímico se identificó cuáles son los responsables de su actividad terapéutica.

"Con una dosificación y supervisión médica adecuada, está comprobado que diversas plantas naturales pueden ayudar a la recuperación temprana del paciente, de manera complementaria con los tratamientos médicos convencionales. Por tal razón, EsSalud viene implementando las farmacias especializadas en medicina natural." (9) "En ese sentido, la Gerencia de Medicina Complementaria, una división de la Gerencia Central de Servicios de Salud, fue creada en diciembre del 2014 por la Presidencia Ejecutiva de EsSalud." (9)

Los datos obtenidos en este estudio podrán ser potencialmente usados por todas las entidades de salud estatales o privadas que tengan interés en la medicina natural, tal es el caso del Seguro Social de Salud - EsSalud, entidad que viene implementando farmacias especializadas en medicina natural, como parte de sus Centros de Atención de Medicina Complementaria (CAMEC) a nivel nacional, del cual son beneficiarios miles de asegurados.

CAPITULO II

MARCO TEÓRICO CONCEPTUAL

2.1. Visión Histórica

Algunas de las primeras evidencias de plantas usadas por los americanos son restos fósiles de *peyote (Lophophora williamsii)* encontrados en cavernas de Texas, Estados Unidos, y datan de aproximadamente 7 mil a.C. Restos descubiertos en la costa de Ecuador, en Sudamérica, demuestran que la coca (Eritroxylum spp.) se consumía ya en el año 2100 a.C. (Plowman,1984). En la cultura Sinú (1200-1600) del noreste de Colombia se produjeron numerosos pectorales de oro con representaciones parecidas a hongos. Shultes & Bright 1979, concluyeron que esos fueron hongos alucinógenos del género *Psilocybe*. Aunque también algunas vasijas de culturas como la mochica en Perú retratan rituales usando hongos alucinógenos (*Psilocybe*) y cactus alucinógenos (*Trichocereus*), el conocimiento de la etnobotánica sudamericana es mucho menos detallado que la de México. (11)

Américo Vespucio (11) estuvo llevando a cabo una exploración geográfica cuando hizo el primer descubrimiento de la masticación de la coca en la península Guajira de Colombia. Durante una expedición al Ecuador para comprobar la forma de la Tierra, Charles-Marie de La Condamine hizo el primer mayor viaje científico hacia el Amazonas y tropezó con tales tesoros etnobotánicos como el caucho (Havea), ipeca (Cephaelis), quinina (Cinchona) y el curare (posiblemente Strrychmus). El gran explorador Alexander Von Humboldt, junto con su colega

francés Aime Bompland, viajaron intensamente en los trópicos del nuevo mundo. Ellos hicieron colecciones generales de la biota cuando observaron la manufactura del curare (del *Strrychmus*) y del rapé alucinógeno yapo (*Anadenanthera peregrina*). Mientras que el botánico británico Richard Spruce, viajaba durante 17 años en el Amazonas haciendo colecciones generales de miles de plantas de la flora, observó el uso nativo de otras plantas alucinógenas. (11)

La más notable contribución moderna a nuestro conocimiento global de las plantas económicas es indudablemente la del botánico agrícola y explorador de plantas, el profesor ruso Nikolai Ivanovich Vavilov y su identificación de centros de diversidad. (11)

Un momento crucial en la historia de la etnobotánica sudamericana fue la llegada de Richard Evans Shultes a la amazonia colombiana en 1941. Después de completar su disertación de Ph.D. sobre la etnobotánica de los indios en Oaxaca, México, Shultes decidió iniciar un estudio de las plantas empleadas en la manufactura de las flechas envenenadas. Él permaneció en la Amazonía nororiental hasta 1954, viviendo con los indígenas, participando en sus rituales nativos, y conduciendo investigación etnobotánica. Aunque él, eventualmente fue a trabajar en el proyecto USDA, para cosechar caucho natural de la Amazonía durante la segunda guerra mundial, continuó colectando y enviando aproximadamente 24 mil especímenes vegetales. Cerca de 2 mil de esas especies han sido empleadas medicinalmente por los nativos, mientras otras han sido usadas en otras actividades como en maderas, vestimentas, hasta contraceptivos. (11)

"La flora tropical tan rica de la Amazonía, representa un vasto emporio de compuestos químicos desconocidos, esperando por ser descubiertos." (11)

La referencia más antigua encontrada se remonta a inicios de siglo con la llegada de un explorador alemán, llamado Christian R.A. Bües el cual viene con estudios de agronomía en la Universidad de Cornell en Estados Unidos, y reside en la ciudad de Quillabamba durante 33 años de 1915 a 1948, realizando estudios e investigaciones etnobotánicas. Como botánico se dedicó a coleccionar y seleccionar todas las especies vegetales del valle de La Convención. Entre ellas se conserva en la actualidad la exótica colección de helechos en la Universidad San Antonio Abad de Cusco, que durante muchos años estuviera a cargo del Dr. César Vargas, fundador del "Herbario Vargas", el cual en 1995 manifestó que dicha colección es una de las joyas en materia de botánica, única en su género, puesto que desde Christian Bües, nadie ha podido realizar trabajo similar en botánica. Según referencia del Padre Menéndez Rúa, la clasificación asciende aproximadamente a 1,100 variedades de helechos. (11) El biógrafo Nicanor Cruz refiere en su libro "Christian Bües, Vida y Obras" que uno de los legados más importantes de este personaje fue la implementación de un museo natural en Quillabamba, idea que ejecutó junto a Monseñor Sabas Sarasola y en cuyo inventario se evidencian herbarios de plantas medicinales de la zona. Además, hace referencia a varias publicaciones científicas como: Estudios sobre la flora del departamento del Cusco, Helechos de La Convención, Aspectos Económicos Varios del Valle de La Convención y Musgos en La Convención, publicado en la Revista Universitaria nro. 60, 64 y 87 de la Universidad San Antonio Abad de Cusco. (11)

2.2. Antecedentes

2.2.1. Antecedentes Internacionales

 BOLAÑO PADILLA EDITH VICTORIA. 2019. CARACTERIZACIÓN ETNOBOTÁNICA DE PLANTAS MEDICINALES EN LA VEREDA SAN MIGUEL ARRIBA DEL MUNICIPIO DE SAN CARLOS CÓRDOBA. COLOMBIA. UNIVERSIDAD SANTO TOMAS FACULTAD DE CS. Y TECNOLOGÍAS. (12)

Objetivo: Se evaluó el nivel de conocimientos de la población local en materia de plantas terapéuticas. **Metodología**: Se encuestaron entre los lugareños sobre hierbas curativas utilizadas, sus componentes, los métodos de preparar, administrar, su uso curativo tradicional y conocimientos, segmentados por edad, sexo y grado educativo de desarrollo. **Resultados:** Se descubrió que el 98% de las personas utilizan 53 especies de plantas con propósitos curativos; la familia Lamiaceae fue la familia de plantas más común con el 22,4% de todos los usos; la hoja fue el componente más comúnmente utilizado con el 94%; las infusiones fueron el principal método de preparación con el 57,38%; y beber fue el método más común de administración con el 75,14%; las afecciones más comunes tratadas fueron la gripe con el 49,2%; el rango de edad más prevalente fue el de 46 años y más; las mujeres mostraron un mayor uso con el 59%; y el grado de instrucción mayoritario es el de primaria completa con 58%. Conclusión: "El uso de hierbas medicinales es una tradición perdida; aunque las especies están presentes en la zona, no se conservan." (12)

 TORRES SILVA PEDRO MANUEL. (2018). ESTUDIO ETNOFARMACOLÓGICO SOBRE EL USO DE PLANTAS MEDICINALES EN LA COMUNIDAD DE NELTUME, CHOSHUENCO Y LAGO NELTUME, PANGUIPULLI. UNIVERSIDAD AUSTRAL DE CHILE. FACULTAD DE CIENCIAS. ESCUELA DE QUÍMICA Y FARMACIA. VALDIVIA-CHILE. (13)

Objetivos: Se documentó el consumo de plantas medicinales, Metodología: Se realizó un estudio etnofarmacológico de tipo descriptivo y transversal en las comunidades de Neltume y alrededores, las cuales poseen una alta población de etnia mapuche. Para ello se formuló un cuestionario semiestructurado, destinado a personas que acudieron a los Centros de Salud de estas localidades, Resultados: Se documentó que las hojas eran el recurso más utilizado y la preparación era principalmente en base a infusiones. La frecuencia de citación relativa (FCr) indicó que la especie con mayor importancia era Mentha sp. (menta). La categoría de enfermedades con mayor número de plantas utilizadas para su tratamiento fue la digestiva, obteniendo un 0,93 de factor de consenso de los informantes (Fic). Conclusiones: Se concluyó que es necesaria una mayor cantidad de estudios etnofarmacológicos para describir y analizar las especies medicinales consumidas por las poblaciones con pertinencia mapuche. (13)

 MARINA EVA ACOSTA. (2018). ETNOBOTÁNICA DE COMUNIDADES INMIGRANTES BOLIVIANAS DE LA PROVINCIA DE JUJUY, ARGENTINA: ESTUDIO DEL CAMBIO Y LA FLEXIBILIDAD. UNIVERSIDAD NACIONAL DEL COMAHUE. ARGENTINA. (14)

Objetivos: 1) Se describió los estudios etnobotánicos urbanos sobre el uso de plantas medicinales en poblaciones migrantes y no migrantes, así como examinar los procesos de hibridación. 2) Se registró la diversidad de especies vegetales con

importantes beneficios medicinales y significado cultural, así como las costumbres y valores que las acompañan y que aún se siguen o que se han alterado, en una comunidad de migrantes bolivianos que viven en San Salvador de Jujuy. Metodología: Se usó métodos etnográficos como la observación participante, las entrevistas abiertas y semiestructuradas, el alistamiento libre y las historias de vida permitió recopilar datos etnobotánicos. Dado el carácter categórico de la mayoría de las variables, los datos se evaluaron cualitativa y cuantitativamente mediante índices y pruebas de regresión no paramétrica y multinomial. Resultados: Se encontró que en las zonas urbanas se emplean 531 especies medicinales diferentes, en su mayoría mundiales. El 33% de las publicaciones (21 artículos) muestran un aumento del interés por el estudio de los remedios herbales de los inmigrantes. Las novedades (29%), la reubicación (20%) y la fusión (19%) fueron los procesos más mencionados en la bibliografía. Conclusión: "Se puede afirmar que los inmigrantes en las ciudades intentan reproducir sus costumbres utilizando las mismas plantas que conocían en sus países de origen, que suelen ser cosmopolitas y de fácil acceso, sin poner en peligro su salud por intoxicaciones o aplicaciones inadecuadas de las nuevas plantas. En cualquier caso, los riesgos a los que se enfrentan están relacionados con las dificultades que tienen estos grupos para conseguir sus plantas y difundir sus técnicas." (14)

 ZAPATA GARCÍA VALERIA FABIOLA. (2017). ESTUDIO ETNOBOTÁNICO Y FARMACOGNÓSTICO DE ESPECIES VEGETALES EN LA ISLA DE MUISNE. (ESMERALDAS - ECUADOR). ESCUELA SUPERIOR POLITÉCNICA DE

CHIMBORAZO. FACULTAD DE CIENCIAS. ESCUELA DE BIOQUÍMICA Y FARMACIA. ECUADOR. (15)

Objetivo: Se hizo un análisis etnobotánico y etnofarmacológico de las especies vegetales de la isla Muisne, provincia de Esmeraldas. **Metodología:**

Para el trabajo, realizado en la U. E. San Luis de Gonzaga, se interrogó a dos supuestos curanderos de la comunidad y se realizaron dos seminarios de recuperación cultural para obtener información fundamental sobre las plantas: Mangle blanco (Laguncularia racemosa), y Hierba de chivo (Eupatorium odoratum), Chirarán (Ocimum micranthum), Cortadera (Cyperus odoratus), Lirio (Crinum amabile). Que por referencia bibliográfica se sabe que su uso aporta beneficios médicos. Se utilizaron el sistema de posicionamiento global (GPS) y excursiones sobre el terreno para localizar con precisión la ubicación de las especies objeto de estudio. Se utilizaron secciones transversales y longitudinales de hojas y tallos para realizar investigaciones micro morfológicas e identificaciones taxonómicas al microscopio Las plantas se secaron, se trituraron para el estudio y se evaluó el contenido de cenizas, la humedad y se procedió al cribado fitoquímico. Resultados: Se reactivó la comunidad y se salvó la sabiduría ancestral. Gracias al análisis taxonómico y morfológico se pudo crear una base de datos con los nombres de las estructuras vegetales primarias. Conclusiones: (1) Se logró recopilar los usos etnobotánicos de especies vegetales usadas en la Isla de Muisne de la provincia de Esmeraldas, especialmente de uso medicinal, mediante talleres la recopilación de saberes y entrevistas. (2) El estudio taxonómico, macro morfológico y micro morfológico de las especies Ocimum micranthum., Cyperus odoratus, Laguncularia racemosa, Eupatorium odoratum, y Crinum amabile, permitió establecer las propiedades botánicas de cada especie vegetal e identificarla. (3) Al efectuar el tamizaje fitoquímico se determinaron cualitativamente los principales constituyentes químicos de cada una de las cinco especies vegetales, y se pudo asociar su presencia probablemente con los diversos usos medicinales. (4) "Se crearon un folleto y un herbario comunitario, y al tratarse de dos herramientas que permiten conservar la información y facilitar el acceso a ella, pueden haber contribuido a reavivar el uso de las especies vegetales entre la población de la isla de Muisne."

2.2.2. Antecedentes Nacionales

 ESPEJO PALOMINO CESAR. (2019). ETNOBOTÁNICA DE LAS PLANTAS MEDICINALES DEL CASERÍO EL EDÉN, PROVINCIA DE SÁNCHEZ CARRIÓN -LA LIBERTAD. UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE CIENCIAS AGRARIAS. CAJAMARCA – PERÚ. (16)

Objetivo: Se preservó los saberes etnobotánicos de las plantas terapéuticas usadas en el caserío El Edén, provincia Sánchez Carrión, distrito de Curgos. Metodología: Se utilizó encuestas semiestructuradas para recabar información de 15 personas, diez hombres y cinco mujeres con más de 52 años, expertos en hierbas curativas. Resultados: Se encontró 74 especies de hierbas curativas, reunidas en 35 familias, 69 géneros, resultando 44 hierbas, 20 arbustos y diez árboles. Las familias con mayor representatividad son las Asteraceae con 14 especies, luego las Lamiaceae con seis, las Solanaceae y la Fabaceae con cinco cada una, las Rosaceae con cuatro, las Poaceae, las Verbenaceae y las Rubiaceae

con 3 cada una. Sólo el 29,73% de las otras 22 familias presentaban una sola especie. Hubo 21 trastornos que se trataron con más de una especie. Las yemas (49,11%), la planta entera (19,64%), las hojas (10,71%), los tallos (6,25%), la corteza (4,46%), los frutos (4,46%), la raíz (3,57%) y las flores (1,79%) fueron las partes más utilizadas. La forma de administración más frecuente es por vía interna (61,17%), seguida de hervida (58,11%), cruda (29,73%), fresca (6,76%), infusión (4,05%) y desecada (1,35%). (16)

AGUILAR GÜIMAC, EDUAR GLICERIO; MONTALVO RODRIGUEZ, GINA PILAR.
 (2019). ESTUDIO ETNOFARMACOLÓGICO DE LAS PLANTAS MEDICINALES
 CON MAYOR USO SIGNIFICATIVO EN LA COMUNIDAD DEL CENTRO
 POBLADO TAMBOLIC, DISTRITO DE JAMALCA, UTCUBAMBA - AMAZONAS.
 MAYO - JUNIO 2018. UNIVERSIDAD NORBERT WIENER. FACULTAD DE
 FARMACIA Y BIOQUÍMICA. PERÚ. (17)

Objetivo: Se identificó las plantas terapéuticas de mayor uso en la comunidad del centro poblado Tambolic distrito de Jamalca, Utcubamba - Amazonas, mediante una investigación etnofarmacológica. 2018 entre mayo y junio. Método: Se respetó las directrices dadas por la Traditional Medicine in the Islands (TRAMIL). La fase sobre el terreno y la fase posterior fueron las dos fases de trabajo que se tuvieron en cuenta. Durante la fase de campo se hicieron entrevistas semiestructuradas a 54 individuos, incluyendo a mujeres y varones de más edad en las familias. Después de la fase de campo, se completó el análisis fitoquímico y el análisis del índice del nivel de uso TRAMIL. Resultados: Se describió 31 plantas con propiedades terapéuticas, repartidas entre 23 familias. La familia Lamiaceae, que incluye las especies Ocimum basilicum L. (albahaca) Rosmarinus officinalis L.

(romero) y Mentha pulegium L. (poleo o hierba buena) son la más representativas. La dolencia más común se encuentra en la categoría gastrointestinal y las hojas son las partes de la planta que más se utilizan (56,76%). La infusión es el método típico de preparación (26,47%). Las vías de administración principales son; la oral (62,86%), seguida de la tópica (25,17%). **Conclusión:** "En este estudio etnofarmacológico se determinó que Mentha pulegium L. (Menta poleo), Plantago mayor L. (Llantén) y Verbena officinalis L. (Verbena) son las especies medicinales más utilizadas en la comunidad Tambolic. Cada una de estas especies ha sido mencionada más del 20% de las veces para un problema de salud concreto." (17)

 VILCHEZ GAMARRA GLADYS ZORAIDA. (2017). ESTUDIO ETNOBOTÁNICO DE ESPECIES MEDICINALES EN TRES COMUNIDADES ASHÁNINKAS Y SU TENDENCIA AL DETERIORO. CHANCHAMAYO, JUNÍN. UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. FACULTAD DE FARMACIA Y BIOQUÍMICA. PERÚ. (18)

Objetivos: Se encontró las especies de plantas que fueron utilizadas medicinalmente en tres pueblos Ashaninka en Chanchamayo. **Metodología:** Se tuvo en cuenta los diseños de estudio descriptivo y etnográfico a la hora de utilizar enfoques cualitativos y cuantitativos. **Resultados:** Se notificó 48 especies medicinales, divididas en 26 familias botánicas y 43 géneros. Asteraceae (14,6%), Piperaceae y Solanaceae (8,3%), Euphorbiaceae, Moraceae y Rubiaceae (6,3%) fueron las familias medicinales más utilizadas por los informantes de la comunidad para curar sus enfermedades y trastornos.

Conclusión: "Este estudio demuestra que algunas plantas medicinales de las comunidades nativas investigadas están muy restringidas localmente o tienden

a tener poblaciones naturales más reducidas. Como resultado, se verifica la hipótesis propuesta en el estudio." (18)

 ARIAS MORALES ANA RUFINA. (2017). DESCRIPCIÓN Y USO DE ESPECIES DE PLANTAS CON PROPIEDADES MEDICINALES EN EL DISTRITO DE YANAHUANCA. PROVINCIA DE DANIEL CARRIÓN. PASCO. UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN. FACULTAD DE CIENCIAS AGROPECUARIAS. PERÚ. (19)

Objetivo: Se recopiló datos fundamentales sobre el uso y descripción de especies vegetales con características terapéuticas en el distrito de Yanahuanca de la provincia de Daniel A. Carrión. Metodología: La investigación se realizó en las localidades aledañas a Yanahuanca distrito. Entre ellas, Chipipata, Rocco Huaylasjirca, Yanahuanca, Villo, Palca, Chinche Lucmapampa y Racri, Se aplicaron encuestas a quienes siembran plantas aromáticas y medicinales en cada una de estas localidades, además, se reunió germoplasma de plantas medicinales y se plantó en la ciudad de Chipipata para su conservación in situ. Resultados: Se encontró que la gastritis, dolores de cabeza, la parasitosis, los dolores de espalda, los problemas digestivos, el resfrío, la falta de apetito, el estreñimiento y el reumatismo son las enfermedades más comunes tratadas por los residentes del distrito de Yanahuanca, según una evaluación de las características etnobotánicas y etnofarmacológicas de 41 especies de plantas medicinales. Las hojas y los tallos de las plantas medicinales son los componentes vegetales más utilizados, y la infusión es el método más popular para preparar plantas terapéuticas. Conclusiones: "De las plantas medicinales se pueden obtener medicamentos naturales, lo que ayuda al distrito de Yanahuanca a mantener su sostenibilidad

medioambiental. Los habitantes del distrito de Yanahuanca se benefician económicamente de las plantas medicinales porque proporcionan nuevas fuentes de ingresos y empleo a las mujeres rurales, lo que mejora su posición en el hogar y en la sociedad en general." (19)

2.2.3. Antecedentes Locales

 RODRIGUEZ CUNO, JUANA ROSA; SUMA ERAZO, VICENTE. (2021). ESTUDIO ETNOBOTÁNICO, ETNOFARMACOLÓGICO Y DETERMINACIÓN DE LA BIOACTIVIDAD DE PLANTAS MEDICINALES MÁS REPRESENTATIVAS DE LAS COMUNIDADES DE CCAYOCCA Y PAMPA LAWA DEL DISTRITO DE CHECACUPE – CUSCO. UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO. FARMACIA Y BIOQUÍMICA. (20)

Objetivo: Se determinó la bioactividad de las especies vegetales medicinales más relevantes de los pueblos de Ccayocca y Pampa Lawa en Checacupe, Canchis Cusco, mediante la realización de un estudio etnobotánico y etnofarmacológico. Metodología: Se usó a 55 personas que participaron en entrevistas semiestructuradas para el estudio prospectivo, transeccional-descriptivo (muestreo no probabilístico de expertos). Resultados: Se encontró que las hierbas eran el tipo de planta más utilizado. La mayoría de las plantas medicinales se utilizaban para tratar problemas gastrointestinales y renales, y los métodos de preparación más populares eran la infusión (44%) y la decocción (21,7%), la hoja (13%) y la planta entera (71%), resultaron las partes más usadas, así como una vez al día (58%) y mientras dure la afección (62%), fueron las proporciones más relevantes encontradas. No se combinaron con ninguna otra planta o fármaco. El 81% parece no presentar riesgos, el 9% podría ser peligroso para las mujeres embarazadas y el

10% podría tener repercusiones negativas. La sensación de bienestar reportada por los encuestados indica que el 32% de las plantas medicinales son realmente beneficiosas para los tratamientos utilizados. El "Catálogo etnofarmacológico de plantas medicinales utilizadas por los pobladores de las comunidades de Ccayocca y Pampa Lawa del distrito de Checacupe, Canchis - Cusco" elaborado, contiene esta información.

Conclusión: "El presente estudio suma a la lista de prácticas y conocimientos médicos andinos." (20)

QUISPE JALLASI, MARÍA; MONTOYA MASIAS, LEISBETH. (2018). ESTUDIO ETNOBOTÁNICO, ETNOFARMACOLÓGICO Y DETERMINACIÓN DE LA ACTIVIDAD ANTIBACTERIANA IN VITRO DE LOS EXTRACTOS SECOS ETANÓLICOS AL 70% DE LAS ESPECIES VEGETALES MEDICINALES MÁS FRECUENTEMENTE UTILIZADAS EN INFECCIONES DE LA PIEL EN LAS COMUNIDADES DE PALTAIBAMBA Y RIOBAMBA DEL DISTRITO DE YANATILE – CUSCO FRENTE A STAPHYLOCOCCUS AUREUS CEPA ATCC. UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO. FARMACIA Y BIOQUIMICA.CUSCO. (21)

Objetivo: Se realizó un estudio etnofarmacológico y etnobotánico y evaluación de la acción antibacteriana de las plantas medicinales tomadas para el tratamiento de infecciones cutáneas por la gente de las comunidades de Riobamba y Paltaibamba en el distrito de Yanatile, Cusco, se coleccionó 25 especies curativas utilizadas para el tratamiento de infecciones de piel. De éstas, se escogieron cuatro especímenes de plantas nativas más utilizadas en estas infecciones y se evaluó su acción antibacteriana. Metodología: Se hizo la medición de la actividad antibacteriana in vitro se determinó utilizando el método del pozo excavado - placa.

que implicó encuestas semiestructuradas a curanderos, hueseros y ancianos conocedores de los efectos terapéuticos de las plantas. Resultados: Para llevar a cabo investigación etnobotánica etnofarmacológica, V taxonómicamente 25 especies de 19 familias. Según las estadísticas de uso, los componentes más comunes son las hojas (32,08%), la corteza (16,98%) y el látex (15,09%). En cuanto a los métodos de preparación, las infusiones (26,15%) y las cataplasmas (23,1%) son los más populares. De la lista se eligieron cuatro plantas: Verbena hispida "Jaya Verbena", Heliocarpus americanus (L) "Monte Rata Rata", Urera baccifera (L) "Tinri Tinri" y Maclura tinctoria "Amarillo", que los aldeanos utilizan con más frecuencia para tratar las infecciones cutáneas. El ensayo de la actividad antibacteriana in vitro de estas especies contra Staphylococcus aureus ATCC 259 arrojó que del extracto seco etanólico al 70 % de Verbena Hispida "Jaya" Verbena, se determinó que la concentración de 1.2 mg/40µL tiene una actividad contra las bacterias mínima con un halo de inhibición promedio de 11.3 mm, a una concentración de 4.0 mg/40µL y tiene una acción antibacteriana mayor con un halo de inhibición de 20.3 mm. En cambio, el extracto seco etanólico al 70 % de Heliocarpus americanus (L) "Monte rata rata" a una concentración de 1.6 mg/40µL tiene actividad mínima contra bacterias con un halo de inhibición de 6.7 mm y a concentración de 28 mg/40µL tiene mayor halo de inhibición de 16 mm. Luego, Urera Baccifera (L) "Tinri Tinri", a una concentración de 0.4mg/40µL, tiene una acción antibacteriana pequeña con un halo de inhibición de 9.0 mm, a una concentración de 12 mg/40µL, y tiene actividad anti bacteria mayor, con un halo de inhibición de 16mm, a concentraciones mayores los halos de inhibición son menores, esto nos indica que el extracto empieza a perder poder frente a la cepa, también a mayor concentración se observó una sobresaturación del extracto en los pozos. Mientras el extracto seco etanólico al 70 % de Maclura tinctoria (L) "Amarillo" no tiene ninguna actividad contra bacterias.

En conclusión, para el estudio etnofarmacológico y etnobotánico, de acuerdo a las entrevistas hechas las plantas más utilizadas son la Piper elongatum Vahl (yurac mocomoco), Verbena hispida (Jaya verbena), Urera baccifera (L) (Tinri tinri) y Maclura tinctoria (L) (Amarillo), Cyathea sp. (Sano sano), Heliocarpus americanus (L) (Monte rata rata), Bixa Orellana L. (achiote), Croton lechleri Mull.Arg. (Sangre de grado), Stachys herrerae Epling (cáncer qora), Capsicum pubescens Ruiz & Pav. (Uchu), Oenothera rosea L'Her. Ex Aiton (yawarchonca), Triumfetta bogotensis DC. (Rata rata), Ficus pertusa L.f (matapalo), las zonas de las plantas empleadas son: corteza y hojas en cataplasma e infusión para el tratamiento de infecciones cutáneas. "Los extractos secos etanólicos al 70% de tres especies vegetales Urera baccifera (L) "Tinri tinri", Heliocarpus americanus (L) "Monte rata rata", y Verbena hispida "Jaya verbena" que se utilizan habitualmente para tratar infecciones cutáneas muestran actividad antibacteriana contra la cepa ATCC 25923 de Staphylococcus aureus." (21)

HUILLCA MENDIVIL, ZORAIDA; TAYRO MUÑOZ, CENAIDA. (2017).
 DESCRIPCIÓN Y EVALUACIÓN DE CONOCIMIENTOS Y UTILIDADES DE PLANTAS MEDICINALES EN DOS COMUNIDADES NATIVAS (SHIMAA Y CHAKOPISHIATO), DEL DISTRITO DE ECHARATI - LA CONVENCIÓN.
 UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO. (22)

Objetivos: Se evaluó el uso de plantas medicinales y el conocimiento de las mismas en dos aldeas nativas (Shimaa y Chakopishiato) así como en el Centro Comunitario Kepashiato en el Distrito de Echarati. Construir una lista tentativa de las plantas medicinales halladas en las comunidades nativas de Shimaa, Chakopishiato y Kepashiato. Contar el número de especies medicinales que hay en cada familia. - Enumerar las especies medicinales más populares y utilizadas en la zona de investigación. **Metodología:** La investigación se desarrolló en dos fases: exploratoria y descriptiva. La recopilación de datos y la aplicación de encuestas a la muestra de población de 89 individuos de los tres sectores marcaron el inicio de la etapa descriptiva. Con la ayuda de jefes y/o expertos locales, se identificaron y recogieron muestras de plantas de cada sector para la fase exploratoria. Estas muestras fueron luego prensadas, secadas, herborizadas y montadas antes de ser identificadas en el Herbario Vargas (CUZ) Resultados: En la etapa evaluación y descripción de los conocimientos y utilidades se descubrió que los antepasados de los sectores estudiados transmitían conocimientos en su gran mayoría. Siendo Chakopishiato quien reporta la transmisión de conocimientos más completa, seguido de Shimaa con 91% y Kepashiato con 53%. En cuanto a los métodos de preparación, dominan las infusiones con un 42%, seguidas de la creación de cataplasmas y la cocción, que alcanzan un 19% cada una. En los lugares de investigación existe información sobre numerosas enfermedades y/o situaciones que pueden tratarse con plantas medicinales. Las inflamaciones internas son las más tratadas, seguidas de las inflamaciones de los ovarios de la mujer. Se pudo establecer y constatar que la mayoría de los lugareños, 63%, atribuyen mayor utilidad a las hojas de las especies medicinales, seguidas por el tallo, 28%. La zona de intervención contenía un total de 67 especies medicinales, que se identificaron por sus nombres comunes y/o locales antes de asignarles sus correspondientes nombres científicos. Se identificaron 31 familias al desglosar el número de especies medicinales por familia; la familia Asteraceae es la que más especies tiene, con 11, seguida de las familias Malvaceae y Euphorbiaceae, con 5 cada una. De las 67 especies descubiertas y registradas como existentes en la zona de intervención, la identificación de las especies más conocidas y utilizadas arrojó las diez especies medicinales siguientes: Ayahuasca, sangre de grado, uña de gato, guayaba blanca, ojé, sagra mascara, chuchuhuasa, moco moco, lengua de perro y rata rata. (22)

2.3. Estado de la Cuestión

A nivel internacional, la composición multicultural y multiétnica de las naciones latinoamericanas se ha acentuado en las últimas décadas, y esto se refleja en la variedad de sus sistemas médicos existentes. La medicina indígena, el autocuidado o medicina de casa y otras opciones terapéuticas no tradicionales tales como la acupuntura y la homeopatía son cada vez más utilizadas, dependiendo de los distintos factores sociales, a pesar de la hegemonía de la medicina occidental en cuanto a políticas y programas. (23)

Se cree que en la costa, sierra y selva peruanas se recurren con mayor frecuencia al uso de una gran cantidad de plantas con propiedades curativas, solucionando o complementando, los problemas de salud, ya que el alcance a los medicamentos de farmacia en estos tiempos es difícil o imposible debido a sus altos

precios, siendo los habitantes originarios de estas regiones del Perú, herederos de grandes conocimientos trasmitidos a través de muchas generaciones. (17)

En el Perú la efectividad de la medicina herbolaria en la provincia de Trujillo, alcanzó el 100%; dado que "curó" un 63.5% de las enfermedades referidas por la población y generó alivio de las 36.5% enfermedades restantes; no mostrándose ningún reporte de empeoramiento por su consumo. (4)

En la región Cusco se han desarrollado investigaciones en el mismo sentido en diferentes localidades, donde la información es variada, sin embargo en los caseríos del poblado Echarati no existen estudios etnobotánicos, etnofarmacológicos que contengan información sobre el análisis fitoquímico de las plantas medicinales más usadas en afecciones prevalentes preliminares, de manera que esto va contribuir a la preservación, documentación y base para investigación de moléculas bioactivas de interés farmacológico.

2.4. Bases Teórico Científicas

2.4.1. El Hombre Amazónico: Su Cosmovisión, relación con la ecología y tecnologías de conservación de su medio ambiente.

"Las poblaciones amazónicas tienen una mirada diferente, los modelos de usos de sus recursos naturales son muy variados y obedecen esencialmente a tres formas de actuar: No destruir los ecosistemas, explotación de los ecosistemas originales y su sustitución, e intermedios con cierta alteración del ecosistema original." (24) "Las prácticas y expresiones culturales de las comunidades nativas son un reflejo de cómo gestionan el medio ambiente. El uso equilibrado de sus recursos naturales

se refleja en mitos, ritos, danzas, folclore, cuentos y filosofía religiosa; estas manifestaciones suelen transmitirse de generación en generación." (24)

"Por otro lado, las poblaciones mestizas y urbanas que viven en la región amazónica violan este equilibrio entre el ser humano y el medio ambiente al utilizar los recursos naturales de forma descuidada. Sus ideas sobre la gestión de los recursos se basan en técnicas que heredaron de sus predecesores andinos o costeños, y gestionan los recursos de una forma global y expansiva que los hace insostenibles para las generaciones futuras." (24)

El mundo para los pueblos amazónicos se basa en la tierra y la selva desde una visión holística o totalizadora. Cuando las personas conceptualizan el mundo que les rodea en este entorno, los elementos bióticos y abióticos desempeñan un papel fundamental. Como resultado, ríos, lagunas, animales, plantas, montañas y cascadas se materializan y adquieren vida propia a través de tradiciones, mitos, leyendas y sus creencias religiosas. Con frecuencia, estos elementos se transforman en dioses y espíritus. (24)

Según esta teoría, la naturaleza y la humanidad cohabitan en una relación estrecha y armoniosa en la que se crean relaciones de equilibrio que, con frecuencia, se traducen en la preservación y sostenibilidad de los recursos ecológicos. (24)

En consecuencia, según la filosofía amazónica, el espacio es ilimitado y no pertenece a nadie porque sus partes constituyentes son independientes y están supervisadas por un espíritu guardián que vela por su no explotación. (24)

En la Amazonia, el hombre ha coexistido pacíficamente con su entorno. Desde el principio, el hombre amazónico ha dependido de los recursos del ecosistema para prosperar en un entorno que suele ser duro y desafiante. Del ecosistema ha tomado todo lo que necesita para alimentarse, protegerse, comunicarse, etc. (24)

Por ello, los hombres de esta zona han creado un entorno natural que sirve de lugar de adoración y culto a determinados aspectos ecológicos, lo que (24) permite preservar aquellos elementos que son necesarios para la supervivencia.

Esta idea armoniosa de preservación y sostenibilidad está siendo perturbada por la globalización del pensamiento occidental. Frente a la razón original desarrollada a lo largo de milenios, en la que la íntima interacción entre la gente y su ecología es el factor determinante de la supervivencia de la cultura y ecología, los preceptos occidentales son más instrumentalistas y utilitaristas. (24)

2.4.2. Medicina Tradicional Alternativa

"Es la culminación de todos los saberes teóricos, técnicas y prácticas basadas en teorías, experiencias y creencias propias de diversas culturas, puedan o no racionalizarse. Se utiliza para preservar y mantener la salud, así como para diagnosticar y tratar enfermedades, y se basa netamente en la observación y la experimentación se transmite oralmente o por manuscrito de padres a hijos" (25)

"La medicina tradicional engloba entonces todas las prácticas y rituales usados en diferentes zonas geográficas por diferentes etnias o grupos sociales para

sanar sus afecciones corporales y que se transmiten a través de los tiempos a sucesivas generaciones." (25)

2.4.3. Etnobotánica

La etnobotánica guarda y revaloriza la historia de las plantas en las comunidades a lo largo del tiempo y del lugar. Este vínculo entre la sociedad y la planta siempre está cambiando debido a los acontecimientos sociales, ideológicos, políticos y económicos de la planta productora de biomasa. Esta visión holística de las interacciones de los pueblos con los recursos vegetales significa que no se les ve como individuos aislados, sino como partes de una matriz que incluye aspectos ecológicos, fenológicos, reproductivos y fitogeográficos (regionales), así como taxonómicos (sistema de clasificación nomenclatura) V aspectos antropocéntricos. Al mismo tiempo, incorpora aspectos socioculturales como la religión, las costumbres, las creencias, las fiestas, las mitologías. (26)

"La etnobotánica se define como el estudio de las relaciones reciprocas entre el hombre y la vegetación." (27)

Se considera entonces que es una rama de la ciencia que estudia el uso de los recursos naturales por parte de los pueblos, tanto nativos como aquellas comunidades campesinas colonizadoras y residentes en una región o zona por varias generaciones.

2.4.4. Plantas Medicinales

Son todas aquellas especies vegetales que poseen variados principios activos que, utilizados en la dosis adecuada, tienen un efecto beneficioso sobre las

enfermedades humanas. Una planta medicinal puede utilizarse para curar diversas enfermedades, ya que posee múltiples principios activos. Existen numerosas formas de consumir estos principios activos, como infusiones, comprimidos, etc. (28)

2.4.4.1 Recolección, Desecación y Conservación de las Plantas Medicinales. Recolección

La recolección es un paso crucial en el cultivo de plantas medicinales, ya que afecta en gran medida a la calidad del producto final. El momento y el método más prácticos deben decidirse de antemano. El mayor contenido de principios activos es el principal aspecto que se tiene en cuenta a la hora de determinar el mejor momento para la recolección, aunque ocasionalmente también puede ser necesario tener en cuenta otros factores. (28)

Para la recolección se tomarán los siguientes criterios:

Donde recolectar: El lugar donde suele desarrollarse una planta es un factor fundamental a tener en cuenta. Pueden vivir perfectamente en diversos hábitats, pero su crecimiento y desarrollo no serán los mismos, y su rendimiento será significativamente menor. Viven donde las condiciones ambientales son mejores para ellas. Los cultivos industriales son una excepción, ya que se pueden añadir al suelo fertilizantes específicos para aumentar la productividad de determinadas sustancias o se pueden modificar genéticamente los cultivos para potenciar la síntesis del producto deseado. (28)

Cuanto recolectar: Calcular la cantidad que necesitamos es crucial; no tiene por qué ser la misma que la que podemos encontrar. No debemos coger plantas

que puedan acabar en la basura, ya que valoramos la naturaleza. Hasta nuestra próxima salida al campo, limitaremos nuestra recogida al mínimo necesario. Nunca debemos utilizar más de lo que pretendemos, ya que, incluso en los entornos ideales para la conservación, las malas hierbas necesitan ser replantadas cada temporada. (29)

Cuando recolectar:

Además de la fecha, también hay que elegir la hora del día y el tiempo. Ser paciente es el primer paso, seguido de elegir la estación y fijar la fecha lo antes posible en la temporada de recolección por si hay que cancelarla y cambiar la salida al campo a otro día. Es importante elegir un día seco con sol radiante, que no llueva el día anterior e, idealmente, que no llueva durante muchos días antes para evitar que las plantas se pudran. Esto se debe a que los ingredientes activos están mucho más concentrados cuando no hay agua. El periodo, ya sea temprano por la mañana o al atardecer. (28)

Normalmente, las raíces se extraen en otoño o primavera, cuando no hay periodo vegetativo. Los bulbos se recogen en otoño, cuando las semillas han madurado y acumulado sus principios activos. Cuando las hojas ya han perdido su vitalidad, a finales de otoño, se podan los tallos. Antes de la floración, cuando aparecen los primeros brotes, se recogen las hojas en su punto de máximo desarrollo. Al principio de su desarrollo, antes de que se abran los pétalos y se produzca la fecundación, se recortan las flores y las sumidades floridas. (28)

Los frutos deben recogerse cuando estén completamente maduros, pero antes de que empiecen a deteriorarse, ya sean carnosos o secos. En cambio, si el fruto se abre y suelta semillas, éstas pueden recogerse del suelo. Para recoger las semillas, sin embargo, hay que esperar a que el fruto esté completamente maduro y la planta empiece a marchitarse. Aunque conviene elegir árboles o arbustos de más de tres años para evitar daños, la corteza se puede quitar en cualquier época del año. (28)

Como recolectar: Utilice siempre tijeras de podar; nunca rompa las ramitas con las manos, ya que dañará la planta al romper los tejidos. Además, de nada servirá elegir el momento adecuado o un día soleado para evitar la humedad en las hojas si luego tenemos que mantener la planta en un ambiente húmedo. Deben prepararse bolsas diferentes para cada tipo de planta, y deben rechazarse las de plástico, ya que propician la formación de humedad que activa la putrefacción. Las plantas deben envolverse individualmente en bolsas de papel o en papel de periódico. También se puede utilizar una carpeta con muchos departamentos para separar unas plantas de otras manteniendo un grosor adecuado del papel de periódico. (29)

<u>Desecación</u>

Es el método más antiguo de conservación de medicamentos utilizado por el hombre. Consiste en eliminar el agua de la flora (deshidratación) sin modificar los principios activos del medicamento. Como los sistemas enzimáticos no se destruyen, las enzimas pueden volver a funcionar y modificar los componentes activos si se reproducen las condiciones adecuadas de humedad, temperatura, etc. Las plantas tienen enzimas que catalizan actividades metabólicas. Estos procesos, que incluyen procesos de síntesis y descomposición, están en equilibrio mientras la

planta está viva. Sin embargo, sólo las actividades catabólicas, como las hidrólisis, oxidaciones, polimerizaciones, racemizaciones, etc., pueden afectar a los principios activos cuando se corta la planta. (30)

El proceso más recomendable es el secado bajo sombra, en ambientes limpios y a temperaturas menores a 20 °C bien ventilado para evitar el crecimiento de bacterias y hongos. Se tomará los siguientes criterios:

- Las zonas duras de la planta como raíces, frutos y tallos deben lavarse, dejar secar al sol, trozarse y extenderse sobre una canasta o malla.
- Las plantas aromáticas no deben exponerse directamente al sol.
- Las ramas y hojas se recomienda colgarlas bajo sombra atadas en manojos.
- "Las flores se extienden sobre una canasta plana o malla."
 Además:
- En ningún caso se pondrán dos plantas distintas en contacto.
- Los órganos carnosos pueden secarse en una estufa sin superar los 40 °C de temperatura.

La desecación elimina el agua, que constituye alrededor del 80% del peso de la planta fresca. Cuando las hojas dejan de estar húmedas al tacto, tienen una sustancia dura o se parten al doblarlas, la desecación se ha completado. Dependiendo del tipo de planta, el proceso dura un tiempo diferente. Por lo general, una semana es suficiente, aunque en circunstancias excepcionales pueden necesitarse hasta 15 días. No hay inconvenientes en prolongar el periodo de desecación, solo que cuanto más expuestas están las plantas al aire libre, más

polvo acumularán. Coloque una planta dentro de una bolsa de plástico transparente, ciérrela herméticamente y espere dos días para ver si está totalmente seca. Si aún contiene agua, se condensará en el plástico y se hará visible al ojo humano en forma de pequeñas gotas. (30)

Conservación y Almacenamiento

La recolección, el lavado y el secado cuidadosos de las plantas son esenciales para su conservación y almacenamiento. Las plantas secas pueden resultar dañadas por diversos elementos externos, como el polvo, el calor, la humedad, las bacterias, los insectos y los roedores. (30)

También se pueden utilizar bolsas de papel para el almacenamiento, aunque son preferibles los recipientes herméticos con tapas de cristal oscuro para evitar el cambio de color y el deterioro de los compuestos medicinales por la luz. Las plantas muy higroscópicas o sus partes, como las flores, deben mantenerse fuera del aire y alejadas de la humedad en recipientes herméticamente cerrados.

Los objetivos del almacenamiento del material seco son:

Protección de factores físico químicos causantes del deterioro. Éstos incluyen humedad, luz, calor, aire y contaminantes tóxicos tales como metales pesados.

Protección contra factores biológicos como bacterias, hongos, insectos y roedores.

La humedad favorece el crecimiento de microorganismos.

- Las enzimas vegetales son activas cuando el material contiene 8 al 10% o más de humedad.
- El aire facilita cambios oxidativos.
- La luz causa foto-oxidaciones y acelera algunos cambios químicos.
- El calor: la proporción de reacciones químicas se incrementa con el aumento de temperatura.
- Los contaminantes pueden causar o acelerar el deterioro del material almacenado.

Las plantas deben etiquetarse adecuadamente una vez embaladas. Debe tener en cuenta el nombre común, el nombre técnico, la fecha de recolección y la ubicación en cada caso. Tome nota de las características de cada planta y de los métodos de preparación. (13)

2.4.5. Etnofarmacología

Dado que incluye observaciones de campo, descripciones de la manera de preparar los remedios, identificación botánica de las muestras vegetales, fitoquímica, estudios cruciales para descubrir los componentes existentes en las plantas, e investigaciones farmacológicas, la etnofarmacología es un campo de estudio interdisciplinar. (31)

En sentido inverso a la etnobotánica, que salva información sobre los usos tradicionales de una variedad biológica, la etnofarmacología identifica el uso de los recursos naturales en la medicina tradicional y popular. (31)

Bruhn y Holmstedt describieron la etnofarmacología como el estudio científico multidisciplinar de las sustancias biológicamente activas que han sido utilizadas o conocidas por el hombre de forma tradicional. La definición básica de la etnofarmacología es el uso de técnicas de aislamiento químico para buscar las sustancias activas (metabolitos) que el ser humano utiliza en plantas u otras especies. (31)

Consideraciones para la realización de estudios etnofarmacológicos

- Determinar la comunidad étnica (colono o nativo), años de residencia en la zona de estudio.
- Reunir datos sobre la zona (geografía, ecología) y sobre el grupo humano estudiado (economía, sociedad, cultura)
- Agrupar un equipo interdisciplinario (biólogo, agrónomo, sociólogos o antropólogos, farmacéuticos, médicos, etc.
- Visitar el campo de trabajo y probar las metodologías a usar.
- Colectar plantas para determinar su taxonomía.
- Contribuir con muestras en el Herbario.
- Identificamos las partes de las plantas utilizadas y las condiciones en las que se usan.
- Conservar con precisión la información sobre los síntomas de la enfermedad, la preparación y la administración de los medicamentos.
- Determinar la procedencia de las plantas de acuerdo a su hábitat (bosque húmedo, bosque seco, cultivada, etc.)

- Averigüe qué se sabe sobre la abundancia relativa de la planta, dónde se distribuye y dónde es más frecuente.
- Obtenga información sobre los conocimientos orientados a la protección y domesticación de la planta.
- Identificar cuándo, cómo y quienes recolectan las plantas medicinales, averiguando si existe comercialización. (31)

2.4.6. Farmacognosia

Según su etimología, la palabra farmacognosia significa "conocimiento de los medicamentos" y deriva de las palabras griegas pharmakon (remedio) y gnosis (conocimiento). La farmacognosia es una rama de la farmacología que se centra en la comprensión de los ingredientes de origen biológico que los farmacéuticos y la industria farmacéutica utilizan para fabricar medicamentos. (31)

El Consejo de las Comunidades Europeas define la farmacognosia como el "estudio de la composición y los efectos de los principios activos y las sustancias naturales de origen vegetal y animal". Se denominan medicamentos.

El estudio de la composición química y la naturaleza de las sustancias activas, las pruebas para caracterizarlas y evaluarlas, las investigaciones necesarias para determinar su actividad farmacológica y, en consecuencia, sus aplicaciones primarias, también se incluyen en el campo de la farmacognosia. (31)

2.4.6.1. Droga

El término "medicamento" puede referirse a una sustancia o preparado medicinal con efecto estimulante, depresor o narcótico, siendo esta última definición la más común, según el Diccionario de la Real Academia de la Lengua Española. La Farmacognosia lo define como "toda materia prima biológica de origen biológico" (reino vegetal o animal) que ayuda directa o indirectamente al farmacéutico o a la industria farmacéutica en la producción de medicamentos. (31)

2.4.6.2. Principio Activo

Es un "material puro que es el principal responsable de las acciones y efectos farmacológicos del medicamento y, por tanto, de su aplicación terapéutica, pudiendo servir para la preparación de medicamentos".

La mayoría de los principios activos pueden encontrarse tanto en plantas frescas como secas, ya que suelen ser metabolitos secundarios, que suelen ser sustancias relativamente estables. Mientras que algunos principios activos tienen estructuras químicas claramente definidas, otros se ocultan en combinaciones complicadas, lo que dificulta el aislamiento del principio activo. Muchos aceites esenciales pertenecen a esta última categoría. (32)

2.4.6.3. Metabolito Primario

Los metabolitos primarios son los componentes activos del metabolismo primario o general de la planta. Están presentes en todas las plantas y desempeñan un papel clave en su crecimiento al producir cosas como energía, morfogénesis y reproducción. Se consideran metabolitos primarios las bases nitrogenadas, los ácidos grasos, los aminoácidos y sus subproductos, los ácidos nucleicos, los lípidos y las proteínas. La mayoría de ellos no son útiles como medicamentos. (32)

2.4.6.4. Metabolito Secundario

Los metabolitos secundarios son los componentes activos del metabolismo secundario de las plantas. Aunque no se cree que sean necesarios para la supervivencia de la planta, pueden ser vitales para el buen funcionamiento de los procesos biológicos. Son sin duda las sustancias de mayor interés farmacológico, por lo que se consideran los principios activos de los medicamentos. Una de las tres grandes ramas produce principalmente la mayor parte de las sustancias químicas de interés farmacognóstico: a) Síntesis de compuestos aromáticos a través de los métodos del ácido sikímico y del poliacetato. b) La vía del ácido mevalónico que da lugar a los terpenoides. c) Vías para el metabolismo del nitrógeno que, principalmente a partir de aminoácidos, dan lugar a la síntesis de alcaloides. d) Vías para el metabolismo del nitrógeno que, principalmente a partir de aminoácidos, dan lugar a la síntesis de alcaloides. e) Vías para el metabolismo del nitrógeno, principalmente a partir de aminoácidos. (32)

2.4.7. Fitoquímica

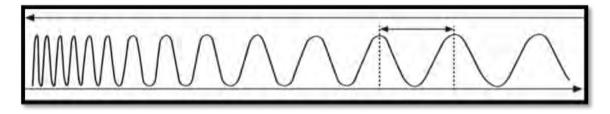
El estudio de diversos compuestos orgánicos producidos y acumulados por las plantas, su separación, composición química, asimilación y transformación, dispersión natural y propiedades orgánicas de estas llamadas "drogas vegetales" que pueden tratar o aliviar dolencias, se conoce como fitoquímica. Basándose en la identificación de éstos con disolventes adecuados y en el uso de pruebas de tinción, se han desarrollado varias técnicas para la detección preliminar de los diversos constituyentes químicos de las plantas.

Un análisis fitoquímico debe comprender cuatro etapas bien definidas:

- -Recolección y clasificación botánica de las especies en estudio.
- -Extracción, separado y purificado de constituyentes químicos.
- -Determinación estructural.
- -Ensayos biológicos y farmacológicos. (33)

2.4.8. Análisis Fitoquímico Cualitativo

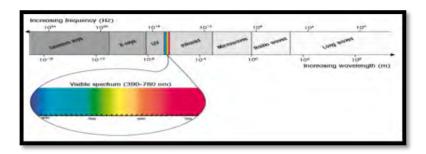
El análisis fitoquímico cualitativo consiste en la identificación y aislamiento de los componentes químicos de una especie vegetal, las cuales se denominan metabolitos primarios y secundarios y a los cuales se les responsabiliza de producir diversos efectos en el organismo humano y animal.


Además del análisis químico, se utilizan métodos físicos para caracterizar tanto sustancias puras como mezclas. Junto con otros métodos como la determinación del punto de fusión, el índice de refracción y la densidad, la espectroscopia óptica en el rango de luz visible y ultravioleta (UV/VIS) se utiliza ampliamente en casi todos los segmentos del mercado y lugares de trabajo, como la investigación, la producción y el control de calidad para la clasificación y el estudio de sustancias. La base de la espectroscopia UV/VIS es la capacidad de la muestra para absorber la luz. La pureza de la muestra, por ejemplo, puede determinarse midiendo la cantidad y la longitud de onda de la luz absorbida por la muestra. Además, como la cantidad de luz absorbida es proporcional al volumen de la muestra, la espectroscopia óptica permite un examen cuantitativo. (34)

2.4.9. Métodos Espectrofotométricos: Espectrofotometría UV-Visible

La interacción de la luz y la materia es la base de la espectroscopia óptica. Los rayos de luz pueden ser absorbidos por un elemento cuando inciden sobre él; más concretamente, uno o varios de los componentes de la luz (es decir, sus matices) son particularmente absorbidos. Los colores que los objetos no absorben se reflejan. Los ojos detectan entonces la luz reflejada.

Desde el punto de vista físico, la luz es un tipo de energía que se desplaza rápidamente por el espacio. Más exactamente, se considera que la luz es energía radiante que viaja por el espacio como una onda electromagnética. En función del tiempo, la energía luminosa oscila periódicamente entre un mínimo y un máximo, como una onda. La longitud de onda, medida en nanómetros (nm), es la separación entre los dos máximos o mínimos de la onda electromagnética, respectivamente. (34)

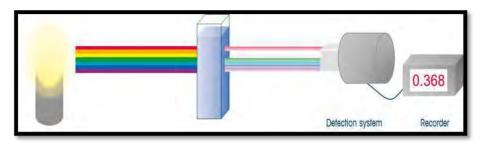

Figura 1. Cuando la longitud de onda de una onda electromagnética disminuye e invierte su dirección, su energía aumenta.

La luz verde posee una longitud de onda de 520 nm, pero la luz roja adquiere una longitud de onda de 660 nm. Cada tonalidad tiene una longitud de onda distinta. Por ende, cada uno de los compuestos de la luz tiene una longitud de onda distinta. Un espectro es el conjunto de todos los elementos, o todas las longitudes de onda. Un segmento del espectro muestra con más detalle la dispersión de la energía

fulgente. El tramo espectral de la luz visible, por ejemplo, abarca desde unos 390 nm hasta unos 780 nm. (34)

Figura 2. Sólo una pequeña parte de la longitud total del espectro electromagnético está representada por el espectro visible (390-780 nm).

Se debe considerar que la energía de las ondas electromagnéticas es inversamente proporcional a su longitud de onda: a mayor energía, menor longitud de onda. Por ejemplo, la luz violeta tiene un nivel de energía más alto que la luz roja porque tiene una longitud de onda más corta, mientras que el rango infrarrojo posee una longitud de onda más largo que la luz visible y un rango de energía más bajo. (34)


La absorción de la luz como herramienta analítica.

La química analítica puede utilizar la absorción de luz para caracterizar y cuantificar diversos compuestos. Un método basado en la absorción de luz por una sustancia química desconocida o una muestra desconocida es la espectroscopia UV/VIS. En este caso, la sustancia de estudio se ilumina con rayos electromagnéticos de varias longitudes de onda en el rango visible (VIS, o los distintos matices) y en niveles cercanos, como la sección ultravioleta (UV) e infrarroja inferior (IR cercano) del espectro. La cantidad de absorción de luz varía en función de la sustancia. El espectro UV/VIS de la muestra se obtiene registrando

la luz transmitida, o la luz residual, en función de la longitud de onda utilizando un detector adecuado. Dado que cada sustancia absorbe la luz de forma diferente, existe una relación especial y distinta por este motivo. (34)

En una cubeta, un aparato de espectrofotometría UV/VIS detecta la fuerza de la luz cuando pasa por una solución de la muestra y la compara con la potencia de la luz antes de la muestra. Los elementos principales de un espectrofotómetro UV/VIS son: un porta muestras, la fuente de luz, una herramienta de dispersión (como un monocromador) que sirve para disgregar las diferentes longitudes de onda de la luz y finalmente un detector. (34)

Figura 3. Fundamentos de medida en espectroscopia UV/VIS

Los siguientes pasos constituyen la base del funcionamiento de un espectrofotómetro:

Blanco (medición de la cantidad de luz que atraviesa la solución):

- 1. Un cubo es un recipiente de absorción apropiado, transparente y no absorbente, en el que se introduce el disolvente (como agua o alcohol).
- 2.. El haz de luz de la fuente luminosa atraviesa la cubeta llena de disolvente.
- 3. En seguida, un detector situado a continuación de la cubeta de disolvente mide y registra la intensidad de la luz transmitida a distintas longitudes de onda.

A esto se le llama, blanco, el cual es necesario para la medición de la muestra.

Determinación De La Muestra:

- 1. El disolvente se utiliza para disolver una muestra antes de introducirla en la cubeta.
- 2.. El haz de luz de la fuente luminosa atraviesa la cubeta que contiene la muestra.
- 3. Las moléculas de la muestra en solución absorben parcialmente la luz cuando ésta atraviesa la cubeta.
- 4. La luz transmitida es medida por el detector.
- 5. Dividiendo la intensidad transmitida de la muestra por los valores equivalentes del blanco, es posible calcular la variación de la intensidad luminosa a distintas longitudes de onda. Por último, un registrador almacena esta relación. (34)

Transmitancia y absorbancia

El detector de un aparato de espectrofotometría UV/VIS controla los niveles de la luz después de que haya atravesado la solución de la muestra. La intensidad transmitida, o (I), es el porcentaje de luz que ha detectado el detector. Debido, por ejemplo, a la absorción de la luz en determinadas longitudes de onda, la solución de muestra atenúa la intensidad de la luz transmitida. Como resultado, su número es menor que la intensidad inicial de la fuente de luz (Io). (Disminución de la luz causada por la absorción de las moléculas de la muestra en la solución). (34)

La relación entre las dos intensidades I / *Io* es definida como Transmitancia T, y su unidad es %. Transmitancia es la relación entre la intensidad transmitida I y la intensidad original *Io*.

El principal valor determinado por la espectroscopia UV/VIS es la transmitancia.

La absorbancia A, se define como el logaritmo negativo de la Transmitancia y representa un resultado adicional muy usado durante el registro de espectros UV/VIS.

$$A = -log(T)$$

No existe una medida para la absorbancia A. Dicho de otra manera, es un valor adimensional. En tanto, se suele indicar con la letra "A" o con la abreviatura AU de unidades de absorbancia.

Ley de Lambert - Beer

La intensidad de la luz disminuye proporcionalmente a la concentración de la muestra al atravesar una cubeta transparente que contiene una solución del objeto de estudio. En otras palabras, una solución concentrada de la muestra absorberá más luz. Debe tomarse en cuenta que, la mitigación es proporcional al tamaño de la cubeta; las cubetas más amplias absorberán más luz. Tanto la longitud de la cubeta como la concentración de la muestra influyen en la atenuación de la luz.

Expresando la absorbancia A en función de la concentración y de la longitud de la cubeta, se pueden tener los dos componentes. Concretamente, la absorbancia

A se determina multiplicando la concentración c, la longitud de la ruta d y el coeficiente de extinción ϵ .

$$A = \epsilon.c.d$$

A esto se le llama la ley de Lambert-Beer, siendo:

- 1. La concentración de la muestra c se expresa en mol / L o g / mL.
- 2. La longitud del recorrido d en la cubeta se representa en cm.
- 3. ε (épsilon) viene a ser la constante especifica de la muestra y se define como el coeficiente de extinción, esta explica cuánto de la muestra es absorbente a una determinada longitud de onda. (Representada en ml / (cm*g) o en L / (cm*mol)

La concentración de la muestra puede calcularse utilizando el valor de absorbancia obtenido y la ley de Lambert-Beer. La concentración c puede determinarse a partir de la absorbancia A de la siguiente manera si se conocen el coeficiente de extinción y la longitud de ruta d.

Siendo esta su expresión: $C = A / \epsilon.d.$ (34)

Tabla 1. Longitudes de onda donde absorben los diferentes grupos.

Longitud de Onda (nm)	Principios activos	Log. E	Coeficiente de Extinción (ε)	Referenc ia
	Flavonoides	4.0, 4.2,		1,4
200-270		4.6		
205-210	Saponinas*			1,4
205-225	ab Insaturadas		14,000- 5,000	3
	ciclohexanona			1
214-230	ciclopentanona		10,000	
217+/-5, 260-	Butenolidos			1,2
290			10,000-20,000; 30-50	
220;270-310;	Alcaloides: aporfina	3.8-4.2		2,4
225-230;280-	Quinolinas	4.5,3.5,3.		2,3,4
290		4		
230-240	Lignanos		8000	1
	Alcaloides			1,3
238;280;313-	tetrahidroisoquinolin	4.8,3.8,3.		
327	as, bencil	6		
240; 286-293	Protopinas			1,4
240-290,400-	Naftoquinonas			1,2
500			12,000-18,000; 500-5,000	
240-290; 380-	Benzoquinonas			1,2,4
400			12,000-2,000	
240-300,	Antraquinonas			1,2
300-350,400-			9,000-3,000;3,000-6,000;2,000-	
500			9,000	
245, 290-330	Furoquinolinas	4.7, 3.8		2,3

Fuente: Domínguez X., 1979; (2) Evans W., 1991; (3) Perkampus H., 1992; (4) Lock O., 1994

Tabla 2. Principios Activos y coeficiente de extinción

	Principios activos	Log. E	Coeficiente de Extinción (ε)	Referencia
245-270;309-413	Oxiaporfinas	4.1, 3.6, 3.8		3
250-300	Flavanonas			1
250-290 débil	Isoflavonas			1,3
257-265	Alcaloides de la piridina OH, Ciclohexano	3.4-4.2		2,3
260-280	Alcaloides (Fenilquilaminas)			2,4
278	Cumarinas		10500	1
280	leucoanticianidinas, Catequina			1,2,4
280-290	Lignanos		6000 – 8000	1
283	Ergosterol		11900	1
300-	Pentenolidos		5,000 - 10,000	3,2
310	Cumarinas		6000	1
330-375	Flavonas, flavonoles			1,2
370-410	Chalconas, auronas			1,4
500-530, 430- 440, 270-280	Antocianinas			1

Fuente: Domínguez X., 1979; (2) Evans W., 1991; (3) Perkampus H., 1992; (4) Lock O.,1994

2.5. Glosario De Términos

Alcaloides.

Se denomina así a los metabolitos secundarios de las especies vegetales que se producen por la vía del ácido shikímico en la vía del acetato. Son nitrogenados porque se producen a partir de un aminoácido. (34)

Biosíntesis.

Procedimiento por el que los reactantes básicos se transforman en compuestos químicos. En los seres vivos, la biosíntesis tiene lugar, normalmente, con la ayuda de enzimas. Es un proceso metabólico esencial. (35)

Caseríos.

Conjunto de casas en el campo que no constituyen un pueblo.

Decocción.

Preparado en el que se coloca una cantidad de plantas en una cacerola con agua fría y se lleva a ebullición a fuego lento durante un breve tiempo, para luego colar y beber. (32)

Emplasto.

Preparado pegajoso de plantas a base de resinas y grasas que se aplica en alguna zona del cuerpo. En general cualquier preparado farmacéutico de uso tópico, sólido, moldeable y adhesivo. (32)

Etnobotánica.

Se centra en la investigación de las interrelaciones entre las plantas y los seres humanos. Desde sus inicios, la etnobotánica se ha enfocado en los indígenas y las comunidades analfabetas debido a sesgos metodológicos y conceptuales.

Pero, se ha demostrado con frecuencia que los conocimientos y prácticas comunes sobre vegetales también pueden estudiarse en comunidades más complejas. (36)

Etnofarmacología.

Se describe como la investigación científica multidisciplinar de sustancias biológicamente activas que han sido utilizadas o descubiertas históricamente por el ser humano. (32)

Como ciencia organizada e independiente, enfoca el conocimiento de las plantas silvestres y cultivadas obteniendo de ellas los elementos relacionados con la medicina, su religión, su arte y sus creencias, describe los métodos autóctonos o tradicionales de la transformación y utilización de las plantas medicinales. Se centra en la investigación de las aplicaciones tradicionales de las plantas (así como de animales y minerales) como fármacos y, más ampliamente, como sustancias con actividad fisiológica. (35)

Extracto.

Evaporación de un jugo o solución vegetal que da un resultado una sustancia espesa. (32)

Flavonoide.

Los flavonoides son un grupo de compuestos naturales que se encuentran con frecuencia en las plantas y son biosintetizados en parte por la acetilcoenzima A y el ácido sikímico mediante la conversión de la malonilCoA en un anillo aromático. (32)

Hierba. (Yerba)

Cualquier planta pequeña y delicada que muere el mismo año, o como mucho al año siguiente, después de producir semillas. (32)

Infusión.

Bebida elaborada añadiendo hierbas aromáticas o frutas al agua hirviendo. Acción de extraer de las sustancias orgánicas las partes solubles en agua a una temperatura mayor que la del ambiente y menor que la del agua hirviendo. (5)

Medicina tradicional.

Cuando se trata de mantener y preservar de la salud, así como de prevenir, diagnosticar el tratamiento de las enfermedades el hombre recurre a todos los conocimientos teóricos heredados, a sus destrezas y a las prácticas que se fundamentan en teorías antiguas, convicciones y repeticiones intrínsecas a través del tiempo en diversas culturas, tengan o no explicación. A todo eso se denomina medicina tradicional. (5)

Medicina complementaria.

Se dice de la medicina "alternativa", "no convencional" o "popular", términos que se utilizan para referirse a muchos tipos de atención de salud no convencional que entrañan distintos grados de formación y eficacia (9).

Las expresiones "medicina complementaria" y "medicina alternativa" describen una amplia gama de procedimientos médicos que no están totalmente incorporados al sistema sanitario general ni forman parte de las costumbres o la medicina convencional de un país determinado. Estas expresiones se utilizan indistintamente para describir la medicina tradicional en varios países. (32)

Medicina tradicional y complementaria

Los términos "medicina tradicional" y "medicina complementaria" se combinan para referirse a una gama más amplia de productos, procedimientos y profesionales. (32)

Metabolito Primario

Es un subproducto del metabolismo general que se encuentra ampliamente distribuido en plantas y microorganismos. Ejemplos son los aminoácidos de proteínas comunes, nucleótidos, ácidos carboxílicos, lípidos y monosacáridos. (32)

Metabolito Secundario

Son productos del metabolismo especial y se biosintetizan a partir de los metabolitos primarios. Ejemplos: alcaloides, terpenoides, flavonoides. (32)

Plantas Cálidas

Tienen esta propiedad aquellas plantas que pueden curar enfermedades de origen fresco. Los alimentos cálidos (rocoto, cebolla, alcohol, etc.) causan enfermedades como la fiebre, dolor de cabeza, diarrea. Por lo cual deben mezclarse con alimentos frescos para poder "templarlos" y no causen problemas de salubridad. (32)

Plantas Frescas

Las plantas que tienen esta propiedad pueden curar enfermedades frecuentes de altura, algunos alimentos como las verduras y carnes tienen esta denominación y causan empacho o mala digestión. (32)

Plantas medicinales

Se refiere a los vegetales que poseen uno o varios principios activos que, utilizados en la cantidad adecuada, pueden tratar enfermedades tanto humanas como animales. Una planta medicinal puede utilizarse para curar diversas dolencias o enfermedades porque tiene múltiples principios activos. (32)

Principio Activo.

Se denomina principio activo a toda sustancia, que más allá de su procedencia química, vegetal, animal, humana o de otro tipo, se le adjudica una acción adecuada para ser un medicamento.

Los principios activos se utilizan desde la antigüedad y son las sustancias químicas que confieren a los medicamentos sus efectos farmacológicos. Antes de varios siglos, los componentes de los principios activos se extraían de las plantas, y muchos de ellos tenían sus estructuras descubiertas. Históricamente, se pensaba que los principios activos eran hierbas y otras sustancias naturales. Debido a la naturaleza de éstas, la actividad de un principio activo varía, pero siempre está correlacionada con la cantidad consumida o absorbida. (32)

Terpenos.

Sustancias aromáticas que son parte de la composición de esencias y resinas. (32)

CAPITULO III

MATERIALES Y MÉTODOS

3.1. Materiales

3.1.1. Materiales de Campo

- 1. Lápiz, lapiceros.
- 2. Cuaderno de notas
- 3. Ficha de encuestas.
- 4. Papel periódico.
- 5. Tijera podadora.
- 6. Cámara fotográfica
- 7. Etiquetas
- 8. Bolsas de papel
- 9. Cajas recolectoras.
- 10. Archivadores
- 11. Engrapador
- 12. Grapas

3.1.2. Materiales de Escritorio

- Papel Bond
- Computadora
- Impresora
- Libros de consulta especializada

3.1.3. Material de Laboratorio

- Termómetro
- Baguetas
- Gradillas
- Matraz Erlenmeyer de 50, 100, 200 y 500 ml
- Pipetas de vidrio graduadas

- Embudos de vidrio
- Vasos de precipitados de 50, 100, 250 y 600 ml
- Probetas de 10, 25, 50, 100 y 250 ml
- Morteros
- Picetas
- Goteros de vidrio
- Pinzas de madera
- Pera de decantación de 125 ml
- Luna de reloj
- Espátulas
- Crisoles
- Balones de vidrio de 150 ml

3.1.4. Equipos e Instrumentos

- Balanza analítica sensible al 0.001 gr, marca OHaus, modelo PA 313
- Baño isotérmico
- Cocina eléctrica
- Estufa
- Agitador magnético, marca Leica modelo MC08E
- Evaporador rotatorio, marca Ika modelo HB10D
- Espectrofotómetro UV visible marca Jenway modelo 6850

3.1.5. Material de Investigación

Plantas medicinales de la zona.

3.2. Diseño Metodológico

3.2.1. Tipo de Estudio

Este fue un estudio de tipo descriptivo, transversal y no experimental.

Descriptivo, porque se describió la utilización de las plantas medicinales por los pobladores de los caseríos del poblado de Echarati, y se identificó la presencia de metabolitos secundarios a través de un análisis fitoquímico utilizando espectrofotometría UV-Visible,

Transversal, porque los datos que se recolectaron de cada persona representaron un momento en el tiempo.

No experimental, puesto que no se manipularon las variables.

3.2.2. Definición Operacional de Variables

Se detalla en las Tablas Nro. 03 y 04

Tabla 3. Definición operacional de variables

VARIABLES	DEFINICIÓN	NATURALEZA	FORMA DE		INSTRUMENTO DE	INDICADOR	EXPRESIÓN FINA	\L
IMPLICADAS	CONCEPTUAL		MEDICIÓN	ESCALA	MEDICIÓN			
Estudio etnobotánico de	Es el conjunto de saberes, valores,					Uso de plantas medicinales por	Alimenticio	
plantas medicinales en	creencias y prácticas					los pobladores en cinco caseríos	Medicinal	
cinco caseríos Echarati.	concebidos a partir de la experiencia de	Cualitativa	Directa	Nominal	inal Entrevista	alrededor del	Maderable	
Echaran.	adaptación al entorno local a lo				poblado Echarati.	Artesanal		
	largo del tiempo,					Ornamental		
	que son compartidos y						Mágico-Religios	0
	valorados por una comunidad y transmitidos por generaciones. (32)						Otros	
Estudio	La					Forma de	Infusión	
etnofarmacoló- gico de plantas	Etnofarmacología es una ciencia inter disciplinaria, abarca las observaciones					preparación de las plantas	Cocimiento	
medicinales		Cualitativa	ualitativa Directa	Nominal	Entrevista	medicinales.	Emplasto	
	en campo, así como también la						Extracción del z	umo
	descripción del uso y preparación de los	ión de los		Baños				
	remedios, la determinación						Lavativas	
	botánica del material obtenido,					Frecuencia de	Una vez al día	
	también engloba los estudios					uso de las plantas medicinales.	Dos veces al día	a
	fitoquímicos para aislar los					modeliales.	Tres veces al dí	а
	compuestos presentes en las					Parte usada de la	Hojas	Tallos
	plantas, y los estudios					planta medicinal.	Raíz	Flores
	farmacológicos. (33)						Frutos Semillas	

							Corteza	Toda
							Otras partes	
							Antitusígeno	
							Antidiarreico	
							Analgésico	
							Antiparasitario	
						Uso terapéutico de las plantas	Antiespasmódico	
						medicinales.	Otros	
						Afecciones Prevalentes	Listado de las afecc prevalentes según reporte del centro salud de Echara Cusco.2022 (37)	n el o de
Análisis fitoquímico cualitativo de las plantas medicinales	La fitoquímica busca el aislamiento, análisis, purificación, elucidación de las diversas sustancias producidas por los vegetales. (34)	Cuantitativa	Indirecta	Nominal	Espectrofotómetro UV Visible	Metabolitos presentes en el extracto.	Lectura de bandas absorción de la luz registra espectrofotómetro.	

 Tabla
 4. Variables no Implicadas - Intervinientes

De las	DEFINICIÓN	NATURALEZA	FORMA DE		INSTRUMENTO	EXPRESIÓN FINAL
personas	CONCEPTUAL		MEDICIÓN	ESCALA	DE MEDICIÓN	
entrevistadas						
Edad	Tiempo que ha	Cuantitativa	Directa	De	Entrevista	Adulto (30-59)
	vivido una			intervalo		Adulto mayor (60 – a
	persona. (31)					más)
Grado de	Nivel de	Cuantitativa	Directa	Nominal	Entrevista	Analfabeto
Instrucción	conocimiento					Primaria incompleta
	que tiene un					Primaria completa
	individuo. (31)					Secundaria incompleta
						Secundaria completa
						Superior
Ocupación	Clase de trabajo	Cualitativa	Directa	Nominal	Entrevista	Agricultor(a)
	o actividad que					Ama de casa
	realiza una					Obrero(a)
	persona. (37)					

3.2.3. Población

Los cinco caseríos alrededor del poblado Echarati cuentan con una población de 405 habitantes (Calcapampa 85, Aputinya 88, Miraflores 82, Puente Echarati 42, y Pampa Echarati 108) de los cuales solo 76 personas obedecen a los criterios de inclusión. (38)

Muestra

En el presente estudio se aplicó el muestreo por conveniencia la cual es una técnica de muestreo no probabilístico y no aleatorio, según a la disponibilidad de las personas de formar parte de la muestra, en un intervalo de tiempo dado o cualquier otra especificación práctica de un elemento particular.

Se incluyó en la muestra a las personas que cumplían los criterios de inclusión de los cuales solo 76 personas obedecen a los criterios de inclusión.

3.2.4. Criterios De Inclusión y Exclusión para la Recolección de Datos.

3.2.4.1. Criterios de Inclusión

- Información de pobladores varones y mujeres mayores de 40 años.
- Información de pobladores que residan en la zona por más de 10 años.

3.2.4.2. Criterios de Exclusión

- Residentes que no tengan conocimiento sobre plantas medicinales del lugar.
- Moradores que no pertenecen al rango de edad establecido.

3.2.5. Técnicas e Instrumentos de Recolección de Datos

En este estudio etnobotánico y etnofarmacológico se realizó un flujo de información bilateral en base a la técnica de entrevista semi estructurada a pobladores de tres caseríos alrededor del poblado Echarati, en la que se recogieron

datos por medio de un conjunto de preguntas organizadas las cuales constituyeron nuestro instrumento. (Anexos 06 y 07)

Criterio de selección de las tres plantas medicinales.

 Nivel de uso significativo TRAMIL (UST). Para estimar el nivel de uso significativo para cada especie y verificar su aceptación cultural, se utilizó la metodología propuesta por Lionel Germosén - Robineau. (41)

Esta metodología, expresa que aquellos usos medicinales que son citados con una frecuencia superior o igual al 20%, por las personas encuestadas que usan plantas como primer recurso para un determinado problema de salud, pueden considerarse significativos desde el punto de vista de su aceptación cultural y, por lo tanto, merecen su evaluación y validación científica. El UST se calcula mediante la siguiente ecuación:

$$UST = \frac{Uso\ especie\ (s)}{Nis} x100;$$

Dónde: *Uso especie* (s) = número de citaciones para cada especie, y *Nis* = número de informantes encuestados.

Reemplazando la fórmula para todas las plantas medicinales mencionadas, dentro de las plantas medicinales más representativas y que cumplen con el criterio de significancia (frecuencia superior o igual al 20%) se hallaron los siguientes resultados: (Tabla 15)

Botoncillo (Ageratina scopulorum Wedd.) 37 / 76 x 100 = (Nivel de UST= 48,7%)

Piquipichana (Scoparia dulcis) 32 / 76 x 100 = (Nivel de UST= 42,1%)

Muyucaya (Solanum aloysio) 31 / 76 x 100 = (Nivel de UST= 40,8%)

Por lo tanto, estas tres plantas medicinales pueden considerarse significativas desde el punto de vista de su aceptación cultural y, por consiguiente, merecen su evaluación y validación científica.

3.3. Procedimiento

Se Dividió El Trabajo De Investigación En Cuatro Etapas:

Primera Etapa:

- 1. Búsqueda y obtención de datos oficiales:
 - a. INEI (INSTITUTO NACIONAL DE ESTADISTICA E INFORMATICA).
 Se buscó información oficial de la población estimada en los caseríos alrededor del poblado Echarati, distrito de Echarati y provincia de La Convención. (39) Esta etapa sirvió para verificar si existe datos estadísticos que nos lleven a determinar la muestra. No se encontró información sobre número de habitantes en los caseríos de estudio.
 - b. MINSA (MINISTERIO DE SALUD). Red de Salud Quillabamba. Se solicitó información oficial sobre número de atenciones primarias de salud en pobladores de los caseríos de Echarati. Se encontró Información oficial y datos estadísticos sobre enfermedades prevalentes en la zona entre el 2017 al 2022. (Anexo 03) Esta información correlacionada con el dato de las plantas más usadas nos ayudó a determinar cuáles serían las tres plantas elegidas para el estudio fitoquímico.
 - c. MDE. (MUNICIPALIDAD DISTRITAL DE ECHARATI) Se solicitó mapas oficiales del distrito (Anexo 04) y datos sobre la situación social de los caseríos en estudio. Servicios básicos. Catastro rural. Esta información nos sirvió para visitar cada hogar y obtener el número exacto de pobladores en nuestro estudio.

2. Se evaluó de los datos previamente obtenidos y se realizó el reconocimiento del área de investigación: accesos a viviendas, caminos, carreteras, etc. Verificación y recuento de la población estimada por medio de visitas censales a cada hogar.

Segunda etapa:

- 1. Trabajo de campo: Estudio Etnobotánico.
 - a. Se solicitó a la autoridad local (Teniente Gobernador) el consentimiento de la comunidad para realizar entrevistas a la población y recolectar muestras botánicas en el lugar. (Anexo 2) Solicitamos autorización al SERFOR (Servicio Nacional Forestal y de Fauna Silvestre) para recolección de muestras botánicas de flora silvestre con fines de investigación científica. (Anexo 1) En esta etapa se aplicó las técnicas y recomendaciones para la recolección, desecación y almacenamiento descritas. (28) (29)
 - b. Prueba de ensayo: Se realizó un ensayo con nuestras encuestas para verificar su aplicación correcta en campo. Se verificó que los instrumentos y materiales necesarios para la recolección de muestras botánicas funcionen correctamente.
 - c. Se visitó las viviendas familiares en los caseríos para la recolección de datos sobre plantas medicinales usando las entrevistas semi estructuradas establecidas (Anexo 6 y 7)
 - d. Se tabuló los datos obtenidos: se segmentó, se comparó y se relacionó con las diferentes enfermedades referidas en las

encuestas y los datos del MINSA a cerca de las enfermedades prevalentes en la zona. (Anexo 3) A partir de esto se escogió las tres plantas para el estudio fitoquímico cualitativo para lo cual se usó el Nivel de uso significativo TRAMIL (UST) descrito antes.

Tercera etapa:

- 1. Identificación Taxonómica.
 - a. Se envió las muestras botánicas rotuladas según técnicas y especificaciones al Herbario Vargas Cusco para su determinación.
 - b. Se clasificó y sistematizó en una tabla los resultados certificados de la identificación. (Anexo 5)

Cuarta etapa:

- 1. Análisis de Laboratorio.
 - a. Se realizó en el laboratorio de Farmacognosia y Productos Naturales de la Escuela Profesional de Farmacia y Bioquímica de la UNSAAC la marcha fitoquímica cualitativa de los extractos de las plantas más usadas en las enfermedades prevalentes de la zona de investigación, Botoncillo (*Ageratina scopulorum Wedd*.) Piquipichana (*Scoparia dulcis*), Muyucaya (*Solanum aloysio*). Para este procedimiento se utilizó la guía de prácticas de farmacognosia, en el capítulo referido a la determinación de metabolitos secundarios utilizando reacciones químicas específicas de caracterización, como la prueba de Benedict para azúcares reductores, y otros. (40)

- b. Se procedió al análisis espectrofotométrico UV visible de las muestras obtenidas para la búsqueda de metabolitos secundarios. Se usó el Espectrofotómetro UV visible marca Jenway modelo 6850 de la Escuela profesional de Farmacia y Bioquímica, UNSAAC.
- c. Se comparó y evaluó de los resultados obtenidos para la elaboración de las conclusiones del trabajo de investigación.

3.3.1. Flujograma de Procedimiento de Recolección de Datos para el Estudio de Investigación

PRIMERA ETAPA

Búsqueda de fuentes de información oficial y permisos

-INEI .SERFOR

-MINSA .COMUNIDAD

-MDE

Selección de datos obtenidos del area de trabajo.

Reconocimiento del lugar de investigación y su respectiva población.

SEGUNDA ETAPA:

Trabajo de campo: Encuesta a pobladores en estudio.

Identificación y evaluación de las plantas medicinales más usadas

CUARTA ETAPA:

Análisis de Laboratorio.

TERCERA ETAPA:

Estudio
Etnofarmacológico
Identificación científica
de muestras botánicas

Estudio Etnobotánico.

Recolección de muestras botánicas más usadas.

Se inició con el secado, triturado y macerado por extracción hidroalcoholica 70% de Botoncillo, Piquipichana, Muyucaya.

Se obtuvo en laboratorio el extracto seco por evaporación de las tres muestras.

Marcha fitoquímica cualitativa para determinar metabolíitos secundarios por reacciones químicas especiíficas de caracterización.

Evaluación y
comparación de los
resultados obtenidos
para la elaboración de las
conclusiones del trabajo
de investigación.

Identificación de espectros representativos de metabolitos secundarios similares para su comparación de rangos de longitud de onda

Análisis
espectrofotométrico UV del
extracto seco de las tres
plantas. Obteniendo sus
espectros de absorción.

Fuente: Elaboración propia

CAPITULO IV

ANALISIS Y DISCUSION DE RESULTADOS

4.1. Datos Generales:

Tabla 5. Edad de los pobladores encuestados.

Indicador	Población	Frecuencia	Porcentaje (%)
Adulto	30-59	21	27.63
Adulto mayor	60 a más	55	<mark>72.37</mark>
Total		76	100

Fuente: Encuesta Etnofarmacológica. (Anexo 6)

Análisis y discusión de resultados:

En la tabla N°5 se observa que el mayor porcentaje de personas encuestadas con conocimientos sobre la utilización de plantas medicinales fueron los adultos mayores (60 años a más) en un 72.37 %. Al realizar la comparación con la tesis de Rodríguez R. et. al (20). La población que mayoritariamente tienen conocimiento sobre plantas medicinales en las comunidades de Checacupe resultaron ser los pobladores que oscilaban en las edades entre 30-59 años. Resultados que nos indica que la edad no tiene relación con el conocimiento acerca de las plantas medicinales y la diferencia es por la cultura debido a que en la sierra la cultura tradicional andina abarca mucho más en todas las edades a diferencia de la selva.

Tabla 6. Género de los pobladores encuestados.

Genero	Frecuencia	Porcentaje (%)
Femenino	42	<mark>55.26</mark>
Masculino	34	44.74
Total	76	100.00

Análisis y discusión de resultados:

En el tabla N°6 del resultado de las encuestas, las mujeres fueron la población que mayormente utilizan y tienen conocimientos sobre las plantas, obteniendo datos similares en el estudio de Rodríguez R. et al. (20) en el cual se obtuvo como resultados que las mujeres tenían mayor riqueza de conocimiento sobre las plantas medicinales y esto era debido a la responsabilidad que asumen las mujeres en el cuidado de su familia, según mencionan en la entrevista.

Tabla 7. Lugar de nacimiento de los pobladores encuestados.

Lugar de Nacimiento	Frecuencia	Porcentaje
Abancay	3	3.95
Acomayo	1	1.32
Anta	1	1.32
Apurímac	2	2.63
Arequipa	1	1.32
Calca	2	2.63
Cotabambas	1	1.32
Cusco	5	6.58
Echarati	41	<mark>53.91</mark>
Huertapata	1	1.32
Laco-llavero	1	1.32
Maras	1	1.32
Paruro	2	2.63
Pomacanchi	1	1.32
Puno	1	1.32
Quillabamba	6	7.89
Sicuani	2	2.63
Tinta	1	1.32
Urubamba	3	3.95
Total	76	100

Análisis y discusión de resultados:

En la tabla 7 se puede observar que en mayor porcentaje significativamente de las personas encuestadas eran natural de Echarati (53.91%) Quillabamba (7.89%), Cusco (6.58%) y las demás ciudades en menores cantidades.

Tabla 8. Estado civil de los pobladores encuestados.

Estado Civil	Frecuencia	Porcentaje (%)
Casado	63	82.89
Conviviente	1	1.32
Divorciado	2	2.63
Soltero	7	9.21
Viudo	3	3.95
Total	76	100.00

Análisis y discusión de resultados:

En la tabla N°8. se puede observar que el 82.89 % del total de las personas encuestadas eran pobladores casados, 9.21% solteros y en menor porcentaje eran convivientes (1.32%).

Tabla 9. Grado de instrucción de los pobladores encuestados.

Frecuencia	Porcentaje (%)
16	21.05
6	7.89
22	<mark>28.95</mark>
15	19.74
10	13.16
7	9.21
76	100.00
	16 6 22 15 10 7

Análisis y discusión de resultados:

En la tabla N°9. se aprecia que el 28.95% de las personas entrevistadas tiene primaria incompleta, el 21.05 no posee grado de instrucción (analfabeto), el 19.74% tiene secundaria completa, 13.16% tiene secundaria incompleta, 9.21 tiene nivel superior y 7.85% tiene primaria completa por lo tanto según los resultados obtenidos podemos determinar que la riqueza de conocimiento sobre las plantas medicinales no depende del grado de instrucción que poseen debido a que en mayor porcentaje los pobladores no tienen un grado de instrucción superior.

4.2. Recolección de las plantas mencionadas para determinar su identidad científica a través del Herbario Vargas Cusco.

Tabla 10. Identificación taxonómica de plantas medicinales recolectadas.

Nro.	Nombre científico	Nombre(s) común(es)	Familia
1	Bixa orellana L.	Achiote	Bixaceae
2	Ageratina scopulorum (Wedd.)	<mark>Botoncillo</mark> / Boton Boton	Compositae
3	Theobroma cacao L.	Cacao	Malvaceae
4	Coffea arábica L.	Café	Rubiaceae
5	Dodonaea viscosa	Chaman / Chamana	Sapindaceae
6	Phyllanthus niruri	Chanca Piedra	Phyllanthaceae
7	Erythroxylum coca	Coca	Erythroxylaceae
8	Paspatum consuelatum	Cuchimuchu	Poaceae
9	Pseudadephantopus spiralis (Less) cronq	Cuchicara	Asteraceae
10	Stachys herrerae	Hierba De Cáncer	Lamiaceae
11	Mikania guaco	Huaco / Guaco	Asteraceae
12	Sida rhombifolia	Jucuchachupa / Ucuchachupa (Cola de Ratón)	Malvaceae
13	Niphidium crassifolium	Kala Kala, Q'alawala	Polypodiaceae
14	Urtica dioica subsp. holosericea (Nutt.)	Kisa Kisa	Urticaceae
15	Citrus medica L.	Limón	Rutaceae
16	Plantago major	Llantén	Plantaginaceae

17	Guazuma Ulmifolia	Llausapancho / Yausapancho	Malvaceae
18	Ageratum conyzoides	Mankapaqui	Asteraceae
19	Mangifera indica	Mango	Anacardiaceae
20	Annona muricata	Masasamba	Annonaceae
21	Ficus paraensis (MIQ.) MIQ.	Matapalo	Moraceae
22	Piper pseudoarboreum Yunck.	Matico / Mocomoco	Piperaceae
23	Solanum aloysio	<mark>Muyucaya</mark> / Hierba Mora	Solanaceae
24	Persea americana	Palta	Lauraceae
25	Chenopodium incisum Poir.	Paico	Amaranthaceae
26	Scoparia dulcis	Piquipichana	Plantaginaceae
27	Gamochaeta americana	Q'etoq'eto	Asteraceae
28	Triumfetta abutiloides A.StHil.	Ratarata	Tiliaceae
29	Rosmarinus officinalis L.	Romero	Lamiaceae
30	Psidium guajava	Sahuinto Blanco/ Guayaba Blanca	Myrtaceae
31	Heliocarpus americanus	Sangre de Grado	Malvaceae
32	Cyathea multiflora	Sano sano	Cyatheaceae
33	Piper peltatum	Saqramascara / Hoja Corazon	Piperaceae
34	Crotalaria incana	Saqsayllo / Frijol De Palo / Frijol Chicharo	Fabaceae

35	Psittacanthus acuminatus	Suelda Que Suelda / Soltaquesolta	Loranthaceae
36	Acalypha mapirensis	Tigre Tigre Blanco	Euphorbiaceae
37	Acalypha mapirensis	Tigre Tigre Rojo	Euphorbiaceae
38	Uncaria guianensis	Uña De Gato	Rubiaceae
39	Stachytarpheta cayennensis	Verbena	Verbenaceae
40	Achyrocline alata	Wira Wira Wera Wera	Asteráceas
41	Bocconia frutescens	Yanali	Papaveraceae
42	Manihot esculenta	Yuca	Euphorbiaceae

Fuente: Determinación por Herbario Vargas CUS. (Anexo 5)

Análisis y discusión de resultados

En el Tabla Nro. 6 se observan 42 plantas medicinales utilizadas por los pobladores en cinco caseríos del poblado Echarati, La Convención - Cusco, las cuales están identificadas taxonómicamente. En comparación con el estudio realizado por Huillca Mendivil, Z. y Tayro Muñoz, C. (22) en dos comunidades nativas (Shimaa y Chakopishiato) del mismo distrito, (en el cual registraron un total de 67 especies medicinales en la zona de intervención) se encontró que existe similitudes en varias de las especies recolectadas, (ejemplos: sangre de grado, uña de gato, saqra mascara, moco moco y rata rata.) las cuales son usadas como plantas medicinales por los pobladores de ambos caseríos, esto se podría explicar debido a que los dos estudios fueron hechos en zonas geográficas parecidas, que pertenecen al distrito de Echarati.

4.3 Conocimientos populares para el uso de plantas medicinales en cinco caseríos del poblado Echarati (La Convención) - Cusco

Tabla 11. Relación de especies vegetales medicinales de acuerdo a la clasificación popular cálido - fresco.

Nro.	Nombre científico	Nombre(s) común(es)	Calidad de la planta
1	Bixa orellana L.	Achiote	Fresco
2	Ageratina scopulorum (Wedd.)	Botoncillo / Boton Boton	Fresco
3	Theobroma cacao L.	Cacao	Cálido
4	Coffea arabica L.	Café	Cálido
5	Dodonaea viscosa	Chaman / Chamana:	Cálido
6	Phyllanthus niruri	Chanca Piedra	Fresco
7	Erythroxylum coca	Coca	Cálido
8	Paspatum consuelatum	Cuchimuchu	Fresco
9	Pseudadephantopus spiralis (Less) cronq	Cuchicara	Fresco
10	Stachys herrerae	Hierba De Cáncer	Cálido
11	Mikania guaco	Huaco / Guaco	Indeterminado
12	Sida rhombifolia	Jucuchachupa / Ucuchachupa	Fresco
		(Cola de Ratón)	
13	Niphidium crassifolium	Kala Kala, Q'alawala	Cálido
14	Urtica dioica subsp. holosericea (Nutt.)	Kisa Kisa	Indeterminado
15	Citrus medica L.	Limón	Cálido

16	Plantago major	Llantén	Fresco
17	Guazuma Ulmifolia	Llausapancho / Yausapancho	Fresco
18	Ageratum conyzoides	Mankapaqui	Cálido
19	Mangifera indica	Mango	Cálido
20	Annona muricata	Masasamba	Fresco
21	Ficus paraensis (MIQ.) MIQ.	Matapalo	Indeterminado
22	Piper pseudoarboreum Yunck.	Matico / Moco Moco	Cálido
23	Solanum aloysio	<mark>Muyucaya</mark> / Hierba Mora	Fresco
24	Persea americana	Palta	Cálido
25	Chenopodium incisum Poir.	Paico	Fresco
26	Scoparia dulcis	Piquipichana	Cálido
27	Gamochaeta americana	Qeto Qeto / K'eto K'eto	Fresco
28	Triumfetta abutiloides A.StHil.	Rata Rata	Fresco
29	Rosmarinus officinalis L.	Romero	Cálido
30	Psidium guajava	Sahuinto Blanco/ Guayaba Blanca	Fresco
31	Heliocarpus americanus	Sangre De Grado	Cálido
32	Cyathea multiflora	Sano Sano	Fresco
33	Piper peltatum	Saqramascara / Hoja Corazon	Cálido

34	Crotalaria incana	Saqsayllo / Frijol De Palo / Frijol Chicharo	Fresco
35	Psittacanthus acuminatus	Suelda Que Suelda / Soltaquesolta	Indeterminado
36	Acalypha mapirensis	Tigre Tigre Blanco	Indeterminado
37	Acalypha mapirensis	Tigre Tigre Rojo	Fresco
38	Uncaria guianensis	Uña De Gato	Cálido
39	Stachytarpheta cayennensis	Verbena	Fresco
40	Achyrocline alata	Wira Wira Wera Wera	Cálido
41	Bocconia frutescens	Yanali	Indeterminado
42	Manihot esculenta	Yuca	Fresco

Fuente: Encuesta Etnobotánica. (Anexo 7)

RESUMEN

CLASIFICACION POPULAR	Frecuencia	Porcentaje (%)
Cálido	17	40.48
Fresco	19	45.24
Indeterminado	6	14.28
Total	42	100.00

Fuente: Encuesta Etnobotánica. (Anexo 7)

Análisis y discusión de resultados

En la tabla N°11 se observa las especies vegetales medicinales de acuerdo a la clasificación popular (cálido - fresco) obtenidas a partir de las entrevistas. De las 42 plantas medicinales existe un predominio de plantas que son consideradas como frescas con el 45.24 %, seguida de las plantas que son consideradas como cálidas con un 40.48 %, y finalmente el 14.28% que son indeterminadas. En comparación con el estudio realizado por Mujica Ayala J. y Palomares Pacheco A.J. (x) en la comunidad de Pampallacta – Calca en el cual se encontró 35 especies consideradas frescas y 28 consideradas cálidas. La diferencia se podría explicar debido a que los dos estudios fueron hechos en zonas geográficas diferentes.

Esta clasificación utilizada por los pobladores es de forma no científica, solo se da de forma empírica de acuerdo a su experiencia adquirida durante el tiempo.

Por lo tanto, los pobladores utilizan plantas medicinales que sirvan para contrarrestar el origen de la enfermedad, por ejemplo, para una enfermedad de origen cálido utilizan una planta medicinal fresca de forma antagonista.

Tabla 12. Clasificación de las plantas medicinales utilizadas por los pobladores según el tipo de especie vegetal.

2
5

Árbol	6	12.72
Total	42	100.00

Fuente: Encuesta Etnobotánica. (Anexo 7)

Análisis y discusión de resultados

En el Tabla N°12. se observa la clasificación de las plantas medicinales identificadas según el tipo de especie vegetal, donde se evidencia que existe un predominio de herbáceas con un 51.75 %.

Los resultados obtenidos coinciden con las investigaciones etnobotánicas realizadas por Espejo Palomino C. (16) en el Caserío El Edén- La Libertad donde obtuvo 51.35 %, siendo las que más predominan las herbáceas.

Se ve en los resultados que en los caseríos del poblado Echarati las plantas medicinales herbáceas son las más utilizadas por los pobladores para tratar diversas enfermedades, podría deducirse que existe un mayor conocimiento de las propiedades medicinales de las hierbas puesto que estas especies vegetales siempre han sido de mayor accesibilidad a los hombres.

Tabla 13. Clasificación de las plantas medicinales utilizadas por los pobladores según el origen de la especie vegetal.

ORIGEN	FRECUENCIA	PORCENTAJE (%)
Introducida	3	6.58
Nativa	39	93.42

Total	42	100.00	

Fuente: Encuesta Etnobotánica. (Anexo 7)

Análisis y discusión de resultados

En el Tabla N°13. se muestra el origen de las plantas medicinales en estudio, siendo en mayor porcentaje las plantas medicinales de origen nativo 93.42%, en cambio las plantas medicinales de origen introducido solo representan el 6.58%.

Estos resultados evidencian un mayor predominio de las especies de origen nativo sobre las especies vegetales de origen introducido, lo cual contrasta con los resultados hallados en un estudio realizado por Espejo Palomino C. (16)

Tabla 14. Clasificación de las plantas medicinales utilizadas por los pobladores según el estado de crecimiento de la especie vegetal.

ESTADO	FRECUENCIA	PORCENTAJE (%)
Cultivado	4	10.53
Silvestre	38	89.47
Total	42	100.00

Fuente: Encuesta Etnobotánica. (Anexo 7)

Análisis y discusión de resultados

En el Tabla N°14. se muestra el estado de crecimiento de las plantas medicinales en estudio, se observa el predominio del estado silvestre con un 89.47 %, frente al

estado cultivado con 10.53 %. Los resultados obtenidos coinciden con las investigaciones etnobotánicas realizadas por Espejo Palomino C. (16) donde las especies nativas representan el 83,78%, mientras que las especies introducidas el 16,22%. Estos resultados podrían deberse a que la mayoría de plantas en nuestra zona de estudio son cultivadas solo con fines alimenticios.

4.4. Clasificación de plantas medicinales de acuerdo al uso o afecciones terapéuticas, parte usada y manera de uso a partir de su conocimiento.

Tabla 15. Frecuencia de uso de las plantas medicinales.

Especie vegetal usada	Frecuencia	Nivel de uso significativo (UST)
Achiote	5	6.6
Botoncillo	<mark>37</mark>	<mark>48.7</mark>
Cacao	2	2.6
Café	2	2.6
Chaman	2	2.6
Chanca Piedra	6	7.9
Coca	4	5.3
Cuchicara	2	2.6
Cuchimuchu	3	3.9
Hierba de cáncer	2	2.6
Huaco	6	7.9
Jucucha chupa	3	3.9
Kala Kala	1	1.3
Kisa Kisa	2	2.6
Limón	2	2.6
Llanten	7	9.2
Llausapancho	3	3.9
Mango	2	2.6
Mankapaqui	3	3.9
Masasamba	2	2.6
Matapalo	3	3.9
Matico	5	6.6
Muyucaya	<mark>31</mark>	<mark>40.8</mark>

Palta	3	3.9
Payco	4	5.3
Piquipichana	<mark>32</mark>	<mark>42.1</mark>
Q'eto Q'eto	4	5.3
Rata Rata	6	7.9
Romero	3	3.9
Sahuinto blanco	4	5.3
Sangre de grado	2	2.6
Sano sano	5	6.6
Saqramascara	4	5.3
Saqsaylla	4	5.3
Suelda que suelda	5	6.6
Tigre tigre blanco	2	2.6
Tigre tigre rojo	2	2.6
Uña de gato	3	3.9
Verbena	3	3.9
Wira Wira	3	3.9
Yanali	2	2.6
Yuca	2	2.6
Total, de encuestados	76	100

Análisis y discusión de resultados:

En la tabla N°15, de acuerdo a las encuestas realizadas a los pobladores se registraron 42 plantas medicinales utilizadas tradicionalmente para tratamiento de diversas enfermedades.

Al realizar la clasificación según la frecuencia de uso se encontró que son tres las plantas medicinales más representativas de los caseríos de Echarati, estas fueron: el Botoncillo 48.7, Piquipichana 42.1 y Muyucaya 40.8 según el uso significativo propuesta por Germosén, R. (41), al realizar la comparación con la tesis de Huillca Z. et all. (22) sus resultados en base a la frecuencia de uso difieren de nuestros resultados. Ellos mencionan que las plantas más representativas en la zona de su estudio fueron: Sangre de Grado, Uña de Gato, Guayaba Blanca, Ojé, Sacra

mascara, Chuchuhuasa, Ayahuasca, Moco Moco, Lengua de perro y Rata Rata. Esta diferencia puede deberse a que el estudio fue hecho en comunidades nativas en las cuales la cultura es distinta. A pesar de encontrarse en el mismo distrito esas comunidades nativas mayoritariamente machiguengas tienen una cosmovisión distinta. Sin embargo, la mayoría de las plantas mencionadas en los dos estudios coinciden.

Tabla 16. Uso terapéutico de las plantas recolectadas y usadas.

Afecciones	Especies Usadas	Frecuencia
Aftas	Botoncillo	1
Anemia	Cacao, Yuca	2
Cálculos renales	Chanca Piedra	1
Debilidad muscular	Cacao	1
Diabetes	Kala Kala, Mango	2
Diarrea	Cuchimuchu, Palta	4
	Payco, Sahuinto B.	
Dolor articular	Matico, Romero	2
Dolor de cabeza	Sahuinto blanco	1
Dolor de cuerpo	Chaman, Llanten	5
	<i>Muyucaya</i> , Saqsayllo	
	Wira Wira	
Dolor de estómago	Mankapaqui, Payco	4
	<i>Muyucaya</i> , Verbena	
Dolor de garganta	Piquipichana	1
Dolor de muela	Botoncillo	1

Dolor muscular	Миуисауа	1
Enfermedades del hígado	Huaco	1
Fiebre	Llantén, Verbena, Llausapancho	7
	Piquipichana,	
	Rata Rata,	
	Tigre tigre blanco	
	Wira Wira	
Gastritis	Sangre de grado,	2
	Llantén	
Golpes	Suelda que suelda,	2
	Matapalo	
Resfrío - Gripe	Coca, Limón	6
	Mankapaqui,	
	Piquipichana,	
	Romero, Saqsayllo	
Hepatitis	Kisa Kisa	1
Heridas	Hierba de cáncer,	2
	Saqramascara	
Hipertensión	Café	1
Infección Intestinal	Sahuinto blanco	1
Infección	Achiote, Llantén,	8

	Cuchimuchu,	
	Masasamba,	
	Muyucaya,	
	Cuchicara, Sano sano	
	Saqramascara	
Infección de herida	Uña de gato	1
Infección de vientre	Миуисауа	1
Infección dental	Botoncillo	1
Infección urinaria	Achiote, Sano sano Jucuchachupa	14
	Kisa Kisa, Yanali,	
	<mark>Muyucaya</mark> , Llantén,	
	<mark>Piquipichana</mark> , Cuchicara,	
	Rata rata, Saqsayllo,	
	Tigre tigre blanco,	
	Botoncillo,	
	Chancapiedra	
Inflamación	Chamán, Yanali, Llausapancho,	17
	Cuchimuchu, Mango,	
	Jucuchachupa, Coca,	
	Llanten, Rata rata	
	Muyucaya,	
	Piquipichana,	
	Sano sano	

Saqramascara,				
Saqsayllo,				
	Tigre tigre rojo			
	Uña de gato,			
	Verbena			
Mal del corazón	Café	1		
Parasitosis	Paico	1		
Prostatitis	Saqramascara	1		
Mal de riñones	Chanca Piedra	1		
Torceduras	Matapalo	2		
	Suelda que suelda			

Tos Coca, Masasamba,

Limón, *Piquipichana*,

Matico, *Muyucaya*,

Q'eto Q'eto, Wira Wira 8

Fuente: Encuesta Etnofarmacológica. (Anexo 6)

Análisis y discusión de resultados:

En la tabla N°16 se aprecian 42 plantas medicinales utilizadas por los pobladores de los cinco caseríos de Echarati y 34 afecciones tratadas, los resultados nos muestran que la afección más tratada fue la inflamación con 17 plantas medicinales que son usadas con ese fin. La infección urinaria con 14 plantas y el resto de afecciones con menor cantidad de plantas usadas; asimismo al realizar la comparación con el estudio de Huillca M. (22) con similar área geográfica de estudio se evidencia una gran coincidencia al observar que sus resultados indican que la afección más tratada en esa población también es la inflamación.

Tabla 17. Partes utilizadas de las plantas medicinales por los pobladores.

PARTE UTILIZADA	ESPECIE VEGETAL			
Hojas (40)	Sahuinto blanco	Piquipichana	Huaco	Yanali
	Matico	Saqra mascara	Mancapaqui	Yuca
	Chancapiedra	Jucuchachupa	Tigre tigre rojo	Coca
	Saqsayllo	Llantén	Verbena	Café
	Mango	Chaman	Achiote	Palta
	Matapalo	Cacao	Cuchicara	Paico
	Wira wira	Cuchimuchu	Limón	Kisa k
	Uña de Gato	Achiote	Muyucaya	
	Romero	Hierba de cáncer	Tigre tigre	
			Blanco	
	Suelda que suelda	Qeto qeto	Kala Kala	
	Saqsayllo	Masasamba	Ratarata	

87

Tallo (16)	Huaco	Tigre tigre blanco	Mancapaqui	Queto
				queto
	Cuchimucho	Tigre tigre rojo	Romero	Payco
	Hierba de cáncer	Uña de gato	Chamán	Wira wira
	Jucuchachupa	Suelda que suelda	Matapalo	Palta
Raíz (2)	Jucuchachupa	Kisa kisa		
Flores (10)	Botoncillo	Mancapaqui	Paico	Limón
	Миуисауа	Wira wira		Café
	Verbena	Romero		Palta
Frutos (5)	Миуисауа	Limón	Palta	
	Cacao	Masasamba		
Semillas (2)	Achiote	Yanali		
Corteza (6)	Sano sano	Llausapancho	Sangre de grado	
	Uña de gato	Sahuito blanco	Rata rata	
Toda la planta (2)	Tigre tigre blanco	Yanali		

Fuente: Encuesta Etnobotánica. (Anexo 7)

Análisis y discusión de resultados:

Según la tabla Nro. 17, de acuerdo a las encuestas realizadas sobre las partes utilizadas de las especies vegetales para el tratamiento de las afecciones de los pobladores de los caseríos de Echarati, observamos que las partes más utilizadas son las hojas, tallos y flores, las demás partes de la planta son utilizadas en menores cantidades según observamos en el cuadro; asimismo al realizar la comparación con los trabajos de investigación de Huillca Mendivil Z.et. all (22) y Quispe Jallasi M.et.all. (21), vemos que sus resultados coinciden con nuestra investigación debido a que ellos también concluyeron que la parte más utilizada de la planta y a la que se le atribuye la acción terapéutica fueron las hojas de 40 especies vegetales.

Tabla 18. Forma de uso a partir del conocimiento de los pobladores.

Forma de preparación	Especies Vegetales			N°	%
INFUSIÓN	Queto queto	Piquipichana	Wira wira	35	<mark>52.24</mark>
	Миуисауа	Coca	Palta	_	
	Mancapaqui	Llantén	Huaco	_	
	Romero	Paico	Cuchimuchu	_	
	Café	Jucuchachupa	Achiote	_	
	Masasamba	Chancapiedra	Kinsacuchu	_	
	Kala kala	Rata rata	Tigre tigre B.	_	
	Botoncillo	Matico	Tigre tigre R.	_	
	Saqramascara	Matapalo	Yuca	_	
	Kisa kisa	Sahuinto B.	Limón	_	
	Llantén	Cacao	Verbena	_	
	Cuchicara	Sano sano		_	
COCIMIENTO	Sahuito B.	Matico	Sano sano	11	<mark>16.42</mark>

	Cacao	Llausapancho	Uña de gato		
	Yuca	Mango	Kisa kisa	-	
	Tigre tigre B.	Chamán		-	
EMPLASTO	Rata rata	Suelda que suelda	Saqramascara	5	7.46
	Hierba de C.	Sangre de grad	0	-	
BAÑOS	Rata rata	Romero	Hierba de C.	5	7.46
	Saqsayllo	Yanali		-	
EXTRACCION DE ZUMO	Botoncillo	Huaco	Jucuchachupa	11	<mark>16.42</mark>
DE ZOMO	Matapalo	Sangre de grado	Tigre tigre rojo	-	
	Verbena	Hierba de C.	Limón	-	
	Paico	Wira wira		-	
Total				67	100

Fuente: Encuesta Etnobotánica. Anexo 7

Análisis y discusión de resultados:

En el tabla Nro. 18 se aprecia las especies vegetales clasificadas de acuerdo a la forma de preparación de los pobladores de los caseríos de Echarati, en la que observamos que la infusión es la forma de uso más frecuente en un 52.24%, cocimiento y extracción de zumo en 16.42% y las demás formas de preparación en menor cantidad; asimismo al realizar la comparación de resultados con los estudios de Rodríguez Cuno J.et.all (20) Quispe Jallasi M.et all. (21), Aguilar Guimac E.et all. (17) Torres Silva P. (13), Huillca Mendivil Z. et all. (22) concuerdan con nuestro estudio ya que mencionan que la infusión es la forma de preparación más frecuente, esto debido a la facilidad y simplicidad que supone preparar una infusión.

Tabla 19. Tiempo de uso de las plantas medicinales utilizadas por los pobladores.

TIEMPO DE USO	PLA	NTAS MEDICIN <i>A</i>	ALES	FRECUENCIA
1 vez al día por 3 días	Hierba de C.	Matapalo	Yanali	5
Julas	Llantén	Palta		-
1 vez al día por 7 días	Matapalo	Hierba de C.	Café	6
1 dido	Hierba de C.	Saqsayllo	Kisa kisa	-
1 vez al día por 10 días	Matapalo	Botoncillo	Sangre de G.	5
To dias	Saqramáscara	Suelda que suelda		
1 vez al día por 15 días	Sangre de grado	Suelda que suelda		2
2 veces al día por 3 días	Botoncillo	Chancapiedra	Coca	5
por 5 dias	Huaco	Muyucaya		-
2 veces al día por 5 días	Limón	Botoncillo	Coca	6
por o uius	Cuchimuchu	Muyucaya	Piquipichana	-
2 veces por semana	Cacao	Kala kala		2
2 veces al día por 7 días	Botoncillo	Huaco	Tigre tigre rojo	<mark>12</mark>
poi 7 dias	Muyucaya	Qeto qeto	Tigre tigre B.	-
	Verbena	Jucuchachupa	Matico	-
	Uña de gato	Achiote	Chancapiedra	-
2 veces al día por 10 días	Chamán	Saqramascara		2
	Romero	Sano sano	Saqramascara	4

2 veces al día por 15 días	Yuca			
2 veces al día por 1 mes	Mango	Masasamba	Romero	3
3 veces al día	Jucuchachupa	Wira wira	Botoncillo	7
	Paico	Sano sano	Rata rata	
	Sahuinto B.		_	
3 veces al día por 3 días	Mancapaqui			1
3 veces al día por 7 días	Huaco	Limón	Paico	<mark>11</mark>
por r dias	Botoncillo	Piquipichana	Sahuinto B.	
	Rata rata	Queto queto	Llausapancho	
	Matico	Миуисауа		
3 veces al día por 10 días	Piquipichana.			1
3 veces al día por 15 días	Piquipichana,	yuca		2
En ayunas	Llantén			1
Condicional al dolor	Botoncillo			1

Fuente: Encuesta Etnofarmacológica. (Anexo 6)

En el Tabla N.19. se muestra la agrupación de plantas medicinales según el tiempo de uso por los pobladores de cinco caseríos de Echarati La Convención, donde se observa que el tiempo de uso de la mayoría de plantas medicinales es de una semana, siendo el tiempo usado 2 veces al día por 7 días para 12 plantas medicinales, seguido del tiempo usado 3 veces al día por 7 días para 11 plantas medicinales.

En comparación con un estudio realizado por Rodríguez C. y Suma E. (20), realizado en el distrito de Checacupe – Cusco, donde evidencian que el tiempo de uso de las plantas medicinales es corto alrededor de 1 a 2 días o por el tiempo que dura la enfermedad, en cambio en el presente estudio se evidencia que la mayoría de los pobladores hace uso de las plantas medicinales por un tiempo más prolongado. Esta diferencia podría deberse a que el tiempo de uso de la planta medicinal está relacionado con la severidad y duración de la enfermedad, además la epidemiologia varía para cada población al ser de distintas distribuciones geográficas ambos estudios.

4.5. Análisis fitoquímico cualitativo de las plantas medicinales más usadas en enfermedades prevalentes y análisis por el método espectrofotométrico UV visible.

Resultados del Análisis Fitoquímico Cualitativo para determinar presencia de metabolitos secundarios.

Tabla 20. Análisis fitoquímico cualitativo de metabolitos secundarios presentes en las tres plantas más representativas.

Metabolitos	BOTONCILLO	PIQUIPICHANA	MUYUCAYA
Secundarios	Ageratina scopulorum	Scoparia dulcis	Solanum aloysio
	(Wedd.)		
Azúcares	+++	+++	+++
Reductores			
Flavonoides	+ +	+	+
Compuestos	++	+ ++	+ +
Fenólicos			
Quinonas			
Resinas	+++	+ +	+
Alcaloides	+	+ +	+
Taninos	++	+++	+++
Saponinas		+ +	+ +

- **+++** Representa una fuerte presencia detectada del metabolito
- **++** Indica una mediana presencia del metabolito.
- Indica una presencia pobre del metabolito.
- -- Indica una nula presencia del metabolito

Según la tabla Nro. 20 se pudo determinar por reacciones químicas de caracterización (40) que las tres especies vegetales en estudio (Botoncillo, Piquipichana, Muyucaya) contienen diferentes proporciones de los metabolitos buscados. Además, se encontró que no existe presencia de quinonas en ninguna de las tres especies vegetales estudiadas, tampoco se detectó presencia de saponinas en la muestra de Botoncillo.

Espectros obtenidos en el Espectrofotómetro UV del laboratorio UNSAAC para Botoncillo, Piquipichana y Muyucaya

Figura 4. Espectros y rangos de longitud de onda encontrados en Botoncillo

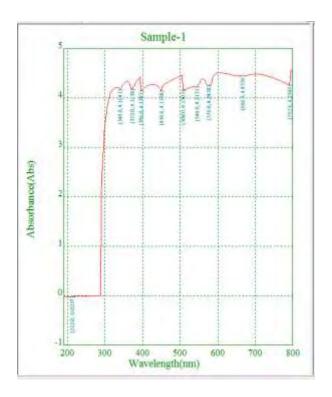


Figura 5. Espectros y rangos de longitud de onda encontrados en Piquipichana

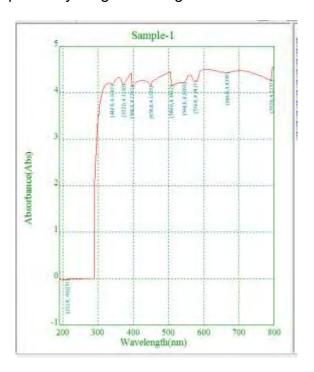


Figura 6. Espectros y rangos de longitud de onda encontrados en Muyucaya

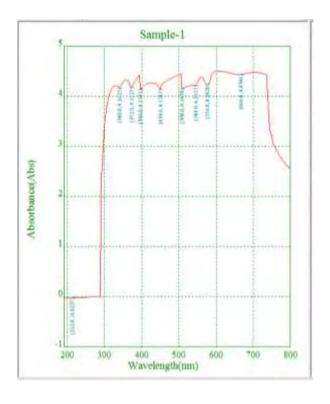


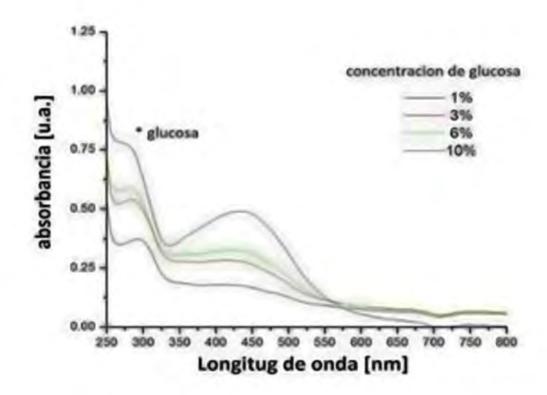
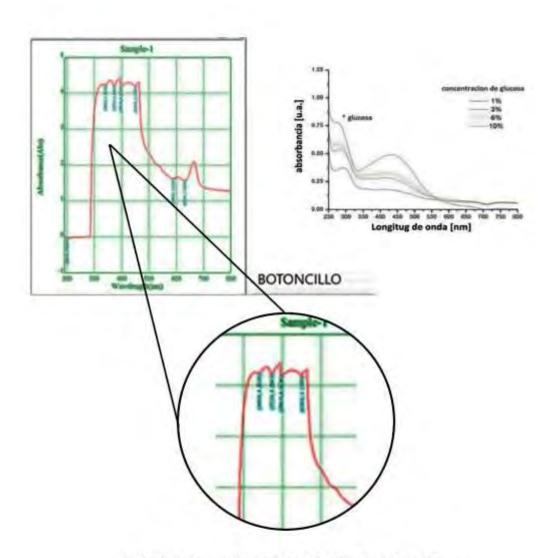
Tabla 21. Metabolitos Secundarios y su rango de longitudes de onda

Metabolitos Secundarios	BOTONCILLO Ageratina scopulorum (Wedd.)	PIQUIPICHANA (Scoparia dulcis)	MUYUCAYA (Solanum aloysio)	Rango de Longitudes de Onda
Azúcares Reductores	+++	+ + +	+++	350 -550 nm
Flavonoides	+ +	+	+	200 -370 nm
Compuestos Fenólicos	+ +	+ ++	+ +	200 - 350 nm
Quinonas	-	-	-	
Resinas	+++	+ +	+	250 - 300 nm
Alcaloides	+	+ +	+	220 - 380 nm
Taninos	+ +	+ + +	+ + +	217 - 277 nm.
Saponinas	-	+ +	+ +	528 nm

Identificación de Azúcares Reductores:

Se encontró y escogió el espectro del metabolito glucosa que muestra bandas de absorción en el rango de longitudes de onda de 350 a 550 nm

Figura 7: Comparación de los espectros de absorbancia de las síntesis realizadas a 80 ° C y variando la concentración de glucosa como agente reductor. (42)

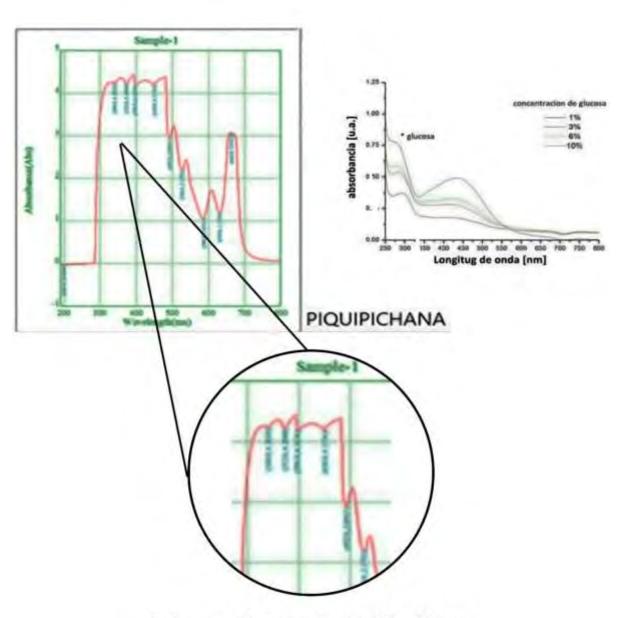

Gráfico del estudio: "Efecto de la temperatura y concentracion de glucosa en la sintesis verde nanopartículas de plata" (42) Comparación de los espectros de absorbancia de las síntesis realizadas a 80 °C y variando la concentración de glucosa como agente reductor.

Figura 8. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Azúcares Reductores: Glucosa

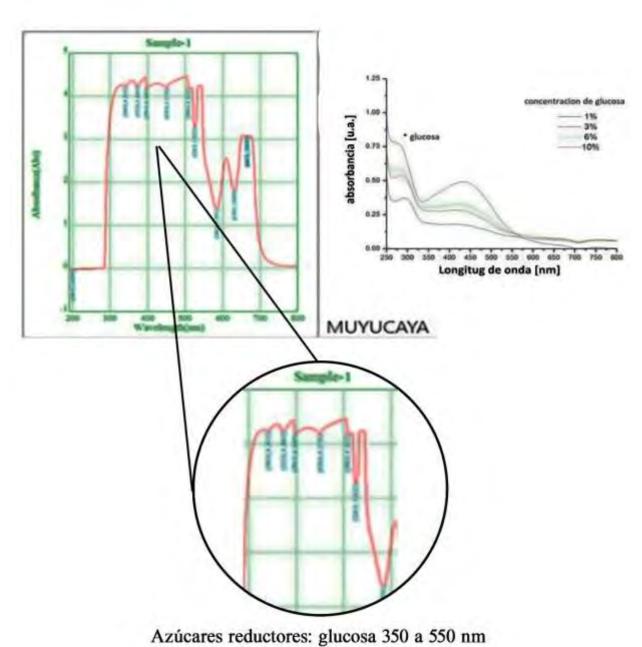

AZUCARES REDUCTORES: GLUCOSA 350 A 550 nm

Figura 9. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Azúcares Reductores: Glucosa

Azúcares reductores: glucosa 350 a 550 nm

Figura 10. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Azúcares Reductores: Glucosa

En la figura N°7 se muestra el espectro obtenido por el estudio realizado por Cervantes y Hernández (42) en el que se determina la longitud de onda de la glucosa; siendo este un azúcar reductor. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya, (Figuras 8, 9 y 10) observando sus longitudes de onda se puede determinar que existe una correlación. Encontramos que las curvas se pronuncian en los mismos rangos de longitud de onda entre 350 y 550 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Flavonoides:

Se encontró y escogió el espectro de un estudio de identificación y caracterización de flavonoides por espectrometría en melazas residuales que muestra bandas de absorción en el rango de longitudes de onda de 200 a 350 nm.

Figura 11. Bandas características de los flavonoides en los espectros UV. (43)

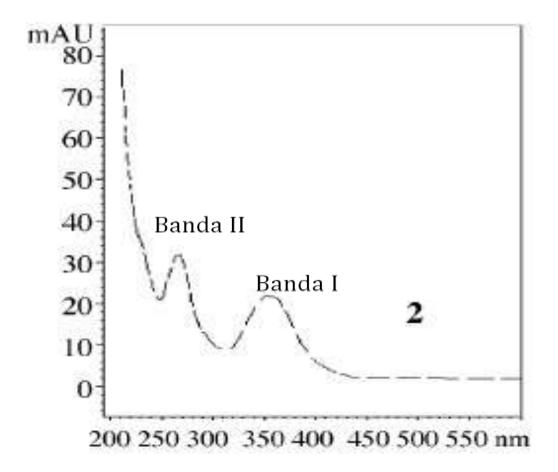
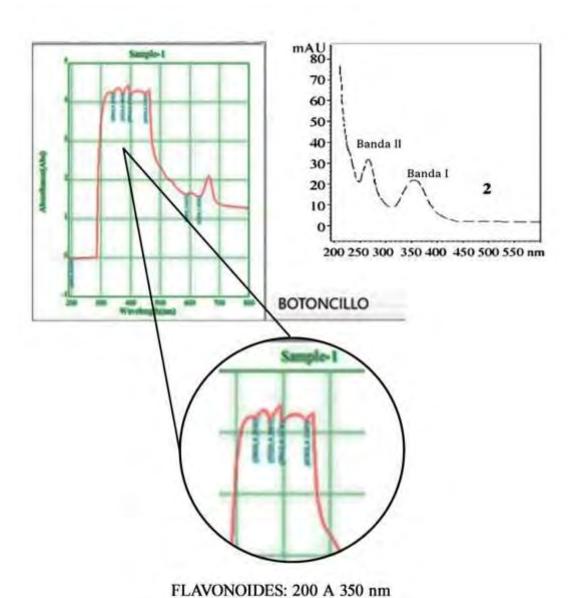
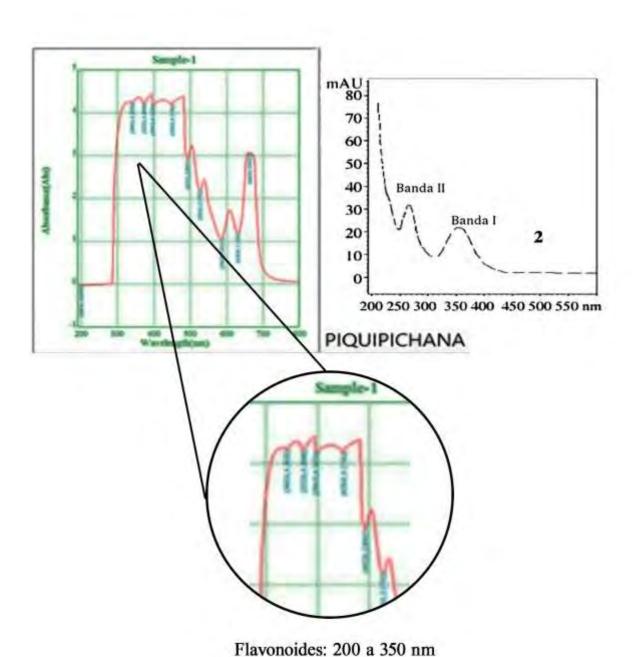




Gráfico del estudio: "Identificación y caracterización de flavonoides por espectrofotometría en melazas residuales de un ingenio azucarero" (43)

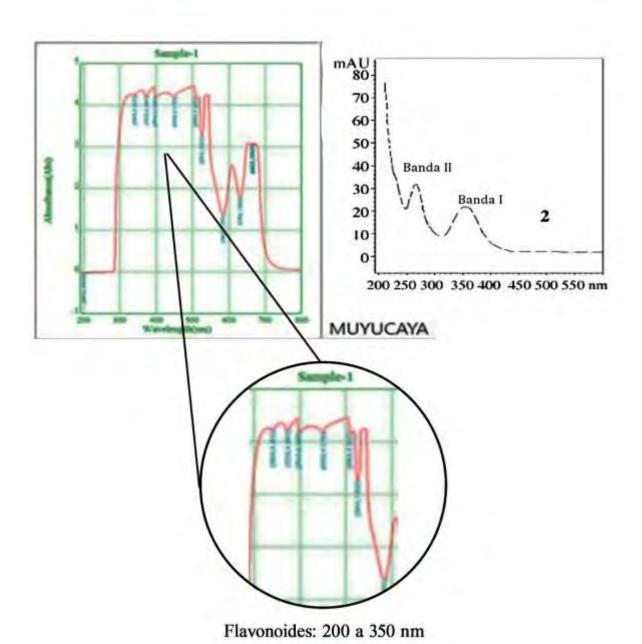

Figura 12. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Flavonoides

Figura 13. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Flavonoides

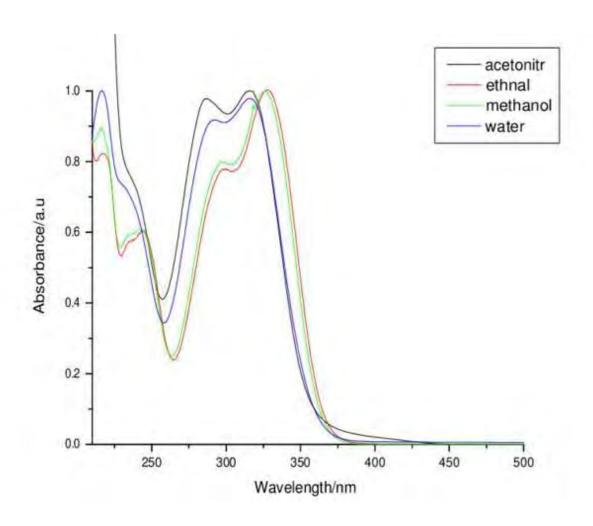
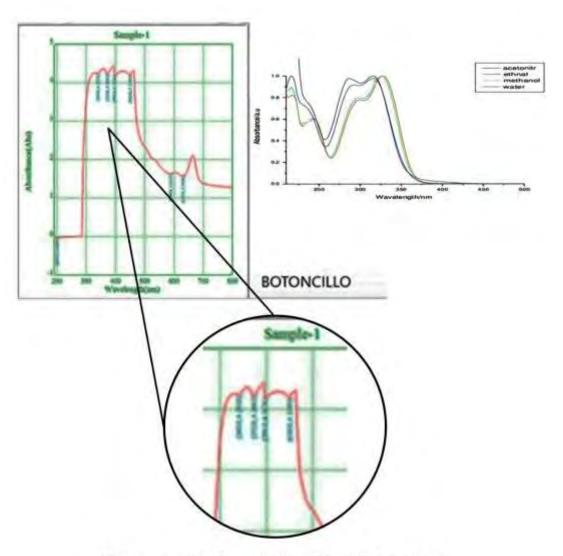
Figura 14. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Flavonoides

En la Figura 11 se muestra el espectro obtenido por el estudio realizado por Monedero Pasiminio (43) en el que se determina la longitud de onda de Flavonoides. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya (Figuras 12, 13 y 14) y observando sus longitudes de onda se puede determinar que existe una correlación. Se ven picos similares en los espectros. Encontramos que las curvas se pronuncian en los mismos rangos de longitud de onda entre 200 Y 370 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Compuestos Fenólicos:

Se escogió el espectro absorción UV-Vis del ácido cafeico realizado en un estudio con diferentes disolventes polares en la que se muestra bandas de absorción en el rango de longitudes de onda de 200 a 350 nm.

Figura 15. Espectrofotometría de los principales compuestos bioactivos del grano de café (44)

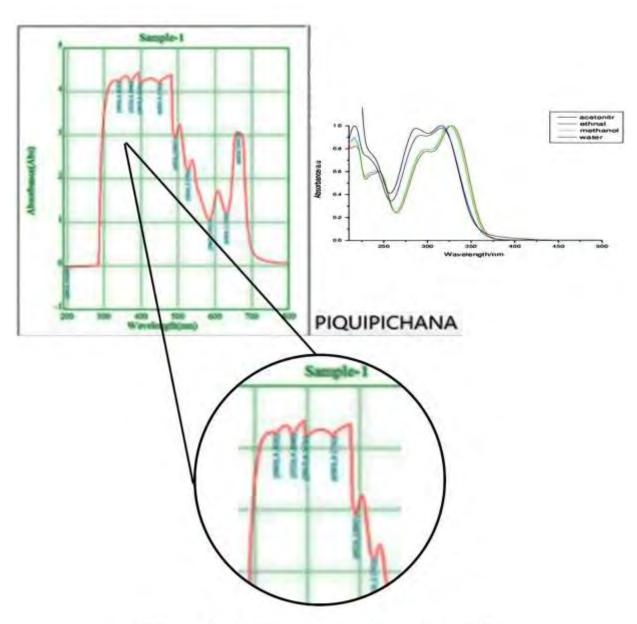

Gráfico del estudio: "Investigación espectrofotométrica de los principales compuestos bioactivos del grano de café" (44) Espectros de absorción UV-Vis del ácido cafeico en diferentes disolventes polares (etanol, metanol, acetonitrilo y agua).

Figura 16. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Compuestos Fenólicos

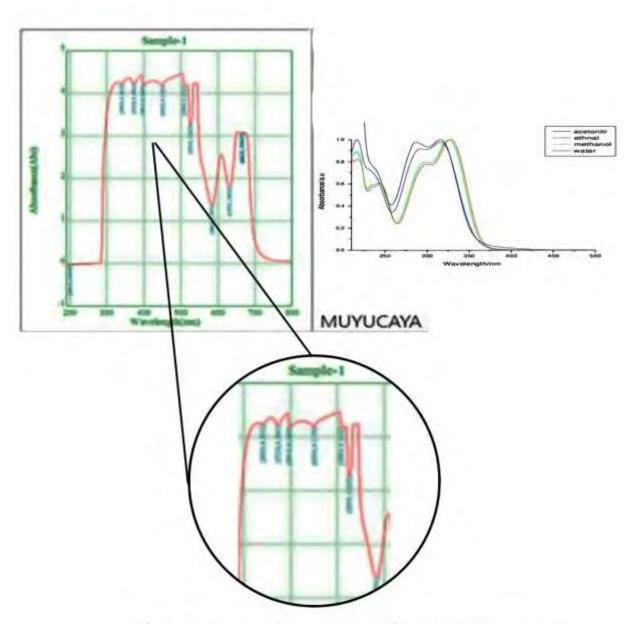

Compuestos fenólicos: ácido cafeico 200 a 350 nm

Figura 17. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Compuestos Fenólicos

Compuestos fenólicos: ácido cafeico 200 a 350 nm

Figura 18. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Compuestos Fenólicos.

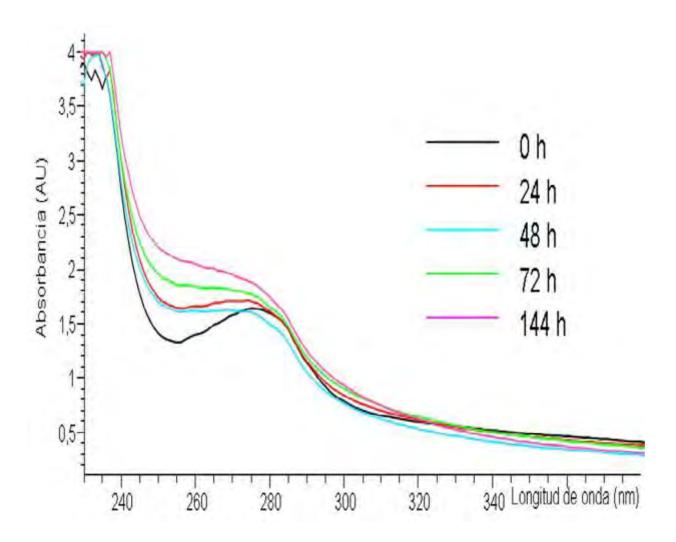
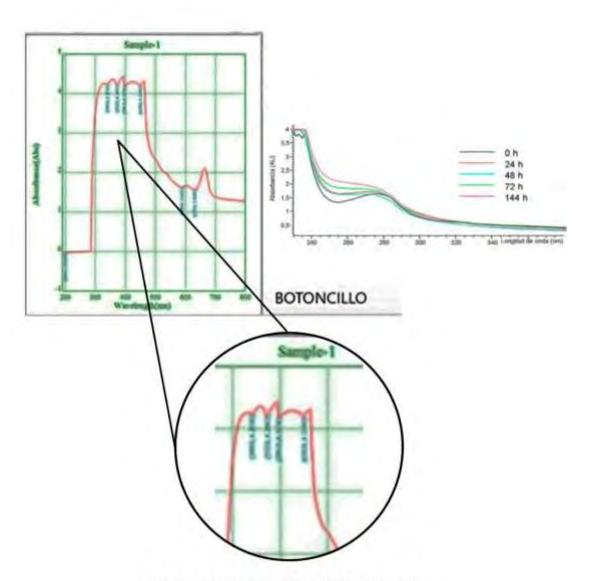
Compuestos fenólicos: ácido cafeico 200 a 350 nm

En la Figura 15 se muestra el espectro obtenido por el estudio realizado por Abebe Belay Gemta (44), en el que se determina la longitud de onda del ácido cafeico. Siendo este un Compuesto Fenólico. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya (Figuras 16, 17 y 18) y observando sus longitudes de onda se puede determinar que existe una correlación. Se ven picos similares en los espectros. Encontramos que las curvas se pronuncian en los mismos rangos de longitud de onda entre 200 y 350 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Resinas:

Se encontró el espectro de la goma arábica realizado en un trabajo que estudia los cambios inducidos por el envejecimiento en la que se muestra bandas de absorción en el rango de longitudes de onda de 250 a 340 nm.

Figura 19. La descomposición de muestras de goma arábiga durante el período de envejecimiento artificial y sus espectros UV (45)

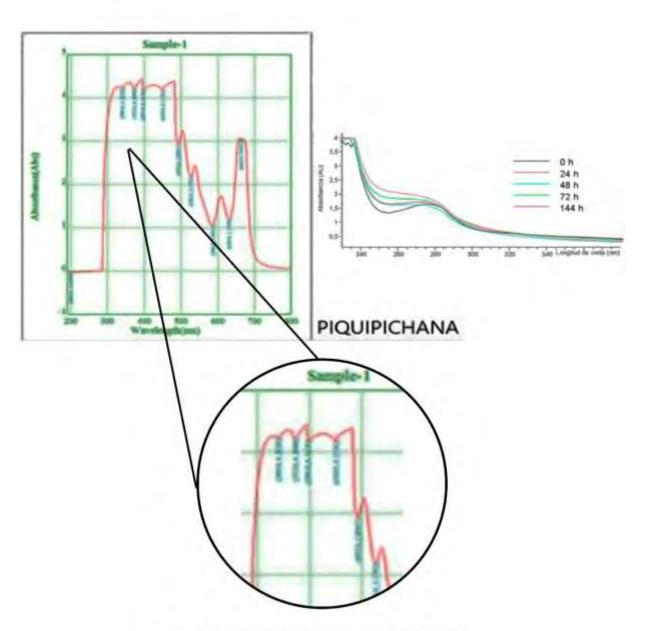

Gráfico del estudio: "Caracterización de la goma arábiga y estudio de los cambios inducidos por envejecimiento artificial" (45)

Figura 20. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Resinas

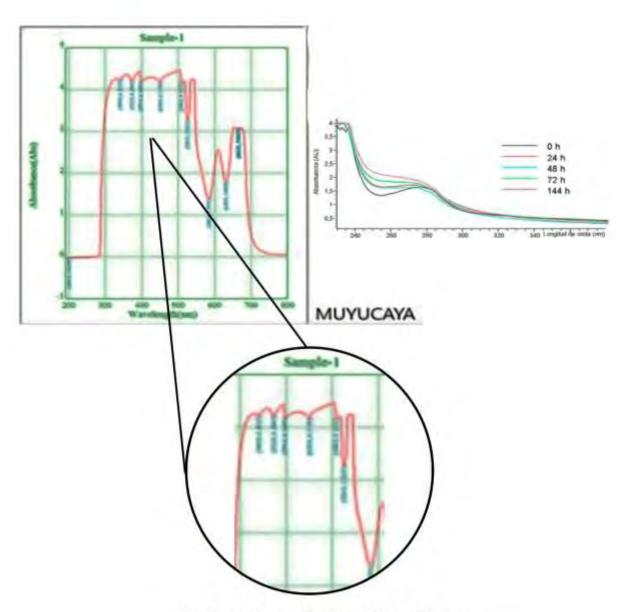

Resinas: Goma Arabica 250 a 340 nm

Figura 21. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Resinas

Resinas: Goma Arabica 250 a 340 nm

Figura 22. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Resinas

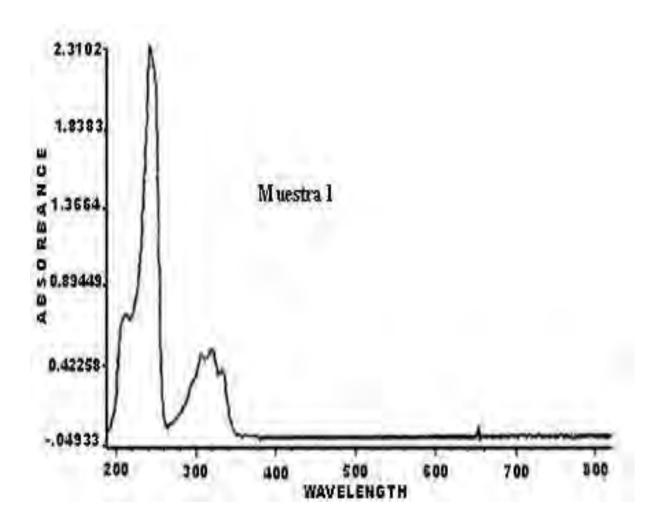
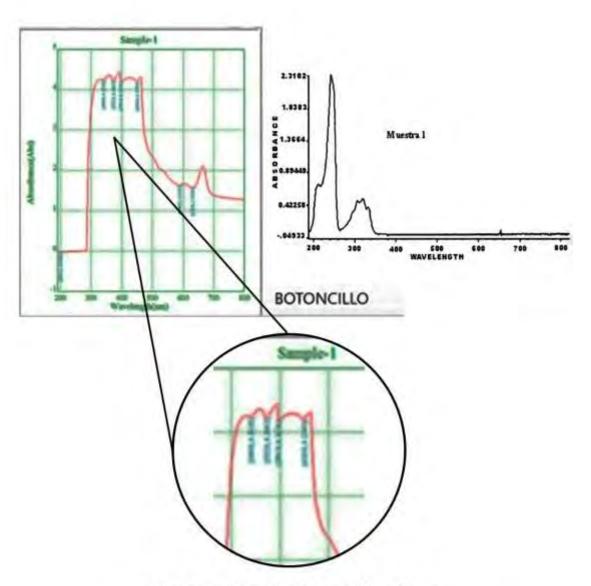
Resinas: Goma Arabica 250 a 340 nm

En la Figura 19 se muestra el espectro obtenido por el estudio realizado por Castillo y Vílchez (45) en el que se determina la longitud de onda de la goma arábica; siendo esta una resina. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya (Figuras 20, 21 y 22) y observando sus longitudes de onda se puede determinar que existe una correlación. Encontramos que las curvas se pronuncian en los rangos de longitud de onda entre 250 Y 300 nm. De la misma manera en nuestras muestras de estudio se ve actividad en estos rangos. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Alcaloides:

Se encontró el espectro de alcaloides encontrados en un estudio de Ruta graveolens L. en la que se muestra bandas de absorción en el rango de longitudes de onda de 220 a 380 nm.

Figura 23. Espectro Ultravioleta de Alcaloides furoquinolínicos (46)

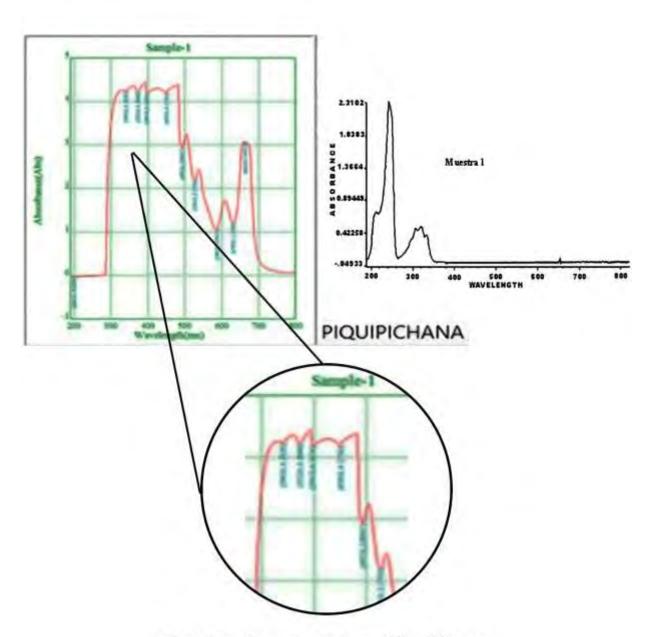

Gráfico del estudio: "Aislamiento e identificación de alcaloides mutagénicos de las hojas de ruta graveolens L. por métodos espectroscópicos" (46)

Figura 24. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Alcaloides

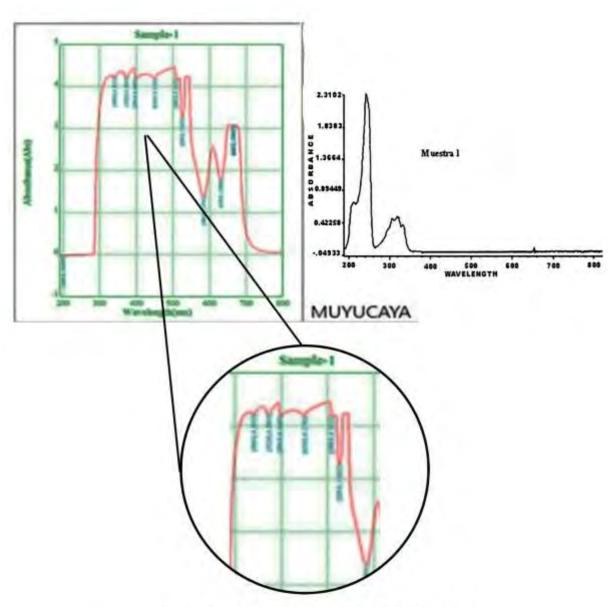

Alcaloides furoquinolínicos 220 a 380 nm

Figura 25. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Alcaloides.

Alcaloides furoquinolínicos 220 a 380 nm

Figura 26. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Alcaloides.

Alcaloides furoquinolínicos 220 a 380 nm

En la Figura 23 se muestra el espectro obtenido por el estudio realizado por Amiel y Fuertes (46) en el que se determina la longitud de onda de alcaloides mutagénicos. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya (Figuras 24. 25 y 26) y observando sus longitudes de onda se puede determinar que existe una correlación. Encontramos que las curvas se pronuncian en los mismos rangos de longitud de onda esto es entre 220 – 380 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Taninos:

Se encontró y escogió el espectro de un estudio no destructivo de determinación de tintas metalogálicas históricas en manuscritos mediante análisis paralelos de espectrómetros de fluorescencia de rayos x y ultravioleta que muestran bandas de absorción del ácido tánico en el rango de longitudes de onda entre 217 a 277 nm.

Figura 27. Espectros UV de recetas de tintas ferro-gálicas (47)

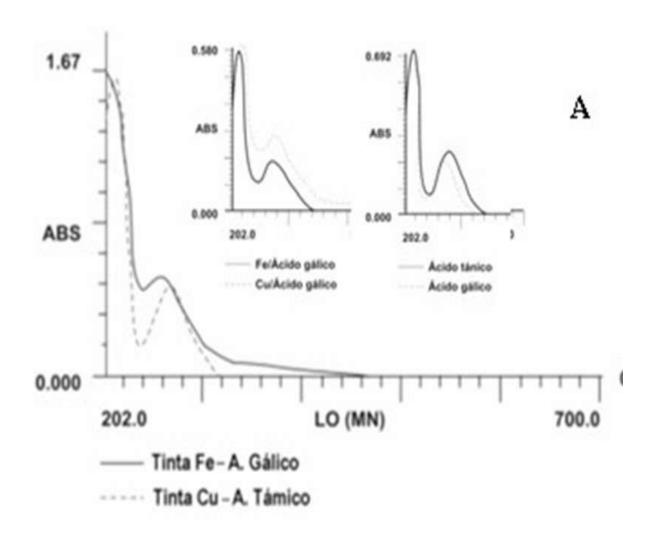
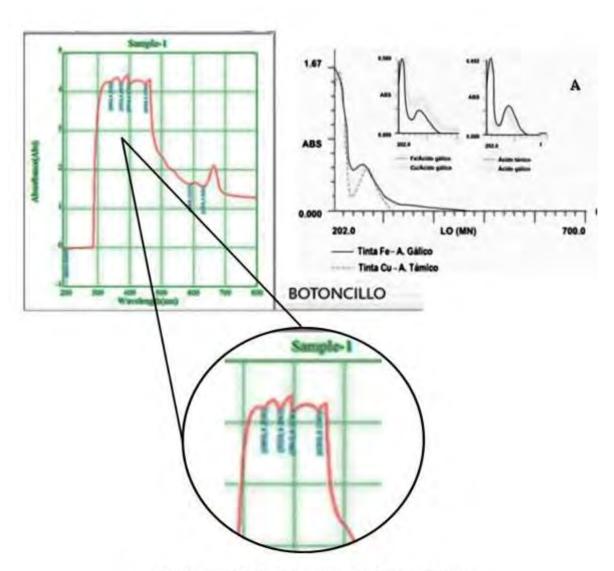



Gráfico del estudio:" Identificación de tintas metalogálicas en manuscritos históricos mediante análisis no destructivo combinado de espectrometría fluorescencia de rayos X y UV-visible" (47)

Espectro UV-Vis de ácido gálico y tánico y sus complejos con Fe y Cu (detalle en A)

Figura 28. Espectros y rangos de longitud de onda encontrados en **Botoncillo** comparados con los del estudio de Taninos

.

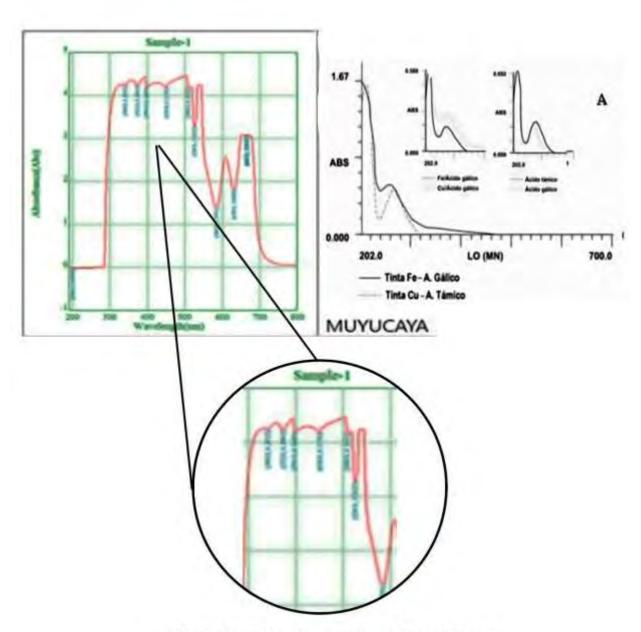

Taninos: tintas ferro-gálicas 217 a 277 nm

Figura 29. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Taninos

Taninos: tintas ferro-gálicas 217 a 277 nm.

Figura 30. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Taninos

Taninos: tintas ferro-gálicas 217 a 277 nm.

En la Figura 27 se muestra el espectro obtenido por el estudio realizado por Mendoza y Correa (47), en el que se determina la longitud de onda del ácido tánico, el cual es un tanino. Realizada la comparación de espectros con los obtenidos en nuestro estudio para Botoncillo, Piquipichana y Muyucaya (Figuras 28. 29 y 30), observando sus longitudes de onda se puede determinar que existe una correlación. Encontramos que las curvas se pronuncian en los mismos rangos de longitud de onda esto es entre 217 a 277 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

Identificación de Saponinas:

Se encontró el espectro de un estudio de barrido de una muestra purificada de saponina en la que se obtiene una longitud de onda pico de 528 nm.

Figura 31. Espectro de barrido del estándar de saponinas, obtención de la longitud máxima de Onda. (48)

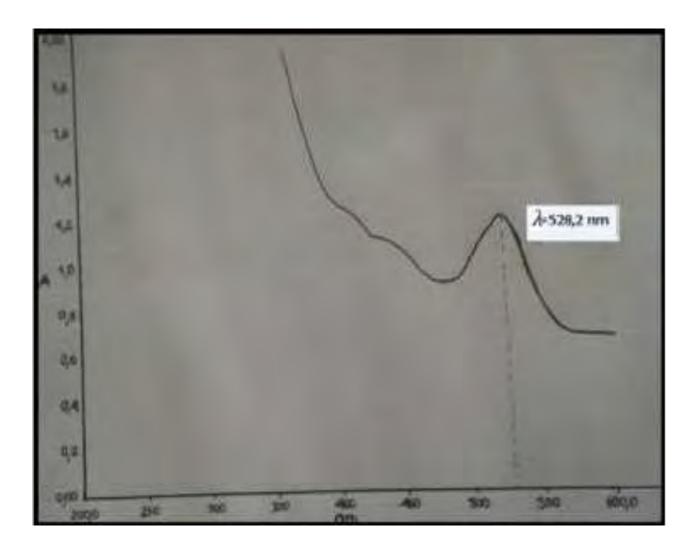
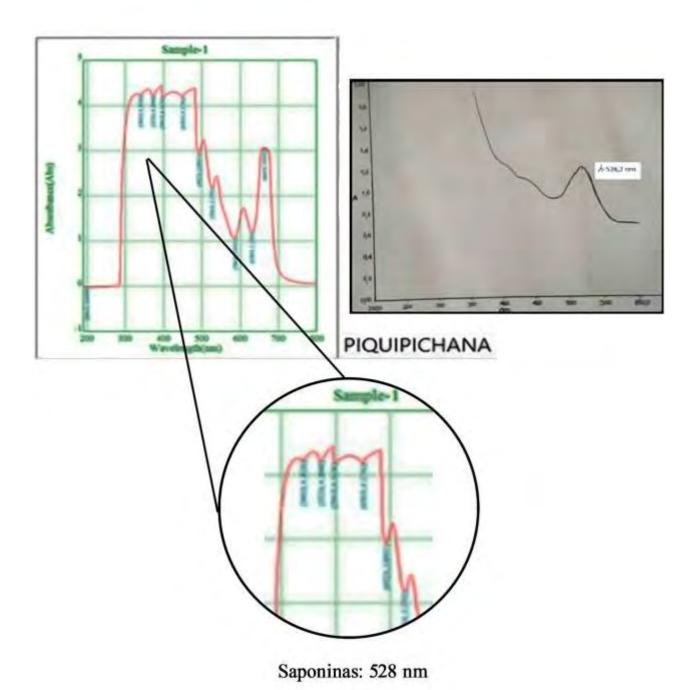
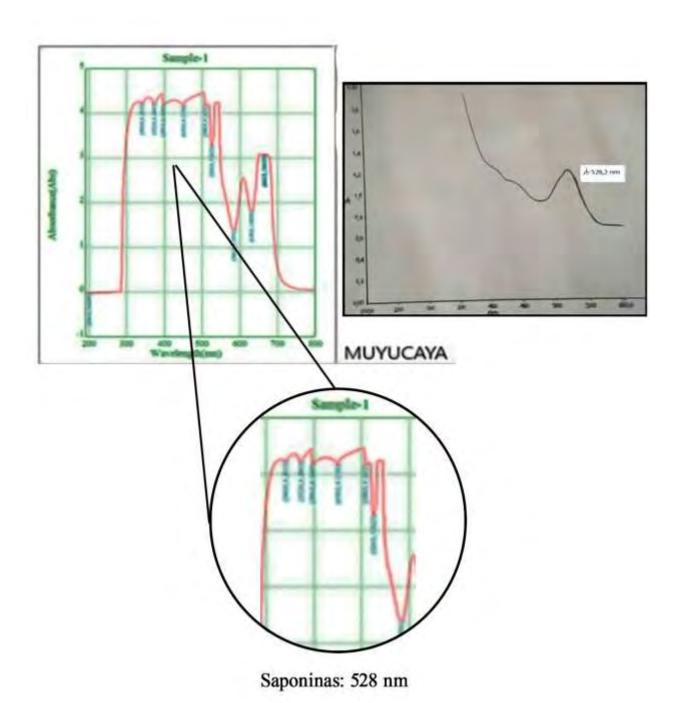




Gráfico del estudio: "Determinación de parámetros de secado por aspersión de extracto acuoso de saponinas y adaptación de un método de cuantificación en quinua por espectrofotometría UV-visible" (48) Espectro de barrido del estándar de saponinas, obtención de la longitud máxima de onda.

Figura 32. Espectros y rangos de longitud de onda encontrados en **Piquipichana** comparados con los del estudio de Saponinas

Figura 33. Espectros y rangos de longitud de onda encontrados en **Muyucaya** comparados con los del estudio de Saponinas

Análisis y discusión de resultados:

En la Figura 31 se muestra el espectro obtenido por el estudio realizado por Ramos Paredes (48), en el que se determina la longitud de onda de una muestra purificada de saponina. Realizada la comparación de espectros con los obtenidos en nuestro estudio solo para Piquipichana y Muyucaya (Figuras 32 y 33) y observando sus longitudes de onda se puede determinar que existe una correlación. Encontramos que las curvas se pronuncian alrededor de los 528 nm. Con lo cual se puede corroborar la presencia de los metabolitos hallados de forma cualitativa.

CONCLUSIONES

- 1. Este estudio etnobotánico, etnofarmacológico de plantas medicinales en cinco caseríos del poblado Echarati La Convención-Cusco, recolectó e identificó 42 plantas medicinales, contribuyendo con el inventario de conocimientos y prácticas medicinales andino amazónicas, a través del análisis fitoquímico cualitativo de Botoncillo (*Ageratina scopulorum Wedd*), Muyucaya (*Solanum aloysio*) y Piquipichana (*Scoparia dulcis*) por el método espectrofotométrico UV visible y se determinaron los metabolitos secundarios presentes en estas especies.
- 2. Los resultados de la determinación taxonómica y depósito de 42 muestras botánicas en el Herbario Vargas Cusco, arrojaron una distribución en 27 familias botánicas, siendo Asteraceae y Malvaceae las familias con mayor cantidad de plantas, correspondiendo al 21% del total encontrado.
- 3. Nuestra investigación determinó que el tipo de planta más usada fueron las hierbas con 51.77% y de origen nativo el 93.43% de las que predominan las del estado silvestre con 89.47% y frescas 45.24% según el conocimiento popular.
- 4. La información obtenida de las plantas medicinales de acuerdo al uso terapéutico dio que la inflamación (17 plantas) e infección urinaria (14 plantas) fueron las afecciones tratadas con más plantas medicinales, siendo las hojas (40 especies) y tallo (16 especies) las partes más utilizadas de las plantas, así como las infusiones 52.24%, los cocimientos 16.42% y el

extracto de zumo 16.42% las principales formas de uso, con una frecuencia de dos a tres veces al día por siete días, fue lo más referido.

- 5. En el análisis fitoquímico cualitativo de las plantas medicinales más usadas en enfermedades prevalentes por el método espectrofotométrico UV visible, se halló metabolitos en diferentes rangos de absorción: azúcares reductores (300 a 550 nm), flavonoides (200 a 370 nm), compuestos fenólicos (200 350 nm), resinas (250 300 nm), alcaloides (220 380 nm), taninos (217 277 nm) y saponinas (528 nm) de las plantas medicinales más representativas como: Botoncillo (*Ageratina scopulorum Wedd*), Muyucaya (*Solanum aloysio*) y Piquipichana (*Scoparia dulcis*).
- 6. La comparación de los espectros obtenidos en nuestro estudio frente a espectros de otros estudios evidenció una correlación positiva, las curvas se pronuncian en los mismos rangos de longitud de onda, con lo cual corroboramos la presencia de los metabolitos hallados en forma cualitativa con las reacciones químicas de caracterización.
- No existe la presencia de quinonas en ninguna de las tres especies estudiadas. No existe la presencia de saponinas en la muestra de Botoncillo (Ageratina scopulorum Wedd)

RECOMENDACIONES

A las autoridades de la universidad y el país.

- Promover la cobertura sanitaria universal integrando la medicina tradicional en los sistemas de salud de nuestro país.
- Incentivar la realización de investigaciones científicas en plantas medicinales de nuestra región para su aplicación en medicina complementaria.
- Implementar y equipar el laboratorio de fitofarmacia y productos naturales de las universidades con espectrofotómetros de última generación para que se puedan realizar este tipo de investigaciones.

A los docentes de la universidad.

- Promover el desarrollo de estudios etnobotánicos y etnofarmacológicos para beneficiarnos de la biodiversidad de plantas que posee nuestra región y así enriquecer el conocimiento de los estudiantes y la población.
- Promover semilleros de investigación para los estudiantes e incentivarlos a desarrollar estudios en esta área.

A los estudiantes.

Realizar trabajos de investigación sobre las plantas medicinales en especial en nuestra selva, para poder obtener información y así realizar una fitofarmacopea cada vez más completa.

Bibliografía

- Organización Mundial de la Salud. Estrategia de la OMS sobre medicina tradicional 2014-2023.
 [Online].; 2024 [cited 2024 abril 17. Available from: https://iris.who.int/bitstream/handle/10665/95008/9789243506098 spa.pdf.
- Instituto Nacional de salud. Plataforma digital única del estado del gobierno. [Online].; 2024 [cited 2024 abril 01. Available from: https://www.gob.pe/46189-instituto-nacional-de-salud-medicina-tradicional.
- 3. Organización Mundial de la Salud. OMS. [Online].; 2022 [cited 2024 02 04. Available from:https://www.who.int/es/news-room/questions-and-answers/item/traditional-medicine.
- 4. De La Cruz Castillo AJ, Mostacero León J, López-Medina SE, Gil-Rivero AE, Vásquez-Boyer CA, Villacorta-Vásquez JA, et al. Estudio etnobotánico de la flora medicinal de la provincia de Trujillo, Perú. Boletin latinoamericano y del Caribe de plantas medicinales y aromáticas (Blacpma). 2022; 23(1).
- Salud OPdl. Situación de las plantas medicinales en Perú. [Online].; 2019 [cited 2022 02 17.
 Available from:
 https://iris.paho.org/bitstream/handle/10665.2/50479/OPSPER19001 spa.pdf?sequence=1&i sAllowed=y.
- Elaez Ramírez J. Visiones, curaciones y arte en el Antisuyo. Librosperuanos. [Online].; 2008
 [cited 2022 02 19. Available from: http://www.librosperuanos.com/autores/autor/4149/Elaez-Ramirez-Jeronimo.
- 7. Troncozo Corzo ME. Las plantas medicinales: usos y efectos en el estado de salud de la población rural de Babahoyo Ecuador. Tesis. Lima: Universidad Nacional Mayor de San Marcos, Facultad de Medicina; 2017.
- 8. Pérez RM. Usan plantas medicinales casi 80% de los países en desarrollo, según la OMS. La Jornada. 2015 enero: p. 1.
- Oblitas G, Hernández Córdova G, Chiclla A. Empleo de plantas medicinales en usuarios de dos hospitales referenciales del Cusco, Perú. Revista peruana de Medicina Experimental y Salud Pública. 2013 febrero.
- 10 Garaycochea Mejía C, Galarza Lucich L, Valer Carpio J. Zonificación ecológica y económica-La . convencion. [Online]. [cited 2022 02 20. Available from: https://www.ima.org.pe/estudios/zee-convencion/ZEE LA CONVENCION FINAL.pdf.

11 Cruz Corimanya N. Christian Bues: Vida y Obra: Centro Cultural Jose Pio Aza.

.

- 12 Bolaño Padilla EV. Caracterizacion etnobotanica de plantas medicinales en la vereda San
 - . Miguel arriba del municipio de San Carlos, Cordoba. Tesis. Cordoba, Colombia: Universidad Santo Tomas , Ciencias y Tecnologias; 2019.
- 13 Torres Silva PM. Estudio etnofarmacologico sobre el uso de plantas medicinales en la . counidad de Neltume, Chosuecho y Lago, Pampaguipulle. Tesis de Pregrado. Valdivia, Chile: Universidad Austral de Chile, Quimica y Farmacia; 2018.
- 14 Eva Acosta M. Etnobotánica de comunidades. Tesis Doctoral. Buenos Aires, Argentina: . Universidad Nacional de Comahue, Biologia; 2018.
- 15 Zapata Garcia VF. Estudio etnobotanico y farmacognostico de especies vegetales en la Isla de . Muisne. Tesis. Ecuador: Escuela Superior Politecnica de Chimborazo, Farmacia y Bioquimica; 2017.
- 16 Espejo Palomino C. Etnobotánica de las plantas medicinales del caserio El Eden, Provincia de . Sanchez Carrion, La Libertad. Tesis de Pregrado. Cajamarca: Universidad Nacional de Cajamarca, Ciencias Agrarias; 2019.
- 17 Aguilar Guimac EG, Montalvo Rodriguez GP. Estudio etnofarmacológico de las plantas . medicinales con mayor uso significativo en la comunidad del centro poblado Tambolic, Distrito de Jamalca, Utcubamba, Amazonas. Tesis de Pregrado. Lima: Universidad Norbert Wiener, Farmacia y Bioquimica; 2019.
- 18 Vilchez Gamarra GZ. Estudio etnobotánico de especies medicinales en tres comunidades . asháninkas y su tendencia al deterioro. Chanchamayo, Junín. Tesis de Maestria. Lima: Universidad Nacional Mayor de San Marcos, Farmacia y Bioquímica; 2017.
- 19 Arias Morales AR. Descripción y uso de especies de plantas con propiedades medicinales en el distrito de Yanahuanca. Provincia de Daniel. Carrión. Tesis de pregrado. Cerro de Pasco: Universidad Nacional Daniel Alcides Carrion, Ciencias Agropecuarias; 2017.
- 20 Rodrlguez Cuno JR, Suma Erazo V. Estudio etnobotánico, etnofarmacológico y determinación . de la bioactividad de plantas medicinales más representativas de las comunidades de Ccayocca y Pampa Lawa del distrito de Checacupe Cusco. Tesis de Pregrado. Cusco: Universidad Nacional de San Antonio Abad del Cusco, Farmacia y Bioquimica; 2021.
- 21 Quispe Jallasi M, Montoya Masias L. Estudio etnobotánico, etnofarmacológico y
 . determinación de la actividad antibacteriana in vitro de los extractos secos etanólicos al 70% de las especies vegetales medicinales más frecuentemente utilizadas en infecciones de la piel

- en las comunidades de Pa. Tesis de Pregrado. Cusco: Universidad Nacional de San Antonio Abad del Cusco, Farmacia y Bioquimica; 2018.
- 22 Huillca Mendivil Z, Tayro Muñoz C. Descripción y evaluación de conocimientos y utilidades de . plantas medicinales en dos comunidades nativas (shima chakopishiato), del distrito de Echarati La Convención. Tesis de Pregrado. Cusco: Universidad Nacional de San Antonio Abad del Cusco, Ciencias Agrarias; 2017.
- 23 Martinez CD. Ecocience International Journal. [Online].; 2020 [cited 2022 02 25. Available from: Claudia Dorado Martinez.
- 24 Kvist Lars P, Isabel O, Andrea G, Consuelo. L. Estudio etnobotánico de especies medicinales . utilizadas por la comunidad de la Vereda Campo SAlegre del corregimiento de Siberia Cauca (Colombia). Revista de Ciencias. 2013 diciembre.
- 25 Rodriguez Alviz, Eduardo; Luis Eduar Chepe; Guerrero Edwin Alberto; Valencia Cadavid. . Estudio etnobotánico de especies medicinales. Revista de ciencias. 2013 diciembre.
- 26 Catalá JAL. Estudio etnobotánico de la provincia de La Coruña. Tesis Doctoral. Valencia: . Universidad de Valencia, Farmacia; 2008.
- 27 Mejía CM, Rodriguez GA, Ramírez GZ. Flora medicinal y sus conocimientos asociados. Lineamientos para una regulación Colombia: Universidad del Rosario; 2007.
- 28 Martin GJ. Etnobotánica: Pueblos y plantas: Manual de conservación. Manual de métodos: . NORDAN.
- 29 Guevara FAT. Etnobotánica y tamizaje fitoquímico de especies vegetales con potencial . económico de los páramos de ayabaca y huancabamba, piura-Perú. Tesis de Maestría. Trujillo: Universidad Nacional de Trujillo, Farmacia; 2015.
- 30 Torres Guevara FA. Etnobotánica y tamizaje fitoquímico de especies vegetales con potencial . económico de los páramos de ayabaca y huancabamba, piura-Perú. Tesis de Maestría. Trujillo: UNT; 2005.
- 31 Española RA. Real Academia Española. [Online].; 2020 [cited 2022 02 25. Available from: https://dle.rae.es/droga?m=form.
- 32 Peña MJS, Almaguer MLM, Chávez AH. Farmacologia general España: Sintesis S.A.; 2009.

.

- 33 Ochoa Amado LS, Sarmiento Mora AJ. Estudio Fitoquímico de la especie vegetal Bucquetia . glutinosa (L.f.) DC. (Melastomataceae) y evaluación de su actividad biológica. Tesis. Bogotá: Universidad de Ciencias Aplicadas y Ambientales, Farmacia; 2018.
- 34 Toledo M. Espectrofotometría UV/VIS Fundamentos y Aplicaciones Suiza: Market Support . Group AnaChem / MarCom Analytical; 2016.
- 35 Sanz Muñoz C. Estudio sobre la biosíntesis y propiedades alotópicas del factor de . acoplamiento de fosforilación oxidativa (ATPasa) de Micrococcus Lysodeikticus. Tesis Doctoral. Madrid: Universidad Complutense de Madrid, Ciencias Biológicas; 2015.
- 36 Roersch C. Plantas medicinales en el sur andino del Perú. 1st ed.: Koeltz Scientific Books; 1994.
- 37 Caixa FL. Diccionario de la lengua española. [Online].; 2025 [cited 2025 mayo 15. Available . from: https://dle.rae.es/.
- 38 Municipalidad distrital de Echarate. Area de desarrollo urbano, Gerencia de desarrollo social. . 2020..
- 39 Informática) I(NdEe. Compendio Estadistico Cusco 2017. In Compendio Estadistico Cusco 2017.; 2017.
- 40 Bioquimica EPFyB. Guia de Prácticas de Farmacognosia. 2019 Jan; 1(1).
- 41 Hidalgo P, López M, Mera M, Cañamar L, Malagón O. Uso etnobotánico y principios activos . Monnina de crassifolia KUNTH; Polygalaceaeethnobotanical. Infoanalitica. 2020 Jun; 8(2).
- 42 Cervantes Tavera A.Hernandez Santi agos HFM. Efecto de la temperatura y concentracion de . glucosa en la sintesis verde nanopartículas de plata. [Online].; 2023. Available from: file:///C:/Users/USUARIO/Downloads/Art1+(3)-3-8.pdf.
- 43 Monedero Pasimno JM. Identificación y caracterización de flavonoides por . espectrofotometría de masas en melazas residuales de un ingenio azucarero. Tesis. Santiago de Cali: Universidad ICESI, Departamento de Ciencias Farmaceúticas; 2016.
- 44 Gemta AB. Investigación espectrofotométrica de los principales compuestos bioactivos del . grano de café.. Tesis. Adama Science and Technology University; 2011.
- 45 Castillo-Valdivia Eea. Caracterización de la goma arábiga y estudio de los cambios inducidos . por envejecimiento artificial. SCIENTIFIC RESEARCH. 2011.

- 46 Amiel Pérez, J. ; Fuertes Ruitón, C. ; Amiel Peña, D.A. Aislamiento e identificación de alcaloides . mutagénicos de las hojas de ruta graveolens L. por métodos espectroscópicos UV-IR. Ciencia e Investigación. .
- 47 Mendoza Cuevas, Ariadna; Correa Jiménez, Maurín; Quezada Portal, Anixa. Identificación de . tintas metalogálicas en manuscritos históricos mediante análisis no destructivo combinado de espectrometría fluorescencia de rayos X y UV-visible. Revista Cubana de Química. 2009; XXI(1).
- 48 Ramos Paredes SE. Determinación de parámetros de secado por aspersión de extracto acuoso . de saponinas y adaptación de un método de cuantificación en quinua por espectrofotometría UV-visible. Tesis. La Paz: Universidad Mayor de San Andrés, Facultad de ciencias puras y naturales.
- 49 MINSA. Morbilidad General a Nivel Nacional (MINSA). [Online].; 2020 [cited 2023. Available . from: https://www.minsa.gob.pe/reunis/data/morbilidad HIS.asp.
- 50 Tinitana Imaicela F. Composicion Floristica y etnobotanica de las diferentes formaciones . vegetales de la provincia de Loja , Ecuador. Tesis Doctoral. Madrid: Universidad Politecnica de Madrid, Biologia Vegetal; 2014.
- 51 Deyvis Antoniony Baca Calderon HRO. Estudio Etnobotánico y Etnofarmacológico de especies . vegetales de interés medicinal y análisis fitoquímico cualitativo de las especies más representativas de la comunidad nativa de Santa Rosa de Huacaria , Distrito de Kósñipata-Cusco. tesis. cusco: UNSAAC, cusco; 2008.

ANEXOS

Anexo 1. Resolución con fines de investigación científica de flora silvestre, otorgada por SERFOR.

RESOLUCIÓN DIRECTORAL

Magdalena Del Mar, 30 de Noviembre del 2022

RD N° D000151-2022-MIDAGRI-SERFOR-DGGSPFFS-DGSPF

VISTOS:

La carta s/n, registrada con expediente Nº 2022-0038277 (2022-0041183, 2022-0045219), de fecha 19 de septiembre de 2022, conteniendo la solicitud de autorización con fines de investigación científica de flora silvestre, fuera de Áreas Naturales Protegidas (ANP), presentada por el señor Edy Segovia Araoz (en adelante, el administrado), ciudadano de nacionalidad peruana, identificado con DNI Nº 23954642; así como, el Informe Técnico Nº D000048-2022-MIDAGRI-SERFOR-DGGSPFFS-DGSPF-ICV de fecha 30 de noviembre de 2022, y.

CONSIDERANDO:

Que, el artículo 66 de la Constitución Política del Perú de 1993 establece que los recursos naturales, renovables y no renovables, son patrimonio de la Nación; y el Estado es soberano en su aprovechamiento:

Que, el artículo 9 de la Ley N° 26821, Ley Organica para el eprovechamiento sostenible de los Recursos Naturales, establece que el Estado promueve la investigación científica y tecnológica sobre la diversidad, calidad, composición, potencialidad y gestión de los recursos naturales. Promueve, asimismo, la información y el conocimiento de los recursos naturales. Para estos efectos, podrán otorgarse permisos para investigación;

Que, mediante el artículo 13 de la Ley Nº 29763, Ley Forestal y de Fauna Silvestre, se creó el Servicio Nacional Forestal y de Fauna Silvestre - SERFOR, como un organismo público técnico especializado con personería jurídica de derecho público interno, como pliego presupuestal adscrito al Ministerio de Agricultura, actualmente el Ministerio de Desarrollo Agrario y Riego; artículo en el que además se señala que el SERFOR es la autoridad nacional forestal y de fauna silvestre, ente rector del Sistema Nacional de Gestión Forestal y de Fauna Silvestre, constituyendo su autoridad técnico normativa a nivel nacional, encargada de dictar las normas y establecer los procedimientos relacionados a su ámbito:

Que, el artículo 137 de la precitada Ley Nº 29763, Ley Forestal y de Fauna Silvestre, declara de interés nacional realizar la investigación, el desarrollo tecnológico, la mejora del conocimiento y el monitoreo del estado de conservación del patrimonio forestal y de fauna silvestre de la Nación;

Que, según lo dispuesto por el artículo 140 de la Ley en mención, señala que el SERFOR evalúa y otorga la autorización para extracción de recursos forestales y de fauna silvestre con fines de investigación científica cuando: (i) se incluye especies

RESOLUCIÓN DIRECTORAL

desarrollo de la misma, corresponde al administrado solicitar por escrito ante la Dirección de Gestión Sostenible del Patrimonio Forestal del SERFOR, la renuncia a la autorización otorgada; renuncia que deberá ser solicitada dentro del plazo de vigencia de la autorización, precisándose el hecho o evento que origina la imposibilidad de ejecutar o de continuar ejecutando la investigación aprobada, debiendo además el administrado adjuntar la documentación de sustento que estime necesaria, de ser el caso.

Que, por otro lado, el artículo 100 del Reglamento para la Gestión Sostenible de Patrimonio Forestal y de Fauna Silvestre en Comunidades Nativas y Comunidades Campesinas, señala lo siguiente:

'Investigaciones científicas realizadas dentro de las tierras de comunidades campesinas y comunidades nativas

Toda investigación científica en materia forestal y de fauna silvestre a realizarse dentro de tierras de comunidades campesinas o comunidades nativas, requiere de la eutorización expresa de la comunidad y autorización otorgada por la autoridad correspondiente. (...)"

Que, en adición a ello, debemos precisar que, la presente autorización no habilita el ingreso a predios privados, en cuyos casos, deberán gestionar la autorización de ingreso correspondiente ante la autoridad o titular del área, según corresponda.

Que, en ese sentido, en caso la ejecución de la Investigación comprenda el Ingreso a territorios de Comunidades Campesinas o Comunidades Nativas, previamente deberá solicitarse la autorización correspondiente;

Que, en conformidad con la Ley Forestal y de Fauna Silvestre, aprobada por Ley N° 29763; el Reglamento para la Gestión Forestal, aprobado mediante Decreto Supremo N° 018-2015-MINAGRI; el Decreto Supremo N° 004-2019-JUS que aprueba el Texto Único Ordenado de la Ley N° 27444 Ley del Procedimiento Administrativo General; el literal g) del Anliculo 53 del Reglamento de Organización y Funciones aprobado por Decreto Supremo N° 007-2013-MINAGRI, y su modificatoria mediante Decreto Supremo N° 014-2016-MINAGRI; la Resolución de Dirección Ejecutiva N° 060-2016-SERFOR/DE; así como, en ejercicio de la función delegada a través del artículo 1 de la Resolución de Dirección General N° D000627-2021-MIDAGRI-SERFOR-DGGSPFFS;

SE RESUELVE:

Artículo 1.- OTORGAR la autorización con fines de investigación científica de flora silvestre, fuera de Áreas Naturales Protegidas (ANP), al señor Edy Segovia Araoz, ciudadano de nacionalidad peruana, identificado con DNI N° 23954642, correspondiéndole el Código de Autorización N° AUT-IFL-2022-073; para desarrollar el proyecto titulado "Estudio etnoboténico, etnofarmacológico y análisis fitoquímico de las plantas medicinales más usadas en afecciones prevalentes en el Poblado Echarati (La Convención) — Cusco 2022"; a realizarse en el distrito de Echarate, provincia de La Convención, departamento de Cusco; conforme con lo senalado en el Cuadro N° 1 del Anexo 1 de la presente resolución; cuya vigençia se contabilizará desde el día siguiente hábil de su notificación.

Anexo 2. Consentimiento de autoridades de la comunidad para realizar el estudio.

MINISTERIO DEL INTERIOR

TENIENTE GOBERNADOR DEL SECTOR DE PAMPA ECHARATI
ECHARATI-LA CONVENCION-CUSCO

"Año del Fortalecimiento de la Soberania Nacional"

AUTORIZACIÓN PARA LA REALIZACIÓN DE ESTUDIOS

EL QUE SUSCRIBE TENIENTE GOBERNADOR DEL SECTOR DE PAMPA ECHARATI DEL DISTRITO DE ECHARATI, PROVINCIA DE LA CONVENCION REGION CUSCO.

Informado sobre la petición realizada por el ciudadano EDY SEGOVIA ARAOZ identificado con DNI Nº 23954642.

Considero que el trabajo de investigación denominado "estudio etnobotánico, etnofarmacologico y análisis fotoquímico de cinco plantas medicinales mas usadas en afecciones prevalentes en caseríos del poblado de Echarati". Este estudio contribuira a la preservación de nuestros saberes ancestrales, y no constituye amenaza alguna para la deforestación de nuestra flora local.

Además, que el territorio donde se realiza el presente estudio sector pampa Echarati no se encuentra dentro de áreas de conservación o reservas naturales.

A nombre de la comunidad de pampa Echarati, y previamente informado y en mi calidad de teniente gobernador del sector, se otorga el consentimiento de la comunidad para realizar entrevistas a la población y la recolección de nuestras botánicas de plantas medicinales usadas por nuestra comunidad.

ECHARATI: 22 DE AGOSTO DEL 2022

Anexo 3. Información oficial y datos estadísticos sobre enfermedades prevalentes en la zona de estudio del 2017 al 2022 (Minsa). (49)

10 PRIMERAS CAUSAS DE MORBILIDAD PS. ECHARATE, 2017

W	CATEGORIAS	PEMENDIO	-	MASCULINO	- N	TOTAL	- 5
D).	CAMIES ENDITAL	668	70.7%	442	13:3%	1110	71.3%
02	QUICHTS Y ENFERMEDADES PERIODONIALES	395	8.9%	386	9.8%	481	9.2%
Œ	PARTICITIS AGGOA	233	7.2%	184	9.7%	417	8.0%
940	(FINAL ENFERNMEDADES DE LOS PENDOS DUROS DE LOS DIENTES	254	7.1%	90	4.2%	714	9.0%
05	CITRES TRASTORNOS SIEL SISTEMA UNINAMIO	175	5.2%	15	0.8%	190	3.7%
200	DORSALDA	109	1.8%	76	4.0%	085	3,6%
03	RINOPARINGITIS AGUDA (RESPRIADO COMUN)	83	2.5%	102	4.6%	471	3.3%
39	DIFFERMEDIAGES DE LA POLFA Y DE LOS TEHDOS FERNAPICALES	96	3.0%	MI	3.2%	159	2.1%
09	HIPECCIONES AGUDAS DE LAS YIAS RESPIRATORIAS SUPERIÓRES, DE STROS MUS.	82	2.5%	56	2.9%	528	2.7%
10	ENFERMEDAD DE TRANSMISION SEXUAL NO EXPECIFICADA	116	3.5%	2	0.1%	118	2.3%
	CTRAS MONERCOADES	1209	36.6%	712	37.5%	1921	36.30
	TOTAL	THE	106.8%	500	ide on	5354	500.09

Puertie: NEL Extenistics pe la RSSEC

10 PRIMERAS CAUSAS DE MORBILIDAD ENERO-SETIEMBRE 2022 C.S ECHARATE

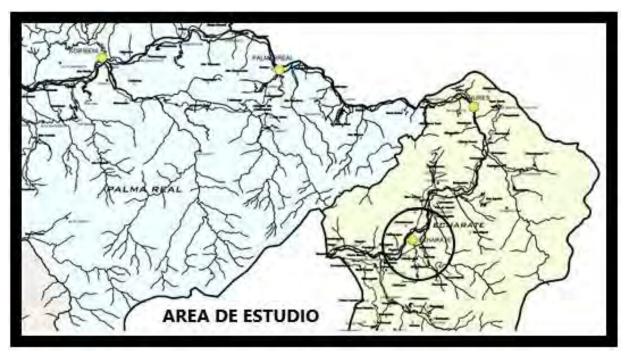
CATEGORIA	FEMENINO	%	MASCULINO	%	TOTAL	%
FARINGITIS AGUDA	283	20.48	255	26.29	538	22.87
DORSALGIA	181	13.10	128	13.20	309	13.14
CARIES DENTAL	159	1151	130	13.40	289	12.29
RINOFARINGITIS AGUDA [RESFRIADO COMUN]	144	10,42	140	14.43	284	12.07
TRASTORNOS DEL DESARROLLO Y DE LA ERUPCION DE LOS DIENTES	138	9.99	105	10.82	243	10.33
OTROS TRASTORNOS DEL SISTEMA URINARIO	135	9.77	15	1.55	150	6.38
ENFERMEDADES DE LA PULPA Y DE LOS TELDOS PERIAPICALES	81	5.86	65	6.70	146	5.21
GASTRITIS Y DUODENITIS	104	7.53	41	4.23	145	6.16
OTRAS ENFERMEDADES DE LOS TEIDOS DUROS DE LOS DIENTES	96	6.95	41	423	137	5.82
OTRAS GASTROENTERITIS Y COLITIS DE ORIGEN INFECCIOSO Y NO ESPECIFICADIO	61	4.41	50	5.15	111	4.72
Total general	1382	100	970	100	2352	100

Tabla 71. Diez primeras causas de morbilidad, Región Cusco 2020

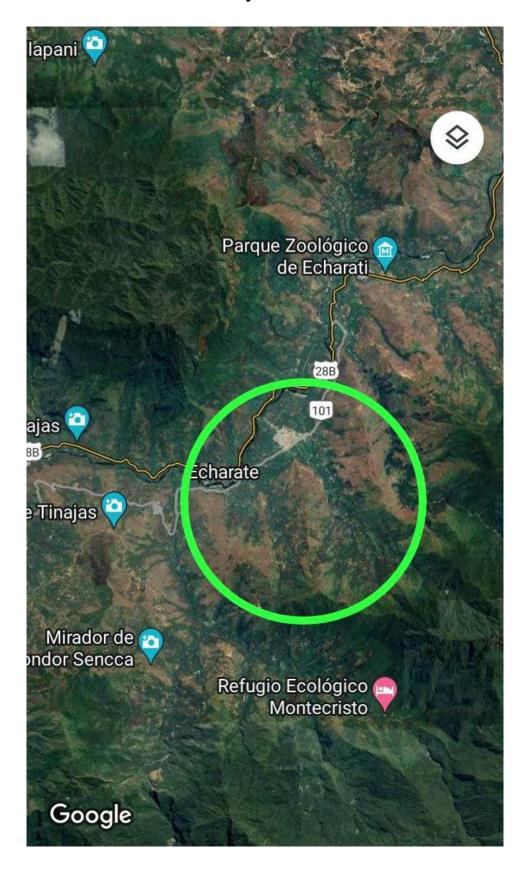
	Capítulos cie-10	Total	%
1	Capitulo XI: Enfermedades del sistema digestivo	122780	18.5%
2	Capitulo X: Enfermedades del sistema respiratorio	105939	16.0%
3	Capítulo I: Ciertas enfermedades infecciosas y parasitarias	68082	10.3%
4	Capitulo XIX: Traumatismos, envenenamientos y algunas otras consecuencias de causas externas	60493	9.1%
5	Capitulo XIII: Enfermedades del sistema osteomuscular y del tejido conjuntivo	53719	8.1%
6	Capitulo XIV: Enfermedades del sistema genitourinario	44724	6.7%
7	Capitulo XVIII: Síntomas, signos y hallazgos anormales clínicos y de laboratorio, no clasificados en otra parte	40813	6.1%
8	Capitulo IV: Enfermedades endocrinas, nutricionales y metabólicas	36978	5.6%
9	Capitulo XV: Embarazo, parto y puerperio	30792	4.6%
10	Capitulo XII: Enfermedades de la piel y del tejido subcutáneo	18057	2.7%

Fuente: Dirección de Estadística e Informática - GERESA Cusco

Anexo 4. Mapas de ubicación de los caseríos de Echarati - La Convención.


Mapa de Cusco - La Convención

Mapa de La Convención – Echarati


Distrito Echarati

AREA DE ESTUDIO

147

Vista Satelital del área de estudio y coordenadas UTM -12.75746 -72.57783

Anexo 5. Certificación de determinación taxonómica y depósito en Herbario Vargas CUZ

FACULTAD DE CIENCIAS BIOLOGICAS

CERTIFICACIÓN

El que suscribe, **M.Sc. Washington Hilario Galiano Sánchez**, Decano de la Facultad de Ciencias Biológicas, Docente Asociado al Herbario Vargas CUZ.

Certifica que el Sr. **Edy Segovia Araoz**, tesista egresado de la Escuela Profesional de Farmacia y Bioquímica de la Universidad Nacional de San Antonio Abad del Cusco, me ha presentado muestras botánicas colectadas para su determinación taxonómica y se ha depositado en el Herbario Vargas CUZ, las que al ser diagnosticadas, certifico que corresponden a las especies mencionadas en la tabla adjunta.

Cusco, 14 de junio 2023

Determinación de 42 muestras botánicas:

Nro.	Nombre científico	Nombre(s) común(es)	Familia
1	Bixa orellana L.	ACHIOTE	Bixaceae
2	Ageratina scopulorum (Wedd.)	BOTONCILLO / BOTON BOTON	Compositae
3	Theobroma cacao L.	CACAO	Malvaceae
4	Coffea arabica; L.	CAFÉ	Rubiaceae
5	Dodonaea viscosa	CHAMAN / CHAMANA:	Sapindaceae
6	Phyllanthus niruri	CHANCA PIEDRA	Phyllanthaceae
7	Erythroxylum coca	COCA	Erythroxylaceae
8	Paspatum consuelatum	СИСНІМИСНИ	Poaceae
9	Pseudadephantopus spiralis (Less) cronq	CUCHICARA	Asteraceae
10	Stachys herrerae	HIERBA DE CANCER	Lamiaceae
11	Mikania guaco	HUACO / GUACO	Asteraceae
12	Sida rhombifolia	JUCUCHACHUPA / UCUCHACHUPA	Malvaceae
		(COLA DE RATON)	
13	Niphidium crassifolium	KALA KALA QALA QALA / Q'ALAWALA	Polypodiaceae
14	Urtica dioica subsp. holosericea (Nutt.)	KISA KISA	Urticaceae
15	Citrus medica L.	LIMON	Rutaceae
16	Plantago major	LLANTEN	Plantaginaceae
17	Guazuma Ulmifolia	LLAUSAPANCHO / YAUSAPANCHO	Malvaceae

18	Ageratum conyzoides	MANKAPAQUI	Asteraceae
19	Mangifera indica	MANGO	Anacardiaceae
20	Annona muricata	MASASAMBA	Annonaceae
21	Ficus paraensis (MIQ.) MIQ.	MATAPALO	Moraceae
22	Piper	MATICO / MOCO	Piperaceae
	pseudoarboreum	MOCO	
	Yunck.		
23	Solanum aloysio	MUYUCAYA / HIERBA MORA	Solanaceae
24	Persea americana	PALTA	Lauraceae
25	Chenopodium	PAICO	Amaranthaceae
	incisum Poir.		
26	Scoparia dulcis	PIQUIPICHANA	Plantaginaceae
27	Gamochaeta	QETO QETO / K'ETO	Asteraceae
	americana	K'ETO	
28	Triumfetta abutiloides A.StHil.	RATA RATA	Tiliaceae
29	Rosmarinus officinalis L.	ROMERO	Lamiaceae
30	Psidium guajava	SAHUINTO BLANCO/ GUAYABA BLANCA	Myrtaceae
	Haliaaamaa	CANCRE DE CRADO	NA-lu
31	Heliocarpus	SANGRE DE GRADO	Malvaceae
	americanus		
32	Cyathea multiflora	SANO SANO	Cyatheaceae
33	Piper peltatum	SAQRAMASCARA / HOJA CORAZON	Piperaceae
34	Crotalaria incana	SAQSAYLLO / FRIJOL DE PALO / FRIJOL CHICHARO	Fabaceae

35	Psittacanthus acuminatus	SUELDA QUE SUELDA / SOLTAQUESOLTA	Loranthaceae
36	Acalypha mapirensis	TIGRE TIGRE BLANCO	Euphorbiaceae
37	Acalypha mapirensis	TIGRE TIGRE ROJO	Euphorbiaceae
38	Uncaria guianensis	UÑA DE GATO	Rubiaceae
39	Stachytarpheta cayennensis	VERBENA	Verbenaceae
40	Achyrocline alata	WIRA WIRA WERA WERA	Asteráceas
41	Bocconia frutescens	YANALI	Papaveraceae
42	Manihot esculenta	YUCA	Euphorbiaceae

Anexo 6. FICHA ETNOFARMACOLÓGICA

Datos del entrevistado:

Nombre completo:		
DNI:	Edad:	Sexo: (M) (F)
Lugar de nacimiento:	Estado civil:	(
Grado de instrucción:		
Analfabeto ()	Primaria incompleta ()	Primaria completa (
Secundaria incompleta ()		
Ocupación:	. ,	, , ,
Agricultor(a) ()	Ama de casa ()	Obrero(a) ()
Tiempo que vive en la zona:		
¿Usas plantas medicinales?	Sí()	No ()
¿De quién aprendiste como usa	rlas?	
Papá o mamá () Herma	anos () Abuelos ()
Curanderos ()	Otros familiares ()	Vecinos ()
¿Principalmente qué enfermeda	des sufre tu familia?	
1.		
2.		
3.		
¿Qué plantas usas para curar es	stas enfermedades?	
1.		
2.		
3.		
¿De qué manera preparas la(s)	planta(s) para obtener su	s propiedades curativas?
Planta Medicinal	Forma de	preparación
1.		
2.		
3.		
¿Con qué frecuencia usas la pla	nta?	
Planta Medicinal	Fr	ecuencia de uso
1.		
2.		
3		

¿Por cuánto tiempo usas la planta para curarte comple	tamente?
Planta Medicinal	Tiempo de uso
1.	
2.	
3.	
¿Qué parte(s) de la planta usas?	
Planta Medicinal	Parte usada
1.	
2.	
3.	
¿Mezclas más de dos plantas para curarte? ¿Cuáles?	

INSTRUMENTO VALIDADO EN LA TESIS DE:

Mujica Ayala, Jhulyana Milagros; Palomares Pacheco, Arian Jaret. (Tesis de Pregrado) Estudio etnobotánico, etnofarmacológico, análisis fitoquímico y determinación de la bioactividad de las plantas medicinales de la comunidad de Pampallacta, distrito de Calca – Cusco. Universidad San Antonio Abad del Cusco. 2009

Anexo 7. FICHA ETNOBOTÁNICA

Nombre(s) común (es) de	e la especie vegetal:	
Tipo:		
Hierba ()	Semi arbusto ()	Arbusto ()
Árbol ()	Enredadera ()	
Nombre Científico:		
Ubicación Geográfica:	Latitud:	Altitud:
Estado:	Cultivado:()	Silvestre:()
Origen:	Nativa:()	Introducida:()
Época de siembra o retor	ĭo:	
Época de cosecha o reco	lección:	
Hábito de crecimiento:		
Estacional ()	Perenne ()	
Usos:		
Alimenticio ()	Medicinal ()	Maderable ()
Artesanal ()	Ornamental ()	Mágico-Religioso ()
Otros:		
Parte usada:		
Hojas ()	Tallos ()	Raíz ()
Flores ()	Frutos ()	Semillas ()
Corteza ()	Toda la planta ()	Otras partes:
Calidad de la planta:		
Cálido ()	Fresco ()	Indeterminado ()
Forma de utilización:		
Fresco ()	Seco ()	
Vía de administración:		
Interna ()	Externa ()	
Forma de preparación:		
Infusión ()	Cocimiento ()	Emplasto()
Extracción del zumo ()	Baños ()	Lavativas ()
Nro. de colección botánic	ea:	
Lugar:		
Fecha:		
Observaciones:		

Datos del entrevistado:		
Nombre completo:		
DNI:	Edad:	Sexo: (M) (F)
Lugar de nacimiento:	Estado civil:	
Grado de instrucción:		
Analfabeto ()	Primaria incompleta ()	Primaria completa ()
Secundaria incompleta ()	Secundaria completa ()	Superior ()
Ocupación:		
Agricultor(a) ()	Ama de casa ()	Obrero(a) ()
Tiempo que vive en la zona.		

INSTRUMENTO VALIDADO EN LA TESIS DE:

Mujica Ayala, Jhulyana Milagros; Palomares Pacheco, Arian Jaret. (Tesis de Pregrado) Estudio etnobotánico, etnofarmacológico, análisis fitoquímico y determinación de la bioactividad de las plantas medicinales de la comunidad de Pampallacta, distrito de Calca – Cusco. Universidad San Antonio Abad del Cusco. 2009

Anexo 8. PROCEDIMIENTO PARA LAS PRUEBAS FITOQUIMICAS CUALITATIVAS.

PROCEDIMIENTO PARA OBTENER LAS MUESTRAS

Obtenemos 5 gr de material vegetal seco y molido, se coloca en un balón con 50 mL de metanol y se macera por 20 horas a temperatura ambiente.

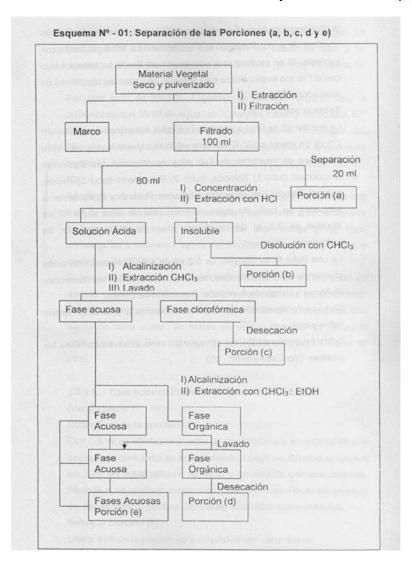
Luego se calienta a reflujo durante 4 horas, se filtra en caliente lavando con metanol y se completa a 100 mL, de este filtrado se separa 20 mL esta constituirá la **PORCIÓN (a).**

El resto 80 mL se concentra a sequedad. Se extrae el residuo con 15 mL de ácido clorhídrico al 1% en agua, calentando a 50° C y se filtra.

Repetir con 5 mL de ácido clorhídrico al 1% y unir los filtrados que forman solución ácida. Se disuelve el marco insoluble de la extracción acida en 6 mL de cloroformo, calentando y agitando. Se deshidrata esta solución con sulfato de sodio anhidro, se filtra y se completa a 5 mL. A este filtrado se le llama **PORCIÓN** (b).

La solución ácida se enfría, se alcaliniza con hidróxido de amonio y se extrae con dos porciones de 25 mL de cloroformo. Se lava la fase clorofórmica con agua, reuniendo las porciones acuosas. La fase clorofórmica se deshidrata con sulfato de sodio anhidro, se filtra y se completa a 50 mL. Esto constituye la **PORCIÓN (c).**

La fase acuosa se semisatura con sulfato de sodio (0,1 g de sal anhidra por mL de solución) y se extrae con dos porciones de 25 mL de cloroformo-etanol (3:2). La fase orgánica se lava con solución semisaturada de sulfato de sodio en agua (1x10 mL).


Reuniendo las fases acuosas se constituye la PORCIÓN (e).

La fase orgánica se deshidrata con sulfato de sodio, se filtra y se completa a 50 mL. Esto constituye la **PORCIÓN (d).**

Por otro lado, se mezcla 1 gr de material vegetal seco y pulverizado con 10 mL de agua, se agita y se calienta en agua a 83° C (Temperatura de ebullición en Cusco) durante 15 minutos. Se filtra en caliente y se completa a 10 mL se deja enfriar a temperatura ambiente, a este filtrado se le llama **PORCIÓN (f).**

Aparte se mezcla 1 gramo de material vegetal seco y pulverizado con 5 mL de ácido clorhídrico al 1% se agita y se calienta a 60° C durante una hora o hasta ligera ebullición. Se deja enfriar y se filtra, completando a volumen a través del filtro, de esto se separa 1 mL que constituye la **PORCIÓN** (g).

El resto 4 mL se alcaliniza con cantidad suficiente de hidróxido de amonio concentrado. Se agita suavemente con 4 mL de cloroformo. Se decantan 2 mL de cloroformo que se llevan a sequedad con ayuda de calor suave.se extrae residuo con 0.5 mL de ácido clorhídrico al 1%. Esto constituye la **PORCIÓN (h).** (49)

FUENTE: Rodríguez Lorenzo "Plantas medicinales de Huacho, su Screening fitoquímico y su aplicación en la medicina popular"

Anexo 9. Flujograma fotográfico del trabajo en campo y laboratorio.

Reconocimiento del lugar de investigación, viviendas, su población y caminos.

Pruebas de ensayo con los materiales e instrumento.

Trabajo de campo. Encuestas. Identificación y recolección de las plantas medicinales referidas

Secado y rotulado de las muestras botánicas para su identificación taxonómica en el Herbario Vargas CUZ

Triturado y pulverizado de las tres muestras de plantas secas escogidas para su análisis en laboratorio de Farmacognosia de la UNSAAC

Macerado por extracción hidroalcohólica 70% durante 15 días de las muestras de Botoncillo, Piquipichana, Muyucaya.

Trabajo de laboratorio realizado en el laboratorio de Farmacognosia: Evaporación del alcohol en baño maría hasta conseguir el extracto seco de las tres muestras

Marcha fitoquímica cualitativa para determinar presencia de metabolitos secundarios en tres extractos secos por reacciones químicas de caracterización

Análisis espectrofotométrico UV del extracto seco de las tres plantas.

Espectrofotómetro UV visible marca Jemway modelo 6850 del laboratorio de Farmacognosia UNSAAC

Preparación de las muestras. Dilución en agua destilada para su evaluación por espectrometría UV visible. Obtención gráfica de los espectros de absorción.

Δ	n	Δ3	O	١ 1	0	١
_		G /	١u	, ,	··	

Listado de plantas medicinales utilizadas por los pobladores de los cinco caseríos de alrededor del poblado Echarati.

IMAGEN	NOMBRE CIENTIFICO	NOMBRE COMUN	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACION
	Bixa orellana L.	Achiote	Bixaceae	Fresco	Infección urinaria	Hojas y semillas	Infusión	2 veces al día por 7 días
	Ageratina scopulorum (Wedd.)	Botoncillo / Boton Boton	Compositae	Fresco	Infección urinaria, Aftas	Flores y hojas	Infusión	2 veces al día por 7 días 3 veces al día por 7 días
	Theobroma cacao L.	Cacao	Malvaceae	Cálido	Debilidad muscular	frutos	Cocimiento	2 veces por semana
Au	Coffea arabica; L.	Café	Rubiaceae	Cálido	Hipertensión	hojas	Infusión	1 vez al día por 7 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACION
* A STATE OF THE S	Dodonaea viscosa	Chaman / Chamana:	Sapindaceae	Cálido	Dolor de cuerpo Inflamación	hojas	Cocimiento	2 veces al día por 10 días
	Phyllanthus niruri	Chanca Piedra	Phyllanthaceae	Fresco	Cálculos renales Infección urinaria Mal de riñones	hojas	infusión	2 veces al día por 7 días
No.	Erythroxylum coca	Coca	Erythroxylaceae	Cálido	Tos Inflamación Resfrío – Gripe	hojas	infusión	2 veces al día por 3 - 5 días
	Paspatum consuelatum	Cuchimuchu	Poaceae	Fresco	Inflamación Infección Diarrea	Tallo	Infusión	2 veces al día por 5 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE COMUN	FAMILIA	CALIDAD	USOS	PARTE USAD A	FORMA DE PREPARACIO N	FRECUENCI A Y TIEMPO DE APLICACION
×	Pseudadephantop us spiralis (Less)	Cuchicara	Asteraceae	Fresco	Infección urinaria	hojas	infusión	2 veces al día por 5 días
	Stachys herrerae	Hierba De Cancer	Lamiaceae	Cálido	Heridas	Hojas y tallo	emplasto	1 vez al día por 3 a 7 días
	Mikania guaco	Huaco / Guaco	Asteraceae	Indeterminado	Enfermedad de hígado	Tallo	Extracción de zumo	2 veces al día por 3 días
	Sida rhombifolia	Jucuchachupa / Ucuchachupa (Cola De Raton)	Malvaceae	Fresco	Inflamación Infección urinaria	hojas Raíz Tallo	Extracción de zumo Infusión	2 veces al día por 7 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USAD A	FORMA DE PREPARACIO N	FRECUENCIA Y TIEMPO DE APLICACION
	Niphidium crassifolium	Kala Kala Qala Qala / Q'alawala	Polypodiacea e	Cálido	Diabetes	Toda la planta	infusión	2 veces por semana
35	Urtica dioica subsp. holosericea (Nutt.)	Kisa Kisa	Urticaceae	Indetermin ado	Hepatitis Infección urinaria	raiz	infusión	1 vez al día por 7 días
	Citrus medica L.	Limon	Rutaceae	Cálido	Tos Resfrío – Gripe	Hojas y frutos	Infusión y extracción de zumo	2 veces al día por 5 días
	Plantago major	Llanten	Plantaginace ae	Fresco	Inflamación Infección urinaria Gastritis Fiebre	Hojas	Infusión	1 vez al día por 3 días /Ayunas

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACIO N	FRECUENCIA Y ITEMPO DE APLICACIÓN
NA.	Ficus paraensis (MIQ.) MIQ.	Matapalo	Moraceae	Indetermin ado	Torceduras Golpes	hojas	Infusión y extracción de zumo	1 vez al día por 10 días
N	Piper pseudoarboreum Yunck.	Matico / Moco Moco	Piperaceae	Cálido	Dolor articular	hojas	Infusión cocimiento	2 veces al día por 7 días
	Solanum aloysio	Muyucaya / Hierba Mora	Solanaceae	Fresco	Dolor de estomago Dolor muscular Infección/Inflamación Tos	Hojas. Frutos y flores	Infusión	2 veces al día por 7 días
	Persea americana	Palta	Lauraceae	Cálido	Diarrea	Hojas y frutos	Infusión	1 vez al día por 3 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACIÓN
The state of the s	Chenopodium incisum Poir.	Paico	Amaranthaceae	Fresco	Parasitosis Dolor de estomago Diarrea	Hojas flores y tallo	Infusión Extracción de zumo	3 veces al día por 7 días
	Scoparia dulcis	Piquipichana	Plantaginaceae	Cálido	Fiebre Resfrío – Gripe Infección urinaria Inflamación Tos	hojas	Infusión	2 veces al día por 5 días
中心	Gamochaeta americana	Qeto Qeto / K'eto K'eto	Asteraceae	Fresco	Tos	Hojas y tallo	Infusiónv	3 veces al día por 7 días
	Triumfetta abutiloides A.StHil.	Rata Rata	Tiliaceae	Fresco	Fiebre/ Inflamación Infección urinaria	Hojas y corteza	Infusión y emplasto	3 veces al día por 7 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACION
	Rosmarinus officinalis L.	Romero	Lamiaceae	Cálido	Resfrío – Gripe Dolor articular	Hojas	Infusión y baños	2 veces al día por 15 días
	Psidium guajava	Sahuinto Blanco/ Guayaba Blanca	Myrtaceae	Fresco	Diarrea Dolor de cabeza Infección Intestinal	Hojas y corteza	cocimiento	3 veces al día por 7 días
4	Heliocarpus americanus	Sangre De Grado	Malvaceae	Cálido	Gastritis	Corteza	Extracción de zumo	1 vez al día por 15 días
	Cyathea multiflora	Sano Sano	Cyatheaceae	Fresco	Infección Inflamación	Corteza	Cocimiento	2 veces al día por 15 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACION
-3	Piper peltatum	Saqramascara / Hoja Corazon	Piperaceae	Cálido	Prostatitis Inflamación Infección	hojas	emplasto	2 veces al día por 15 días
	Crotalaria incana	Saqsayllo / Frijol De Palo / Frijol Chicharo	Fabaceae	Fresco	Inflamación Infección urinaria Resfrío – Gripe	hojas	baños	1 vez al día por 7 días
	Psittacanthus acuminatus	Suelda Que Suelda / Soltaquesolta	Loranthaceae	Indeterminado	Golpes	hojas	emplasto	1 vez al día por 10 a 16 días
3	Acalypha mapirensis	Tigre Tigre Blanco	Euphorbiaceae	Indeterminado	Infección urinaria Fiebre	Toda la planta	Cocimiento	2 veces al día por 7 días

IMAGEN	NOMBRE CIENTIFICO	NOMBRE COMUN	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACIÓN
	Acalypha mapirensis	Tigre Tigre Rojo	Euphorbiaceae	Fresco	nflamación	hojas	Extracción de zumo	2 veces al día por 7 días
	Uncaria guianensis	Uña De Gato	Rubiaceae	Cálido	Inflamación	Corteza tallo	cocimiento	2 veces al día por 7 días
	Stachytarpheta cayennensis	Verbena	Verbenaceae	Fresco	Dolor de estomago Fiebre Inflamación	Hojas	Infusión extracción de zumo	2 veces al día por 7 días
	Achyrocline alata	Wira Wira - Wera Wera	Asteráceas	Cálido	Tos Fiebre	Tallo y flores	Infusión	3 veces al día

IMAGEN	NOMBRE CIENTIFICO	NOMBRE	FAMILIA	CALIDAD	USOS	PARTE USADA	FORMA DE PREPARACION	FRECUENCIA Y TIEMPO DE APLICACION
	Bocconia frutescens	Yanali	Papaveraceae	Indeterminado	Inflamación Infección urinaria	Toda la planta	baños	1 vez al día por 3 días
**	Manihot esculenta	Yuca	Euphorbiaceae	Fresco	anemia	hojas	Infusión	3 veces al día por 15 días